Academia.eduAcademia.edu
Int. J. Plant Sci. 168(6):931–956. 2007. Ó 2007 by The University of Chicago. All rights reserved. 1058-5893/2007/16806-0011$15.00 DIVERSIFICATION OF THE OLD WORLD SALSOLEAE s.l. (CHENOPODIACEAE): MOLECULAR PHYLOGENETIC ANALYSIS OF NUCLEAR AND CHLOROPLAST DATA SETS AND A REVISED CLASSIFICATION Hossein Akhani,1 ,* Gerald Edwards,y and Eric H. Roalson2 ,y *School of Biology, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran; and ySchool of Biological Sciences and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-4236, U.S.A. A first comprehensive phylogenetic analysis of tribe Salsoleae s.l. (Salsoloideae: Chenopodiaceae) is presented based on maximum parsimony and maximum likelihood analysis of nuclear ribosomal internal transcribed spacer and chloroplast psbB-psbH DNA sequences. Our data strongly support (1) the sister relationship of Camphorosmeae to the Salsoleae s.l.; (2) splitting of Salsoleae s.l. into two monophyletic tribes, Salsoleae s.s. and Caroxyloneae tribus nova; (3) the current status of most monotypic or oligotypic genera in Salsoleae; and (4) polyphyly of the Botschantzev and Freitag (among others) circumscriptions of Salsola, which falls into 10 (on average) monophyletic genera/lineages. Three well-supported genera are described as new (Pyankovia, Kaviria, and Turania), and four previously described genera are resurrected (Caroxylon, Climacoptera, Kali, and Xylosalsola). Salsola s.s. include a group of central and southwest Asian and north African species that consists of Salsola sect. Salsola s.s., Salsola sect. Caroxylon subsect. Coccosalsola, Salsola sect. Obpyrifolia, Fadenia, Hypocylix, Seidlitzia, and Darniella. All species of tribe Caroxyloneae investigated so far have C4 photosynthesis of the NAD-malic enzyme subtype, while the majority of the species of Salsoleae s.s. are known to be of the NADP-malic enzyme subtype. Keywords: Caroxyloneae, Chenopodiaceae, classification, molecular phylogeny, Salsoleae, Salsoloideae. Introduction number of researchers using morphological and molecular markers (Scott 1977a, 1977b, 1978; Cuénoud et al. 2002; Kadereit et al. 2003, 2006; Pratt 2003; Schütze et al. 2003; Müller and Borsch 2005; Shepherd et al. 2005; Kapralov et al. 2006). The Salsoloideae subfamily has been circumscribed variously, but in recent years it has either included tribes Sarcobateae, Suaedeae, and Salsoleae (Kühn et al. 1993) or been restricted to the tribes Camphorosmeae, Sclerolaeneae, and Salsoleae (Kadereit et al. 2003). The Salsoloideae, here defined as including the Salsoleae s.l. and Camphorosmeae (including Sclerolaeneae) clades (Kadereit et al. 2003; Pratt 2003; Kapralov et al. 2006), has been demonstrated to be monophyletic (Kapralov et al. 2006). The monophyly of the two Salsoleae clades in relation to the Camphorosmeae, however, has been both questioned and poorly supported in past studies (Pyankov et al. 2001a; Kadereit et al. 2003; Kapralov et al. 2006). Tribe Salsoleae includes one-third of all known genera currently recognized in the family Chenopodiaceae (32 of 98 genera; sensu Kühn et al. 1993), but it is a poorly understood lineage. Species concepts in the tribe have varied widely among researchers, with some recognizing a large number of species separated by relatively minor morphological differences (the Russian ‘‘splitters’’; Botschantzev 1970, 1972, 1974a, 1975b, 1976, 1977, 1981a, 1982, among others; Pratov 1986) and others circumscribing fewer ‘‘metaspecies’’ (the European ‘‘lumpers’’; Freitag 1997), resulting in between 300 and 400 species accepted in the tribe (Botschantzev 1969a, 1969b, 1969c, 1970, 1971, 1972, 1974a, 1974b, 1975a, 1975b, 1975c, 1975d, 1976, 1977, 1980, 1981a, 1981b, 1982, 1986, 1989; Kühn et al. 1993; Freitag 1997). It is unclear Chenopodiaceae is a cosmopolitan, eudicot lineage especially diverse in arid, semiarid, saline, and hypersaline ecosystems (Kühn et al. 1993; Hedge et al. 1997). The family is extremely variable in its ecomorphological and anatomical types and modes of photosynthesis (Carolin et al. 1975, 1978; Gamaley and Voznesenskaya 1986; Pyankov et al. 1992, 1997, 2001b, 2002; Akhani et al. 1997, 2005; Jacobs 2001; Voznesenskaya et al. 2001b, 2002; Kadereit et al. 2003; Schütze et al. 2003; Edwards et al. 2004; Akhani and Ghasemkhani 2007). Many members of this family are succulent and late flowering and fruiting, which has historically made collections difficult to identify, with many specimens lacking the necessary characters for species identification. Additionally, the high levels of diversity in the deserts of central Asia and the Middle East have created a limitation on investigation and collection activities because of poor representation in Western herbaria. The diversity of photosynthetic types and leaf anatomies in this family, particularly the discovery of two anatomical types that perform C4 photosynthesis without Kranz anatomy in one species of Suaeda (Borszczowia) and two species of Bienertia (Freitag and Stichler 2000, 2002; Voznesenskaya et al. 2001b, 2002; Akhani et al. 2003, 2005), has attracted considerable interest in this intriguing group. The classification of Chenopodiaceae and its phylogenetic relationships with other families have been explored by a 1 2 Author for correspondence; e-mail akhani@khayam.ut.ac.ir. Author for correspondence; e-mail roalson@mail.wsu.edu. Manuscript received August 2006; revised manuscript received February 2007. 931 932 INTERNATIONAL JOURNAL OF PLANT SCIENCES which school might better reflect phylogenetic relationships and monophyletic lineages, but we here test several of these concepts by sampling multiple individuals/populations within some of these species groups. However, several of these groups will require more detailed population genetic and morphological studies for an understanding of species boundaries. This tribe is Old World in distribution, with its main center of diversity in central Asian and Middle Eastern deserts and subdeserts, with radiations into the Mediterranean, north and south Africa, and Australia. Some species have also been introduced into the New World. They are mostly leaf- and stem-succulent halophytic, xerohalophytic, xerophytic, and ruderal plants with diverse traits, particularly in photosynthetic pathways and concurrent anatomical structures (Butnik et al. 1991, 2001; Akhani et al. 1997; Pyankov et al. 1997, 2001b, 2002; Voznesenskaya et al. 1999, 2001a, 2001b; Akhani and Ghasemkhani 2007). The potential synapomorphies for the tribe are the presence of scarious winged perianth segments in fruit, with possible loss in some species, and utricule with a spiral embryo. Apparently, the winged fruiting perianth is a most successful device for wind dispersal in desert areas. However, the presence of a wing does not occur in all genera and may be replaced by small protuberances or may be completely absent. In this latter group, zoochory and hydrochory dispersal mechanisms seem likely. Generic boundaries in Salsoleae have been the subject of a long-standing controversy (Meyer 1829; Moquin-Tandon 1840, 1849; Bunge 1862; Bentham and Hooker 1880; Volkens 1893; Iljin 1936; Kühn et al. 1993; Hedge et al. 1997). Salsola has had a controversial subgeneric classification, and its monophyly has been questioned, as has the recognition of such genera as Climacoptera (Botschantzev 1956, 1969b; Pratov 1986), Halothamnus (¼Aellenia) (Iljin 1936; Botschantzev 1981b), Darniella (Brullo 1984), Fadenia (Aellen and Townsend 1972), and Xylosalsola, Nitrosalsola, and Newcaspia (Tzvelev 1993). Tables 1 and 2 summarize the complicated historical nomenclature of Salsoleae and the genus Salsola, at least for those species included here. In the first phylogenetic analysis of Salsoleae using internal transcribed spacer (ITS) sequences, Pyankov et al. (2001a) revealed that Salsola is likely to be polyphyletic, and similar results were found using rbcL sequences (Kadereit et al. 2003). The limited sampling of Salsoleae in both of these studies, however, leaves many questions regarding phylogenetic relationships and generic circumscription in the tribe unanswered. We use maximum parsimony and maximum likelihood analyses of nrDNA ITS and cpDNA psbB-psbH spacer sequences to elucidate phylogenetic relationships in Salsoleae to test generic monophyly. Further, we suggest a new generic classification of the Salsoleae to more closely reflect phylogenetic relationships. Material and Methods Sampling Most of the studied plants were collected by H. Akhani during intensive collections since 1988 from Iran, Turkmenistan, Turkey, and the United Arab Emirates. Some collections were dried in silica gel during field studies, and additional specimens were obtained from the herbaria GAZ (Gazy Herbarium, Ankara, Turkey) K, LE, M, and MSB (LudwigMaximilians-Universität, München, Germany) (table B1). Other sources of samples included cultivated species in the greenhouse of Washington State University (table B1) and nine ITS sequences previously published (Pyankov et al. 2001a; Kadereit et al. 2003). Outgroups were chosen from representatives of major lineages of the Suaedoideae and Salicornioideae (six species in total); these lineages together have been demonstrated to be the sister group to the Salsoloideae s.l. (Kadereit et al. 2003; Kapralov et al. 2006). Because of amplification failure or lack of material, we could not include the following monotypic Salsoleae s.l. genera: Sevada Moq. (MoquinTandon 1849), Iljinia Korovin ex V. Komarov (Iljin 1936), Halarchon Bunge (1862), Physandra Botsch. (Botschantzev 1956), Traganopsis Maire et Wilczek, Nucularia Battand, and Lagenantha Chiov. We also could not include the ditypic genus Choriptera Botsch. (¼Gyroptera). Further studies will be necessary to resolve the phylogenetic position of these genera. New sequences have been deposited in GenBank (accessions EF453380–EF453632). The data matrix and resultant trees have been deposited in TreeBase (accession S1737). DNA Sequencing DNA was isolated using a modified 23 CTAB buffer method (Doyle and Doyle 1987). Templates of the nrDNA ITS region were prepared using the primers ITS5HP (59-AGG TGA CCT GCG GAA GGA TCA TT-39; Suh et al. 1993) and ITS4 (59-TCC TCC GCT TAT TGA TAT GC-39; White et al. 1990). Polymerase chain reaction (PCR) amplifications followed the procedures described by Roalson et al. (2001). The chloroplast psbB-psbH spacer region was amplified using the primers psbB-psbH-f (59-AGA TGT TTT TGC TGG TAT TGA-39) and psbB-psbH-r (59-TTC AAC AGT TTG TGT AGC CA-39; Xu et al. 2000). PCR amplifications followed the procedures described by Schütze et al. (2003). The PCR products were electrophoresed using a 0.8% agarose gel in a 0.53 TBE (pH 8.3) buffer, stained with ethidium bromide to confirm a single product, and purified using the PEG precipitation procedure (Johnson and Soltis 1995). Sequencing was performed using an ABI Prism 3730 genetic analyzer. Directcycle sequencing of purified template DNAs followed manufacturer’s specifications, using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Biosystems). The two ITS sequencing primers provide sequences for overlapping fragments that collectively cover the entire spacer and 5.8S rDNA regions along both strands. The two psbBpsbH sequencing primers provide near-complete overlap along both strands. Sequencing of ITS and psbB-psbH used the same primers that were used for amplification. Automated DNA sequencing chromatograms were proofed and edited and contigs were assembled using Sequencher 4.0 (Gene Codes). The ITS sequences were truncated to include only ITS1, 5.8S, and ITS2. The psbB-psbH sequences were truncated to include the 39 end of the psbB coding region, the psbBpsbT intergenic spacer, the psbT coding region, the psbT-psbN intergenic spacer, the psbN coding region, and the psbN-psbH intergenic spacer. Identification of the terminal ends and spacer boundaries of ITS1, 5.8S, ITS2, and the psbB-psbH Table 1 Historical Classifications of Salsoleae s.l. from 1829 to Present Meyer 1829 Moquin-Tandon 1840, 1849 Bunge 1862a Bentham and Hooker 1880 Volkens 1893 Boissier 1879 Ulbrich 1934 Iljin 1936 Kühn et al. 1993 This article Anabaseae 1840 Anabaseae Salsoleae Salsoleae Salsoleae Nucularieae Salsoleae Salsoleae Salsoleae Brachylepis Salsoleae Ofaiston (A) Horizontal Sodinae Sodeae Traganum Salsola Haloxylon Anabasis Anabasis Halimocnemides Noaea seeds Traganum Traganum Nucularia Noaea Sympegma Arthrophytum? Salsoleae Salsola Girgensohnia Traganum Arthrophytum Horaninowia Salsoleae Aellenia Noaea ‘‘Canarosalsola’’ Halogeton Traganum Anabasis Cornulaca Horaninowia Arthrophyton Sodinae Rhaphidophyton Salsola ‘‘Collinosalsola’’ Halimocnemis Halimocnemis Brachylepis Seidlitzia Seidlitzia Haloxylon Horaninovia Horaninowia Halothamnus Cornulaca Salsola Halogeton Nanophyton Arthrophytum Salsola Seidlitzia Seidlitzia Seidlitzia Cyathobasis Cyatobasis Schanginia Anabaseae Petrosimonia Horaninovia Haloxylon Salsola Salsola Ofaiston Anabasis Girgensohnia Schoberia Cornulaca Halocharis Haloxylon Helicilla Anabaseae Aellenia Girgensohnia Halogeton Halogeton Anabasis Halimocnemis Salsola Anabasinae Noea Lagenantha Anabasis Seidlitzia Halothamnus Brachylepis Halotis Helicilla Ofaiston [Noaea] Arthrophytum Arthrophytum Arthrophytum Haloxylon 1849 Halarchon (B) Vertical seeds Noaea Girgensohnia Haloxylon Iljinia Iljinia Hammada? p.p. Salsoleae Halanthium Ofaiston Girgensohnia Anabasis Anabasinae Haloxylon Nanophyton Hammada Sodeae Gamanthus Noaea Anabasis Brachylepis Anabasideae Nanophyton Girgensohnia salicornica Helicilla Cornulaca Girgensohnia Nanophytum Petrosimonia Ofaiston Petrosimonia Halocharis Horaninowia Horaninovia Agathophora Anabasis Petrosimonia Halocharis Noaea Halocharis Halanthium Iljinia? Traganum Halogeton Nanophyton Halocharis Halimocnemis Girgensohnia Halimocnemis Fadenia Kali Caroxylon Petrosimonia Halimocnemis Halotis Anabasis Halotis Sevada Lagenantha? Salsola Halocharis Noaea Piptoptera Piptoptera Fredolia Piptoptera Choriptera Halimocnemis Anabaseae Halanthium Halarchon Brachylepis Halanthium Rhaphidophyton Nucularia? Halimocnemis Halanthium Halarchon Gamanthus Halimocnemideae Gamanthus Ofaiston ‘‘Oreosalsola’’ Nanophyton Halarchon Cornulaca Halanthium Nanophytum Cornulaca Cornulaca Rhaphidophyton Halocharis Piptoptera Agathophora Cornulaca Petrosimonia Halogeton Traganum Salsola s.s. Physogeton Halogeton Halogeton Halogeton Halocharis Sympegma Traganopsis Sympegma Ofaiston Sympegma Sympegma Sevada Halimocnemis Nucularia Traganum Halanthium Suaedeae Piptoptera Horaninovia Traganopsis? Halogeton Hypocylix Halanthium Piptoptera Turania Noaea Gamanthus Gamanthus Xylosalsola Anabasis Halarchon Halarchon Caroxyloneae Brachylepis Cornulaca Petrosimonia Caroxylon Cornulaca Agathophora Halimocnemis Climacoptera Halogeton Halotis Halarchon? Micropeplis Lagenantha Halimocnemis Sympegma Halocharis Suaedoideae-Suaedeae Kaviria Hypocylix Nanophyton Sevada Ofaiston Piptoptera Petrosimonia Physandra? Pyankovia Note. Classification of Salsola and its segregates is given separately in table 2. Other tribes are mentioned only when a member of Salsoleae was classified under that tribe. Genera marked with a question mark are genera of questionable status, as dealt with in this article. Several other infratribal units are not listed here. Other authors: Botschantzev (1967, 1975a, 1975b, 1975c, 1975d: Salsoleae, subtrib. Sevadinae [Sevada, Lagenantha, Fadenia, Choriptera, Gyroptera], 1977: Agathophora [=Halogeton subgen. Agathophora]). a The monograph dealt only with Anabaseae. Table 2 Historical Classification of Salsola and Segregate Genera Iljin 1936 Sect. Kali S. kali6 S. paulsenii 6 S. soda10 S. aperta6 S. deserticola11 Sect. Physurus S. lanata3 S. crassa3 S. turcomanica3 Sect. Heterotricha9 S. brachiata9 Sect. Anchophyllum S. arbuscula12 S. arbusculiformis4 S. montana8 S. chiwensis12 S. richteri12 Sect. Sphragidanthus S. subaphylla5 S. glauca5 Sect. Caroxylon2 S. laricina2 