Academia.eduAcademia.edu
Phytotaxa 132 (1): 21–38 (2013) www.mapress.com / phytotaxa / Copyright © 2013 Magnolia Press ISSN 1179-3155 (print edition) Article PHYTOTAXA ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.132.1.2 A molecular perspective on generic concepts in the Hypotrachyna clade (Parmeliaceae, Ascomycota) PRADEEP K. DIVAKAR1, ANA CRESPO1, JANO NÚÑEZ-ZAPATA1, ADAM FLAKUS2, HARRIE J.M. SIPMAN3, JOHN A. ELIX4, H. THORSTEN LUMBSCH5 1 Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain; email: pdivakar@farm.ucm.es, acrespo@farm.ucm.es 2 Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL–31–512 Kraków, Poland 3 Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany 4 Research School of Chemistry, Building 33, Australian National University, Canberra, ACT, Australia; email: john.elix@anu.edu.au 5 Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; Email: tlumbsch@fieldmuseum.org Abstract Recently, molecular phylogenetic studies have revolutionized the generic concepts in Parmeliaceae and in lichen forming fungi in general. In the present study, the generic delimitation in the Hypotrachyna clade is revised using a molecular phylogeny of nuclear ITS, LSU and mitochondrial SSU rDNA sequences of 88 hypotrachynoid taxa. Morphological and chemical features are also revised in each group. 118 sequences are newly generated for this study. Our phylogenetic analyses show the polyphyly of Hypotrachyna as currently circumscribed which falls into four well-supported and one unsupported clade. Cetrariastrum, Everniastrum and Parmelinopsis are nested within Hypotrachyna s. lat., Parmelinopsis being also polyphyletic and nested in one of the Hypotrachyna clades. Cetrariastrum is monophyletic but clustered within Everniastrum. Two alternative hypotheses tests significantly rejected the monophyly of these three genera. As a consequence, the genera Cetrariastrum, Everniastrum, and Parmelinopsis are reduced to synonymy with Hypotrachyna. Furthermore, we here propose an alternative classification to recognize the well-supported clades at subgeneric level and leave the remaining species unclassified within the genus. Five new subgenera are proposed: Hypotrachyna subgen. Cetrariastrum, Hypotrachyna subgen. Everniastrum, Hypotrachyna subgen. Longilobae, Hypotrachyna subgen. Parmelinopsis, and Hypotrachyna subgen. Sinuosae. Forty-nine new combinations are proposed. Key words: generic classification, lichens, molecular systematics, parmelioid lichens, taxonomy Introduction Traditionally, the generic classification in lichenised fungi is based on morphological, anatomical and chemical characters. In Parmeliaceae, morphology of vegetative thalli have traditionally played an important role in circumscribing genera with a number of generic segregates being described over the last three decades (Culberson & Culberson 1981; Elix 1993b; Elix & Hale 1987; Elix et al. 1986; Hale 1974a, 1974b, 1984, 1986a, 1986b; Krog 1982; Kurokawa 1991; Sipman 1980; Sipman 1986). However, in recent years a number of taxonomic re-evaluations, mainly based on molecular phylogenies, have been proposed (Amo de Paz et al. 2010a; Amo de Paz et al. 2010b; Blanco et al. 2005; Blanco et al. 2004b; Crespo et al. 2010b; Crespo et al. 2007; Divakar et al. 2006; Divakar et al. 2010; Divakar et al. 2012; Thell et al. 2006; Wirtz et al. 2006). These studies revealed that the taxonomic significance of phenotypical characters of the vegetative thallus was overestimated in several groups. As a consequence, some former segregates were synonymized, such as Rimeliella Kurokawa (1991: 1) within Canomaculina Elix & Hale (1987: 239); nine genera in Accepted by Mohammad Sohrabi: 8 Aug. 2013; published: 18 Sept. 2013 21 Xanthoparmelia; Canomaculina, Concamerella Culberson & Culberson (1981: 307) and Rimelia Hale & Fletcher (1990: 23) within Parmotrema Massalongo (1860: 248) (reviewed by Crespo et al. 2011; Thell et al. 2012). At the same time, molecular data have helped to discover previously unrecognized lineages (genera) within the family Parmeliaceae. Examples include the genera Melanelixia Blanco et al. (2004a: 881), Melanohalea Blanco et al. (2004a: 882) and Montanelia Divakar et al. (2012: 2022) as segregates of Melanelia Esslinger (1978: 46) s. lat. (Blanco et al. 2004a; Divakar et al. 2012); Austroparmelina Crespo et al. (2010a: 209) segregated from Parmelina Hale (1974a: 481). Lastly, Remototrachyna Divakar et al. (2010: 584) was segregated from Hypotrachyna Hale (1974b: 340) s. lat. (Divakar et al. 2010). All the aforementioned segregates were based on molecular and morphological data. A group of tropical parmelioid lichens with predominantly corticolous species, lacking pseudocyphellae, and having a pored epicortex includes the genera Bulbothrix Hale (1974a: 479), Cetrariastrum Sipman (1980: 335), Everniastrum Hale ex Sipman (1986: 237), Hypotrachyna s. lat., Parmelinella Elix & Hale (1987: 241) and Parmelinopsis Elix & Hale (1987: 242). These genera were included in the Hypotrachyna clade in previous molecular studies (Blanco et al. 2006; Crespo et al. 2007; Divakar et al. 2006). However, in more recent studies the genera Bulbothrix, Parmelinella and Remototrachyna were shown to be distantly related to the other genera and placed in the Parmelina clade (Crespo et al. 2010b; Divakar et al. 2010). The genera Cetrariastrum, Everniastrum, Hypotrachyna s. lat., and Parmelinopsis clustered together in the Hypotrachyna clade, which is one of the larger major clades among parmelioid lichens (Parmeliaceae) (Crespo et al. 2010b; Divakar et al. 2010). Within the Hypotrachyna clade, the genus Hypotrachyna is the largest with ca. 188 described species. It includes mainly tropical species growing in moderate to high altitude with a centre of diversity in tropical America (Sipman et al. 2009). Hypotrachyna species are characterized by a pored epicortex, narrow, sublinear to linear elongate lobes, with truncate apices; dichotomously branched rhizines, oval-ellipsoid ascospores and bifusiform conidia (Divakar et al. 2001, 2010; Elix 1993b; Hale 1975). Parmelinopsis (25 species), a pantemperate and pantropical genus is a segregate of the genus Parmelina (Elix & Hale 1987). The genus is readily distinguished by having sublinear, narrow, apically truncate grey lobes, simple cilia, and simple to weakly dichotomously branched rhizines; ellipsoid, relatively large ascospores and cylindrical-bifusiform conidia. Everniastrum (40 species) is characterized by regularly dichotomously branched lobes, apothecia with hollow stipe, relatively large asci and a thin hypothecium (Sipman 1980). Cetrariastrum sensu Sipman (1980) is similar to the former genus, but distinguished by having irregularly branched lobes, apothecia with solid stipe, smaller asci and a thicker hypothecium. Both genera, whose distinction has been disputed (Culberson & Culberson 1981), share common characters, such as long, linear, canaliculate lobes, long marginal cilia and both have a pantropical distribution (Sipman 1986). The present study aims to clarify the phylogenetic positions of Cetrariastrum, Everniastrum and Parmelinopsis and also test the hypothesis that the morphological characters have evolved independently within the clade as adaptations to ecological conditions. To address these questions, we used three molecular markers ITS, nuclear LSU and mitochondrial SSU rDNA, and analysed these data using Bayesian and maximum likelihood approaches. We sampled specimens from all the continents of their distribution: America, Africa, Asia, Australia and Europe. The morphological features of the species were also revised. Materials and Methods Taxon sampling:—Data matrices of 88 samples, representing 58 species of the Hypotrachyna clade (Crespo et al. 2010b) were assembled using sequences of nuclear ITS, LSU and mitochondrial SSU rDNA. Two species of Parmeliopsis were used as outgroup, since this genus has previously been shown to be closely related to this clade (Crespo et al. 2010b). GenBank accession numbers and details of studied material are shown in Table 1. The data sets include 122 sequences from previous publications by our group (Blanco et al. 2004a; Crespo et al. 2007; Divakar et al. 2006; Divakar et al. 2010; Lumbsch et al. 2008), five downloaded from GenBank and 118 newly generated sequences. 