Academia.eduAcademia.edu
Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 18 (Supl.): 798-819, Dez. 2008 Received 1 October 2008; 5 November 2008 Revisão Plants with anticonvulsant properties - a review Lucindo J. Quintans Júnior,*,1 Jackson R.G.S. Almeida,2 Julianeli T. Lima,2 Xirley P. Nunes,2 Jullyana S. Siqueira,1 Leandra Eugênia Gomes de Oliveira,3 Reinaldo N. Almeida,3 Petrônio F. de Athayde-Filho,3 José M. Barbosa-Filho3 1 Departamento de Fisiologia, Universidade Federal de Sergipe, Campus Universitário “Prof. Aloísio de Campos”, 49100-000 São Cristóvão-SE, Brazil, 2 Laboratório de Pesquisa do Vale do São Francisco, Universidade Federal do Vale do São Francisco, Caixa Postal 252, 56306-410 Petrolina-PE, Brazil, 3 Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, Caixa Postal 5009, 58051-970 João Pessoa-PB, Brazil RESUMO: “Uma revisão de plantas com propriedades anticonvulsivantes”. Cerca de um terço dos pacientes epilépticos não conseguem ter um tratamento adequado com as drogas anticonvulsivantes atuais. Nesse sentido, as plantas medicinais surgem como uma fonte promissora de novas moléculas químicas com propriedades biológicas apreciáveis. Muitas plantas ou produtos de origem naturais têm sido propostos para o tratamento de várias patologias, tais como: epilepsia, diabetes, ansiedade, depressão, dentre outras. O presente trabalho realizou um extenso levantamento na literatura especializada de plantas medicinais com propriedades anticonvulsivantes. Um total de 355 espécies vegetais foi identificado, sendo 16 plantas encontradas na flora brasileira, com indicação para o tratamento de quadros convulsivos. Características como nome da espécie, família, partes utilizadas, país do estudo e /ou publicação, métodos e referências foram sumarizados. Além disso, os principais apectos dos modelos animais mais utilizados no estudo de plantas/substâncias com propriedades anticonvulsivantes foram revisados. Mais de 170 referências foram consultadas. Unitermos: Plantas medicinais, Produtos naturais, convulsão, atividade anticonvulsivante, modelos animais, revisão. ABSTRACT: Seizures are resistant to treatment with currently available anticonvulsant drugs in about 1 out of 3 patients with epilepsy. Thus, there is a need for new, more effective anticonvulsant drugs for intractable epilepsy. However, nature is a rich source of biological and chemical diversity and a number of plants in the world have been used in traditional medicine remedies, i.e., anticonvulsant, anxiolytic, analgesic, antidepressant. This work constitutes a literature review on medicinal plants showing anticonvulsant properties. The review refers to 16 Brazilian plants and a total 355 species, their families, geographical distribution, the utilized parts, method and references. Some aspects of research on medicinal plants and a brief review of the most common animal models to discover antiepileptic drugs are discussed. For this purpose over 170 references were consulted. Keywords: Medicinal plants, Natural products, convulsion, anticonvulsant properties, animal models, review. INTRODUCTION Epilepsy is one of the most common diseases of the brain, affecting at least 50 million persons worldwide (Scheuer & Pedley, 1990). Epilepsy is a chronic and often progressive disorder characterized by the periodic and unpredictable occurrence of epileptic seizures which are caused by an abnormal discharge of cerebral neurons. Many different types of seizures can be identified on the basis of their clinical phenomena (Löscher, 1998). Seizures are fundamentally divided into two major groups: partial and generalized. Partial (focal, local) seizures are those in which clinical or 798 * E-mail: lucindo@ufs.br Revista Farmacognosia Suplemento 2008.indd Sec1:798 electrographic evidence exists to suggest that the attacks have a localized onset in the brain, usually in a portion of one hemisphere, while generalized seizures are those in which evidence for a localized onset is lacking. Partial seizures are further subdivided into simple partial, complex partial and partial seizures evolving to secondarily generalized seizures, while generalized seizures are categorized into absence (nonconvulsive), myoclonic, clonic, tonic, tonic-clonic and atonic seizures. In addition to classifying the seizures that occur in patients with epilepsy, patients are classified into appropriate types of epilepsy or epileptic syndromes characterized by different seizure types, etiologies, ages ISSN 0102-695X 23/01/2009 10:07:29 Plants with anticonvulsant properties - a review of onset and electroencephalographic (EEG) features (Commission, 2003). The discovery of novel antiepileptic drugs (AEDs) relies upon the preclinical employment of animal models to establish efficacy and safety prior to the introduction of the AEDs in human volunteers (Löscher & Schmidt, 2006). Clearly, the more predictive the animal model for any given seizure type or syndrome, the greater the likelihood that an investigational AED will demonstrate efficacy in human clinical trials (Smith et al., 2007). Mind-altering drugs, especially plants, have always fascinated human beings. Surrounded by mystic superstitions, magic thoughts and religious rituals, they have always occupied man’s attention. Among the plants used by humans, those able to alter the conscience and the sensorium have drawn special consideration. However, the challenge of trying to unravel the mechanisms of action on mood, humor, cognition, ensorium, etc., led to an inconvenience: to ignore, or to face as low priority, the fact that plants could also have beneficial properties to treat mental disease and some psychic ailments (Carlini, 2003; Carlini et al., 2006). Furthermore, as most of the plants were first used by the so-called primitive cultures, their occasional use by the White occidental culture was relegated to a second plan, being considered as sorcerer’s therapeutics. Until recently, very little attention was given by the scientific community to the benefits, as accepted by folk medicine and the medicinal properties of the natural product (Barbosa-Filho et al., 2006a). In addition, nature is a rich source of biological and chemical diversity. The unique and complex structures of natural products cannot be obtained easily by chemical synthesis. A number of plants in the world have been used in traditional medicine remedies (Barbosa-Filho et al., 2006b; Funke & Melzig, 2006; Saúde-Guimarães & Faria, 2007; Agra et al., 2007 and 2008; Veiga-Junior, 2008). Thus, many plants were known for their anticonvulsant activity. Various phytochemical and pharmacological studies have been carried out on these anticonvulsant plants (Chauhan et al., 1988; Nsour et al., 2000). In a previous paper this research group has reviewed crude plant extracts and chemically defined molecules with potential antitumor activity for mammary (Moura et al., 2001), cervical (Moura et al., 2002) and ovarian neoplasias (Silva et al., 2003), as inhibitors of HMG CoA reductase (Gonçalves et al., 2000), central analgesic activity (Almeida et al., 2001), employed in prevention of osteoporosis (Pereira et al., 2002), for the treatment of Parkinson’s disease (Morais et al., 2003), with antileishmanial (Rocha et al., 2005), hypoglycemic (Barbosa-Filho et al., 2005), and antiinflammatory activity (Falcão et al., 2005, Barbosa-Filho et al., 2006c), inhibitors of the enzyme acetylcholinesterase (BarbosaFilho et al., 2006a), inhibitors of the angiotensin converting enzymes (Barbosa-Filho et al., 2006b), giardicidal (Amaral et al., 2006), and antileprotic activity (Barbosa-Filho et al., 2007). The aim of this article is to given an up-todate review on plants with anticonvulsant properties and realized a brief review of the most common animal models to discover antiepileptic drugs. MATERIAL AND METHODS The keywords used for this review were Epilepsy, Plants, Animal models, Anticonvulsant, Natural product and antiepileptic. The search perfound using Chemical Abstracts, Biological Abstracts, Web of Science, ScienceDirect and the data bank of the University of Illinois at Chicago, NAPRALERT (Acronym for NAtural PRoducts ALERT), updated to December 2006. From the literature search, all plants/ herbal preparations that are used ethnomedically to treat epilepsy or those which have been tested for anticonvulsant activity are included in this review. The references obtained were later consulted. RESULTS AND DISCUSSION Over 170 references were found in which plants have been tested for their anticonvulsant activity in in vivo/in vitro studies or clinical studies. Review refers to 355 species, their families, geographical distribution, the utilized parts and methods (see Table 1). The 20th century has witnessed considerable progress in anticonvulsant drug development (Loscher & Schmidt, 1994). The major drugs in clinical use, i.e. phenytoin, carbamazepine, valproate, benzodiazepines, ethosuximide, phenobarbital and primidone, were developed and introduced between 1910 and 1970 and will be referred to as ‘old drugs’ or ‘first generation’ drugs in the following. After a hiatus of over 20 years, several new anticonvulsant drugs, i.e., vigabatrin, gabapentin, felbamate, lamotrigine, oxcarbazepine, tiagabine and topiramate, have been introduced into clinical practice, referred to as ‘new drugs’ or ‘second generation’ drugs in the following. More recent anticonvulsants which are in preclinical or clinical development will be referred to as ‘third generation’ drugs (Löscher, 1998). In the other hand, approximately 70% of patients with epilepsy are well controlled by monotherapy with currently available antiepileptic drugs. Another 5-10% of patients are stabilized by the addition of another antiepileptic drug but there remains over 20% of patients whose seizures are not controlled (Richens & Perucca, 1993). Therefore, phytomedicines can potentially play an important role in the development of new antiepileptic drugs to pharmacoresistent patients (Nsour et al., 2000). Many plants were known for their anticonvulsant activity. Reviews articles (Athanassova Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:799 799 23/01/2009 10:07:29 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. et al., 1965 and 1969; Dhar et al., 1968 and 1973; Adesina, 1982a; Chauhan et al., 1988 and Nsour et al., 2000) were previously published with regards to plants with anticonvulsant properties. In fact, current world-wide interest in traditional medicine has led to rapid development and studies of many remedies employed by various ethnic groups of the world. The information is recorded in alphabetical order of plant scientific name, family, part used, route of administration, dose, method and reference, as showed in Table 1 that summary of the plants which have been tested or reported for anticonvulsant properties. Among those medicinal plants are found to possess anticonvulsant activity in animal models and/or folk medicine, include: Abelmoschus angulosus, Allium sativum, Artemisia spp, Cannabis sativa, Cinchona officinalis, Egletes viscosa, Icacina trichantha, Magnolia grandiflora, Plumbago zeylanica and others. However, a recent study with Brazilian Northeastern plants showed proexcellent results for the species Bauhinia outimouta, Rauvolfia ligustrina and Ximenia americana (Quintans-Júnior et al., 2002). In our review 13 Brazilian plants were cited: Acosmium subelegans, Artemisia verlotorum, Centella asiatica, Cymbopogon citratus, Erythrina velutina, Erythrina mulungu, Hippeastrum vittatum, Lanata microphylla, Licaria puchury-major, Lippia alba, Nepeta cataria, Passiflora alata and Xylopia spp. Among those plants tested, a number of them (from different families) are found to possess anticonvulsant activity. While in most cases, the active constituents are yet to be found, for those where the active components are known, they belong to different chemical classes. However, previous studies showed that some natural plant coumarins and triterpenoids exhibit anticonvulsant properties (Chaturvedi et al., 1974; Nsour et al., 2000). In addition, the history of drug discovery showed that plants are highly rich sources in the search for new active compounds and they have become a challenge to modern pharmaceutical industry. Many synthetic drugs owe their origin to plant-based complementary medicine (Howes et al., 2003; Orhan et al., 2004). A number of animal models have demonstrated utility in the search for more efficacious and more tolerable AEDs. In fact, the models employed in the early phase of AED discovery are highly predictive of subsequent efficacy in easy-to-manage generalized and partial epilepsy (Smith et al., 2007). Thus, animal models more employed were leptazole-induced seizure (LIS), maximal electroshock seizure (MES), metrazoleinduced seizures (MIS), picrotoxin-induced convulsions (PIC), pilocarpine (PILO), pentylenetetrazole (PTZ) and strychnine-induced seizures (SIS). However, MES, PIC and PTZ seizure models continue to represent the three most widely used animal seizure models employed in the search for new AEDs (While et al., 2002). 