S. nitraria2 S. dendroides2 S. dzhungarica2 Sect. Aleuranthus2 S. sclerantha2 Sect. Belanthera S. gemmascens2 S. aucheri7 S. vvdenskyi7 S. forcipitata2 S. gossypina7 Sect. Cocosalsola S. foliosa10 Aellenia5 A. auricula5 Botschantzev (various articles)a Climacoptera (1956)3 Halothamnus (1981b)5 Sect. Caroxylon subsect. Caroxylon2 (1974a, 1974b) S. zeyheri2 S. araneosa2 S. dendroides2 S. glabrescens2 S. cyclophylla2 Sect. Caroxylonsubsect. Vermiculatae2 (1975a, 1975b, 1975c, 1975d) S. nitraria2 S. vermiculata2 S. laricina2 S. orientalis2 S. dzhungarica2 Sect. Caroxylon subsect. Coccosalsola (1976, 1989) S. divaricata1 S. kerneri10 S. drummondii (sub S. schweinfurthii)10 S. foliosa10 S. zygophylla10 Sect. Caroxylon subsect. Arbusculae (1976) S. arbusculiformis4 S. montana8 S. masenderanica8 S. arbuscula12 S. richteri12 Sect. Caroxylon subsect. Tetragona (1972)2 (No species included in our analysis) Sect. Caroxylon subsect. Genistoides (1976) (No species included in our analysis) Sect. Belanthera (1968, 1980) S. canescens (as S. boissieri)9 S. carpatha2 S. rubescens7 S. aucheri7 S. tomentosa7 S. vvdenskyi7 S. gossypina7 Sect. Malpigipila2 (1969a, 1969b, 1969c) S. gemmascens2 Sect. Cardiandra (1969a, 1969b, 1969c) S. inermis2 S. forcipitata2 S. chorassanica2 S. jordanicola2 S. turkestanica2 Sect. Obpyrifolia10 (Botschantzev and Akhani 1989) S. drummondii10 (sub S. obpyrifolia) Sect. Irania (1986) S. abarghuensis2 Subtribe Sevadinae (1975c) Fadenia zygophylloides10 Tzvelev 1993 Freitag 1997; Hedge 1997; Rilke 1999 Salsola Freitag 1997 Sect. Belanthera Sect. Coccosalsola10 S. gossypina7 Sect. Kali (Mill.) S. drummondii10 Dumort.6 S. brachiata9 S. vvdenskyi7 Sect. Salsola S. kerneri10 Climacoptera Sect. Arbuscula S. canescens2 Sect. Heterotricha S. richteri12 S. aucheri7 Iljin ex Pratov9 S. montana8 S. rubescens7 3 12 Sect. Climacoptera S. lachnantha7 S. arbuscula Sect. Brachyphylla S. arbusculiformis4 S. tomentosa7 3 Iljin ex Pratov Sect. Salsola Sect. Physurus3 Nitrosalsola2 (=Salsola S. soda10 S. lanata3 11 sect. Nitraria Ulbr.) S. aperta S. crassa3 Caroxylon2 S. paulsenii6 Hedge 1997 Sect. Belanthera S. kali6 Seidlitzia10 (Iljin) Tzvel. S. griffithii6 Rilke 1999 Sect. Caroxylon2 Sect. Caroxylon2 Sect. Salsola10 Sect. Malpigipila S. nitraria2 S. soda10 2 2 S. dendroides Sect. Sogdiana (Botsch.) Tzvel. S. cyclophylla2 Xylosalsola12 S. sogdiana11 2 S. abarghuensis S. aperta11 S. vermiculata2 Sect. Androssowia S. orientalis2 S. androssowi s.l.11 Sect. Malpighipila2 Sect. Kali6 S. gemmascens2 S. griffithii6 S. yazdiana2 S. tragus6 2 Sect. Cardiandra S. kali6 S. chorassanica2 S. paulsenii6 2 S. forcipitata S. jordanicola2 S. turkestanica2 S. inermis2 This article 1 ‘‘Canarosalsola’’ 2 Caroxylon 3 Climacoptera 4 ‘‘Collinosalsola’’ 5 Halothamnus 6 Kali 7 Kaviria gen. nov. 8 ‘‘Oreosalsola’’ 9 Pyankovia gen. nov. 10 Salsola s.s. 11 Turania gen. nov. 12 Xylosalsola Note. Only those taxa that were used in our phylogeny are listed. For a full checklist, see appendix A and references. Superscript numbers correspond to the numbers of the accepted genera in this article (right column). Other classifications not listed included Brullo (1984): Darniella;10 Galushko (1976): Caspia; and Woloszczak (1885): Hypocylix.10 a References are given by section. Publication years of the relevant Botschantzev articles are given in parentheses. AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. gene regions was based on comparisons with other species of Chenopodiaceae (Kapralov et al. 2006). Sequences were aligned using Clustal X (Thompson et al. 1997) with gap opening penalty of 10.00 and gap extension penalty of 1.00 for both pairwise and multiple comparisons. The resultant alignment was then checked by eye for necessary minor corrections. Alternate alignment parameters did not result in significantly different topologies (data not shown). Gaps were not coded as binary characters because of the complex nature of the gaps in these data sets and the additional problem that they cannot be integrated into the maximum likelihood analyses. Phylogenetic Analyses ITS and psb-psbH regions were analyzed separately and in combination with both maximum parsimony (MP) and maximum likelihood (ML) analyses. All analyses were performed using PAUP* 4.0b10 (Swofford 2001). MP analyses of the individual and combined data sets used heuristic searches (ACCTRAN; 1000 random addition cycles, tree-bisectionreconnection [TBR] branch swapping, limit of 10,000 rearrangements per addition sequence replicate). Swapping was run to completion for all random addition replicates. Clade support was estimated using 1000 heuristic bootstrap replicates (100 random addition cycles per replicate, TBR branch swapping, limit of 10,000 rearrangements per addition sequence replicate; Felsenstein 1985; Hillis and Bull 1993). ML analyses employed heuristic searches (TBR branch swapping). Clade support was estimated using 100 heuristic bootstrap replicates (10 random addition cycles and 100 total rearrangements per replicate, TBR branch swapping; Felsenstein 1985; Hillis and Bull 1993). ML analysis of the ITS data set employed the general time-reversible model with proportion of invariant sites (I) and gamma shape (G) parameters and empirical base frequencies (six substitution types: A=C ¼ 1:4064, A=G ¼ 2:5332, A=T ¼ 1:7413, C=G ¼ 0:7280, C=T ¼ 3:5703, G=T ¼ 1:0000; I ¼ 0:2193; G ¼ 0:9803; A ¼ 0:2084, C ¼ 0:2519, G ¼ 0:2849, T ¼ 0:2548). ML analysis of the psbB-psbH genetic region employed a five–rate class transversion model with I and G parameters and empirical base frequencies (five substitution types: A=C ¼ 0:9657, A=G ¼ 1:3422, A=T ¼ 0:2773, C=G ¼ 0:7521, C=T ¼ 1:3422, G=T ¼ 1:0000; I ¼ 0:2417; G ¼ 0:9036; A ¼ 0:2982, C ¼ 0:1616, G ¼ 0:1794, T ¼ 0:3608). ML analysis of the combined data set employed a four–rate class transition model with I and G parameters and empirical base frequencies (four substitution types: A=C ¼ 1:0000, A=G ¼ 1:9407, A=T ¼ 0:8031, C=G ¼ 0:8031, C=T ¼ 2:5593, G=T ¼ 1:0000; I ¼ 0:2700; G ¼ 0:7111; A ¼ 0:2613, C ¼ 0:2239, G ¼ 0:2239, T ¼ 0:2909). These models were chosen based on the results of analysis using DT_ModSel (Minin et al. 2003). The DT_ModSel analysis uses a Bayesian information criterion to select a model using branch-length error as a performance measure in a decision theory framework that also includes a penalty for model overfitting. Results New ITS and psbB-psbH sequences were obtained for 132 species/accessions belonging to tribe Salsoleae s.l. and six 935 species of Salicornieae and Suaedeae as outgroups. The aligned ITS data matrix was 743 base pairs (bp) long with 511 variable sites (68.8%), of which 400 (53.8%) were parsimony informative. Because of poor sequencing reads of some regions, three sequences are missing a portion (104–182 bp) of the 59 end of the ITS 1 spacer, eight sequences are missing a portion (92 bp) of the 59 end of the ITS 2 spacer, and 14 sequences are missing a portion (4–82 bp) of the 39 end of the ITS 2 spacer. The aligned psbB-psbH data matrix was 741 bp long with 270 variable sites (36.4%), of which 144 (19.4%) were parsimony informative. Because of poor sequencing reads of some regions, nine sequences are missing a portion (1–113 bp) of the 59 end of the psbB-psbH spacer region, and 21 sequences are missing a portion (1–121 bp) of the 39 end of the psbB-psbH spacer region. MP analysis of the ITS Salsoleae data set resulted in 1451 most parsimonious trees (length ¼ 3445 steps, consistency index ½CI ¼ 0:303, retention index ½RI ¼ 0:741, rescaled consistency index ½RC ¼ 0:224). The ITS ML analysis resulted in a single tree (ln L ¼ 17800:03435, where L ¼ likelihood). MP analysis of the psbB-psbH data set resulted in 11,122 most parsimonious trees (length ¼ 600 steps, CI ¼ 0:595, RI ¼ 0:766, RC ¼ 0:456). The psbB-psbH ML analysis resulted in two tied trees (ln L ¼ 4783:22431). Strict consensus trees of the MP individual data set analyses and the ML trees of individual data set analyses are available from the corresponding authors. MP analysis of the combined data set resulted in 231 most parsimonious trees (length ¼ 4067 steps, CI ¼ 0:343, RI ¼ 0:740, RC ¼ 0:254; fig. 1). The combined ML analysis resulted in a single tree (ln L ¼ 23216:90496; fig. 2). Analyses of individual data sets resulted in congruent estimates of relationships, with slight differences associated with unresolved branches and short branches with low bootstrap support, particularly in the psbB-psbH analysis. Combined analyses reflect the well-resolved portions of individual data set analyses, and all branches are better supported in the combined analysis than in either of the individual data set analyses (trees from individual analyses in TreeBase). Given our results that multiple alignments of individual data sets produced congruent topologies and that there were no wellsupported conflicting branches, as well as the fact that the clades we found are generally supported by morphological characters, we do not consider the high levels of ITS variability or alignment issues to reduce the ability of our analyses to reconstruct robust phylogenetic hypotheses. MP and ML analyses of the combined data result in congruent inferences of relationships, with differences in resolution resulting in slightly different placement of some species (figs. 1, 2). These differences, however, are associated with branches with low bootstrap support in one or both analysis types. In all analyses, Salsola s.l. is clearly polyphyletic, with Salsola species present in seven to 13 lineages or different clades, depending on the resolution of the phylogenetic hypotheses (figs. 1, 2). Several other genera are not monophyletic as currently circumscribed, namely, Anabasis, Halanthium, Halimocnemis, Hammada, Gamanthus, and Climacoptera (figs. 1, 2). In some cases, this is due to the misclassification of one or a small number of species (e.g., Climacoptera brachiata; figs. 1B, 2B), whereas other cases, such as the polyphyly and Fig. 1 Maximum parsimony combined data analysis strict consensus tree of 231 shortest trees (length ¼ 4067; consistency index ¼ 0:343; retention index ¼ 0:740; rescaled consistency index ¼ 0:254). A, Outgroups and clades of Camphorosmeae and Salsoleae s.s. tribes. B, Caroxyloneae tribe clade. Numbers above branches reflect maximum parsimony bootstrap numbers. Shaded boxes refer to species traditionally placed in the genus Salsola. Generic abbreviations are as follows: A: ¼ Anabasis, B: ¼ Bassia, Bi: ¼ Bienertia, C: ¼ Climacoptera, Ca: ¼ 936 Camphorosma, Ch: ¼ Chenoleoides, Co: ¼ Cornulaca, Cy: ¼ Cyatobasis, F: ¼ Fadenia, G: ¼ Gamanthus, Gi: ¼ Girgensohnia, H: ¼ Halotis, Ha: ¼ Halimocnemis, Hal: ¼ Halocharis, Hala: ¼ Halanthium, Halo: ¼ Halogeton, Halot: ¼ Halothamnus, Halox: ¼ Haloxylon, Ham: ¼ Hammada, Ho: ¼ Horaninowia, K: ¼ Kochia, Ka: ¼ Kalidium, Ki: ¼ Kirilowia, L: ¼ Londesia, M: ¼ Maireana, Mi: ¼ Microcnemum, N: ¼ Nanophyton, No: ¼ Noaea, O: ¼ Ofaiston, P: ¼ Panderia, Pe: ¼ Petrosimonia, R: ¼ Rhaphydophyton, S: ¼ Salsola, Sa: ¼ Salicornia, Se: ¼ Seidlitzia, Su: ¼ Suaeda, Sy: ¼ Sympegma, T: ¼ Traganum. 937 Fig. 2 Maximum likelihood combined data analysis tree (ln L ¼ 23216:90496). A, Outgroups and clades of Camphorosmeae and Salsoleae s.s. tribes. B, Caroxyloneae tribe clade. Numbers above branches reflect maximum likelihood bootstrap numbers. Shaded boxes refer to species traditionally placed in the genus Salsola. Generic abbreviations follow those in fig. 1. 938 939 940 INTERNATIONAL JOURNAL OF PLANT SCIENCES interdigitation of Halanthium and Halimocnemis, are more difficult (figs. 1B, 2B). Discussion Tribal Classification Because individual analyses were congruent with, although less resolved than, the combined analyses, we will generally refer to the combined MP and ML results in our discussion. It seems clear from the analyses presented here that the Salsoloideae is a monophyletic group with the Camphorosmeae tribe the sister clade to Salsoleae s.l. (figs. 1, 2) and is well supported by maximum parsimony bootstrap (mpbs ¼ 92%) and maximum likelihood bootstrap (mlbs ¼ 75%). This relationship has been previously found (Kadereit et al. 2003; Kapralov et al. 2006), although this branch was weakly supported by rbcL, and the multigene analysis of Kapralov et al. (2006), while providing strong support (mlbs ¼ 86%), did not have sufficiently extensive sampling to allow confidence in this relationship. One previous study placed the Camphorosmeae as sister to a portion of the Salsoleae s.l. (our Caroxyloneae), creating a paraphyletic Salsoleae s.l., but this result was weakly supported (mpbs < 50%; Pyankov et al. 2001a). Furthermore, the traditional Salsoleae is clearly composed of two strongly supported clades, here referred to as the Salsoleae s.s. (mpbs ¼ 100%; mlbs ¼ 100%) and the Caroxyloneae (mpbs ¼ 98%; mlbs ¼ 98%; figs. 1, 2; see taxonomic revision in app. A). The occurrence of two well-supported clades in Salsoleae s.l. has been found with analyses of ITS sequences from 34 species (Pyankov et al. 2001a) and 12 species in rbcL analysis (Kadereit et al. 2003). The latter authors referred to these two clades as Salsoleae I and Salsoleae II. Both clades are well distinguished by a number of characters (table 3). A particularly distinguishing characteristic of the Caroxyloneae clade is the vesicular and disjunct anther appendage, which seems to occur in most groups and may be involved in attracting insect pollinators, which have been observed frequently in nature (H. Akhani, personal observation). These connectives are absent or very small in members of Salsoleae and have been noted as a minute appendage in Halothamnus, Noaea, and Halogeton (Kothe-Heinrich 1993; Hedge 1997); they are rarely large as those found in Raphydophytum (Iljin 1936). The two clades are also distinguishable based on C4 photosynthesis subtypes: all known species of Caroxyloneae are of the NAD-malic enzyme subtype (table 3), and except for one doubtful case (H. Akhani, unpublished data), all Salsoleae are known to be of the NADP-malic enzyme subtype (see also Pyankov et al. 2001a, 2001b). Classification and Relationships in Clade Salsoleae The Salsoleae s.s. tribe is more diverse than Caroxyloneae, both morphologically and physiologically. In this tribe, C4, C3, and C3-C4 intermediate species occur, with strong morphological features separating the tribe from Caroxyloneae (table 3). Four primary lineages or clades in Salsoleae s.s. can be distinguished: Sympegma, the Halothamnus clade, the Kali clade, and the Salsola clade (figs. 1A, 2A). The monotypic Sympegma is sister to a clade composed of the rest of the lineages of the Salsoleae s.s., although its separation is only weakly supported (mpbs ¼ 62%; mlbs < 50%). The ordering of the other three clades is not strongly supported (mpbs < 50%; mlbs < 50%), but both analyses suggest that the Kali clade is sister to a clade composed of the Halothamnus and Salsola clades. The monotypic Sympegma is restricted to central Asia and is unique in the family in having terminal glomerate Table 3 Comparison of the Characters of the Two Major Clades of Salsoleae s.l. Character Caroxyloneae Life form Mostly annual, with some hemicryptophytes and subshrubs Branches and leaves Alternate (except Pyankovia and one species of Petrosimonia) Assimilation organs Spines at leaf apex Cotyledon leaves Leaves and sometimes stems by age, never articulated Mostly obtuse, rarely with spine or mucro at apex Flat, linear, oblong, ovate Indumentum Stem, leaves, and perianths with long multicellular hairs, at least when young Hairs various; mostly articulate, spinulose, flattened, bladderlike, basifixed, or medifixed Present and mostly separated from theca and vesiculose, discolor with anthers Type of indumentum Anther appendage Wing on fruiting perianths Photosynthetic type C4 subtype Ecology Geography Wings mostly present; absent in some genera Exclusively C4 NAD-malic enzyme Plants with concentration in temperate deserts on nitrified