22 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. Molecular methods:—Small samples prepared from freshly collected and frozen specimens were ground with sterile plastic pestles. Total genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions but with slight modifications (Crespo et al. 2001). Dilutions of 1:10 of the total DNA were used for PCR amplifications of the ITS, nu LSU rDNA and mt SSU rDNA regions. Primers, PCR and cycle sequencing conditions were the same as described previously (Crespo et al. 2007; Divakar et al. 2005). Sequence fragments obtained were assembled with SeqMan 4.03 (DNAStar) and manually adjusted. Sequence alignments:—We used the program MUSCLE (Edgar 2004) to align DNA sequences of 88 specimens (Table 1) for each data set separately. The program Gblocks v0.91b (Castresana 2000; Talavera & Castresana 2007) was used to remove regions of alignment uncertainty, using options for a “less stringent” selection on the Gblocks web server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html). Phylogenetic analyses:—The alignments were analyzed using maximum likelihood (ML) and a Bayesian approach (B/MCMC). ML analyses were performed using an online version of the program RaxML v7.0.4 ( http://phylobench.vital-it.ch/raxml-bb/; Stamatakis 2006; Stamatakis et al. 2008 ) for the partitioned combined data set. We used the GTRGAMMA model, which includes a parameter (Γ) for rate heterogeneity among sites and chose not to include a parameter for estimating the proportion of invariable sites (Stamatakis 2006; Stamatakis et al. 2008). The bootstrap analysis was run with 1000 pseudoreplicates. Bayesian analyses were done using the program MrBAYES 3.1.2 (Huelsenbeck & Ronquist 2001). Models of DNA sequence evolution for each locus were selected with the program jModeltestv0.1 (Posada 2008), using the Akaike information criterion (AIC; Akaike 1974). The concatenated three-loci data set was partitioned as ITS, nuLSU and mtSSU, specifying the best fitting model, allowing unlinked parameter estimation and independent rate variation. No molecular clock was assumed. Four parallel runs were made with 4,000,000 generations starting with a random tree and employing 8 simultaneous chains each. Every 200th tree was saved into a file. The first 4000 trees were deleted as the “burn in” of the chains. We used AWTY (Nylander et al. 2007) to compare splits frequencies in the different runs and to plot cumulative split frequencies to insure that stationarity was reached. A majority rule consensus tree with average branch lengths was calculated using the sumt option of MrBayes. We used a ML approach to examine the heterogeneity in phylogenetic signal among the three data partitions (Lutzoni et al. 2004). For the three loci and the concatenated analyses, the set of topologies reaching ≥70% bootstrap under likelihood was estimated. The combined data set topology was then compared for conflict with ≥70% bootstrap intervals of the single gene analyses. If no conflict was evident, it was assumed that the two data sets were congruent and could be combined. Only clades that received bootstrap support above or equal 70% in ML analysis or posterior probabilities equal or above 0.95 in MrBayes analysis were considered as well supported. Phylogenetic trees were drawn using TREEVIEW (Page 1996). Hypothesis testing:—The results of the phylogenetic analyses were incongruent with the current generic classification in the Hypotrachyna clade. Hence we tested whether our data were sufficient to reject the monophyly of currently accepted genera. For the hypothesis testing two different methods were employed: 1. Shimodaira-Hasegawa (SH) test (Shimodaira & Hasegawa 1999) and 2. expected likelihood weight (ELW) test (Strimmer & Rambaut 2002). The SH and ELW tests were performed using Tree-PUZZLE 5.2 (Schmidt et al. 2002) with the combined data set on a sample of 200 unique trees, the best trees agreeing with the null hypotheses, and the unconstrained ML tree. These trees were inferred in Tree-PUZZLE employing the GTR+I+G nucleotide substitution model. Morphological and chemical studies:—Thallus morphology was studied using a Leica Wild M 8 dissecting microscope for the measurement of lobe shape, size and width. All specimens included in the molecular analysis were studied (see Table 1). Chemical constituents were studied by thin layer chromatography using standardized methods (Culberson 1972; Culberson & Johnson 1982). MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 23 Results and Discussion Phylogenetic studies:—A total of 34 new nuclear ITS, 43 new LSU rDNA and 41 new mitochondrial SSU rDNA sequences were generated (Table 1). These were aligned with 122 sequences previously published by us and five downloaded from GenBank (Table 1). The aligned matrix contained 453 unambiguously aligned nucleotide position characters in ITS, 835 in nu LSU and 783 in mt SSU. The final alignment of combined data set was 2071 positions in length, with 645 variable characters. The ITS PCR product obtained ranged between 600 to 800 bp. Differences in size were due to the presence or absence of insertions of about 200 bp identified as group I introns (Gutierrez et al. 2007) at the 3′ end of the SSU rDNA. We excluded group I introns and 166 bp of the mtSSU and 47 bp of the ITS alignments from the analysis using GBlocks. GTR+G, TIM1+I+G, and TIM1+I+G are resulted as best fit model of evolution for ITS, nu LSU and mt SSU respectively. Topologies of single-locus analyses did not show conflict and hence combined analyses were performed. Since the topologies of the ML and B/MCMC analyses did not show any supported conflict, only the 50% majority-rule consensus tree of Bayesian tree sampling is shown with nodes in bold that received strong support either in ML or Bayesian analyses (i.e. PP ≥0.95 in B/MCMC analysis and ML bootstrap ≥70%) (Fig. 1). B/MCMC posterior probabilities equal or above 0.95 are indicated above branches, while values below branches are bootstrap support values of ML analysis. TABLE 1. Specimens used in the study, with location, reference collection detail and GenBank accession numbers. Newly obtained sequences for this study are in bold face. Missing data are indicated with dash (—). Species Locality Collector(s) Voucher Specimens GenBank accession numbers ITS mt SSU nu LSU Cetrariastrum andense Peru: Ancash Lumbsch, Wirtz & Ramírez 19334 F (MAF-Lich 15620) GQ919269 GQ919217 GQ919245 C. dubitans Peru: Ancash Lumbsch, Wirtz & Ramírez 19366 F (MAF-Lich 15621) GQ919270 GQ919217 GQ919246 C. ecuadoriense Ecuador: Cotopaxi Prov. Palice s/n HB. PALICE 3732 — DQ287793 — Everniastrum cirrhatum 1 Costa Rica: San José Trest 149 MAF-Lich 7465 AY611070 AY611128 AY607782 E. cirrhatum 2 Peru: Quebrada Parón Lumbsch 19342r MAF-Lich 13976 DQ279487 DQ287795 EU562674 E. lipidiferum Peru: Quebrada Cojup Lumbsch 19309b MAF-Lich 13966 DQ279488 DQ287796 EU562675 E. nepalense India: Uttarakhand Divakar s/n GUH 02-000924 AY611071 AY611129 AY607783 E. rhizodendroideum China: Yunnan Aptroot 55665 ABL DQ279489 DQ287797 EU562676 E. sorocheilum China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10375 DQ279490 DQ287798 EU562677 E. vexans China: Yunnan Aptroot 56597 ABL DQ279491 DQ287799 EU562678 Hypotrachyna aff. immaculata China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10413 DQ279505 DQ287814 EU562680 H. aff. intercalanda India: Tamil Nadu Divakar, Upreti, Tandon & Lumbsch 19733m MAF-Lich — KF380962 KF380919 H. aff. oostingii Chile: IX Región Pérez-Ortega 325 DNA 2255 MAF-Lich — KF380963 KF380920 H. andensis 1 Bolivia: Camacho Flakus & Rodríguez 17726 KRAM-L — KF380964 KF380921 H. andensis 2 Bolivia: Camacho Flakus & Rodríguez 16907 KRAM-L KF380886 KF380965 KF380922 H. aspera Bolivia: Aniceto Arce Flakus 18931 KRAM-L KF380885 KF380966 KF380923 H. bogotensis 1 Peru: Cusco Holgado, Mamani & Delgado DNA 2199 MAF-Lich KF380887 KF380967 KF380924 H. bogotensis 2 Chile: X Región Pérez-Ortega 316 DNA 2254 MAF-Lich KF380889 KF380969 KF380926 H. bogotensis 3 Bolivia: Camacho Flakus & Rodríguez 17762 KRAM-L KF380888 KF380968 KF380925 Hypotrachyna booralensis Australia: Queensland Lumbsch s/n MAF-Lich 13969 DQ279493 DQ287801 EU562682 ...... continued on the next page 24 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. TABLE 1 (continued) Species Locality Collector(s) Voucher Specimens GenBank accession numbers ITS mt SSU nu LSU H. brasiliana Brazil: Municipio de Piraquara Sanders 99802.4 MAF-Lich 17019 — DQ287802 — H. britannica Ireland: Kerry Crespo & Gavilan s/n MAF-Lich 15415 GQ919273 GQ919221 GQ919249 — DQ912280 DQ912336 H. caraccensis 1 — — — H. caraccensis 2 Bolivia: Nor Yungas Flakus & Rodríguez 16878 KRAM-L KF380890 KF380970 KF380927 H. chlorina 1 Ecuador: ZamoraChinchipe Sipman 52924 BGO 0148626 KF380891 — KF380928 H. chlorina 2 Bolivia: Nor Yungas Flakus & Rodríguez 17120 KRAM-L KF380892 KF380971 KF380929 H. dactylifera Bolivia: Aniceto Arce Flakus 18584 KRAM-L KF380893 KF380972 KF380930 H. degelii 1 Bolivia: Aniceto Arce Flakus & Quisbert 19849 KRAM-L — KF380973 KF380931 H. degelii 2 Bolivia: Nor Yungas Flakus & Rodríguez 17261 KRAM-L — KF380974 KF380932 — DQ912281 DQ912337 H. degelii 3 — — — H. denshirrhizinata Bolivia: Nor Yungas Flakus & Rodríguez 17003 KRAM-L — KF380975 KF380935 H. dentella 1 Bolivia: Aniceto Arce Flakus 18757 KRAM-L KF380894 KF380976 KF380933 H. dentella 2 Bolivia: Aniceto Arce Flakus 18528/1 KRAM-L KF380895 KF380977 KF380934 H. enderythraea Bolivia: Nor Yungas Flakus & Rodríguez 17264 KRAM-L — KF380978 KF380936 H. endochlora 1 Great Britain: Scotland Coppins s/n MAF-Lich 10178 AY 611072 AY611130 AY607784 H. endochlora 2 Canary Island: Tenerife Crespo s/n MAF-Lich 10379 DQ279496 DQ287805 JN939614 H. endochlora 3 Bolivia: Aniceto Arce Flakus & Quisbert 19892 KRAM-L KF380896 KF380979 KF380937 H. endochlora 4 Bolivia: Aniceto Arce Flakus 18577 KRAM-L KF380897 KF380980 KF380938 H. fissicarpa South Africa: W Cape Crespo & al. s/n MAF-Lich 13991 DQ279501 DQ287810 — H. halei 1 Bolivia: Nor Yungas Flakus & Rodriguez 16897 KRAM-L KF380898 KF380981 KF380939 H. halei 2 Bolivia: Nor Yungas Flakus & Rodríguez 16331 KRAM-L KF380899 — KF380940 H. imbricatula 1 Costa Rica: Manzanillo Molina s/n MAF-Lich 10382 DQ279502 DQ287811 GQ919253 H. imbricatula 2 South Africa: W Cape Crespo & al. s/n MAF-Lich 13990 DQ279503 DQ287812 EU562686 H. imbricatula 3 Bolivia: Nor Yungas Flakus & Rodríguez 17234 KRAM-L KF380900 KF380982 KF380941 H. imbricatula 4 Brazil: São Paulo Benatti & Cintra 3159 SP KF380901 KF380983 KF380942 H. immaculata Australia: Queensland Louwhoff, Molina & Elix s/n MAF-Lich 7462 AY611073 AY611131 AY607785 H. intercalanda Brazil: São Paulo Benatti & Cintra 3209 SP KF380902 KF380984 KF380943 H. laevigata 1 Great Britain: Scotland Coppins s/n MAF-Lich 10177 AY611074 AY611132 AY607786 H. laevigata 2 Bolivia: Nor Yungas Flakus & Rodríguez 16952 KRAM-L KF380903 KF380985 KF380944 H. livida 1 Brazil: São Paulo Benatti & Cintra 3211 SP KF380904 KF380986 KF380945 H. livida 2 Bolivia: Aniceto Arce Flakus 18756 KRAM-L KF380905 KF380987 KF380946 H. livida 3 Bolivia: Aniceto Arce Flakus & Quisbert 19785 KRAM-L KF380906 KF380988 KF380947 H. longiloba 1 Peru: Cusco Holgado, Mamani & Delgado DNA 2198 MAF-Lich KF380907 KF380989 KF380948 H. longiloba 2 Bolivia: Nor Yungas Flakus & Rodríguez 16333 KRAM-L KF380908 KF380990 KF380949 H. microblasta Bolivia: Nor Yungas Flakus & Rodríguez 16970 KRAM-L KF380909 KF380991 KF380950 H. neodissecta South Africa: W Cape Crespo & al. s/n MAF-Lich 13986 DQ279510 DQ287820 EU562689 H. osseoalba China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10390 DQ279512 DQ287822 EU562690 H. partita 1 Bolivia: Nor Yungas Flakus & Rodríguez 16863 KRAM-L — KF380992 KF380951 H. partita 2 Bolivia: Camacho Flakus & Rodríguez 17699 KRAM-L KF380910 KF380993 KF380952 H. physcioides 1 China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10391 DQ279513 DQ287823 EU562691 ...... continued on the next page MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 25 TABLE 1 (continued) Species Locality H. physcioides 2 Collector(s) Bolivia: Nor Yungas Voucher Specimens Flakus & Rodríguez 16860 KRAM-L GenBank accession numbers ITS mt SSU nu LSU KF380911 KF380994 KF380953 H. pluriformis Bolivia: Aniceto Arce Flakus & Quisbert 19784 KRAM-L KF380912 KF380995 KF380954 H. polydactyla Kenya: W province Divakar & Lumbsch s/n MAF-Lich 15518 GQ919283 GQ919231 GQ919258 H. prolongata Bolivia: Nor Yungas Flakus & Rodríguez 17011 KRAM-L KF380913 KF380996 KF380955 H. pseudosinuosa 1 China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10392 DQ279516 DQ287826 EU562692 H. pseudosinuosa 2 China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10393 DQ279517 DQ287827 GQ919257 H. pulvinata Mexico: Jalisco Nash III 46756 ASU KF380914 KF380997 KF380956 H. reducens Costa Rica: Nat. Park Irazú Lücking 15450 F DQ279520 DQ287830 — H. revoluta Spain: Puerto Urkiola, Vizcaya Noya & Olea s/n MAF-Lich 6047 AY611075 AF351166 AY607787 H. rockii 1 Peru: Quebrada Parón Lumbsch 19342l MAF-Lich 13965 DQ279524 DQ287834 EU562693 H. rockii 2 Bolivia: Nor Yungas Flakus & Rodríguez 16446/4 KRAM-L KF380915 KF380998 KF380957 H. showmanii 1 USA: Pennsylvania Lendemer 18060 NY 01080325 KF380916 KF380999 KF380958 H. showmanii 2 USA: Pennsylvania Lendemer & Macklin s/n HB. LENDEMER 2386 (MAF-Lich 15618) GQ919287 GQ919234 — H. sinuosa 1 Great Britain: Scotland Coppins s/n MAF-Lich 10179 AY611076 AY611133 AY607788 H. sinuosa 2 Chile: X Región Pérez-Ortega 323 DNA 2252 MAF-Lich — KF381000 KF380959 H. steyermarkii 1 Bolivia: Aniceto Arce Flakus & Quisbert 19701 KRAM-L KF380917 KF381001 KF380960 H. steyermarkii 2 Bolivia: Nor Yungas Flakus & Rodriguez 16864 KRAM-L KF380918 KF381002 KF380961 H. taylorensis Great Britain: Scotland Hawksworth s/n MAF -Lich 9921 AY581061 AY582298 AY578924 Parmelinopsis afrorevoluta 1 Australia: New South Wales Elix 28562 Elix (MAF-Lich 15619) GQ919286 GQ919233 GQ919259 P. afrorevoluta 2 Canary Island: Tenerife Crespo s/n MAF-Lich 10409 DQ279529 DQ287839 EU562681 P. cryptochlora China: Yunnan Crespo, Blanco & Arguello s/n