800 This review only briefly mention the most common animal methods for evaluating of the plants with anticonvulsant properties and medicinal plants studies to epilepsy described in literature. More information, seen an excellence reviews by Mello et al. (1986), Fisher (1989), Meldrum (1997), Nsour et al. (2000) and Smith et al. (2007). Animals models for testing anticonvulsant drugs (Screening) Since the Landmark identification of the anticonvulsant properties of phenytoin in 1936 by virtue of its ability to protect against electroshock-induced convulsions in the cat (Putman & Merritt, 1937) the majority of novel AEDs have been identified through screening in animal models of epilepsy. The National Institutes of Health (NIH)/ American Epilepsy Society (AES) Models II Workshop, held in 2002, described the “ideal” epilepsy model as one that reflects similar pathophysiology and phenomenology to human epilepsy. Seizures should evolve spontaneousl after a postinsult latent period or in a developmental time frame consistent with the human condition. Furthermore, the ideal model should display a pharmacological profile that is resistant to at least two of the existing AEDs (Stables et al., 2003). Finally, the ideal model would be amenable to highthroughput screening. Given the highly heterogeneous nature of seizure disorders in humans, the complexity of the seizure phenotypes, and the syndromes involved, the reality is that it is highly unlikely that any one animal model will ever predict the full therapeutic potential of an investigational AED. Therefore, investigational AEDs are currently evaluated in a battery of syndrome-specific model systems. As specific models are developed (and the drugs they identify are validated clinically), they are integrated into the existing discovery process to better identify more effective antiseizure and potentially antiepileptic therapies. Moving beyond the symptomatic treatment of epilepsy, the goal of most basic and clinical scientists in epilepsy research is to identify therapies capable of preventing, delaying, or modifying the disorder (Smith et al., 2007). The fact that preclinical models used for identification and development of novel drugs have been originally validated by ‘old’ drugs, i.e. conventional anticonvulsants, may explain that several of the new drugs possess mechanisms which do not differ from those of the standard drugs . The MES and PTZ tests The most commonly employed animal models in the search for new anticonvulsant drugs are the maximal electroshock seizure (MES) test and the pentylenetetrazole (PTZ) seizure test (Löscher & Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:800 23/01/2009 10:07:29 Plants with anticonvulsant properties - a review Schmidt, 1988). The maximal electroshock seizure test, in which tonic hindlimb seizures are induced by bilateral corneal or transauricular electrical stimulation, is thought to be predictive of anticonvulsant drug efficacy against generalized tonic-clonic seizures, while the pentylenetetrazole test, in which generalized myoclonic and clonic seizures are induced by systemic (usually s.c. or i.p.) administration of convulsant doses of PTZ, is thought to represent a valid model for generalized absence and/or myoclonic seizures in humans (Löscher, 1998). Everett and Richards (1944) demonstrated that both trimethadione and phenobarbital, but not phenytoin (PHT), were able to block seizures induced by the GABAA-receptor antagonist PTZ. Soon thereafter, Lennox (1945) demonstrated that trimethadione was effective at attenuating petit mal (i.e., absence epilepsy) attacks but was ineffective intreating or worsening grand mal seizures (i.e., generalized tonic-clonic seizures). The positive results obtained in the PTZ seizure test were historically considered suggestive of potential clinical utility against generalized absence epilepsy, based largely on the finding that drugs active in the clinic against spike-wave seizures (e.g., ethosuximide, trimethadione, valproic acid, the benzodiazepines) were effective at blocking clonic seizures induced by PTZ (Smith et al., 2007). MES and PTZ tests provide some insight into the ability of a given drug to penetrate the blood-brain barrier and exert a central nervous system (CNS) effect. Indeed, both models are nonselective with respect to mechanism and therefore are well suited for screening anticonvulsant activity, as neither model assumes that the pharmacodynamic activity of a particular drug is dependent on its molecular mechanism of action (Smith et al., 2007). The pilocarpine (PILO) and kainate (KAI) test Pilocarpine and kainate models replicate several phenomenological features of human temporal lobe epilepsy and can be used as animal preparations to understand the basic mechanisms of epileptogenesis (Turski et al., 1983; Ben-Ari, 1985; Turski et al., 1989). Local or systemic administration of PILO and KAI in rodents leads to a pattern of repetitive limbic seizures and status epilepticus, which can last for several hours (Cavalheiro et al., 1982; Leite et al., 2002). The brain damage induced by status epilepticus in such preparations may be considered an equivalent of the initial precipitating injury event, usually a prolonged febrile convulsion, which is commonly found in patients with mesial temporal lobe epilepsy (Leite et al., 2002). Indeed, neuropathological changes such as neuron loss in several hippocampal subfields and reorganization of mossy fibers into the molecular layer of the fascia dentata are observed in both models and are similar to hippocampi from patients with hippocampal sclerosis (Mello et al., 1993; Mathern et al., 1995). This abnormal synaptic reorganization has been suggested to be an anatomical substrate for epileptogenesis (Buckmaster & Dudek, 1997). Thus, for AED studies in PILO and KAI models, sequential analysis will enable to build precise and reliable correlations between pharmacological effects on seizure behavior and involved brain substrates (Leite et al., 2002). Chemical kindling model Those animal models previously cited are convenient but does not mimic spontaneous seizures occurring in the epileptic brain (Meldrum & Rogawski, 2007). Indeed, kindling model has been widely studied both as a tool for understanding chronic epileptogenesis and as a model for testing AEDs with a potential for treating complex partial seizures. This model is too laborious for use as a primary screening procedure, yet it is clear that it consistently identifies compounds with therapeutic potential in complex partial seizures (Löscher & Schmidt, 2006). The kindling model of epileptogenesis, originally described by Goddard et al. (1969), is characterized by the development of persistent reduction in seizures threshold after a repeated administration of subconvulsant doses of stimulant drugs, such as cocaine, carbamylcholine and pentylenetetrazole (PTZ) (Fabisiak & Schwark, 1982). A well-established model in epilepsy research is PTZ-kindling of mice and rats. PTZ may cause seizures by inhibitory chloride ion channel associated with GABAA receptors (Meldrum & Nilsson, 1976). The mechanism underlying kindling are nowadays still not completely understood (Rössler et al., 2000). As PTZ has been shown to interact with the GABA neurotransmitter and the GABA receptor complex (Löscher & Schmidt, 1988), On the other hand, investigations concerning the biochemistry of glutamate, especially modifications in glutamate binding after electrical kindling, showed increased glutamate release and increased receptor density in target neurons populations (Cincotta et al., 1991). Other studies provided evidence that AMPA and NMDA receptors are involved in the initiation of seizures and their propagation (Velisek et al., 1995) and that NMDA receptors antagonists retard the development of kindling (Becker et al., 2001). Although, little is known about the changes of the glutamatergic neuronal transmission after chemical kindling induced by repeated applications of initially subconvulsive doses of PTZ (Rauca et al., 2000), however, alters in glutamatergic system may not be the main factor but one of several possibilities. Others methods Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:801 801 23/01/2009 10:07:29 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. Summary of the common methods used to evaluation anticonvulsant properties of the medicinal plants and AED as showed in Table 2. In fact, all currently available drugs are anticonvulsant (anti-seizure) rather than antiepileptic. The latter term should only be used for drugs which prevent or treat epilepsy and not solely its symptoms. The goal of therapy with an anticonvulsant drug is to keep the patient free of seizures without interfering with normal brain function (Löscher, 1998). The selection of an anticonvulsant drug is based primarily on its efficacy for specific types of seizures and epilepsy (Mattson, 1995). 802 CONLUSION It can be concluded that studies with species from a range of families have been shown anticonvulsant properties and understanding of the complex mechanism of epilepsy. Academic institutions should invest in this type of study with medicinal plants and contribute to the benefit of the populations needing this type of health care. Thus, it is the wish of the authors that this review article will stimulate the interests in further investigations into natural products for new antiepileptic agents. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:802 23/01/2009 10:07:29 803 23/01/2009 10:07:29 Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Plant Family Part used Place Abelmoschus angulosus Abrus precatorius Abrus precatorius Acanthus longifolius Achillea millefolium Aconitum species Acorus calamus Acosmium subelegans Adonis vernalis Afraegle paniculata Albizia lebbek Albizia zygia Allium ascalonicum Allium cepa Allium sativum Alstonia boonei Alstonia schoaris Annona muricata Apium graveolens Acorus calamus Acorus gramineus Afraegle paniculata Afrormosia laxiflora Akebia species Albizia lebbek Allium ascalonicum Allium cepa Allium sativum Alstonia boonei Altingia excelsa Anagallis arvensis Angelica pancicii Annona diversifolia Annona muricata Apium graveolens Areca catechu Armillaria mellea Artemisia absinthium Artemisia verlotorum Artemisia vulgaris Asarum heterotropoides Asarum himalaycum Asarum ichangense Asparagus officinalis Asparagus verticillatus Asperula odorata Asplenium trichomanes Malvaceae Leguminosae Fabaceae Acanthaceae Asteraceae Ranunculaceae Araceae Leguminosae Ranunculaceae Rutaceae Leguminosae Leguminosae Liliaceae Liliaceae Liliaceae Apocynaceae Apocynaceae Annonaceae Umbelliferae Araceae Araceae Rutaceae Fabaceae Lardizabalaceae Fabaceae Liliaceae Liliaceae Liliaceae Apocynaceae Hamamelidaceae Primulaceae Apiaceae Annonaceae Annonaceae Apiaceae Palmae Tricholomataceae Asteraceae Asteraceae Asteraceae Aristolochiaceae Aristolochiaceae Aristolochiaceae Liliaceae Liliaceae Rubiaceae Aspleniaceae Aerial Parts Root Root Entire Plant Aerial Parts Aerial Parts Root, Stem Leaf, Root Leaf Shallot Bulb Bulb Stem Stem Flower Rhizome Rhizome Rootbark Root Dried Stem Leaf Flower Bulb Bulb Stembark Entire Plant Entire Plant Aerial Parts Leaf Leaf Seed Aerial Parts Whole Plant Leaf, Stem Whole Plant Whole Plant Whole Plant Aerial Parts Aerial Parts Aerial Parts Entire Plant India India Nigeria Bulgaria Bulgaria China Brazil Nigeria India Africa India India India India India India Bulgaria Taiwan Nigeria Nigeria South Korea India Nigeria Nigeria Nigeria Nigeria India Bulgaria Bulgaria Mexico Gabon India China Bulgaria Brazil Israel China China China Bulgaria Bulgaria Bulgaria Bulgaria Route Given ip ip ip ip iv ig ip ip po po ip ip ip ip ip ip ip ip ip ip ip ip ip ip ip ip sc, iv sc ip ip ip ip ip ip ip Dose Method Used References 2-4 mg/ml 2-4 mg/ml 100, 500, 1000 mg/kg 2-4 mg/ml 5 mg/kg 150,250 mg/kg 250 mg/kg 1 mg/kg 10, 20, 40, 80 mg/kg 2-4 ml/kg 4 ml/kg 200 mg/kg 100, 250 mg/kg 0.73; 1 ml/kg10-20 ml/kg; 25 mg/kg 2-4 ml/kg 0.2 ml/animal 4 ml/kg 4 ml/kg 4 ml/kg 2-4 ml/kg ACV LIS, SIS MIS MIS, MES ACV, MES AVC MIS MES, PTZ AVC LIS, ACV PIC, PTZ, MIS LIS, SIS LIS LIS, SIS LIS LIS LIS LIS, SIS ACV ACV, MES, PTZ PTZ ACV, MIS MES, PIC ACV MES, PTZ, PIC MIS MIS ACV, MIS MIS ACV MIS, SIS MIS ACV, PTZ PTZ PTZ, MES, MIS ACV ACV PTZ, MES, PILO MES, PILO, 3-MCAIC PIC ACV ACV ACV LIS, MIS MIS, SIS MIS, SIS MES, MIS, SIS Bhakuni et al., 1988 Adesina, 1982a Adesina, 1982a Rousinov et al., 1966 Athanassova et al., 1965 Ameri, 1997 Chauhan et al., 1988 Vieira et al., 2002 Chauhan et al., 1988 Ameri, 1997 Kasture et al., 1996 Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Chauhan et al., 1988 Rousinov et al., 1966 Liao et al., 1998 Adesina & Ette 1982 Haruna, 2000 Hong et al., 1988 Kasture et al., 1996 Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Singh et al., 1985 Rousinov et al., 1966 Rousinov et al., 1966 Gonzalez-Trujano, 1998 N’gouemo et al., 1997 Kulshrestha et al., 1970 Lodge et al., 1997 Junhua et al., 1990 Athanassova et al., 1965 Lima et al., 1993 Abdul-Ghani et al., 1987 Sun et al., 1991 Sun et al., 1991 Sun et al., 1991 Chauhan et al., 1988 Athanassova et al., 1969 Athanassova et al., 1969 Athanassova et al., 1965 Plants with anticonvulsant properties - a review Revista Farmacognosia Suplemento 2008.indd Sec1:803 Table 1. Plant showed anticonvulsant properties. 804 Family Part used Place Route Given Dose Method Used 23/01/2009 10:07:29 Atractylodes lancea Astragalus centralpinus Atractylodes lancea Baccharis serraefolia Basslla alba Basslla ruba Bauhinia outimouta Berberis lycium Boerhavia diffusa Bupleurum chinense Bupleurum falcatum Butea monosperma Buthus martensii Cadia rubra Caesalpinia bonduc Caesalpinia bonducella Calliandra portoricensis Cannabis sativa Asteraceae Leguminosae Asteraceae Asteraceae Basellaceae Basellaceae Fabaceae Berberidaceae Nyctaginaceae Apiaceae Apiaceae Fabaceae Buthidae Fabaceae Leguminosae Fabaceae Leguminosae Cannabinaceae Rhizome Leaf Leaf, Stem Leaf, Stem Whole Plant Root Leaf Entire Plant Root Flower Venom Leaf Root, Stem Leaf Root, Stem Whole Plant Japan China Mexico India India Brazil India Nigeria China China/Japan India China Madagascar Nigeria Nigeria Bulgaria po ip ip ip po po ip ip ip ip ip, po ip ip ip ip ip,po, sc 250, 500 mg/kg 500 mg/kg 200 mg/kg 150 mg/kg 25 mg/kg 2 mg/kg 1,5 mg/kg 50, 200 mg/kg 100 mg/kg 100, 300 mg/kg 2-4 ml/kg MES HIC MIN, PTZ, PIC PIZ, SIS LIS, SIS LIS, SIS PTZ MES ACV, PTZ, MES, MIS ACV ACV MES, PTZ, SIS ACV PTZ LIS, SIS MES, MIS, SIS LIS, MIS, SIS ACV, PTZ, MES, KID Canscora decussata Capparis baduca Capsella bursa-pastoris Capsicum annum Carica papaya Carthamus tinctorius Casimiroa edulis Gentianaceae Capparaceae Brassicaceae Solanaceae Caricaceae Asteraceae Rutaceae Whole Plant Entire Plant Flower Root Flower Leaf Bulgaria Nigeria Japan Mexico po ip sc po, sc 2-4 ml/kg 20, 100 mg/kg 10 mg/kg 10, 100 mg/kg ACV ACV MES, MIS LIS, SIS MES, LIS, SIS MIS MES, MIS Cassia siamea Centella asiatica Fabaceae Apiaceae Leaf Aerial Part, Entire Plant Thailand Nigeria, India, Brazil ip ip -, 500 mg/kg MIS, SIS LIS, PTZ, SIS Cerbera odollam Chaerophyllum bulbosum Chelidonium majus Chrysanthemum indicum Cimicifuga dahurica Cimicifuga simplex Cinnamomum cassia Cinnamomum loureirii Cinnamomum zeylanicum Cinchona officinalis Cissampelos pareira Cistus villosus var.tauricus Citrus aurantifolia Citrus aurantium Citrus bergamia ssp. vulgaris Clausena anisata Cleome cileata Clerodendrum colebrookianum Apocynaceae Apiaceae Papaveraceae Asteraceae Ranunculaceae Ranunculaceae Lauraceae Lauraceae Lauraceae Rubiaceae Menispermaceae Cistaceae Rutaceae Rutaceae Rutaceae Rutaceae Capparidaceae Verbenaceae Leaf Aerial Part Aerial Part Flower, Stem Root Rhizome Bark Bark Bark Root Aerial Part Peel, Flower Peel Flower Root, Stem Leaf Leaf Vietnam Bulgaria França Bulgaria Russia China China China China Nigeria Bulgaria Italy Nigeria Nigeria India 10 mg/kg 2-4 ml/kg 9.5 mg/kg 0.25 mg/kg 0.5, 1, 2 mg/kg 2 mg 0.3% 1 mg/kg 4 ml/kg 800 mg/kg 20,40 mg/kg 150, 250 mg/kg 55, 68 mg/kg 40 mg/kg PTZ MES, MIS, SIS MES, PTZ MÊS, SIS SIS MIS, SIS ACV ACV, MIS ACV ACV MIS, LIS, SIS MES, MIS, SIS LIS, SIS LIS, SIS PTZ MIS, PTZ, SIS MES, PTZ SIS ip ip ip ip ip po po po ip ip ip ip ip ip ip References Yamahara et al., 1977 Chauhan et al., 1988 Chiou et al., 1997 Tortoriello et al., 1996 Adesina, 1982a Adesina, 1982a Quintans-Júnior et al., 2002 Dhar et al., 1968 Akah & Nwambie, 1993 Wu & Yu, 1984 Narita et al., 1982 Kasture et al., 2000 Liu et al., 1989 Pieretti et al., 1993 Adesina, 1982a Adesina, 1982a Akah & Nwaiwu 1988 Dantas, 2005; Dwivedi & Harbison, 1975 Dikshit et al., 1972 Adesina, 1982a Rousinov et al., 1966 Adesina, 1982a Chauhan et al., 1988 Kasahara et al., 1989 Adesina 1982a; Ruiz et al., 1995 Arunlakshana, 1949 Chauhan et al., 1988; Sudha et al. 2002; De Lucia et al., 1997 Hien et al., 1991 Rousinov et al., 1966 Mahe et al., 1978 Lashev et al., 1981 Nikol-Skaya & Shreter, 1961 Shibata et al., 1980 Narita et al., 1982 Sugaya et al., 1978 Sugaya et al., 1988 Chauhan et al., 1988 Adesina, 1982a Athanassova et al., 1969 Adesina, 1982a Adesina, 1982a Occhiuto et al., 1995 Makanju, 1983 Akah et al., 1993; 1997 Gupta et al., 1998 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:804 Plant Family Part used 805 23/01/2009 10:07:29 Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Cnestis ferruginea Cnestis glabra Cocculus hirsutus Cola acuminata Connarus wightii Consolida orientalis Convolvulus arvensis Convolvulus hirsutus Convolvulus pluricaulis Convolvulus suendermannii Coptis chinensis Corydalis cava Crassostrea gigas Croton zehntneri Coyledon orbiculata Cryptotympana atrata Cucurbita pepo Cuminum cyminum Curcuma amada Curcuma aromatica Cuscuta chinensis Cyathea nilgirensis Cylista scariosa Cymbopogon citratus Cynanchum otophyllum Cynodon dactylon Cyperus articulatus Cyperus rotundus Cystophora moniliformis Cystoseira usneoides Delphinium consolida Delphinium denudatum Desmodium adscendes Dictamnus albus Digitalis ferruginea Digitalis lanata Dillenia indica Diospyros kaki Diospyros peregrine Duboisia leichhardtii Dunaliella tertilecta Echinacea purpurea Echium vulgare Egletes viscosa Elaeocarpus ganitus Verbenaceae Connaraceae Menispermaceae Sterculiaceae Connaraceae Ranunculaceae Convolvulaceae Convolvulaceae Convolvulaceae Convolvulaceae Ranunculaceae Papaveraceae Ostreidae Euphorbiaceae Crussalaceae Cicadidae Cucurbitaceae Apiaceae Zingiberaceae Zingiberaceae Convolvulaceae Cyatheaceae Fabaceae Gramineae Asclepiadaceae Gramineae Cyperaceae Cyperaceae Cystoseiraceae Cystoseiraceae Ranunculaceae Ranunculaceae Leguminosae Rutaceae Scrophulariaceae Scrophulariaceae Dillenciaceae Ebenaceae Ebenaceae Solanaceae Dunaliellaceae Asteraceae Boraginaceae Asteraceae Elaeocarpaceae Rootbark Root, Stem Aerial Part Aerial Part Aerial Part Aerial Part Entire Plant Aerial Part Rhizome Aerial Part Branches Skin Fruit Rhizome Root Entire Plant Aerial Part Root Leaf Rhizome Leaf Rhizome Root Thallus Thallus Aerial Parts Root Leaf Entire Plant Entire Plant Entire Plant Leaf Calix Entire Plant Aerial Parts Flower Entire Plant/Fruit Elettaria cardamomum Eryngium foetidum Erythroxylum spp. Zingiberaceae Apiaceae Erythroxylaceae Seed Leaf Leaf Place Ivory Coast India India Bulgaria Bulgaria Bulgaria India Bulgaria South Korea Bulgaria Japan Brazil South Africa Taiwan Nigeria Iran India China China India India Brazil China Nigeria L. America Nigeria Australia Spain Bulgaria Pakistan Africa Bulgaria Bulgaria Bulgaria India Japan India Spain Bulgaria Brazil India India Jamaica - Route Given Dose Method Used ip ip ip ip ip ip ip ip ip po ip ig ip ip Ig, po ig ip ip po, ip ip ip po ip ip ip ip ip sc sc sc ip ip ig ip 0.7 mg/kg 100 mg/kg 165 mg/kg 4 ml/kg 4, 44 ml/kg 4 ml/kg 4 ml/kg 1 mg/kg 2-4 ml/kg, 4 mg/kg 10% 20,80 mg/kg 50-400 mg/kg 0.5 mg/kg 0.5 ml/mg 500 mg/kg -, 2.5 mg 1 mg/kg 0.25 mg/kg 500 mg/kg 12.5 mg/kg 600 mg/kg 50-2000 mg/kg 6.25 mg/kg 4 ml/kg 400, 600, 800 mg/kg 300 mg/kg 2-4ml/kg 2-4 ml/kg 2-4 ml/kg 400 mg/kg 4 ml/kg 1.2, 100 mg/kg SIS ACV MES, MIS LIS, SIS SIS MES, MIS, SIS ACV, MIS, SIS MIS, SIS ACV, MES MIS, SIS ACV MES ACV ACV, PIC, SIS ACV, PIC, PTZ PIC LIS, SIS MES, PTZ MES ACV ACV MES SIS ACV ACV MES, MIS, PTZ AVC LIS, SIS ACV ACV AVC, MIS, SIS ACV, PIC, PTZ, SIS PTZ ACV ACV, MES ACV, MES MES ACV ACV AVC ACV AVC ACV, MES, MIS, SIS PTZ MES, MIS ig ip - 3, 10 mg/kg 3 ml/kg - ACV PIC MIS References Declume et al., 1984 Chauhan et al., 1988 Das et al., 1964 Adesina, 1982a Dhar et al., 1973 Athanassova et al., 1969 Chauhan et al., 1988, Athanassova et al., 1969 Sharmaxvn et al., 1965 Athanassova et al., 1969 Hong et al., 1988 Athanassova et al., 1965 Bac et al., 1998 Bernardi et al., 1991 Amabeoku et al., 2007 Hsieh et al., 1991 Adesina, 1982a Sayyah et al., 2002 Bhakuni et al., 1969 Li, 1987 Akbar et al., 1985a Dhawan et al., 1977 Dhar et al., 1968 Carlini et al., 1986 Pei et al., 1981 Akah et al., 1997 Ngo Bum et al., 1996 Adesina, 1982a Spence et al., 1979 Vazquez-Freire et al., 1995 Nsour et al., 2000 Raza et al., 2001 N’gouemo et al., 1996 Athanassova et al., 1965 Athanassova et al., 1965 Athanassova et al., 1965 Bhakuni et al., 1969 Fukuda & Shibata, 1994 Singh et al., 1985 Nsour et al., 2000 Laguna et al., 1990 Nsour et al., 2000 Nsour et al., 2000, Souza et al., 1998 Bhattacharya et al., 1975 Dasgupta et al., 1984 Shukia et al., 1987 Simon, 1986 Adesina, 1982a Plants with anticonvulsant properties - a review Revista Farmacognosia Suplemento 2008.indd Sec1:805 Plant 806 Family Part used Place Route Given Dose Method Used Erythraea centaurium Erythrina velutina Erythrina mulungu Euphorbia antiquorum Euphorbia dracunculoides Euphorbia hirta Euphorbia pilulifera Euphorbia tirucalli Evolvulus nummularius Gentianaceae Fabaceae Fabaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Convolvulaceae Aerial Parts Stem Bark Stem Bark Whole Plant Entire Plant Whole Plant Whole Plant Aerial Part Entire Plant Bulgaria Brazil Brazil India India India India ip ip ip ip ip ip ip ip 2-4 ml/kg 200-400 mg/kg 200-400 mg/kg 40 mg/kg 500 mg/kg 250 mg/kg 40, 100 mg/kg CZIZ PTZ, SIS PTZ, SIS MIS ACV, MES ACV ACV ACV, MIS MES, MIS Ferula gummosa Galeopsis ladanum Galicia spp. Galium cruciata Galium sylvaticum Galphimia glauca Galphimia glauca Ganoderma lucidum Garcinia mangostana Gastrodia elata Apiaceae Lamiaceae Galiaceae Rubiaceae Rubiaceae