Academia.eduAcademia.edu
An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea PETER FRENZEL, DIETMAR KEYSER AND FINN ANDREAS VIEHBERG BOREAS Frenzel, P., Keyser, D. & Viehberg, F.A. 2010: An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea. Boreas, 10.1111/j.1502-3885.2009.00135.x. ISSN 0300-9483 This synopsis of Baltic Sea brackish water Ostracoda gives an overview of all known Recent species for the first time. It also includes Holocene taxa now extinct in the area. There are 131 species, two of which are recorded only from Yoldia stage (Preboreal) sediments. The illustrated key is based exclusively on valve morphology, providing a taxonomical base for geoscience and biological studies using ostracods from the Baltic Sea area. A list of ecological tolerances and preferences as well as the latitudinal distribution of all species is intended as a reference for palaeoenvironmental analyses. Salinity, temperature and oxygen tolerance values as well as preferences for latitudinal distribution, water depth and energy, habitat and substrate are given. The data are based on quantitative sampling in the southern, central and western Baltic Sea and on information gained from literature. Peter Frenzel (e-mail: peter.frenzel@uni-jena.de), Fachbereich Biowissenschaften, Universität Rostock, Albert-Einstein-Strasse 3, 18051 Rostock, Germany; present address: Institut für Geowissenschaften, Universität Jena, Burgweg 11, 07749 Jena, Germany; Dietmar Keyser, Bioforschungszentrum Grindel und Zoologisches Museum, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Finn Andreas Viehberg, Institut für Geologie und Mineralogie, Universität zu Köln, Zülpicherstrasse 49a, 50674 Köln, Germany; received 15th September 2008, accepted 5th November 2009. Recent ostracods are abundant and highly diverse in the Baltic Sea. There are some regional synopses for living ostracods (e.g. Klie 1938a; Elofson 1941; Rosenfeld 1977; Järvekülg 1979; Enckell 1980; Hansson 1998) but, as with other regional and local studies, they are scattered over a wide range of geological and biological journals. Despite this broad knowledge of the biology of ostracods and the rich ostracod fauna of the Baltic Sea, this group is scarcely used in studies of sediments in environmental micropalaeontology or biological monitoring programs in this region. One reason is the often low preservation potential of calcareous microfossils in organic-rich Baltic Sea sediments; another is the lack of modern taxonomic keys and ecological data about Ostracoda from the area. The present paper delivers an aid for the research community investigating postglacial sediments or present-day biotopes of the Baltic Sea, applicable to research in Quaternary geology, physical geography, archaeology or aquatic biology. Furthermore, it is a catalogue for ostracod and crustacean workers in taxonomy/biodiversity, ecology and biogeography requiring data from the Baltic Sea area. We limit our synopsis to Postglacial and Recent ostracods from the Baltic Sea area and brackish water environments. Study area The Baltic Sea is a giant estuary bound to the marine influence of the North Sea through only two narrow and shallow straits (Belts and Sund) in the southwestern region (Fig. 1). The inner Baltic Sea is subdivided into several basins separated by shallower sills. Most parts are shallow (mean 52 m; Hupfer 1978); the deepest point lies in the Gotland Sea (459 m; Hupfer 1978). The salinity of the brackish sea depends mainly on the direction and intensity of prevailing winds, causing the temporary influx of saltier water into the basins of the inner Baltic Sea. The salinity of the southern Baltic Sea is very variable over small time scales and decreases in general towards the northeast (Matthäus 1996a). The tidal influence is not significant, with a maximum of 15 cm in the west (Lass & Magaard 1996). The water column shows a vertical thermohaline layering: a homohaline upper layer of lower salinity, a transition layer with downward rapidly increasing salinity and decreasing temperature, and a deeper water body with higher salinity and a relatively stable low temperature. Multiple layering occuring through successive intrusions of water of different temperature and salinity is also possible in the central Baltic Sea (Matthäus 1996a). The surface layer is strongly influenced by seasonal temperature changes and may be covered by ice in winter; its thickness increases in general from west to east. The bottom water body often suffers from oxygen deficiency as a result of two processes. First, low exchange rates of oxygenated ocean or surface water limit oxygen tansport to deeper layers. Second, high nutrient input causes algal and cyanobacterial blooms in the surface layer and subsequently an export of organic matter into the deeper water, where its degradation consumes oxygen (Matthäus 1996b). Material and methods Our compilation is based on all accessible published studies and unpublished theses and reports on DOI 10.1111/j.1502-3885.2009.00135.x r 2010 The Authors, Journal compilation r 2010 The Boreas Collegium 2 Peter Frenzel et al. BOREAS Fig. 1. Study area. The focus of sampling was the German Baltic coast given in the map inset. The numbers show bottom water salinities for the various regions in psu (Arndt 1969). Å = Åland Sea; AW = Achterwasser; DZ = Darss-Zingst lagoon system with Grabow, Barther and Saaler Bodden; F = Fehmarn; GB = Greifswalder Bodden; H = Hiddensee; LB = Langelands Bælt; Ø = Øresund; OH = Oderhaff (estuary); S = Schlei; SB = Store Bælt; SH = Salzhaff; SS = Strelasund; T = Tvärminne area (Finland); U = Usedom; W = Warnow estuary. Fig. 2. Morphology of Cyprideis torosa as an example of an ostracod. A. SEM picture of a right valve with soft parts of a male. The left valve is omitted. A1 = antennula; A2 = antenna; M1 = mandibula; M2 = maxillula; T1–T3 = 1st to 3rd limb; K = copulatory appendage (from Frenzel 2005; photo by K. Vopel & G. Arlt). B. Living male in reflected light, right side. C. Female empty right valve in transmitted light. D. Female empty left valve, internal SEM picture. Length of all valves about 1 mm. ostracods from the Baltic Sea. There are quantitative data on living associations from 819 stations (Fig. 2, Table 1) recording 92 ostracod species, and many more qualitative and general distribution remarks mainly from older studies (e.g. Müller 1900; Klie 1938a; Elofson 1941) used in our synopsis. Most of the specimens studied from the German coast were obtained from the collections at the Department of Micropalaeontology, University of Kiel (Rottgardt 1952; Rosenfeld 1977, 1979), the Institute of Geography and Geology, University of Greifswald (coll. Frenzel), and the Department of Marine Biology, University of Rostock (coll. Arlt). In addition, we included our own quantitative data on living ostracods from 126 samples (Table 2). Most data are from the western and southern Baltic Sea (i.e. the German coast). We also have a good overview on the basins of the central Baltic Sea (Rosenfeld 1977) as well as its eastern parts (Järvekülg 1979). By comparison, our knowledge on the northern part of the Baltic is very limited. The following environmental parameters are documented from the sites: salinity, water depth, temperature, habitat type, substrate, thickness of oxygenated superficial sediment layer, oxygen concentration, H2S BOREAS Key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea 3 Table 1. Quantitative data sets of published ostracod studies. Area Source Sampling period Number of samples Store Bælt Øresund Kiel Bight Southern Kiel Bight Schlei estuary Fehmarn Belt Southern Meckenburg Bight Southern Mecklenburg Bight Darss-Zingst lagoon system Darss-Zingst lagoon system Darss Sill Arkona Basin Pomeranian Bight Bornholm Basin Gotland Basin Åland Sea Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1979) Delling (1981) Rosenfeld (1977) Frenzel et al. (2005) Lauenburg (2005) Köhler (1990) Frenzel et al. (2005) Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1977) Rosenfeld (1977) 1975 1963 1963–19641197211974 1973–1975 1975–1977 1964 2002 2004–2005 1977–1980 2002 1963 1963 1963 1962–196411975 1964 1964 15 5 71 25 205 12 4 37 328 10 3 48 10 32 9 5 For regions see Fig. 1. Table 2. Sampling stations of our study with unpublished quantitative results. Table 3. Measured environmental factors and documented ranges for quantitative data. Area Sampling period Number of samples Parameter Range Fehmarn Belt Mecklenburg Bight Warnow estuary Darss-Zingst lagoon system Hiddensee and Strelasund Arkona Basin Pomeranian Bight and Greifswalder Bodden Oderhaff (estuary) Gotland Basin Åland Sea 200312005 2002–2005 2003 2003 2002–2005 2003 20001200312005 7 40 6 3 6 41 4 Salinity (psu) Water depth (m) Water temperature (1C) Oxygenated sediment layer (mm) O2 concentration (ml/l) pH LOI (%) 0.1–28.8 7.3 0.1–241.4 2.1 0.1–26.1 10.5 0–420 3 0.0–15.6 8.2 7.2–10.1 8.5 0.1–47.3 2.4 2001 2000 2003 16 1 2 For regions see Fig. 1. presence, pH, Corg concentration within sediment (LOI) and light penetration depth. However, the data set is inhomogeneous because of the great number of studies – some environmental factors are not documented for all samples, and differing sampling and preparation methodologies complicate comparisons. Table 3 gives an overview of documented ranges and medians of measured parameters. Checklist and taxonomic key There are 131 recorded ostracod species in the brackish water of the Baltic Sea (excluding the Kattegat). Two of these species are known only as fossils of the Yoldia stage. One species, Pteroloxa aff. cumuloidea, is recorded here for the first time from the Baltic. The diversity decreases from the southwestern part, where higher salinity prevails, to the northeastern part, which has generally lower salinities (Frenzel & Viehberg 2004, Median Number of samples 895 904 427 94 219 209 435 2005). The higher systematic scheme of our checklist of ostracods from the Baltic Sea (see Appendix) follows Martin & Davis (2001) and Horne et al. (2002), whereas the taxonomy of species and genera mainly follows Athersuch et al. (1989) and Meisch (2000). The complete systematic checklist of Recent and Holocene Ostracoda from the Baltic Sea is given in the Appendix. The identification of extant Ostracoda relies mostly on soft-part anatomy. Our key (see Supporting Information, OS1) is based on valve morphology only, because of intended application for subfossil and fossil associations. It should be used for a first identification of ostracod species and backed up by specialized taxonomic literature for more detailed studies. All species occurring in the study area are identifiable by hard parts only – in some cases not without problems, however (e.g. Pseudocandona species). Our key considers mainly adult valves. In some cases juvenile valves show remarkable differences from adult ones in size, shape and ornamentation, muscle scar pattern and hingement. If a high number of valves are available, the identification of juvenile specimens is often possible based on the identification of adult valves and the development of ontogenetic rows. However, the discrimination of juveniles of 4 Peter Frenzel et al. species of some genera is very difficult if they coexist, for example Leptocythere, Candona, Pseudocandona. The early instars (A-8 to A-4) are often not identifiable. Juvenile valves may be recognized in general by their smaller size, very narrow vestibulum and thinner shell compared to adults. For adults, detailed taxonomical descriptions including soft-part anatomy are given in Klie (1938a), Athersuch et al. (1989) and Meisch (2000), and these are usable for the Baltic Sea region. An overview of the ostracod bauplan, the general body plan, and important terms are given in Fig. 2, within the glossary in the Appendix of this article and within the key (OS1) and corresponding figures of ostracods. Ecological preferences and tolerances – a (palaeo)ecological primer The ecological data given in the Supporting Information (OS2) should provide a base for biological work and for palaeoenvironmental reconstructions using the indicator species approach and the method of combined tolerances. Tolerance data are based on our data set of ostracods in the Baltic Sea (cf. Table 3) and document the value range within which the given species is predominantly found. In addition, literature records are used to supplement the given data, especially for higher-salinity environments. The indicator species approach uses species typical for distinctive values of environmental factors or special habitats to reconstruct environmental conditions of the past. The method of combined tolerances (or mutual range method, cf. Horne 2007) compares the tolerance limits against chosen environmental factors and infers from this an estimated range of past environmental factors (Fig. 3). However, both approaches depend heavily on two prerequisites: (1) the availability of Fig. 3. Estimated salinity for an ostracod taphocoenosis from surface sediment of the Oderhaff, lagoon of the Oder River at the southern Baltic Sea coast. A total of 96 empty valves from one sediment sample were used. The bars show tolerance ranges of ostracod taxa as taken from the literature, and the height of bars indicates the dominance of taxa within the sample. The reconstructed salinity gives a better picture of the environment than a salinity measurement during sampling and corresponds well to long time observations in amplitude and mean value. (from Frenzel et al. 2006, modified) BOREAS a sound regional data set with compiled environmental parameters (e.g. OS2), and (2) the presence of indicative specimens in the fossil record (see Discussion). Analysis by proportions of ecological classes is a more stable method for the reconstruction of changing environmental parameters. This method is used for any environmental factor important for the studied association, even if the data on actual ecology are limited. An analysis by ecological classes produces a qualitative reconstruction of parameters only and reveals trends in time or space. An example is given in Fig. 4. Salinity is the main factor determing ostracod distribution in the Baltic Sea (Frenzel & Viehberg 2005). Hence, ostracods are an excellent tool for estimating palaeosalinity. Salinity values are generally given in psu (practical salinity unit, Practical Salinity Scale (PSS) in Unesco 1981). Salinity classes are based on the Venice classification system of brackish waters (Symposium on the Classification of Brackish Waters, 1958). The psu values indicated in OS2 in brackets are untypical, extreme values, or measured outside the Baltic Sea. The salinity ranges presented here for the Baltic Sea should be adopted with caution for the brackish water of European estuaries because of much higher fluctuations over shorter time scales. For instance, Robertsonites tuberculatus is restricted to the marine realm in British coastal waters (D.J. Horne, pers. comm. 2008), whereas this species is typical for the mesohaline to polyhaline deep water in the Baltic Sea basins. Most brackish water ostracod species show a high adaptability to temperature, because this factor is highly variable within this environment. Because of the wide range of water depths in which they live, we provide water temperature data and not air temperatures as in Horne (2007) for freshwater ostracods. In addition to these temperature data (which are often poorly known and mostly unreliable as tolerance values because of fragmentary documentation, contortion by single extreme values and very wide ranges), we indicate the general latitudinal distribution of species using the ostracod provinces provided by Wood & Whatley (1994) with additions from Neale & Howe (1975) and the biogeographical classification of littoral faunas along the Eastern Atlantic coast given by Lattin (1967) (Fig. 5; terms used in the Supplement are in capital letters): The ARCTIC subregion (North Pole to Kola Peninsula and Greenland) shows mean summer surface temperatures (MSST) of 6.5–1.51C and mean winter surface temperatures (MWST) of 5.2–1.51C (Wood & Whatley 1994). The Atlantic-Boreal subregion (coast of Norway to Bretagne including the North Sea and BALTIC Sea) has a MSST of about 10–151C and MWST of about 0–101C (Lattin 1967). This subregion was split by Wood & Whatley (1994) into a NORWEGIAN (from northern Kola Peninsula to Shetland, Faroes and Iceland) and part of their CELTIC province (British Isles to Biscaya, including the Baltic Sea). The BOREAS Key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea 5 Fig. 4. Salinity, climate and habitat changes based on ostracod assemblages from a Holocene sediment sequence (core Puda 29b) of the peninsula of Usedom, southern Baltic Sea coast. The ecological classification follows the present paper (see text and the Supporting Information, OS2). The stratigraphical units are Baltic Sea stages (see Mangerud et al. 1974). Key for lithology. 