MAF-Lich 10398 DQ279535 DQ287845 EU562695 P. horrescens Spain: La Coruña Carvallal s/n MAF-Lich 9913 AY581085 AY582321 AY578951 P. minarum Spain: Cádiz Crespo & al. s/n MAF-Lich 7639 AY581086 AY582322 AY579852 P. neodamaziana Australia: Queensland Louwhoff, Molina & Elix s/n MAF-Lich 10182 AY611107 AY611166 AY607820 P. subfatiscens 1 Australia: Queensland Louwhoff, Molina & Elix s/n MAF-Lich 6878 AY611108 AF351174 AY607821 Parmelinopsis subfatiscens 2 China: Yunnan Crespo, Blanco & Argüello s/n MAF-Lich 10380 DQ279498 DQ287807 EU562684 — AF410829 EU562698 AY607822 MAF -Lich 10181 AY611109 AY611167 AY607823 Parmeliopsis ambigua — Parmeliopsis hyperopta Spain: Madrid — Blanco s/n The best tree under likelihood had a likelihood value of ln -15002.199. In the B/MCMC analysis, the likelihood parameters in the sample had the following mean (Variance): LnL = -15045.533 (0.356), the gamma shape parameter alpha = 0.312 (0.002) and pinvar = 0.496 (0.002). The currently accepted genera Everniastrum, Hypotrachyna and Parmelinopsis are not monophyletic, with Everniastrum and Hypotrachyna being paraphyletic, and Parmelinopsis polyphyletic. Cetrariastrum is monophyletic but clustered within Everniastrum and this clade is nested within Hypotrachyna s.lat. Monophyly of these three genera was rejected by the two alternative hypothesis tests (p<0.001 in all cases). This clearly indicates that the current generic concept in the Hypotrachyna clade does not reflect phylogenetic relationships and this is consistent with previous studies (Blanco et al. 2006; Crespo et al. 2010b; Crespo et al. 2007; Divakar et al. 2006; Lumbsch et al. 2008). 26 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. FIGURE 1. 50% majority-rule consensus tree of the molecular phylogenetic relationships in the Hypotrachyna clade, based on 64000 trees from a B/MCMC tree-sampling procedure of a combined dataset of ITS, nu LSU, and mt SSU sequences. Two species of Parmeliopsis used as outgroup. Posterior probabilities ≥ 0.95 are given above the branches, and values below the branches are ML bootstrap values ≥ 70%. Branches that received strong support in any of the two analyses (RaxML and B/MCMC) are in boldface. Asterisk mark shows the type species of the genus Hypotrachyna. Clades numbered indicate phylogenetic clusters explained in the text. MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 27 Several well supported clades can be found within the Hypotrachyna clade. Clade 1 is sister to the remaining species of the clade. It includes H. fissicarpa, endemic to east and south Africa, and the H. longiloba group that includes species with separate, linear lobes, a densely rhizinate lower surface, and containing atranorin and alectoronic, α- and β- collatolic, gyrophoric or anziaic acids. Hypotrachyna fissicarpa, however, has short, sublinear, imbricate lobes, a moderately rhizinate lower surface and contains atranorin and protocetraric acid. Species with similar morphology and chemistry can be found in other clades, such as clade 5 (Hypotrachyna s. str.), and the unsupported clade (Fig. 1).The sister-group of clade 1 is wellsupported and consists of two major groups, only one of them, however, receives strong support. The latter consists of clade 2 and a number of species currently placed in Hypotrachyna which form an unsupported sister-group to clade 2. Clade 2 mostly includes species with separate, linear lobes and a densely rhizinate lower surface, similar to species of clade 1. However, taxa in clade 2 contain usnic acid in the cortex, rarely accompanied by atranorin. Hypotrachyna microblasta (Vain.) Hale (1975: 47) differs morphologically by having short, sublinear lobes, but agrees with the other species in clade 2 in having a densely rhizinate lower surface and containing usnic acid. The species in the unsupported sister-group of clade 2 are morphologically and chemically similar to Hypotrachyna s.str. [clade 5, with type species H. brasiliana (Nyl.) Hale (1974b: 341)], but only distantly related to that clade. Clade 3 includes species of the genus Cetrariastrum and Everniastrum lipidiferum (Hale & Wirth) Hale ex Sipman (1986: 241). Cetrariastrum has been distinguished from Everniastrum based on an irregular branching pattern of the lobes, smaller asci, thicker hypothecium in Cetrariastrum, and a different apothecial stalk (Sipman 1986). Clade 4 includes all species currently placed in the genus Everniastrum, with the exception of E. lipidiferum. Hypotrachyna s.str. is the well supported clade 5. This clade and clade 6 have a well-supported sister-group relationship. Clade 6 includes species currently placed in Hypotrachyna and Parmelinopsis. The latter genus has traditionally been separated from Hypotrachyna based on the presence of cilia and less richly branched rhizines, characters that are regarded as species-specific but unreliable at higher rank in other groups of parmelioid lichens, such as Parmotrema (Divakar & Upreti 2005; Elix 1994; Krog & Swinscow 1981). Characters, such as elongate lobes or presence of usnic acid, have evolved several times independently within the Hypotrachyna clade, suggesting that they have an adaptive value in certain habitats. The traditionally accepted genera in the Hypotrachyna clade were almost entirely circumscribed based on characters of the vegetative thallus, with the exception of the genus Cetrariastrum. Vegetative characters have repeatedly shown to be highly plastic in various groups of lichenized fungi (Högnabba 2006; Lumbsch et al. 2010; Parnmen et al. 2010; Stenroos & DePriest 1998; Tehler & Irestedt 2007). Thus it is not surprising that the morphology-based genera within the Hypotrachyna clade were not confirmed by our phylogenetic analysis. Taxonomic conclusions:—Based on our phylogenetic analysis, we propose to reduce the genera Cetrariastrum, Everniastrum, and Parmelinopsis to synonymy with Hypotrachyna. An alternative classification would recognize all well-supported clades at generic level. This, however, would require the description of additional new genera that would be difficult to circumscribe phenotypically, and further, would leave the bulk of Hypotrachyna s.lat. species (sister-group to clade 2, Fig. 1) in an unresolved position. As an alternative, we propose here to recognize the well-supported clades at subgeneric level and leave the remaining species unclassified within the genus. Recognition at the subgeneric level also has the advantage that monophyletic lineages that are clustered within the paraphyletic Hypotrachyna s. lat. can be recognized without producing paraphyletic taxa (Hörandl & Stuessy 2010). We propose to recognize the H. longiloba group in clade 1 as Hypotrachyna subgen. Longilobae, clade 2 as Hypotrachyna subgen. Sinuosae, clade 3 as Hypotrachyna subgen. Cetrariastrum, clade 4 as Hypotrachyna subgen. Everniastrum, and clade 6 as Hypotrachyna subgen. Parmelinopsis. As a consequence of the revised generic concept of Hypotrachyna, several new subgenera need description and new combinations are necessary, and these are proposed below. 