Malpighiaceae Malpighiaceae Ganodermataceae Clusiaceae Orchidaceae Seed Aerial parts Aerial Parts Aerial Parts Aerial Parts Fruit Fruit - Iran poland Bulgaria Mexico Mexico Japan China ip ip ip ip ip sc - 55, 198.3 mg/kg 200 mg/kg 4 ml/kg 500 mg/kg 300 mg/kg 5, 10, 20, 500 mg/kg MES, PTZ PTZ ACV ACV MIS, SIS ACV, LIS, SIS ACV PTZ, SIS ACV ACV, KAI Geranium rotundifolium Ginkgo biloba Gleditsia officinalis Glycyrrhiza glabra Grewia hirsuta Gymnosporia falconeri Haplophyllum perforatum Haplophyllum locosum Haplophyllum spp Hedera rhombea Helianthus annuus Heracleum sibiricum Heracleum vericillatum Herpestris monniera Hippeastrum vittatum Holarrhena floribunda Hoslundia opposita Humulus lupulus Hypericum perforatum Icacina trichantha Ipomoea stans Iris kamaonensis Jatropha curcas Jatropha gossypiifolia Juniperus macropoda Kalanchoe crenata Khaya grandifoliola Kochia prostrate Geraniaceae Ginkgoaceae Fabaceae Fabaceae Tiliaceae Celastraceae Rutaceae Rutaceae Rutaceae Araliaceae Asteraceae Umbelliferae Umbelliferae Scrophulariaceae Amarillydaceae Apocynaceae Lamiaceae Cannabaceae Hypericaceae Icacinaceae Convolvulaceae Iridaceae Euphorbiaceae Euphorbiaceae Cupressaceae Crussalaceae Meliaceae Chenopodiaceae Aerial Parts Rhizome Fruit Rhizome Entire Plant Aerial Parts Seed Seed Leaf Flower Bulbs Leaf Leaf Whole Plant Tuber Wood Entire Plant Root Root, Leaf Fruit Leaf Stembark - Bulgaria Africa China Korea India India South Korea Bulgaria Brazil Nigeria Nigeria Switzerland Greece Nigeria Mexico India India Cameroon Nigeria - ip po ig ip ip ip ip ip ip ip ip ip iv ip ip ip ip - 4 ml/kg 1 mg/kg 500 mg/kg 500 mg/kg 0.1 mg/kg 2-4 ml/kg 50, 354, 398 mg/kg 250, 500 mg/kg 80, 100, 400 mg/kg 375 mg/kg 100 mg/kg 150, 300 mg/kg 50 mg/kg - MES, MIS, SIS ACV ACV ACV SIS MIS CZIC, LIS CZIC, LIS ACV SIS CZIZ, MES MES, PTZ, CZIC, SIS MES, PTZ, CZIC, SIS PTZ MES, PTZ MES, PTZ PTZ PTZ ACV, PTZ, SIS MES, PTZ MES LIS, SIS LIS, SIS ACV PTZ, SIS ACV SIS References Athanassova et al., 1965 Vasconcelos et al., 2007 Vasconcelos et al., 2007 Dey et al., 1968 Bhakuni et al., 1969 Lanhers et al., 1996 Chauhan et al., 1988 Dhar et al., 1968 Dey et al., 1968; Chatterjee 1964 Sayyah et al., 2002 Czarnecki et al., 1993 Chauhan et al., 1988 Chauhan et al., 1988 Chauhan et al., 1988, Tortoriello et al., 1992 Tortoriello, 1993 Kasahara et al., 1987 Kurukawa et al., 1997 Chen, 1977; Chauhan et al., 1988, Hsieh et al., 2001 Athanassova et al., 1969 Rodriguez, 1993 Yen, 1977 Hong et al., 1988 Bhakuni et al., 1971 Bhakuni et al., 1971 Chauhan et al., 1988 Chauhan et al., 1988 Chauhan et al., 1988 Lee et al., 1992 Athanassova et al., 1965 Chauhan et al., 1988 Chauhan et al., 1988 Chauhan et al., 1988 Silva et al., 2006 Akah et al., 1997 Akah et al., 1993 Lee et al., 1993 Ozturk et al., 1996 Asuzu et al., 1990 Contreras et al., 1996 Dhawan et al., 1977 Adesina, 1982a Adesina, 1982a Mishra et al., 1989 Nguelefack et al., 2006 Awe te al., 1997 Chauhan et al., 1988 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:806 Plant 23/01/2009 10:07:29 807 23/01/2009 10:07:29 Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Lactuca sativa Lantana camara Lantana microphylla Laurus nobilis Lavandura stoechas Ledebouriella seseloides Leea indica Leonotis leonurus Leonurus cardiaca Lettsomia setosa Licaria puchury-major Lippia alba Lobelia inflata Lobophytum species Lonchocarpus sericeus Luvunga scandens Lycium species Magnolia grandiflora Magnolia officinalis Magnolia obovata Marsilea rajasthanesis Marrubium peregrinum Marrubium vulgare Maprounea africana Matricaria chamomilla Matricaria recutita Maytenus spp. Melia azedarach Melothria maderaspatana Mentha piperita Mentha suaveolens Mikania cordata Mitragyna africana Momordica balsamina Momordica charantia Moringa oleifera Moringa pterygosperma Nardostachys jatamansi Nepeta cataria Nerium oleander Newboldia leavis Nicotiana tabacum Notopterygium incisum Ocimum americanum Ocimum basilicum Ocimum canun Ocimum gratissimum Ocimum sanctum Oplopanax elatus Family Asteraceae Verbenaceae Verbenaceae Lauraceae Lamiaceae Apiaceae Leeaceae Lamiaceae Lamiaceae Convolvulaceae Lauraceae Verbenaceae Campanulaceae Alcyoniidae Leguminosae Rutaceae Solanaceae Magnoliaceae Magnoliaceae Magnoliaceae Marsileaceae Lamiaceae Lamiaceae Euphorbiaceae Asteraceae Asteraceae Celastraceae Meliaceae Cucurbitaceae Lamiaceae Lamiaceae Asteraceae Rubiaceae Cucurbitaceae Cucurbitaceae Moringaceae Moringaceae Valerianaceae Lamiaceae Apocynaceae Bignoniaceae Solanaceae Apiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Araliaceae Part used Seed Root, Leaf Leaf Leaf Flower Root Leaf Leaf Aerial Parts Aerial Parts Dried Seed Leaf Leaf Root Rootbark Seed Bark Aerial Parts Leaf, Flower Leaf Flower Flower Leaf Root Bark Aerial Parts Leaf Leaf Aerial Parts Stembark Leaf Leaf, Flower Root Root Rhizome Leaf Leaf Leaf Leaf Root Leaf Leaf Leaf Leaf Entire Plant Root Place Egypt Brazil Iran Africa China India South Africa Bulgaria India Brazil Brazil Sclotand Australia India South Korea Mexico China,Japan Bulgaria Bulgaria Congo Bulgaria USA, Europe Brazil Nigeria India Spain Spain Nigeria Nigeria Nigeria Nigeria Nigeria India Brazil Pakistan Nigeria Nigeria China Nigeria Nigeria Thailand Nigeria India China Route Given po iv ip ip ip ip ip ip ip ip po ip ig ip ip ip ip ip iv ip, po ip po ip ip ip ip ip ip ip In ration ip ip ip ig ip ip ig ip - Dose 2.5 ml/kg 10 ml/kg 600 mg/kg 125 mg/kg 200 mg/kg 2-4 ml/kg 500 mg/kg 200 mk/kg 200 mg/kg, 1g/kg 10 ml 100 mg/kg 1 mg/kg 10 mg/kg 4 ml/kg 2-4 ml/kg 2-4 ml/kg 0.7, 10 ml/kg 200 mg/kg 400 mg/kg 400 mg/kg 10 % 50 mg/kg 100, 145, 186 mg/kg 20-50 mg 1mg - Method Used PTZ LIS, SIS LIS, SIS ACV PTZ ACV SIS ACV ACV, MES, SIS MES MES SIS, PIC ACV MIS LIS, SIS ACV ACV MES ACV SIS, PIC ACV MES, MIS ACV, CZIC, MES ACV, MES, PTZ, PIC CZIC, MES, PIC PTZ TCES, PTZ MIS, SIS ACV ACV ACV MES SIS LIS, SIS LIS, SIS LIS, SIS MIS, SIS ACV PTZ, SIS ACV MES, PTZ LIS, MIS, SIS ACV LIS LIS SIS LIS, SIS ACV ACV References Said et al., 1996 Chauhan et al., 1988 Adesina, 1982a Sayyah et al., 2002 Gilani et al., 2000 Yen, 1977 Dhar et al., 1968 Beinvenu et al., 2002 Adesina, 1982a Bhakuni et al., 1971 Carlini et al., 1983 Barros Viana et al., 2000 Bhakuni et al., 1971 Baird-Lambert et al., 1980 Chauhan et al., 1988 Mishra et al., 1988 Hong et al., 1988 Ramirez et al., 1998 Watanabe et al., 1983 Chauhan et al., 1988 Chauhan et al., 1988 Athanassova et al., 1965 Chauhan et al., 1988, N’gouemo et al., 1994a Athanassova et al., 1969 Viola et al., 1995 Oliveira et al., 1991 Adesina, 1982a Sinha et al., 1997 Leslie, 1978 Moreno et al., 2002 Moreno et al., 2002 Aji et al., 2001 Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Debelmas et al., 1976 Massoco et al., 1995 Zia et al., 1995 Olajide et al., 1997 Chauhan et al., 1988 Yen, 1977 Adesina, 1982a Adesina, 1982a Ketusingha et al., 1950 Adesina, 1982a Sakina et al., 1990 Qu et al., 1984 Plants with anticonvulsant properties - a review Revista Farmacognosia Suplemento 2008.indd Sec1:807 Plant 808 Family Part used Place Route Given Dose Method Used Ostrea species Pachyma species Paconia radiz Paeonia alba Paeonia albiflora Paeonia albiflora Paeonia emodi Paeonia japonica var. pilosa Paeonia rubra Palisota ambigua Panax ginseng Ostreidae Polyporaceae Paconiaceae Paeoniaceae Paeoniaceae Paeoniaceae Paeoniaceae Paeoniaceae Paeoniaceae Commelinaceae Araliaceae Fruit Root Root Root Root Root Root Root Leaf Root, Leaf Japan South Korea Japan South Korea China Japan India South Korea South Korea Gabon China ig po ig po ig Ig ip ip ip ip 1 mg/kg 1 mg/kg 800 mg/kg 6 mg 100 mg/kg 10 mg/kg 2, 20 mg/kg 1 mg/kg 50 mg/kg 100, 200 mg/kg PTZ ACV ACV ACV ACV PTZ MIES, MIS PIC, SIS ACV PTZ MIS, PIC Patrina intermedia Passiflora alata Passiflora incarnata Pausinystalia yohimbe Persea indica Phaeodactylum tricoenutum Picnomon acarna Picrorhiza kurroa Pimpinella anisum Pinellia ternata Piper guineense Piper logum Piper methysticum Piper nigrum Piscidia erythrina Pistacia integerrima Pithecellobium samon Plectranthus amboinicus Plumbago zeylanica Polygala sabulosa Polypodium vulgare Portucala oleracea Prunus spinosa Psidium guyanensis Psidium pohlianum Pterocarpus santalinus Qingyangshen Valerianaceae Passifloraceae Passifloraceae Rubiaceae Lauraceae Fragilaricaceae Asteraceae Scrophulariaceae Apiaceae Araceae Piperaceae Piperaceae Piperaceae Piperaceae Fabaceae Anacardiaceae Leguminosae Lamiaceae Plumbaginaceae Polygalaceae Polypodiaceae Portulacaceae Rosaceae Myrtaceae Myrtaceae Fabaceae Asclepiadaceae Dried Leaf Leaf Bark Leaf Entire Plant Fruit Tuber Flower Fruit Flower Flower Bark Entire Plant Root Whole Plant Root Whole Plant Fruit Leaf Leaf Stem Root Brazil Italy Canary Islands Spain India Bulgaria China Nigeria China Fiji China USA India Cuba Nigeria Brazil India India Brazil Brazil India China ip ip ip ip ip po ip ip ip ip ip ip ip ip ip ip ip ig po ig ip 75, 150 mg/kg 160 mg/kg 2 mg/kg 150 mg/kg 500 mg/kg 2-4 ml/kg 5 mg 3.4, 263.4 mg/kg 140 mg/kg 2 mg/kg 900 mg/kg 1 ml/kg 250, 500, 1000 mg/kg 100 mg/kg 1.5 mg/kg 400 mg/kg - SIS MIS PTZ ACV PTZ PTZ ACV MIS SZIC, MES ACV MIS, NMDLAIC ACV, MES, PIC, PTZ SIS ACV, NMDLAIC PTZ PTZ PIC ACV LIS PTZ MES, PTZ LIS, SIS PTZ PTZ, PIC, SIS PTZ MES KAI, ACV Rauvolfia ligustrina Apocynaceae Root, Aerial Brazil ip, po 125, 250 mg/kg PTZ, PIC, SIS Rauvolfia schueli Rauvolfia serpentina Rauvolfia tetraphylla Rauvolfia vomitoria Rehmannia glutinosa Rheum officinale Rhodiola rosea Apocynaceae Apocynaceae Apocynaceae Apocynaceae Scrophulariaceae Polygonaceae Crassulaceae Root, Stem Bark Entire Plant Root Root Rhizome - India India Nigeria South Korea China - ip sc 500 mg/kg 1 mg/kg - ACV ACV MES LIS, MIS, SIS ACV ACV SIS References Tsuda et al., 1998 Hong et al., 1988 Tsuda et al., 1997 Hung et al., 1983 Narita et al., 1982 Sugaya et al., 1991 Ahmad et al., 1981 Hong et al., 1979 Hong et al., 1988 N’gouemo et al., 1994b Takagi, 1977; Mitra et al., 1996 Chauhan et al., 1988 Oga et al., 1984 Speroni et al., 1988 Chermat et al., 1979 Mazzanti et al., 1993 Laguna et al., 1990 Chauhan et al., 1988 Debelmas et al., 1976 Athanassova et al., 1969 Narita et al., 1982 Abila et al., 1993 Pei, 1983 Klohs et al., 1959 Hu & Davies, 1997 Klohs et al., 1959 Ansari et al., 1993 Chauhan et al., 1988 Buznego et al., 1999 Adesina, 1982a Duarte et al., 2007 Mannan et al., 1989 Adesina, 1982a Mannan et al., 1989 Santos et al., 1997 Santos et al., 1996 Mehta et al., 1979 Kuang et al., 1991; Guo & Kuang, 1993 Quintans-Júnior et al.,2002;2007 Adesina, 1982a Adesina, 1982a Bhakuni et al., 1969 Sokomba et al., 1986 Hong et al., 1988 Yen, 1977 Aksenova et al., 1966 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:808 Plant 23/01/2009 10:07:30 Family Part used Place Route Given Dose Method Used 809 23/01/2009 10:07:30 Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Ricinus communis Rosmarinus officinalis Rubus brasiliensis Rubus ellipticus Ruta chalepensis Euphorbiaceae Lamiaceae Rosaceae Rosaceae Rutaceae Root Entire Plant Entire Plant Leaf Aerial Parts Nigeria Israel Brazil India Mexico ip ip Ip ip 0.2 ml 300 mgkg 450 mg/kg MIS, LIS PIC ACV MES PTZ Roylea elegans Ruta chalepensis Lamiaceae Rutaceae Leaf Usa, Mexico ip ip - ACV MES, PTZ Ruta graveolens Salvadora persica Salvia guaranitica Salvia haematodes Salvia nemorosa Salvia nemorsa Salvia guaranitica Salvia sclarea Salvia transsylvanica Sapindus trifoliatus Satureja clinopodium Schisandra chinensis Scolopendra subspinides Scutellaria baicalensis Securidaca longepedunculata Senecio fuchsii Senecio jacobaea Sepia officinalis Sesbania grandiflora Solanum americana Solanum gilo Solanum indicum Rutaceae Salvadoraceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Sapindaceae Lamiaceae Schisandraceae Scolopendridae Lamiaceae Polygalaceae Asteraceae Asteraceae Seppidae Fabaceae Solanaceae Solanaceae Solanaceae Aerial