1 = fine sand; 2 = peat; 3 = silt; 4 = organic mud, light brown; 5 = organic mud, brown; 6 = silty fine sand. Data for vertical distributions and proportions of ostracod taxa as well as the lithological column are taken from Viehberg et al. (2008). Celtic province was subdivided by Neale & Howe (1975) into a BRITANNIC subprovince with its southern border in the English Channel and a GASCOYNIAN subprovince stretching to the Spanish coast. MSST rises to 15–251C and MWST to 10–201C within the Mediterranean-Atlantic subregion (Bretagne to Senegal; Lattin 1967). For this part, Wood & Whatley (1994) distinguished a MEDITERRANEAN, a LUSITANIAN (coasts of northwestern Spain and Portugal with MSST 21–261C and MWST 13–161C; Wood & Whatley 1994) and a MOROCCAN (Strait of Gibraltar to Western Africa) province. From Western Africa, the MAURITANIAN province reaches to Guinea, where the GUINEAN province is situated (MSST up to 27.51C, MWST up to 181C following Wood & Whatley 1994), followed by several African provinces to the south (MSST up to 26–301C and MWST up to 23–261C; Wood & Whatley 1994). This more-or-less latidudinal and temperature-bound classification can be used to detect climatic shifts in Quaternary sediment sequences (Fig. 4). In addition, the thermal classification for freshwater ostracods used by Nüchterlein (1969), Hiller (1972) and Meisch (2000) is given for many taxa: COLD-STENOTHERMAL – species occurring in permanently cold waters only; OLIGOTHERMOPHILIC – species preferring cold waters (winter forms); MESOTHERMOPHILIC – species between oligo- and polythermophilic forms; POLYTHERMOPHILIC – species preferring warm waters (summer forms); WARM-STENOTHERMAL – species occurring in permanently warm waters only; and THERMOEURYPLASTIC – species adaptated to a broad range of water temperatures (permanent forms). Several parameters bound to water depth, such as water energy, light penetration, temperature and its variation, water masses with differing salinity and oxygen concentration, are driving factors for aquatic animals (Liebau 1980). For the Baltic Sea, the water depth distribution reflects the highly productive and highly variable wave-affected very shallow water of normally less than 1 m water depth and close to the shore line, the shallower water above the halocline, and the saltier and more stable deeper water below the halocline. The depth position of the halocline changes from basin to basin in the Baltic Sea. We distinguish, therefore, three water-depth-related classes, considering exclusively the Baltic Sea. Furthermore, the water energy classification used by Nüchterlein (1969), Meisch (2000) and others is indicated: RHEOPHOBIC – species occurring in stagnant waters only; OLIGORHEOPHILIC – species occurring in the turbulent littoral zone of lakes and/or sometimes in slowly flowing waters also; MESORHEOPHILIC – species frequently found in flowing waters; POLYRHEOPHILIC – species mainly found in flowing waters; and RHEOEURYPLASTIC – species occurring in flowing and stagnant waters. (Micro)Habitat and substrate are important parameters for the occurrence of a given ostracod species. We distinguish land-side coastal waters (SWAMPS, PONDS, LAKES, SALT MARSH, ESTUARIES, LAGOONS) and the open (Baltic) sea. The classification ‘COASTAL’ covers all these environments without the OPEN SEA. The most common habitat types in the Baltic Sea are on and within the SEDIMENT, within the PHYTAL zone on submerged macrophytes or between it on plant detritus, and nectobenthic (swimming) 6 Peter Frenzel et al. BOREAS or thickness of the oxygenated superficial sediment layer were used to classify the species. Discussion Fig. 5. Ostracod provinces by Wood & Whatley (1994; with additions from Neale & Howe 1975) in the Arctic Atlantic and along the Eastern Atlantic coast. or neritic (compare Frenzel et al. 2005). We distinguish the grain size classes of fine-grained sediment (mud to sandy mud partly with a prominent detritus cover), fine to coarse sand, pebbles and shelly substrate. Oxygen concentration and hydrogen sulphide occurrence are limiting for many species. Because tolerance values are not known or are incomplete for most species, only remarks are given. Low-oxygen taxa are ostracods tolerating oxygen deficiency or even temporarily hydrogen sulphide. High-oxygen forms do not tolerate oxygen deficiency. Where present in our database, minimum oxygen concentrations or H2S presence Despite the ease of use of the indicator species and combined ecological tolerances approach there are some problems and pitfalls: interpretations have to rely on autochthonous associations only, because autochthonous associations only represent the environment we would like to reconstruct for a given location. Distinguishing between autochthonous and allochthonous elements of an association is often difficult, but is essential for a meaningful reconstruction. Suitable strategies for addressing this problem are presented in Boomer et al. (2003) and involve using the population age structure of the association. The living individuals form the biocoenosis, from which valves are transferred to the sediment after moulting and after the death of the animals. These valves form a thanatocoenosis. Properly calcified shells are present from stage A-8 (second instar after hatching) to the adult. An unaltered thanatocoenosis should therefore contain high numbers of instars, with the very small ones underrepresented because of a higher risk of dissolution or breaking and lower numbers of adults because not all individuals reach this ontogenetic stage. In high-energy environments smaller valves will be transported and are thus lacking from the fossil record at these sites. Furthermore, carapaces will be disarticulated, causing a low carapace/valve ratio. On the other hand, these transported smaller valves will be deposited at low-energy sites. There they are allochthonous and form together with autochthonous specimens a taphocoenosis. Here, autochthonous species will display an undisturbed population age structure and a high carapace/valve ratio. Another problem is that samples from profiles represent a certain time-span, its length depending on sample thickness and sedimentation rate. Hence, a suite of associations representing changing environmental conditions may be present within one single sample. Furthermore, the combined effect of environmental factors on the organism is hard to estimate. For instance, temperature or salinity changes may affect the tolerances of a given species towards other parameters (cf. Rottgardt 1952). This normally narrows the tolerance range indicated (OS2). The relatively stable salinity in the Baltic Sea compared with that of European estuaries, however, expands the tolerance limits of many species against other environmental parameters, for example temperature and water depth. This phenomenon can also be observed in the compilation of environmental data of marine molluscs by Peacock (1993). The latitudinal distribution and temperature tolerance range of freshwater species given in OS2 may be too large for brackish water conditions because BOREAS Key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea freshwater occurrences were incorporated. Because of these limitations, our ecological primer should be used with caution in other areas or at times when a different climate or distinct tides construct a different environmental framework for the existence of ostracod species and forms. Conclusions Ostracods, as other microfossils, bear great potential for the reconstruction of past environments and applications in environmental micropalaeontology. Our checklist and illustrated key provide a base for the identification of ostracods from brackish water in the entire Baltic region (131 species; see OS1). When identified, the ostracod taxa can be used as proxies for salinity, temperature, oxygen, water depth and energy, habitat and substrate type, according to the (palaeo) ecological primer provided in OS2. Recommended methods for using our data set (OS2) are the indicator species approach and the mutual ecological tolerance ranges method. Furthermore, the data set presented here can be used as a reference in biogeographical and systematic studies. Acknowledgements. – We wish to thank Günter Arlt (University of Rostock) for having supported the first author in many ways during practical work. He also put some material used in this study at our disposal. Wolfgang Kuhnt (University of Kiel) gave access to collections and material of the Institute of Geoscience, University of Kiel. Several SEM photos and ecological data provided by Sabine Köhler (Munich; formerly University of Rostock) are used in our synopsis. Renate Walter (Zoological Museum, Hamburg) gave support in preparing many figures for the plates. Horst Janz, Claude Meisch and Amnon Rosenfeld kindly gave permission for us to reproduce figures from their publications. Students of the Meiobenthos Lab of the University of Rostock, Dörthe Borck, Daniela Henkel, Beate Lauenburg, Yvonne Silber and Lina Tschendel, and Thomas Daniel of the Institute of Geoscience, University of Jena, helped in the field and with additional material. David Horne (Queens University London), Ian Boomer (University of Birmingham), Alison J. Smith (Kent State University) and Benjamin Gilfedder (TU Braunschweig) improved our manuscript in content and style. PF acknowledges financial funding by a scholarship program of the German Federal Environmental Foundation (DBU). FAV held a Feodor-Lynen fellowship of the Alexander von Humboldt Foundation (AvH). References Arndt, E. A., 1969: (ed.): Zwischen Düne und Meeresgrund. Urania, Leipzig, Jena, Berlin. Athersuch, J., Horne, D. J. & Whittaker, J. E. 1989: Marine and brackish water ostracods (superfamilies Cypridacea and Cytheracea). In Kermack, D. M. & Barnes, R. S. K. (eds.): Synopses of the British Fauna (New Series) 43. 343 pp. E. J. Brill, Leiden. Boomer, I., Horne, D. J. & Slipper, I. J. 2003: The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In Park, L. E. & Smith, A. J. (eds.): Bridging the Gap: Trends in the Ostracod Biological and Geological Sciences, 153–179. The Paleontological Society Papers 9. 7 Elofson, O. 1941: Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berücksichtigung des Skageraks. Zoologiska Bidrag från Uppsala 19, 215–537. Enckell, P. H. 1980: Kräftdjur. 685 pp. Signum, Lund. Frenzel, P. 2005: Ostrakoden und Foraminiferen im Strelausund und Kubitzer Bodden. Meer und Museum 18, 111–120. Frenzel, P. & Viehberg, F. A. 2004: Checklist of Recent and Quaternary ostracods (Crustacea) from freshwater, brackish and marine environments in Mecklenburg-Vorpommern, NE Germany. Revista Española de Micropaleontologı´a 36(1) (Fifth European Ostracodologists Meeting), 29–55. Frenzel, P. & Viehberg, F. A. 2005: Recent and fossil ostracods of the southern Baltic Sea coast. In Mischke, S., Pint, A. & Zobel, K. (eds.): 15th International Symposium on Ostracoda, Freie Universität Berlin, September 12–15, 2005, Guidebook of Excursions. Berliner paläobiologische Abhandlungen 6 (suppl.), 3–32. Frenzel, P., Henkel, D., Siccha, M. & Tschendel, L. 2005: Do ostracod associations reflect macrophyte communities? A case study from the brackish water of the southern Baltic Sea coast. Aquatic Sciences 67, 142–155. Frenzel, P., Matzke-Karasz, R. & Viehberg, F. A. 2006: Muschelkrebse als Zeugen der Vergangenheit. Biologie in unserer Zeit 36(2), 102–108. Hansson, H. G. 1998: NEAT (North East Atlantic Taxa): South Scandinavian marine Crustacea Check-List. 84 pp. Available at: http://www.tmbl.gu.se (accessed10.10.2007). Hiller, D. 1972: Untersuchungen zur Biologie und zur Ökologie limnischer Ostracoden aus der Umgebung von Hamburg. Archiv für Hydrobiologie, Supplement-Band 40, 400–497. Horne, D. J. 2007: A Mutual Temperature Range method for Quaternary palaeoclimate analysis using European nonmarine Ostracoda. Quaternary Science Reviews 26, 1398–1415. Horne, D. J., Cohen, A. & Martens, K. 2002: Taxonomy, morphology and biology of Quaternary and living Ostracoda. In Holmes, J. A. & Chivas, A. R. (eds.): The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131, 5–36. Hupfer, P. 1978: Die Ostsee – kleines Meer mit großen Problemen. Kleine Naturwissenschaftliche Bibliothek 40. 152 pp. B. G. Teubner, Leipzig. Järvekülg, A. 1979: Donnaâ fauna vostočnoj cˇastu Baltijskogo morâ. Sostav i ekologiâ raspredeleniâ. 382 pp. Valgus, Tallin. Klie, W. 1938a: Ostracoda, Muschelkrebse. In Dahl, M. & Bischoff, H. (eds.): Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise 34. 230 pp. Gustav Fischer, Jena. Lass, H. U. & Margaard, L. 1996: Wasserstandsschwankungen und Seegang. In Rheinheimer, G. (ed.): Meereskunde der Ostsee, 68–74. Springer, Berlin. Lattin, G. de 1967: Grundriß der Zoogeographie. 602 pp. Fischer, Jena. Liebau, A. 1980: Paläobathymetrie und Ökofaktoren: Flachmeerzonierungen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 160, 173–216. Mangerud, J., Anderson, S. T., Berglund, B. E. & Donner, J. J. 1974: Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109–128. Martin, J. W. & Davis, G. E. 2001: An Updated Classification of the Recent Crustacea. Science Series, Natural History Museum of Los Angeles County 39. 124 pp. Los Angeles. Matthäus, W. 1996a: Temperatur, Salzgehalt und Dichte. In Rheinheimer, G. (ed.): Meereskunde der Ostsee, 75–81. Springer, Berlin. Matthäus, W. 1996b: Ozeanographische Besonderheiten. In Lozán, J. E., Lampe, R., Matthäus, W., Rachor, E., Rumohr, H. & Westernhagen, H. von (eds.): Warnsignale aus der Ostsee. Wissenschaftliche Fakten, 17–24. Parey, Berlin. Meisch, C. 2000: Crustacea: Ostracoda. In Schwoerbel, J. & Zwick, P. (eds.): Süßwasserfauna von Mitteleuropa 8. 522 pp. Spektrum Akademischer Verlag, Heidelberg and Berlin. Müller, G. W. 1900: Deutschlands Süßwasser-Ostracoden. Zoologica 12, 112 pp. Neale, J. W. & Howe, H. V. 1975: The marine Ostracoda of Russian Harbour, Novaya Zemlya and other high latitude faunas. In Swaine, F. H. (ed.): Biology and Paleobiology of Ostracoda, 381–431. Bulletins of American Paleontology 65. 8 Peter Frenzel et al. Nüchterlein, H. 1969: Süßwasserostracoden aus Franken. Ein Beitrag zur Systematik und Ökologie der Ostracoden. Internationale Revue der gesamten Hydrobiologie 54, 223–287. Peacock, J. D. 1993: Late Quaternary mollusca as palaeoenvironmental proxies. Quaternary Science Reviews 12, 268–275. Rosenfeld, A. 1977: Die rezenten Ostracoden-Arten in der Ostsee. Meyniana 29, 11–49. Rosenfeld, A. 1979: Seasonal distributions of Recent ostracodes from Kiel Bay, Western Baltic Sea. Meyniana 31, 59–82. Rottgardt, D. 1952: Mikropaläontologisch wichtige Bestandteile rezenter brackischer Sedimente an den Küsten Schleswig-Holsteins. Meyniana 1, 169–228. Symposium on the Classification of Brackish Waters 1958: The Venice system for the classification of marine waters according to salinity. Oikos 9, 311–312. Unesco 1981: Background papers and supporting data on the International Equation of State of Seawater 1980. Technical Papers Marine Sciences 38, 1–192. Veihberg, F. A., Frenzel, P. & Hoffmann, G. 2008: Succession of Quaternary ostracod assemblages in a trangressive environment: a study at an inshore locality in the southern Baltic Sea (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 264(3–4), 318–329. Wood, A. M. & Whatley, R. C. 1994: Northeastern Atlantic and Arctic faunal provinces based on the distribution of Recent ostracod genera. The Holocene 4, 174–192. Appendix Table A1 Table A1. Systematics of Baltic Sea Ostracoda. Class OSTRACODA Latreille, 1802 1 Subclass Myodocopa Sars, 1866 1.1 Order Myodocopida Sars, 1866 1.1.1 Suborder Myodocopina Sars, 1866 1.1.1.1 Superfamily Sarsielloidea Brady & Norman, 1896 1.1.1.1.1 Family Philomedidae G.W. Müller, 1906 1.1.1.1.1a Subfamily Philomedinae G.W. Müller, 1912 Philomedes globosus (Lilljeborg, 1853) 1.2 Order Halocyprida Dana, 1853 1.2.1 Suborder Cladocopina Sars, 1865 1.2.1.1 Superfamily Polycopoidea Sars, 1865 1.2.1.1.1 Family Polycopidae Sars, 1865 Polycope orbicularis Sars, 1866 Polycope schulzi Klie, 1950 2 Subclass Podocopa G.W. Müller, 1894 2.1 Order Podocopida Sars, 1866 2.1.1 Suborder Cytherocopina Baird, 1850 2.1.1.1 Superfamily Cytheroidea Baird, 1850 2.1.1.1.1 Family Bythocytheridae Sars, 1866 Jonesia acuminata (Sars, 1866) Sclerochilus rudjakovi Athersuch & Horne, 1987 2.1.1.1.2 Family Cushmanideidae Puri, 1974 Pontocythere elongata (Brady, 1868) 2.1.1.1.3 Family Cytheridae Baird, 1850 Cythere lutea O.F. Müller, 1785 Palmenella limicola (Norman, 1865) 2.1.1.1.4 Family Cytherideidae Sars, 1925 Cyprideis torosa (Jones, 1850) Cytherissa lacustris (Sars, 1863) Heterocyprideis sorbyana (Jones, 1856) Paracyprideis fennica (Hirschmann, 1909) Sarsicytheridea bradii (Norman, 1865) Sarsicytheridea punctillata (Brady, 1865) 2.1.1.1.5 Family Cytheruridae G.W. Müller, 1894 BOREAS 2.1.1.1.5a Sub-family Cytherurinae G.W. Müller, 1894 Cytherura atra Sars, 1865 Cytherura bidens Klie, 1929 Cytherura fulva Brady & Robertson, 1874 Cytherura gibba (O.F. Müller, 1785) Cytherura inconspicua Klie, 1934 Cytherura nasuta Klie, 1934 Hemicytherura cellulosa (Norman, 1865) Hemicytherura clathrata (Sars, 1866) Semicytherura acuticostata (Sars, 1865) Semicytherura affinis (Sars, 1866) Semicytherura angulata (Brady, 1868) Semicytherura nigrescens (Baird, 1838) Semicytherura sella (Sars, 1865) Semicytherura similis (Sars, 1865) Semicytherura simplex (Brady & Norman, 1889) Semicytherura striata (Sars, 1865) Semicytherura undata (Sars, 1865) 2.1.1.1.5b Sub-family Cytheropterinae Hanai, 1957 Cytheropteron angulatum Brady, 1868 Cytheropteron latissimum (Norman, 1865) Cytheropteron montrosiense Brady, Crosskey & Robertson, 1874 2.1.1.1.6 Family Eucytheridae Puri, 1954 Eucythere argus (Sars, 1865) Eucythere declivis (Norman, 1865) 2.1.1.1.7 Family Hemicytheridae Puri, 1953 Elofsonella concinna (Jones, 1857) Finmarchinella angulata (Sars, 1865) Hemicythere villosa (Sars, 1865) Urocythereis britannica Athersuch, 1977 2.1.1.1.8 Family Krithidae Mandelstam, 1958 Krithe praetexta Sars, 1866 2.1.1.1.9 Family Leptocytheridae Hanai, 1957 Leptocythere baltica Klie, 