Academia.eduAcademia.edu
ECOTROPICA 11: 21–40, 2005 © Society for Tropical Ecology DIVERSITY OF VASCULAR EPIPHYTES ON ISOLATED REMNANT TREES IN THE MONTANE FOREST BELT OF SOUTHERN ECUADOR Florian A. Werner 1, Jürgen Homeier 2 & S. Robbert Gradstein 1 1 Abteilung für Systematische Botanik, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; 2 Abteilung für Ökologie und Ökosystemforschung, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany. Abstract. We studied the diversity of vascular epiphytes on isolated remnant trees of pastures in southern Ecuador. The objective of this study was to document the importance of remnant trees for the survival of vascular epiphytes following forest clearance. Twenty-one canopy trees (15 remnant trees, 6 forest trees) were divided into five zones following Johansson (1974) and climbed with the single rope technique. Recorded parameters include floristic composition, species richness, abundance, and spatial distribution of epiphytes. Bromeliaceae, Orchidaceae, Piperaceae and Polypodiaceae were relatively well represented on remnant trees in terms of species richness and abundance, whereas other families such as Dryopteridaceae, Ericaceae, Grammitidaceae or Hymenophyllaceae were poorly represented or absent. Diversity, species richness, and abundance of epiphytes were significantly lower on remnant trees compared with forest trees. Impoverishment was greatest on the stem base and in the outer crown, and least in the inner crown of the host trees. We postulate that microclimatic changes and increased drought stress following the isolation of the remnant trees resulted in lowered rates of establishment and survival of vascular epiphytes. Resumen. Estudiamos la ecología y diversidad de epífitas vasculares en árboles remanentes aislados, en potreros en la estribación oriental de los Andes del Ecuador. El objetivo de este estudio fue documentar la importancia de los árboles remanentes en la sobrevivencia de plantas epífitas vasculares despues del clareo del bosque. Veintiún árboles de dosel (15 árboles remanentes y 6 árboles de bosque) fueron divididos en 5 zonas de acuerdo con Johansson (1974) y ascendidos mediante equipos de montañismo. Los parámetros colectados incluyen composición florística, riqueza de especies, abundancia y distribución espacial de epífitas. En arboles remanentes, las familias Bromeliaceae, Orchidaceae, Piperaceae y Polypodiaceae estuvieron relativamente bien representadas en cuanto a riqueza y abundacia de especies, mientras que miembros de otras familias como Dryopteridaceae, Ericaceae, Grammitidaceae ó Hymenophyllaceae demostraron una tendencia pronunciada a disminuir o desaparecer en cuanto a esas variables. La diversidad, la riqueza de especies y la abundancia de epífitas estuvieron significativamente más bajas en los arboles remanentes que en los arboles del bosque. El empobrecimiento relativo fue mucho más pronunciado en las bases del tronco y copas externas, y menor en las copas internas de los árboles. Los resultados indican una alteración del gradiente microclimático natural y un mayor estrés hídrico, resultando en menores tasas de establecimiento y supervivencia de las epífitas. Accepted 17 March 2005. Key words: deforestation, diversity, Ecuador, epiphytes, remnant trees, spatial distribution, tropical montane forest, tropical pastures. INTRODUCTION Most studies on tropical forest fragmentation focus on forest fragments only, neglecting the characteristics of the surrounding habitats (Saunders et al. 1991). Consequently, it remains largely unknown how tropical forest organisms respond to habitat characteristics outside remnant fragments (Guevara 1995). Meanwhile, it has become increasingly apparent that undere-mail: florianwerner@yahoo.com standing how species are affected by fragmentation requires information on their responses to all landscape components, including the forest-intervening matrices (Gascon et al. 1999). This paper deals with vascular epiphyte assemblages on isolated remnant trees (IRTs) occurring in tropical pastures. Vascular epiphytes abound in tropical forests, especially in montane ones, and are often highly sensitive to anthropogenic disturbance (King & Chapman 1983, Hickey 1994, Turner et al. 1994, Barthlott et al. 2001, Krömer 2003, Krömer & Grad21 WERNER ET AL. stein 2003). However, knowledge of epiphyte assemblages on IRTs remains very poor. Epiphytic vegetation provides important resources and habitat for a wealth of animals and microorganisms (Vance & Nadkarni 1990, Paoletti et al. 1991, Greeney 2001, Stuntz et al. 2002). These include insectivorous, nectarivorous and frugivorous vertebrates, especially bats and birds (Nadkarni & Matelson 1989, Castañeda 2001, Fleming et al. 2004). The latter play a key role in gene flow between forest fragments and regenerating forest patches on abandoned pastures and fields (McDonnell & Stiles 1983, Guevara et al. 1992). Generally birds and bats are reluctant to enter or cross open landscapes unless these areas offer significant reward (Charles-Dominique 1986, Nepstad et al. 1990, Githiru et al. 2002). Given suitable attractiveness, IRTs can stimulate movement of birds and bats across the forest border and function as catalysts for forest regeneration (Guevara et al. 1986, Janzen 1988, Cardoso da Silva et al. 1996, Duncan & Chapman 1999, Carrière et al. 2002a, 2002b). The objective of this study was to describe the diversity and abundance of vascular epiphytes on IRTs. Specifically, we wanted to 1) document the effects of isolation on species composition, 2) determine possible causes of the structure and diversity of the vascular epiphyte assemblage on remnant trees, and 3) document the importance of remnant trees for the survival of vascular epiphytes following forest clearance. STUDY AREA The study was carried out in the valley of the Río San Francisco, southern Ecuador (3° 58’ S, 79° 04’ W), near the Estación Científica San Francisco (ECSF) at ca. 1800–2200 m elevation. The study area is situated within the Cordillera El Consuelo, forming part of the eastern range of the Ecuadorian Andes and bordering Podocarpus National Park. The region has been identified as a center of endemism and diversity for major groups of organisms such as birds, vascular plants or bryophytes (Fjeldså 1995, Borchsenius 1997, Navarrete 2000, Valencia et al. 2000, Parolly et al. 2004). The relief is highly structured by deeply incised ravines, steep slopes of 20–55° inclination, and narrow ridge-tops. Landslides are very common and result in a complex mosaic of successional stages of vegetation. Soils are very heterogeneous but are generally