soil and ruderalized habitats Mostly central and southwest Asia, northern and southern Africa Salsoleae s.s. Mostly shrubby, subshrubby and even tree; rarely annual Alternate in basal genera, opposite in most advanced lineages Leaves and stems, often articulated Mostly with mucro or spine at apex, rarely obtuse Mostly terete and filiform (flat in Anabasis and Halothamnus) Plants mostly glabrous, with a tuft of flexuose hairs in nodes or axil of leaves and flowers Hairs papillose, unicellular; axial hairs flexuous and multicellular, always basifixed Mostly absent; if present, small and nonvesiculose, color usually concolor with anthers Wings always present C4 with a few C3 and C3-C4 intermediates NADP-malic enzyme (with few exceptions) Plants concentrated mostly in hot deserts rich in sand, gravel, and gypsum As for Caroxyloneae but absent in southern Africa AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. inflorescence consisting of several flowers surrounded by two or more bracts. This species is most likely to be C3, as suggested by its Kranz-less sympegmoid leaf anatomy (Carolin et al. 1975) and a 21.6& carbon isotope ratio. However, the carbon isotope ratio is more positive than is typical for C3 species, which suggests that more studies on living plants are necessary to exclude the possibility of it functioning as a C3-C4 intermediate. The monophyletic Halothamnus clade probably includes 21–23 species, although only four taxa are included here. Most species are concentrated in southwest Asia (Iran and Afghanistan) but also occur widely in central Asia, and one species is found in east Africa (Somalia, Ethiopia, and Djibouti) (Kothe-Heinrich 1993). The monophyly of this genus is well supported (figs. 1A, 2A; mpbs ¼ 100%; mlbs ¼ 100%). This genus can be defined by green annual branches, speciform inflorescence, indurated fruiting perianths that are pitted in the abscission zone, presence of a hypogenous disk, horizontal seeds, absence of Kranz anatomy in cotyledon leaves, and presence of a short anther appendage clearly not separated from the theca. All known species are C4 with a leaf anatomy lacking a hypodermis layer (Pyankov and Vakhrusheva 1989; Kothe-Heinrich 1993; Akhani et al. 1997). The Kali clade is strongly supported in all analyses (mpbs ¼ 97%; mlbs ¼ 90%). This clade assembles four previously separate taxa in Salsoleae: the genus Traganum, Salsola sect. Kali, Salsola sect. Sogdiana (sensu Rilke 1999), and Salsola sect. Caroxylon subsect. Arbusculae p.p. (sensu Botschantzev 1976) or Salsola sect. Arbuscula p.p. (sensu Freitag 1997). Besides sharing similar habitats in sandy deserts or coastal sands, members of this clade can be defined by the combination of morphological characteristics including succulent leaves, nonjointed stems, apiculate to spiny leaf and bract apices, winged fruiting perianths in most species (except Traganum), and a cupulate or cylindrical corona above the wings of fruiting perianths. The clade is divided into two wellsupported subclades (figs. 1A, 2A). The first of these is the Kali subclade, previously classified as Salsola sect. Kali (sensu Rilke 1999) or Salsola sect. Salsola s.l. p.p. (Iljin 1936), and is strongly supported (mpbs ¼ 99%; mlbs ¼ 99%). Included here are annual or perennial species with spiny leaf tips that lack a leaf hypodermis. The most important feature characterizing this clade is the green cortex of annual shoots, which are associated with longitudinal striae. The striate lines are chlorenchymotous tissue interrupted by cholenchyma tissue (Rilke 1999). Because the genus Kali Miller is validly published (Miller 1754), it is here used for this subclade. We here designate Kali soda Moench (Methodus 331, 1794) as the lectotype of Kali (see app. A) against two other possibilities: Kali tragus (L.) Scop., Fl. Carniol. 1: 775, 1772 (¼Salsola tragus L., Cent. Pl. 2: 13, 1756) and Kali rosacea (L.) Moench, suppl. Meth. Plant. 115, 1804 (¼S. rosacea L., Sp. Pl. 222, 1753). Kali soda was validly described under Salsola kali L., Sp. Pl.: 222, 1753, 1 yr earlier than the description of the genus Kali in 1754 (Rilke 1999), and it is among the oldest names of species in this genus (1753). The second subclade of the Kali clade is a heterogeneous assemblage of small trees, shrubs, subshrubs, and annual species distributed in extreme deserts of central Asia and north Africa, primarily as components of sandy ecosystems. Its 941 monophyly is well supported (mpbs ¼ 89%; mlbs ¼ 80%); it is composed of species previously placed in Salsola sect. Sogdiana (Iljin) Rilke, Salsola sect. Androssowia Rilke (sensu Rilke 1999), Salsola sect. Caroxylon subsect. Arbusculae p.p. (sensu Botschantzev 1976), and the monotypic genus Traganum. Based on the topology of the tree and distribution of morphological features in the group, three well-supported genera are here distinguished: Xylosalsola, Traganum, and Turania. Xylosalsola Tzvelev includes C4 species of Salsola sect. Caroxylon subsect. Arbuscula p.p. (Botschantzev 1976) or Salsola sect. Arbuscula p.p. (sensu Freitag 1997). These are shrubby species of central Asia characterized by long terete linear leaves, solitary flowers, milky white and shining young stems, overlapping fruiting perianths that form a corona-like structure above the winged fruiting perianths, and presence of a minute anther appendage (Botschantzev 1976; Freitag 1997). The small genus Traganum includes two north African/ eastern Mediterranean species, one of which is sampled here. These are small shrubs with woolly nodes and semiterete leaves. The fruiting perianths are indurated throughout, have two hornlike teeth, and lack a wing. The leaves reportedly lack a hypodermis layer (Carolin et al. 1975), which separates this genus from other lineages in this subclade of the Kali clade. The third lineage of this subclade includes species previously classified in Salsola sect. Salsola (Iljin 1936) or Salsola sect. Sogdiana (Iljin) Rilke and Salsola sect. Androssowia Rilke (Rilke 1999). These central Asian annual species have succulent flat or semiterete leaves with a short (0.5 mm) or long (5 mm) spine at the apex, a leaf hypodermis layer, and cupulate fruiting perianths that are somewhat connate at the base and give the ovary a false-inferior appearance. Furthermore, they have filiform stigmas that are very long, up to three to five times as long as the style. Given the clear morphological circumscription of these species, we are here recognizing this clade as the genus Turania (see app. A). The Salsola clade is a complex assemblage of genera in Salsoleae but is moderately supported in the phylogenetic hypotheses presented here (mpbs ¼ 72%; mlbs ¼ 65%). This lineage includes taxa occurring from central and southwest Asia to the north African and Mediterranean areas. The monophyly of the clade is supported by several morphological features including presence of a spine or mucro on leaf tips that sometimes appears as a caducous bristle and most species being completely glabrous or having papillose or tubercle-like hairs. Many groups are represented by opposite leaves or branches, and stamens have no or very short anther appendages. Many genera have been previously described in this clade, and most of them are supported by the phylogenetic hypotheses (figs. 1A, 2A). The genus Salsola was typified by Salsola soda (Jarvis et al. 1993; see Rilke 1999 for details), which is nested within a homogenous group of species that have been variously placed in several genera in previous classifications. The monophyly of this clade is well supported (mpbs ¼ 84%; mlbs ¼ 79%). In spite of the morphological synapomorphies that strongly support this clade, species of this clade have been placed by various authors in several sections of Salsola, including sect. Salsola (Rilke 1999), sect. Obpyrifolia (Botschantzev 942 INTERNATIONAL JOURNAL OF PLANT SCIENCES and Akhani 1989), sect. Caroxylon subsect. Coccosalsola (Botschantzev 1976, 1989), and sect. Coccosalsola (Freitag 1997), or have been classified into other genera, including Seidlitzia Bunge ex Boiss. (Iljin 1954), Hypocylix Woloszczak (Woloszczak 1885), Darniella Maire & Weiller (Brullo 1984), Neocaspia Tzvelev (Tzvelev 1993), Caspia (Galushko 1976), Fadenia (Aellen and Townsend 1972), and Anabasis p.p. The most obvious synapomorphy of Salsola s.s. as treated here is the presence of clusters of two to six flowers (or, rarely, one) in the axil of each floral leaf. Further characters include absence or presence of a very minute anther appendage, presence of a hypogynous disk or staminode (much reduced in S. soda), presence of a leaf hypodermis, cylindrical and obtuse leaves (more often obpyriform, at least in the juvenile state or in bracts) that are opposite in most species, and fruiting perianths with well-developed wings (reduced in S. soda). A surprising result is the inclusion of the tropical African monotypic genus Fadenia in Salsola (Aellen and Townsend 1972). Fadenia zygophylloides is known from Kenya, Ethiopia, and Somalia and was previously separated from all other species of Salsoloideae by the fruiting perianths having longitudinal membranous crests. This species has been previously classified in subtribe Sevadinae (Botschantzev 1967, 1975c; Boulos et al. 1991). Although we have not sampled all species of the complex, there is little doubt that all species treated under the genus Darniella by Brullo (1984) and the genus Seidlitzia by Iljin (1954) belong to Salsola s.s. With the exclusion of Anabasis setifera, the rest of the genus Anabasis forms a well-supported monophyletic group (mpbs ¼ 99%; mlbs ¼ 96%). The monophyly of this clade is supported by the combination of several morphological features, including a perennial and shrubby habit, a thick basal caudex (mostly woolly), opposite leaves and branches, vertical seeds, fleshy utricle that resembles a berrylike fruit in several species, articulated branches, vestigial leaves in most species (in Anabasis eugeniae, the leaves are developed), and the presence of a multilayered epidermis and sunken stomata (Bokhari and Wendelbo 1978). Ecologically, most species are extreme xerohalophytic species and frequently grow on halogypsum soils. The genus Anabasis is distributed from southwest Europe and north Africa to the Red Sea coast (Ethiopia) and southwest and central Asia. The monophyly of the genus Halogeton is strongly supported by all analyses (mpbs ¼ 100%; mlbs ¼ 100%). This is a small genus of approximately five species, including both annual (in temperate salines and ruderal places) and perennial species (in warm and hot deserts). The genus is well defined by the combination of fleshy cylindrical leaves terminating in a persistent or caducous bristle, presence of three to several flowers in the axil of each floral leaf, presence of a papillose staminodial disk, presence of five wings on fruiting perianths, and membranous perianth segments. Some authors have removed the perennial species to the genus Agathophora (Botschantzev 1977; Hedge 1997). Our results support a monophyletic clade including both annual and perennial species; however, because only one of each is sampled here, future studies will be necessary to explore whether the two growth forms form monophyletic sister lineages. Girgensohnia, Cyatobasis, and two species of Hammada form a clade in the analyses presented here, although it is weakly supported. The central Asian and Persian genus Girgensohnia includes approximately four or five species, three sampled in this study, and forms a monophyletic wellsupported group (mpbs ¼ 96%; mlbs ¼ 86%). Morphologically, the genus is well defined by an annual life form, opposite leaves and branches, presence of an indumentum of scabrid papillae, semiamplexicaule leaves with a scarious base and spine-tipped apex, and vertical seeds. The species of Girgensohnia are ruderal and sometimes weedy species on low salty soils in the deserts of central Asia and Iran. The monotypic central Anatolian genus Cyatobasis was described by Aellen (1949), who distinguished it from Girgensohnia by characters such as elongate styles, a noncapitate stigma, and connate leaf base. Our analyses suggest that this species, together with Hammada articulata and Hammada griffithii, forms a grade leading to Girgensohnia s.s. These results and shared morphological characters suggest that a wider circumscription of the genus Girgensohnia, including Cyatobasis and Hammada p.p. and probably the other species of Arthrophytum, is appropriate. Analysis of two of the approximately six species of Cornulaca reveals a strongly monophyletic group (mpbs ¼ 100%; mlbs ¼ 100%). The genus is characterized by a sturdy habit, alternate branches, decurrent strongly spiny leaves and bracts, presence of a dense white tuft of hairs among and at the base of flowers, membranous perianth segments that become indurated and coalescent in fruit, one (sometimes two) terminal perianth spine, filaments connating into a tube, and vertical seeds. Cornulaca species occur in central and southwest Asia and northern Africa on sandy or dry soils and can tolerate long periods of drought (H. Akhani, personal observation). The genus is sister to Horaninowia, another spiny genus, but is clearly separated by other morphological characteristics (see next paragraph). Horaninowia is a well-supported monophyletic genus in our analyses (mpbs ¼ 88%; mlbs ¼ 73%). There are approximately seven spiny annual species that are characterized by a green cortex, the presence of unicellular papillae, spinytipped leaves and bracts, solitary flowers in hairy leaf axils, exappendiculate anthers, perianths in fruit becoming hardened in the upper middle, capitate or clavate stigmas, and horizontal seeds (Carolin et al. 1975). Species of Horaninowia are restricted in their range to central Asia and Iran, growing on sandy dunes or gravelly deserts. The phylogenetic analyses and morphological features clearly support a close relationship with Cornulaca (figs. 1A, 2A). The traditional circumscription of Haloxylon (Iljin 1936) includes only tall shrub to small tree species and is well supported in these analyses (mpbs ¼ 100%; mlbs ¼ 100%). The two species, Haloxylon ammodendron and Haloxylon persicum, are found in central and southwest Asia and occur on sandy dunes or dry salty habitats close to the margins of playas, where their long roots have access to underground salty water (Léonard 1991; Akhani et al. 2003; Akhani 2004). The combination of unique tree life form with articulated branches, horizontal seeds, occurrence of an arista at the scalelike leaf apex, presence of a hypodermis layer in assimilating shoots, and the isopalisade cotyledon leaves without Kranz anatomy (Pyankov et al. 1999), characterizes the genus. Bunge (1879) and Hedge (1997) proposed a broader circumscription of this AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. genus, including species from other genera such as Arthrophytum and Hammada, but this is not supported by the phylogenetic hypotheses presented here (figs. 1A, 2A). The genera Hammada and Arthrophytum have been interpreted differently by different authors. Hedge (1997) and Boulos (1996) considered them congeneric with Haloxylon. The three species we have analyzed (Hammada salicornica, Hammada articulata, and Hammada griffithii) are not closely associated with Haloxylon and may form early lineages of the Girgensohnia/Cornulaca/Horaninowia clade (fig. 2A), although these relationships are not well supported and are placed differently by the MP strict consensus (fig. 1A) but, again, with little support. The phylogenetic hypotheses presented suggest a possible clade including the C3 Salsola montana complex, Salsola arbusculiformis, Raphydophytum regelii, and the genus Noaea (fig. 2A). This clade, however, is not strongly supported and is not present in the MP strict consensus (fig. 1A). The placement of the C3-C4 intermediate Salsola arbusculiformis (Voznesenskaya et al. 2001a) between