1929 Leptocythere castanea (Sars, 1865) Leptocythere lacertosa (Hirschmann, 1912) Leptocythere pellucida (Baird, 1850) Leptocythere porcellanea (Brady, 1869) Leptocythere psammophila Guillaume, 1976 Leptocythere tenera (Brady, 1868) 2.1.1.1.10 Family Limnocytheridae Klie, 1938 2.1.1.1.10a Subfamily Limnocytherinae Klie, 1938 Leucocythere mirabilis (Kaufmann, 1892) Limnocythere inopinata (Baird, 1843) Limnocytherina sanctipatricii (Brady & Norman, 1869) 2.1.1.1.10b Subfamily Timiriaseviinae Mandelstam, 1960 Metacypris cordata (Brady & Robertson, 1870) 2.1.1.1.11 Family Loxoconchidae Sars, 1925 Cytheromorpha fuscata (Brady, 1869) Cytheromorpha sp. A sensu Rosenfeld 1977 Elofsonia baltica (Hirschmann, 1909) Elofsonia pusilla (Brady & Robertson, 1870) Hirschmannia viridis (O.F. Müller, 1785) Loxoconcha elliptica Brady, 1868 Loxoconcha rhomboidea (Fischer, 1855) Palmoconcha guttata (Norman, 1865) Palmoconcha laevata (Norman, 1865) Phlyctocythere fragilis (Sars, 1865) Pteroloxa aff. cumuloidea Swain, 1963 Roundstonia macchesneyi (Brady & Crosskey, 1871) Roundstonia robertsoni (Brady, 1868) 2.1.1.1.12 Family Neocytherideidae Puri, 1957 Neocytherideis crenulata (Klie, 1929) 2.1.1.1.13 Family Paracytherideidae Puri, 1957 Paracytheridea cuneiformis (Brady, 1868) 2.1.1.1.14 Family Paradoxostomatidae Brady & Norman, 1889 Cytherois arenicola Klie, 1929 Cytherois fischeri (Sars, 1865) Cytherois pusilla Sars, 1928 BOREAS Key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea Cytherois vitrea (Sars, 1865) Paracytherois arcuata (Brady, 1868) Paradoxostoma abbreviatum Sars, 1866 Paradoxostoma ensiforme Brady, 1868 Paradoxostoma normani (Brady, 1868) Paradoxostoma pulchellum Sars, 1866 Paradoxostoma variabile (Baird, 1835) 2.1.1.1.15 Family Trachyleberididae Sylvester-Bradley, 1948 Acanthocythereis dunelmensis (Norman, 1865) Acanthocythereis horrida (Sars, 1865) Pterygocythereis jonesii (Baird, 1850) Robertsonites tuberculatus (Sars, 1865) 2.1.1.1.16 Family Xestoleberidae Sars, 1928 Xestoleberis aurantia (Baird, 1838) Xestoleberis depressa (Sars, 1865) Xestoleberis nitida (Liljeborg, 1853) 2.1.2 Suborder Darwinulocopina Sohn, 1988 2.1.2.1 Superfamily Darwinuloidea Brady & Norman, 1889 2.1.2.1.1 Family Darwinulidae Brady & Norman, 1889 Darwinula stevensoni (Brady & Robertson, 1870) 2.1.3 Suborder Cypridocopina Jones, 1901 2.1.3.1 Superfamily Cypridoidea Baird, 1845 2.1.3.1.1 Family Candonidae Kaufmann, 1900 2.1.3.1.1a Subfamily Candoninae Kaufmann, 1900 Candona angulata G.W. Müller, 1900 Candona candida (O.F. Müller, 1776) Candona neglecta Sars, 1887 Candona weltneri (Hartwig, 1899) Candonopsis kingsleii (Brady & Robertson, 1870) Fabaeformiscandona caudata (Kaufmann, 1900) Fabaeformiscandona fabaeformis (Fischer, 1851) Fabaeformiscandona fragilis (Hartwig, 1898) Fabaeformiscandona holzkampfi (Hartwig, 1900) Fabaeformiscandona hyalina (Brady & Robertson, 1870) Fabaeformiscandona levanderi (Hirschmann, 1912) Fabaeformiscandona protzi (Hartwig, 1898) Paracandona euplectella (Robertson, 1889) Pseudocandona albicans (Brady, 1864) Pseudocandona compressa (Koch, 1838) Pseudocandona hartwigi (G.W. Müller, 1900) Pseudocandona insculpta (G.W. Müller, 1900) Pseudocandona lobipes (Hartwig, 1900) Pseudocandona marchica (Hartwig, 1899) Pseudocandona pratensis (Hartwig, 1901) Pseudocandona rostrata (Brady & Norman, 1889) Pseudocandona sucki (Hartwig, 1901) 2.1.3.1.1b Subfamily Cyclocypridinae Kaufmann, 1900 Cyclocypris globosa (Sars, 1863) Cyclocypris laevis (O.F. Müller, 1776) Cyclocypris ovum (Jurine, 1820) Cypria exsculpta (Fischer, 1855) 9 Cypria ophtalmica (Jurine, 1820) Cypria subsalsa Redeke, 1936 Physocypria kraepelini G.W. Müller, 1903 2.1.3.1.2 Family Cyprididae Baird, 1845 2.1.3.1.2a Subfamily Cypridinae Baird, 1845 Cypris pubera O.F. Müller, 1776 2.1.3.1.2b Subfamily Eucypridinae Bronshtein, 1947 Eucypris virens (Jurine, 1820) 2.1.3.1.2c Subfamily Cypridopsinae Kaufmann, 1900 Cypridopsis vidua (O.F. Müller, 1776) Plesiocypridopsis newtoni (Brady & Robertson, 1870) Potamocypris arcuata (Sars, 1903) Potamocypris humilis (Sars, 1924) Potamocypris unicaudata Schäfer, 1943 Sarscypridopsis aculeata (Costa, 1847) 2.1.3.1.2d Subfamily Cyprinotinae Bronshtein, 1947 Heterocypris incongruens (Ramdohr, 1808) Heterocypris salina (Brady, 1868) 2.1.3.1.2e Subfamily Herpetocypridinae Kaufmann, 1900 Herpetoypris chevreuxi (Sars, 1896) Herpetocypris reptans (Baird, 1835) Psychrodromus olivaceus (Brady & Norman, 1889) 2.1.3.1.2f Subfamily Notodromadinae Kaufmann, 1900 Notodromas monacha (O.F. Müller, 1776) 2.1.3.1.3 Family Ilyocyprididae Kaufmann, 1900 Ilyocypris bradyi Sars, 1890 Ilyocypris decipiens (Fischer, 1851) Ilyocypris gibba Ramdohr, 1808 Supporting Information Additional Supporting Information may be found in the online version of this article: OS1. An illustrated key for the Ostracoda of the Baltic Sea. OS2. A (palaeo)ecological primer for the Ostracoda of the Baltic Sea. Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. 1 Online supplement 1: An illustrated key for the Ostracoda of the Baltic Sea for An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea by PETER FRENZEL, DIETMAR KEYSER AND FINN ANDREAS VIEHBERG DOI: 10.1111/j.1502-3885.2009.00135.x The presented key refers to adults in general. It uses information from keys by Klie (1938a: Germany), Athersuch et al. (1989: marine and brackish waters of the UK), Griffiths & Holmes (2000: freshwater of the UK) and Meisch (2000: freshwater of Central and Western Europe) and incorporates additional diagnostic features. Our key comprises all Holocene brackish water species from the Baltic Sea, but without Kattegat. The numbers in front of the key paragraphs give a numbering for each step of decision (mostly dichotomous) and refer to the preceding decision by a second number in brackets. The numbers behind the diagnostic descriptions refer to the following number in front of the key paragraphs. This system allows a step by step identification of species and return to earlier stages of the decision chain if problems occur. More detailed taxonomic information will be found in Meisch (2000) for freshwater taxa and in Athersuch et al. (1989) for marine and brackish water taxa. Important taxonomic references for those taxa not covered by Meisch (2000) and Athersuch et al. (1989) are given within the key. Class OSTRACODA Latreille, 1802 1 2(1) Ventral margin in lateral view strongly convex; Myodocopa 2 Ventral margin in lateral view concave or straight; Podocopa 4 Oval outline in lateral view, anterior with rostral incisure (Plt. OS1-1A); Myodocopida Circular outline in lateral view; Halocyprida, Polycope 3(2) Length 0.22 mm, length/width ratio in dorsal view ca. 2.0 Length 0.5 – 0.7 mm, length/width ratio in dorsal view ca. 1.5 4(1) Valve exterior ornamented Valve exterior smooth except for normal pores and setae (may be rough or faintly pitted) 5(4) Philomedes globosus [Plt. OS1-1A-B; Sars 1928: 12] 3 Polycope schulzi [Plt. OS1-1C; Klie 1950: 129] Polycope orbicularis [Plt. OS1-1D; Sars 1928: 31] 5 76 Valve thick-shelled and/or with heavy ornamentation 6 Valve thin-shelled, with faint ornamentation 7 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 2 6(5) Valve with prominent spines on lateral and marginal surfaces 8 Valve without prominent spines or with only marginal spines 10 7(5/13) Valve with triangular shape, surface covered by short fine spines (thickened setae) 8(6) Sarscypridopsis aculeata [Plt. OS1-1E-H] Valve with almost straight dorsal margin, surface faintly reticulate and wart-like Paracandona euplectella [Plt. OS1-1I-J] Valve with alae (ventro-lateral protrusions; Plt. OS1-4K), but not reticulate Pterygocythereis jonesii [Plt. OS1-1K-L] 9 Valve reticulate but without alae; Acanthocythereis Remark: Elofson (1941) describes two ‘forms’ of Cythereis dunelmensis from the Skagerrak and Kattegat: A smaller and a larger one with very similar female valves but males with differing valve shape and ornamentation and a distinctively different penis. The smaller form prefers shallower water and sandier sediments than the larger one. Athersuch et al. (1989) state the smaller ‘form’ of Elofson to be the true Acanthocythereis dunelmensis whereas the larger ‘form’ may be identical with Sars’ (1865) Cythereis horrida and Rosenfeld’s (1977) A. dunelmensis. Because only a few specimens occur in our material and soft bodies are lacking we do not review the taxonomic status of A. horrida, however, we can distinguish two different taxa/forms in our material using the descriptions provided by Elofson (1941). 9(8) Length <1.01 mm, height/width ratio posteriorly 2.7 (male); both gender with prominent clavate spines on a distinct posteroventral corner; valves less densely covered with spines Acanthocythereis dunelmensis [Plt. OS1-1M-N] Length >0.95 mm, height/width ratio posteriorly 2.4 (male); only males with posteroventral clavate spines on a faint corner, females with compressed and evenly rounded posteroventral margin with only small spines; valves more densely covered with spines Acanthocythereis horrida [Plt. OS1-1O-P; Elofson 1941: 296] 10(6) Valve without a caudal process 11 Valve with a caudal process (Plt. OS1-4H) 55 11(10) Marginal pore-canals simple or some bifurcating 12 Marginal pore-canals branching; Leptocythere 49 12(11) Valve with a longitudinal, rather swollen carina (keel-like rib), surface finely reticulate and pitted, with a dorsomedian sulcus (Plt. OS1-1V) Palmenella limicola [Plt. OS1-1Q] Valve without longitudinal carina 13(12) Valves with fine spines or reticulate with wart-like surface Valves reticulate or pitted and/or with concentric ridges 14(13) Valve with prominent tubercles or swellings Valve without prominent tubercles or swellings 15(14) Valve finely pitted 13 7 14 15 21 16 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Valve wholly or partly reticulate 18 44 16(15) With dorsomedian sulci (Plt. OS1-1V); Ilyocypris Without dorsomedian sulci 17 Cytherissa lacustris [Plt. OS1-1R-T] 17(16) Dorsal margin straight, anterior much higher than posterior Dorsal margin gently arched, anterior little higher than posterior Cyprideis torosa forma torosa [Plt. OS1-1U] Limnocythere inopinata [Plt. OS1-1V] 18(15) Shell thin, dorsomedian sulcus distinct Shell thick, without dorsomedian sulcus 19 Robertsonites tuberculatus [Plt. OS1-1W-X] 19(18) Anterior and posterior margins denticulate 20 Anterior and posterior margins not denticulate 20(19) Valve with large fossae all over, eye tubercle (Plt. OS1-1Y) prominent 3 Finmarchinella angulata [Plt. OS1-1Y-Z; Sars 1928: 187] Valve with large fossae in posterior half, smaller pits in anterior half, weak eye tubercle Elofsonella concinna [Plt. OS1-1AA-AB] 21(14) Carapace elongate, cylindrical; surface virtually smooth except for concentric ridges near the anterior margin, without a dorsomedian sulcus (cf. Plt. OS1-1V) 22 Carapace subovate, subtriangular or subquadrate, not cylindrical 22(21) Small (length <0.6 mm), anterior vestibulum wide 23 Neocytherideis crenulata [Plt. OS1-1AC-AE; Klie 1938a: 183] Large (length >1.0 mm), anterior vestibulum narrow Pontocythere elongata [Plt. OS1-1AF] 23(21) Marginal pore-canals few (fewer than 20 anteriorly) 24 Marginal pore canals numerous (more than 20 anteriorly) 46 24(23) Shell thin, simple hinge without distinct teeth 25 Shell thick, complex hinge with distinct teeth 28 25(24) Carapace laterally compressed, dorsomedian sulci distinct (Plt. OS1-1V), anterior and posteroventral margins of carapace laterally strongly compressed; Limnocytherinae Carapace very wide in dorsal view, without dorsomedian sulci 26 Metacypris cordata [Plt. OS1-2A-B] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 26(25) Posteroventral margin of left valve is denticulated, length about 0.6 mm 4 Limnocythere inopinata [Plt. OS1-1V, 4C] 27 Posteroventral margin of left valve is not denticulate, length normally >0.7 mm 27(26) Females with a straight dorsal margin, greatest height behind mid-length, broader fused marginal zone, without crenulated hinge bar, sometimes with secondary pits in fossae of valve ornamentation, length of females 0.75 – 0.86 mm, males 0.79 – 0.87 mm Limnocytherina sanctipatricii [Plt. OS1-2D-E] Females with an oblique dorsal margin, greatest height in front of mid-length, narrower fused marginal zone, crenulated hinge bar, no Leucocythere mirabilis [Plt. OS1-2F-G] secondary ornamentation in fossae, length of females 0.68 – 0.81 mm, males 0.83 – 0.93 mm 28(24) Valve concentrically reticulate, distinctive spines anteriorly and a single one posteriorly ventrally Heterocyprideis sorbyana [Plt. OS1-2H; Rosenfeld 1977: 21] Valve without marginal spines 29 29(28) Inner lamella broad, with about 18 marginal pore-canals anteriorly, of varying lengths; valve trapezoidal to reniform, conspicuously pitted Cythere lutea [Plt. OS1-2I-L] 30 Fewer than ten marginal pore-canals anteriorly 30(29) Valve subtriangular, strongly tapering posteriorly, pitted and/or with concentric ridges or faint reticulation anteriorly; Eucythere Valve subovate, reniform or lozenge-shaped 31(30) Valve with concentric ribbing but without pits Valve with ribbing and fine pits 32(30) Hinge without distinct teeth, valve finely pitted or almost smooth; Elofsonia Hinge with distinct teeth 33(32) Greatest height in front of mid-length, dorsal and ventral margins converging posteriorly Greatest height behind mid-length, dorsal and ventral margins diverging slighgtly posteriorly 34(32) Hinge with a crenulate median element Hinge with a smooth median element 31 32 Eucythere argus [Plt. OS1-2M] Eucythere declivis [Plt. OS1-2N-O] 33 34 Elofsonia baltica [Plt. OS1-2P-Q] Elofsonia pusilla [Plt. OS1-2R-T] 35 37 35(34) Valve subrhomboidal with conspicuously compressed posteroventral and anterior margins, valve surface with small fossae except marginal areas Loxoconcha rhomboidea [Plt. OS1-2U-V] Valve ovate 36 5 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 36(35) Posteroventral and anterior margins hardly compressed, valve surface with small pits Loxoconcha elliptica [Plt. OS1-2W-Y] Phlyctocythere fragilis [Plt. OS1-2Z; Klie 1938a: 206] Posteroventral margin compressed, valve surface smooth 37(34) Valve short and reniform without flattened marginal areas, frontal and uppermost adductor muscle scar U-shaped Hirschmannia viridis [Plt. OS1-2AA-AC] Valve not reniform 38 38(37) Carapace elongate and subquadrate with flattened posterior and posteroventral marginal areas, dorsal and ventral margins converging from well 39 behind mid-length to posterior, frontal adductor muscle scar tick- to V-shaped Valve ovate or lozenge-shaped with flattened posterior and posteroventral marginal areas, frontal adductor muscle scar Y-shaped; Palmoconcha 42 39(37) Terminal hinge tooth comma-shaped; (no pronounced sexual dimorphism) 40 Terminal hinge tooth distinctly bilobate; (pronounced sexual dimorphism) 41 40(39) Valves with numerous deep fossae, prominent eye tubercules (cf. Plt. OS1-1Y), ventral and dorsal margins tapering towards posterior end Roundstonia robertsoni [Plt. OS1-2AD-AE; Rosenfeld 1977: 14] Valves pitted to finely reticulated, without eye tubercles, ventral and dorsal margins only slightly tapering towards posterior end, dorsal posterior Pteroloxa aff. cumuloidea [Plt. OS1-2AF] corner protruding in side view Valves pitted to finely reticulated, without prominent eye tubercules, ventral and dorsal margins tapering towards posterior end Roundstonia macchesneyi [Plt. OS1-2AG-AH; Brouwers et al. 2000: 136] 41(39) Valve of male and female longer than 550 µm Valve of male and female smaller than 400 µm Cytheromorpha fuscata [Plt. OS1-2AI-AL; Boomer & Horne 1991: 49] Cytheromorpha sp. A sensu Rosenfeld 1977 [Plt. OS1-2AM-AN; Rosenfeld 1977: 15] 42(38) Dorsal and ventral margins converging anteriorly, surface with fossae Dorsal and ventral margins parallel, surface finely pitted or smooth 43(42) Simple hinge without teeth; Ilyocypris Palmoconcha guttata [Plt. OS1-2AO-AR] Palmoconcha laevata [Plt. OS1-2AS-AU] 44 Remark: The discrimation of some Ilyocypris species using valve morphology only is still questionable and needs further research (personal communication David J. Horne, 2008). Complex hinge with teeth 46 44(16/43) Median area of the posterior inner left valve lamella without ripplets; valves without or with 1 – 5 lateral blunt tubercles; Ilyocypris decipiens [Plt. OS1-3A-B] Median area of the posterior inner left valve lamella with 4 – 8 ripplets in a distal position 45 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 6 45(44) Median area of the posterior inner left valve lamella with 4 – 5 distinct ripplets in a distal position; valves without tubercles (except juveniles) Ilyocypris bradyi [Plt. OS1-3F-G] Median area of the posterior inner left valve lamella with 5 – 8 faint to distinct ripplets in a proximal position; valves without or with 1 – 3 Ilyocypris gibba [Plt. OS1-3C-E] lateral pointed tubercles 46(23) Valve subovate, finely pitted or smooth, with crenulated anterior and terminal hinge elements 47 Valve subquadrate, reticulate or pitted, with a single robust anterior hinge tooth and no crenulated terminal hinge elements 47(46) Anterior inner lamella broad with a conspicuous vestibulum Anterior inner lamella narrow, without a vestibulum 48 Sarsicytheridea punctillata [Plt. OS1-3H-J] Cyprideis torosa forma littoralis [Plt. OS1-3K-N] 48(46) Valves with a single elongate posterior hinge tooth in the right valve and two frontal muscle scars Hemicythere villosa [Plt. OS1-3O-Q] Valves with short, more or less distinctly bilobate posterior hinge tooth