shallow, highly acidic and very poor in basic cations 22 and effective cation exchange capacity (Schrumpf et al. 2001). At 1950 m a.s.l. mean temperature is 15.5°C and average air humidity is 86 %. Annual precipitation averages slightly above 2000 mm (Emck 2005). Rainfall seasonality is not very pronounced; differences between years exceed those within years (R. Rollenbeck, pers. comm.). April – June are generally the wettest months while September – February tend to be drier. Since the beginning of climate recording in 1998 periods without precipitation longer than one week have been recorded only during November – January. The San Francisco valley experiences slight lee- and föhneffects (P. Emck, pers. comm.). Fog is uncommon throughout the year (pers. obs.). Primary forests on the north-facing slopes are generally of low stature, with canopy height exceeding 15–20 m only in ravines. Physiognomic differences between ridges, slopes and ravines are large (Homeier et al. 2002). Forests on the south-facing slopes were largely converted to cattle pastures ca. 12–30 yrs prior to sampling, with loosely-spaced occurrence of isolated remnant trees (IRTs). However, two of the sampled IRTs were isolated as recently as 2 and 5 years prior to sampling (Appendix 1). Cedrela montana and Tabebuia chrysantha are the main remnant tree species, being preserved, at least temporarily, for their valuable timber. Trees surviving slash-and-burn clearance generally exhibit healthy growth. Forest regeneration is prevented by burning of pastures during dry periods (Hartig & Beck 2002). Remnant vegetation or secondary forest occurs in scattered patches, mostly in narrow bands along ravines. METHODS Fifteen IRTs in pasture on the north-facing slope of the San Francisco valley and 6 canopy trees at similar elevation in nearby primary forest on the south-facing slope were sampled. Distances between IRTs and intact forest varied from approximately 100–500 m. Trees were selected randomly among accessible canopy trees of 30–50 cm diameter at breast height (DBH); forest trees 4–6 were sought for to avoid bias by host identity. Both subsamples have similar shares of trees from ridges, slopes and ravines. Access to tree crowns was achieved using the single rope technique (Perry 1978). In a few cases specimens were gathered by employing a hooked pole or by cut- EPIPHYTES ON REMNANT TREES TABLE 1. Floristic composition of epiphytes from the 6 forest trees (FTs) and 15 IRTs ordered by families. Richness [no. species] Total Abundance [no. stands] Relative [%] Total Relative [%] FTs IRTs Sum FTs IRTs FTs IRTs Sum FTs IRTs Alzateaceae Araceae Araliaceae Asclepiadaceae Asteraceae Bombacaceae Bromeliaceae Cactaceae Clusiaceae Cunoniaceae Cyclanthaceae Dryopteridaceae Ericaceae Gesneriaceae Grammitidaceae Hydrangeaceae Hymenophyllaceae Lentibulariaceae Marcgraviaceae Melastomataceae Moraceae Orchidaceae Piperaceae Polypodiaceae Rubiaceae Solanaceae Urticaceae Vittariaceae 1 6 2 1 2 1 23 1 3 1 1 9 13 1 13 1 10 1 2 5 1 105 10 9 1 – 1 1 – 2 – – – – 13 – – – – 1 1 – 1 – – – – – 2 31 7 7 – 2 – – 1 8 2 1 2 1 25 1 3 1 1 9 13 1 13 1 10 1 2 5 3 120 12 12 1 2 1 1 <1 3 – 3 – – – – 19 – – – – 1 1 – 1 – – – – – 3 46 10 10 – 3 – – 1 7 2 1 4 1 502 1 4 2 5 190 84 1 565 2 74 592 3 7 1 2802 52 42 1 – 2 26 – 4 – – – – 374 – – – – 1 1 – 2 – – – – – 3 1004 24 115 – 6 – – 1 11 2 1 4 1 876 1 4 2 5 191 85 1 567 2 74 592 3 7 4 3806 76 157 1 6 2 26 <1 <1 <1 <1 <1 <1 10 <1 <1 <1 <1 4 2 <1 11 <1 1 12 <1 <1 <1 56 1 <1 <1 – <1 <1 – <1 – – – – 24 – – – – <1 <1 – <1 – – – – – <1 65 2 8 – <1 – – Total 225 67 253 4974 1534 6508 <1 <1 <1 10 <1 1 <1 <1 <1 6 <1 <6 <1 4 <1 <1 2 <1 47 4 4 <1 – <1 <1 ting off minor branches. Voucher specimens were deposited in AAU, ECSF, MO, SEL, QCA and QCNE. Tree height, DBH, location, elevation, and time elapsed since isolation (age of clearing) were recorded. The latter was determined by interviewing land users. Epiphytes were sampled in each of 5 vertical tree zones following a zonation scheme slightly modified after Johansson (1974). Johansson-zone 1 (JZ 1) stretches from 0.25 m up to 3.0 m, JZ 2 from 3 m above ground to the first major ramification, JZ 3 comprises major branches > ca.12 cm in diameter (inner crown), JZ 4 branches 12–5 cm in diameter (middle crown), and JZ 5 branches < 5 cm in diameter (outer crown). Surface areas of zones 3–5 are about equal. Vascular epiphytes sampled included facultative and obligate holoepiphytes (sensu Benzing 1990), primary and secondary hemiepiphytes (Todzia 1986, Putz & Holbrook 1989), and accidental epiphytes (Benzing 1990). Non-hemiepiphytic climbers, hemiparasites and seedlings were excluded. Because of the common occurrence of clumped species, “stands” instead of individuals were recorded (stand = group of stems or plants spatially separated from another group of the same species by an area on the tree devoid 23 WERNER ET AL. of epiphytes or occupied by another species; Sanford 1968). Covers of bryophytes, lichens and substrate accumulations >1 cm thick were estimated in steps of 5% in relation to tree surface. Substrate accumulations consisted of dead organic matter in various stages of decomposition (“crown humus”; Jenik 1973) and living bryophytes and lichens. Statistical analysis was performed by two-tailed Mann-Whitney U-test and the Spearman rank-correlation test without transformations. Sørensen similarities between forest trees and IRTs were calculated for whole trees and Johansson-zones. Nonmetric multidimensional scaling (NMDS) was applied to the resulting matrices of similarity, here displayed as twodimensional scatterplots. RESULTS Composition and diversity. A total of 6508 stands representing 253 species of vascular epiphytes (86 genera, 28 families) was recorded. The 6 sampled forest trees harbored 4974 stands of 225 species (80 genera, 27 families), the 15 sampled IRTs 1534 stands of 67 species (30 genera, 10 families). Bromeliaceae, Orchidaceae, Piperaceae and Polypodiaceae were best represented on remnant trees regarding species richness and abundance (Table 1). Abundance of Orchidaceae on IRTs was largely due to the succulent Dryadella werneri, constituting 73% of all orchids. Compared with forest trees, species richness on IRTs was most strongly reduced in Dryopteridaceae (Elaphoglossum) (89%), Ericaceae (92%), Grammitidaceae (92%) and Hymenophyllaceae (100%), least in Bromeliaceae (44%), Piperaceae (30%) and Polypodiaceae (22%). Species with considerable abundance on IRTs included Tillandsia complanata and Tillandsia tovariensis (Bromeliaceae), Dryadella werneri, Epidendrum stangeatum, Epidendrum cf. zosterifolium and Prosthechea grammatoglossa (Orchidaceae), and Pleopeltis macrocarpa and Polypodium remotum (Polypodiaceae) (see Appendix 2). The number of epiphyte stands on single trees varied greatly (Fig. 1). Forest trees held 55-2519 stands (mean 828.7; median 490.0), IRTs 3-872 stands (mean 102.3; median 47.0). Total abundance and species richness of epiphytes were significantly lower on IRTs, both on whole trees and in Johansson-zones, compared with forest trees (Table 2). IRTs harbored 2-26 species (mean 10.5; median 10.0), forest trees 19-98 (mean 59.3; median 56.0) (Fig. 2). Diversity (Shannon, Simpson) was significantly lower on IRTs (P < 0.001, n = 21 and P < 0.05, n = 21 respectively; U-test). Species richness and abundance were correlated positively with covers of bryophytes and substrate accumulations, and negatively so with lichen cover (Table 3). Epiphyte assemblages on forest trees and IRTs were grouped as separate flor- FIG. 1. Abundance of epiphytes in relation to tree size (DBH). 