Salsola montana and Noaea, a C4 genus, might demonstrate an interesting case of transition in photosynthetic pathway across a clade. Given the weak phylogenetic placement of S. arbusculiformis in the phylogenetic hypotheses presented here, we are only informally recognizing this species as ‘‘Collinosalsola’’ and will await further evidence of its phylogenetic position before formally placing the species. The small subshrub Raphydophytum is characterized by stiff and spinescent leaves that are acicular and three-angular in cross section, with scabrid margins and a dilated base. The perianths bear wings near the base, and the filaments produce a staminal tube with welldeveloped semiorbicular lobes on the hypogynous disk. All known species of Noaea are included in our phylogenetic analyses, and its monophyly is well supported (mpbs ¼ 100%; mlbs ¼ 100%). This genus is characterized by alternate branches, leaves spiny tipped or cuspidate at the base with broad white membranous margins, and vertical seeds. All three species grow in temperate and cold-temperate deserts or montane and submontane steppe vegetation, which is not typical for C4 species. The S. montana complex was classified in Salsola sect. Anchophyllum by Iljin (1936), sect. Caroxylon subsect. Arbusculae by Botschantzev (1976), and sect. Arbuscula by Freitag (1997). The complex includes subshrubby species that differ from species of previously mentioned Salsola s.l. groups in having not only green young stems but also a sympegmoid leaf anatomy (Akhani and Ghasemkhani 2007), filaments attached to the disk without staminodes, and anthers divided only to two-thirds of their length. The precise phylogenetic position of this strongly supported clade (mpbs ¼ 100%; mlbs ¼ 100%) is not clear, and we are therefore here treating this complex as the informal taxonomic entity ‘‘Oreosalsola’’ (see app. A). The S. montana species complex represents an assemblage of microspecies (Salsola maracandica Iljin, Salsola oreophila Botsch., Salsola masenderanica Botsch., Salsola botschantzevii Kurbanov, Salsola flexuosa Botsch., Salsola tianschanica Botsch., Salsola lipschitzii Botsch., Salsola junatovii Botsch., and S. montana Litw.), which are collectively included in a broadly defined S. montana by Freitag (1997). We have here examined three populations in this complex, one from Golestan 943 National Park (S. montana), one from the Alborz mountains (S. masenderanica), and ‘‘Salsola touranica,’’ an undescribed but likely distinct entity from the Touran Protected Area of Iran. Members of this species complex need to be studied further in order for us to understand where species boundaries lie and whether one or eight or more species should be recognized. Salsola divaricata was included in Salsola sect. Caroxylon subsect. Coccosalsola by Botschantzev (1976, 1989). This shrubby species is endemic to the Canary Islands and is distinctive in having opposite leaves, mature leaves that are triangular in cross section, and leaves with one layer of hypodermis, two layers of palisade parenchyma, scattered peripheral vascular bundles, and a central aqueous tissue. Morphologically, it is very similar to species of Salsola s.s., but this species does not strongly group with Salsola s.s. Given its unclear phylogenetic position and the need to sample the similar C3 Mediterranean/ north African/central Asian species Salsola genistoides, Salsola webbii, and Salsola pachyphylla, no nomenclatural changes are here proposed. Classification and Relationships in Clade Caroxyloneae Three major clades can be distinguished in Caroxyloneae, which are here labeled as the Caroxylon clade (mpbs ¼ 88%; mlbs ¼ 93%), the Kaviria clade (mpbs ¼ 86%; mlbs ¼ 87%), and the Climacoptera clade (mpbs ¼ 77%; mlbs ¼ 83%). Two of the three clades can be divided further into two or more monophyletic lineages, which in most cases correspond with traditional classifications of Salsoleae genera. However, the relationship and generic circumscription of several closely related annual genera in this clade, including Halanthium, Halimocnemis, Halotis, Gamanthus, Climacoptera, Piptoptera, Halocharis, Halarchon, Petrosimonia, and Physandra, has been controversial (Pratov 1986; Akhani 1996; Hedge 1997; Assadi 2001; Ghobadnejhad et al. 2004). These euhalophytic and xerohalophytic species are endemic to the Irano-Turanian area, primarily in temperate deserts of central Asia, Afghanistan, and Iran. Except Petrosimonia, with connate cagelike anther appendages, all species are characterized by large, often showy and colorful (white, yellow, or purple) vesciculate anther appendages, which apparently act as an attractor for insect pollinators and may also contribute as a wind-dispersal device for anthers and pollen grains, depending on the species. The Caroxylon clade includes a large group of species traditionally classified as Salsola sects. Caroxylon p.p. (subsect. Caroxylon, subsect. Vermiculatae), Cardiandra, Irania, and Malpigipila and two species of sect. Belanthera (Salsola canescens and Salsola carpatha). The monophyly of this clade is well supported (figs. 1B, 2B). This is the most widespread lineage of Salsoleae s.l., with ca. 140 described species, being found in central Asia, Arabia, and northern and southern Africa (Botschantzev 1968, 1969a, 1969c, 1970, 1972, 1974a, 1974b, 1975b, 1975d, 1980, 1986; Freitag 1997). Our phylogeny includes 19 species covering most known lineages and geographic areas. The clade is morphologically heterogeneous, although the presence of an acute anther appendage, winged perianth segments, a gibbous leaf base, and a staminal disk provides a combination of characters that distinguishes the clade. The oldest generic name for species in this clade is Caroxylon Thunb. It was reduced to a section of Salsola by several 944 INTERNATIONAL JOURNAL OF PLANT SCIENCES subsequent authors (Fenzl 1851; Iljin 1936) but recognized at the generic level by Tzvelev (1993), which is supported by our data. Relationships within Caroxylon are generally weakly supported (figs. 1B, 2B) and will require further study to clarify. The Kaviria clade includes species traditionally classified in Salsola sect. Belanthera (excluding S. canescens, S. carpatha, and other microspecies classified in subsect. Kochioides by Botschantzev [1968, 1980]), the oligotypic genus Halocharis, and the monotypic genus Nanophyton (figs. 1B, 2B). The combination of the C3 cotyledon leaves, the absence of a leaf hypodermis, and the presence of an acute triangular anther appendage that is separated from the thecae circumscribes this clade well, and morphological and ecological features clearly separate each of these three lineages from each other (table 4). Salsola sect. Belanthera is here named Kaviria (see app. A) after the Persian term ‘‘Kavir,’’ a name used to refer to the Iranian Great Desert. The Climacoptera clade is composed of a lineage including Petrosimonia and Ofaiston, which is sister to the remainder of the clade (figs. 1B, 2B). This is an exclusively Irano-Turanian species group that predominantly occurs in annual halophytic and xerohalophytic communities of central and southwest Asia. Petrosimonia and Ofaiston are quite distinct morphologically, and Petrosimonia is supported as monophyletic in all analyses. Ofaiston is characterized by having only one or two stamens and three to five perianth parts (tepals), strongly keeled bracteoles, and small wings on two tepals (Iljin 1936). In Petrosimonia, the anther appendages are connate at the apex, creating a cagelike structure, and wings are completely absent from the membranous tepals. The remainder of the Climacoptera clade is strongly supported (mpbs ¼ 100%; mlbs ¼ 100%). All of the genera within this clade are para- or polyphyletic, including Climacoptera, Gamanthus, Halanthium, and Halimocnemis (figs. 1B, 2B). The majority of the members of several genera form strongly supported clades, and clear lineages can be defined in several cases. If Climacoptera brachiata is excluded from the rest of the genus, Climacoptera forms a strongly supported monophyletic genus (mpbs ¼ 100%; mlbs ¼ 100%). Climacoptera was segregated from Salsola by Botschantzev (1956); however, it was considered as Salsola sect. Physurus by Freitag (1997). The presence of five winged perianths in fruit, strongly fleshy, glaucous, and mostly decurrent floral leaves, a main central erect stem, and an interrupted Kranz layer on the adaxial leaf surface define the genus. The number of species in this lineage is unclear, as different authors have recognized from as many as 42 species (Pratov 1986) to as few as six (Freitag 1997). Preliminary evidence from Iran (H. Akhani, unpublished data) suggests that approximately eight to 10 species are distinguishable, as opposed to only two species recognized in Flora Iranica by Freitag (1997). Climacoptera brachiata has been variously treated as a member of Salsola sect. Heterotricha Iljin (Iljin 1936), Climacoptera (Botschantzev 1956), Climacoptera sect. Heterotricha Iljin ex Pratov (Pratov 1986), and Salsola sect. Belanthera (Freitag 1997). Based on the characteristic opposite leaves (except uppermost floral leaves), small obtuse anther appendage, and presence of a spinulose indumentum with long smooth articulate hairs, it is well separated from the other genera of the Climacoptera Table 4 Morphological and Anatomical Comparison of Genera in the Kaviria Clade Character Habit Inflorescence (flowers in each floral leaf axis) Indumentum Kaviria Annual, prostrate Pulvinate undershrub, with stout woody base, erect Solitary Spinulose, branched, scabrid, articulated Solitary to several Articulated, scabrid hairs, multicellular flexuous hairs on axil of flowers Terete, strongly succulent, with one or a few bristlelike hairs at apex Gibbous Absent Solitary Multicelluar, smooth flexuous hairs in leaf and flower axils Terete to semiterete, succulent, hairy or glabrous throughout Leaf base Hypodermis Central vascular bundle (VB) Slightly gibbous Absent Seeds Hypogynous disc Nanophyton Undershrub, rarely annual, erect to ascending Leaf shape Fruiting perianth Halocharis VB associated with sclerenchymatous tissue Winged or with small transversal line Horizontal, rarely vertical Hypogynous disk present, without or with short interstaminal lobes Anther Triangular, appendage scabrous Stigma Ecology Flat, shortly dentate Dry gravelly and slightly salty soils VB lacking sclerenchymatous tissue Scarious, wingless Vertical Filaments not narrowed to base, hypgynous disk absent Appendage divided to the base, appendage vesiculous or triangular, papillose Terete, not dentate High salty clay soils Semiterete to triangular in section, spiny tipped Not gibbous Present VB associated with sclerenchymatous tissue Enlarged and inflated in fruit but without wing Vertical Filament not narrowed to base, located at hypogynous disk with staminode lobes Anthers divided to the apex, appendage triangular, smooth Terete, not dentate Xerophytic communities AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. clade. Given the isolated phylogenetic position of this species and its distinctive combination of characteristics, we feel it is best treated as a monotypic genus, here named Pyankovia (see app. A) in honor of the late professor Vladimir Pyankov. The remainder of the species in the Climacoptera clade belong to four genera: Gamanthus, Halanthium, Halotis, and Halimocnemis. The relationships and generic boundaries of these genera have been debated (Akhani 1996; Hedge 1997; Assadi 2001; Ghobadnejhad et al. 2004). The phylogenetic results presented here suggest the possibility of four lineages, although the relationships among these lineages and clade membership are generally poorly supported (figs. 1B, 2B), and whether there are consistent morphological characters by which to define these clades is unclear. Further, there are entanglements of the types of some genera (e.g., Gamanthus pilosus nested within the Halanthium clade, separate from the rest of Gamanthus). While a case could be made for either rejecting the current lectotype of Gamanthus or renaming the rest of the Gamanthus clade under a new name (given its strong support), we consider the recognition of all of these species within Halimocnemis to be the best option at this time, at least until the generic boundaries and nomenclatural problems can be untangled. While this group is not present in the MP strict consensus, it is present in the most likely tree, albeit with low support (58%). Because Halimocnemis and Halotis are very similar morphologically and were previously merged by Hedge (1997), and the phylogenetic hypotheses places Halimocnemis purpureum and Halotis pedunculata among Halanthium species (see Akhani 1996; Hedge 1997), we feel the combination of these genera to be a reasonable compromise, despite the low branch support. 945 The monotypic genus Piptoptera was amplified only for psbB-psbH, confirming that it is not a well-supported member of any of the clades described above, which corresponds with its morphological isolation. It is weakly placed among Halanthium and Gamanthus species. This might suggest its inclusion in the more broadly circumscribed Halimocnemis, but formal inclusion in that genus will require further data, particularly given the peculiar features of this genus of sturdy habit with adpressed indumentum and development of two large, circular perianthal wings. Acknowledgments This article is the result of a sabbatical leave of H. Akhani supported by a grant of the University of Tehran. The fieldwork was partly supported by the Geobotanical Studies in Different Parts of Iran I–III research project, and portions of this project were also supported by Civilian Research and Development Foundation grant RB1-2502-ST-03. Five of the sequenced species in this study were provided during a research visit to Royal Botanical Gardens, Kew (Jodrell Laboratory). H. Akhani acknowledges the financial support of the Royal Society and the help of Mark Chase and other staff members. We acknowledge Maraym Ghasemkhani for her help; Ehsan Akhani, A. Beck, R. Khoshravesh, M. Djamali, T. Eftekhari, C. Deigele, and H. Ziegler for providing material from collections in Munich and Iran; C. M. WilmotDear (Kew) for correcting the Latin diagnoses; and Larry Hufford and two anonymous reviewers for comments on a previous version of the manuscript. Appendix A A Revised Classification of Salsoleae s.l. Here we present a synopsis of generic circumscriptions and new combinations resulting from this study, where both strong molecular and morphological support necessitate changes. To save space, we have included only the most necessary nomenclatural data. Therefore, most synonyms and citations are not included in this article. A detailed morphological, taxonomical, and anatomical assessment of tribes Camphorosmeae, Caroxyloneae, and Salsoleae awaits future publication. Tribe Salsoleae s.s. Anabasis L., Sp. Pl. 223, 1753. Type: Anabasis aphylla L. Includes Anabasis aphylla L., A. aretioides Moq. & Coss., A. articulata (Forssk.) Moq., A. brevifolia C. A. Mey., A. brachiata Fisch. & C. A. Mey., A. calcarea (Charif & Aellen) Bokhari & Wendelbo, A. cretacea Pall., A. ebracteolata Korov. ex Botsch., A. ehrenbergii Schweinf. ex Boiss., A. elatior (C. A. Mey.) Schrenk, A. eriopoda (Schrenk) Benth. ex Volkens, A. eugeniae Iljin, A. ferganica Drob., A. gypsicola Iljin, A. haussknechtii Bunge ex Boiss., A. iranica Iljin, A. jaxartica (Bunge) Benth. ex Volkens, A. lachnantha Aellen & Rech. f., A. paucifolia M. Pop. ex Iljin, A. pelliotii Danguy, A. macroptera Moq., A. prostrata Pomel., A. oropediorum Maire, A. salsa (C. A. Mey.) Benth. ex Volkens, A. syriaca Iljin, A. tianschanica Botsch., A. truncata (Schrenk) Bunge, A. turkestanica Iljin & Korov., and A. turgaica Iljin & Krasch. Arthrophytum Schrenk, Bull. Phys. Math. Acad. Petrop. 