in the right valve and three frontal muscle scars Urocythereis britannica [Plt. OS1-3R-T] 49(11) Posteroventral alar protuberances (cf. Plt. OS1-4K) prominent Posteroventral alar protuberances weak or absent 50(49) Valve <500 µm in length, dorsal margin strongly arched, surface smooth or finely pitted Valve >600 µm in length, dorsal margin weakly arched, surface smooth or with larger fossae 51(49) Dorsomedian sulci (cf. Plt. OS1-1V) present 50 51 Leptocythere porcellanea [Plt. OS1-3U] Leptocythere pellucida [Plt. OS1-3V-X] 52 Dorsomedian sulci absent 54 52(51) Valve <500 µm in length Leptocythere lacertosa [Plt. OS1-3Y-AB] Valve >500 µm in length 53 53(52) Valve subreniform, postocular sulcus distinct Valve subquadrate, postocular sulcus weak Leptocythere castanea [Plt. OS1-3AC-AD] Leptocythere psammophila [Plt. OS1-3AE-AF] 54(51) Valve smooth except some shallow pits Leptocythere baltica [Plt. OS1-3AG-AH] Valve faintly reticulate in posterior half Leptocythere tenera [Plt. OS1-3AI-AJ] 55(10) Valve with deep fossae separated by muri (“walls”) Valve reticulate, pitted, ridged or almost smooth 56 58 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 56(55) very small, ca. 0.35 mm medium size, ca. 0.6 mm 7 Hemicytherura cellulosa [Plt. OS1-3AM-AN] Hemicytherura clathrata [Plt. OS1-3AL; Sars 1928: 215] 57(55) Inner lamella conspicuously recurved posteriorly (cf. Plt. OS1-3AQ); Semicytherura 58 66 Inner lamella not recurved posteriorly 58(57) Valve smooth Semicytherura simplex [Plt. OS1-3AO] 59 Valve ornamented 59(58) Valve with faint reticulation in marginal areas only 60 61 Entire valve surface strongly ornamented 60(59) Length ≤0.4 mm Semicytherura nigrescens [Plt. OS1-3AP-AQ] Length ≥0.5 mm Semicytherura similis [Plt. OS1-3AR; Rosenfeld 1977: 33] Semicytherura undata [Plt. OS1-3AS-AU] 61(59) Valve ornamented with a few broad, diagonal ridges Valve reticulate or pitted 62 63 62(61) Valve reticulate with angular fossae Valve pitted with rounded fossae 65 Semicytherura acuticostata [Plt. OS1-3AV] 63(62) Valve with spinose alar protuberances Valve without spinose alar protuberances 64 64(63) Dorsal margin rounded, length about 0.6 mm Semicytherura affinis [Plt. OS1-4E; Sars 1928: 207] Dorsal margin straight, length about 0.4 mm Semicytherura sella [Plt. OS1-4A-B] 65(62) Valve conspicuously pitted behind mid-length, giving way to smooth longitudinal muri in front of mid-lengthSemicytherura angulata [Plt. OS1-4C] Valve with longitudinal muri (ridge-like structures) and conspicuous pitting throughout Semicytherura striata [Plt. OS1-4D] 67 66(57) Valve of other shape, no distinct alae Valve sub-rhomboidal in lateral view, rounded, distinct truncate alae (cf. Plt. OS1-4K), surface with shallow fossae; Cytheropteron 67(66) Valve sub-reniform or sub-ovate, not or weakly alate; Cytherura Valve cuneiform, alar swellings, two ribs forming an angle and irregularly arranged small fossae 69 68 Paracytheridea cuneiformis [Plt. OS1-4F] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 68(67) Valves distinctively reticulate 71 Cytherura inconspicua [Plt. OS1-4G; Klie 1938a: 190] Valves almost smooth 69(66) Valves with concentric ridges 8 Cytheropteron montrosiense [Plt. OS1-4H; Whatley & Masson 1980: 240] 70 Valves without ridges 70(69) Posterior upper corner distinctly projecting Cytheropteron angulatum [Plt. OS1-4I; Sars 1928: 228] Posterior upper cornerwithout a projection Cytheropteron latissimum [Plt. OS1-4J-K] 71(68) Valve relatively large (>0.55 mm), alate, distinctive reticulation, large pores Cytherura gibba [Plt. OS1-4L-M] 72 Valve smaller (<0.55 mm), not alate, weak or missing ornamentation 72(71) Without caudal process Cytherura bidens [Plt. OS1-4N-O; Klie 1938a: 195] With caudal process (cf. Plt. OS1-4H) 74 73(72) Caudal process below mid-height in lateral view, weak reticulation anteriorly and punctuation posteriorly Cytherura fulva [Plt. OS1-4P-R; Rosenfeld 1977: 31] 75 Caudal process above mid-height in lateral view, faint reticulation to smooth 74(73) Faint reticulation with tiny short lines within meshes Very faint reticulation anteriorly and posteriorly, smooth areally Cytherura atra [Plt. OS1-4S; Rosenfeld 1977: 31] Cytherura nasuta [Plt. OS1-4T; Klie 1938a: 192] 75(4) Hinge adont (without teeth), adductor muscle-scars in a cluster, rarely in vertical rows, eye-spots absent, normal pores simple 76 Hinge usually well-developed, rarely adont, central muscle-scar field typically with four or five adductor muscle-scars in a more or less vertical row, some of which may be subdivided, eye-spots frequently present, often as tubercles, normal pores simple and or sieve type; Cytheracea 121 76(75) Carapace cylindrical, anterior to posterior with slightly increasing height, inner lamella very narrow, adductor muscle scars arranged in a rosette Darwinula stevensoni [Plt. OS1-4U] Carapace cylindrical to reniform, inner lamella very narrow, six adductor muscle scars of similar size in two rows below a top one Candoninae spp. (Candona and Fabaeformiscandona), juveniles [Plt. OS1-4V-X] Carapace of other shape, inner lamella well developed with deep vestibula, adductor muscle-scars in a cluster; Cypridoidea 77(76) Carapace ventrally flattened and with two longitudinal ridges Carapace without ventral longitudinal ridges 67 Notodromas monacha [Plt. OS1-4Y-AA] 78 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 78(77) Valve length ≥2 mm 9 79 Valve length 1 – 1.9 mm 82 Valve length <1 mm 98 79(78) Carapace subovate in lateral view, distinctly arched dorsally, strongly convex in dorsal view, valves rough and/or finely pitted (may be reticulated in juveniles) Carapace subrectangular in lateral view, dorsally almost straight, laterally compressed, valves smooth; Herpetocypris 80 81 80(79/83) Valves highly arched dorsally, rough surface, juveniles reticulated, no expansion in the mouth area (ventral anterior part), right valve Cypris pubera [Plt. OS1-4AB-AC] posteroventral with a prominent spine Valves moderately arched dorsally, anteriorly finely pitted, other parts rough or smooth, shallow expansion in the mouth area, anteriorly area with 5 – 10 wart-like elevations (porenwarzen) Eucypris virens [Plt. OS1-4AD] 81(79) Maximal width of 2/5 of length distinctly behind mid-length, inner lamella of left valve without large indentation towards dorsum Herpetocypris reptans [Plt. OS1-4AE-AG] Maximal width of 1/3 of length slightly behind mid-length, inner lamella of left valve with large indentation towards dorsum Herpetocypris chevreuxi [Plt. OS1-4AH-AJ] 82(78) Valve relatively stout in lateral view, valves smooth except often small spines in the anterior area, margin of right valve anteriorly and posteriorly normally crenulated; Heterocypris Valve more elongated, without marginal crenulation 83(82) Valve surface rough or at least anteriorly pitted Valve surface smooth 84 83 80 85 84(82) Carapace ovate triangular in lateral view, dorsal hump by overlapping left valve in frontal view, greatest height at mid-length, length 0.8 – 1.3 mm Heterocypris salina [Plt. OS1-5C-E] Carapace ovate in lateral view, dorsal hump missing, greatest height behind mid-length, length 1.2 – 1.9 mm Heterocypris incongruens [Plt. OS1-5A-B] 85(83) Valves elongated in lateral view, without conspicuous, long, stiff and perpendicular attached setae Valves relatively stout in lateral view, with conspicuous, long, stiff and perpendicular attached setae, juveniles often with pitted valves; Pseudocandona 86 113 Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 10 86(85) Left female valve with a posterodorsal lobe overlapping the right valve; Fabaeformiscandona 87 94 Left female valve without a posterodorsal lobe overlapping the right valve 87(86) Carapace with length/width <0.35; fabaeformis-group 88 Carapace length/width >0.35; acuminata-group 90 88(87/98) Posterodorsal lobe of female left valve shorter than distance between lobe and posterior end of valve, left female valve with a collar-shaped process Fabaeformiscandona holzkampfi [Plt. OS1-5F-H] Posterodorsal lobe of female left valve longer than distance between lobe and posterior end of valve, left female valve without a collar-shaped 89 process 89(88) Inner lamella of female valves anteriorly distinctly broader than posteriorly in comparison with F. fabaeformis Fabaeformiscandona fragilis [Plt. OS1-5I-K] Inner lamella of female valves anteriorly little broader in than posteriorly comparison with F. fragilis Fabaeformiscandona fabaeformis [Plt. OS1-5L-N] 90(87) Valve reniform in lateral view, male carapace with a conspicuous expansion in the mouth region (ventral anterior part) Fabaeformiscandona protzi [Plt. OS1-5O-Q] 91 Valve subtriangular in lateral view, both sexes without an expansion in the mouth region 91(90) Female carapace with a posteroventral expansion of the shape (caudal process) Fabaeformiscandona caudata [Plt. OS1-5R] 92 Female carapace without a posteroventral expansion of the shape 92(91) Valve elongated subtriangular (height/length 0.50) Fabaeformiscandona hyalina [Plt. OS1-5S-T] Valve stout subtriangular (height/length 0.55) Fabaeformiscandona levanderi [Plt. OS1-5U-W] 93(86) Greatest height of valve in front of mid-length Psychrodromus olivaceus [Plt. OS1-6A] Greatest height of valve behind mid-length 94(93/109) Carapace subovate in dorsal view (width/length >0.40), anterior inner lamella never straight or almost straight; Candona 94 95 Carapace laterally compressed in dorsal view (width/length <0.35), anterior inner margin almost straight, right valve with sub-ocular notch Candonopsis kingsleii [Plt. OS1-5X-Y] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 95(94) Straight part of dorsal margin long, gently sloping posterior margin, posterior valve area mostly with reticulate pattern in transmitted light; neglecta-group Straight part of dorsal margin short, steeply sloping posterior margin, posterior valve area without reticulate pattern in transmitted light; candida-group 96(95) Valve with posterior expansion, length ≥1.3 mm 11 96 97 Candona angulata [Plt. OS1-6BC] Candona neglecta [Plt. OS1-6D-F] Valve without posterior expansion, female length ≤1.3 mm 97(95) Narrowly rounded posteroventral margin, inner lamella of ventral and posterior margin form a right angle Candona candida [Plt. OS1-6G-I] Candona weltneri [Plt. OS1-6J-L] Broadly rounded posteroventral margin 98(78) Valve elongated (height < ½ length) reniform 88 Valve rather stout (height > ½ length) 99 2 100 99(98) Valve highly arched (height ≥ /3 length) 2 Valve dorsally in a low arch or straight (height < /3 length) 100(99) Slender in dorsal view (width < ½ length) Broad in dorsal view (width > ½ length) 101(100) < 0.66 mm in length, ovoid shape > 0.75 mm in length, slightly elongated shape 102(100) Right valve overlaps left valve, valve rough (round pits and normally tiny spines) Left valve overlaps right valve, valve smooth, 15-20 tiny pustules on the anterior external margin 103 101 102 Cypria ophtalmica [Plt. OS1-6M-N] Cypria exsculpta [Plt. OS1-6O-P] Sarscypridopsis aculeata [Plt. OS1-1E-H] Cypridopsis vidua [Plt. OS1-6Q-R] 103(99) Ovate to triangular in lateral view 104 Reniform in lateral view 109 Oblique trapezoidal in lateral view, dorsal margin more or less straight; Pseudocandona 113 104(103) Slender in dorsal view (width < ½ length) Broad in dorsal view (width ≥ ½ length) 105(104) Triangular in lateral view, length ≥ 0.8 mm Ovate in lateral view, length < 0.65 mm 105 106 Heterocypris salina [Plt. OS1-5C-E] Cypria subsalsa [Plt. OS1-6S-T] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 106(104) Posterior margin of right valve with row of pustules 12 Physocypria kraepelini [Plt. OS1-6U-V] 107 Posterior margin of right valve without row of pustules 107(106) Left valve overlaps right valve Cyclocypris laevis [Plt. OS1-6W-X] Right valve overlaps left valve 108 108(107) Valve small (length 0.42 – 0.54 mm) Cyclocypris ovum [Plt. OS1-6Y-Z] Cyclocypris globosa [Plt. OS1-6AA-AB] Valve larger (length 0.8 – 0.9 mm) 109(103) Left valve overlaps right valve, greatest height behind mid-length 94 110 Right valve overlaps left valve, greatest height in front of mid-length 110(109) Valves highly arched, width about ½ length Plesiocypridopsis newtoni [Plt. OS1-6AC-AD] Valves more or les crescent-shaped, with a posteroventral corner, width distinctly smaller than ½ length; Potamocypris 111(110) Left valve with posteroventral lobe-like expansion 111 Potamocypris unicaudata [Plt. OS1-6AE-AG] Left valve without posteroventral lobe-like expansion 112 112(111) Valves with distinctly arched postero-dorsal margin and without posterodorsal angle, juvenile valves smooth Potamocypris arcuata [Plt. OS1-6AH] Valves with distinctive almost straight postero-dorsal margin and posterodorsal angle, juveniles with nodes Potamocypris humilis [Plt. OS1-6AI-AJ] 113(85/103) 114 Carapace relatively broad in dorsal view (width > ½ length) Carapace slender in dorsal view (width < ½ length) 116 114(113) Adult valve (>0.85 mm) with shallow inconspicuous pits in central area, valves tapering towards anterior margin in dorsal view Pseudocandona insculpta [Plt. OS1-6AK-AL] Juvenile valves (<1.0 mm) with more or less rectangular shape and shallow pits over entire surface Adult valve completely smooth (except setae) 115(114) Length 0.7 – 0.8 mm, both ends rounded in dorsal view Length 0.84 – 1.20 mm, anterior end beak-shaped in dorsal view Pseudocandona spp. [Plt. OS1-6AM] 115 Pseudocandona lobipes [Plt. OS1-6AN] Pseudocandona pratensis [Plt. OS1-6AO-AP] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 116(113) Relatively elongated valve (height/length = 0.55) More stout valve (height/length ≥ 0.57) 13 Pseudocandona sucki [Plt. OS1-6AQ-AR] 117 Remark: The following Pseudocandona species are often hardly to discriminate using valve characteristics alone. 117(116) Knee-shaped anterior inner margin and sickle-shaped posteroventral compression of right valve Other patterns Pseudocandona marchica [Plt. OS1-7A-C] 118 118(117) Valve relatively small (length 0.68 – 0.88 mm), almost parallel ventral and dorsal margins, juvenile valves with a characteristic pattern of dots surrounded by fine and coarse granules in transmitted light Pseudocandona albicans [Plt. OS1-7D-F] Valve larger (length ≥ 0.88 mm) and without such pattern in juvenile valves 119 119(118) Anterior carapace distinctly beak-shaped in dorsal view, right valve more compressed 120 Anterior carapace roundly pointed to slightly beak-shaped in dorsal view 120(119) Ventral margin almost straight in lateral view Ventral margin concave in lateral view 121(75) Inner lamella conspicuously recurved posteriorly Inner lamella not recurved posteriorly Pseudocandona hartwigi [Plt. OS1-7G-H] Pseudocandona compressa [Plt. OS1-7I-J] Pseudocandona rostrata [Plt. OS1-7K-L] Semicytherura simplex [Plt. OS1-3AO] 122 122(121) Valve distinctively higher than ½ length, rounded triangular outline in lateral view, Xestoleberis-spot present (cf. Plt. OS1-7O); Xestoleberis123 Valve longer and broadly arched to ovate in lateral view, Xestoleberis-spot absent 123(122) Carapace ventrally flattened, >500 µm long Carapace not ventrally flattened, <500 µm long 124(123) Dorsal margin highly arched, 500 – 600 µm long Dorsal margin gently and evenly arched; females 620 – 700 µm, males 550 – 600 µm long 125 124 Xestoleberis aurantia [Plt. OS1-7N-O] Xestoleberis nitida [Plt. OS1-7P-Q] Xestoleberis depressa [Plt. OS1-7M] 125(122) Five adductor muscle scars 126 Four adductor muscle scars 127 126(125) Valve pointed posteriorly Jonesia acuminata [Plt. OS1-7R] Valve rounded posteriorly Sclerochilus rudjakovi [Plt. OS1-7S] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 127(125) Valve relatively thin-shelled, with fewer than 15 marginal pore-canals anteriorly, without crenulated hinge teeth 14 128 Valve relatively thick shelled, with numerous marginal pore-canals (>20 anteriorly) and crenulated hinge-teeth Sarsicytheridea bradii [Plt. OS1-7T-V] Valve relatively thick shelled, with smooth hinge-bar Paracyprideis fennica [Plt. OS1-7W-Y; Rosenfeld 1977: 22] 128(127) Valve with a conspicuous anterior vestibulum shaped like an axe-head but without a posterior vestibulum Krithe praetexta [Plt. OS1-7Z] 129 Valve with both anterior and posterior vestibula 129(128) Frontal muscle scars relatively large and conspicuous; Cytherois 130 133 Frontal muscle-scars inconspicuous or absent 130(129) Elongate triangular valve 131 Rounded cuneiform valve 132 131(130) Fused zone relatively broad ventrally, outside of valves parallel in dorsal view, <0.45 mm length Cytherois pusilla [Plt. OS1-7AA-AB] Fused zone relatively narrow ventrally, outside of valves curved in dorsal view, >0.5 mm length Cytherois fischeri [Plt. OS1-7AC-AD] 132(130) Ventral side slightly concave, <0.35 mm length Ventral side almost straight, >0.52 mm length 133(129) Row of adductor muscle-scars vertical or near-vertical; Paradoxostoma Row of adductor muscle-scars sloping backwards 134(133) Valve elongate sub-rhomboidal with bluntly pointed extremities Valve with rounded extremities 135(134) Valve lunate, greatest height close to mid-length Valve ovate to reniform, greatest height behind mid-length 136(135) Carapace inflated Carapace compressed 137(136) Valve relatively short, abbreviated Valve moderately elongate Cytherois arenicola [Plt. OS1-7AE-AG; Klie 1938a: 222] Cytherois vitrea [Plt. OS1-7AH-AI; Sars 1928: 253] 134 Paracytherois arcuata [Plt. OS1-7AJ; Klie 1938a: 220] Paradoxostoma ensiforme [Plt. OS1-7AK] 135 Paradoxostoma pulchellum [Plt. OS1-7AL] 136 Paradoxostoma variabile [Plt. OS1-7AM-AO] 