24 EPIPHYTES ON REMNANT TREES FIG. 2. Epiphyte richness in relation to tree size (DBH). istic units by NMDS (Fig. 3). The first dimension well reflects species richness with the poorest hosts (trees P4, P5 and P12) on the left and the richest trees (F1, F2 and F3) on the right of the graph. Upper stems (JZ 2) of forest trees, finally, were clearly distinct from crown-zones, whereas this zone showed great similarity to the crown in remnant trees. Spatial distribution. Mean relative abundance was highest in JZ 4 and 5 on forest trees and in JZ 3 and 4 on IRTs (Fig. 4). Relative abundance and species richness on IRTs compared with forest trees were significantly lower in JZ 1 but higher in JZ 3 (Table 2). In addition, relative abundance on IRTs was significantly lower in JZ 5. Mean relative species richness on forest trees was highest in JZ 4, on IRTs in JZ 3 (Fig. 5). NMDS of the Johansson-zones based on assemblage structure clearly separated the two habitats (Fig. 6). Within each habitat, epiphyte assemblages of crown-zones (JZ 3-5) were grouped closely together, those of lower stems (JZ 1) were well isolated. DISCUSSION Composition and diversity. Floristic composition of vascular epiphytes in the investigated forest shows close resemblance to other moist neotropical mid-elevation forests (e.g., Ibisch 1996, Ingram et al. 1996, Engwald 1999, Freiberg & Freiberg 2000, Krömer 2003, Krömer & Gradstein 2003) and species richness is very high (see also Bussmann 2001). In comparison, the epiphytic flora on IRTs in the study area is impoverished and monotonous. Bromeliaceae, Orchidaceae, Piperaceae, and Polypodiaceae, all being rich in drought-tolerant species, were relatively species-rich TABLE 2. Species richness and abundance (absolute and relative respectively) along Johansson-zones. Forest trees vs. IRTs. Mann-Whitney U-test. JZ 1 (n = 21) JZ 2 (n = 20) Species richness Relative richness Abundance Relative abundance p < 0.001 p < 0.051 p < 0.001 p < 0.051 p < 0.01 n.s. p < 0.01 n.s. JZ 3 (n = 21) JZ 4 (n = 21) p < 0.01 p < 0.05 p < 0.05 p < 0.05 p < 0.01 n.s. p < 0.05 n.s. JZ 5 (n = 21) Totals (n = 21) p < 0.001 n.s. p < 0.011 p < 0.051 p < 0.01 – p < 0.01 – 25 WERNER ET AL. FIG. 3. Nonmetric multidimensional scaling plot (first two dimensions) of epiphyte similarity based on Sørensen index for entire host trees. Closed circles (F1-6) represent forest trees, open circles (P1-15) IRTs. and abundant, whereas Ericaceae, Dryopteridaceae, Grammitidaceae and Hymenophyllaceae, all being common forest elements, were scarce or lacking on IRTs (Table 1). These findings agree with recent studies in Bolivia (Ibisch 1996, Krömer & Gradstein 2003). In a strongly seasonal montane forest in Bolivia (6–8 arid months), the epiphytic flora consisted of Bromeliaceae, Cactaceae, Orchidaceae, Piperaceae, and Polypodiaceae (Ibisch 1996). Krömer & Gradstein (2003) found that Piperaceae and Polypodiaceae were well represented in open fallows in moist submontane Bolivia (1500–2000 mm/an. precipitation; 2–3 arid months), while Bromeliaceae and Orchidaceae exhibited considerably reduced species richness compared with the primary forest. Dryopteridaceae (Elaphoglossum), Grammitidaceae, and Hymenophyllaceae were virtually lacking in the fallows. Reduction of species diversity on IRTs was paralleled by reduced bryophyte cover, but correlated negatively with lichen cover, which was increased on TABLE 3. Spearman rank-correlations between selected parameters (n = 21). None of the given parameters correlates with altitude, DBH, tree height or elapsed time since isolation. Species richness Species richness Abundance Shannon H’ Simpson D Bryophyte cover Lichen cover Substr. accum. cover – * – 0.936 – 0.785 – 0.692 – 0.605 – 0.534 – 0.692 ** ** ** ** ** ** *Significant at p < 0.05; ** significant at p < 0.01. 26 Abundance – 0.936 – * – 0.860 – 0.682 – 0.651 – 0.545 – 0.682 ** ** ** ** ** ** Shannon H’ – 0.765 – 0.567 – * – 0.823 – 0.270 – 0.211 – 0.488 ** ** ** ** ** ** Simpson D – 0.412 – 0.237 – 0.823 – * – 0.015 – 0.047 – 0.260 ** ** ** ** ** ** EPIPHYTES ON REMNANT TREES FIG. 4. Relative abundance (% of the hosts’ stand numbers) recorded along the Johansson-zones: forest trees (gray) vs. IRTs (white). IRTs. Decreased diversity and cover of epiphytic bryophytes in IRT crowns is related to increased evaporation and insulation, as has previously been documented by Sillett et al. (1995). Bryophyte cover tends to increase with humidity (Gradstein & Pócs 1989) while lichens avoid excessive humidity and shading (Sipman & Harris 1989, Gradstein 1992). Thus the observed patterns strongly suggest increased drought stress as the principal agent for the compositional shifts and general impoverishment in terms of species richness and abundance of assemblages on IRTs. Numerous workers have noted the importance of humidity to epiphyte diversity (e.g., Gentry 1988, Ek et al. 1997, Kreft et al. 2004). Their extreme sensitivity to drought as a consequence of an aerial life style makes epiphytes important as prime indicators for FIG. 5. Relative species richness (% of the hosts’ total species richness) recorded along the Johansson-zones on forest trees (gray) vs. IRTs (white). 