3: 211, 1845. Type: A. subulifolium Schrenk. Includes Arthrophytum gracile Aellen, A. iliense Iljin, A. balchaschense (Iljin) Botsch., A. lehmannianum Bunge, A. pulvinatum Litv., A. subulifolium Schrenk, A. longibracteatum Korov., A. korovinii Botsch., and A. betpakdalense Korov. (Korovin and Mironov 1935). Cornulaca Delile, Flore d’Egypte—explic. des planches 72, 1813. Type: Cornulaca monacantha Delile. Includes Cornulaca alaschanica C. P. Tsien & G. L. Chu, C. aucheri Moq., C. ehrenbergii Asch., C. korshinskyi Litv., C. monacantha Delile, and C. setifera (DC.) Moq. (Aellen 1950; Boulos 1992). Girgensohnia Bunge ex Fenzl in Ledeb., Fl. Ross. 3: 835, 1851. Type: Girgensohnia oppositiflora (Pall.) Fenzl. Includes Girgensohnia diptera Bunge, G. imbricata Bunge, G. minima E. Korov., and G. oppositiflora (Pall.) Fenzl. Halogeton C. A. Mey. in Ledeb., Icon. Pl. Fl. Ross. 1: 10, 1829. Type: Halogeton glomeratus (M. Bieb.) C. A. Mey. Synonyms: Agathophora (Fenzl) Bunge, Micropeplis Bunge. 946 INTERNATIONAL JOURNAL OF PLANT SCIENCES Includes Halogeton alopecuroides (Delile) Moq., H. arachnoideus Moq., H. glomeratus (M. Bieb.) C. A. Mey., H. sativus (L.) Moq., and H. tibeticus Bunge (Bunge 1862; Botschantzev 1977). Halothamnus Jaub. & Spach, Illustr. Pl. Or. 2: 50, tab. 136, 1845. Type: Halothamnus bottae Jaub. & Spach. Synonym: Aellenia Ulbr. Includes Halothamnus beckettii Botsch., H. somalensis (N. E. Br.) Botsch., H. bottae Jaub. & Spach, H. iranicus Botsch., H. hierochunticus (Bornm.) Botsch., H. iliensis (Lipsky) Botsch., H. auriculus (Moq.) Botsch., H. kermanensis Kothe-H., H. afghanicus Kothe-H., H. lancifolius (Boiss.) Kothe-H., H. cinerascens (Moq.) Kothe-H., H. glaucus (M.Bieb.) Botsch., H. bamianicus (Gilli) Botsch., H. shurabi Botsch., H. turcomanicus Botsch., H. ferganensis Botsch., H. sistanicus (De Marco & Dinelli) Kothe-H., H. oxianus Botsch., H. seravschanicus Botsch., H. iraqensis Botsch., and H. subaphyllus (C. A. Mey.) Botsch. (Aellen 1950; Botschantzev 1981b; Kothe-Heinrich 1993). Haloxylon Bunge, Rel. Lehm. in Mém. Sav. Etrang. Petersb. 7: 468, 1851. Type: Haloxylon ammodendron (C. A. Mey.) Bunge ex Fenzl. Includes Haloxylon ammodendron (C. A. Mey.) Bunge and H. persicum Bunge ex Boiss. Hammada Iljin, Bot. Zhurn. 33: 582, 1948. Type: Hammada leptoclada (M. Popov) Iljin. Includes Hammada articulata (Moq.) O. Bolós & Vigo, H. eigii Iljin, H. griffithii (Moq.) Iljin, H. multiflora (Moq.) Iljin, H. negevensis Iljin & Zoh., H. ramosissima (Boiss.) Iljin, H. salicornica (Moq.) Iljin, H. schmittiana (Pomel) Botsch., H. scoparia (Pomel) Iljin, H. thomsoni (Bunge) Iljin, and H. tamariscifolia (L.) Iljin, and H. wakhanica (Paulsen) Iljin (Iljin 1948). Horaninowia Fisch. & C. A. Mey., Enum. Pl. Nov. Schrenk 1: 10, 1841. Type: Horaninowia ulicina Fisch. & C. A. Mey. Includes Horaninowia anomala (C. A. Mey.) Moq., H. excellens Iljin, H. minor Fisch. & C. A. Mey., H. platyptera Charif & Aellen, H. pungens (Gilli) Botsch., and H. ulicina Fisch. & C. A. Mey. (Aellen 1950). Kali Mill., Gard. Dict. Abridg. Ed. 4, 1754. (¼Salsola sect. Kali Dumort; Rilke 1999). Type (lectotype selected here): Kali soda Moench, Method 331, 1794. [ Salsola kali L., Sp. Pl.: 222, 1753. Kali australis (R. Br.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola kali R. Br. Prodr. 411, 1810. Kali griffithii (Bunge) Akhani & E. H. Roalson, comb. nov. Basionym: Noaea griffithii Bunge, Mém. Acad. Imp. Sci. St. Pétersb., Sér. 7, 4, 11: 22–23, 1862. Kali tamariscina (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tamariscina Pall., Illustr. Pl. 33, 1803. Kali collina (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola collina Pall., Illustr. Pl.: 34, 1803. Kali zaidamica (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola zaidamica Iljin, Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk SSSR 17: 122–124, 1955. Kali tamamschjanae (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tamamschjanae Iljin, Trudy Bot. Inst. Akad. Nauk. SSSR, ser. 1: 161, 1936. Kali jacquemontii (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola jacquemontii Moq. in DC. Prodr. 13, 2: 188, 1849. Kali komarovii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola komarovii Iljin, Bot. Zhurn. SSSR 18, 2: 276, 1933. Kali ikonnikovii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola ikonnikovii Iljin, Izv. Glavn. Bot. Sada Akad. Nauk SSSR 30: 748, 1931. Kali paulsenii (Litv.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola paulsenii Litv., Izv. Turkestansk. Otd. Imp. Russk. Geogr. Obshch. 4, 5: 28, 1905 and in Sched. Herb. Fl. Ross. 5: 29, No. 1431, 1905. Other species recognized include Kali soda Moench (¼Salsola kali L.), K. tragus (L.) Scop., and K. rosasea (L.) Moench. Noaea Moq. in DC., Prodr. 13, 2: 207 (1849). Type: Noaea mucronata (Forssk.) Aschers. & Schweinf. Includes Noaea major Bunge, N. minuta Boiss. & Bal., and N. mucronata (Forssk.) Aschers. & Schweinf. Rhaphidophyton Iljin, Tr. Bot. Inst. Akad. Nauk SSSR I, Fl. Sist. Vyss. Rast. 3: 157, 1936. Type: Rhaphidophyton regelii (Bunge) Iljin. Includes Rhaphidophyton regelii (Bunge) Iljin. Salsola L., Sp. Pl. ed. 1: 222, 1753. Type: Salsola soda L. Synonyms: Darneilla Maire & Weiller, Fadenia Aellen & Townsend, Neocaspia Tzvelev, Hypocylix Wol., Seidlitzia Bunge ex Boiss., Salsola sect. Coccosalsola Fenzl subsect. Coccosalsola, and S. sect. Obpyrifolia Botsch. & Akhani (Woloszczak 1885; Iljin 1954; Aellen and Townsend 1972; Botschantzev 1976; Brullo 1984; Botschantzev 1989; Botschantzev and Akhani 1989; Tzvelev 1993; Rilke 1999). Salsola setifera (Moq.) Akhani, comb. nov. Basionym: Anabasis setifera Moq., Chenopod. Monogr. 164, 1840. Salsola rosmarinus (Ehrenb. ex Boiss.) Akhani, comb. nov. Basionym: Seidlitzia rosmarinus Ehrenb. ex Boiss., Fl. Or. 4: 951, 1879. Salsola zygophylloides (Aellen & Townsend) Akhani, comb. nov. Basionym: Fadenia zygophylloides Aellen & Townsend, Kew Bull. 27: 501, 1972. Other species recognized include Salsola acutifolia (Bunge.) Botsch., S. cruciata Chevall. ex Batt. & Traubut, S. cyrenaica (Maire & Weiller) Brullo, S. drummondii Ulbr., S. florida (M. Bieb.) Poir, S. foliosa (L.) Schrad., S. grandis Freitag, Vural & N. Adigüzel, S. glomerata (Maire) Brullo, S. gymnomaschala Maire, S. kerneri (Wol.) Botcsh., S. longifolia Forssk., S. makranica Freitag, S. melitensis Botsch., S. oppositifolia Desf., S. papillosa Willk., S. schweinfurthii Solms-Laub., S. sinaica Brullo, S. soda L., S. stocksii Boiss., S. tunetana Brullo, S. verticillata Schousboe, and S. zygophylla Batt. & Traub. Sympegma Bunge, Bull. Acad. St. Pétersb. 25: 351, 371, 1879. Type: Sympegma regelii Bunge. Includes Sympegma regelii Bunge. Traganum Del., Fl. Égypte: 204, 113–1814. Type: Traganum nudatum Del. Includes Traganum nudatum Del. and T. moquini Webb. Traganopsis Maire et Wilczek, Bull. Soc. Hist. Nat. Afr. N. 27: 67, 1936. Type: Traganopsis glomerata Maire & Wilczek. Includes Traganopsis glomerata Maire & Wilczek. Turania Akhani & E. H. Roalson, gen. nov. Type: Turania sogdiana (Bunge) Akhani; basionym: Salsola sogdiana Bunge, Mém. Acad. Imp. Sci. St. Pétersb. Divers Savans 7: 473, 1852. Synonyms: Salsola sect. Sogdiana (Iljin) Rilke, Rev. Sekt. Salsola Gatt. Salsola 69, 1999; S. sect. Androssowia Rilke, Rev. Sekt. Salsola Gatt. Salsola 77, 1999. Plantae annuae. Foliae, bracteae bracteolaeque spina terminatae. Antherae per 3/4 vel 4/5 longitudinem incisae, minute appendiculatae. Stigmata 2 quam stylus multo (3–4 x) longioria. Flores in axilibus singulae. Tepala fructificantia alata; tubus patelliformis, induratus; semina valde complanata. A Kali caule non striato, antheris per 3/4 vel 4/5 longitudinem (nec usque medium tantum) incisis differt. Turania sogdiana (Bunge) Akhani, comb. nov. Basionym: Salsola sogdiana Bunge, Mém. Acad. Imp. Sci. St. Pétersb. Divers Savans 7: 473, 1852. AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. 947 Turania aperta (Paulsen) Akhani, comb. nov. Basionym: Salsola aperta Paulsen, Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn. 6, 5: 197, 1903. Turania androssowii (Litw.) Akhani, comb. nov. Basionym: Salsola androssowii Litv., Sched. Herb. Fl. Ross. 6: 111, No. 1890, 1908. Turania deserticola (Iljin) Akhani, comb. nov. Basionym: Salsola deserticola Iljin, Bot. Zhurn. SSSR 18: 277, 1933. Xylosalsola Tzvelev in Ukr. Bot. Zhurn., 50 (1): 81, 1993. Type: Salsola arbuscula Pall. Synonym: Salsola section Coccosalsola Fenzl subsection Arbuscula (Ulbrich) Botsch. p.p. Xylosalsola richteri (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola arborescens L. fil. var. richteri Moq. in DC., Prodr. 13, 2: 185, 1849; S. richteri (Moq.) Karel. ex Litw. Xylosalsola paletzkiana (Litw.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola paletzkiana Litw., Sched. Herb. Fl. Ross. 50: no. 2569, 1914. Xylosalsola chiwensis (M. Pop.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola chiwensis M. Pop. in Pochv. Issl. V Bass. R. SyrDar’i i Amu-Dar’i, 1, 1915; 49; in O. et B. Fedtsch. Consp. Fl. Turk. 7: 355, 1916. Other species recognized include Xylosalsola arbuscula (Pall.) Tzvelev. Tribe Salsoleae incertae sedis ‘‘Canarosalsola’’: Salsola divaricata Masson ex Link. ‘‘Collinosalsola’’: Salsola arbusculiformis Drob. and S. laricifolia Turcz. ex Litw. ‘‘Oreosalsola’’: Salsola abrotanoides Bunge, S. botschantzevii Kurbanov, S. flexuosa Botsch., S. junatovii Botsch., S. lipschitzii Botsch., S. maracandica Iljin, S. masenderanica Botsch., S. montana Litw., S. oreophila Botsch., and S. tianschanica Botsch. Others: Salsola genistoides Juss. ex Poir., S. pachyphylla Botsch., and S. webbii Moq. Tribe Caroxyloneae Akhani & E. H. Roalson, tribus nov. Type: Caroxylon Thunb. A tribu Salsoleae planta plerumque tota pilosa, caulibus et foliis pilos articulatos atque interdum etiam pilos medifixos ferentibus differt. Antherae vario modo appendiculatae, disjunctae, plerumque vesiculosae. Caules numquam articulati. Folia alterna (rarissime opposita). For details of the differences between Salsoleae s.s. and Caroxyloneae, see table 3. Caroxylon Thunb. Nov. Gen. ii. 37, 1782. Type: Caroxylon aphyllum (L. f.) Tzvelev (¼Salsola aphylla L.). Synonyms: Salsola sect. Caroxylon (Thunb.) Fenzl, Salsola sect. Irania Botsch., Salsola sect. Malpighipila Botsch., Salsola sect. Cardiandra Aellen, and Nitrosalsola Tzvelev (Botschantzev 1970, 1974a, 1974b, 1975b, 1975d, 1981a, 1986; Freitag 1997). Caroxylon abarghuense (Assadi) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola abarghuensis Assadi, Iranian J. Bot. 2: 136, 1984. Caroxylon aegeum (Rech. f.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola aegaea Rech. f., Denksch. Akad. Wiss. Wien, Math.Nat. 105, 2, Abt. 1: 67, 1943. Caroxylon arabicum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola arabica Botsch. in Bot. Zhurn. 60(4): 499, 1975. Caroxylon araneosum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola araneosa Botsch. in Bot. Zhurn. 58(6) 818, 1973. Caroxylon canescens (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Noaea canescens Moq. in DC., Prodr. 13, 2: 208, 1849. Caroxylon carpathum (P. H. Davis) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola carpatha P. H. Davis, Notes Roy. Bot. Gard. Edinb. 21: 139, 1953. Caroxylon chorassanicum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola chorassnica Botsch., Bot. Mat. Gerb. Inst. Bot. Akad. Nauk Uzbek. SSR 18: 6, 1969. Caroxylon cyclophyllum (Baker) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola cyclophylla Baker in Bull. Misc. Inform. (Kew Bull.) 1894: 340, 1894. Caroxylon dzhungaricum (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola dzhuncarica Iljin in Trudy Bot. Inst. Akad. Nauk SSSR, ser 1, 2: 129, 1936. Caroxylon ericoides (M. Bieb.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola ericoides M. Bieb., Mém. Soc. Imp. Naturalites Moscou 1: 141, 1806. Caroxylon forcipitatum (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola forcipitata Ljin, Bot. Zhurn. 18: 275, 1933. Caroxylon gaetulum (Maire) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola foetida Delile var. gaetula Maire, Bull. Soc. Hist. Nat. Afriq. Nord, 27, 7: 257, 1936. Caroxylon glabrescens (B. Davy) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola glabrescens B. Davy, in Man. Fl. Pl. & Ferns Pt. 1. 50: 177, 1926. Caroxylon imbricatum (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola imbricata Forssk., Fl. Egypt.-Arab.: 57, 1775. Caroxylon incanescens (C. A. Mey.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola incanescens C. A. Mey. in Eichw., Pl. Casp.Cauc. 2: 35, 1833. Caroxylon inermis (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola inermis Forssk., Fl. Aegypt.-Arab. 57, 1775. Caroxylon implicatum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola implicata Botsch., in Bot. Mater. Gerb. Bot. Inst. Akad. Nauk Uzbeksk. SSR, 13: 6, 1952. Caroxylon jordanicola (Eig) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola jordanicola Eig, Palest. Journ. Bot., Jerusalem Ser. 3, 3: 130, 1945. Caroxylon littoralis (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola littoralis Moq., in DC. Prodr. 13, 2: 180, 1849. Caroxylon nitrarium (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola nitraria Pall., Illustr. Pl.: 25, 1803. Synonym: Nitrosalsola nitraria (Pall.) Tzvelev, in Ukr. Bot. Zhurn. 50(1): 80, 1993. Caroxylon passerinum (Bunge) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola passerina Bunge, Linnaea 17: 4, 1843. Caroxylon persicum (Bunge ex Boiss.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola persica Bunge ex Boiss., Fl. Or. 4: 964, 1879. Caroxylon pulvinatum (Botsch.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola pulvinata Botsch., Bot. Mat. Gerb. Bot. Inst. Akad. Nauk SSSR 22: 96, 1963. Caroxylon scleranthum (C. A. Mey.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola sclerantha C. A. Mey., in Eichw., Pl. Nov. Casp.-Cauc. 2: 35, 1835. 948 INTERNATIONAL JOURNAL OF PLANT SCIENCES Caroxylon spinescens (Moq.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola spinescens Moq., in DC., Prodr. 13(2): 179, 1849. Caroxylon stenopterum (Wagenitz) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola stenoptera Wagenitz, in Ber. Deutsch. Bot. Ges. 72: 155, 1959. Caroxylon tetrandrum (Forssk.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tetrandra Forssk., Fl. Aegypt..-Arab. 58, 1775. Caroxylon turkestanicum (Litw.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola tukestanica Litw., Trudy Bot. Muz. Akad. Nauk, 7: 78, 1910. Caroxylon vermiculatum (L.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola vermiculata L., Sp. Pl. 223, 1753. Caroxylon villosum (Schult.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola villosa Schult., Syst. Veg. 6: 232, 1820. Caroxylon volkensii (Aschers & Schweinf.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola volkensii Aschers & Schweinf., in Ill. Fl. Égypte 130, 1887. Caroxylon yazdianum (Assadi) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola yazdiana Assadi, Iranian J. Bot. 2, 2: 140, 1984. Caroxylon roshevitzii (Iljin) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola roshevitzii Iljin, in Journ. Bot. URSS, 18: 277, 1933. Other species include Caroxylon aphyllum (L.f.) Tzvelev, C. dendroides (Pall.) Tzvelev, C. foetidum Moq., C. gemmascens (Pall.) Tzvelev, C. imbricatum Moq., C. laricinum (Pall.) Tzvelev, C. orientale (S. G. Gmel.) Tzvelev, C. tetragonum (Delile) Moq., C. verrucosum Moq., and C. zeyheri Moq. Climacoptera Botsch., Sborn. Posv. Akad. Sukachevu: 111, 1956. Type: Climacoptera lanata (Pall.) Botsch. Climacoptera maimanica (Freitag) Akhani, comb. nov. Basionym: Salsola maimanica Freitag, in Fl. Iranica 172: 254, 1997. Includes Climacoptera affinis (C. A. Mey.) Botsch., C. afghanica Botsch., C. amblyostegia Botsch., C. aralensis (Iljin) Botsch., C. botschantzevii Pratov, C. bucharica (Iljin) Botsch., C. chorassanica Pratov, C. crassa (M. Bieb.) Botsch., C. czelekenica Pratov, C. ferganica (Drob.) Botsch., C. glaberrima Botsch., C. intricata (Iljin) Botsch., C. iranica Pratov, C. iraqensis Botsch., C. kasakorum (Iljin) Botsch., C. khalisica Botsch., C. korshinskyi (Drob.) Botsch., C. lachnophylla (Iljin) Botsch., C. lanata (Pall.) Botsch., C. longipistillata Botsch., C. longistylosa (Iljin) Botsch., C. malyginii (Korov. ex Botsch.) Botsch., C. merkulowitschii (Zakir.) Botsch., C. minkwitzae (Korov.) Botsch., C. narynensis Pratov, C. obtusifolia (Schrenk) Botsch., C. olgae (Iljin) Botsch., C. oxyphylla Pratov, C. pjataevae Pratov, C. ptiloptera Pratov, C. roborowskii (Iljin) Grub., C. subcrassa (M. Pop.) Botsch., C. sukaczevii Botsch., C. susamyrica Pratov, C. tyshchenkoi Pratov, C. transoxana (Iljin) Botsch., C. turcomanica (Litv.) Botsch., C. turgaica (Iljin) Botsch., C. ustjurtensis Pratov, and C. vachschi Kinz. & Pratov (Botschantzev 1982; Pratov 1986). Halarchon Bunge, Mém. Acad. Imp. Sc. Pétersb. 