137 Paradoxostoma abbreviatum [Plt. OS1-7AP-AQ] Paradoxostoma normani [Plt. OS1-7AR] Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-1: Myodocopida: Sarsielloidea; Halocyprida: Polycopoidea; Podocopida: Cytheroidea and Cypridoidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-1 A-B. Philomedes globosus (Lilljeborg, 1853): A. ♀ RV, coast of Schleswig-Holstein (arrow indicates rostral incisure); B. ♂ LV, Norwegian coast (redrawn from Sars 1928). C. Polycope schulzi Klie, 1950, Kiel Bight; redrawn from Klie (1950): C1. ♀ carapace, left side; C2. ♀ carapace dorsal. D. Polycope orbicularis Sars, 1866, Norwegian coast (redrawn from Sars 1928): D1. ♀ carapace, left side; D2. ♀ carapace, dorsal. E-H. Sarscypridopsis aculeata (Costa, 1847): E. spines on valve surface, Grabow lagoon, photo by S. Köhler; F. LV, internal, Usedom Island, Holocene; G. carapace, left side, coast of SchleswigHolstein, H. carapace, dorsal, coast of Schleswig-Holstein. I-J. Paracandona euplectella (Robertson, 1889), Greifswald; adapted from Klie (1938a): I. ♂ LV; J. ♂ carapace dorsal. K-L. Pterygocythereis jonesii (Baird, 1850): K. ♂ RV, coast of Schleswig-Holstein; L. ♀ LV, coast of Schleswig-Holstein. M-N. Acanthocythereis dunelmensis (Norman, 1865): M. ♂ RV, Kiel Bight (coll. Rosenfeld); N. ♀ LV, Mecklenburg Bight. O-P. Acanthocythereis horrida (Sars, 1865): O. ♀ LV, coast of Schleswig-Holstein; P. ♂ LV, coast of Schleswig-Holstein. Q. Palmenella limicola (Norman, 1865), ♀ carapace, left side, Kiel Bight (coll. Rosenfeld). R-T. Cytherissa lacustris (Sars, 1863), Late Glacial: R. juvenile RV, Pomeranian Bight; S. ♀ RV, Usedom Island; T. ♀ LV, internal, Usedom Island. U. Cyprideis torosa (Jones, 1850) f. torosa, nodded ecophenotype of Cyprideis torosa, ♀ RV, Saaler Bodden lagoon. V. Limnocythere inopinata (Baird, 1843), ♀ RV (arrow indicates sulcus), coast of Schleswig-Holstein. W-X. Robertsonites tuberculatus (Sars, 1865), Mecklenburg Bight: W. ♂ LV; X. ♀ LV. Y-Z. Finmarchinella angulata (Sars, 1865): Y. ♀ carapace, left side (arrow points on eye tubercle), Kiel Bight (coll. Rosenfeld); Z. ♂ RV, coast of Schleswig-Holstein. AA-AB. Elofsonella concinna (Jones, 1857): AA. ♂ RV, coast of Schleswig-Holstein; AB. ♀ RV, coast of Schleswig-Holstein. AC-AE. Neocytherideis crenulata (Klie, 1929), Kiel Bight (coll. Rosenfeld): AC. ♂ carapace, detail of anterior crenulation and left side view; AD. ♀ carapace, left side; AE. ♀ LV, internal. AF. Pontocythere elongata (Brady, 1868), ♂ RV, coast of Schleswig-Holstein. LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-2: Podocopida: Cytheroidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-2 A-B. Metacypris cordata (Brady & Robertson, 1870), ♀ carapace; redrawn from Klie 1938a, modified: A. ♀ carapace, left side, Mecklenburg, Holocene; B. ♀ carapace, dorsal (redrawn from Klie 1938a). C. Limnocythere inopinata (Baird, 1843), ♀ carapace, right side; lagoon Saaler Bodden. D-E. Limnocytherina sanctipatricii (Brady & Norman, 1869), Usedom Island, Late Glacial: D. ♀ LV; E. ♂ LV. F-G. Leucocythere mirabilis (Kaufmann, 1892): F. ♀ LV, coast of Schleswig-Holstein; G. ♂ RV (from Meisch 2000). H. Heterocyprideis sorbyana (Jones, 1856), ♀ RV; Arkona Basin. I-L. Cythere lutea O.F. Müller, 1785: I. ♂ carapace, left side, Langelands Bælt (coll. Rosenfeld); J. ♀ LV, coast of Schleswig-Holstein; K. ♀ RV, coast of Schleswig-Holstein; L. ♀ LV, internal, coast of Schleswig-Holstein. M. Eucythere argus (Sars, 1865), ♀ carapace, right side, Mecklenburg Bight. N-O. Eucythere declivis (Norman, 1865): N. ♀ RV, coast of Schleswig-Holstein; O. ♂ RV, coast of Schleswig-Holstein. P-Q. Elofsonia baltica (Hirschmann, 1909), ♀ RVs: P. external, Stralsund, medieval harbour; Q. internal, coast of Schleswig-Holstein. R-T. Elofsonia pusilla (Brady & Robertson, 1870): R. ♂ RV with faint reticulation, coast of Schleswig-Holstein; S. ♀ RV with distinct pitting, coast of Schleswig-Holstein; T. ♀ LV, internal, coast of Schleswig-Holstein. U-V. Loxoconcha rhomboidea (Fischer, 1855) (from Klie 1938a): U. ♂ carapace, right side; V. ♀ carapace, left side and dorsal view. W-Y. Loxoconcha elliptica Brady, 1868: W. ♀ LV, Strelasund, late Medieval; X. ♂ LV, Strelasund; Y. ♂ LV, internal, coast of Schleswig-Holstein. Z. Phlyctocythere fragilis (Sars, 1865), ♀ carapace, left side and dorsal view (from Klie 1938a). A-AC. Hirschmannia viridis (O.F. Müller, 1785): AA. ♂ RV, Mecklenburg Bight; AB. ♀ RV, coast of Schleswig-Holstein; AC. ♀ LV, hinge and central muscle scars, coast of Schleswig-Holstein. AD-AE. Roundstonia robertsoni (Brady, 1868), Langelands Bælt (coll. Rosenfeld); AD. ♀ RV, internal; AE. ♀ carapace, right side. AF. Pteroloxa aff. cumuloidea Swain, 1963, carapace, left side; Bothnian Bight. AG-AH. Roundstonia macchesneyi (Brady & Crosskey, 1871), RV, external and internal; central Sweden (Närke Strait), Yoldia Stage (from Schoning & Wastegård 1999). AI-AL. Cytheromorpha fuscata (Brady, 1869): AI. ♀ carapace, right side, lagoon Saaler Bodden; AJ. ♂ RV, lagoon Saaler Bodden; AK. ♀ RV, internal with soft body remains, lagoon Greifswalder Bodden; AL. ♀ LV, internal, posterior part of the hinge, coast of Schleswig-Holstein. AM-AN. Cytheromorpha sp. A sensu Rosenfeld 1977, Kiel Bight (from Rosenfeld 1977): AM. RV; AN. LV, internal. AO-AR. Palmoconcha guttata (Norman, 1865): AO. forma granulata, ♀ LV, Mecklenburg Bight; AP. forma guttata, ♀ LV, coast of Schleswig-Holstein; AQ. forma guttata, ♂ LV, coast of SchleswigHolstein; AR. forma guttata, ♀ LV, internal, hinge and central muscle scars, coast of SchleswigHolstein. AS-AU. Palmoconcha laevata (Norman, 1865): AS. ♀ carapace, right side, Mecklenburg Bight; AT. ♂ LV, coast of Schleswig-Holstein; AU. ♀ LV, internal, central muscle scars, coast of SchleswigHolstein. LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-3: Podocopida: Cypridoidea and Cytheroidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-3 A-B. Ilyocypris decipiens (Fischer, 1851), Late Glacial: A. LV, Usedom Island; B. LV, internal, posteroventral marginal zone, Pomeranian Bight. C-E. Ilyocypris gibba Ramdohr, 1808: C. LV, Western Pomerania; D. LV, internal, posteroventral marginal zone, southern Germany (from Janz 1994); E. RV, internal, Western Pomerania. F-G. Ilyocypris bradyi Sars, 1890: F. LV, Western Pomerania; G. LV, internal, posteroventral marginal zone, southern Germany (from Janz 1994). H-J. Sarsicytheridea punctillata (Brady, 1865): H. ♂ LV, coast of Schleswig-Holstein; I. ♀ LV, coast of Schleswig-Holstein; J. ♀ LV, internal, coast of Schleswig-Holstein. K-N. Cyprideis torosa (Jones, 1850) f. littoralis; smooth ecophenotype of Cyprideis torosa: K. ♀ LV, Usedom Island, Littorina stage; L. juvenile LV, lagoon Greifswalder Bodden; M. ♀ RV, internal, coast of Schleswig-Holstein; N. ♂ RV, Strelasund. O-Q. Hemicythere villosa (Sars, 1865): O. ♀ carapace, left side, coast of Schleswig-Holstein; P. ♂ LV, interior, with detail of central muscle scars, coast of Schleswig-Holstein; Q. ♂ carapace, left side, coast of Schleswig-Holstein. R-T. Urocythereis britannica Athersuch, 1977: R. ♀ LV, coast of Schleswig-Holstein; S. ♂ LV, coast of Schleswig-Holstein; T. ♂ RV, internal, coast of Schleswig-Holstein. U. Leptocythere porcellanea (Brady, 1869), ♀ LV, lagoon Greifswalder Bodden. V-X. Leptocythere pellucida (Baird, 1850): V. ♀ RV, smooth form, Mecklenburg Bight; W. ♀ RV, form with fossae, coast of Schleswig-Holstein; X. ♂ RV, form with small fossae, Mecklenburg Bight. Y-AB. Leptocythere lacertosa (Hirschmann, 1912): Y. ♀ LV, pitted form, lagoon Greifswalder Bodden; Z. ♀ LV, reticulated form, lagoon Greifswalder Bodden; AA. ♂ carapace, right side, smooth form, southern Mecklenburg Bight; AB. ♂ RV, pitted form, southern Mecklenburg Bight. AC-AD. Leptocythere castanea (Sars, 1865): AC. ♀ LV, coast of Schleswig-Holstein; AD. ♂ LV, coast of Schleswig-Holstein. AE-AF. Leptocythere psammophila Guillaume, 1976: AE. ♀ carapace, left side, lagoon Greifswalder Bodden; AF. ♂ carapace, right side, coast of Schleswig-Holstein. AG-AH. Leptocythere baltica Klie, 1929: AG. ♀ RV, coast of Schleswig-Holstein; AH. ♂ RV, coast of Schleswig-Holstein. AI-AJ. Leptocythere tenera (Brady, 1868), Fehmarn Belt (from Rosenfeld 1977): AI. ♀ RV; AJ. ♂ RV. AK-AL. Hemicytherura clathrata (Sars, 1866), coast of Schleswig-Holstein: AK. LV, adult; AL. RV, juvenile. AM-AN. Hemicytherura cellulosa (Norman, 1865): AM. left side of a carapace, coast of SchleswigHolstein; AN. right side of a carapace, Langelands Bælt (coll. Rosenfeld). AO. Semicytherura simplex (Brady & Norman, 1889), LV, coast of Schleswig-Holstein. AP-AQ. Semicytherura nigrescens (Baird, 1838): AP. ♀ carapace, right side, southern Mecklenburg Bight; AQ. ♀ RV, internal, lagoon Greifswalder Bodden. AR. Semicytherura similis (Sars, 1865), ♂ LV, Kiel Bight (coll. Rosenfeld). AS-AU. Semicytherura undata (Sars, 1865): AS. ♀ carapace, right side, Langelands Bælt (coll. Rosenfeld); AT. ♀ RV, Langelands Bælt (coll. Rosenfeld); AU. ♂ RV, coast of Schleswig-Holstein. AV. Semicytherura acuticostata (Sars, 1865), right side and ventral view of a carapace, Kiel Bight (coll. Rosenfeld). LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-4: Podocopida: Cytheroidea, Darwinuloidea and Cypridoidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-4 A-B. Semicytherura sella (Sars, 1865), Kiel Bight (coll. Rosenfeld): B. ♀ carapace, right side; C. ♂ carapace, right side. C. Semicytherura angulata (Brady, 1868), ♀ carapace, right side, Kiel Bight (coll. Rosenfeld). D. Semicytherura striata (Sars, 1865), right side of a carapace, Kiel Bight (coll. Rosenfeld). E. Semicytherura affinis (Sars, 1866), ♀ LV, Norwegian coast (from Sars 1928, drawing). F. Paracytheridea cuneiformis (Brady, 1868), LV, external and oblique ventral view, Store Bælt (from Rosenfeld 1977). G. Cytherura inconspicua Klie, 1934, LV in side and carapace in dorsal view, Kiel Bight (Klie 1938a, drawing). H. Cytheropteron montrosiense Brady, Crosskey & Robertson, 1874, adult RV (arrow indicates caudal process), Rügen Island, Weichselian. I. Cytheropteron angulatum Brady, 1868, ♀ carapace in side and dorsal view, Norwegian coast (from Sars 1928, drawing). J-K. Cytheropteron latissimum (Norman, 1865): J. LV, Arkona Basin; K. adult carapace, dorsal view (arrows indicate alae), Kiel Bight (coll. Rosenfeld). L-M. Cytherura gibba (O.F. Müller, 1785): L. right side of a ♀ carapace, Mecklenburg Bight; M. dorsal view of a carapace, Stralsund, medieval harbour. N-O. Cytherura bidens Klie, 1929, left sides and dorsal views (from Klie 1938a): N. ♀ carapace; O. ♂ carapace. P-R. Cytherura fulva Brady & Robertson, 1874: P. ♀ RV, coast of Schleswig-Holstein; Q. ♀ LV, coast of Schleswig-Holstein; R. ♂ LV, coast of Schleswig-Holstein. S. Cytherura atra Sars, 1865, ♀ carapace, right side and detail of ornamentation, Arkona Sea (coll. Rosenfeld). T. Cytherura nasuta Klie, 1934, ♀ LV, coast of Schleswig-Holstein. U. Darwinula stevensoni (Brady & Robertson, 1870), ♀ RV, Usedom Island, early Holocene. V-W. Candona neglecta?, juveniles, Salzhaff, early Holocene: V. RV, internal; W. LV. X. Fabaeformiscandona?, juvenile LV , internal, lagoon Saaler Bodden. Y-AA. Notodromas monacha (O.F. Müller, 1776): Y. ♀ LV, internal, coast of Schleswig-Holstein; Z. carapace, ventral view, coast of Schleswig-Holstein; AA. ♂ carapace, left side (from Klie 1938a, drawing). AB-AC. Cypris pubera O.F. Müller, 1776, ♀ carapaces: AB. right side and detail of posterior ornamentation; AC. dorsal view (redrawn from G.W. Müller 1900). AD. Eucypris virens (Jurine, 1820), ♀ carapace, right side and dorsal view, coast of SchleswigHolstein. AE-AG. Herpetocypris reptans (Baird, 1835): AE. LV, coast of Schleswig-Holstein; AF. ♀ carapace, dorsal view, Norway (from Sars 1928, drawing); AG. ♀ LV, internal (redrawn from Meisch 2000). AH-AJ. Herpetoypris chevreuxi (Sars, 1896): AH. ♀ LV, coast of Schleswig-Holstein; AI. ♀ carapace, dorsal view, Norway (from Sars 1928, drawing); AJ. ♀ RV, internal, coast of SchleswigHolstein. LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-5: Podocopida: Cypridoidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-5 A-B. Heterocypris incongruens (Ramdohr, 1808), Western Pomerania: A. ♀ LV, internal; B. ♀ carapace, right side. C-E. Heterocypris salina (Brady, 1868): C. juvenile LV, Stralsund, 19th Century; D. ♀ carapace in frontal view, Germany (redrawn from Meisch 2000); E. ♀ LV, coast of Schleswig-Holstein. F-H. Fabaeformiscandona holzkampfi (Hartwig, 1900): F. ♂ carapace, right side, Western Pomerania; G. ♀ RV, Greifswald; H. ♀ carapace, dorsal view (redrawn from Absolon 1978). I-K. Fabaeformiscandona fragilis (Hartwig, 1898): I. ♀ LV, internal, Western Pomerania; J. ♀ carapace, dorsal view, Western Pomerania (redrawn from G.W. Müller 1900); K. ♂ LV, internal, Western Pomerania. L-N. Fabaeformiscandona fabaeformis (Fischer, 1851): L. ♂ LV, Western Pomerania, Holocene; M. ♀ LV, internal (redrawn from G.W. Müller 1900); N. ♀ carapace, dorsal view (redrawn from Meisch 2000). O-Q. Fabaeformiscandona protzi (Hartwig, 1898): O. ♂ RV, internal, lagoon Achterwasser; P. ♀ carapace, dorsal view (redrawn from Meisch 2000); Q. juvenile LV, lagoon Achterwasser. R. Fabaeformiscandona caudata (Kaufmann, 1900) ♀ carapace, left side and dorsal view (from Klie 1938, slightly modified drawing). S-T. Fabaeformiscandona hyalina (Brady & Robertson, 1870), Western Pomerania: S. ♀ LV, internal; T. ♂ RV, internal. U-W. Fabaeformiscandona levanderi (Hirschmann, 1912): U. LV, dorsal view; V. ♂ LV, Western Pomerania, Holocene; W. ♀ RV, Usedom Island, Late Glacial. X-Y. Candonopsis kingsleii (Brady & Robertson, 1870) [from Klie 1938a, slightly modified drawings]: Y. ♂ RV, internal, Greifswald; Z. ♀ carapace, dorsal view, Switzerland. LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-6: Podocopida: Cypridoidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-6 A. Psychrodromus olivaceus (Brady & Norman, 1889), ♀ LV, internal, Norway (redrawn from Sars 1928). B-C. Candona angulata G.W. Müller, 1900: B. ♂ carapace, right side, Strelasund; C. ♀ LV, internal, Usedom Island, Littorina stage. D-F. Candona neglecta Sars, 1887: D. ♀ LV, internal, Strelasund; E. ♀ carapace, dorsal view, lagoon Greifswalder Bodden; F. ♂ RV, internal, Usedom Island, Late Glacial. G-I. Candona candida (O.F. Müller, 1776): G. ♀ carapace, right side, lagoon Saaler Bodden; H. ♀ LV, in transmitted light, Greifswald (redrawn from G.W. Müller 1900); I. ♂ LV, in transmitted light, Greifswald (redrawn from G.W. Müller 1900). J-L. Candona weltneri (Hartwig, 1899), Greifswald (redrawn from G.W. Müller 1900): J. ♀ LV, transmitted light; K. ♂ LV, transmitted light; L. ♀ carapace, dorsal view. M-N. Cypria ophtalmica (Jurine, 1820), Oder estuary: M. adult carapace, right side; N. carapace, dorsal view. O-P. Cypria exsculpta (Fischer, 1855): M. adult carapace, left side, coast of Schleswig-Holstein; P. ♀ carapace, dorsal view, Greifswald (redrawn from G.W. Müller 1900). Q-R. Cypridopsis vidua (O.F. Müller, 1776): Q. ♀ LV, internal, Usedom Island, Holocene; R. ♀ RV, Western Pomerania. S-T. Cypria subsalsa Redeke, 1936, carapaces: S. right side, lagoon Barther Bodden; T. dorsal view, Strelasund. U-V. Physocypria kraepelini G.W. Müller, 1903: U. carapace, right side and detail of pustules on posterior margin, Oder estuary; V. ♀ carapace, dorsal view, Greifswald (redrawn from G.W. Müller 1900). W-X. Cyclocypris laevis (O.F. Müller, 1776), Western Pomerania: W. ♀ LV, internal; X. ♀ carapace, dorsal view (redrawn from G.W. Müller 1900). Y-Z. Cyclocypris ovum (Jurine, 1820): Y. LV, Pomeranian Bight, early Holocene; Z. ♀ carapace, dorsal view, Western Pomerania (redrawn from G.W. Müller 1900). AA-AB. Cyclocypris globosa (Sars, 1863): AA. LV, internal, coast of Schleswig-Holstein; AB. ♀ carapace, dorsal view, Western Pomerania (redrawn from G.W. Müller 1900). AC-AD. Plesiocypridopsis newtoni (Brady & Robertson, 1870), Western Pomerania (redrawn from G.W. Müller 1900): AC. ♀ LV, transmitted light; AD. ♀ carapace, dorsal view. AE-AG. Potamocypris unicaudata Schäfer, 1943, ♀ carapaces: AE. left side, coast of SchleswigHolstein; AF. right side, coast of Schleswig-Holstein; AG. ♀ carapace, dorsal view, Holstein (redrawn from Schäfer 1943). AH. Potamocypris arcuata (Sars, 1903), adult carapace, left side, coast of Schleswig-Holstein. AI-AJ. Potamocypris humilis (Sars, 1924): AI. juvenile carapace, dorsal view and left side, Finland, Tvärminne area (redrawn from Purasjoki 1948); AJ. ♀ carapace, left side and dorsal view (from Meisch 1985). AK-AL. Pseudocandona insculpta (G.W. Müller, 1900), Greifswald (redrawn from G.W. Müller 1900): AK. ♀ LV, transmitted light; AL. ♀ carapace, dorsal view. AM. Pseudocandona, juvenile carapace, right side, Strelasund. AN. Pseudocandona lobipes (Hartwig, 1900), carapace, right side and dorsal view (from Klie 1938a, slightly modified). AO-AP. Pseudocandona pratensis (Hartwig, 1901): AO. ♀ LV, internal, Western Pomerania; AP. ♀ carapace, dorsal view (from Klie 1938a). AQ-AR. Pseudocandona sucki (Hartwig, 1901): AQ. LV, coast of Schleswig-Holstein; AR. ♀ carapace, dorsal view, Hungary (redrawn from Meisch 2000). LV – left valve; RV – right valve Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-7: Podocopida: Cypridoidea and Cytheroidea. All pictures show external SEM views of Recent specimens if not otherwise stated. The 1 mm scale bar represents the magnification of all specimens except where other scales are given. Online supplement 1: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea), Boreas, 10.1111/j.1502-3885.2009.00135.x