Academia.eduAcademia.edu
zyxwvutsr zyxwvu zyxwvu zyxwv Botanical Journal of the Linnean Sociely (1987)94: 293-326. With 10 figures The chemical constituents and economic plants of the Euphorbiaceae ABDEL-FATTAH M. RIZK zyxwvutsrq zy zyxwvut Chemistry Department, Faculty of Science, Qatar University, P.O. Box 2713, Doha, Qatar Received November 1986, accepted for publication November 1986 RIZK, A.-F. M., 1987. T h e chemical conmtitucntm and economic phtm of the Euphorbiaceae. A chemical review of the different classes of compounds which have been isolated from the Euphorbiaceae (other than the diterpenoids) is given. This includes triterpenoids and related compounds (sterols, alcohols and hydrocarbons), phenolic compounds (flavonoids, lignans, coumarins, tannins, phenanthrenes, quinones, phenolic acids, etc.), alkaloids, cyanogenic glucosides and glucosinolates. A summary of the industrial and medicinal uses of members of the Euphorbiaceae is provided. ADDITIONAL KEY WORDS:-alcohols - alkaloids - anthraquinones - arrow poison coumarins - cyanogenic glucosides - fish poison - flavonoids - glucosinolates - lignans - medicinal plants - naphthaquinones - oils - paper - petroleum plants - phenanthrenes - phenolic acids rubber - steroids - tannins - triterpenoids - ubiquinones - waxes - woods. CONTENTS Introduction . . . . . . . . Chemical constituents . . . . . . Terpenoids and related substances . . Fatty acids . . . . . . . Phenolic substances . . . . . Alkaloids . . . . . . . . Economic plants . . . . . . . Industrial plants and/or their products. Medicinal plants . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 294 294 295 298 306 313 313 31 7 321 INTRODUCTION The plants of the Euphorbiaceae contain acrid, milky or colourless juice. Chemical data are available for several genera, especially Eubhorbia, where more than 120 species have been investigated. A survey of this data showed that the triterpenoids, followed by flavonoids and alkaloids are the main classes of substances of interest to phytochemists. However, the presence of other substances, e.g. coumarins, cyanogenic glucosides and tannins are also reported. 0024-4074/87/020293 + 34 $03.00/0 zyxwvut 293 01987 The Linnean Society of London 294 A.-F. M. RIZK zyxwvu zyxwvu The family contains several species of considerable economic importance used as foodstuffs, as medicinal plants and in industry. CHEMICAL CONSTITUENTS Terpenoids and related substances zyx More than 55 triterpenoids (tetra- and pentacyclic) have been identified from the Euphorbiaceae. A review has been given recently by Rizk & El-Missiry (1986) who discussed the distribution of triterpenoids in this family. Table 1 summarizes the triterpenoids identified in plants of the Euphorbiaceae; see also Fig. 1. They have been isolated from the latex as well as from the different parts (bark, cortex, flowers, leaves, roots and stems). Some of the triterpenes (e.g. aand 8-amyrin) have been found either free or as their esters (acetates). Some also occurred as glycosides, e.g. geniculatin (a triterpenoid saponin) isolated from Euphorbia geniculata Orteg. (Tripathi & Tiwari, 1980). Another triterpenoid glycoside (gypsogenic acid derivative) was found in some Euphorbia species (Soboleva, 1979). The major constituents of the latex of many Euphorbia species are triterpenes and their esters. Monoesters and diesters are also found in the latex of Euphorbia species but they are only minor components (Warnaar, 1981). The stem bark of Croton oblongiflius Roxb. contains, besides other components, a group of six compounds having the pimarane skeleton, viz. oblongifoliol, deoxyoblongifoliol, oblongifolic acid, ent-iso-pirnara-7,15-diene, ent-isopirnara-7,15-dien10-aldehyde and 19-hydroxy-ent-isopimaradiene (Aiyar & Seshadri, 1971). The analysis of the essential oils in several Croton species was reported by Craveiro et al. (1978, 1981) and the following compounds were identified: zyx MONOTERPENOIDS: car-3-ene, a-phellandrene, myrcene, a-pinene, 8-pinene, sabinene, v-terpinene, a-terpinoline, a-thujene, p-cymene, borneol, camphor, 1,8-cineole, geranial, linalool, neral, a-terpineol, terpinen-4-01, ascaridol and isoscaridol; PHENYLPROPANOIDS: t-anethole, estragol, eugenol, methyl eugenol, n-propyl catechol and elemicin; SESQUITERPENOIDS: aromadendrene, a-bergamoptene, v-cadinene, b-caryophyllene, a-copaene, 8-elemene, v-elemene, 8-elemene, a-farnesene, 8-farnesene, germacrene B, 8-guayene, a-humulene and v-muurolene. The essential oil of Euphorbia monostyla Prokh. contains the following compounds: thymol, a-pinene, a-thujene, camphene, a-phellandrene, myrcene, a-cardinene, 8-cardinene, p-cymene, linalool, citronellol and geraniol (Baslas, 1982). 8-Sitosterol has been identified in the sterol fraction of the different species of the Euphorbiaceae studied. Other sterols also occur, but in relatively small amounts, e.g. stigmasterol, campesterol, dihydrobrassicasterol, 28-isofucosterol, A7-i~ofuco~tero1and cholesterol (Rizk & El-Missiry, 1986). 7-Oxo-, 7-a-hydroxy- and 7-j?-hydroxy- derivatives of campesterol, stigmasterol and sitosterol were isolated from the roots of Euphorbiafzscheriana Steud. ( = E. pallasii Turcz.), a drug used for its anti-tumour properties in Chinese traditional medicine (Schroeder, Rohmer, Beck & Anton, 1980). CHEMICAL CONSTITUENTS OF EUPHORBIACEAE HO HO Cycloaudenol 295 HO HO Cmllotodiol zy zyxw Cycloeucolenol CyclDcuphMnol zyxwvutsrqpo CHZ HO Ho H Cycloroylenol Euphol Euphorbol Euphubinol zyx Glochidinol Hopenme-8 Glafhilocudol: R iOH; R'= H Golchidol: HO zyxw Geniculotin Tirucallol HO OH Figure I . Some triterpenoids of the Euphorbiaceae. In the genus Euphorbia, squalene oxide leads both to 4,4-dimethylleuphoids and 4,4-dimethylsteroids, but it is not clear from the literature whether both or only one of these is metabolized further to 4-desmethyl compounds. The existence of 4,4-dimethylleuphoids and a 24-methylene group, as in the case of euphorbol in E. triangularis Desf., E. ingens E. Mey and E. resinifera Berg, shows that the (2-24 alkylation can actually occur after cyclization to the euphoidal structure (Sekula & Nes, 1980). Long-chain fatty alcohols (particularly n-octacosanol and n-hexacosanol) and hydrocarbons have been identified from the different genera especially Euphorbia spp. (Rizk & El-Missiry, 1986). The latter species have been reported to yield a considerable amount of hydrocarbons and alcohols, and a number of them have been