27 WERNER ET AL. FIG. 6. Nonmetric multidimensional scaling plot (first two dimensions) of epiphyte similarity based on Sørensen index for the five Johansson-zones. Closed circles (F1-5) represent the pooled respective Johansson-zones of forest trees, open circles (P1-5) those of IRTs. mesoclimates and climate change (Richter 1991, Lugo & Scatena 1992, Nadkarni 1992, Benzing 1998, Richter 2003). One of the most striking patterns shown by epiphytes is the large decrease in both numbers of species and individuals in drier habitats (Gentry & Dodson 1987). When transplanted to warmer and drier conditions, epiphytes responded with higher leaf mortality, lower leaf production and reduced longevity (Nadkarni & Solano 2002). Flores-Palacios & García-Franco (2004) reported similar impoverishment of epiphyte assemblages after isolation in montane Mexico. The site is moderately moist and experiences a distinct dry season (1650 mm/an. precipitation with 7 dry months). Decreased diversity on IRTs is not a general trend though. In moist areas of lowland southern Mexico and lower montane northern Ecuador, species richness on IRTs was similar to that on forest trees (Larrea 1995, Hietz-Seifert et al. 1996), although floristic composition was more uniform on IRTs than on forest trees in at least one of these studies (Larrea 1995). Both sites show high precipitation and little seasonality with > 4000 mm/an. precipitation and the two driest months with ca. 100 mm, and ca. 3500 mm/an. 28 and no arid months respectively (P. Hietz and H. Greeney, pers. comm.). We suggest that in aseasonal, perhumid climates impoverishment of epiphyte vegetation on IRTs compared with nearby forest is less severe than in moderately seasonal climates such as the present study area. In areas with perhumid climates high air humidity may be maintained in open habitats following deforestation, allowing for high epiphyte species richness on IRTs, even though considerable turnover may follow isolation. Under slightly seasonal conditions with moderate levels of drought stress, however, species richness of epiphytes is high only in the forest, where high air humidity is maintained under the closed canopy. Opening up of the canopy in these areas leads to significant changes in the air humidity regime (Werner, unpubl. data) and subsequent impoverishment in abundance and diversity of epiphytes. Interestingly, in arid regions where total annual precipitation is low and epiphyte diversity limited, epiphyte assemblages on IRTs are often relatively unchanged compared with the forest (Werner, pers. obs.). It thus appears that loss of diversity on IRTs in tropical regions is most severe in areas with a moderately seasonal climate. However, fog appears EPIPHYTES ON REMNANT TREES disproportionately beneficial for epiphytes on IRTs, complicating the interpretation of precipitation effects wherever it occurs regularly. Vertical distribution. Vertical stratification of epiphytes on forest trees in relation to changes in microclimatic conditions along the tree has often been described (e.g., Johansson 1974, Sudgen & Robbins 1979, Kelly 1985, ter Steege & Cornelissen 1989). Data on remnant trees are very scarce, however. On IRTs in Mexico branches with diameters less than 5 cm were only sparsely colonized by vascular epiphytes (Hietz-Seifert et al. 1996). A similar pattern was found in this study (Fig. 4; Table 2). Inner crowns of IRTs in the study area, however, were significantly richer in terms of relative species richness and abundance than inner crowns of forest trees). The uneven distribution of species diversity in IRT crowns may reflect reduced rates of successful colonization after isolation. Nadkarni (1992) reported paucity of epiphytes on trunk bases (JZ 1) of IRTs in Costa Rica. In our study low species richness in JZ 1 was also evident and was paralleled by a decline in covers of lichens and bryophytes. Microclimatic changes are likely to be greatest close to the ground, but the disproportionate and general impoverishment of the trunk bases (even concerning lichens) may also be related to fire. Indeed, Robertson & Platt (2001) reported direct fire damage to epiphytes up to 1 m above ground. Concluding remarks. The comparison between the vascular epiphyte flora on IRTs and forest trees showed that numerous taxa decrease in abundance or vanish after isolation. Many of these are typically droughtintolerant, hygrophilous taxa, such as Dryopteridaceae, Grammitidaceae and Hymenophyllaceae. These taxa are partly replaced, if at all, by drought-tolerant, heliophilous species such as Tillandsia complanata and Prosthechea grammatoglossa (Appendix 2). The most species-rich and diverse IRT sampled in this study had been isolated as recently as 2 years prior to sampling and carried many dead epiphytes, especially pleurothallidinid orchids (Appendix 1, IRT 6). When isolated from neighboring vegetation, forest trees have higher probabilities of dying than when in the forest interior due to their exposure to adverse environmental conditions (Lovejoy et al. 1986, Lawton & Putz 1988, Kapos et al. 1997). These conditions include higher wind speeds, mean and maximum temperatures, vapor pressure deficit and solar radiation (compare also reviews by Murcia 1995, Holl 1999). In Panama, edge-interior ratio of trees that died after edges were created was 14:1 (Williams-Linera 1990) and mid-term mortality peaks were found associated with drought events (Laurance et al. 2001). We propose that the same mechanism will affect epiphytes on IRTs. Guevara et al. (1998) proposed that IRTs function as “stepping stones” for native fauna and “safe sites” for flora, and function as a structurally discontinuous canopy. Our study suggests that IRTs might be “safe sites” for epiphytes at the most in perhumid and arid climates. Here, epiphytic vegetation on IRTs appears to be less reduced compared with the forest than in areas with a moderately seasonal climate. It has further been suggested that diversity and composition of epiphytic vegetation on IRTs depend on diaspore influx from adjacent forest vegetation and, consequently, on distance to these forests (Wolf 1995, Hietz-Seifert et al. 1996, Zimmerman et al. 2000, Nkongmeneck et al. 2002). In conclusion, we propose that changed epiphyte assemblages on IRTs, compared with those on forest trees, are to a large extent explained by the altered microclimatic conditions on IRTs and their adverse effects on rates of establishment and survival. Reduced availability of suitable niches may further affect epiphyte diversity on IRTs (Sillett et al. 1995, Barthlott et al. 2001). The observed assemblage changes seem to parallel those along the edges of remnant forests. More detailed studies on the epiphyte assemblages of IRTs and along forest edges are necessary to arrive at a better understanding of the unique structure of these assemblages and the processes determining their development. ACKNOWLEDGMENTS We are much indebted to the following specialists for their help with identification: Elvira Balslev, Thomas Croat, Calaway Dodson, Lorena Endara, Lou Jost, James Luteyn, Jens Madsen, José Manzanares, Guido Mathieu, Hugo Navarrete, Benjamin Øllgaard and especially Carlyle Luer. The Fundación Científica San Francisco, Yanayacu Biological Station, Rainer Bussmann, David Neill and the staff at the Herbario Nacional del Ecuador (QCNE) and Herbario de la Pontífica Universidad Católica del Ecuador, Quito (QCA) are thanked for logistic support and research facilities. We are grateful to Martin Freiberg and an anonymous reviewer for constructive comments on the manuscript. This is publication no. 94 of the Yanayacu Natural History Research Group. 