Parts Stem Aerial Parts Root Aerial Parts Leaf Aerial Parts Aerial Parts Aerial Parts Seed Aerial Parts Fruit Entire Plant Root Leaf Entire Plant Entire Plant Leaf Leaf, Flower Flower Entire Plant Bulgaria Italy Latin America India Bulgaria Japan Latin America Bulgaria Egypt India Bulgaria South Korea South Korea China Nigeria Bulgaria Bulgaria India India Nigeria Nigeria Nigeria ip im ip ig ip po ip ip Ip ip ip po ip sc ig ip ip ip 2-4 ml/kg 500 mg/kg 500 mg/kg 4 ml/kg 4 ml/kg 500, 1000 mg/kg 4 ml/kg 1.7 mg/kg 3 mg 50, 10 mg/kg 2-4 ml/kg 25, 50, 100 mg/kg 40 mg/kg CZIC, MES ACV ACV MES MÊS, MIS, SIS ACV ACV MIS, SIS ACV, PTZ MES MÊS, MIS, SIS ACV PIC, SIS ACV LIS MIS MES, MIS ACV MES ACV, LIS LIS LIS, MIS, SIS Solanum khasianum Solanum macrocarpon Solanum melongena Solanum nigrum Solanaceae Solanaceae Solanaceae Solanaceae Entire Plant Leaf, Flower Leaf, Flower Flower India Nigeria Nigeria Nigeria/Mexico ip ip ip ip 250 mg/kg 255 mg/kg MES LIS, SIS LIS, SIS PTZ, MIS, LIS, SIS Solanum torvum Sphencostylis stenocarpa Spondias monbin Stenochilaena palustris Swertia purpurascens Symphytum officinale Syzygium cumini Tabernaemontana pandacaqui Talinum triangulare Taraxacum spp Teclea simplifolia Ternstroemia pinglei Solanaceae Fabaceae Anacardiaceae Blechnaceae Gentianaceae Boraginaceae Myrtaceae Apocynaceae Portulacaceae Asteraceae Rutaceae Theaceae Flower Seed Flower Entire Plant Entire Plant Root Seed Stem Flower Flower Nigeria Nigeria Nigeria India India Bulgaria Brazil Thailand Mexico ip ip ip ip ip ip ig ip ip 60 mg/kg 375 mg/kg 100 mg/kg 2-4 ml/kg 50 mg/kg 450, 850 mg/kg LIS LIS LIS, SIS SIS MES, MIS CZIC, MES PTZ PTZ LIS, SIS ACV ACV PTZ, SIS References Adesina, 1982a Abdul-Ghani et al., 1987 Nogueira et al., 2000 Rana et al., 1990 Aguilar-Santamaria et al., 1996 Chauhan et al., 1988 Aguilar-Santamaria et al., 1996 Athanassova et al., 1969 Monforte et al., 2002 Viola et al., 1997 Akbar et al., 1984a Athanassova et al., 1965 Sugaya et al., 1988; 1997 Viola et al., 1997 Athanassova et al., 1965 Maklad et al., 1997 Gupta et al., 1996 Athanassova et al., 1965 Baek et al., 2000 Hong, 1976 Narita et al., 1982 Ojewole, 2000 Stoyanov et al., 1981 Athanassova et al., 1969 Reddy et al., 1994 Kasture et al., 2002 Adesina, 1982a Adesina, 1982a Dey et al., 1968; Adesina, 1982a Dhar et al., 1968 Adesina, 1982a Adesina, 1982a Adesina 1982a; Perez et al. 1998 Adesina, 1982a Asuzu, 1986 Adesina, 1982a Dhar et al., 1973 Dhar et al., 1973 Athanassova et al., 1969 De Lima et al., 1998 Taesotikul et al., 1998 Adesina, 1982a Chauhan et al., 1988 Chauhan et al., 1988 Aguilar-Santamaria et al., 1996 Plants with anticonvulsant properties - a review Revista Farmacognosia Suplemento 2008.indd Sec1:809 Plant 810 Family Tetrapleura tetraptera Fabaceae Tetraselmis suecica Thalictrum thumbergii Thalictrum hernandezii Theobroma cacao Tilia species Trema guineensis Trema orientalis Triticum aestivum Uncaria rhynchophylla Uncaria sinensis Valeriana angustifolia Valeriana fauriei Valeriana jatamansi Valeriana latifolia Valeriana officinalis Valeriana sambucifolia Vanda roxburghii Veratrum viride Vernonia gratiosa Vinca erecta Vitex negundo Viscum capense Vithania ashvagandha Withania somnifera Xylopia spp Xylopia aethiopica Xylopia carminative Xylopia frutescens Xylopia grandiflora Xylopia sericea Ximenia americana Zea mays Zingiber officinale Ziziphus jujuba Chlamydomonadaceae Ranunculaceae Ranunculaceae Sterculiaceae Tiliaceae Ulmaceae Ulmaceae Poaceae Rubiaceae Rubiaceae Valerianaceae Valerianaceae Valerianaceae Valerianaceae Valerianaceae Valerianaceae Orchidaceae Liliaceae Asteraceae Apocynaceae Verbenaceae Loranthaceae Solanaceae Solanaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Olacaceae Gramineae Zingiberaceae Rhamnaceae Part used Arillus, Fruit Seed Aerial Parts Leaf Seed Leaf Root Root Leaf Rhizome Root Entire Plant Aerial Parts Leaf Stem Root Entire Plant Whole Plant Rhizome Fruit Place Nigeria Usa Bulgaria Gabon Japan China, Austria Japan Nepal Austria France Austria India Taiwan India South Africa India India Brazil Brazil Brazil Brazil Brazil Brazil Brazil Japan Japan Route Given Dose Method Used ip - LIS, MIS, PTZ ip po ip ip -, ip ip ig ip ip ip ip ip ip ip ip ip ip ip ip ip ip ip 400 mg/kg 2-4 ml/kg 0.3, 1 mg/kg 1, 70 mg/kg 2.05, 2.20, 2.50 mg/kg 17.2 500 mg/kg 2.10 mg/kg 50 mg/kg 2.35 mg/kg 500 mg/kg 3 mg/kg 0.15 mg/kg 50, 400 mg/kg 150 mg/kg 2-4 mg/kg PTZ ACV ACV ACV MES PTZ, MÊS, PIC, KAI MIS ACV KAI, PTZ ACV MIS ACV SIS MIS ACV MIS MES ACV PIC, PTZ, SIS ACV LIS, SIS NMDLAIC, PTZ ACV ACV LIS, SIS LIS, SIS LIS, SIS LIS, SIS LIS, SIS LIS, SIS PTZ LIS, SIS ACV PTZ References Nwaiwu & Akah, 1986, Adesina & Sofowora, 1979 Laguna et al., 1993 Chauhan et al., 1988 Chauhan et al., 1988 Marcus et al., 1997 Athanassova et al., 1969 N’gouemo et al., 1994a Chauhan et al., 1988 Tsuda et al., 1986 Hsieh et al., 1999 Chauhan et al., 1988 Pfeifer et al., 1953 Yoshitomi et al., 2000 Debelmas et al., 1976 Pfeifer et al., 1953 Fehri et al., 1991 Pfeifer et al., 1953 Bhakuni et al., 1969 Chauhan et al., 1988 Hyou et al., 2001 Chauhan et al., 1988 Gupta et al., 1990 Amabeoku et al., 1998 Prasad et al., 1968 Singh et al., 1985 Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Adesina, 1982a Quintans-Júnior et al., 2002 Adesina, 1982a Sugaya et al., 1978 Tsuda et al., 1986 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:810 Plant 23/01/2009 10:07:30 Plants with anticonvulsant properties - a review Table 2. Common methods used to induce convulsion in animal models*. (I) Models for acute simple partial seizures: (1) Topical convulsants (a) penicillin (b) bicuculline (c) picrotoxin (d) strychnine (e) cholinergics (f) anticholinergics (2) Acute electrical stimulation of cortical tissue (3) GABA withdrawal (II) Models for chronic simple partial seizures: (1) Cortically implanted metal (2) Crytogenic injury (3) Ganglioside antibody injection (III) Models for complex partial seizure: (1) Kainate (2) Tetanus toxin (3) Injections into area tempesta (4) Kindling model (5) Pilocarpine (IV) Models for generalized tonic-clonic seizures: (1) Genetic (a) Photosensitive baboons (b) Audigenic seizure mice (c) Totterer mice and other seizure-prone mouse strains (d) Genetically epilepsy-prone rats (2) Maximal electroshock (3) Systemic convulsants (a) Pentylenetetrazole (b) Penicillin (c) Other: picrotoxin, bicuculline, methionine, sulfoximine, strychnine (4) Metabolic derangements (V) Models for absence seizures: (1) Thalamic stimulation (2) Bilateral cortical foci (3) Systemic penicillin (4) Gamma-hydroxybutyrate (5) Intraventricular opiates (6) THIP (4,5,6,7-tetrahydroxyisoxazolo-4,5-pyridine-3-ol) (7) Genetic rodent models of absence (VI) Status epilepticus Large amounts of NMDA, kainate, pilocarpine, bicuculline, pentylenetetrazole. * Adapted from Nsour et al., 2000. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:811 811 23/01/2009 10:07:30 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. REFERENCES Abdul-Ghani AS, El-Lati SG, Sacaan AI, Suleiman MS, Amin RM 1987. Anticonvulsant effects of some Arab medicinal plants. Int J Crude Drug Res 25: 39-43. Abila B, Richens A, Davies JA 1993. Anticonvulsant effects of extracts of the West African black pepper, Piper guineense. J Ethnopharmacol 39: 113-117. Adesina SK, Sofowora EA 1979. The isolation of an anticonvulsant glycoside from Tetrapleura tetraptera. Planta Med 36: 270-271. Adesina SK 1982a. Studies on some plants used as anticonvulsants in Amerindian and African traditional medicine. Fitoterapia 53: 147-162. Adesina SK, Ette EI 1982b. The isolation and identification of anticonvulsant agents from Clausena anisata and Afraegle paniculata. Fitoterapia 53: 63-66. Agra MF, França PF, Barbosa-Filho JM 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn 17: 114140. Agra MF, Silva KN, Basílio IJLD, França PF, Barbosa-Filho JM 2008. Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacogn 18: 472-508. Aguilar-Santamaria L, Tortoriello J 1996. Anticonvulsant and sedative effects of crude extracts of Ternstroemia pringlei and Ruta chalepensis. Phytother Res 10: 531-533. Ahmad M, Tariq M, Afaq SH, Asif M 1981. A pharmacological study on udesaleeb (Paeonia emodi Linn.): a unani anticonvulsant drug. Bull Islamic Med 1: 444-447. Aji BM, Onyeyili PA, Osunkmo UA. 2001. The central nervous effects of Mitragyna africanus (Willd) stembark extract in rats. J Ethnopharmacol 77: 143-149. Akah PA, Nwaiwu JI 1988. Anticonvulsant activity of root and stem extracts of Calliandra portoricensis. J Ethnopharmacol 22: 205-210. Akah PA, Nwambie AI 1993. Nigerian plants with anticonvulsant property. Fitoterapia 64: 42-44. Akah PA, Nwambie AI, Gamaniel KS, Wambebe C 1997. Experimental study of the anticonvulsant used for treatment of infantile convulsion in Nigeria. Brain Res Bull 44: 611-613. Akbar S, Nisa M, Tariq M. 1985a. A study on CNS depressant activity of Salvia haematodes Wall. Int J Crude Drug Res 22: 41-44. Akbar S, Nisa M, Tariq M 1985b. CNS depressant activity of Cuscuta chinensis Lamm. Int J Crude Drug Res 23: 91-94. Aksenova RA, Zotov MI, Nekhoda MF, Cherdyntsev SG 1966. Stimulating and adaptogenic effects of a refined preparation of Rhodiola rosea Rhodosin. Stimulyatory Tsent Nerv Sist (Ed:Saratikov As) Izd Tomsk Univ Tomsk 77. Almeida RN, Navarro DS, Barbosa-Filho JM 2001. Plants with central analgesic activity. Phytomedicine 8: 310-322. Amabeoku GJ, Leng MJ, Syce MA 1998. Antimicrobial and anticonvulsant activites of Viscum capense. J Ethnopharmacol 61: 237-241. Amabeoku GJ, Green I, Kabatende J 2007. Anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) 812 leaf extract in mice. J Ethnopharmacol 112: 101107. Amaral FMM, Ribeiro MNS, Barbosa-Filho JM, Reis AS, Nascimento FRF, Macedo RO 2006. Plants and chemical constituents with giardicidal activity. Rev Bras Farmacogn 16 (Supl.): 696-720. Ameri A 1997. Inhibition of rat hippocampal excitability by the Aconitum alkaloid, 1-benzoylnapelline, but not by napelline. Eur J Pharmacol 335: 145-152. Ansari SH, Ali M, Qadry JS 1993. Essential oils of Pistacia integerrima galls and their effect on the central nervous system. Int J Pharmacogn 31: 89-95. Arunlakshana C 1949. Pharmacological study of the leaves of Cassia siamea. Siriraj Hosp Gaz 1: 434-444. Asuzu IU 1986. Pharmacological evaluation of the folklore use of Sphenostylis stenocarpa. J Ethnopharmacol 16: 263-267. Asuzu IU, Ugwueze EE 1990. Screening of Icacina trichantha extracts for pharmacological activity. J Ethnopharmacol 28: 151-156. Athanassova S, Shopova S, Roussinov K 1965. Pharmacological studies of Bulgarian plants with a view to their anticonvulsive effect. Acad Bulg Sci 18: 691-694. Athanassova S, Shopova S, Roussinov K, Markova M 1969. Pharmacological studies of Bulgarian plants with a view to their anticonvulsive effect. Izv Inst Fiziol Bulg Akad Nauk 12: 205-216. Awe SO, Olajide OA, Adeboye JO, Makinde JM 1997. Pharmacological evaluation of Khaya grandifoliola methanolic extract. J Pharm Res Dev 2: 20-23. Bac P, Pages N, Dhalluin S, Tapiero H 1998. Protective effect of Crassostrea gigas extract on audiogenic seizures in magnesium deficient mice. Biomed Pharmacother 52: 162-165. Baek NI, Han JT, Ahn EM, Park JK, Cho SW, Jeon SG, Jang JS, Kim CK, Choi SY 2000. Isolation of anticonvulsant compounds from the fruits of Schizandra chinensis Baili. Han’guk Nonghwa Hakhoe Chi 43: 72-77. Baird-Lambert J, Dunlop RW, Jamieson DD 1980. Anticonvulsant activity of a novel diterpene isolated from a soft coral of Thegenus lobophytum. ArzneimForsch 30: 964-967. Barbosa-Filho JM, Vasconcelos THC, Alencar AA, Batista LM, Oliveira RAG, Guedes DN, Falcão HS, Moura MD, Diniz MFFM, Modesto-Filho J 2005. Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Rev Bras Farmacogn 15: 392-413. Barbosa-Filho JM, Medeiros KCP, Diniz MFFM, Batista LM, Athayde-Filho PF, Silva MS, Cunha EVL, Almeida JRGS, Quintans-Júnior LJ 2006a. Natural products inhibitors of the enzyme acetylcholinesterase. Rev Bras Farmacogn 16: 258-285. Barbosa-Filho JM, Martins VKM, Rabelo LA, Moura MD, Silva MS, Cunha EVL, Souza MFV, Almeida RN, Medeiros IA 2006b. Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980-2000. Rev Bras Farmacogn 16: 421446. Barbosa-Filho JM, Piuvezam MR, Moura MD, Silva MS, Lima KVB, Cunha EVL, Fechine IM, Takemura OS 2006c. Anti-inflammatory activity of alkaloids: A twenty-century review. Rev Bras Farmacogn 16: Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:812 23/01/2009 10:07:30 Plants with anticonvulsant properties - a review 109-139. Barbosa-Filho JM, Nascimento-Júnior FA, Tomaz ACA, Athayde-Filho PF, Silva MS, Cunha EVL, Souza MFV, Batista LM, Diniz MFFM 2007. Natural products with antileprotic activity. Rev Bras Farmacogn 17: 141-148. Barros Viana GS, Vale TGD, Silva CMM, Abreu Matos FJ 2000. Anticonvulsant activity of essential oils and active principles from chemotypes of Lippia alba (Mill.). Biol Pharm Bull 23: 1314-1317. Becker A, Grecksch G, Schröeder H 2001. Low doses of AMPA exert anticonvulsant effects on pentylenetetrazolkindled seizures. Pharmacol Biochem Behav 70: 421-426. Beinvenu E, Amabeoku GJ, Eagles PK, Scott G, Springfield EP 2002. Anticonvulsant activity of aqueous extract of Leonotis leonurus. Phytomedicine 217: 217-223. Ben-Ari Y 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14: 375-403. Bernardi MM, Souza-Spinosa H, Batatinha MJM, Giorgi R 1991. Croton zehntneri: possible central nervous system effects in rodents. J Ethnopharmacol 33: 285-287. Bhakuni OS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN 1969. Screening of Indian plants for biological activity. Part II. Indian J Exp Biol 7: 250-262. Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Gupta B, Srimali RC 1971. Screening of indian plants for biological activity. Part III. Indian J Exp Biol 9: 91. Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Patnaik GK, Prakash V 1988. Screening of indian plants for biological activity. Indian J Exp Biol 26: 883-904. Bhattacharya SK, Debnath PK, Pandey VB, Sanyal AK 1975. Pharmacological investigations on Elaeocarpus ganitrus. Planta Med 28: 174-177. Buckmaster PS, Dudek FE 1997. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comput Neurol 385: 385-404. Buznego MT, Perez-Saad H 1999. Efecto antiepileptico de Plectranthus amboinicus (Lour.) Spreng. (oregano frances). Rev Neurol 28: 388-392. Carlini EA, Oliveira AB, Oliveira GG 1983. Psychopharmacological effects of the essential oil fraction ando f the hydrolate obtained from the seeds of Licaria puchury-major. J Ethnopharmacol 8: 224236. Carlini EA, Contar JDP, Silva-Filho AR, Silveira NGD, Frochtengarten ML, Bueno OFA 1986. Pharmacology of lemongrass (Cymbopogon citratus Starpf). I. Effects of teas prepared from the leaves on laboratory animals. J Ethnopharmacol 17: 37-64. Carlini EA 2003. Plants and the central nervous system. Pharmacol Biochem Behav 75: 501-512. Carlini EA, Rodrigues E, Mendes FR, Tabach R, Gianfratti B 2006. Treatment of drug dependence with Brazilian herbal medicines. Rev Bras Farmacogn 16: 690695. Cavalheiro EA, Riche DA, Le Gal La Salle G 1982. Longterm effects of intrahippocampal kainic acid injection in rats: a method for nducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53: 581-589. Chatterjee C 1964. Pharmacological screening of Valeriana wallichi DC, Lallermentia royleana Benth, Breynia rhamnoides Muell-Arg and Evolvulus numularians for sedative and anticonvulsive principles. Naturwissenschaften 51: 411. Chaturvedi AK, Parmar SS, Bhatnagar SC, Misra G, Nigam SK 1974. Anticonvulsant and anti-inflammatory activity of natural plant coumarins and triterpenoids. Res Commun Chem Path 9: 11-22. Chauhan AK, Dobhal MP, Joshi B 1988. A review of medicinal plants showing anticonvulsant activity. J Ethnopharmacol 22: 11-23. Chen HY 1977. Studies on tien-ma and huan-jun,the pharmacological effects of tien-ma decoction, and mi-huan-jun fermentation product on the central nervous system. Chung-Hua I Hsueh Tsa Chih (Beijing) 57: 470-472. Chermat R, Lachapelle F, Baumann N, Simon P 1979. Anticonvulsant effect of yohimbine in quaking mice: antagonism by clonidine and prazosine. Life Sci 25: 1471-1476. Chiou LC, Ling JY, Chang CC 1997. Chinese herb constituent beta-eudesmol alleviated the electroshock seizures in mice and electrographic seizures in rat hippocampal slices. Neurosci Lett 231: 171-174. Cincotta M, Young NA, Beart PM 1991. Unilateral upregulation of glutamate receptors in limbic regions of amygdaloid-kindled rats. Exp Brain Res 85: 650658. Commission on Classification and Terminology of the International League Against Epilepsy. 2003. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30: 389-399. Contreras CM, Chacon L, Enriquez RG 1996. Anticonvulsant properties of Ipomoea stans. Phytomedicine 3: 4144. Czarnecki R, Librowski T, Zebala K, Kohlmunzer S 1993. Pharmacological properties of a lyophilizate from Galeopsis ladanum on the central nervous system of rodents. Phytother Res 7: 9-12. Dantas FG 2005. Epilepsy and Marijuana - A Review. J Epilepsy Clin Neurophysiol 11: 91-93. Das PK, Nath V, Gode KD, Sanyal AK 1964. Preliminary phytochemical and pharmacological studies on Cocculus hirsutus Linn. Indian J Med Res 52: 300307. Dasgupta A, Agarwal SS, Basu DK 1984. Anticonvulsant activity of the mixed fatty acids of Elaeocarpus ganitrus roxb. (Rudraksh). Indian J Physiol Pharmacol 28: 245-246. De Lima TCM, Klueger PA, Pereira PA, Macedo-Neto WP, Morato GS, Farias MR 1998. Behavioural effects of crude and semi-purified extracts of Syzygium cuminii Linn. skeels. Phytother Res 12: 488-493. De Lucia R, Sertie JAA, Camargo EA, Panizza S 1997. Pharmacological and toxicological studies on Centella asiatica extract. Fitoterapia 68: 413-416. Debelmas AM, Hache J 1976. Toxicity of several medicinal plants of Nepal including some behavioral and central nervous system effects. Plant Med Phytother 10: 128-138. Declume C, Assamoi A, Akre TB 1984. Anticonvulsivant Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:813 813 23/01/2009 10:07:30 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. activity of Cnestis ferruginea DC., Connaraceae. Ann Pharm Fr 42: 35-41. Dey PK, Chatterjee BK 1968. Studies on the neuropharmacological properties of several indian medicinal plants. J Res Indian Med 3: 9-18. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C 1968. Screening of Indian plants for biological activity: Part I. Indian J Exp Biol 6: 232-247. Dhar ML, Dhar MN, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS 1973. Screening of Indian plants for biological activity. Part IV. Indian J Exp Biol 11: 4354. Dhawan BN, Patnaik GK, Rastogi RP, Singh KK, Tandon JS 1977. Screening of Indian plants for biological activity. VI. Indian J Exp Biol 15: 208-219. Dikshit S, Tewari PV, Dixit SP 1972. Anticonvulsant activity of Canscora decussata Roem. & Sch. Indian J Physiol Pharmacol 16: 81-83. Duarte FS, Duzzioni M, Mendes BG, Pizzolatti MG, De Lima TCM 2007. Participation of dihydrostyryl-2pyrones and styryl-2-pyrones in the central effects of Polygala sabulosa (Polygalaceae), a folk medicine topical anesthetic. Pharmacol Biochem Behav 86: 150-161. Dwivedi C, Harbison RD 1975. Anticonvulsant activities of delta-8- and delta-9-tetrahydrocannabinol and uridine. Toxicol Appl Pharmacol 31: 452. Everett GM, Richards RK 1944. Comparative anticonvulsive action of 3,5,5-trimethyloxazolidine-2,4-dione (Tridione), dilantin and phenobarbital. J Pharmacol Exp Ther 81: 402-407. Fabisiak JP, Schwark WS 1982. Aspects of the pentylenetetrazol kindling model of epileptogenesis in the rat. Exp Neurol 78: 7-14. Falcão HS, Lima IO, Santos VL, Dantas HF, Diniz MFFM, Barbosa-Filho JM, Batista LM 2005. Review of the plants with anti-inflammatory activity studied in Brazil. Rev Bras Farmacogn 15: 381-391. Fehri B, Aiache JM, Boukef K, Memmi A, Hizaoui B 1991. Valeriana officinalis and Crataegus oxyacantha: reiterated administrations and pharmacological properties. J Pharm Belg 46: 165-176. Fisher RS 1989. Animal models of the epilepsies. Brain Res Rev 14: 245-278. Fukuda T, Shibata H 1994. Persimmon calyx extracts as anticonvulsants and to alleviate the side effects of barbituric acid compounds. Patent-Japan Kokai Tokkyo Koho 06: 649. Funke I, Melzig MF 2006. Traditionally used plants in diabetes therapy - phytotherapeutics as inhibitors of α-amylase activity. Rev Bras Farmacogn 16: 1-5. Gilani AH, Aziz N, Khan MA, Shaheen F, Jabeen Q, Siddiqui BS, Herzig JW 2000. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. J Ethnopharmacol 71: 161-167. Goddard GV, Mclntyre DC, Leech CK 1969. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295-330. Gonçalves MCR, Moura LSA, Rabelo LA, Cruz HMM, Cruz J, Barbosa-Filho JM 2000. Produtos naturais inibidores da enzima HMG CoA redutase. Rev Bras Farm 81: 63-71. 814 Gonzalez-Trujano ME, Navarrete A, Reyes B, Hong, E 1998. Some pharmacological effects of the ethanol extract of leaves of Annona diversifolia on the central nervous system in mice. Phytother Res 12: 600-602. Guo Q, Kuang P 1993. Effect of Qingyangshen on hippocampal alpha and beta tubulin gene expression during kainic acid induced epileptogenesis. J Trad Chinese Med 14: 281-286. Gupta A, Wambebe CO, Parsons DL 1990. Central and cardiovascular effects of the alcoholic extract of the leaves of Carica papaya. Int J Crude Drug Res 28: 257-266. Gupta SK, Kharya MD 1996. Phytochemical and pharmacological studies on seeds on Sapindus trifoliatus. Indian J Nat Prod 12: 3-8. Gupta M, Mazumder UK, Das S 1998. Effect of leaf extract from Clerodendron colebrookianum on CNS function in mice. Indian J Exp Biol 36: 171-174. Haruna AK. 2000. Depressant and anticonvulsant properties of the root decoction of Afrormosia laxiflora (Leguminosae). Phytother Res 14: 57-59. Hien TTM, Navarro-Delmasure C, Vy T 1991. Toxicity and effects on the central nervous system of a Cerbera odollam leaf extract. J Ethnopharmacol 34: 201206. Hong ND 1976. Pharmacological studies of Scolopendra subspinipes mutiland koch. Korean J Pharmacogn 7: 99-109. Hong ND, Kim CW, Shin HD 1979. A study on the analgesic and anti-convulsional effect of Paeoniae radix. Korean J Pharmacogn 10: 119-124. Hong ND, Koo BH, Joo SM, Lee SK 1988. Studies on the efficacy of combined preparation of crude drugs (XXXVI). Effects of Sipmidojuksan on the central nervous and cardiovascular systems. Korean J Pharmacogn 19: 141. Howes MJR, Perry NSL, Houghton PJ 2003. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 17: 1-18. Hsieh MT, Peng WH, Yeh FT, Tsai HY, Chang YS 1991. Studies on the anticonvulsive, sedative and hypothermic effects of Periostracum cicadae extracts. J Ethnopharmacol 35: 83-90. Hsieh CL, Tang NY, Chiang SY, Hsieh CT, Lin JG 1999. Anticonvulsive and free radical scavenging actions of two herbs, Uncaria rhynchophylla (Miq.) Jac and Gastrodia elata Bl., in kainic acid-treated rats. Life Sci 65: 2071-2082. Hsieh CL, Chiang SY, Cheng KS, Lin YH, Tang NY, Lee CJ, Pon CZ, Sieh CT 2001. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. Amer J Chinese Med 29: 331-341. Hu RQ, Davies JA 1997. Effects of Piper nigrum L. on epileptiform activities in cortical wedges prepared from DBA/2 mice. Phytother Res 11: 222-225. Hung ND, Chang IK, Jung HC, Kim NJ 1983. Studies on the efficacy of combined preparation of crude drugs (XII). Korean J Pharmacogn 14: 9-16. Hyou SY, Que PY, Gao GQ, Zhang YX 2001. The effect of Vernonia gratiosa hance on the locomotor and convulsion activity in mice. J Chin Pharm Sci 2(1): Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:814 23/01/2009 10:07:30 Plants with anticonvulsant properties - a review 11-18. Junhua H, Dechao Y, Xianyu C, Zemin H, Xiaozhang F, Araki H, Tsuchida K, Asami Y, Aihara H, Watanabe N, Obuchi T, Omura S 1990. Effects of mi huan jun (Armillaria mellea) on central nervous and vascular system. Fitoterapia 61: 207-214. Kasahara Y, Hikino H 1987. Central actions of Ganoderma lucidum. Phytother Res 1: 17-21. Kasahara Y, Kumaki K, Sato T, Katagiri S 1989. Pharmacological studies on flower petals of Carthamus tinctorius central actions and antiinflammation. Shoyakugaku Zasshi 43: 331-338. Kasture VS, Kasture SB, Pal SC 1996. Anticonvulsant activity of Albizzia lebbeck. Indian J Exp Biol 34: 78-80. Kasture VS, Chopde CT, Deshmukh VK 2000. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol 71: 65-75. Kasture VS, Chopde CT, Deshmukh VK 2002. Anxiolytic and anticonvulsive activity of Sesbania grandiflora leaves in experimental animals. Phytother Res 16: 455-460. Ketusingha A, Arunluk U 1950. Studies of ocimum seeds for food and drug purposes. Shiriraj Hospital Gazette 2: 593-604. Kim DY, Choi JW, Park JC, Lee CK 1998. Anticonvulsant effect of Uncariae ramulus et Uncus. II. Effects of methanol extract and ethyl acetate fraction on neurotransmitters related components in brain. Korean J Pharmacogn 29: 179-186. Klohs MW, Keller F, Williams RE, Toekes MI, Cronheim GE 1959. A chemical and pharmacological investigation of Piper methysticum Forst. J Med Pharm Chem 1: 103. Kuang P, Lang SY, Liu JX, Zhang FY, Wu WP 1991. The investigation of antiepileptic action of Qingyanshen (QYS). J Trad Chinese Med 11: 40-46. Kulshrestha VK, Singh N, Saxena RC, Kohli RP 1970. Central pharmacological activity of an alkaloid fraction of Apium graveolens. Indian J Med Res 58: 99-102. Kurukawa K, Chairungsrilered N, Ohta T, Nozoe S, Ohizumi Y 1997. Novel types of receptor antagonists from the medicinal plant Garcinia mangostana. Nippon Yakurigaku Zasshi 110: 153-158. Laguna MR, Villar RM, Cadavid I, Calleja JM 1990. Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Med 56: 152-157. Laguna MR, Villar RM, Cadavid I, Calleja JM 1993. Effects of extracts of Tetraselmis suecica and Isochrysis galbana on the central nervous system. Planta Med 59: 207-214. Lanhers MC, Fleurentin J, Dorfman P, Misslin R, Mortier F 1996. Neurophysiological effects of Ruphorbia hirta L. (Euphorbiaceae). Phytother Res 10: 670-676. Lashev LD, Droumev DM, Stoianova-Ivanova B 1981. Pharmacological activity of alcohol extracts from the overground parts of Chrysanthemum indicum, parviflorous form. C R. Acad Bulg Sci 34: 10291032. Lee IR, Kim JS, Lee SH 1992. Pharmacological activities of leaves of Hedera rhombea Bean. Korean J Pharmacogn 23: 34-42. Lee KM, Jung JS, Song DK, Krauter M, Kim YH 1993. Effects of Humulus lupulus extract on the central nervous system in mice. Planta Med 59: 691. Leite JP, Garcia-Cairasco N, Cavalheiro EA 2002. New insights from the use of pilocarpine and kainate models. Epilepsy Res 50: 93-103. Lennox WG 1945. The petit mal epilepsies: their treatment with Tridione. JAMA-J Am Med Assoc 129: 10691074. Leslie GB 1978. A pharmacometric evaluation of nine biostrath herbal remedies. Medita 8: 3-19. Li GY 1987 Treatment of 278 cases of epilepsy with baili pill. J New Chin Med 19: 33. Liao JF, Huang SY, Jan YM, Yu LL, Chen CF 1998. Central inhibitory effects of water extract of Acori gramminei rhizoma in mice. J Ethnopharmacol 61: 185-193. Lima TCM, Morato GS, Takahashi RN 1993. Evaluation of the central properties of Artemisia verlotorum. Planta Med 59: 326-329. Liu CM, Gao DZ, Yu PY, Zhou XH 1989. Anti-epileptic effect of the venom of Buthus martensii karasch and antiepilepsy peptide. Shenyang Yaoxueyuan Xuebao 6: 95-98. Lodge D, Johnston GAR, Curtis DR, Brand SJ 1997. Effects of the Areca nut constituent arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain Res 136: 513-522. Löscher W, Schmidt D 1988. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2: 145-181. Löscher W, Schmidt D 1994. Strategies in antiepileptic drug development: Is rational drug design superior to random screening and structural variation? Epilepsy Res 17: 95-134. Löscher W 1998. New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 342: 1-13. Löscher W, Schmidt D 2006. New horizons in the development of antiepileptic drugs: Innovative strategies. Epilepsy Res 69: 183-272. Mahe M, Driessche JV, Girre L 1978. Pharmacological properties of several indigenous plants on the nervous system. Plant Med Phytother 12: 248-258. Makanju OOA 1983. Behavioral and anticonvulsant effects of an aqueous extract from the roots of Clausena anisata (Rutaceae). Int J Crude Drug Res 21: 29-32. Maklad YA, Aboutabl EA, El-Sherei MM, Meselhy KM 1997. Phytochemical and pharmacological studies of Salvia transsylvaniaca (Schur ex Griseb) grown in Egypt. Bull Fac Pharm Cairo Univ 35: 213-220. Mannan A, Khan RA, Asif M 1989. Pharmacodynamic studies on Polypodium vulgare(Linn.). Indian J Exp Biol 27: 556-560. Marcus DA, Scharff L, Turk D, Gourley LM 1997. A doubleblind provocative study of chocolate as a trigger of headache. Cephalalgia 17: 855-862. Massoco CO, Silva MRPR, Gorniak SL, Spinosa HS, Brnardi MM 1995. Behavioral effects of acute and long-term administration of catnip (Nepeta cataria) in mice. Vet Hum Toxicol 37: 530-533. Mathern GW, Babb TL, Pretorius JK, Leite JP 1995. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:815 815 23/01/2009 10:07:30 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. immunoreactivity in the epileptogenic human Fascia dentata. J Neurosci 15: 3990-4004. Mattson RH 1995. Selection of antiepileptic drug therapy. In: Levy RH, Mattson RH, Meldrum BS. Eds., Antiepileptic Drugs, 4th ed. Raven Press, New York, pp. 123-136. Mazzanti G, Bettschart A, Braghiroli L, Saso L, Panzironi C 1993. Persea indica: general pharmacological effects of the total extract. Pharmacol Res 27: 19-20. Mehta C, Gupta U, Srivastava VK, Satyavati GV, Prasad DN 1979. Pharmacological studies on Pterocarpus santalinus Linn (red sanders). J Res Indian Med Yoga Homeopathy 14: 37-43. Meldrum BS, Nilsson B 1976. Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99: 523-542. Meldrum BS 1997. Identification and preclinical testing of novel antiepileptic compounds. Epilepsia 38: S7S15. Meldrum BS, Rogawski MA 2007. Molecular targets for antiepileptic drug development. Neurotherapeutics. J Am Soc Exp NeuroTher 4: 18-61. Mello LE, Bortolotto ZA, Cavalheiro EA 1986. Modelos experimentais de epilepsias. Uma Revisão. Neurobiologia 49: 231-268. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM 1993. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34: 985-995. Mishra P, Agrawal RK 1988. Some pharmacological actions of the essential oil of Luvanga scandens. Fitoterapia 59: 441-448. Mishra P, Agrawal RK 1989. Some observations on the pharmacological activities of the essential oil of Junipeerus macropoda. Fitoterapia 60: 339-345. Mitra SK, Chakrabori A, Bhattacharya SK 1996. Neuropharmacological studies on Panax ginseng. Indian J Exp Biol 34: 41-47. Monforte MT, Trovato A, Rossitto A, Forestieri AM, D’aquino A, Miceli N, Galati EM 2002. Anticonvulsant and sedative effects of Salvadora persica L. stem extracts. Phytother Res 16: 395-397. Morais LCSL, Barbosa-Filho JM, Almeida RN 2003. Plants and bioactives compounds for the treatment of Parkinson’s desease. Arquivos Brasileiros de Fitomedicina Científica 1: 127-132. Moreno L, Bello R, Primo-Yufera E, Esplugues J 2002. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res 16: 10-13. Moura MD, Torres AR, Oliveira RAG, Diniz MFFM, BarbosaFilho JM 2001. Natural products inhibitors of models of mammary neoplasia. Brit J Phytotherapy 5: 124145. Moura MD, Silva JS, Oliveira RAG, Diniz MFFM, BarbosaFilho JM 2002. Natural products reported as potential inhibitors of uterine cervical neoplasia. Acta Farm Bonaerense 21: 67-74. Narita Y, Satowa H, Kokubu T, Sugaya E 1982. Treatment of epileptic patients with the chinese herbal medicine ‘Saiko-Keishi-To’ (SK). Ircs Libr Compend 10: 88- 816 89. Ngo Bum E, Meier CL, Urwyler S, Wang Y, Herrling PL 1996. Extracts from rhizomes of Cyperus articulatus (Cyperaceae) displace [3H] CGP39653 and [3H] glycine binding from cortical membranes and selectively inhibit NMDA receptor-mediated neurotransmission. J Ethnopharmacol 54: 103-111. N’gouemo P, Nuguemby-Bina C, Baldy-Moulinier M 1994a. Some neuropharmacological effects of an ethanolic extract of Maprounea africanna in rodents. J Ethnopharmacol 43: 161-166. N’gouemo P, Baldy-Moulinier M, Nguemby-Bina C 1994b. Some pharmacological effects of an ethanolic extract of Palisota ambigua on the central nervous system in mice. Phytother Res 8: 426-429. N’gouemo P, Baldy-Moulinier M, N’guemby-Bina C 1996. Effects of an ethanolic extract of Desmodium adscendens on central nervous system in rodents. J Ethnopharmacol 52: 77-83. N’gouemo P, Koudogbo B, Tchivounda HP, Akono-Nguema C, Etoua MM 1997. Effects of ethanol extract of Annona muricata on pentylenetetrazol-induced convulsive seizures in mice. Phytother Res 11: 243-245. Nguelefack TB, Nana P, Atsamo AD, Dimo P, Watcho P, Dongmo AD, Tapondjou LA, Njamen D, Wansi SL, Kamanyi A 2006. Analgesic and anticonvulsant effects of extracts from the leaves of Kalanchoe crenata (Andrews) Haworth (Crassulaceae). J Ethnopharmacol 106: 70-75. Nikol-Skaya BS, Shreter AI 1961. Tincture of Cimicifuga dahurica. Med Prom SSSR 15: 47. Nogueira E, Vassilieff VS 2000. Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis. involvement of GABAA system. J Ethnopharmacol 70: 275-280. Nsour WN, Lau CBS, Wong ICK 2000. Review on phytotherapy in epilepsy. Seizure 9: 96-107. Nwaiwu JI, Akah PA 1986. Anticonvulsant activity of the volatile oil from the fruit of Tetrapleura tatraptera. J Ethnopharmacol 18: 103-107. Occhiuto F, Limardi F, Circosta C 1995. Effects of the nonvolatile residue from the essential oil of Citrus bergamia on the central nervous system. Int J Pharmacogn 33: 98-203. Oga S, Chanel D, Freitas P, Gomes Silva AC, Hanada S 1984. Pharmacological trials of crude extract of Passiflora alata. Planta Med 50: 303-306. Ojewole JAO 2000. Anticonvulsant evaluaiton of the methanolic extract of Seruridaca longipendunculata (Fresen.) (Family: Polygalaceae) root bark in mice. J Pharm Pharmacol 2: 286. Olajide OA, Awe SO, Makinde JM 1997. Pharmacological studies on Newbouldia laevis stem bark. Fitoterapia 68: 439-443. Oliveira MGM, Monteiro MG, Macaubas C, Barbosa VP, Carlini EA 1991. Pharmacologic and toxicologic effects of two Maytenus species in laboratory animals. J Ethnopharmacol 34: 29-41. Orhan I, Sener B, Choudhary MI, Khalid A 2004. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 91: 57-60. Ozturk Y, Aydin S, Beis R, Baser KHC, Berberoglu H 1996. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:816 23/01/2009 10:07:30 Plants with anticonvulsant properties - a review Effects of Hypericum perforatum L. and Hypericum calycinum L. extracts on the central nervous system in mice. Phytomedicine 3: 139-146. Perez G, Perez L, Garcia D, Sossa M 1998. Neuropharmacological activity of Solanum nigrum fruit. J Ethnopharmacol 62: 43-48. Pei YQ, Cao LG, Xie SJ, Kai ZJ, MU QZ 1981. Central pharmacological action of Cynanchum otophyllum Schneid. Pei-Ching I Hsueh Yuan Hsueh Pao 13: 213-218. Pei YQ. 1983. Depressant action of fructus Piperis longi on the central nervous system. Chung I Tsa Chih (Engl Ed) 3: 17-22. Pereira JV, Modesto-Filho J, Agra MF, Barbosa-Filho JM 2002. Plant and plant-derived compounds employed in prevention of the osteoporosis. Acta Farm Bonaerense 21: 223-234. Pfeifer E, Zechner L 1953. About preparations of Valerian roots. Sci Pharm 21: 250. Pieretti KS, Di Giannuario A, Goleffi C, Copasso A, Nicoletti M 1993. Analgesic and anticonvulsive effects of Cadia rubra extract. Pharmacol Res 27: 41-42. Prasad S, Malholtra CL 1968. Withania ashwagandha. VI. Effect of alkaloidal fractions (actone, alcohol and water soluble) on the central nervous system. Indian J Physiol Pharmacol 12: 175-181. Putnam TJ, Merritt HH 1937. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85: 525-526. Qu S, Wu Y, Wang Y, Pan D 1984. Inhibitory effect of tall oplopanax (Oplopanax elatus) oil on the central nervous system. Chung Ts’ao Yao 15: 259-261. Quintans-Júnior LJ, Almeida RN, Falcão ACGM, Agra MF, Sousa MFV, Barbosa-Filho JM. 2002. Avaliação da Atividade Anticonvulsivante de Plantas do Nordeste Brasileiro. Acta Farm Bonaer 21: 179-184. Quintans-Júnior LJ, Silva DA, Siqueira JS, Souza MFV, Barbosa-Filho JM, Almeida RN. 2007. Anticonvulsant properties of the total alkaloid fraction of Rauvolfia ligustrina Roem. et Schult. in male mice. Rev Bras Farmacogn 17: 29-34. Ramirez BED, Ruiz NN, Arellano JDQ, Madrigal BR, Michel MTV, Garzon P 1998. Anticonvulsant effects of Magnolia grandiflora l. in the rat. J Ethnopharmacol 61: 143-152. Rana SDD, Saluja AK 1990. Pharmacological screening of the alcoholic extract of the leaves of Rubus ellipticus. Indian J Pharm Sci 52: 174-177. Rauca C, Pohle W, Grunenberg K, Franze S 2000. Hypothermia inhibits pentylenetetrazol kindling and prevents kindling-induced deficit in shuttle-box avoidance. Pharmacol Biochem Behav 65: 23-30. Raza M, Shaheen F, Choudhary MI, Suria A, Atta-Ur-Rahman, Sombati S, Delorenzo RJ 2001. Anticonvulsant activities of the fs-1 subfraction isolated from roots of Delphinium denudatum. Phytother Res 15: 426430. Reddy TN, Reddy CP, Srinivas V, Divan PV, Reddy PUM 1994. Glycogenic effect of an alkali soluble fraction from Sepia shell. Arzneimittel-Forsch 44: 1133-1135. Richens A, Perucca E 1993. Clinical pharmacology and medical treatment. In: A Textbook of Epilepsy (Eds J. Laidlaw, A. Richens and D. Chadwick). Edinburgh, Churchill Livingstone, pp. 495-560. Rocha LG, Almeida JRGS, Macedo RO, Barbosa-Filho JM 2005. A review of natural products with antileishmanial activity. Phytomedicine 12: 514535. Rodriguez EB, Droy-Lefaix MT, Bazan NG. 1993. Decreased electroconvulsive shock-induced diacylglycerols and free fatty acid accumulation in the rat brain by Ginkgo biloba extract (EGb 761): selective effect in hippocampus as compared with cerebral cortex. J Neurochem 61: 1438-1444. Rössler AS, Schröeder H, Dodd RH, Chapouthier G, Grecksch G. 2000. Benzodiazepine receptor inverse agonistinduced kindling of rats alters learning and glutamate binding. Pharmacol Biochem Behav 67: 169-175. Rousinov KS, Athanasova-Shopova S 1966. Experimental screening of the anticonvulsive activity of certain plants used in popular medicine in Bulgaria. Acad Bulg Sci 19: 333-336. Ruiz AN, Ramirez BED, Estrada JG, Lopez PG, Garzon P 1995. Anticonvulsant activity of casimiroa edulis in comparison to phenytoin and phenobarbital. J Ethnopharmacol 45: 199-206. Said SA, El Kashef HA, El Mazar MM, Salama O 1996. Phytochemical and pharmacological studies on Lactuca sativa seed oil. Fitoterapia 67: 215-219. Sakina MR, Dandiya PC, Hamdard ME, Hameed A 1990. Preliminary psychopharmacological evaluation of Ocimum sanctum leaf extract. J Ethnopharmacol 28: 143-150. Santos FA, Rao VSN, Silveira ER 1996. Studies on the neuropharmacological effects of Psidium guyanensis and Psidium pohlianum essential oils. Phytother Res 10: 655-658. Santos FA, Rao VSN, Silveira ER 1997. The leaf essential oil of Psidium guyanensis offers protection against pentylenetetrazole-induced eizures. Planta Med 63: 133-135. Saúde-Guimarães DA, Faria AR 2007. Substâncias da natureza com atividade anti-Trypanosoma cruzi. Rev Bras Farmacogn 17: 455-465. Sayyah M, Mahboubi A, Kamalinejad M 2002. Anticonvulsant effect of the fruit essential oil of Cuminum cyminum in mice. Pharm Biol 40: 478-480. Scheuer ML, Pedley TA 1990. The evaluation and treatment of seizures. New Engl J Med 323: 1468-1474. Sharmaxvn, Barar SK, Khanna NK, Mahawar MM 1965. Some pharmacological actions of Convolvulus pluricaulis, an Indian indigenous herb. Indian J Med Res 53: 871. Shibata M, Ikoma M, Onoda M, Sato F, Sakurai N 1980. Pharmacological studies on the chinese crude drug “shoma”. III. central depressant and antispasmodic actions of Cimicifuga rhizoma, Cimicifuga simplex wormsk. Yakugaku Zasshi 100: 1143-1150. Shukia B, Khanna NK, Godhwani JL 1987. Effect of brahmi rasayan on the central nervous system. J Ethnopharmacol 21: 65-74. Silva JS, Moura MD, Oliveira RAG, Diniz MFFM, BarbosaFilho JM 2003. Natural products inhibitors of ovarian neoplasia. Phytomedicine 10: 221-232. Silva AFS, Andrade JP, Bevilaqua LRM, Souza MM, Izquierdo I, Henriques AT, Zuanazzi JAS 2006. Anxiolytic-, Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:817 817 23/01/2009 10:07:30 Lucindo J. Quintans Júnior, Jackson R.G.S. Almeida, Julianeli T. Lima, et al. antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol Biochem Behav 85: 148-154. Simon OR, Singh N 1986. Demonstration of anticonvulsant properties of an aqueous extract of spirit weed (Eryngium foetidum L.). W Indian Med J 35: 121125. Smith M, Wilcox KS, White HS 2007. Discovery of antiepileptic drugs. Neurotherapeutics 4: 12-17. Singh N, Singh SP, Kohli RP, Bhargava KP 1985. Indian plants as anti-stress agents. Nat Prod Coll Pharm Univ N Carolina, Abstract-202. Sinha BN, Sasmal D, Basu SP 1997. Pharmacological studies on Melothria maderaspatana. Fitoterapia 68: 7578. Sokomba E, Wambebe C, Chowdhury BK, Iriah J, Ogbeide ON, Orkor D 1986. Preliminary phytochemical, pharmacological and antibacterial studies of the alkaloidal extracts of the leaves of Synclisia scabrida miers. J Ethnopharmacol 18: 173-185. Souza MF, Santos FA, Rao VSN, Sidrim JJC, Matos FJA, Machedo MIL, Silveria ER 1998. Antinociceptive, anticonvulsant and antibacterial effects of the essential oil from the flower heads of Egletes viscosa L. Phytother Res 12: 28-31. Spence I, Jamieson DD, Taylor KM 1979. Anticonvulsant activity of farnesylacetone epoxide-a novel marine natural product. Experientia 35: 238. Speroni E, Minghetti A 1988. Neuropharmacologica activity of extracts from Passiflora incarnata. Planta Med 54: 488-491. Stables JP, Bertram E, Dudek FE 2003. Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop. Epilepsia 44: 1472-1478. Stoyanov N, Stefanov Z, Mitrev A, Nikolova M, Vankov S, Taskov M, Peneva M 1981. Study of the contents of biologically active compounds in wild Bulgarian plants. Nauchnoizsled Khim Farm Inst 11: 90-110. Sudha S, Kumaresan S, Amit A, David J, Venkataraman BV 2002. Anti-convulsant activity of different extracts of Centella asiatica and Bacopa monnieri in animals. J Nat Rem 2: 33-41. Sugaya A, Tsuda T, Sugaya E, Takato M, Takamura K 1978. Effects of chinese medicine Saiko-Keishi-To on the abnormal bursting activity of snail neurons. Planta Med 34: 294-298. Sugaya E, Ishige A, Sekiguchi K, Iizuka S, Ito K, Sugimoto A, Aburada M, Hosoya E 1988. Inhibitory effect of TJ960(SK) on pentylenetetrazole-induced EEG power spectrum changes. Epilepsy Res 2: 27-31. Sugaya A, Suzuki T, Sugaya E, Yuyama N, Yasuda K, Tsuda T 1991. Inhibitory effect of Paeony root extract on pentylenetetrazol-induced eeg power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J Ethnopharmacol 33: 159-167. Sugaya E, Sugaya A, Kajiwara K 1997. Nervous diseases and Kampo (Japanese herbal) medicine: a new paradigm of therapy against intractable nervous diseases. Brain Dev-Jpn 19: 93-103. Sun JN, Xu QP, Wu JY, Wang F, Ma LX, Chen MT, Yang CS 1991. Actions of volatile oils from the three kinds 818 of xixin on the central nervous system. Zhongguo Yaoxue Zazhi 26: 470-472. Taesotikul T, Panthong A, Kanjanapothi D, Verpoorte R, Scheffer JJC 1998. Neuropharamcological activities of the crude alkaloidal fraction from stems of Tabernaemontana pandacaqui Poir. J Ethnopharmacol 62: 229-234. Takagi K 1977. Pharmacological studies on Ginseng. Korean Ginseng Studies. Chem Pharmacol 346-357. Tortoriello J, Lozoya X 1992. Effect of Galphimia glauca methanolic extract on neuropharmacological tests. Planta Med 58: 234-236. Tortoriello J, Ortega A 1993. Sedative effect of galphimine B, a nor-seco-triterpenoid from Galphimia glauca. Planta Med 59: 398-400. Tortoriello J, Anguilar-Santamaria L 1996. Evaluation of the calcium-antagonist, antidiarrhoeic and central nervous system activities of Baccharis serraefolia. J Ethnopharmacol 53: 157-163. Tsuda T, Kubota K, Yasuda K, Sugaya A, Sugaya E 1986. Effect of Chinese herbal medicine “Kanbaku-Taiso-To” on neuropharmacological tests. J Ethnopharmacol 15: 289-296. Tsuda T, Sugaya A, Ohguchi H, Kishida N, Sugaya E. 1997. Protective effects of peony root extract and its components on neuron damage in the hippocampus induced by the cobalt focus epilepsy model. Exp Neurol 146: 518-525. Tsuda T, Sugaya A, Kaneko E, Oghuchi H, Katoh K, Jin W, Sugaya E 1998. pharmacological studies on longgu and oyster shell. Nat Med 52: 300-309. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L 1983. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9: 315-335. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA 1989. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3: 154-171. Vasconcelos SMM, Lima NM, Sales GTM, Cunha GMA, Aguiar LMV, Silveira ER, Rodrigues ACP, Macedo DS, Fonteles MMF, Sousa FCF 2007. Anticonvulsant activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu. J Ethnopharmacol 110: 271-274. Vazquez-Freire MJ, Castro E, Lamela M, Calleja JM 1995. Neuropharmacological effects of Cystoseira usneoides extract. Phytother Res 9: 207-210. Veiga-Junior VF 2008. Estudo do consumo de plantas medicinais na Região Centro-Norte do Estado do Rio de Janeiro: aceitação pelos profissionais de saúde e modo de uso pela população. Rev Bras Farmacogn 18: 308-313. Velisek L, Kubova H, Mares P, Vachova D 1995. Kainate/ AMPA receptor antagonists are anticonvulsant against the tonic hindlimb component of pentylenotetrazolinduced seizures in the developing rats. Pharmacol Biochem Behav 51: 153-153. Vieira RA, Lapa AJ, Lima TCM 2002. Evaluation of the central activity of the ethanolic extract of Acosmium subelegans (Mohlenbr) in mice. Rev Bras Farmacogn Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:818 23/01/2009 10:07:30 Plants with anticonvulsant properties - a review 12: 50-51. Viola H, Wasowski C, Levi de Stein M, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC 1995. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 61: 213-216. Viola H, Wasowaski C, Marder M, Wolfman C, Paladini AC 1997. Sedative and hypnotic properties of Salvia guaranitica St. Hil. and of its active principle, cirsiliol. Phytomedicine 4: 47-51. Watanabe K, Watanabe H, Goto Y, Yamaguchi M, Yamamoto N, Hagino K 1983. Pharmacological properties of magnolol and honnokiol extracted from Magnolia officinalis: central depressant effects. J Med Plant Res 49: 103-108. While HS, Woodhead JH, Wilcox KS, Stables JP, Kupferberg HJ, Wolf HH 2002. Discovery and preclinical development of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, eds. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins. p36-48. Wu C, Yu Q 1984. Pharmacological studies on Bupleurum chinense and its active ingredient, crude saikosaponin. Shenyang Yaoxueyuan Xuebao 1: 214-218. Yamahara J, Sawada T, Tani T, Nishino T, Kitagawa I, Fujimura H 1977. Biologically active principles of crude drugs. pharmacological evaluation of the crude drug “zhu”. Yakugaku Zasshi 97: 873. Yen YC 1977. Antiepileptic action of traditional Chinese medicinal herbs. Chung-Hua I Hsueh Tsa Chih (Beijing) 57: 497. Yoshitomi S, Watanabe M, Kawanishi F, Satake M 2000. Quality and their sedative effects of japanese Valerian roots. Nat Med 54: 55-56. Zia A, Siddiqui BS, Begum S, Siddiqui S, Suria A. 1995. Studies on the constituents of the leaves of Nerium oleander on behavior pattern in mice. J Ethnopharmacol 49: 33-39. Rev. Bras. Farmacogn. Braz J. Pharmacogn. 18 (Supl.): Dez. 2008 Revista Farmacognosia Suplemento 2008.indd Sec1:819 819 23/01/2009 10:07:30