7. sér., 4, 11: 75, 1862. Type: Halarchon vesiculosum (Moq.) Bunge. Includes Halarchon vesiculosum (Moq.) Bunge. Halimocnemis C. A. Mey. in Ledeb., Fl. Alt. 1: 381, 1829. Type (lectotype selected here): Halimocnemis sclerosperma (Pall.) C. A. Mey., Fl. Alt. 1: 387, 1829; basionym: Polycnemum sclerospermum Pall., Reise Versch. Prov. Russ. Reich 3: 725, Tab. M, Fig. 2E, e. 1776. Synonyms: Gamanthus Bunge, Mém. Acad. Imp. Sci. Saint Pétersbourg 7. sér., 4, 11: 76, 1862; Halanthium C. Koch, Linnaea 17: 313, 1843; Halotis Bunge, Mém. Acad. Imp. Sc. Pétersb. 7. sér., 4, 11: 73, 1862. Halimocnemis alaeflava (Assadi) Akhani, comb. nov. Basionym: Halanthium alaeflavum Assadi, Iranian J. Bot. 5, 2: 58, 1992. Halimocnemis commixtus (Bunge) Akhani, comb. nov. Basionym: Gamanthus commixtus Bunge, Mém. Acad. Imp. Sc. Pétersb. 7. Sér., 4, 11: 76, 1862. Halimocnemis ferganica (Iljin) Akhani, comb. nov. Basionym: Gamanthus ferganicus Iljin, in Acta Inst. Bot. Acad. Sc. URSS, sér. 1, 2. 1936. Halimocnemis leucophysa (Botsch.) Akhani, comb. nov. Basionym: Gamanthus leucophysus Botsch., Not. Syst. Herb. Inst. Bot. Acad. Sci. URSS 12: 97, 1963. Halimocnemis pedunculata (Assadi) Akhani, comb. nov. Basionym: Halotis pedunculatus Assadi, Iranian J. Bot. 5, 2: 60, 1992. Halimocnemis pilosa (Pall.) Akhani, comb. nov. Basionym: Salsola pilosa Pall., Illustr. Pl. 28, tab. 20, 1803. Halimocnemis rarifolia (C. Koch) Akhani, comb. nov. Basionym: Halanthium rarifolium C. Koch, Linnaea 17: 314, 1844. Halimocnemis rosea (Trautv.) Akhani, comb. nov. Basionym: Halanthium kulpianum var. roseum Trautv., in Trudy Imp. S.-Petersburgsk. Bot. Sada 4: 1, 1876. Includes Halimocnemis aequipila Iljin, H. beresinii Iljin, H. gamocarpus Moq., H. glaberrima Iljin, H. karelinii Moq., H. kulpiana C. Koch, H. lasiantha Iljin, H. latifolia Iljin, H. longifolia Bunge, H. macrantha Bunge, H. mamamensis (Bunge) Assadi, H. mironovii Botsch., H. mollissima Bunge, H. occulta (Bunge) Hedge, H. pilifera Moq., H. purpurea Moq., H. sclerosperma (Pall.) C. A. Mey., H. smirnovii Bunge, and H. villosa Kar. & Kir. (Botschantzev 1971; Ghobadnejhad et al. 2004). Halocharis Moq. in DC., Prodr. 13, 2: 201, 1849. Type: Halocharis sulphurea Moq. Includes Halocharis clavata Bunge, H. gossypina Korov. & Kinz., H. lachnantha E.Korov., H. hispida (Schrenk) Bunge, H. sulphurea (Moq.) Moq., H. turcomanica Iljin, and H. violacea Bunge (Iljin 1949). Kaviria Akhani & E. H. Roalson, gen. nov. Type: Kaviria tomentosa (Moq.) Akhani; basionym: Halimocnemis tomentosa Moq. Synonym: Salsola section Belanthera Iljin, Trudy Bot. Inst. Nauk SSSR 1, 3: 158, 1937, p.p. (Revised by Botschantzev 1968, 1980). Genus novum ad Halocharem approximatum, sed seminibus saepius horizontalibus (nec verticalibus), stigmatibus planis (nec teretibus) 6 denticulatis, perianthio non scarioso, appendice antherarum non vesiculosa, peranthio fructicanti plerumque alato, flore solitari (nec floribus saepe pluris) differt. Planta plerumque fruticosa raro tantum annua pilis articulatis spinulossimis vel ramosis immixtis ornata. Kaviria aucheri (Moq.) Akhani, comb. nov. Basionym: Noaea aucheri Moq. in DC., Prodr. 13, 2: 207, 1849. Kaviria cana (C. Koch) Akhani, comb. nov. Basionym: Salsola cana C. Koch, Linnaea 22: 190, 1849. Kaviria futilis (Iljin) Akhani, comb. nov. Basionym: Salsola futilis Iljin, Bot. Mat. Gerb. Bot. Inst. Akad. Nauk SSSR, 7: 210, 1938. Kaviria gossypina (Bunge) Akhani, comb. nov. Basionym: Salsola gossypina Bunge in Boiss. Fl. Or. 4: 956, 1879. Kaviria lachnantha (Botsch.) Akhani, comb. nov. Basionym: Salsola tomentosa (Moq.) Spach subsp. lachnantha Botsch., Bot. Zhurn. 53: 1448, 1968. Kaviria pycnophylla (Brenan) Akhani, comb. nov. Basionym: Salsola pycnophylla Brenan, Kew Bull. 3: 433, 1953. Kaviria rubescens (Franch.) Akhani, comb. nov. Basionym: Salsola rubescens Franch., in Révoil, Faune Fl. Çomalis: 60, 1882. Kaviria tomentosa (Moq.) Akhani, comb. nov. Basionym: Halimocnemis tomentosa Moq., Hist. Mém. Acad. Sci. Toulouse 5: 180, 1839. Kaviria vvdenskyi (Iljin & M. Pop.) Akhani, comb. nov. Basionym: Salsola vvedenskyi Iljin & M. Pop. in Fl. URSS 6: 876, 1936. AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. 949 Kaviria zehzadii (Akhani) Akhani, comb. nov. Basionym: Salsola zehzadii Akhani, Sendtnera 3: 6, 1996. Nanophyton Less., Linnaea 9: 197, 1834–1835. Type: Nanophyton erinaceum (Pall.) Bunge. Includes Nanophyton erinaceum (Pall.) Bunge. The identities of nine additional taxa described by Botschantzev (1975a) and Pratov (1975, 1982, 1985) need to be clarified. They include N. botschantzevii Pratov, N. erinaceum (Pall.) Bunge subsp. karataviense Pratov, N. erinaceum (Pall.) Bunge subsp. subulifolium Pratov, N. grubovii Pratov, N. iliense Pratov, N. mongolicum Pratov, N. narynense Pratov, N. pulvinatum Pratov, and N. saxatile Botsch. Ofaiston Raf., Fl. Tell. 3: 46, 1837. Type: Ofaiston monandrum (Pall.) Moq. Includes Ofaiston monandrum (Pall.) Moq. Petrosimonia Bunge, Mém. Acad. Imp. Sci. St. Pétersb. 7. sér., 4, 11: 19, 52, 1862. Type: Petrosimonia monandra (Pall.) Bunge. Includes Petrosimonia brachiata (Pall.) Bunge, P. brachyphylla (Bunge) Iljin, P. glauca (Pall.) Bunge, P. glaucescens (Bunge) Iljin, P. hirsutissima (Bunge) Iljin, P. litwinowii Korsh., P. nigdeensis Aellen, P. monandra (Pall.) Bunge, P. oppositifolia (Pall.) Litv., P. sibirica (Pall.) Bunge, P. squarrosa (Schrenk) Bunge, and P. triandra (Pall.) Simonk. Piptoptera Bunge Trudy Glavn. Bot. Sada 5: 644, 1877. Type: Piptoptera turkestana Bunge. Includes Piptoptera turkestana Bunge. Physandra Botsch., Sborn. Posv. Akad. Sukachevu: 114, 1956. Type: Physandra halimocnemis (Botsch.) Botsch. Includes Physandra halimocnemis (Botsch.) Botsch. Pyankovia Akhani & E. H. Roalson, gen. nov. Type: Pyankovia brachiata (Pall.) Akhani & E. H. Roalson; basionym: Salsola brachiata Pall. Synonym: Climacoptera section Heterotricha Iljin ex Pratov, in Rod Climacoptera 24, 1986. Planta annua, erecta, pilos longos articulatos atque pilos breviores spinulissimos immixtos ferentes; folia superiora floralibus exceptis opposita, ad apicem cuspidata. Stylus brevis, ad maturitatem conicus, stigma subulata. Stamina 5; antherae lineares, per 1/3 vel 2/5 longitudinem partitae appendicibus sessilibus albis obtusis ornatae. Perianthia fructificantia horizontalia omnia alata. Semina verticalia. Genus novum a Climacoptera foliis oppositis, pilis spinulissimis, seminibus verticalibus differt. Pyankovia brachiata (Pall.) Akhani & E. H. Roalson, comb. nov. Basionym: Salsola brachiata Pall., Illustr. 30, tab. 22, 1803. Lectotype (Pratov 1986): In siccis squalidis salsis deserti australoris Volgum frequens, P. S. Pallas (LE). Appendix B Table B1 List of Sampled Taxa with Their Respective Vouchers and GenBank Accession Numbers GenBank no. Subfamily, tribe, and species Salsoloideae: Camphorosmeae: Bassia hyssopifolia (Pall.) O. Kuntze Bassia eriophora (Schrad.) Aschers. Bassia sedoides Aschers. Camphorosma monspeliaca L. Camphorosma monspeliaca L. Chenoleoides tomentosa (Lowe) Botsch. Kirilowia eriantha Bunge Kochia scoparia (L.) Schrad. Kochia stellaris Moq. Londesia eriantha Fisch. & C. A. Mey. Maireana coronata (J. M. Black) P. G. Wilson Panderia pilosa Fisch. & C. A. Mey. Panderia pilosa Fisch. & C. A. Mey. Salsoleae s.l.: Anabasis aphylla L. Anabasis calcarea (Charif & Aellen) Bokhari & Wendelbo Voucher of DNA source ITS psbB-psbH H. Akhani 18064. Iran: Golestan, Alagol Lake, 37°21980N, 54°349130E, 10 m, 8.10.2004. H. Akhani 8381. Iran: Ilam, Mehran, 3.5.1992. Kadereit et al. 2005. H. Akhani & M. Ghobadnejhad 15585. Iran, E Azerbaijan: 55 km NE of Tabriz toward Ahar, 38°159390N, 46°529530E, 1571 m, 4.9.2001. Akhani et al. 17960. Turkey: Aksaray: S of Tuz Gölü Lake, 17 km from Yenikent toward Sultanhani, 38°159560N, 33°389510E, 938 m, 27.8.2004. EF453390 EF453527 EF453391 AY489199 EF453392 EF453528 ... EF453529 EF453393 EF453530 EF453394 EF453531 EF453445 EF453574 EF453446 AY489219 AY489220 ... ... ... Based on cultivated plant from Royal Botanical Gardens, Kew (origin Australia). H. Akhani 14513. Iran, Tehran: 35 km E of Eshtahard, ca. 8 km W of Mardabad, Rude Shur, 35°429440N, 50°44926E, 1163 m, 8.12.2000. H. Akhani et al. 17948. Turkey: Ankara, eastern side of Tuz Gölü Lake, 62 km S of Sereflikochisar, 5–7 km W of Ulukisla, 38°29910N, 33°449170E, 921 m, 27.8.2004. EF453447 EF453454 EF453575 EF453582 EF453455 EF453583 H. Akhani 18072. Iran: Khorassan, easternmost parts of Golestan National Park, near Mirzabaylu Protection Station, 37°199590N, 56°149200E, 1756 m, 9.10.2004. EF453380 EF453517 H. Akhani 14372. Iran: Tehran, Kavir Protected Area, near Qasre Bahram, 34°449N, 52°109E, 1200 m, 27.10.2000. EF453381 EF453518 H. Akhani 16440. Canary Islands: Gran Canaria, southeastern coasts, Faro de Arinaga, sea level, 22.9.2002. D. Podlech 18952 (M). Afghanistan: Ghorat, Panjao to La’l, Asgharat to Khargol, 3120 m, 29.7.1970. H. Akhani & Zangui 10114. Iran: Khorassan, 17.8.1994. Kadereit et al. 2005. Kadereit et al. 2005. Table B1 (Continued ) GenBank no. Subfamily, tribe, and species Anabasis eriopoda (C. A. Mey.) Benth. Anabasis eugeniae Iljin Anabasis hausskenchtii Bunge ex Boiss. Anabasis hausskenchtii Bunge ex Boiss. Anabasis aff. hausskenchtii Bunge Anabasis iranica Iljin Anabasis jaxartica (Bunge) Benth. ex Volkens Anabasis setifera Moq. Climacoptera brachiata (Pall.) Botsch. Climacoptera crassa (M. Bieb.) Botsch. Climacoptera glaberrima Botsch. Climacoptera glaberrima Botsch. Climacoptera iranica Pratov Climacoptera ‘‘khalijefarsica’’ Climacoptera lanata (Pall.) Botsch. Climacoptera lanata (Pall.) Botsch. Climacoptera longipistillata Botsch. Climacoptera turcomanica (Litv.) Botsch. Cornulaca aucheri Moq. Cornulaca monacantha Delile Cyatobasis fruticulosa (Bunge) Aellen Fadenia zygophylloides Aellen & Townsend Gamanthus commixtus Bunge Gamanthus gamocarpus (Moq.) Bunge Gamanthus gamocarpus (Moq.) Bunge Gamanthus ‘‘khorassanicus’’ Gamanthus pilosus (Pall.) Bunge Girgensohnia imbricata Bunge Girgensohnia minima K. Korov. Girgensohnia oppositiflora (Pall.) Fenzl Voucher of DNA source ITS psbB-psbH H. Akhani & M. Ghobadnejhad 15812. Iran: Semnan, Touran Biosphere Reserve, 19 km SW of Biarjmand toward Daqe Biar, 35°569280N, 55°429480E, 1260 m, 4.10.2001. T. Eftekhari 10219. Iran: Semnan, ca. 28 km NW of Semnan, W of Aftar, Khonar Forbidden Hunting, 1980 m, 11.10.1999. H. Akhani & M. Salimian 15339. Iran: Semnan, 19 km NW of Damghan toward Cheshmeh Ali, 1420 m, 36°149580N, 54°99570E, 14.7.2001. H. Akhani & M. Ghobadnejhad 15699. Iran: Yazd: ca. 10 km W of Taft toward Abarkuh, 31°569280N, 54°159230E, 1233 m, 18.9.2001. H. Akhani & M. R. Joharchi 17306. Khorassan: 65 km SE of Birjand, near Sarbisheh, at the beginning of the road toward Doroh, 32°349260N, 59°489350E, 2.9.2003. H. Akhani & M. Ghobadnejhad 15700. Iran: Yazd: ca. 10 km W of Taft toward Abarkuh, 31°569280N, 54°159230E, 1233 m, 18.9.2001. EF453383 EF453520 EF453384 EF453521 EF453386 EF453523 EF453387 EF453524 EF453388 EF453525 EF453382 EF453519 EF453385 EF453522 EF453389 EF453526 EF453403 EF453536 EF453401 EF453534 EF453396 EF453532 EF453400 EF453533 EF453395 ... EF453402 EF453535 EF453404 EF453537 EF453398 ... EF453397 ... H. Akhani 17207. Iran: Tehran, ca. 60 km W of Tehran, Mardabad, salt flats near Rude Shur, 35°439N, 50°449E, 1164 m, 8.8.2003. H. Akhani 7964. Iran: Bushehr, 13 km after Cheghadak toward Delvar, near Gar Gur village, sea level, 20.11.1991. H. Akhani & M. R. Joharchi 17297. Iran: Khorassan, ca. 50 km S of Birjand, Mokhtaran, 32°289250N, 59°23980E, 1506 m, 1.9.2003. Turkey, M. Vural, H. Duman, Z. Aytaç 8012 (GAZ). Kayseri: Dortyol-Develi, Tuzlu Topraklar, 1080 m, 19.9.1997. EF453399 ... EF453405 EF453538 EF453406 EF453539 EF453516 ... I. Friis, K. Vollesen & A. S. Hassan 4768 (K). Somalia: Gedo Region, ca. 36 km S of Lung, 3°339N, 42°429E, ca. 200 m, 25.5.1987. V. Botschantzev 15 (LE). Uzbekistan, Surkhandarja province, between Shirabad and Zarabag, 8.10.1970. H. Akhani 14086. Iran: Golestan, southern border of Golestan National Park, NW of Dasht village toward Yelaq, 37°189410N, 55°589430E, 1200 m, 5.6.2000. Cultivated based on H. Akhani 18053. Iran: Golestan, between Aghghala and Dashliborun, 38 km N of Aghghala, 37°209430N, 54°339E, 16 m, 8.10.2004. H. Akhani & M. R. Joharchi 17237. Khorassan: between Torbate-Heydarieh and Gonabad, 55 km N of Gonabad, 34°509260N, 58°519180E, 908 m, 31.8.2003. Akhani & Ghobadnejhad 15551. Iran: E Azerbaijan, 52 km S of Aslanduz in the road toward Ardabil, 39°99N, 47°389370E, 1200 m, 3.9.2001. H. Akhani & M. R. Joharchi 17291. Iran: Khorassan, ca. 40 km S of Birjand, 13 km E of Majhan toward Giv, 32°339250N, 59°79540E, 1492 m, 1.9.2003. H. Akhani & Zangooei 10109. Iran: Khorassan, 10–11 km E of Chahchaheh along Turkmenistan border, 700–850 m, 17.8.1994. EF453513 ... EF453410 EF453543 EF453407 EF453540 EF453408 EF453541 EF453411 EF453544 EF453409 EF453542 EF453412 EF453545 EF453413 EF453546 EF453414 EF453547 H. Akhani 14078. Iran, Golestan: Southern border of Golestan National Park, 37°179500N, 55°559360E, 1240 m, 4.6.2000. H. Akhani 14519. Iran, Tehran: Tehran-Qom highway, Heuze Soltan Lake, 34°59920N, 50°519220E, 840 m, 22.12.2000. Akhani 17356. Iran: Golestan: Golestan National Park, 2 km S of Dasht, 37°199260N, 55°579240E, 1403 m, 13.10.2003. H. Akhani & al. 18005. Turkey: Aksaray, 10 km E of Eskil toward southern saline shores of Tuz Gölü Lake, 38°25950N, 33°299520E, 914 m, 28.8.2004. H. Akhani 18087. Golestan: 5 km E of Maraveh Tappeh, along Atrak river, 37°549230N, 56°009360E, 230 m, 11.10.2004. Based on cultivated plant originated from the same population as above Akhani 18087. Voucher lost. Iran: Golestan, 5 km E of Maraveh Tappeh, along Atrak river, 37°549230N, 56°009360E, 230 m, 11.10.2004. H. Akhani et al. 18118. Iran: Khuzestan, Persian Gulf coasts near Bandare Imam, 30°349520N, 49°19590E, 10.12.2004. H. Akhani & M. R. Joharchi 17241. Khorassan: between Torbate-Heydarieh and Gonabad, ca. 35 km N of Gonabad, Kal Shur River, 34°409210N, 58°479100E, 856 m, 31.8.2003. H. Akhani & M. R. Joharchi 16510. Iran: Khorassan, ca. 35 km E of Torbat-e Jam near Malu, 35°129190N, 61°19170E, 820 m, 20.11.2002. H. Akhani 18092. Golestan: 28 km W of Maraveh Tappeh, near Ghara-Gol, 37°549560N, 55°399430E, 140 m, 11.10.2004. H. Akhani & M. Ghobadnejhad 15701. Iran: Yazd, ca. 27 km W of Taft toward Abarkuh, 31°419540N, 53°559190E, 2179 m, 18.9.2001. 