29 WERNER ET AL. REFERENCES Barthlott, W., Schmitt-Neuerburg, V., Nieder, J., & S. Engwald. 2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol. 152: 145–156. Benzing, D.H. 1990. Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge. Benzing, D.H. 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim. Change 39: 519–540. Borchsenius, F. 1997. Patterns of plant species endemism in Ecuador. Biodiv. Cons. 6: 379–399. Bussmann, R.W. 2001. Epiphyte diversity in a tropical Andean forest – Reserva Biológica San Francisco, Zamora-Chinchipe, Ecuador. Ecotropica 7: 43–59. Cardoso da Silva, J.M., Uhl, C., & G. Murray. 1996. Plant succession, landscape management, and the ecology of frugivorous birds in abandoned Amazonian pastures. Cons. Biol. 10: 491–503. Carrière, S.M., Mathieuandré, P., Letourmy, P., & D.B. McKey. 2002. Seed rain beneath remnant trees in a slashand-burn agricultural system in southern Cameroon. J. Trop. Ecol. 18: 353–374. Carrière, S.M., Letourmy, P., & D.B. McKey. 2002. Effects of remnant trees in fallows on diversity and structure of forest regrowth in a slash-and-burn agriculture system in southern Cameroon. J. Trop. Ecol. 18: 375–396. Castañeda, G. 2001. Aves asociadas a plantas epífitas de un bosque nublado en la reserva de bosque integral Otonga, noroccidente de Ecuador. Pp. 327–334 in Nieder, J., & W. Barthlott (eds.). Results of the Bonn-Quito epiphyte project, funded by the Volkswagen foundation (Vol.1 of 2). Bonn. Charles-Dominique, P. 1986. Inter-relations between frugivorous vertebrates and pioneer plants: Cecropia, birds and bats in French Guyana. Pp. 119–136 in Estrada, A., & T.H. Fleming (eds.). Frugivores and seed dispersal. W. Junk, Dordrecht. Duncan, R.S., & C.A. Chapman. 1999. Seed dispersal and potential forest succession in abandoned agriculture in Tropical Africa. Ecol. Appl. 9: 998–1008. Emck, P. 2005. Klimadifferenzierung in Südecuador. PhD dissertation, Universität Erlangen. Engwald, S. 1999. Diversität und Ökologie der vaskulären Epiphyten eines Berg- und eines Tieflandregenwaldes in Venezuela. PhD dissertation, Universität Bonn. Libribooks on demand, Hamburg. Ek, R.C., ter Steege, H., & K.C. Biesmeijer. 1997. Vertical distribution and associations of vascular epiphytes in four different forest types in the Guianas. Pp. 65–89 in TROPENBOS (ed.). Botanical diversity in the tropical rainforest of Guyana. TROPENBOS, Utrecht. 30 Fjeldså, J. 1995. Geographical patterns of neoendemic and older relict species of Andean forest birds: the significance of ecologically stable areas. Pp. 89–102 in Churchill, S.P., Balslev, H., Forero, E., & J.L. Luteyn (eds.). Biodiversity and conservation of neotropical montane forests. Memoirs of the New York Botanical Garden, Bronx, New York. Fleming, T.H., Muchhala, N.C., & J.F. Ornelas. 2004. New World nectar-feeding vertebrates: community patterns and processes. In Sanchez-Cordero, V., & R. A. Medellin (eds.). Contribuciones Mastozoologicas en Homenaje a Bernardo Villa. Flores-Palacios, A., & J.G. García-Franco. 2004. Effects of isolation on the structure and nutrient content of oak epiphyte communities. Plant Ecology 173: 259–269. Freiberg, M., & E. Freiberg. 2000. Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J. Trop. Biol. 16: 673–688. Gascon, C., Lovejoy, T.E., Bierregaard, R.O., Malcolm, J.R., Stouffer, P.C., Vasconcelos, H.L., Laurance, W.F., Zimmerman, B., Tocher, M., & S. Borges. 1999. Matrix habitat and species richness in tropical forest remnants. Biol. Cons. 91: 223–229. Gentry, A.H. 1988. Changes in plant diversity and floristic composition on environmental and biogeographical gradients. Ann. Miss. Bot. Gard. 75: 1–34. Gentry, A.H., & C.H. Dodson. 1987. Diversity and biogeography of neotropical vascular epiphytes. Ann. Miss. Bot. Gard. 74: 205–233. Githiru, M., Bennur, L.A., & C.P.K.O. Ogul. 2002. Effects of site and fruit size on the composition of avian frugivore assemblages in a fragmented Afrotropical forest. Oikos 96: 320–330. Gradstein, S.R. 1992. The vanishing tropical rain forest as an environment for bryophytes and lichens. Pp. 234–258 in Bates, J.W., & A.R. Farmer, (eds.). Bryophytes and lichens in a Changing Environment. Clarendon Press, Oxford, U. K. Gradstein, S.R., & T. Pócs. 1989. Bryophytes. Pp. 311–325 in Lieth, H., & M.J.A. Werger (eds.). Tropical rainforest ecosystems. Elsevier Sci. Publ. Co., Amsterdam. Greeney, H.F. 2001. The insects of plant-held waters: a review and bibliography. J. Trop. Ecol. 17: 241–260. Guevara, S. 1995. Connectivity: key in maintaining tropical rain forest landscape diversity: a case study in Los Tuxlas, Mexico. Pp. 63–73 in Halladay, P., & D.A. Gilmour (eds.). Conserving biodiversity outside protected areas: the role of traditional agro-ecosystems. The IUCN Forest Conservation Programme, New York. Guevara, S., Purata, S.E., & E. van der Maarel. 1986. The role of remnant forest trees in tropical secondary succession. Vegetatio 66: 77–84. Guevara, S., Meave, J., Moreno-Casasola, P., & J. Laborde. 1992. Floristic composition and structure of vegetation under isolated trees in Neotropical pastures. J. Veg. Sci. 3: 655–664. EPIPHYTES ON REMNANT TREES Guevara, S., Laborde, J., & G. Sánchez. 1998. Are isolated remnant trees in pasture a fragmented canopy? Selbyana 19: 34–43. Hartig, K., & E. Beck. 2002. Fire management ruins tropical pastureland: a phytosociological investigation of the agricultural areas in the San Francisco valley, Ecuador. Tagungsband. Abstracts of the 15. annual meeting of the Gesellschaft für Tropenökologie (gtoe), Göttingen. Hickey, J.E. 1994. A floristic comparison of vascular plant species in Tasmanian old growth mixed forest with regeneration resulting from logging and wildfire. Aust. J. Bot. 42: 383–404. Hietz-Seifert, U., Hietz, P., & S. Guevara. 1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biol. Cons. 75: 103–111. Holl, K. 1999. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate and soil. Biotropica 31: 229–242. Homeier, J., Dalitz, H., & S.-W. Breckle. 