28 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. New subgenera: Hypotrachyna subgen. Cetrariastrum (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. et stat. nov. MycoBank No.: MB 803542 Cetrariastrum Sipman (1980: 335). Type species:—Hypotrachyna ecuadoriensis (R. Sant.) Divakar et al. (2013: 21–38); Cetrariastrum ecuadoriense (R. Sant.) Sipman (1980: 343). Parmelia ecuadoriensis Santesson (1942: 328). A subgenus in the genus Hypotrachyna, corresponding to clade 3 in Fig. 1, including all species placed in Cetrariastrum by Sipman (1980, 1986) plus Everniastrum lipidiferum. The latter is included provisionally because it appears more distantly related to the other species. Hypotrachyna subgen. Everniastrum (Hale ex Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. et stat. nov. MycoBank No.: MB 803543 Everniastrum Hale ex Sipman (1986: 335). Type species:—Hypotrachyna cirrhata (Fr.) Divakar et al. (2013: 21–38); Everniastrum cirrhatum (Fr.) Hale ex Sipman (1986: 337). Parmelia cirrhata Fries (1825: 283). A subgenus in the genus Hypotrachyna, corresponding to clade 4 in Fig. 1, including all species placed in Everniastrum by Sipman (1980, 1986) excluding Everniastrum lipidiferum. Hypotrachyna subgen. Longilobae Divakar, A. Crespo, Sipman, Elix & Lumbsch, subgen. nov. MycoBank No.: MB 803544 Type species:—Hypotrachyna longiloba (H. Magn.) Smith (1993: 328). Parmelia longiloba Magnusson (1941: 7). A new subgenus in the genus Hypotrachyna, corresponding to clade 1 (excl. H. fissicarpa) in Fig. 1, characterized by separate, linear lobes, densely rhizinate lower surface and the presence of atranorin, alectoronic, anziaic, α- and β-collatolic, and gyrophoric acids. All species included are distributed at higher elevation mainly in the Neotropics, but also in the southern United States and East Africa. Hypotrachyna subgen. Parmelinopsis (Elix & Hale) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. et stat. nov. MycoBank No.: MB 803545 Parmelinopsis Elix & Hale (1987: 242). Type species:—Hypotrachyna horrescens (Taylor) Krog & Swinscow (1987: 420); Parmelinopsis horrescens (Taylor) Elix & Hale (1987: 242). Parmelia horrescens Taylor in Mackay (1836: 144). A subgenus in the genus Hypotrachyna, corresponding to clade 6 in Fig. 1, including all species currently placed in Parmelinopsis plus Hypotrachyna species with sparsely dichotomously branched rhizines, and containing gyrophoric, lecanoric and olivetoric acids in the medulla. Hypotrachyna subgen. Sinuosae Divakar, A. Crespo, Sipman, Elix & Lumbsch, subgen. nov. MycoBank No.: MB 803546 Type species:—Hypotrachyna sinuosa (Sm.) Hale (1975: 63). Lichen sinuosus Smith (1809: tab. 2050). A new subgenus in the genus Hypotrachyna, corresponding to clade 2 in Fig. 1, characterized by combination of features in having mostly separate, linear lobes, densely rhizinate lower surface and the presence of usnic acid, galbinic, norstictic, stictic and salazinic acids. All species included are mainly distributed at higher elevation. MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 29 New combinations Subgenus Cetrariastrum: Hypotrachyna dubitans (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803547 Cetrariastrum dubitans Sipman (1980: 342). Hypotrachyna ecuadoriensis (R. Sant.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803548 Parmelia ecuadoriensis Santesson (1942: 328); Cetrariastrum ecuadoriense (R. Sant.) Sipman (1980: 347). Hypotrachyna kaernefeltii Divakar, A. Crespo, Sipman, Elix & Lumbsch, nom. nov. MycoBank No.: MB 803549 pro Cetrariastrum andense Kärnef. in Culberson & Culberson (1981: 297); Everniastrum andense Kärnefelt (1980: 387), nom. inval. (Art. 43.1.); non Hypotrachyna andensis Hale (1975: 23). Hypotrachyna lipidifera (Hale & M. Wirth) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803550 Parmelia lipidifera Hale & M. Wirth (1971: 37); Cetrariastrum lipidiferum (Hale & M. Wirth) Culberson & Culberson (1981: 287); Everniastrum lipidiferum (Taylor) Hale ex Sipman (1986: 241). Subgenus Everniastrum: Hypotrachyna africana (Hale) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803551 Cetrariastrum africanum Hale in Culberson & Culberson (1981: 296); Everniastrum africanum (Hale) Sipman (1986: 239). Hypotrachyna alectorialica (W.L. Culb. & C.F. Culb.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803552 Cetrariastrum alectorialicum Culberson & Culberson (1981: 297); Everniastrum alectorialicum (W.L. Culb. & C.F. Culb.) Sipman (1986:239). Hypotrachyna americana (Meyen & Flot.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803553 Evernia americana Meyen & Flotow (1843: 211); Cetrariastrum americanum (Meyen & Flot ) Culberson & Culberson (1981: 305); Everniastrum americanum (Meyen & Flot.) Hale ex Sipman (1986: 239). Hypotrachyna angolensis (W.L. Culb. & C.F. Culb.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803554 Cetrariastrum angolense Culberson & Culberson (1981: 299); Everniastrum angolense (W.L. Culb. & C.F. Culb.) Sipman (1986: 239). Hypotrachyna arsenei (Hale & M. Wirth) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803555 Parmelia arsenei Hale & M. Wirth (1971: 40); Cetrariastrum arsenei (Hale & M. Wirth) Culberson & Culberson (1981: 300); Everniastrum arsenei (Hale & M. Wirth) Sipman (1986: 239). Hypotrachyna arvidssonii (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803595 Everniastrum arvidssonii Sipman (1986: 243). 30 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. Hypotrachyna billingsii (W.L. Culb. & C.F. Culb.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803556 Cetrariastrum billingsii Culberson & Culberson (1981: 305); Everniastrum billingsii (W.L. Culb. & C.F. Culb.) Sipman (1986: 239). Hypotrachyna catawbiensis (Degel.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803557 Parmelia sorocheila var. catawbiensis Degelius (1941: 64); Cetrariastrum catawbiense (Degel.) Culberson & Culberson (1981: 281); Everniastrum catawbiense (Degel.) Hale ex Sipman (1986: 237). Hypotrachyna chilensis (Kurok.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803558 Cetrariastrum chilense Kurokawa (1999: 252). Hypotrachyna cirrhata (Fr.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803559 Parmelia cirrhata Fries (1825: 283); Cetrariastrum cirrhatum (Fr.) Culberson & Culberson (1981: 283); Everniastrum cirrhatum (Fr.) Hale ex Sipman (1986: 237). Hypotrachyna columbiensis (Zahlbr.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803560 Parmelia columbiensis Zahlbruckner (1929: 61); Cetrariastrum columbiense (Zahlbr.) Culberson & Culberson (1981: 285); Everniastrum columbiense (Zahlbr.) Hale ex Sipman (1986: 239). Hypotrachyna constictovexans (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803561 Everniastrum constictovexans Sipman in Lumbsch et al. (2011: 53). Hypotrachyna diffractaica (Y.M. Jiang & J.C. Wei) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803562 Everniastrum diffractaicum Jiang & Wei (1993: 58). Hypotrachyna fragilis (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803563 Everniastrum fragile Sipman (1986: 240). Hypotrachyna latiloba (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803564 Everniastrum latilobum Sipman (1986: 243). Hypotrachyna limiformis (Taylor) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803565 Parmelia limiformis Taylor (1847: 170); Cetrariastrum limiforme (Taylor) Culberson & Culberson (1981: 286); Everniastrum limiforme (Taylor) Hale ex Sipman (1986: 240). Hypotrachyna mexicana (Egan) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803566 Cetrariastrum mexicanum Egan in Culberson & Culberson (1981: 287); Everniastrum mexicanum (Egan) Sipman (1986: 241). Hypotrachyna neocirrhata (Hale & M. Wirth) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803567 MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 31 Parmelia neocirrhata Hale & Wirth (1971: 37); Cetrariastrum neocirrhatum (Hale & M. Wirth) Culberson & Culberson (1981: 289); Everniastrum neocirrhatum (Hale & M. Wirth) Hale ex Sipman (1986: 241). Hypotrachyna neohalei Divakar, A. Crespo, Sipman, Elix & Lumbsch, nom. nov. MycoBank No.: MB 803568 pro Cetrariastrum halei Culberson & Culberson (1981: 301); Everniastrum halei (W.L. Culb. & C.F. Culb.) Sipman (1986: 240); non Hypotrachyna halei Sipman et al. (2009: 76). Hypotrachyna neotropica Divakar, A. Crespo, Sipman, Elix & Lumbsch, nom. nov. MycoBank No.: MB 803569 pro Cetrariastrum peruvianum Hale in Culberson & Culberson (1981: 291); Everniastrum peruvianum (Hale) Sipman (1986: 241); non Hypotrachyna peruviana (Nyl.) Hale (1975: 54). Hypotrachyna nepalensis (Taylor) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803570 Parmelia nepalensis Taylor (1847: 172); Cetrariastrum nepalense (Taylor) Culberson & Culberson (1981: 301); Everniastrum nepalense (Taylor) Hale ex Sipman (1986: 241). Hypotrachyna nigrociliata (de Lesd.