950 Table B1 (Continued ) GenBank no. Subfamily, tribe, and species Halanthium alaeflavum Assadi Halanthium mamamense Bunge Halanthium rarifolium C. Koch Halanthium rarifolium C. Koch Halanthium rarifolium C. Koch Halimocnemis azarbaijanensis Assadi Halimocnemis longifolia Bunge Halimocnemis mollissima Bunge Halimocnemis purpurea Moq. Halocharis hispida (Schrenk) Bunge Halocharis sulphurea (Moq.) Moq. Halocharis violacea Bunge Halogeton alopecuroides (Delile) Moq. Halogeton glomeratus (M. Bieb.) C. A. Mey. Halothamnus auriculus (Moq.) Botsch. Halothamnus auriculus (Moq.) Botsch. subsp. acutifolius (Moq.) Kothe-Heinr. Halothamnus glaucus (M. Bieb.) Botsch. Halothamnus subaphyllus (C. A. Mey.) Botsch. Halotis occulta Bunge Halotis pedunculata Assadi Halotis pilifera (Moq.) Botsch. Haloxylon ammodendron (C. A. Mey.) Bunge ex Fenzl Haloxylon persicum Bunge ex Boiss. & Buhe Haloxylon stocksii (Boiss.) Benth. & Hook. Hammada articulata (Moq.) O. Bolòs & Vigo Hammada griffithii (Moq.) Iljin Hammada salicornica (Moq.) Iljin Horaninowia platyptera Charif & Aellen Horaninowia pungens (Gilli) Botsch. Voucher of DNA source ITS psbB-psbH H. Akhani & M. Ghobadnejhad 15610. Iran: E Azerbaijan, 1 km W of Maraqeh toward Bonab, 37°219110N, 46°89580E, 1383 m, 7.9.2001. H. Akhani & M. Ghobadnejhad 15531. Iran: E Azerbaijan, 10 km E of Mianeh, near Maman, 37°279180N, 47°52930E, 1095 m, 2.9.2001. H. Akhani 16491. Iran: Semnan, SW of Touran Protected Area, ca. 15 km from Razeh toward Torud, 35°249290N, 55°159510E, 1320 m, 14.11.2002. H. Akhani 17206. Iran: Tehran, ca. 60 km W of Tehran, Mardabad, salt flats near Rude Shur, 35°439N, 50°449E, 1164 m, 8.8.2003. H. Akhani 17208. Iran: Tehran: ca. 60 km W of Tehran, Mardabad, salt flats near Rude Shur, 35°439N, 50°449E, 1164 m, 29.8.2003. H. Akhani & M. Ghobadnejhad 15550. Iran: E Azerbaijan, 52 km S of Aslanduz in the road toward Ardabil, 39°99N, 47°389370E, 1200 m, 3.9.2001. H. Akhani & M. R. Joharchi 17245. Iran: Khorassan, between Torbate-Heydarieh and Gonabad, ca. 33 km N of Gonabad, 34°399510N, 58°459530E, 871 m, 31.8.2003. H. Akhani 17208. Iran: Tehran, ca. 60 km W of Tehran, Mardabad, salt flats near Rude Shur, 35°439N, 50°449E, 1164 m, 8.8.2003. H. Akhani 9036. Iran: Ilam, ca. 25–28 km N of Mehran, Konjancham river margin, 300 m, 16.10.1993. H. Akhani 10179-T. Turkmenistan, 2 km N of Ashghabad, 16.9.1994. H. Akhani & M. Ghobadnejhad 15841. Iran: Semnan, 47 km W of Shahrud toward Damghan, 36°15951N, 54°399400E, ca. 1140 m, 6.10.2001. H. Akhani & M. R. Joharchi 17288. Khorassan: 143 km E of Qaen toward Afghanistan border, W of Daqe Petergan, 33°319290N, 60°399120E, 644 m, 31.8.2003. Originated from Arabia, cultivated in WSU. EF453416 EF453548 EF453417 ... EF453419 EF453550 EF453418 EF453549 EF453415 ... EF453420 EF453551 EF453421 EF453552 EF453422 EF453553 EF453426 EF453557 EF453429 EF453427 EF453560 EF453558 EF453428 EF453559 EF453430 EF453561 Voucher unknown, the same specimen used in Pyankov et al. 2001a. H. Akhani 15164. Iran: Qom, at the beginning of Qom-Tehran highway, 34°419150N, 50°539200E, 962 m, 24.5.2001. EF453431 EF453433 EF453562 EF453564 Akhani & Salimian 15444. Iran: Semnan, 28 km E of Shahrud toward Sabzevar, 36°269420N, 55°149210E, 1375 m, 20.7.2001. EF453432 EF453563 A. Ghorbani 56. Iran: Golestan, N of Golestan National Park, between Lohondor and Soolegerd, 8.7.2002. EF453434 EF453565 H. Akhani & M. Salimian 15445. Iran: Semnan, 28 km E of Shahrud toward Sabzevar, 36°269420N, 55°149210E, 1375 m, 20.7.2001. H. Akhani & M. R. Joharchi 17202. Khorassan: ca. 42 km SE of Birjand, 3 km NE of Mokhtaran toward Razgh, 32°289420N, 59°24970E, 1558 m, 1.9.2003. H. Akhani 17217. Iran: Hormozgan, 9 km SW of Goshoon toward Tadroyeh, 27°219250N, 54°499100E, 584 m, 21.8.2003. H. Akhani et al. 17692. Iran: Esfahan, 12 km E of Golpayegan in the Muteh road, near Vedagh, 33°309230N, 50°26910E, 1819 m, 9.6.2004. EF453435 EF453566 EF453423 EF453554 EF453424 EF453555 EF453425 EF453556 H. Akhani 17398. Iran: Khorassan, eastern parts of Golestan National Park, 6 km W of Mirzabaylu toward Almeh, 37°219N, 56°119E, 1384 m, 15.10.2003. EF453436 EF453567 H. Akhani & M. Ghobadnejhad 15832. Iran: Semnan, Touran Biosphere Reserve, 4 km E of Ahmadabad, 35°479N, 56°399E, ca. 1000 m, 5.10.2001. EF453438 EF453569 H. Akhani s.n. Sistan va Baluchestan, 5 km S of Negur, 25°229150N, 61°109310E, 140 m, 28.11.2005. EF453512 ... Based on cultivated plant from Royal Botanical Gardens, Kew. D. Podlech 32707 (MSB). Afghanistan: Samangan, Tang-I Tashqurghan, 7 km S of Tashqurghan, 520 m, 11.11.1978. H. Akhani 16004. Iran: Hormozgan, northern parts of Mehregan saline, 26°459490N, 54°469460E, 30 m, 21.12.2001. EF453440 EF453437 EF453571 EF453568 EF453439 EF453570 H. Akhani & M. Salimian 15442. Iran, Semnan, 28 km E of Shahrud toward Sabzevar, 36°269420N, 55°149210E, 1375 m, 20.7.2001. D. Podelch 19662 (MSB). Afghanistan: Kandahar, Banks of Helmand river at Girishk, 840 m, 18.09.1970. EF453441 EF453572 EF453442 ... 951 Table B1 (Continued ) GenBank no. Subfamily, tribe, and species Horaninowia ulicina Fisch. & C. A. Mey. Nanophyton erinaceum (Pall.) Bunge Noaea major Bunge Noaea minuta Boiss. & Ball Noaea mucronata (Forssk.) Asch. & Schweinf. Ofaiston monandrum (Pall.) Moq. Petrosimonia brachiata (Pall.) Bunge Petrosimonia glauca (Pall.) Bunge Petrosimonia nigdeensis Aellen Piptoptera turkestana Bunge Rhaphidophyton regelii (Bunge) Iljin Salsola abarghuensis Assadi Salsola aperta Paulsen Salsola arbuscula Pall. Salsola arbusculiformis Drob. Salsola araneosa Botsch. Salsola aucheri (Moq.) Bunge Salsola canescens (Moq.) Boiss. Salsola carpatha P. H. Davis Salsola chivensis M. Pop. Salsola chorassanica Botsch. Salsola cyclophylla Baker Salsola dendroides Pallas Salsola deserticola Iljin (S. androssowii Litv. subsp. deserticola [Iljin] Rilke) Salsola divaricata Masson ex Link Salsola drummondii Ulbr. Salsola dzhungarica Iljin Salsola foliosa (L.) Schrad. Salsola forcipitata Iljin Salsola gemmascens Pall. Salsola glabrescens B. Davy Salsola gossypina Bunge Salsola gossypina Bunge Voucher of DNA source ITS psbB-psbH H. Akhani & M. Ghobadnejhad 15833. Iran: Semnan, Touran Biosphere Reserve, sand dunes 4 km E of Ahmadabad, 35°479N, 56°399E, ca. 1000 m, 5.10.2001. (LE). Central Asia: southwest Kyzylkum, 2.11.96. Data on collector unavailable. Neubauer 4768 (M). Afghanistan: Kabul, Bande Kargha, 2000 m. Cultivated specimen based on H. Akhani 18095. Iran: Hamadan, 9 km NE of Hamadan in the road toward Noubaran, 1729 m, 34°549260N, 48°3970E, 8.12.2004. EF453443 EF453573 EF453449 EF453450 EF453451 EF453577 EF453578 EF453579 EF453452 EF453580 EF453453 EF453581 EF453457 EF453585 EF453456 EF453584 EF453458 EF453586 ... EF453631 EF453459 EF453587 EF453464 EF453591 EF453466 ... EF453467 EF453592 EF453468 EF453593 EF453461 EF453588 EF453469 EF453594 EF453503 EF453623 EF453514 AF318642 EF453487 ... ... EF453609 EF453471 EF453596 EF453472 EF453597 EF453473 EF453598 EF453474 EF453599 EF453475 EF453600 EF453476 AF318652 EF453477 EF453601 ... ... EF453478 ... EF453479 EF453602 EF453480 EF453481 EF453603 EF453604 H. Akhani 13761. Iran: Mazandaran, ca. 5 km E of Doab (Chalus road) toward Kojur, 36° 289280N, 51°259130E, 657 m, 12.9.1999. V. I. Vasilevich et al. 3008 (LE). Kazakhstan: Semipalatinsk, 90 km W of Ajaguza, by the road to village Chubartau, 26.7.1965. H. Akhani & M. Salimian 14238. Iran: E Azerbaijan, northern side of Orumiyeh Lake, W of Bandar-e Sharafkhaneh, 38°119230N, 45°279410E, 1300 m, 3.9.2000. H. Akhani & M. Ghobadnejhad 15535. Iran: E Azerbaijan, 13 km E of Maman, near salt mine, 37°259280N, 47°559580E, 1378 m, 2.9.2001. H. Akhani et al. 17925. Turkey: Ankara, 28 km N of Sereflikochisar toward Ankara, N of Tuz Gölü Lake, Mogan Gol Lake, 39°89500N, 33°19940E, 895 m, 27.8.2004. H. Akhani 5775. Iran: Esfahan, ca. 30 km ESE of Kashan, 2 km N of Abu-Zeid abad, 9.9.1989, ca. 900 m. V. Botschantzev & Litvinova N. P. 477 (LE). Kazakhstan: Chimkent province, Karatau mountain range, 2 km NE of village Leontjevka, valley of river Ulkan- Burul, 17.7.1980. H. Akhani 16492. Iran: Semnan, SW of Touran Protected Area, 8 km after Razeh toward Sahl, around Cheshmeh Morra, 35°359380N, 55°20910E, 1227 m, 14.11.2002. Chopanov & Sejfulin 27.8.1976. Turkmenistan: Kunya-Urgench Region, on sand dunes between Daryalyk and Butentau. H. Akhani & M. Ghobadnejhad 15826. Iran: Semnan, Touran Biosphere Reserve, 85 km SW of Biarjmand toward Torud, river bed 6 km S of Sahl, 35°359400N, 55°20940E, 1230–1240 m, 4.10.2001. H. Akhani 17397. Iran: Khorassan, eastern parts of Golestan National Park, 5–6 km W of Mirzabaylu toward Almeh, 37°219160N, 56°12960E, 1350 m, 15.10.2003. Merxmüller and Giess 28372 (M). Namibia: S Lüderitz, 23 km S of Grillental, 12.09.1972. H. Akhani 17190. Iran: Golestan, southern parts of Golestan National Park, between Sharlegh and Cheshmeh Khan, 37°189130N, 56°5910E, 1154 m, 3.8.2003. H. Akhani 13185. Iran: Tehran, N Tehran, Golabdareh, 35°509100N, 51°269230–480E, 3.9.1998. W. Greuter 7835 (K). Greece, Dragonára Island, 31.10.1966. Pyankov et al. 2001a. H. Akhani & M. R. Joharchi 17281. Iran: Khorassan, 143 km E of Qaen toward Afghanistan border, W of Daqe Petergan, 33°319290N, 60°399120E, 644 m, 31.8.2003. H. Akhani 15998. Iran: Hormozgan, 10 km W of Bandar Khamir, 26°, 26°569400N 55°29950E, 50 m, 20.12.2001. H. Akhani 18090. Iran: Golestan, 5 km E of Maraveh Tappeh, along Atrak river, 37°549230N, 56°009360E, 230 m, 11.10.2004. Chopanov & Sejfulin 1.9.1976. Turkmenistan: Dargan-Ata region, on the hills nearby southern lake Soltansardzhar. Based on cultivated plant originated from H. Akhani 16469. Canary Islands: Gran Canaria, western coasts, near Agaete, 23.9.2002. H. Akhani 17234. Iran: Hormozgan, 36 km W of Bandar Abbas, at the beginning of Gachin village, 27°49320N, 55°549450E, 22.8.2003. The same herbarium material cited in Pyankov et al. 2001a (no voucher available). Pyankov et al. 2001a. D. Podlech 17012 (MSB). Afghanistan: Baghlan, 8 km E of Kotal-i-Mirza Atbili, between Aybak and Pul-i-Khumri, 1100 m, 08.10.1969. D. Podlech 32697 (MSB). Afghanistan: Samangan, 8 km N of road Mazar-i-Sharif to Tashkurghan, at road to Termez, 320 m, 11.11.1978. R. Story 2083 (M). South Africa: Cape, Aliwal North, banks of Orange River, 1300 m, 10.03.47. Herbarium material from Pyankov et al. 2001a. H. Akhani & Zangooi 10088. Iran: Khorasan, 24 km from Chahchaheh toward Kalat-e Naderi, 700–720 m, 17.8.1994. 952 Table B1 (Continued ) GenBank no. Subfamily, tribe, and species Salsola griffithii (Bunge) Freitag & Khani Salsola inermis Forssk. Salsola inermis Forssk. Salsola jordanicola Eig Salsola jordanicola Eig Salsola kali L. Salsola kerneri (Wol.) Botsch. Salsola lachnantha (Botsch.) Botsch. Salsola laricina Pallas Salsola masenderanica Botsch. Salsola montana Litw. Salsola montana Litw. Salsola nitraria Pallas Salsola orientalis S. G. Gmelin Salsola Salsola Salsola Salsola orientalis S. G. Gmlein paulsenii Litw. richteri (Moq.) Karel. ex Litw. rubescens Franch. Salsola soda L. Salsola soda L. Salsola tomentosa (Moq.) Spach Salsola tomentosa (Moq.) Spach Salsola ‘‘touranica’’ Salsola tragus L. (published under S. australis R. Br.) Salsola turkestanica Litw. Salsola vermiculata L. Salsola vvdenskyi Iljin & M. Popov Salsola yazdiana Assadi Salsola zehzadii Akhani Salsola zehzadii Akhani Salsola zeyheri (Moq.) Bunge Salsola zygophylla Batt. et Trab. Seidlitzia florida (M. Bieb.) Bunge ex Boiss. Seidlitzia rosmarinus Ehrenb. ex Boiss. Sympegma regelii Bunge Voucher of DNA source ITS psbB-psbH H. Akhani et al. 17823. Iran: Kerman, ca. 7 km N of Faryab, sandy dunes near Hoore Olia village, 28°99180N, 57°16930E, 674 m, 14.6.2004. H. Akhani 5561. Iran: Ilam, 5 km SW of Dehloran, 170 m, 6.8.1989. H. Akhani et al. 17963. Turkey: Aksaray, salt flats S of Tuz Gölü Lake, 17 km from Yenikent toward Sultanhani, 38°159560N, 33°389510E, 938 m, 27.8.2004. H. Akhani 7947. Iran: Fars, 11 km in the road from Konartakhteh toward Borazjan, 300–400 m, 20.11.1991. H. Akhani & M. R. Joharchi 17236. Iran: Khorassan, between Torbate-Heydarieh and Gonabad, 55 km N of Gonabad, 34°509260N, 58°519180E, 908 m, 31.8.2003. Pyankov et al. 2001a; Kapralov et al. 2006. H. Akhani 15045. Iran: Tehran, 20 km S of Behesht-e Zahra toward Hasanabad, 35°249N, 51°199E, 1300 m, 3.5.2001. H. Akhani 9022. Iran: Ilam, ca. 25 km from Salehabad in the road toward Mehran, 16.10.1993. H. Akhani et al. 17966. Turkey: Aksaray, ruderal places near Sultanhani, 39°159400N, 33°329210E, 956 m, 28.8.2004. H. Akhani 17403. Iran: Mazandaran, 169 km to Tehran, 5 km after Veresk toward Amol, 35°569530N, 53°009200E, 1201 m, 16.10.2003. H. Akhani 17391. Iran: Golestan, southern parts of Golestan National Park, near Sharlegh, 15.10.2003. Cultivated based on seeds originated from Iran: Golestan National Park. H. Akhani et al. 17946. Turkey: Ankara, eastern side of Tuz Gölü Lake, 14 km S of Sereflikochisar, 38°489130N, 33°369400E, 919 m, 27.8.2004. H. Akhani 16498. Iran: Semnan, 38 km E of Khors toward Chajam, S of Kavire Haj Ali Qoli, 35°489220N, 54°579100E, 1098 m, 14.11.2002. Cultivated plant originated from central Asia. Pyankov et al. 2001a. Cultivated from a central Asian origin. H. Akhani 9117. United Arab Emirates: ca. 23 km S of Al-Ain, near Jebel Hafit (Hafit Mont), 350 m, 15.12.1990. H. Akhani 15901. Iran: Tehran, Tehran-Saveh, Rude Shur, 9.11.2001. H. Akhani 18045. Iran: Golestan, N Gomishan, 37°109140N, 54°3940E, 13 m, 8.10.2004. H. Akhani & M. Ghobdnejhad 15632. Iran: E Azerbaijan, 10 km SW of Sarab in the road toward Asbforoushan, 37°52970N, 47°309300E, 1700 m, 8.9.2001. H. Akhani 18080. Iran: Golestan, 70 km S of Maraveh Tappeh, near Golidagh, 37°419430N, 56°49190E, 979 m, 11.10.2004. H. Akhani & M. Ghobadnejhad 15808. Iran: Semnan, Touran Biosphere Reserve, above Qaaleh Bala, 36°009150N, 56°009410E, 1350 m, 4.10.2001. EF453482 EF453605 EF453465 EF453483 ... ... EF453484 EF453606 EF453485 EF453607 AF318646 EF453486 DQ499431 EF453608 EF453488 EF453610 EF453470 EF453595 EF453504 EF453624 EF453489 EF453611 EF453490 EF453491 EF453612 EF453613 EF453492 EF453614 EF453493 AF318647 EF453494 EF453495 EF453615 ... EF453616 ... EF453496 EF453497 EF453617 EF453618 EF453499 EF453620 EF453500 EF453621 EF453505 EF453625 AF318648 ... ... EF453632 EF453501 EF453622 EF453462 EF453589 EF453515 ... EF453463 EF453590 EF453498 EF453619 EF453502 ... AF318651 ... EF453507 EF453627 EF453506 EF453626 EF453510 EF453629 Pyankov et al. 2001a. H. Akhani & M. Ghobadnejhad 15821. Iran: Semnan, Touran Biosphere Reserve, 80 km SW of Biarjmand toward Torud, river bed near Sahl, 35°39910N, 55°189240E, 1351 m, 4.10.2001. H. Akhani 18102. Iran: Kermanshah, 35 km from Gilanegharb toward Sumar, 33°57960N, 45°569550E, 630 m, 9.12.2004. ITS based on cultivated plant from the same collection. D. Podlech 17001 (M). Afghanistan: Mazar-i Sharif, 2 km NW of Ghaznigak, near the road to Haibak (Aybak), 700 m. H. Akhani & M. Dehghani s.n. Esfahan: 32 km S of Jandagh toward Chupanan, 33°479120N, 54°259180E, 1004 m, 27.10.2005. H. Akhani, 10029. Iran: Khorassan: ca. 35 km E of Torbat-e Jam near Malu, 35°129190N, 61°19170E, 15.8.1994. H. Akhani & Zangui 10043. Khorasan: ca. 38 km E of Torbat-e Jam, 11 km after Mohammad-abad toward Maloo, gypsum hills, 720–740 m, 15.8.1994. Giess, Volk & Bleissner 5349a (M). Namibia: S Luederitz; Farm Zebrafontein, LU 87, 21.02.1963. Pyankov et al. 2001a. H. Akhani & M. Ghobadnejhad 15630. Iran: E Azerbaijan, 10 km SW of Sarab in the road toward Asbforoushan, 37°52970N, 47°309300E, 1700 m, 8.9.2001. H. Akhani, s.n. Iran: Tehran, between Tehran and Qom, W of Heuz-Soltan Lake, 35°2960N, 50°519470E, 861 m, 23.7.2003. V. Bochantzev et al. 5229 (LE). Kyrgystan: Issykkulj province, Gionskij region, Mountain range Terskej Alatoo, northern slopes around village Kadanisaj. 