2002. Waldstruktur und Baumartendiversität im montanen Regenwald der Estación Científica San Francisco in Südecuador. Ber. d. Reinh.-Tüxen-Ges. 14: 109–118. Ibisch, P. 1996. Neotropische Epiphytendiversität – das Beispiel Bolivien. PhD dissertation, Universität Bonn. Martina Galunder-Verlag, Wiehl. Ingram, S.W., Ferrell-Ingram, K., & N.M. Nadkarni. 1996. Floristic composition of vascular epiphytes in a neotropical cloud forest, Monte Verde, Costa Rica. Selbyana 17: 88–103. Janzen, D.H. 1988. Management of habitat fragments in a tropical dry forest: growth. Ann. Miss. Bot. Gard. 75: 105–116. Jenik, J. 1973. Root systems of tropical trees. 8. Stilt roots and allied adaptions. Preslia 45: 250–264. Johansson, D. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suec. 59: 1–136. Uppsala. Kapos, V., Wandelli, E., Camargo, J.L., & G. Ganade. 1997. Edge-related changes in environment and plant responses due to fragmentation in central Amazonia. Pp. 33–44 in Laurance, W.F., & R.O. Bierregaard, Jr. (eds.). Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago. Kelly, D.L. 1985. Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. J. Biogeogr. 12: 223–241. King, G.C., & W.S. Chapman. 1983. Floristic composition and structure of a rainforest area 25 yr after logging. Aust. J. Ecol. 8: 415–423. Kreft. H., Köster, N., Küper, W., Nieder, J., & W. Barthlott. 2004. Diversity and biogeography of vascular epiphytes in western Amazonia, Yasuní, Ecuador. J. Biogeogr. 31: 1463–1476. Krömer, T. 2003. Diversität und Ökologie der vaskulären Epiphyten in primären und sekundären Bergwäldern Boliviens. PhD dissertation, Universität Göttingen. Cuvillier Verlag, Göttingen. Krömer, T., & S.R. Gradstein. 2003. Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24: 190–195. Larrea, M. 1995. Respuesta de las epífitas vasculares a differentes formas de manejo del bosque nublado, Bosque Protegido Sierrazul, Napo, Ecuador. Unpublished report. EcoCiencia, Quito. Laurance, W.F., Williams, G.B., Delamônica, P., Oliveira, A., Lovejoy, T.E., Gascon, C., & L. Pohl. 2001. Effects of strong drought on Amazonian forest fragments and edges. J. Trop. Ecol. 17: 771–785. Lawton, R.O., & F.E. Putz. 1988. Natural disturbance and gap-phase regeneration in a wind-exposed tropical lower montane rain forest. Ecol. 69: 764–777. Lovejoy, T,E., Bierregaard, R.O., & A.B. Rylands. 1986. Edge and other effects of isolation on Amazon forest fragments. Pp. 257–285 in Soulé, M.E. (ed.). Conservation Biology: science of diversity. Sinauer, Sunderland, MA. Lugo, A.E., & F.N. Scatena. 1992. Epiphytes and climate change research in the Caribbean: a proposal. Selbyana 13: 121–133. McDonnell, M.J., & E.W. Stiles. 1983. The structural complexity of old field vegetation and the recruitment of bird-dispersed plant species. Oecologia 56: 109–116. Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation. Tree 10: 58–62. Nadkarni, N.M. 1992. The conservation of epiphytes and their habitats: summary of a discussion at the international symposium on the biology and conservation of epiphytes. Selbyana 13: 140–142. Nadkarni, N.M., & T.J. Matelson. 1989. Bird use of epiphytic resources in neotropical trees. Condor 91: 891–907. Nadkarni, N.M., & R. Solano. 2002. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131: 580–586. Navarrete, H. 2000. Helechos endémicos del Ecuador: distribución y estado de conservación. Nuestra Ciencia 2: 14–17. Nepstad, D., Uhl, C., & E.A. Serrao. 1990. Surmounting barriers to forest regeneration in abandoned, highly degraded pastures: a case study from Paragomias, Pará, Brasil. Pp. 215–229 in Anderson, A.B. (ed.). Alternatives to deforestation: steps towards sustainable use of the Amazon rainforest. Columbia University Press, New York. Nkongmeneck, B.-A., Lowman, M.D., & J.T. Atwood. 2002. Epiphyte diversity in primary and fragmented forests of Cameroon, Central Africa: a preliminary survey. Selbyana 23: 121–130. 31 WERNER ET AL. Paoletti, M.G., Taylor, R.A.J., Stinner, B.R., Stinner, D.H., & D.H. Benzing. 1991. Diversity of soil fauna in the canopy and forest floor of a Venezuelan cloud forest. J. Trop. Ecol. 7: 373–383. Parolly, G., Kürschner, H., Schäfer-Verwimp, A., & S.R. Gradstein. 2004. Cryptogams of the Reserva Biológica San Francisco (Province Zamora-Chinchipe, Southern Ecuador. III. Bryophytes – additions and new species. Cryptogamie Bryologie. Perry, D.R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155–177. Putz, F.E., & N.M. Holbrook. 1989. Notes on the natural history of hemiepiphytes. Selbyana 9: 61–69. Richter, M. 1991. Methoden der Klimaindikation durch pflanzenmorphologische Merkmale in den Kordilleren der Neotropis. Die Erde 122: 267–289. Richter, M. 2003. Using epiphytes and soil temperatures for eco-climatic interpretations in southern Ecuador. Erdkunde 57: 161–181. Robertson, K.M., & W.J. Platt. 2001. Effect of multiple disturbances (fire and hurricane) on epiphyte community dynamics in a subtropical forest, Florida, U.S.A. Biotropica 33: 573–582. Sanford, W.W. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. J. Ecol. 56: 697–705. Saunders, D.A., Hobbs, R.J., & C.R. Margules. 1991. Biological consequences of ecosystem fragmentation: a review. Cons. Biol. 5: 18–32. Schrumpf, M., Guggenberg, G., Valarezo, C., & W. Zech. 2001. Tropical montane rain forest soils – development and nutrient status along an altitudinal gradient in the South Ecuadorian Andes. Die Erde 132: 43–59. Sillett, S.C., Gradstein, S.R., & D. Griffin. 1995. Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist 98: 251–260. 32 Sipman, H.J., & R.C. Harris. 1989. Lichens. Pp. 303–310 in Lieth, H., & M.J.A. Werger (eds.). Tropical rainforest ecosystems. Elsevier Sci. Publ. Co., Amsterdam. Stuntz, S., Ziegler, C., Simon, U., & G. Zotz. 2002. Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. J. Trop. Ecol. 18: 161–176. Sudgen, A.M., & R.J. Robbins. 1979. Aspects of the ecology of vascular epiphytes in Colombian cloud forests, 1. The distribution of the epiphytic flora. Biotropica 11: 173–188. ter Steege, H., & J.H.C. Cornelissen. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21: 331–339. Todzia, C. 1986. Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama. Biotropica 18: 22–27. Turner, I.M., Tan, H.T.W., Wee, Y.C., Ibrahim, A.B., Chew, P.T., & R.T. Corlett. 1994. A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Cons. Biol. 8: 705–712. Valencia, R., Pitman, N., León-Yánez, S., & P.M. Jørgensen. 2000. Libro rojo de las plantas endemicas del Ecuador. Herbario QCA, Universidad Católica, Quito. Vance, E.D., & N.M. Nadkarni. 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol. Biochem. 22: 677–684. Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78: 356–373. Wolf, J. 1995. Non-vascular epiphyte diversity patterns in the canopy of an upper montane rain forest (2550–3670 m), Central Cordillera, Colombia. Selbyana 16: 185–195. Zimmerman, J.K., Pascarella, J.B., & T.M. Aide. 2000. Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Rest. Ecol. 8: 350–360. EPIPHYTES ON REMNANT TREES APPENDIX 1. Host tree characteristics. Forest trees (FT) and isolated remnant trees (IRT). No. Host species DBH [cm] Height Altitude Years Species of Stands of Shannon [m] [m] isolated epiphytes epiphytes H’ log10 Simpson D FT 1 FT 2 FT 3 FT 4 FT 5 FT 6 Tapirira guianensis Alzatea verticillata Alchornea pearcii Tabebuia chrysantha Tabebuia chrysantha Cedrela montana 35.5 32.1 32.8 38.2 33.7 32.8 17.3 16.3 12.0 19.5 20.1 17.2 1810 2030 2230 1890 1950 1930 – – – – – – 63 98 90 37 49 19 463 1209 2519 517 209 55 1.40 1.28 1.32 0.68 1.42 1.10 0.07 0.12 0.08 0.49 0.06 0.09 IRT 1 IRT 2 IRT 3 IRT 4 IRT 5 IRT 6 IRT 7 IRT 8 IRT 9 IRT 10 IRT 11 IRT 12 IRT 13 IRT 14 IRT 15 Tabebuia chrysantha Cedrela montana Juglans neotropica Juglans neotropica Tabebuia chrysantha Tabebuia chrysantha Tabebuia chrysantha Cedrela montana Tabebuia chrysantha Tabebuia chrysantha Tabebuia chrysantha Juglans neotropica Piptocoma discolor Heisteria sp. nov. Beilschmiedia costaricensis 47.1 39.1 27.1 35.0 33.4 50.3 50.6 42.3 35.3 40.7 33.4 30.0 35.0 38.2 35.7 19.2 13.7 13.2 17.2 9.8 16.4 16.7 14.5 18.3 22.2 14.5 12.1 8.0 21.1 18.8 1860 1870 1940 2010 2060 2050 2050 2050 2130 2080 2130 2040 2040 1840 1840 30 30 5 15 12 2 12 12 14 14 14 14 13 30 30 22 15 9 6 5 26 10 5 12 11 7 2 13 20 8 872 87 38 42 9 92 22 7 64 64 51 3 47 119 17 0.42 0.92 0.66 0.62 0.62 1.21 0.90 0.67 0.67 0.74 0.63 0.28 0.76 1.10 0.81 0.65 0.15 0.31 0.28 0.19 0.08 0.12 0.10 0.30 0.24 0.27 0.33 0.31 0.11 0.13 APPENDIX 2. Species list. Abbrevations of life forms include “AE” for accidental epiphytes, “E” for facultative and obligate holoepiphytes, “PH” for primary hemiepiphytes and “SH” for secondary hemiepiphytes. Life form ALZATEACEAE Alzatea verticillata Ruiz & Pav. ARACEAE Anthurium dombeyanum Brogn. Anthurium grubbii Croat Anthurium scandens (Aubl.) Engl. Anthurium cutucuense Madison vel aff. Philodendron ceronii Croat Philodendron sp. nov. 1 Philodendron sp. nov. 2 Stenospermation sp. nov. ARALIACEAE Schefflera cf. pentandra (Ruiz & Pav.) Harms Schefflera sp. Stands FTs IRTs Frequencies FTs IRTs PH 1 0 1 0 E E E SH SH SH SH E 0 1 0 1 1 1 2 1 2 0 2 0 0 0 0 0 0 1 0 1 1 1 2 1 1 0 1 0 0 0 0 0 PH PH 1 1 0 0 1 1 0 0 33 WERNER ET AL. Appendix 2 continued Life form ASCLEPIADACEAE Matelea sp. ASTERACEAE Baccharis cf. Pentacalia cf. moronensis H. Rob. & Cuatrecas. BOMBACACEAE Spirotheca cf. BROMELIACEAE Guzmania coriostachya (Griseb.) Mez Guzmania killipiani L.B. Sm. Guzmania morreniana (Linden Hortus) Mez Pitcairnea riparia Mez Racinaea dielsii (Harms) H. Luther Racinaea euryelytra J.R. Grant Racinaea monticola (Mez & Sodiro) M.A. Spencer & L.B. Sm. Racinaea schumanniana (Wittm.) J.R. Grant Racinaea tetrantha (Ruiz & Pav.) M.A. Spencer & L.B. Sm. Racinaea undulifolia (Mez) H. Luther Tillandsia barbeyana Wittm. Tillandsia barthlottii Rauh Tillandsia biflora Ruiz & Pav. Tillandsia complanata Benth. Tillandsia confinis var. caudata L.B. Sm. Tillandsia fendleri Griseb. Tillandsia laminata L.B. Sm. Tillandsia naundorffiae Rauh & Barthlott Tillandsia stenoura Harms Tillandsia tovariensis Mez Vriesea appendiculata (L.B. Sm.) L.B. Sm. Vriesea fragrans (André) L.B. Sm. Vriesea incurva (Griseb.) Read Vriesea lutherii J.M. Manzanares & W. Till Vriesea tequendamae (André) L.B. Sm. CACTACEAE Rhipsalis riocampanensis J.E. Madsen & Z. Aguirre CLUSIACEAE Clusia cf. alata Triana & Planch. Clusia cf. ducuoides Engl. Clusia sp. CUNONIACEAE Weinmannia pubescens Kunth CYCLANTHACEAE Asplundia sp. 34 Stands FTs IRTs Frequencies FTs IRTs AE 1 0 1 0 AE SH 1 3 0 0 1 1 0 0 PH 1 0 1 0 E E E SH E E E E E E E E E E E E E E E E E E E E E 3 3 3 3 1 4 21 10 6 9 77 91 4 24 2 3 28 98 0 30 73 5 0 2 2 0 0 0 0 0 1 1 0 0 0 45 26 11 121 0 5 0 10 1 102 47 0 3 0 1 1 1 1 1 1 3 2 3 1 2 5 3 3 5 1 3 2 6 0 5 4 1 0 1 1 0 0 0 0 0 1 1 0 0 0 8 8 4 14 0 4 0 5 1 12 11 0 3 0 1 E 1 0 1 0 PH PH PH 1 1 2 0 0 0 1 1 2 0 0 0 AE 2 0 1 0 SH 5 0 2 0 EPIPHYTES ON REMNANT TREES Appendix 2 continued Life form DRYOPTERIDACEAE Elaphoglossum latifolium (Sw.) J. Sm. Elaphoglossum oleandropsis (Sodiro) Christ Elaphoglossum cf. craspedotum Copel. Elaphoglossum cf. cuspidatum (Willd.) T. Moore Elaphoglossum cf. muscosum (Sw.) T. Moore Elaphoglossum cf. pachyphyllum (Kunze) C. Chr. Elaphoglossum cf. rimbachii (Sodiro) H. Christ Elaphoglossum sp. 1 Elaphoglossum sp. 2 ERICACEAE Cavendishia isernii Sleumer vel aff. Cavendishia cf. Ceratostema loranthifolium Benth. vel aff. Disterigma pentandrum S.F. Blake Macleania mollis A.C. Sm. Macleania hirtifolia (Benth.) A.C. Sm. vel aff. Oreanthes cf. hypogaeus (A.C. Sm.) Luteyn Cavendishia cf. bracteata (Ruiz & Pav. ex. J. St.-Hil.) Hoerold Psammisia sp. Semiramisia speciosa (Benth.) Klotzsch Sphyrospermum cordifolium Benth. Sphyrospermum sp. Thibaudia vel aff. GESNERIACEAE Columnea sp. GRAMMITIDACEAE Ceradenia melanopus (Grev. & Hook.) Bishop Cochlidium serrulatim (Sw.) L.E. Bishop vel aff. Enterosora sp. Grammitis paramicola L.E. Bishop Lellingeria subsessilis (Baker) A.R. Sm. & R.C. Moran Melpomene anfractuosa (Kl.) A.R. Sm. & R.C. Moran Melpomene cf. pilosissima (Mart. & Gal.) A.R. Sm.& R.C. Moran Melpomene firma (J. Sm.) A.R. Sm. & R.C. Moran Melpomene flabelliformis (Poiret) A.R. Sm. & R.C. Moran Melpomene xiphopteroides (Liebm.) A.R. Sm. & R.C. Moran Terpsichore pichinchae (Sodiro) A.R. Sm. Terpsichore sp. Zygophlebia matthewsii (Kunze ex. Mett) L.E. Bishop HYDRANGEACEAE Hydrangea sp. Stands FTs IRTs Frequencies FTs IRTs E E AE E E E E E E 3 94 1 1 4 1 79 6 1 0 1 0 0 0 0 0 0 0 1 4 1 1 3 1 4 2 1 0 1 0 0 0 0 0 0 0 SH E E E E E SH SH E E E E E 1 1 1 21 26 1 1 1 1 1 11 17 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 2 2 1 1 1 1 1 2 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 SH 1 0 1 0 E E E E E E E E E E E E E 4 1 1 11 1 1 1 20 488 29 1 5 2 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 1 1 1 1 1 1 4 2 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 SH 2 0 1 0 35 WERNER ET AL. Appendix 2 continued Life form HYMENOPHYLLACEAE Hymenophyllum fucoides var. fucoides (Sw.) Sw. Hymenophyllum lindenii Hooker Hymenophyllum myriocarpum Hook. Hymenophyllum plumosum Kaulf. Hymenophyllum ruizianum (Kl.) Kunze Hymenophyllum trichophyllum Kunth Hymenophyllum undulatum (Sw.) Sw. Hymenophyllum sp. Trichomanes hymenoides Hedw. Trichomanes lucens