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803571 Parmelia nigrociliata Bouly de Lesdain (1933: 117); Cetrariastrum nigrociliatum (de Lesd.) Culberson & Culberson (1981: 290); Everniastrum nigrociliatum (Taylor) Hale ex Sipman (1986: 241). Hypotrachyna plana (Sipman) Divakar, A. Crespo, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803594 Everniastrum planum Sipman (1980: 349) Hypotrachyna pseudonepalensis (Hale & M. Wirth) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803572 Parmelia pseudonepalensis Hale & Wirth (1971: 40); Cetrariastrum pseudonepalense (Hale & M. Wirth) Culberson & Culberson (1981: 303); Everniastrum pseudonepalense (Hale & M. Wirth) Hale ex Sipman (1986: 242). Hypotrachyna rhizodendroidea (J.C. Wei & Y.M. Jiang) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803573 Cetrariastrum rhizodendroideum Wei & Jiang (1982: 496); Everniastrum rhizodendroideum (J.C. Wei & Y.M. Jiang) Sipman (1986: 242). Hypotrachyna scabrida (Elix & Pooprang) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803574 Everniastrum scabridum Elix & Pooprang in Pooprang et al. (1999: 112). Hypotrachyna sinensis (J.B. Chen & J.C. Wei) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803575 Everniastrum sinense J.B. Chen & J.C. Wei in Chen et al. (1989: 434). Hypotrachyna sorocheila (Vain.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803576 Parmelia sorocheila Vainio (1899: 123); Cetrariastrum sorocheilum (Vain.) Culberson & Culberson (1981: 292); Everniastrum sorocheilum (Vain.) Hale ex Sipman (1986: 242). Hypotrachyna subnepalensis (Hale) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803577 Cetrariastrum subnepalense Hale in Culberson & Culberson (1981: 304); Everniastrum africanum (Hale) Sipman (1986: 242). 32 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. Hypotrachyna subplana (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803578 Everniastrum subplanum Sipman (1986: 244); Cetrariastrum subplanum (Sipman) Kurokawa (1999: 254). Hypotrachyna subsorocheila (Y.M. Jiang & J.C. Wei) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803579 Everniastrum subsorocheilum Jiang & Wei (1989: 246). Hypotrachyna subvexans (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803580 Everniastrum subvexans Sipman (1986: 246). Hypotrachyna vexans (Zahlbr. ex W.L. Culb. & C.F. Culb.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803581 Cetrariastrum vexans Zahlbr. ex Culberson & Culberson (1981: 294); Everniastrum vexans (Zahlbr. ex W.L. Culb. & C.F. Culb.) Hale ex Sipman (1986: 242). Subgenus Parmelinopsis: Hypotrachyna bonariensis (Adler & Elix) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803582 Parmelinopsis bonariensis Adler & Elix (1987: 341). Hypotrachyna cleefii (Sipman) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803583 Parmelina cleefii Sipman (1980: 352); Parmelinopsis cleefii (Sipman) V. Marcano & Sipman in Marcano et al. (1996: 214). Hypotrachyna ectypa (Brusse) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803584 Parmelia ectypa Brusse (1991: 164); Parmelinopsis ectypa (Brusse) DePriest & Hale (1998: 203). Hypotrachyna expallida (Kurok.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803585 Parmelia expallida Kurokawa (1968: 191); Parmelina expallida (Kurok.) Hale (1974a: 482); Parmelinopsis expallida (Kurok.) Elix & Hale (1987: 242). Hypotrachyna heteroloba (Zahlbr.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803586 Parmelia heteroloba Zahlbruckner (1909: 171); Parmelina heteroloba (Vain.) Hale (1974a: 482); Parmelinopsis heteroloba (Vain.) Elix & Hale (1987: 242). Hypotrachyna jamesii (Hale) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803587 Parmelia jamesii Hale (1972: 179); Parmelina jamesii (Hale) Hale (1976: 35); Parmelinopsis jamesii (Hale) Elix & Hale (1987: 242). Hypotrachyna megadactyla (Aptroot) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803588 Parmelinopsis megadactyla Aptroot (1991: 242). MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 33 Hypotrachyna microlobulata (D.D. Awasthi) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803589 Parmelia microlobulata Awasthi (1976: 182); Parmelinopsis microlobulata (D.D. Awasthi) Elix & Hale (1987: 242). Hypotrachyna nagalandica (K. Singh & Sinha) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803590 Parmelina nagalandica K. Singh & Sinha (1993: 464); Parmelinopsis nagalandica (K. Singh & Sinha) Divakar & Upreti (2005: 288). Hypotrachyna neodamaziana (Elix & J. Johnst.) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803591 Parmelina neodamaziana Elix & Johnston (1986: 155); Parmelinopsis neodamaziana (Elix & J. Johnst.) Elix & Hale (1987: 243). Hypotrachyna neoprotocetrarica Divakar, A. Crespo, Sipman, Elix & Lumbsch, nom. nov. MycoBank No.: MB 803592 Parmelinopsis protocetrarica Elix (1993a: 119); non Hypotrachyna protocetrarica Elix, T.H. Nash & Sipman in Sipman et al. (2009: 127). Hypotrachyna schindleri (Hale) Divakar, A. Crespo, Sipman, Elix & Lumbsch, comb. nov. MycoBank No.: MB 803593 Parmelina schindleri Hale (1976: 44); Parmelinopsis schindleri (Hale) Elix & Hale (1987: 243). Acknowledgements This work was supported by the Spanish Ministerio de Ciencia e Innovación (CGL2010-21646/BOS) and Ramón y Cajal grant (RYC02007-01576) to PKD, the Universidad Complutense-Banco Santander (GR 35/ 10A), Comunidad Autónoma de Madrid (REMEDINAL S-2009/AMB-1783), the National Science Foundation (“Hidden diversity in parmelioid lichens”, DEB-0949147), and the Polish National Centre for Research and Development (LIDER Program, 92/L–1/09). Sequencing was performed in the Centro de Genómica y Proteómica del Parque Científico de Madrid, where Maria Isabel García Saez is especially thanked. The authors thank two anonymous reviewers for valuable comments and suggestions and Michel Benatti and James Lendermer for providing valuable material for our studies. References Adler, M. & Elix, J.A. (1987) Three new saxicolous species in Parmeliaceae (lichenized Ascomycotina) from Argentina. Mycotaxon 30: 339–344. Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716– 723. http://dx.doi.org/10.1109/tac.1974.1100705 Amo de Paz, G., Lumbsch, H.T., Cubas, P., Elix, J.A. & Crespo, A. (2010a) The genus Karoowia (Parmeliaceae, Ascomycota) includes unrelated clades nested within Xanthoparmelia. Australian Systematic Botany 23: 173–184. http://dx.doi.org/10.1071/sb09055 Amo de Paz, G., Lumbsch, H.T., Cubas, P., Elix, J.A. & Crespo, A. (2010b) The morphologically deviating genera Omphalodiella and Placoparmelia belong to Xanthoparmelia (Parmeliaceae). Bryologist 113: 376–386. http://dx.doi.org/10.1639/0007-2745-113.2.376 Aptroot, A. (1991) Lichens of Madagascar: new records and species of Parmeliaceae. Cryptogamie, BryologieLichénologie 12: 149–154. Awasthi, D.D. (1976) Lichen genus Parmelia in India I, Subgenera Parmelia and Amphigymnia. Biological Memoirs 1: 155–266. 