Plate OS1-7 A-C. Pseudocandona marchica (Hartwig, 1899): A. RV, coast of Schleswig-Holstein; B. ♀ RV, Holocene, Thuringia (redrawn from Pietrzeniuk 1985); C. adult carapace, dorsal view, coast of Schleswig-Holstein. D-F. Pseudocandona albicans (Brady, 1864) [drawings from Klie 1938a]: D. valve ultra-structure of a juvenile, transmitted light (without scale); E. ♀ carapace, dorsal view; F. ♀ LV in transmitted light. G-H. Pseudocandona hartwigi (G.W. Müller, 1900), Western Pomerania (redrawn from G.W. Müller 1900): G. ♀ LV, in transmitted light; H. ♀ carapace, dorsal view. I-J. Pseudocandona compressa (Koch, 1838), Western Pomerania: I. ♂ RV, internal; J. ♀ carapace, dorsal view (redrawn from G.W. Müller 1900). K-L. Pseudocandona rostrata (Brady & Norman, 1889), ♀ carapaces (from Sars 1928, drawings): K. left side; L. dorsal view. M. Xestoleberis depressa (Sars, 1865), adult carapace, right side and ventral view, Kiel Bight (coll. Rosenfeld); N-O. Xestoleberis aurantia (Baird, 1838): N. adult carapace, lagoon Barther Bodden; O. LV, internal (arrow points on Xestoleberis-spot), lagoon Greifswalder Bodden. P-Q. Xestoleberis nitida (Liljeborg, 1853), carapaces, lagoon Salzhaff: P. right side; Q. dorsal view. R. Jonesia acuminata (Sars, 1866), ♂ RV, internal, Fehmarn (coll. Rosenfeld). S. Sclerochilus rudjakovi Athersuch & Horne, 1987, adult RV, Kiel Bight (from Rosenfeld 1977). T-V. Sarsicytheridea bradii (Norman, 1865), south-eastern Mecklenburg Bight: T. ♀ carapace, left side; U. ♀ LV, internal; V. ♂ RV, internal. W-Y. Paracyprideis fennica (Hirschmann, 1909): W. ♀ LV, internal, coast of Schleswig-Holstein; X. ♀ LV, coast of Schleswig-Holstein; Y. ♂ LV, coast of Schleswig-Holstein. Z. Krithe praetexta Sars, 1866, LV, internal, Norwegian coast (redrawn from Sars 1928). AA-AB. Cytherois pusilla Sars, 1928: AA. adult carapace, left side, Kiel Bight (coll. Rosenfeld); AB. ♀ carapace, left side and dorsal view, Norwegian coast (from Sars 1928, drawings). AC-AD. Cytherois fischeri (Sars, 1865): AC. adult RV, coast of Schleswig-Holstein; AD. ♀ carapace, left side and dorsal view, Norwegian coast (from Sars 1928, drawing). AE-AG. Cytherois arenicola Klie, 1929: AE. ♂ RV, coast of Schleswig-Holstein; AF. ♀ carapace, right side, coast of Schleswig-Holstein; AG. ♀ LV, internal, muscle scars, coast of SchleswigHolstein. AH-AI. Cytherois vitrea (Sars, 1865): AH. adult carapace, right side, coast of Schleswig-Holstein; AI. adult RV, internal, coast of Schleswig-Holstein. AJ. Paracytherois arcuata (Brady, 1868), ♀ carapace, dorsal view and left side, Norwegian coast (from Sars 1928, drawing). AK. Paradoxostoma ensiforme Brady, 1868, ♀ carapace, right side, coast of Schleswig-Holstein. AL. Paradoxostoma pulchellum Sars, 1866, ♀ carapace, left side, Norwegian coast (from Sars 1928, drawing). AM-AO. Paradoxostoma variabile (Baird, 1835): AM. ♀ carapace, right side, Kiel Bight (coll. Rosenfeld); AN. ♀ LV, internal, coast of Schleswig-Holstein; AO. ♀ carapace, dorsal view, Norwegian coast (from Sars 1928, drawing). AP-AQ. Paradoxostoma abbreviatum Sars, 1866, ♀ carapaces: AP. left side, Langelands Bælt (coll. Rosenfeld); AQ. dorsal view, Norwegian coast (from Sars 1928, drawing). AR. Paradoxostoma normani (Brady, 1868), right side of a carapace, Store Bælt (from Rosenfeld 1977). LV – left valve; RV – right valve 1 Online supplement 2: Ecological data for An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea by PETER FRENZEL, DIETMAR KEYSER AND FINN ANDREAS VIEHBERG DOI: 10.1111/j.1502-3885.2009.00135.x Typical tolerance limit values and ecological classes of ostracod taxa from the Baltic Sea based on this study and literature data. All ecological data derive from Baltic Sea observations and are only supplemented from other regions if no appropriate observations are accessible from the study area. For details of ecological classification see main text. The order of taxa is alphabetical. A cross (†) indicates species extinct in the present Baltic Sea. The footnotes given as numbers refer to the references listed below. Annotation “0” indicates our or third parties observations from unpublished data. Taxon Salinity Water depth and energy Habitate and substrate O2 (>1778) >200; polyhaline to euhaline >3130; euhaline Latitudinal distribution and temperature arctic42 to gascoynian86; -2 – 1317 (19)30 °C arctic to norwegian30; -1 – 11 °C30 Acanthocythereis dunelmensis Acanthocythereis horrida Candona angulata deep8,30 open sea0,30; mud0 (and sand30,56); endobenthic30 open sea30; mud30; endobenthic30 ? 0.2 – 6.30 (1469); freshwater to α-mesohaline britannic to moroccan69; mesothermophilic106, 0.1106 – 2654 °C ponds and estuaries69; mud and sand0 low oxygen0, <1 ml/l54 Candona candida 0113 – 5.70; freshwater to αoligohaline arctic to mediterranean56; oligothermophilic69, 0.10 – 27106 °C very shallow54 and shallow0; rheoeuryplastic106 very shallow0,54; rheoeuryplastic69 low oxygen0, >0.5 ml/l0 Candona neglecta 0.161 – 120 (1669); freshwater to α-mesohaline Candona weltneri freshwater to β-oligohaline (forma obtusa in freshwater only)45 0 – 569; freshwater to αoligohaline arctic64 to moroccan56; oligothermophilic69, (0.6)71 1.2 – 240 (2861) °C arctic to mediterranean56,69; coldstenothermal45; 4 – 8 °C107 very shallow to deep0,54; oligo- to mesorheophilic106 very shallow69; oligorheophilic45 coastal, lakes, in temporary waters also69; sediment and phytal0; endobenthic80 (coastal69) lakes, lagoons, estuaries0 and open sea69, mud0,54,97 lakes and ponds69; mud45 arctic56 to mediterranean2; thermoeuryplastic106; 4 – 21 °C65 very shallow0; oligorheophilic45,106 ? arctic to britannic56,69; mesothermophilic80 very shallow0; rheoeuryplastic80 lakes, swamps and ponds, in temporary waters also44,69; mud56; endobenthic80 lakes, swamps and ponds69, typical for temporary waters15; nectobenthic80 Candonopsis kingsleii Cyclocypris globosa freshwater69 to oligohaline25 deep30 ? low oxygen37,69, >0 ml/l0 ? ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Cyclocypris laevis 0 – 5.70 (8.4106); freshwater to β-mesohaline Cyclocypris ovum 0 – 4.40 (7.2)54; freshwater to β-mesohaline Cypria exsculpta 069 – 2.254 (5)54; freshwater to β-oligohaline 0.0 – 12.00 (15105); freshwater to α-mesohaline Cypria ophtalmica Cypria subsalsa Cyprideis torosa Cypridopsis vidua 0.5 – 13.4111; β-oligohaline to α-mesohaline 0.4 – 200 (6069) (f. torosa occurs from 0.5 – 7, and is dominant from 0.5 – 20); holeuryhaline 0 – 654 (8)45; freshwater to βoligohaline Cypris pubera 0 – 0.260 (4)101; freshwater Cythere lutea (>1030,78) >140; α-mesohaline to euhaline 0 – 0.80 (1.523); freshwater to β-oligohaline Cytherissa lacustris Cytherois arenicola Cytherois fischeri Cytherois pusilla Cytherois vitrea 5 – 20104; β-mesohaline to polyhaline (378) 80 – 358,92; βmesohaline to euhaline >1430,92; α-mesohaline to euhaline >1739,78; polyhaline to euhaline Latitudinal distribution and temperature arctic69 to mediterranean3; thermoeuryplastic69, 0.3 – 26 °C105 (>5 °C43) arctic to moroccan56; thermoeuryplastic69, 0.1 – 240 (27106) C norwegian64 to moroccan15; thermoeuryplastic45, 2.265 – 2254 °C arctic109 to moroccan44; thermoeuryplastic69, 0.1 – 24 °C0,106 (27105) britannic0,69; thermoeuryplastic111 norwegian64 to african30,56; polythermophilic0, 0 – 2654 (32)30,104 °C, larval development >12104 arctic to moroccan56; polythermophilic45; 1.2 – 240 (36)60 °C arctic87 to moroccan56,69; mesothermophilic45, 19 °C61 arctic56 to gascoynian86; thermoeuryplastic, -2 – 22 °C17 arctic25 to mediterranean56; thermoeuryplastic with cold water preference69, 1.2 – 24 °C0 britannic56 britannic95 to morrocan91; thermoeuryplastic, (0)30 1 – 180 (22)30 °C britannic30; thermoeuryplastic30, 2 – 18 °C0 norwegian to britannic30; thermoeuryplastic, 2 – 19 °C30 2 Water depth and energy Habitate and substrate O2 very shallow54 to shallow0; mesorheophilic69 very shallow0,54; rheoeuryplastic69 lagoons and estuaries0 (coastal69); sediment and phytal0,43, nectobenthic69 lagoons and estuaries0, sediment and phytal0,69, nectobenthic69 low oxygen54, >0.5 ml/l0 very shallow54; mesorheophilic45 very shallow to shallow0,54; rheophilic45,106 coastal, temporary waters also69; mud54,69; nectobenthic80 lagoons, estuaries and ponds0; mud0 and phytal6,45, nectobenthic47 estuaries0, ponds and lagoons69; sand and phytal0; nectobenthic0 estuaries0, ponds and lagoons0,69, salt marsh84; sediment0; prefers mud8,54; endobenthic30 and epibenthic14 lagoons0 (coastal69); mud0 and phytal69; nectobenthic69 very shallow to shallow0; mesorheophilic0 very shallow54 to shallow0; oligorheophilic0 very shallow54 to shallow0; mesorheophilic45 very shallow0,54; oligorheophilic45 low oxygen form0,54, >0.5 ml/l0 ? low oxygen69, >0 ml/l0 low oxygen0 low oxygen0, >0 ml/l0 high oxygen69, >0.8 ml/l0 ? shallow92 lakes, swamps and ponds, in temporary waters also69; sediment and phytal45 open sea56; sand0 and phytal8,23 shallow0 to deep69 lakes69 and lagoons0; mud0,56 high oxygen69 very shallow0 (to shallow56) very shallow to shallow0,30 lagoons and open sea0; sand0,104; endobenthic30 lagoons and open sea0,92, salt marsh84; sediment84 and phytal0,30; endobenthic30 lagoons30,41 and open sea0; sand0 and phytal30; endobenthic30 open sea0; phytal30; endobenthic30 high oxygen0 (very shallow30,92 to) shallow0 shallow30 ? high oxygen0 ? ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Cytheromorpha fuscata (0.512) 0.654 – 140 (29105); βoligohaline to α-mesohaline 70 – 1992; β-mesohaline to polyhaline euhaline39,95 Cytheromorpha sp. A Cytheropteron angulatum Cytheropteron latissimum Cytheropteron montrosiense † Cytherura atra Cytherura bidens Cytherura fulva Cytherura gibba Cytherura inconspicua Cytherura nasuta Darwinula stevensoni Elofsonella concinna Elofsonia baltica Elofsonia pusilla Eucypris virens Eucythere argus (1078) 14 – 3530,92; αmesohaline to euhaline >27103, polyhaline to euhaline >130; α-mesohaline to euhaline probably polyhaline to euhaline56 >80; β-mesohaline to euhaline (1.577) 2.3105 – 13.30 (2077); β-oligohaline to αmesohaline probably polyhaline to euhaline56 probably polyhaline to euhaline56 0113 – 12.00 (15)45; freshwater to α-oligohaline >1630,78; α-mesohaline to euhaline 0.40 – 3246,106; β-oligohaline to euhaline 0.50 – 32112; β-oligohaline to euhaline 0 – 569; freshwater to αoligohaline >74; β-mesohaline to euhaline 3 Latitudinal distribution and temperature norwegian64 to britannic30; oligothermophilic, 0 – 30 °C30,78 only known from the Baltic Sea92; 2 – 17 °C0 arctic39 to britannic95 Water depth and energy Habitate and substrate O2 very shallow to shallow0 lagoons0 (coastal99); sand0,32 high oxygen32 shallow92 to deep0 open sea92; sand0 ? deep95 open sea95; epibenthic30 ? arctic to britannic8,27; thermoeuryplastic, -2 – 22 °C30 arctic27,110; -2 – 3 °C17 deep0,92; probably oligorheophilic0 probably shallow31 open sea0,92; mud0 (sediment30,56); epibenthic30 probably mud31; epibenthic29 ? norwegian to britannic95; 1 – 16 °C0 shallow92 open sea92; sand0 (and phytal56) ? britannic56 ? open sea56; sand56; endobenthic56 ? britannic30 to lusitanian93; probably thermoeuryplastic30, 2 – 18 °C0 britannic56; mesothermophilic106, (0)105 11106,0 – 2454 (30)28 °C shallow92 ? very shallow0,54; rheoeuryplastic106 open sea30,92; sand30; endobenthic30 lagoons0 and estuaries41; phytal and sediment56,106; epibenthic30 only known from the Baltic Sea56 shallow56 open sea56; phytal56 ? only known from the Baltic Sea56 shallow56 open sea56; phytal56 ? arctic25 to african56; thermoeuryplastic45, 0.10 – 27106 (40)105 °C arctic30,42 to gascoynian86; -2 – 19 °C30 britannic to gascoynian8; thermoeuryplastic30, 1.20 – 23 °C22,106 britannic56 to lusitanian93; thermoeuryplastic30, 1.20 – 27 °C112 norwegian to moroccan64; mesothermophilic45 arctic to britannic30, 56; (-2)17 2 – 17 °C0 very shallow0,54 to shallow0; oligorheophilic45 deep92 ponds, lagoons69 and estuaries0; sediment0,69 and phytal0,105 low oxygen0, >0.5 ml/l0 open sea92; endobenthic30 ? very shallow0,77 to shallow0; oligorheophilic106 shallow0 lagoons0, salt marsh84; sediment and phytal30,49,106; epibenthic30 ? open sea and lagoons0; sediment0 and phytal8,112; endobenthic30 ponds102, temporary also69; nectobenthic80 open sea and lagoons0; sediment0; epibenthic30 high oxygen0; >0.8 ml/l0 ? very shallow0; polyrheophilic45 shallow and deep0,92 ? low oxygen54, <1 ml/l54 ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Eucythere declivis Fabaeformiscandona caudata Fabaeformiscandona fabaeformis 4 Water depth and energy Habitate and substrate O2 >2592; polyhaline to euhaline probably freshwater to βoligohaline77 069 – 8.1106; freshwater to βmesohaline Latitudinal distribution and temperature arctic56 to gascoynian74 arctic to mediterranean77; oligothermophilic89 arctic87 to mediterranean2; mesothermophilic45, 0.1 – 24 °C0 deep92 shallow to deep77; rheoeuryplastic89 very shallow0,54; oligorheophilic45 open sea92; mud56 lakes15 and ponds69 ? ? high oxygen0, >0.5 ml/l0 Fabaeformiscandona fragilis 0 – 1.269 (3.2)0; freshwater to β-oligohaline britannic69; oligothermophilic45; 5 – 10 °C107 very shallow69; rheophobic45 Fabaeformiscandona holzkampfi Fabaeformiscandona hyalina probably freshwater to βmesohaline69 0 – 4.40; freshwater to αoligohaline arctic15 to britannic56,69; 9 – 12 °C107 Fabaeformiscandona levanderi 0 – 4.10 (735); freshwater to β-mesohaline britannic to mediterranean69; oligothermophilic45, 1.2 – 24 °C0 ponds and lagoons0,69; sediment and phytal0,56 high oxygen0, >0.8 ml/l0 Fabaeformiscandona protzi 0 – 6.354; freshwater to αoligohaline arctic109 to mediterranean69; coldstenothermic45, 1.4 – 24 °C0 ponds, lagoons0,69 and estuaries0; mud54 and phytal45 high oxygen22; >0.7 ml/l0 Finmarchinella angulata Hemicythere villosa >1492; α-mesohaline to euhaline (>1030,78) >140; α-mesohaline to euhaline >1030,78; α-mesohaline to euhaline euhaline0 arctic16,30 to gascoynian86; thermoeuryplastic30, -2 – 20 °C30 arctic to gascoynian30; thermoeuryplastic30, 0 – 22 °C30 britannic56,95 to moroccan89; thermoeuryplastic30, 0 – 22 °C30 arctic95 to gascoynian112; thermoeuryplastic112 britannic to moroccan44,56, 0.2105 – 26107 °C arctic to african69; thermoeuryplastic45,106, 0.2105 – 27106 °C arctic42 to gascoynian86; thermoeuryplastic112, -217 – 1854,112 °C very shallow69; oligorheophilic69 very shallow69 to shallow0; probably oligorheophilic45 very shallow to shallow0,69; oligorheophilic45 very shallow54 to shallow0; mesorheophilic45 shallow92 temporary and permanent ponds69, estuaries0 and lakes15; mud54; endobenthic80 ponds and swamps, temporary waters also69; probably sand and phytal0 Lakes0, temporary and permanent ponds69; mud69 lakes, ponds, swamps69 and estuaries0; mud and phytal0 open sea92; phytal30 ? open sea and estuaries0,8; phytal30 and sand0 open sea and estuaries56; phytal56,95 and sediment0 open sea39; sand95 and phytal112 ? ponds and estuaries69; probably phytal69 lakes, ponds and estuaries69; phytal and mud69; endobenthic low oxygen69, >5.471 high oxygen0, >5.6 ml/l0 Open sea0; endobenthic30 low oxygen73 Hemicytherura cellulose Hemicytherura clathrata Herpetoypris chevreuxi Herpetocypris reptans Heterocyprideis sorbyana 0 – 3101; freshwater to βoligohaline 0.1106 – 6.044,105 (<15)35; freshwater to β-mesohaline (>278) >454; α-oligohaline to euhaline arctic62 to mediterranean69; probably oligothermophilic45, 1.2 – 24 °C0 (very shallow to) shallow0,8 very shallow to shallow30,92 very shallow108 to shallow95 very shallow0; oligorheophilic0 very shallow69 to shallow0; mesorheophilic45,106 (shallow to) deep0,54 ? ? high oxygen0, >0.5 ml/l0 ? ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Heterocypris incongruens Heterocypris salina <1634 (<20)35; freshwater to α-mesohaline 0.4 – 8.6106 (20)35; βoligohaline to β-mesohaline Hirschmannia viridis (230,78) 80 – 3530,78; βmesohaline to euhaline 0 – 4.5105; freshwater to αoligohaline Ilyocypris bradyi Ilyocypris decipiens Ilyocypris gibba 0 – 2.245 (120); freshwater to β-oligohaline <554; freshwater to αoligohaline Jonesia acuminata (>1078) >148,92; α-mesohaline to euhaline Krithe praetexta (>31.667); polyhaline to euhaline8,30 7 – 200 (30100); βmesohaline0 to marine51 (278) 7 – 3392,112; βmesohaline to euhaline Leptocythere baltica Leptocythere castanea Latitudinal distribution and temperature arctic to african56,69; mesothermophilic43, 5 – 25 °C71 56,69 ; thermoeuryplastic69, (0.1)106 16 – 2254 (3061) °C Water depth and energy Habitate and substrate O2 very shallow0; mesorheophilic43 very shallow54; mesorheophilic69 low oxygen69, >5 ml/l72 low oxygen54, <1 ml/l54 arctic to lusitanian8,82; (0)28 20 – 2150 (22)28 °C norwegian64 to moroccan56,69; polythermophilic106, 0.1106 – 2571 (2724) °C arctic to mediterranean69; probably polythermophilic45; 14 – 20 °C107 norwegian64 to african69; meso- to polythermophilic43, 571 – 1954 (3024) °C arctic to britannic56; oligothermophilic0; (-2)17 2 – 90 (12)17 °C norwegian to britannic8,30; 1 – 18 °C30 norwegian to britannicl3,92; 1 – 18 °C0 arctic8 to lusitanian93; mesothermophilic106, 030 – 23106 °C very shallow48 to shallow0,54 very shallow56; mesorheophilic106 shallow0; rheoeuryplastic45 very shallow54,69; rheoeuryplastic43 temporary ponds69; mud69; nectobenthic80 permanent69 and temporary0 ponds;sediment and phytal54, nectobenthic108 ponds38, lagoons and open sea0; phytal8,30and sand0 springs, ponds, swamps and estuaries, temporary waters also56,69; sediment0 endobenthic80 ponds, estuaries and lagoons, temporary waters also0,69; sand0 ponds and estuaries69; sediment69; nectobenthic15 deep0,92; probably oligorheophilic0 open sea0; mud0 and phytal56,92; epibenthic94 ? deep8,30; probably oligorheophilic30,95 (very shallow11 to) shallow0 very shallow and shallow0,92; oligorheophilic106 very shallow and shallow0,77; oligorheophilic106 shallow0,92 open sea0; endobenthic94 high oxygen0, >4.0 ml/l67 probably high oxygen0 probably high oxygen0 (0.8)5 5.9106 – 175,106 (30100); β-mesohaline to αmesohaline (>330,78) >6.50; β-mesohaline to euhaline norwegian8 to lusitanian19; thermoeuryplastic30,106, 0.1 -22 °C106 Leptocythere porcellanea 12.20 – 30100; α-mesohaline to polyhaline britannic8 to lusitanian93; 16 – 22 °C0 very shallow0,11 Leptocythere psammophila 7 – 250 (35)36; β-mesohaline to polyhaline norwegian8 to lusitanian93; mesothermophilic106, 5106 – 220,106 °C very shallow0 (and shallow)0; oligorheophilic106 Leptocythere lacertosa Leptocythere pellucida 5 arctic64 to lusitanian93; thermoeuryplastic30, 0 – 27 °C30,112 lagoons and open sea0; sand0,56 and phytal51; endobenthic30 lagoons and open sea0,8, salt marsh84; sediment0,9 and phytal8; endobenthic30 lagoons0, salt marsh84; sediment0; endobenthic30 lagoons and open sea0,92; sediment0 and phytal56,112; endobenthic30 lagoons and open sea0, salt marsh84; mud8 and sand0; endobenthic30 lagoons and open sea0; sand0,8 and phytal0; endobenthic30 high oxygen0,38 probably high oxygen0, >2.5 ml/l72 ? high oxygen0, >5.0 ml/l72 low oxygen0 probably high oxygen0 probably high oxygen0 high oxygen0 Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Leptocythere tenera >80; β-mesohaline to euhaline <397; freshwater to βoligohaline 0113 – 6.754,105 (25)35; freshwater to α-mesohaline Leucocythere mirabilis Limnocythere inopinata Limnocytherina sanctipatricii Loxoconcha elliptica freshwater to oligohaline97 Loxoconcha rhomboidea Metacypris cordata >730; β-mesohaline to euhaline <535; freshwater to αoligohaline0 70 – 2592; β-mesohaline to polyhaline <654; freshwater to βmesohaline Neocytherideis crenulata Notodromas monacha Palmenella limicola Palmoconcha guttata Palmoconcha laevata Paracandona euplectella Paracyprideis fennica Paracytheridea cuneiformis Paracytherois arcuata (0.8)106 2 – 210 (30108); αoligohaline to polyhaline (>1078) >1492; α-mesohaline to euhaline (>1078) >140; α-mesohaline to euhaline (>1278) >1430,92; αmesohaline to euhaline <0.20; freshwater to βoligohaline22 (392) 5.553 – 2592; βmesohaline to polyhaline (>1878) >250; polyhaline to euhaline8 >27112 (lower salinities also0); polyhaline to euhaline 6 Latitudinal distribution and temperature norwegian to lusitanian112; 8 – 16 °C0 norwegian to mediterranean69 Water depth and energy Habitate and substrate O2 shallow to deep0,92 open sea92; sediment0 and phytal8,112; endobenthic30 lakes and open sea69; sediment69 ? arctic87 to african69; polythermophilic106, 0.5106 – 240,54 (28)61 °C arctic to britannic69; coldstenothermic106 (<12 °C97) norwegian8,56 to morrocan89; thermoeuryplastic30, (0.1106) 120 – 27106 °C norwegian to moroccan8; thermoeuryplastic30, 6 – 27 °C112 britannic to mediterranean56,69; thermoeuryplastic45; 30 – 23107 °C britannic56; 6 – 17 °C0 very shallow to shallow0,54; rheoeuryplastic106 deep0 lagoons and estuaries0; sediment0 and phytal54 low oxygen0, >0 ml/l0 lagoons and lakes0; mud56 high oxygen98 very shallow0,54; oligorheophilic90 lagoons and estuaries0, salt marsh84; sediment, phytal0,29,33 and mussels15; epibenthic32 open sea0 (estuaries100); phytal8,30 and sand9 ponds and lakes69; mud0 and phytal0,69 open sea92; sediment0,92 probably low oxygen0, >3.8 ml/l71 ? arctic87 to mediterranean3; warmstenothermal45, 654 – 280 °C very shallow54 (planktonic)69; oligorheophilic45 deep92 ponds and lakes56, temporary waters also69; pleustonic69 open sea92; mud92; endobenthic30 ? deep92 open sea0; epibenthic94 ? shallow92 to deep0 ? (shallow54, 92 to) deep0,53 lagoons and open sea0; mud8,30 (and sand0); epibenthic94 ponds, swamps69 and estuaries0; sand0, mud and phytal69 open sea92; mud0; endobenthic30 shallow8 to deep0 open sea8; sand0; endobenthic30 ? shallow30,56 phytal30,56 ? arctic to britannic8; (-2)17 2 – 90 (13)17 °C norwegian8 to lusitanian94; thermoeuryplastic, 1 – 19 °C30 arctic30 to lusitanian93; thermoeuryplastic30, 10 – 19 °C30 norwegian64 to mediterranean56,69; 2 – 12 °C0 arctic30 and Baltic Sea0; thermoeuryplastic30, (-2)30 1.4 – 1654 (18)30 °C norwegian to britannic8 britannic95,112 to moroccan89; thermoeuryplastic30 shallow and deep69 shallow8,30 very shallow0,69; oligorheophilic45 shallow0,92 to deep0,57 very shallow0,69 high oxygen69 low oxygen69, >4.0 ml/l0 high oxygen0, >6.1 ml/l0 ? low oxygen29, >4.1 ml/l0 low oxygen0 Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Paradoxostoma abbreviatum Paradoxostoma ensiforme Paradoxostoma normani Paradoxostoma pulchellum Paradoxostoma variabile Philomedes globosus 1492 – 35100; α-mesohaline to euhaline >1520; α-mesohaline to euhaline8 (>1078) >1230; α-mesohaline to euhaline >258; polyhaline to euhaline Phlyctocythere fragilis Plesiocypridopsis newtoni Polycope orbicularis >1030; α-mesohaline to euhaline 0 – 120; freshwater to αmesohaline <2570; freshwater to polyhaline >3030; euhaline Polycope schulzi polyhaline to euhaline58 Pontocythere elongata >30100; euhaline30 Potamocypris arcuata freshwater69 to oligohaline81 Potamocypris humilis <0.254, freshwater Potamocypris unicaudata Pseudocandona albicans 0.0 – 4.40; freshwater to αoligohaline <6.30,54; freshwater to βmesohaline Pseudocandona compressa 0 – 7.60 (8.4)106; freshwater to β-mesohaline Physocypria kraepelini (>378) >5.754; α-mesohaline to euhaline >2030; polyhaline to euhaline 7 Latitudinal distribution and temperature britannic to lusitanian30,82; 2 – 5 °C0 Water depth and energy Habitate and substrate O2 shallow92 high oxygen0 britannic to gascoynian8,30; thermoeuryplastic30 britannic to gascoynian30; thermoeuryplastic30, 0 – 22 °C30 britannic8; thermoeuryplastic30 shallow8 open sea92; sand0 phytal8,92; epiphytal30 phytal and sand8,30; epiphytal30 (very shallow to) shallow30 very shallow30,95 open sea0 and estuaries100; phytal8,30; epiphytal30 estuaries100; phytal8; epiphytal30 ? norwegian30 to gascoynian86; thermoeuryplastic30, 0 – 22 °C30 arctic30 to gascoynian39; coldstenothermal30, -2 – 11 °C30 norwegian to britannic30; thermoeuryplastic30, 2 – 19 °C30 britannic69 to mediterranean2; thermoeuryplastic69, 7113 – 2860 °C arctic87 to african69; warmstenothermal43, 2 – 24 °C0 norwegian to britannic40; eurythermic30, 4 – 14 °C30 Baltic Sea only58 (very shallow to) 56,92,112 shallow0 deep (planktonic and benthic)30 shallow30,95 ponds, lagoons and open sea0,8,56; phytal0; epiphytal30 open sea (planktonic!)30; sediment (endo- and nectobenthic)30 phytal30,56 ? shallow0; rheoeuryplastic69 very shallow to shallow0; mesorheophilic43 shallow30 (ponds, lagoons and)69 estuaries0,69; sediment0,69 Lagoons and estuaries0, ponds and lakes69; mud and phytal0 open sea30; mud30; nectobenthic30 low oxygen69, >6.6 ml/l60 high oxygen >3.4 ml/l0 ? shallow58 ? britannic8 to morrocan89; thermoeuryplastic30 britannic to morrocan69; polythermophilic69 Baltic Sea54, britannic (and South Africa)50; <20 °C54 arctic? to lusitanian69; polythermophilic106, 0.10,106 – 240 °C norwegian to morrocan64; mesothermophilic43, (-0.2)26 2 – 240 (25)71 °C arctic56 to morrocan64; mesothermophilic45, 1.5 – 27 °C106 shallow30,56 open sea58; coarse sand58; endobenthic58 open sea8 and lagoons30; sand8,30 very shallow69 ponds, temporary waters also69 ? very shallow to shallow54 ponds37; mud54; probably nectobenthic0 ponds and lakes69; sediment and phytal0, nectobenthic45,106 lagoons and estuaries0, swamps, ponds and lakes, temporary waters also69; sediment and phytal0 coastal, temporary also69; mud54,65 and phytal106 low oxygen54 <1 ml/l54 low oxygen0, >0.5 ml/l0 low oxygen54, >0 ml/l0 very shallow0,69; probably rheoeuryplastic106 very shallow0,54; mesorheophilic43 very shallow0,54 to shallow0; oligorheophilic45 ? ? ? ? ? low oxygen, >0 ml/l0 Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Pseudocandona hartwigi Pseudocandona insculpta 8 Water depth and energy Habitate and substrate O2 <245; freshwater to βoligohaline 0 – 40; freshwater to αoligohaline Latitudinal distribution and temperature arctic56,69 to mediterranean2; polythermophilic45 britannic69; mesothermophilic45, 0.1 – 24 °C0 shallow0; oligorheophilic45 very shallow0; oligorheophilic45 ponds and lakes69; mud69 ? coastal69; phytal0 Pseudocandona lobipes 00 – 3.669; freshwater to βoligohaline britannic to mediterranean69; coldstenothermal45; 2 – 21 °C65 very shallow0; oligorheophilic45 Pseudocandona marchica 00 – 535; freshwater to αoligohaline very shallow69; oligorheophilic45 Pseudocandona pratensis 0 – 6.2105; freshwater to βmesohaline Pseudocandona rostrata 00 – 5112; freshwater to αoligohaline norwegian56,69 to mediterranean2; probably polythermophilic45, 265 – 2266 °C britannic to mediterranean69; mesothermophilic43, 30 – 22105 (42)43 °C arctic56,69 to mediterranean64; coldstenothermal69 lagoons0, ponds and lakes, temporary waters also69; mud45 and phytal0 coastal, temporary waters also69; mud65,80; endobenthic80 probably high oxygen0, >1.9 ml/l0 ? Pseudocandona sucki 00 – 341; freshwater to βoligohaline 0 – 569; freshwater to αoligohaline 00 – 841; freshwater to βmesohaline ca. 50; α-oligohaline arctic to britannic69; probably mesothermophilic0 arctic to mediterranean69 very shallow0 very shallow0 lagoons0, temporary ponds69; sediment and phytal0; endobenthic80 ponds, lakes and springs, temporary waters also69; mud80 and phytal0; endobenthic80 swamps and ponds, temporary waters also69; phytal69 coastal69 norwegian15 to mediterranean69; oligothermophilic80, 4 – 16 °C61 arctic and Baltic Sea0 very shallow to shallow69, mesorheophilic80 deep0 springs and connected waters69, sediment80 open sea0; mud0 ? >2630; polyhaline to euhaline arctic55 to moroccan89; 2 – 25 °C28; thermoeuryplastic (2 – 18 °C)30 arctic8,42 to gascoynian86; (-2)17 20 – 1817 °C arctic18; -2 – 13 °C17 deep56, below storm wave base63 shallow to deep92; oligorheophilic0 very shallow to shallow18,42 (shallow7 to) deep0,92 very shallow0,54; mesorheophilic106 open sea0; mud56; endobenthic30 ? open sea0; sediment9,56 and phytal42; endobenthic94 open sea18; sediment42 ? open sea0,92; sediment0; benthic0 temporary and permanent ponds69,90; sand and phytal10,56; nectobenthic56 ? low oxygen54, <1 ml/l54 Pseudocandona spp., juveniles Psychrodromus olivaceus Pteroloxa aff. cumuloidea Pterygocythereis jonesii Robertsonites tuberculatus Roundstonia macchesneyi † Roundstonia robertsoni Sarscypridopsis aculeata >7.354; β-mesohaline to euhaline probably polyhaline to euhaline18 >2592; polyhaline to euhaline 0.5 – 1734; β-oligohaline to α-mesohaline britannic8 to gascoynian112 britannic69 to morrocan85; thermoeuryplastic106, 371 – 2554 (26)71 °C very shallow0; mesorheophilic45 very shallow0; rheoeuryplastic43 probably high oxygen0, >3 ml/l66 low oxygen83, (>2.5)72 >4.0 ml/l0 ? ? ? ? ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x Taxon Salinity Sarsicytheridea bradii >6.554; β-mesohaline to euhaline Sarsicytheridea punctillata Sclerochilus rudjakovi >3.854; α-oligohaline to euhaline >1492; α-mesohaline to euhaline >2092; polyhaline to euhaline Semicytherura acuticostata Semicytherura affinis Semicytherura angulata Semicytherura nigrescens Semicytherura sella Semicytherura similis Semicytherura simplex Semicytherura striata Semicytherura undata Urocythereis britannica Xestoleberis aurantia Xestoleberis depressa Xestoleberis nitida 9 Latitudinal distribution and temperature arctic to britannic8,42; thermoeuryplastic8, (-2)17 20 – 198 °C Water depth and energy Habitate and substrate O2 shallow to deep0,92 open sea0; endobenthic94 arctic to britannic30,42; (-2)17 2 – 170 (22)17 °C arctic56 to britannic8; thermoeuryplastic30, 0 – 22 °C30 britannic30 to lusitanian93; probably thermoeuryplastic30, >2 °C30 arctic79 to Baltic Sea0 (very shallow54 to) deep0,92 shallow8,108 to deep0 open sea0; endobenthic30 probably low oxygen0, >0.2 ml/l0 ? britannic30,56; thermoeuryplastic30 open sea56; phytal30,108; epibenthic30 open sea30; sand8,95; endobenthic30 ? open sea95; sand95 ? shallow and deep30,92 open sea0; phytal30 ? arctic8,42 to lusitanian93; (0)28 1.0 – 190 (22)28 °C norwegian30 to lusitanian93; 2 – 17 °C0 arctic79 to britannic30; thermoeuryplastic30; 1 – 11 °C0 britannic to mediterranean112; 1 – 18 °C0 britannic30,112 to moroccan89; thermoeuryplastic30, 2 – 27 °C30 arctic to britannic30,56; thermoeuryplastic30, -2 – 22 °C30 britannic56,112 to lusitanian93 (very shallow54 to) shallow0 shallow0,92 (lagoons and) open sea0; sand0 and phytal0,14,54; epiphytal14 open sea0; sand0,56 and phytal21; endobenthic30 open sea92; (shelly30 and) sand0,30 and phytal0; endobenthic30 open sea92; phytal8,75 probably high oxygen0 probably high oxygen0 ? ? shallow30 to deep0 open sea92; phytal8, sand0, pebbles and shelly30; endobenthic30 open sea92; phytal and sand30 shallow8 open sea8; mud112 ? (>0.8)106 >330,78; αoligohaline to euhaline britannic8 to lusitanian93; thermoeuryplastic30, 0 – 27 °C30,112 ponds, lagoons8,30 and open sea0; phytal1,33,40 ? (>1078) >1492; α-mesohaline to euhaline >3.759; α-oligohaline to euhaline arctic30 to moroccan89; thermoeuryplastic, -2 – 22 °C30 britannic to gascoynian8; 1071 – 26 °C72 very shallow40 to shallow0; rheoeuryplastic106 shallow30,92 to deep0 open sea92; sand0 and phytal30,33 ? very shallow0 (estuaries100 and) lagoons0; phytal0,33 and mussels14 (sand8,59, mud84); epiphytal and epibenthic14 high oxygen0, >4.6 ml/l71 probably polyhaline to euhaline0,95 (>1078) >1292; α-mesohaline to euhaline (>378) >5.854; β-mesohaline to euhaline >80; β-mesohaline to euhaline >1492; α-mesohaline to euhaline >140; α-mesohaline to euhaline (>1778) >2092; polyhaline to euhaline >140; α-mesohaline to euhaline polyhaline to euhaline0 (very shallow112, shallow92) and deep0 probably shallow95 shallow0,30 (very shallow112 and) shallow92 shallow8,92 to deep0 ? ? ? Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 10 References [1] Absolon, A. 1978: Die Gattung Candona (Ostracoda) im Quartär von Europa. Rozpravy Ceskoslovenske Akademie Ved, Matematickych a Prirodnich Ved 88, 76 pp. [2] Altinsaçli, S. 2001: The Ostracoda (Crustacea) Fauna of Lakes Erikli, Hamam, Mert. Pedina and Saka (İğneada, Kırlareli, Turkey). Turkish Journal of Zoology 25, 343-355. [3] Altinsaçli, S. & Griffiths, H. I. 2002: A review of the occurrence and distribution of the recent non-marine Ostracoda (Crustacea) of Turkey. Zoology in the Middle East, 27, 61-76. [4] Ankar, S. & Elmgren, R. 1978: The benthic macro- and meiofauna of the Askö-Landsort area (northern Baltic Proper). Contributions from the Askö Laboratory 11, 115 pp. [5] Arlt, G. 1970: Faunistisch-ökologische und produktionsbiologische Untersuchungen am Mikrobenthos des Greifswalder Boddens. Ph.D. thesis, University of Greifswald, unpublished. [6] Arndt, E. A. 1969 (ed.): Zwischen Düne und Meeresgrund. 375 pp. Urania, Leipzig. [7] Athersuch, J. & Horne, D. J. 1984: A review of some European genera of the Family Loxoconchidae (Crustacea: Ostracoda). Zoological Journal of The Linnean Society 81, 1-22. [8] Athersuch, J., Horne, D. J. & Whittaker, J. E. 1989: Marine and brackish water ostracods (superfamilies Cypridacea and Cytheracea). In Kermack, D. M. & Barnes, R. S. K. (eds.): Synopses of the British Fauna (New Series) 43. 343 pp. E. J. Brill, Leiden. [9] Barker, D. 1983: The relationship between ostracod distribution and sediment grain size. Marine Micropaleonotology 8, 51-63. [10] Beschnidt, J., Krüger, G. & Noack, B. 1970: Faunistisch-ökologische Untersuchungen in der Darßer Boddenkette unter besonderer Berücksichtigung des Saaler Boddens. Ph.D. thesis, University of Rostock, unpublished. [11] Boomer, I. 1998: The relationship between meiofauna (Ostracoda, Foraminifera) and tidal levels in modern intertidal environments of North Norfolk: A tool for palaeoenvironmental reconstruction. Bulletin of the geological Society of Norfolk 46 [for 1996], 17-29. [12] Boomer, I. & Horne, D. J. 1991: On Cytheromorpha fuscata (Brady). Stereo-Atlas of Ostracod Shells 18, 49-56. [13] Boomer, I., Horne, D. J. & Slipper, I. J. 2003: The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In Park, L. E. & Smith, A. J. (eds.): Bridging the gap: trends in the ostracod biological and geological sciences. The Paleontological Society Papers 9, 153-179. [14] Borck, D. & Frenzel, P. 2006: Micro-habitats of brackish water ostracods from Poel Island, southern Baltic Sea coast. Senckenbergiana maritima 36, 99-107. [15] Bronshtein, Z. S. 1988: Fresh-water Ostracoda. 470 pp. Amerind, New Delhi [translated from Bronshtein 1947]. [16] Brouwers, E. M. 1993: Systematic Paleontology of Quaternary Ostracode Assemblages from the Gulf of Alaska, Part 2: Families Trachyleberididae, Hemicytheridae, Loxoconchidae, Paracytheridae. U.S. Geological Survey Professional Paper 1531, 81 pp. [17] Brouwers, E. M. 1994: Late Pliocene Paleoecologic Reconstructions Based on Ostracode Assemblages from the Sagavanirktok and Gubik Formations, Alaskan North Slope. Arctic 47, 16-33. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 11 [18] Brouwers, E. M., Cronin, T. M., Horne, D. J. & Lord, A. R. 2000: Recent shallow marine ostracods from high latitudes: implications for late Pliocene and Quaternary palaeoclimatology. Boreas 29, 127-143. [19] Cabral, M.-C., Martins, I & Fatela, F. 2007: First study on Recent ostracods from estuarine settings of Portugal: assemblage diversity and palaeoecological trends in the Mira River. European Ostracodologist’s Meeting VI, Abstract Volume 53. Senckenberg, Frankfurt am Main. [20] Carbonel, P., Moyes, J. & Peypouquet, J.