Sw. LENTIBULARIACEAE Utricularia jamesoniana Oliver MARCGRAVIACEAE Marcgravia sp. nov. Ruyschia sp. nov. MELASTOMATACEAE Blakea vel aff. 1 Blakea vel aff. 2 Blakea subpanduriforme Cotton & Matezki Blakea sp. Clidemia sp. MORACEAE Ficus krukovii Standl. Ficus sp. 1 Ficus sp. 2 ORCHIDACEAE Barbosella cucullata (Lindl.) Schltr. Cochlioda rosea (Lindl.) Benth. Cranichis sp. Cryptocentrum cf. lehmanni (Rchb. f.) Garay Cyrtochilum sp. Dryadella werneri Luer Elleanthus bifarius Garay Elleanthus blatteus Garay Elleanthus robustus (Rchb. f.) Rchb. f. Epidendrum gracilimum Rchb. f. & Warsz. Epidendrum loxense F. Lehm. & Kraenzl. Epidendrum repens Cogn. Epidendrum sophronitoides F. Lehm. & Kraenzl. Epidendrum stangeatum Rchb. f. Epidendrum cf. zosterifolium F. Lehm. & Kraenzl. Epidendrum cf. coryophorum (Kunth.) Rchb. f. 36 Stands FTs IRTs Frequencies FTs IRTs E E E E E E E E E E 11 4 13 1 1 5 36 1 1 1 0 0 0 0 0 0 0 0 0 0 2 1 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 E 592 0 3 0 SH SH 2 1 0 0 1 1 0 0 E SH SH SH SH 2 2 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 PH PH PH 1 0 0 0 2 1 1 0 0 0 2 1 E E E E E E E E E E E E E E E E 3 0 24 183 36 396 4 1 7 343 1 4 5 3 19 80 0 1 0 0 0 735 0 0 0 0 0 0 0 17 108 13 2 0 1 2 1 2 2 1 2 2 1 1 2 1 3 3 0 1 0 0 0 2 0 0 0 0 0 0 0 4 10 3 EPIPHYTES ON REMNANT TREES Appendix 2 continued Life form Epidendrum mancum Lindl. Epidendrum sp. 1 Epidendrum sp. 2 Epidendrum sp. 3 Epidendrum sp. 4 Epidendrum cf. Fernandezia subbiflora Ruiz & Pav. Kefersteinia sp. Lepanthes wageneri Rchb. f. Lepanthopsis acuminata Ames Lepanthopsis floripecten (Rchb. f.) Ames Lycaste ciliata (Ruiz & Pav.) Lindl. & Rchb. f. Masdevallia bangii Schlchtr. Masdevallia bicolor Poepp. & Endl. Masdevallia persicina Luer Maxillaria acuminata Lindl. Maxillaria aggregata Enders Maxillaria brevifolia (Lindl.) Rchb. f. Maxillaria cryptobulbon Carnevali & A.T. Atwood Maxillaria imbricata Barb. Rodriguez Maxillaria jenishiana (Rchb. f.) C. Schweinf. Maxillaria mapiriensis (Kraenzl.) L.O. Williams Maxillaria notylioglossa Rchb. f. Maxillaria ochroleuca Lodd. ex. Lindl. Maxillaria polyphylla Rchb. f. Maxillaria rufescens Lindl. Maxillaria stenophylla Rchb.f. Maxillaria cf. pulla Linden & Rchb. f. Maxillaria cf. xantholeuca Schlchtr. Maxillaria calantha Schlchtr. vel aff. Maxillaria notylioglossa Rchb. f. vel aff. Maxillaria sp. Myoxanthus affinis (Lindl.) Luer Myoxanthus ceratothallis Luer Myoxanthus uxorius Luer Myoxanthus sp. Odontoglossum sp. Oncidium sp. 1 Oncidium sp. 2 Pityphyllum pinoides Sweet Pleurothallis crocodiliceps Rchb. f. Pleurothallis decurrens Poepp. & Endl. Pleurothallis galeata Lindl. E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E Stands FTs IRTs 2 6 0 1 0 0 42 0 71 9 134 1 1 2 3 24 30 8 2 25 4 43 5 6 10 19 3 14 5 5 1 1 1 1 3 1 0 25 114 88 4 0 8 0 0 1 0 5 2 0 3 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 10 3 0 0 0 5 0 Frequencies FTs IRTs 1 1 0 1 0 0 1 0 4 1 1 1 1 2 1 5 3 2 2 2 2 3 1 1 2 3 1 1 1 2 1 1 1 1 1 1 0 1 2 2 2 0 1 0 0 1 0 4 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 37 WERNER ET AL. Appendix 2 continued Life form Pleurothallis lilijae Foldats Pleurothallis palateensis Luer Pleurothallis peroniocephala Luer Pleurothallis rabei Foldats Pleurothallis rubens Lindl. Pleurothallis talpinaria Rchb. f. Pleurothallis xanthochlora Rchb. f. Pleurothallis cf. bivalvis Lindl. Pleurothallis cf. erinacea Rchb. f. Pleurothallis sp. 1 Pleurothallis sp. 2 Pleurothallis sp. 3 Pleurothallis sp. 4 Pleurothallis sp. 5 Pleurothallis sp. 6 Pleurothallis sp. 7 Pleurothallis sp. 8 Pleurothallis cf. sp. 1 Pleurothallis cf. sp. 2 Pleurothallis cf. sp. 3 Pleurothallis cf. sp. 4 Pleurothallis cf. sp. 5 Pleurothallis cf. sp. 6 Pleurothallis cf. sp. 7 Polystachya stenophylla Schltr. Prosthechea grammatoglossa (Rchb. f.) W.E. Higgins Prosthechea pulchra Dodson & Higgins Prosthechea vespa (Vell.) W.E. Higgins Prosthechea cf. hartwegii (Lindl.) W.E. Higgins Psilochilus mollis Garay Scaphyglottis bicornis (Lindl.) Garay Scaphyglottis punctulata (Rchb. f.) C. Schweinf. Sobralia candida Poepp. & Endl. Sobralia cf. croecea Poepp. & Endl. Stelis floriani Luer Stelis sp. 1 Stelis sp. 2 Stelis sp. 3 Stelis sp. 4 Stelis sp. 5 Stelis sp. 6 Stelis sp. 7 38 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E AE E E E E E E E E E E E E Stands FTs IRTs 1 3 3 21 26 1 4 18 0 1 27 5 1 1 2 1 1 1 0 9 13 1 1 0 17 4 1 11 11 1 24 27 1 1 1 1 16 1 4 1 12 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 43 0 0 0 0 0 1 0 0 0 0 2 0 0 0 3 1 Frequencies FTs IRTs 1 1 2 3 4 1 1 6 0 1 3 1 1 1 1 1 1 1 0 1 1 1 1 0 3 2 1 2 1 1 1 3 1 1 1 1 2 1 2 1 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 5 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2 1 EPIPHYTES ON REMNANT TREES Appendix 2 continued Life form Stelis sp. 8 Stelis sp. 9 Stelis sp. 10 Stelis sp. 11 Stelis sp. 12 Stelis sp. 13 Stelis sp. 14 Stelis sp. 15 Stelis sp. 16 Stelis sp. 17 Stelis sp. 18 Stelis cf. 1 Stelis cf. 2 Trichopilia fragrans (Lindl.) Rchb. f. Trichosalpinx berlineri Luer Trichosalpinx intricata (Lindl.) Luer Trichosalpinx robledorum Luer & Escobar Trichosalpinx werneri Luer Trichosalpinx sp. PIPERACEAE Peperomia ceroderma Yunck. Peperomia ciliaris C.DC. Peperomia hartwegiana Miq. Peperomia tetraphylla (G. Forst.) Hook. & Arn. Peperomia tovariana C.DC. Peperomia vulcanicula vel aff. Peperomia sp. 1 Peperomia sp. 2 Peperomia sp. 3 Peperomia sp. 4 Peperomia sp. 5 Piper sp. POLYPODIACEAE Campyloneuron amphostemon (Kunze ex. Klotzsch) Fée Campyloneuron angustifolium (Sw.) Fée Niphidium amocarpos (Kunze) Lellinger Niphidium cf. crassifolium (L.) Lellinger Pecluma eurybasis (C.Chr.) M.G. Price Pleopeltis macrocarpa (Bory ex.Willd.) Kaulf. Pleopeltis percussa (Cav.) Hook & Grev. Polypodium fraxinifolium Jacq. Polypodium levigatum Cav. Stands FTs IRTs Frequencies FTs IRTs E E E E E E E E E E E E E E E E E E E 0 0 0 4 8 1 1 252 17 350 2 8 2 0 13 1 1 17 19 1 1 7 0 6 0 0 0 0 0 0 0 0 14 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 1 0 2 1 1 1 2 1 1 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 E E E E E E E E E E E SH 0 1 6 11 10 5 1 0 1 2 14 1 1 0 11 5 0 3 1 1 2 0 0 0 0 1 3 3 2 2 1 0 1 1 1 1 1 0 4 2 0 1 1 1 1 0 0 0 E E E E E E E E E 1 0 0 1 2 21 0 1 1 1 5 1 0 0 55 1 0 0 2 0 0 1 1 3 0 1 1 1 3 1 0 0 7 1 0 0 39 WERNER ET AL. Appendix 2 continued Life form Polypodium remotum Desv. Polypodium sessilifolium Desv. Polypodium loriceum L. RUBIACEAE Palicourea cf. SOLANACEAE Solanum sp. Trianea sp. URTICACEAE Pilea sp. VITTARIACEAE Vittaria stipitata Kunze 40 Stands FTs IRTs Frequencies FTs IRTs E E E 11 3 1 48 4 0 4 1 1 4 2 0 AE 1 0 1 0 SH E 0 0 2 4 0 0 2 2 AE 2 0 1 0 E 26 0 3 0