34 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. Blanco, O., Crespo, A., Divakar, P.K., Elix, J.A. & Lumbsch, H.T. (2005) Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia 97: 150–159. http://dx.doi.org/10.3852/mycologia.97.1.150 Blanco, O., Crespo, A., Divakar, P.K., Esslinger, T.L., Hawksworth, D.L. & Lumbsch, H.T. (2004a) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycological Research 108: 873–884. http://dx.doi.org/10.1017/s0953756204000723 Blanco, O., Crespo, A., Elix, J.A., Hawksworth, D.L. & Lumbsch, H.T. (2004b) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53: 959–975. Blanco, O., Crespo, A., Ree, R.H. & Lumbsch, H.T. (2006) Major clades of parmeliold lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39: 52–69. http://dx.doi.org/10.1016/j.ympev.2006.03.024 Bouly de Lesdain, M. (1933) Lichens du Mexique, recueillis par les frères G. Arsène et Amable Saint-Pierre. III Supplément. Annales de Cryptogamie Exotique 6: 99–130. Brusse, F. A. (1991) A new species in the lichen genus Parmelia (Parmeliaceae, Ascomycotina), from the Blouberg, northern Transvaal, South Africa, with further notes on southern African lichens. Mycotaxon 42: 163–169. Chen, J.-B., Wu, J.-N. & Wei, J.-C. (1989) Lichens of Shennongjia. In: Fungi and Lichens of Shennongjia, pp. 386-493. Beijing: World Publishing Corp. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334 Crespo, A., Blanco, O. & Hawksworth, D.L. (2001) The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon 50: 807–819. Crespo, A., Divakar, P.K. & Hawksworth, D.L. (2011) Generic concepts in parmelioid lichens, and the phylogenetic value of characters used in their circumscription. Lichenologist 43: 511–535. http://dx.doi.org/10.1017/s0024282911000570 Crespo, A., Ferencova, Z., Pérez-Ortega, S., Argüello, A., Elix, J.A. & Divakar, P.K. (2010a) Austroparmelina, a new Australasian lineage in parmelioid lichens (Parmeliaceae, Ascomycota): a multigene and morphological approach. Systematics and Biodiversity 8: 209–221. Crespo, A., Kauff, F., Divakar, P.K., Amo, G., Arguello, A., Blanco, O., et al. (2010b) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 1735–1753. Crespo, A., Lumbsch, H.T., Mattsson, J.E., Blanco, O., Divakar, P.K., Articus, K., et al. (2007) Testing morphologybased hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812–824. Culberson, C.F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thinlayer chromatographic method. Journal of Chromatography 72: 113–125. http://dx.doi.org/10.1016/0021-9673(72)80013-x Culberson, C.F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 438–487. http://dx.doi.org/10.1016/s0021-9673(00)81336-9 Culberson, W.L. & Culberson, C.F. (1981) The genera Cetrariastrum and Concamerella (Parmeliaceae): a chemosynthetic synopsis. Bryologist 84: 273–314. http://dx.doi.org/10.2307/3242843 Degelius, G.N. (1941) Contributions to the Lichen flora of North America II. The lichen flora of the Great Smoky Mountains. Arkiv för Botanik 30A, Nr. 3: 1–80. DePriest, P.T. & Hale, B.W. (1998) New combinations in parmelioid genera (Ascomycotina: Parmeliaceae). Mycotaxon 67: 201–206. Divakar, P.K., Blanco, O., Hawksworth, D.L. & Crespo, A. (2005) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. Lichenologist 37: 55–65. http://dx.doi.org/10.1017/s0024282904014586 Divakar, P.K., Crespo, A., Blanco, O. & Lumbsch, H.T. (2006) Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae, Ascomycota). Molecular Phylogenetics and Evolution 40: 448–458. http://dx.doi.org/10.1016/j.ympev.2006.03.024 Divakar, P.K., Del Prado, R., Lumbsch, H.T., Wedin, M., Esslinger, T.L., Leavitt, S.D., et al. (2012) Diversification of the MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 35 newly recognized lichen forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. American Journal of Botany 99: 2014–2026. http://dx.doi.org/10.3732/ajb.1200258 Divakar, P.K., Ferencova, Z., Del Prado, R., Lumbsch, H.T. & Crespo, A. (2010) Remototrachyna, a new tropical lineage in hypotrachynoid lichens (Parmeliaceae, Ascomycota): a multigene and morphological approach. American Journal of Botany 97: 579–590. http://dx.doi.org/10.3732/ajb.0900140 Divakar, P.K.; Upreti, D.K. & Elix, J.A. (2001) New species and new records in the lichen family Parmeliaceae (Ascomycotina) from India. Mycotaxon 80: 355–362. http://dx.doi.org/10.1017/s0024282905015215 Divakar, P.K. & Upreti, D.K. (2005) Parmelioid lichens in India (A revisionary study). Bishen Singh Mahendra Pal Singh, Dehra Dun p. 488. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. http://dx.doi.org/10.1093/nar/gkh340 Elix, J.A. (1993a) New species in the lichen family Parmeliaceae (Ascomycotina) from Australia. Mycotaxon 47: 101– 129. Elix, J.A. (1993b) Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96: 359–383. Elix, J.A. (1994) Parmeliaceae. Flora of Australia 55: 1–341. Elix, J.A. & Hale, M.E. (1987) Canomaculina, Myelochroa, Parmelinella, Parmelinopsis and Parmotremopsis, five new genera in the Parmeliaceae (lichenized Ascomycotina). Mycotaxon 29: 233–244. Elix, J.A. & Johnston, J. (1986) New species of Parmelina (lichenised Ascomycotina) from Australia and New Zealand. Brunonia 9: 155–161. Elix, J.A., Johnston, J. & Verdon, D. (1986) Canoparmelia, Paraparmelia and Relicinopsis, three new genera in the Parmeliaceae (lichenized Ascomycotina). Mycotaxon 27: 271–282. Esslinger, T.L. (1978) A new status for the brown Parmeliae. Mycotaxon 7: 45-54. Fries, E. (1825) Systema Orbis Vegetabilis. Primas lineas novae constrictionis periclitatur Elias Fries. Pars I. Plantae homonemeae (Vol. 1). Lund, pp. 1–369. Gutierrez, G., Blanco, O., Divakar, P.K., Lumbsch, H.T. & Crespo, A. (2007) Patterns of group I intron presence in nuclear SSU rDNA of the lichen family Parmeliaceae. Journal of Molecular Evolution 64: 81–195. http://dx.doi.org/10.1007/s00239-005-0313-y Hale, M.E., Jr (1972) Parmelia jamesii, an unusual species in section Imbricaria (Lichenes) from Australia and New Zealand. Phytologia 23: 179. Hale, M.E., Jr (1974a) Bulbothrix, Parmelina, Relicina, and Xanthoparmelia, four new genera in the Parmeliaceae. Phytologia 28: 479–490. Hale, M. E., Jr (1974b) Delimitation of the lichen genus Hypotrachyna (Vainio) Hale. Phytologia 28: 340–342. Hale, M. E., Jr. (1975) A revision of lichen genus Hypotrachyna (Parmeliaceae) in tropical America. Smithsonian Contributions to Botany 25: 1–73. http://dx.doi.org/10.5479/si.0081024x.25 Hale, M. E., Jr (1976) A monograph of the lichen genus Parmelina Hale (Parmeliaceae). Smithsonian Contributions to Botany 33: 1–60. http://dx.doi.org/10.5479/si.0081024x.33 Hale, M.E., Jr (1984) Flavopunctelia, a new genus in the Parmeliaceae (Ascomycotina). Mycotaxon 20: 681–682. Hale, M.E., Jr (1986a) Arctoparmelia, a new genus in the Parmeliaceae (Ascomycotina). Mycotaxon 25: 251–254. Hale, M.E., Jr (1986b) Flavoparmelia, a new genus in the lichen family Parmeliaceae (Ascomycotina). Mycotaxon 25: 603–605. Hale, M.E., Jr. & Fletcher, A. (1990) Rimelia Hale & Fletcher, a new lichen genus (Ascomycotina: Parmeliaceae). Bryologist 93: 23–29. http://dx.doi.org/10.1017/s0024282985000329 Hale, M.E., Jr & Wirth, M. (1971) Notes on Parmelia subgenus Everniiformes with descriptions of six new species. Phytologia 22: 36–40. Högnabba, F. (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycological Research 110: 1080–1092. http://dx.doi.org/10.1016/j.mycres.2006.04.013 Hörandl, E. & Stuessy, T.F. (2010) Paraphyletic groups as natural units of biological classification. Taxon 59: 1641– 1653. Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754– 755. 36 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL. http://dx.doi.org/10.1093/bioinformatics/17.8.754 Jiang, Y.-M. & Wei, J.-C. (1993) A new species of Everniastrum containing diffractaic acid. Lichenologist 25: 57–60. http://dx.doi.org/10.1017/s0024282993000064 Jiang, Y.M. & Wei, J.C. (1989) A preliminary study on Everniastrum from China. Acta Byrolichenologica Asiatica 1: 43–52. Kärnefelt, I. (1980) Everniastrum andense sp. nov., a neotropical paramo lichen. Botaniska Notiser 133: 387–394. Krog, H. (1982) Punctelia, a new lichen genus in the Parmeliaceae. Nordic Journal of Botany 2: 287–292. http://dx.doi.org/10.1111/j.1756-1051.1982.tb01191.x Krog, H. & Swinscow, T.D.V. (1981) Parmelia subgenus Amphigymnia (lichens) in East Africa. Bulletin of the British Museum (Natural History), Botany Series 9: 143–231. http://dx.doi.org/10.1017/s0024282982000528 Krog, H. & Swinscow, T.D.V. (1987) New species and new combinations in some parmelioid lichen genera, with special emphasis on East African taxa. Lichenologist 19: 419–431. http://dx.doi.org/10.1017/s0024282987000392 Kurokawa, S. (1968) Parmelia expallida, a new lichen species from eastern Asia. Bulletin of the National Science Museum (Tokyo), Series B (Botany) 11: 191–194. Kurokawa, S. (1991) Rimeliella, a new lichen genus related to Rimelia of the Parmeliaceae. Annals of the Tsukuba Botanical Garden 10: 1–14. Kurokawa, S. (1999) A note on pustulate or sorediate species of Cetrariastrum (Parmeliaceae). Journal of Japanese Botany 74: 251–255. Lumbsch, H.T., Ahti, T., Altermann, S., Amo, G., Aptroot, A., Arup, U., et al. (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18: 1–127. Lumbsch, H.T., Hipp, A.L., Divakar, P.K., Blanco, O. & Crespo, A. (2008) Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evolutionary Biology 8: 257. Lumbsch, H.T., Parnmen, S., Rangsiruji, A. & Elix, J.A. (2010) Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota). Australian Systematic Botany 23: 239–247. Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dentinger, B., et al. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446–1480. http://dx.doi.org/10.3732/ajb.91.10.1446 Mackay, J.T. (1836) Flora Hibernica, vol. 2. William Curry, Inn and Co., Dublin. 279 p. Magnusson, A.H. (1941) New species of Cladonia and Parmelia from the Hawaiian Islands. Arkiv för Botanik 30B(3): 1–9. Marcano, V., Morales Méndez, A., Sipman, H. & Calderon, L. (1996) A first checklist of the lichen-forming fungi of the Venezuelan Andes. Tropical Bryology 12: 193–235. Massalongo, A. (1860) Esame comparativo di alcuni generi di licheni. Atti dell'Istituto Veneto di scienze, lettere ed arti 5, ser. 3: 247–267, 313–337. Meyen, J. & Flotow, J. (1843) Lichenes Exotici (Observationes in itinere circum terram institutae (1830-1832): Lichenes. Nova Acta Academiae Caesariae Leopoldinae-Carolinae 19, Suppl.: 209–232. Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swofford, D.L. (2007) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. http://dx.doi.org/10.1093/bioinformatics/btm388 Page, R.D.M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applied Biosciences 12: 357–358. http://dx.doi.org/10.1093/bioinformatics/12.4.357 Parnmen, S., Rangsiruji, A., Mongkolsuk, P., Boonpragob, K., Elix, J. A. & Lumbsch, H.T. (2010) Morphological disparity in Cladoniaceae: The foliose genus Heterodea evolved from fruticose Cladia species (Lecanorales, lichenized Ascomycota). Taxon 59: 841–849. Pooprang, T., Boonpragob, K. & Elix, J.A. (1999) New species and new records in the lichen family Parmeliaceae (Ascomycotina) from Thailand. Mycotaxon 71: 111–127. Posada, D. (2008) JModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. http://dx.doi.org/10.1093/molbev/msn083 Santesson, R. (1942) Two interesting new species of the lichen genus Parmelia. Botaniska Notiser 1942: 325–330. Schmidt, H.A., Strimmer, K., Vingron, M. & von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504. http://dx.doi.org/10.1093/bioinformatics/18.3.502 Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026201 Singh, K.P. & Sinha, G.P. (1993) Two new species of Parmelina from India. Nordic Journal of Botany 13: 463–466. MOLECULAR PERSPECTIVE ON GENERIC CONCEPTS IN HYPOTRACHYNA Phytotaxa 132 (1) © 2013 Magnolia Press • 37 http://dx.doi.org/10.1111/j.1756-1051.1993.tb00082.x Sipman, H.J.M. (1980) Studies on Colombian cryptogams. X. The genus Everniastrum Hale and related taxa (Lichens). Proceedings Koninkijke Nederlandse Akademie van Wetenschappen, ser. C 83: 333–354. Sipman, H. J. M. (1986) Notes on the lichen genus Everniastrum (Parmeliaceae). Mycotaxon 26: 235–251. Sipman, H.J.M., Elix, J.A. & Nash, T.H. (2009) Hypotrachyna (Parmeliaceae, Lichenized Fungi). Flora Neotropica Monograph 104: 1–176. Smith, J.E. & Sowerby, J. (1809) English Botany, vol. 29. White, London. Smith, C. W. (1993) Notes on Hawaiian parmelioid lichens. Bryologist 96: 326–332. Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. http://dx.doi.org/10.1093/bioinformatics/btl446 Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Systematic Biology 57: 758–771. http://dx.doi.org/10.1080/10635150802429642 Stenroos, S.K. & DePriest, P.T. (1998) SSU rDNA phylogeny of cladoniiform lichens. American Journal of Botany 85: 1548–1559. http://dx.doi.org/10.2307/2446481 Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society of London, Ser. B, Biological Sciences 269: 137–142. http://dx.doi.org/10.1098/rspb.2001.1862 Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. http://dx.doi.org/10.1080/10635150701472164 Taylor, T. (1847) New lichens, principally from the herbarium of Sir William J. Hooker. Journal of Botany 6: 148–197. Tehler, A. & Irestedt, M. (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23: 432–454. Thell, A., Feuerer, T., Elix, J.A. & Kärnefelt, I. (2006) A contribution to the phylogeny and taxonomy of Xanthoparmelia (Ascomycota, Parmeliaceae). Journal of the Hattori Botanical Laboratory 100: 797–807. Thell, A., Crespo, A., Divakar, P.K., Kärnefelt, I., Leavitt, S.D., Lumbsch, H.T., et al. (2012) A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. Nordic Journal of Botany 30: 641–664. http://dx.doi.org/10.1111/j.1756-1051.2012.00008.x Vainio, E.A. (1899) Lichenes novi rarioresque. Hedwigia 38, Beibl. 3: (121) – (125). Wei, J.C. & Jiang, Y.M. (1982) New materials for lichen flora of Xizang. Acta Phytotaxonomica Sinica 20: 496–501. Wirtz, N., Printzen, C., Sancho, L.G. & Lumbsch, H.T. (2006) The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon 55: 367–376. Zahlbruckner, A. (1909) Lichenes (Flechten). In: Ergebnisse der botanischen Expedition der kaiserlichen Akademie der Wissenschaften nach Südbrasilien. Denkschriften der Kaiserlichen Akademie der Wissenschaften 83: 85–211. http://dx.doi.org/10.1007/978-3-7091-5790-9 Zahlbruckner, A. (1929) Catalogus Lichenum Universalis (Vol. 6). Leipzig: Borntraeger. 38 • Phytotaxa 132 (1) © 2013 Magnolia Press DIVAKAR ET AL.