953 INTERNATIONAL JOURNAL OF PLANT SCIENCES 954 Table B1 (Continued ) GenBank no. Subfamily, tribe, and species Traganum nudatum Del. Salicornioideae: Salicornieae: Kalidium caspicum (L.) Ungern-Sternb. Microcnemum corraloides (Loscos & Pardo) Buen Salicornia persica Akhani Suaedoideae: Bienertieae: Bienertia sinuspersici Akhani Suaedeae: Suaeda cuculata Aellen Suaeda maritima (L.) Dum. Voucher of DNA source ITS psbB-psbH S. Chaudhary 8644 (LE). Saudi Arabia: Haayer, 16.4.1984. EF453511 EF453630 H. Akhani 15329. Iran: Semnan, Alborz mountains, 67 km W of Damghan in the road toward Cheshmeh Ali, 1822 m, 36°69190N, 53°479270E, 14.7.2001. EF453444 ... H. Akhani & M. Ghobadnejhad 15491. Iran: Arak (Ostan-e Markazi), northwestern parts of the Kavir-e Meyghan, near Deh-e Namak, 33°559N, 49°199E, 1688 m, 19.8.2001. H. Akhan & M. Ghobadnejhad 15719. Iran: Fars, N of Tashk lake, high salty soils near Gomban, 29°489N, 53°289E, 1590 m, 20.9.2001. EF453448 EF453576 EF453460 ... H. Akhani 17433. Iran: Khuzestan, 17 km N of Bandare Mahshahr, 30°3995 N, 49°159510E, 28 m, 31.10.2003. DQ499349 DQ499434 H. Akhani et al. 17920. Turkey: Ankara, 28 km N of Sereflikochisar toward Ankara, N of Tzu Gölü Lake, 39°89500N, 33°19940E, 895 m, 27.8.2004. H. Akhani & M. Ghobadnejhad 15492. Iran: Arak (Ostan-e Markazi), northwestern parts of the Kavir-e Meyghan, near Deh-e Namak, 33°559N, 49°199E, 1688 m, 19.8.2001. EF453509 ... EF453508 EF453628 Note. The vouchers, unless otherwise indicated, are deposited in TUH and the School of Biology, University of Tehran, Research Laborartory of Plant Systematics and Plant Geography (H. Akhani). Herbarium abbreviations: GAZ ¼ Gazy Herbarium, Ankara, Turkey; K ¼ Royal Botanic Gardens, Kew, United Kingdom; LE ¼ V: L. Komarov Botanical Institute, St. Petersburg, Russia; M ¼ Botanische Staatssammlung München, München, Germany; MSB ¼ Ludwig-MaximiliansUniversität, München, Germany. ITS ¼ internal transcribed spacer. Literature Cited Aellen P 1949 Zur systematischen Stellung von Girgensohnia fruticulosa Bge. Candollea 12:157–162. ——— 1950 Ergebnisse einer botanisch-zoologischen Sammelreise durch den Iran 1948/49: Botanische Ergebnisse I Chenopodiaceae: Cornulaca, Anthochlamys, Aellenia, Horaninowia. Verh Naturforsch Ges Basel 61:157–198. Aellen P, CC Townsend 1972 Fadenia—a new genus of Chenopodiaceae from Tropical Africa. Kew Bull 27:501–503. Akhani H 1996 A new species and a synonym in Chenopodiaceae from Iran. Sendtnera 3:5–11. ——— 2004 Halophytic vegetation of Iran: towards a syntaxonomical classification. Ann Bot (Rome) 4:66–82. Akhani H, J Barroca, N Koteeva, E Voznesenskaya, V Franceschi, G Edwards, SM Ghaffari, H Ziegler 2005 Bienertia sinuspersici (Chenopodiaceae): a new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst Bot 30:290–301. Akhani H, M Ghasemkhani 2007 Diversity of photosynthetic organs in Chenopodiaceae from Golestan National Park (NE Iran) based on carbon isotope composition and anatomy of leaves and cotyledons. Beih Nova Hedw 131:265–277. Akhani H, M Ghobadnejhad, SM Hashemi 2003 Ecology, biogeography and pollen morphology of Bienertia cycloptera Bunge ex Boiss. (Chenopodiaceae), an enigmatic C4 plant without Kranz anatomy. Plant Biol 5:167–178. Akhani H, P Trimborn, H Ziegler 1997 Photosynthetic pathways in Chenopodiaceae from Africa, Asia, and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst Evol 206:187–221. Assadi 2001 Chenopodiaceae. Pages 27–65 in M Assadi, M Khatamsaz, AA Maassoumi, eds. Flora of Iran. Vol 38. Research Institute of Forests and Rangelands, Tehran. Bentham G, JD Hooker 1880 Genera plantarum. Vol 3. Reeve, London. Pages 43–78. Boissier E 1879 Flora orientalis. Vol 4. Georg, Genève/Basel. Bokhari MH, P Wendelbo 1978 On anatomy, adaptations to xerophytism and taxonomy of Anabasis inclusive Esfandiaria (Chenopodiaceae). Bot Not 131:279–292. Botschantzev VP 1956 Sbornik rabot po geobotanike, lesovedeniju, paleogeografii floristike: dva novykh roda iz semeistva marevykh. Akademia Nauk SSSR, Akademiku V. N. Sukachevu k 75-leti so dnja rozdenija. Pages 108–118. Izdatel’stvo Akademia Nauk SSSR, Moscow. ——— 1967 Sevadinae Botsch., a new subtribe of the family Chenopodiaceae. Bot Zhurn 52:800–810. (In Russian.) ——— 1968 A review of the species belonging to the section Belanthera Iljin of the genus Salsola L. Bot Zhurn 53:1440–1450. (In Russian.) ——— 1969a Conspectus specierum sectionis Cardiandra Aellen generis Salsola L. Nov Sist Vys Rast 6:53–63. ——— 1969b The genus Salsola: a concise history of its development and dispersal. Bot Zhurn 54:989–1001. (In Russian.) ——— 1969c Malpigipila Botsch.: generis Salsola L. sectio nova. Nov Sist Vys Rast 6:45–52. ——— 1970 Sectionis Caroxylon (Thungb.) Fenzl generis Salsola L. species annuae. Nov Sist Vys Rast 7:142–145. ——— 1971 Notulae de nomenclatura. 3. Nov Sist Vys Rast 8: 261–263. ——— 1972 Species subsectionis Tetragona (Ulbrich) Botsch. sectionis Caroxylon (Thunbg.) Fenzl generis Salsola L. Nov Sist Vys Rast 9:140–154. ——— 1974a Species subsectionis Caroxylon sectionis Caroxylon (Thunb.) Fenzl generis Salsola L. Nov Sist Vys Rast 11:110–174. ——— 1974b A synopsis of Salsola (Chenopodiaceae) from south and south-west Africa. Kew Bull 29:597–614. AKHANI ET AL.—PHYLOGENY AND CLASSIFICATION OF SALSOLEAE s.l. ——— 1975a The new Chenopodiaceae from Middle Asia. Bot Zhurn 60:1158–1160. (In Russian.) ——— 1975b Species subsectionis Vermiculatae Botsch. Sectionis Caroxylon (Thunb.) Fenzl, Generis Salsola L. Nov Sist Vys Rast 12: 160–194. ——— 1975c Species of the subtribe Sevadinae (Chenopodiaceae). Kew Bull 30:367–370. ——— 1975d Subsectio Distichae Botsch. Sectionis Caroxylon (Thunb.) Fenzl generis Salsola. Nov Sist Vys Rast 12:194–196. ——— 1976 Conspectus specierum sectionis Coccosalsola Fenzl generis Salsola L. Nov Sist Vys Rast 13:74–102. ——— 1977 The genus Agathophora (Fenzl) Bunge (Chenopodiaceae). Bot Zhurn 62:1447–1452. (In Russian.) ——— 1980 Species sectionis Belanthera Iljin generis Salsola L. Nov Sist Vyss Rast 17:112–135. ——— 1981a New species of the genus Salsola L. (Chenopodiaceae) from south and south-west Africa, V. Bot Zhurn 66:1036–1040. (In Russian.) ——— 1981b Revisio generis Halothamnus Jaub. et Spach (Chenopodiaceae). Nov Sist Vys Rast 18:146–176. ——— 1982 Species novae e familia Chenopodiaceae. Nov Sist Vyss Rast 19:74–81. ——— 1986 Irania, a new section of the genus Salsola (Chenopodiaceae). Bot Zhurn 71:1400–1401. (In Russian.) ——— 1989 De genere Darniella Maire et Weiller et relationes ejus ad genus Salsola L. (Chenopodiaceae). Nov Sist Vys Rast 26:79–90. Botschantzev VP, H Akhani 1989 A new section and a new species of the genus Salsola (Chenopodiaceae) from Southern Iran. Bot Zhurn 74:1664–1666. (In Russian.) Boulos L 1992 Studies in the Chenopodiaceae of Arabia. 5. Notes on Agathophora (Fenzl) Bunge and Cornulaca Del. Kew Bull 47:283– 287. ——— 1996 Chenopodiaceae. Pages 233–283 in AG Miller, TA Cope, eds. Flora of the Arabian Peninsula and Socotra. Vol 1. Edinburgh University Press, Edinburgh. Boulos L, I Friis, MG Gilbert 1991 Notes on the Chenopodiaceae of Ethiopia, Somalia and Southern Arabia. Nord J Bot 11:309–316. Brullo S 1984 Taxonomic consideration on the genus ‘‘Darniella’’ (Chenopodiaceae). Webbia 38:301–328. Bunge A 1862 Anabasearum revisio. Mém Acad Imp Sci St Petersb 11:1–104. ——— 1879 Enumeratio Salsolacearum centralasiaticarum. Trudy Imp St Petersb Bot Sada 6:403–459. Butnik AA, OA Ashurmetov, RN Nygmanova, SA Paizieva 2001 Ecological anatomy of desert plants of Middle Asia. Vol 2. Subshrubs, subshrublets. Academy of Science of Uzbekistan Republic, Scientific Centre of Plant Production ‘‘Botanika.’’ Fan, Tashkent. (In Russian.) Butnik AA, RN Nygmanova, SA Paizieva, DK Saidov 1991 Ecological anatomy of desert plants of Middle Asia. Vol 1. Trees, shrubs, subshrubs. Academy of Science of Uzbekistan Republic, Scientific Centre of Plant Production ‘‘Botanika.’’ Fan, Tashkent. (In Russian.) Carolin RC, SWL Jacobs, M Vesk 1975 Leaf structure in Chenopodiaceae. Bot Jahrb Syst 95:226–255. ——— 1978 Kranz cells and mesophyll in the Chenopodiales. Aust J Bot 26:683–698. Cuénoud P, V Savolainen, LW Chatrou, M Powell, RJ Grayer, MW Chase 2002 Molecular phylogenetics of the Caryophyllales based on 18S rDNA, and plastid rbcL, atpB, and matK sequences. Am J Bot 89:132–144. Doyle JJ, JL Doyle 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15. Edwards GE, V Franceschi, EV Voznesenskaya 2004 Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196. 955 Felsenstein J 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. Fenzl E 1851 Salsolaceae. Pages 689–854 in CF Ledebour, ed. Flora Rossica. Vol 3. Schweizerbart, Stuttgart. Freitag H 1997 Salsola L. (Chenopodiaceae). Pages 154–255 in KH Rechinger, ed. Flora Iranica. Vol 172. Akademische Druck und Verlagsanstalt, Graz. (With a contribution from S. Rilke.) Freitag H, W Stichler 2000 A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae. Plant Biol 2:154–160. ——— 2002 Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biol 4:121–132. Galushko A 1976 Taxa nova, 2. Nov Syst Vyss Rast 13:250–255. Gamaley YV, EV Voznesenskaya 1986 Structural-biochemical types of C-4 plants. Sov Plant Physiol 33:616–630. Ghobadnejhad M, MR Joharchi, H Akhani 2004 Notes on the flora of Iran. 5. Halimocnemis longifolia (Chenopodiaceae), a new record from Iran. Linz Biol Beitr 36:1309–1316. Hedge IC 1997 Seidlitzia to Halogeton (Chenopodiaceae). Pages 290–357 in KH Rechinger, ed. Flora Iranica. Vol 172. Akademische Druck und Verlagsanstalt, Graz. Hedge IC, H Akhani, H Freitag, G Kothe-Heinrich, D Podlech, S Rilke, P Uotila 1997 Chenopodiaceae. Pages 1–370 + 212 tables in KH Rechinger, ed. Flora Iranica. Vol 172. Akademische Druck und Verlagsanstalt, Graz. Hillis DM, JJ Bull 1993 An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. Iljin MM 1936 Chenopodiaceae. Pages 2–354 in BK Siskin, ed. Flora SSSR. Vol 6. Izdatel’stvo Akademii Nauk SSSR, Leningrad. (In Russian.) ——— 1948 Novi rod Hammada Iljin. Bot Zhurn 33:582–583. ——— 1949 Revisio specierum generis Halocharis Moq.-Tand. Bot Mat Gerb Bot Inst Komarov Acad Nauk SSSR 11:74–81. ——— 1954 De genere Seidlitzia Bge. Notae criticae. Bot Mat Gerb Bot Inst Komarov Akad Nauk SSSR 16:86–93. Jacobs SWL 2001 Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales). J Torrey Bot Soc 128: 236–253. Jarvis CE, FR Barrie, DM Allan, JL Reveal 1993 A list of Linnean generic names and their types. Koeltz Scientific, Königstein. Johnson LA, DE Soltis 1995 Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175. Kadereit G, T Borsch, K Weising, H Freitag 2003 Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986. Kadereit G, D Gotzek, S Jacobs, H Freitag 2005 Origin and age of Australian Chenopodiaceae. Origin Divers Evol 5:59–80. Kadereit G, L Mucina, H Freitag 2006 Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55:617–642. Kapralov M, H Akhani, EV Voznesenskaya, G Edwards, V Franceschi, EH Roalson 2006 Phylogenetic relationships in the Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. Syst Bot 31: 571–585. Korovin E, A Mironov 1935 Review of the genus Arthrophytum Schrenk and the position of that genus in the system. Acta Univ Asiae Med Ser 7b 29:1–23. Kothe-Heinrich G 1993 Revision der Gattung Halothamnus (Chenopodiaceae). Bibliotheca Botanica 143. Schweizerbart, Stuttgart. Kühn U, V Bittrich, R Carolin, H Freitag, IC Hedge, P Uotila, PG Wilson 1993 Chenopodiaceae. Pages 253–281 in K Kubitzki, ed. 956 INTERNATIONAL JOURNAL OF PLANT SCIENCES The families and genera of vascular plants. Vol 2. Flowering plants: dicotyledons. Springer, Berlin. Léonard J 1991 Contribution a l’etude de la flore et de la vegetation des deserts d’Iran. Vol 10. Jardin Botanique National de Belgique, Meise. Meyer CA 1829 Generae Chenopodearum. Pages 370–371 in CF Ledebour, ed. Flora Altaica. Vol 1. Reimer, Berlin. Miller P 1754 The gardeners dictionary. Vol 2. Rivington, London. Minin V, Z Abdo, P Joyce, J Sullivan 2003 Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52:674–683. Moquin-Tandon A 1840 Chenopodearum monographica enumeratio. Loss, Paris. 182 pp. ——— 1849 Salsolaceae. Pages 41–219 in AP de Candolle, ed. Prodromus systematis naturalis regni vegetabilis. Vol 13, pt 2. Masson, Paris. Müller K, T Borsch 2005 Phylogenetics of Amaranthaceae using matK/trnK sequence data: evidence from parsimony, likelihood and Bayesian approaches. Ann Mo Bot Gard 92:66–102. Pratov UP 1975 The second species of the genus Nanophyton Less. (Chenopodiaceae). Bot Zhurn 60:1161. (In Russian.) ——— 1982 New species of the genus Nanophyton (Chenopodiaceae). Bot Zhurn 67:1525–1528. (In Russian.) ——— 1985 Obzor roda Nanophyton Less. (Chenopodiaceae). (Revisio generis Nanophyton Less. (Chenopodiaceae). Nov Sist Vys Rast 22:81–88. ——— 1986 Rod Climacoptera Botsch.: sistematuka, geografiya, filogeniya i voprocy okhrany. Izdatel’stvo Fan Uzbekskoi, Tashkent. 65 pp. Pratt D 2003 ndhF phylogeny of the Chenopodiaceae-Amaranthaceae-alliance. PhD diss. Iowa State University, Ames. Pyankov VI, EG Artyusheva, GE Edwards, CC Black Jr, PS Soltis 2001a Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthetic types. Am J Bot 88:1189–1198. Pyankov VI, CC Black Jr, E Artyusheva, EV Voznesenskaya, MSB Ku, GE Edwards 1999 Features of photosynthesis in Haloxylon species of Chenopodiaeceae that are dominant plants in Central Asian deserts. Plant Cell Physiol 40:125–134. Pyankov VI, CC Black Jr, W Stichler, H Ziegler 2002 Photosynthesis in Salsola species (Chenopodiaceae) from southern Africa relative to their C4 syndrome origin and their African-Asian arid zone migration pathways. Plant Biol 4:62–69. Pyankov VI, AN Kuz’min, ÉD Demidov, AI Maslov 1992 Diversity of biochemical pathways of CO2 fixation in plants of the families Poaceae and Chenopodiaceae from the arid zones of Central Asia. Fiziol Rast 39:645–657. Pyankov VI, DV Vakhrusheva 1989 Pathways of primary CO2 fixation in C4 plants of the family Chenopodiaceae from the arid zone of Central Asia. Fiziol Rast 36:228–238. Pyankov VI, EV Voznesenskaya, AV Kondratschuk, CC Black Jr 1997 A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy: a possible reversion of C4 to C3 photosynthesis. Am J Bot 84:597–606. Pyankov VI, H Ziegler, A Kuz’min, GE Edwards 2001b Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons. Plant Syst Evol 230:43–74. Rilke S 1999 Revision der Sektion Salsola s.l. der Gattung Salsola (Chenopodiaceae). Bibliotheca Botanica 149:1–190. Roalson EH, JT Columbus, EA Friar 2001 Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341. Schütze P, H Freitag, K Weising 2003 An integrated molecular and morphological study of the subfamily Suaedioideae Ulbr. (Chenopodiaceae). Plant Syst Evol 239:257–286. Scott AJ 1977a Proposal to conserve the family name Salsolaceae Moq. Taxon 26:246. ——— 1977b Reinstatement and revision of Salicorniaceae J. Agardh (Caryophyllales). Bot J Linn Soc 75:357–374. ——— 1978 A revision of the Camphorosmioideae (Chenopodiaceae). Fed Repert 89:101–119. Shepherd KA, TD Macfarlane, M Waycott 2005 Phylogenetic analysis of the Australian Salicornioideae (Chenopodiaceae). Aust Syst Bot 18:89–115. Suh Y, LB Thien, HE Reeves, EA Zimmer 1993 Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am J Bot 80: 1042–1055. Swofford DL 2001 PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer, Sunderland, MA. Thompson JD, TJ Gibson, F Plewniak, F Jeanmougin, DG Higgins 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. Tzvelev NN 1993 Notes on Chenopodiaceae of Eastern Europe. Ukr Bot Zhurn 50:78–85. Ulbrich E 1934 Chenopodiaceae. Pages 379–584 in A Engler, K Prantl, eds. Die natürlichen Pflanzenfamilien. Vol 16c. Engelmann, Leipzig. Volkens G 1893 Chenopodiaceae. Pages 36–91 in A Engler, K Prantl, eds. Die natürlichen Pflanzenfamilien. Tiel 3, abt 1a. Engelmann, Leipzig. Voznesenskaya EV, EG Artyusheva, VR Franceschi, VI Pyankov, O Kiirats, MSB Ku, GE Edwards 2001a Salsola arbusculiformis, a C3-C4 intermediate in Salsoleae (Chenopodiaceae). Ann Bot 88:337–348. Voznesenskaya EV, VR Franceschi, O Kiirats, EG Artyusheva, H Freitag, GE Edwards 2002 Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662. Voznesenskaya EV, VR Franceschi, O Kiirats, H Freitag, GE Edwards 2001b Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546. Voznesenskaya EV, VR Franceschi, VI Pyankov, GE Edwards 1999 Anatomy, chloroplast structure and compartmentation of enzyme relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodiaceae). J Exp Bot 50: 1779–1795. White TJ, T Bruns, S Lee, J Taylor 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–322 in M Innis, D Gelfand, J Sninsky, T White, eds. PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA. Woloszczak E 1885 Salsolaceae. Pages 274–278 in O Stapf, ed. Die Botanischen Ergibnisse der Polak’schen Expedition nach Persien in Jahre 1882. Vol 1. Kaiserlich-Königlich Hof- und Staatsdruckerei, Vienna. Xu DH, J Abe, M Sakai, A Kanazawa, Y Shimamoto 2000 Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor Appl Genet 101:724–732.