-P. 1972: Ostracodes du domaine phytal intertidal dans la partie aval de l’estuaire de la Gironde et dans la zone N.W. de l’ile d’Oléron. Bulletin de l’Institute Géologique Bassin Aquitaine 12, 191-194. [21] Carbonel, P. & Pujos, M. 1974 : Microfaunes benthiques des étages intertidal et supratidal du système girondin marin. Mémoires d’Institute de Géologie Bassin Aquitaine 7, 387-390. [22] Danielopol, D. L., Geiger, W., Tölderer-Farmer, C. P., Orellana, C. P. & Terrat, M. N. 1985: The Ostracoda of Mondsee: spatial and temporal changes during the last 50 years. In Danielopol, D. L., Schmidt, R. & Schultze, E. (eds.): Contributions to the Paleolimnology of the Trumer Lakes (Salzburg) and the Lakes Mondsee, Attersee and Traunsee (Upper Austria), 99-121. Limnologisches Institut der Österreichischen Akademie der Wissenschaften, Mondsee. [23] Delling, D. 1981: Eutrophierungseffekte an Ostracodengemeinschaften oligohaliner Gewässer Norddeutschlands. Ph.D. thesis, University of Kiel, unpublished. [24] Delorme, L. D. 1991: Ostracoda. In Thorp J.H. & A.P. Covich (eds.): Ecology and Classification of North American Freshwater Invertebrates, 237-243. Academic Press, San Diego. [25] Delorme, L. D. & Zoltai, S. C. 1984: Distribution of an Arctic ostracod fauna in space and time. Quaternary Research 21, 65-73. [26] Delorme, L. D., Zoltai, S. C. & Kalas, L. L. 1977: Freshwater shelled invertebrates as indicators of palaeoclimate in northwestern Canada during late glacial times. Canadian Journal of Earth Sciences 14, 2029-2046. [27] Dickson, C. & Whatley, R. 1995: Cytheropteron frigidum sp. nov. and some other species of this genus from the Quaternary and Recent. In Ríha, J. (ed.): Ostracoda and Biostratigraphy, 283-289. Balkema, Rotterdam. [28] Diebel, K. & Pietrzeniuk, E. 1971: Holozäne Ostracoden von der Doggerbank, Nordsee. In Oertli, H. J. (ed.): Paléoécologie des Ostracodes. Bulletin Centre Recherche Pau – SNPA, 5 suppl., 377-390. [29] Douglas, D. J. & Healy, B. 1991: The freshwater ostracods of two quagmires in Co. Louth, Ireland. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24, 1522-1525. [30] Elofson, O. 1941: Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berücksichtigung des Skageraks. Zoologiska Bidrag från Uppsala 19, 215-537. [31] Frenzel, P. 1993: Die Ostrakoden und Foraminiferen des pleistozänen Cyprinentons der Insel Rügen, NE-Deutschland/Ostsee. Meyniana 45, 6585. [32] Frenzel, P. 1996: Rezente Faunenverteilung in den Oberflächensedimenten des Greifswalder Boddens (südliche Ostsee) unter besonderer Berücksichtigung der Ostrakoden. Senckenbergiana maritima 27, 11-31. [33] Frenzel, P., Henkel, D., Siccha, M. & Tschendel, L. 2005: Do ostracod associations reflect macrophyte communities? A case study from the brackish water of the southern Baltic Sea coast. Aquatic Sciences 67, 142-155. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 12 [34] Ganning, B. 1971: On the ecology of Heterocypris salinus, H. incongruens und Cypridopsis aculeata (Crustacea: Ostracoda) from Baltic brackish-water rockpools. Marine Biology 8, 271-279. [35] Griffiths, H. I. & Holmes, J. A. 2000: Non-marine ostracods & Quaternary palaeoenvironments. Technical Guide No. 8, Quaternary Research Association, London, 188 pp. [36] Guillaume, M.-C. 1988: On Leptocythere psammophila Guillaume. Stereo-Atlas of Ostracod Shells 15, 123-126. [37] Hagerman, L. 1967: Ostracods of the Tvärminne area, Gulf of Finland. Commentationes Biologicae, Societas Scientiarum Fennica 30, 1-12. [38] Hagerman, L. 1969: Environmental factors affecting Hirschmannia viridis (O.F. Müller) (Ostracoda) in shallow brackish water. Ophelia 7, 79-99. [39] Hansson, H. G. 1998: NEAT (North East Atlantic Taxa): South Scandinavian marine Crustacea Check-List. 84 pp. [Internet pdf, August 1998. http://www.tmbl.gu.se; 10/10/2007] [40] Hartmann, G. 1953: Ostracodes des étangs méditerranéens. Vie et Milieu 6, 707-712. [41] Hartmann, G. 1957: Neue Funde von Muschelkrebsen (Ostracoda) im Gebiet der Nordseeküste und der Kieler Bucht. (Mit Beschreibung einer neuen Art). Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 28, 103-111. [42] Hartmann, G. 1992: Zur Kenntnis der rezenten und subfossilen Ostracoden des Liefdefjords (Nordspitzbergen, Svålbard). I. Teil. Mit einer Tabelle subfossil nachgewiesener Foraminiferen. Mitteilungen Hamburger Zoologisches Museum und Institut 89, 181-225. [43] Hartmann, G. & Hiller, D. 1977: Beitrag zur Kenntnis der Ostracodenfauna des Harzes und seines nördlichen Vorlandes (unter besonderer Berücksichtigung des Männchens von Candona candida). In 125 Jahre Naturwissenschaftlicher Verein Goslar, 99-116. [44] Henderson, P. A. 1990: Freshwater ostracods. In Kermack, D. M. & Barnes, R. S. K. (eds.): Synopses of the British Fauna (New Series) 42, 228 pp. Universal Book Services/Dr W. Backhuys, Oegstgeest. [45] Hiller, D. 1972: Untersuchungen zur Biologie und zur Ökologie limnischer Ostracoden aus der Umgebung von Hamburg. Archiv für Hydrobiologie, Supplement-Band 40, 400-497. [46] Hirschmann, N. 1912: Beitrag zur Ostracodenfauna des Finnischen Meerbusens. Acta Societatis pro Fauna et Flora Fennica 36, 1-64. [47] Hoff, C. C. 1942: The Ostracoda of Illinois: their biology and taxonomy. Illinois Biological Monographs 19, 1-196. [48] Horne, D. J. 1982: The vertical distribution of phytal ostracods in the intertidal zone at Gore Point, Bristol Channel, U. K. Journal of Micropalaeontology 1, 71-84. [49] Horne, D. J. 1983: Life-cycles of podocopid Ostracoda – a review (with special reference to marine and brackish-water species). In Maddocks, R. F. (ed.): Applications of Ostracoda, 581-590. Department of Geosciences, University of Houston, Houston. [50] Horne, D. J. & Smith, R. J. 2004: First British record of Potamocypris humilis (Sars, 1924), a freshwater ostracod with a disjunct distribution in northern Europe and southern Africa. Bollettino della Società Paleontologica Italiana 43, 297-306. [51] Horne, D. J. & Whittaker, J. E. 1985: On Leptocythere baltica Klie. Stereo-Atlas of Ostracod Shells 12, 93-98. [52] Janz, H. 1994: Zur Bedeutung des Schalenmerkmals ‘Marginalrippen’ der Gattung Ilyocypris (Ostracoda, Crustacea). Stuttgarter Beiträge zur Naturkunde, Serie B 206, 1-19. [53] Järvekülg, A. 1973: Distribution and ecology of local populations of benthic glacial relicts. OIKOS Supplementum 15, 91-97. [54] Järvekülg, A. 1979: Donnaâ fauna vostočnoj častu Baltijskogo morâ. Sostav i ekologiâ raspredeleniâ. 382 pp. Valgus, Tallin. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 13 [55] Jones, R. L., Whatley, R. C., Cronin, T. M. & Dowsett, H. J. 1999: Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda. Marine Micropaleontology 37, 251-272. [56] Klie, W. 1938a: Ostracoda, Muschelkrebse. In Dahl, M. & Bischoff, H. (eds.): Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise 34. 230 pp. Gustav Fischer, Jena. [57] Klie, W. 1938b: Zwei neue Ostracoden aus der Ostsee. Kieler Meeresforschungen 2, 345-351. [58] Klie, W. 1950: Eine neue Polycope (Ostr.) aus der Kieler Bucht. Kieler Meeresforschungen 7, 129-132. [59] Köhler, S. 1990: Die Verbreitung der Muschelkrebse (Ostracoda) in der Darß–Zingster Boddenkette – eine Studie auf der Basis der Netzprogrammanalysen von 1977 – 1980 unter besonderer Berücksichtigung des Meiozoobenthos im Saaler Bodden. Ph.D. thesis, University of Rostock, unpublished. [60] Külköylüoğlu, O., Dügel, M. & Kılıç, M. 2007: Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey). Hydrobiologia 585, 119-133. [61] Külköylüoğlu, O. & Yılmaz, F. 2006: Eclogical requirements of Ostracoda (Crustacea) in three types of springs in Turkey. Limnologica 36, 172180. [62] Li Y., Zhang Q. & Wang G. 2001: Recent Ostracoda and environment in coastal zone, the Northwest Arctic Alaska. Acta Micropalaeontologica Sinica 18, 173-179 (in Chinese with English abstract). [63] Liebau, A. 1980: Paläobathymetrie und Ökofaktoren: Flachmeerzonierungen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 160, 173-216. [64] Löffler, H. & Danielopol, D. 1978: Ostracoda (Cyprididae). In Illies, J. (ed.): Limnofauna Europaea (2nd edition), 196-208. Gustav Fischer, Stuttgart. [65] Mallwitz, J. 1984: Untersuchungen zur Ökologie litoraler Ostracoden im Schmal- und Lüttauersee (Schleswig-Holstein, BRD). Archiv für Hydrobiologie 100, 311-339. [66] Martín-Rubio, M., Rodriguez-Lazaro, J., Anadón, P., Robles, F., Utrilla, R. & Vázquez, A. 2005: Factors affecting the distribution of recent lacustrine ostracoda from the Caicedo de Yuso-Arreo Lake (Western Ebro Basin, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 225, 118-133. [67] McKenzie, K. G., Majoran, S., Emami, V. & Reyment, R. A. 1989: The Krithe problem – first test of Peypouquet’s hypothesis, with a redescription of Krithe praetexta praetexta (Crustacea, Ostracoda). Palaeogeography, Palaeoclimatology, Palaeoecology 74, 343-354. [68] Meisch, C. 1985: Revision of the Recent West European species of the genus Potamocypris (Crustacea, Ostracoda). Traveaux scientifiques du Musée d’histoire naturelle de Luxembourg 6, 95 pp. [69] Meisch, C. 2000: Crustacea: Ostracoda. In Schwoerbel, J. & Zwick, P. (eds.): Süßwasserfauna von Mitteleuropa 8. 522 pp. Spektrum Akademischer Verlag, Heidelberg. [70] Meisch, C. & Broodbakker, N. W. 1993: Freshwater Ostracoda (Crustacea) collected by Prof. J.H. Stock on the Canary and Cape Verde Islands. With an annotated checklist of the freshwater Ostracoda of the Azores, Madeira, the Canary, the Selvagens and Cape Verde Islands. Traveaux scientifiques du Musée nationale d’histoire naturelle de Luxembourg 19, 1-67. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 14 [71] Mezquita, F., Roca, J. R., Reed, J. M. & Wansard, G. 2005: Quantifiying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 93-117. [72] Mezquita, F., Tapia, G. & Roca, J. R. 1999: Ostracoda from springs on the eastern Iberian Peninsula: ecology, biogeography and palaeolimnological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 65-85. [73] Modig, H. & Ólafsson, E. 1998: Responses of Baltic benthic invertebrates to hypoxic events. Journal of Experimental Marine Biology and Ecology 229, 133-148. [74] Moyes, J. & Pachier, E. 1968: Repartition de quelques associations fauniques d’ostracodes dans le Golfe de Gascogne. Bulletin de l’institute de géologie du Bassin d’Aquitaine 5, 84-86. [75] Müller, G.W. 1894: Die Ostracoden des Golfes von Neapel und der angrenzenden Meeresabschnitte. Fauna Flora Golf Neapel, monograph 21, 404 pp. [76] Müller, G.W. 1900: Deutschlands Süßwasser-Ostracoden. Zoologica 12, 112 pp. [77] Muus, B. J. 1967: The Fauna of Danish estuaries and lagoons: distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddelelser fra Danmarks Fiskeri- og Havundersøgelser, N.S. 5, 316 pp. [78] Neale, J. W. 1964: Some factors influencing the distribution of Recent British Ostracoda. In Califano, L., Montalenti, G., Dohrn, P. & Puri, H. S. (eds.): Ostracoda as ecological and palaeoecological iondicators. Pubbl. Stazione Zoologica Napoli 33, 247-307. [79] Neale, J. W. & Howe, H. V. 1975: The marine Ostracoda of Russian Harbour, Novaya Zemlya and other high latitude faunas. In Swaine, F. H. (ed.): Biology and Paleobiology of Ostracoda. Bulletins of American Paleontology 65, 381-431. [80] Nüchterlein, H. 1969: Süßwasserostracoden aus Franken. Ein Beitrag zur Systematik und Ökologie der Ostracoden. Internationale Revue der gesamten Hydrobiologie 54, 223-287. [81] Oleńska, M. & Sywula, T. 1988: Ostracoda (Crustacea) of the Gulf of Gdańsk. I. Species fom the sandy bottom off Rewa. Fragmenta Faunistica 31, 445-457. [82] Paulo, L. F. & Moutinho, M. 1983: Systématique et distribution des ostracods au Portugal. Publicações do Instituto de Zoologia «Dr. Augusto Nobre», Faculdade de Ciências do Porto 173, 1-32. [83] Pax, F. 1942: Die Crustaceen der deutschen Mineralquellen. Abhandlungen der naturforschenden Gesellschaft zu Görlitz 33, 87-130. [84] Penney, D. N. 1987: Application of Ostracoda to sea-level studies. Boreas 16, 237-247. [85] Petkovski, T. K. 1963: Über Süsswasser-Ostracoden der Azoren. Boletim do Museu Municipal Açores 17, 49-65. [86] Peypouquet, J.-P. 1971: Inventaire de la microfaune d’Ostracodes de la région de Cap-Breton. Bulletin de l’institut de la géologie du Bassin d’Aquitaine 11, 209-217. [87] Pietrzeniuk, E. 1977: Ostracoden aus Thermokarstseen und Altwässern in Zentral-Jakutien. Mitteilungen zoologisches Museum Berlin 53, 331364. [88] Purasjoki, K. J. 1948: Cyprilla humilis G. O. Sars, an Interesting Ostracod Discovery from Finland. Societas Scientiarum Fennica, Commentationes Biologicae 10, 7 pp. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 15 [89] Puri, H. S. 1966: Ecologic distribution of Recent Ostracoda. In Proceedings of Symposium on Crustacea, part I, 457-495. Marine Biological Association of India, Mandapam Camp. [90] Remane, A. 1958: Ökologie des Brackwassers. In Remane, A. & Schlieper, C.: Die Biologie des Brackwassers. Die Binnengewässer 22, 1-216. [91] Rodriguez-Lazaro, J., Nachite, D., Martín-Rubio, M., Pascual, A. & Bekkali, R. 2007: Calibrating modern assemblages for the assessment and monitoring of coastal environmental impacts: Recent Ostracoda from several Atlantic estuaries of NW Morocco and N. Spain. In European Ostracodologist’s Meeting VI, Abstract Volume, p. 72. Senckenberg, Frankfurt am Main. [92] Rosenfeld, A. 1977: Die rezenten Ostracoden-Arten in der Ostsee. Meyniana 29, 11-49. [93] Ruiz, F., González-Regalado, M. L., Baceta, J. I. & Muñoz, J. M. 2000: Comparative ecological analysis of the ostracod faunas from low- and high-polluted southwestern Spanish estuaries: a multivariate approach. Marine Micropaleontology 40, 345-376. [94] Ruiz, F., González-Regalado, M. L. & Muñoz, J. M. 1997: Multivariate analysis applied to total and living fauna: seasonal ecology of recent benthic Ostracoda off the North Cádiz Gulf coast (southwestern Spain). Marine Micropaleontology 31, 183-203. [95] Sars, G. O. 1928: An account of the Crustacea of Norway. Volume 9 – Ostracoda. 778 pp. Bergen Museum, Bergen. [96] Savolainen, I. & Valtonen, T. 1983: Ostracods of the north-eastern Bothnian Bay and population dynamics of the principal species. Aquilo, Seria Zoologica 22, 69-76. [97] Schäfer, H. W. 1953: Über Meeres- und Brackwasserostracoden aus dem Deutschen Küstengebiet. Mit: 2. Mitteilung über die Ostracodenfauna Griechenlands. Hydrobiologia 5, 351-389. [98] Scharf, B. W. 1981: Zur rezenten Muschelkrebsfauna der Eifelmaare (Crustacea: Ostracoda). Mitteilungen der Pollichia 68 (1980), 185-204. [99] Skaumal, U. 1977: Zur Kenntnis der Ostracoden des Felslitorals von Helgoland. Ph.D. thesis, University of Hamburg, unpublished. [100] Smith, A. J. & Horne, D. J. 2002: Ecology of Marine, Marginal Marine and Nonmarine Ostracodes. In Holmes, J. A. & Chivas A.R. (eds.): The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131, 37-64. [101] Stephanides, T. 1948: A survey of the freshwater biology of Corfu and of certain other regions of Greece. Praktika of the Hellenic Hydrobiological Institute 2 (part 2), 1-263. [102] Sywula, T. 1966. Małżoraczki (Ostracoda) i widłonogi (Copepoda) z pobrzeży Zatoki Gdańskiej. Przegląd Zoologiczny 10, 287-289. [103] Taldenkova, E., Bauch, H. A., Stepanova, A., Dem’yankov, S. & Ovsepyan, A. 2005: Last postglacial environmental evolution of the Laptev Sea shelf as reflected in molluscan, ostracodal, and foraminiferal faunas. Global and Planetary Change 48, 223-251. [104] Theisen, B. F. 1966: The Life History of Seven Species of Ostracods from a Danish Brackish-Water Locality. Meddelelser fra Danmarks Fiskeri- og Havundersøgelser, N. S. 4, 215-270. [105] Usskilat, F. 1975: Untersuchungen am Oligohalinikum der Schlei: 2. Die Ostracodengemeinschaften des Haddebyer und Selke Noores (Schlei). Kieler Meeresforschungen 31, 151-178. [106] Vesper, B. 1975: Ein Beitrag zur Ostracodenfauna Schleswig-Holsteins. Mitteilungen Hamburger Zoologisches Museum und Institut 72, 97-108. [107] Viehberg, F. A. 2006: Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571, 213-224. Online supplement 2: Frenzel, P., Keyser, D. and Viehberg, F., 2010. An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 10.1111/j.1502-3885.2009.00135.x 16 [108] Wagner, C. W. 1957 : Sur les ostracodes du quaternaire récent des Pays-Bas et leur utilisation dans l’étude géologique des dépôts holocènes. 259 pp. Mouton & Co., Gravenhage. [109] Wetterich, S., Schirrmeister, L., Meyer, H., Viehberg, F. A. & Mackensen, A. 2007: Freshwater ostracods from the Siberian Arctic: studies on taxonomy, ecology and shell geochemistry. In European Ostracodologist’s Meeting VI, Frankfurt am Main – September 2007, Abstract Volume, p. 80. Senckenberg, Frankfurt am Main. [110] Whatley, R. C. & Masson, D. G. 1979: The ostracod genus Cytheropteron from the Quaternary and Recent of Great Britain. Revista Española de Micropaleontología 11, 223-278. [111] Wouters, K. 1984: Contributions to the study of Belgian Ostracoda. 2. Cypria subsalsa Redeke, 1936, in Belgium, with a redescription of the species. Bulletin de l’Institut Royale des Sciences Naturelles Belgique, Biologie 58, 85-93. [112] Yassini, I. 1969: Ecologie des Associations d’Ostracodes du Bassin d’Arcachon et du Littoral Atlantique. Application à l’Interpretation de quelques Populations du Tertiaire Aquitain. Bulletin de l’Institut de Géologie du Bassin d’Aquitaine 7, 1-364. [113] Yılmaz, F. & Külköylüoğlu, O. 2006: Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey). Ecological Research 21, 165-173.