suggested as potential hydrocarbon-producing crops (Calvin, 1980, 1982). Fatty acids The fatty acid composition and characterization has been reported for relatively few species of the Euphorbiaceae. In addition to the usual saturated and unsaturated fatty acids, several others were obtained from the seeds oils. zyxwvuts zyxw Table 1. Triterpenoids isolated from the Euphorbiaceae ~~ zyxwvutsrqpo zyxwvuts zyxw zyxwvutsrqponml zyxwvutsrqp zyxwvutsrqpon zyxwvutsrqponm Triterpenes I. Alnusenone 2. a-Amyrin 3. B-Amyrin 4.B-Amyrenone 5. 6-Arnyrenone Euphorbia wahnabk Mark. Euphorbia spp., Macaranga tanaritu Muell.-Arg. Euphorbia spp., Phyllanthus a d u s Skeel. Macaranga hnnrius Muell.-Arg. Euphorbia csula L., E. parvijlora L. 6. Betulin 7. Betuliaic acid 8. Butyrospermol 9. Corollatadiol 10. Cycloartenol 1 1. Cycloart-25-ene-3-j3-24-diols Euphorbia spp., Sarcoccoa prunifrmis Lindl. Phyllanthus discoides Muell., P. reticulatus Poir. Euphorbia SQP., Hura crepitans L. Euphorbia corollata L. Euphorbia spp. Euphorbia SQP. 12. Cycloaudenol, and 3-epi-cycloaudenol 13. Cycloeucalenol 14. Cycloeuphornol 15. Cycloroylenol 16. Darninara-20,24-diene-3-B-01 17. Euphadienol 18. Euphol (a- & B-) 19. Euphorbinol 20. Euphorbol and iso-euphorbol 2 1. Friedelan-3-a-01 Euphorbia caudkzolia Mans. Euphorbia roylcana Boiss, E. paralias L. Euphorbia timalli L. Euphorbia roylcana Boiss. Antidcsma b u n k Spreng. Euphorbia condyocarpa Bieb. Euphorbia spp. Euphorbia tirucalli L. Euphorbia spp. BischoJa trifoliata (Roxb.)-Hook. fil., Euphorbia spp., Glochidion macrophyllum Miill.-Arg. Bischoja triyoliata (Roxb.) Hk.fil., Euphorbia hirh L., Glochidion macrophyllum, Phyllanthus reticulatus Poir, Sapium sebijicmm Roxb. Bischoja tntoliah, Euphorbia spp. Anlidesma b u n k Spreng., Baccaurea sepida Muell., Bischojia tnjCliata (Roxb.) Hook fil., Bri&lia spp., Euphorbia spp., Sapium discolor Muell.-Arg. Eujhorbia spp. 22. Friedelin 23. Fridelinol (Friedelan-3-/J-ol) 24. epi-Fridelinol 25. Germanicol (and 3-epz-germanicol) Takemoto & Ishiguro (1966) Rizk & El-Misery (1986), Hui ct al. (1975 Rizk & El-Missiry (1986) Hui cf al. (1975) Manners & Davis (1984), Rizk & El-Missiry (1986) Chopra et al. (1969), Rizk & El-Missiry (1986) Rizk & El-Missiry (1986) Rizk & El-Missiry (1986) Piatak & Reimann (1972) Rizk & El-Missiry (1986) Anjaneyulu CI al. (1985), Rizk & El-Missiry ( 19%) Govardhan ct al. (1984) Rizk & El-Missiry (1986) Aha ct al. (1979b) Bhat ct al. (1982) Sainsbury (1970) Roschin & Kir’yalov (1970) Rizk & El-Missiry (1986) Afza ct al. (1979a) Rizk & El-Missiry (1986) Rizk & El-Missiry (1986) ? a 7 E 7; 26. Glut-5-(6)-en-3-01 27. Clut-5-(6)-3n-3-one 28. Glochidiol 29. Glochidol 30. Glochidone 31. Glochidonol 32. Glocilocudol 33. Hopenol-B 34. Hopenone-B 35. Lanostadienol 36. Lanostenol 37. Lanosterol 38. Lup-20-en-3-fi-16-fidiol 39. Lup-20(29)-en-1-fi-3-fi-diol 40.Lup-20(29)-en-3-a-23-diol 41. Lupenone 42. Lupeol 43. 3-epi-Lupeol 44. Maculatol 45. 24-Methylenecycloartenol Euphorbia cyparissias L. Euphorbia cyparissiac L. Glochidion spp. Glochidion spp. Bridelia moonii Thw., Glochidion spp. Glochidion spp., Phyllanthus reticulalw Poir. Glochidion multiloculare Voigt Euphorbia supina Rafin. ex Boiss. Euphorbia cyparissias L. Euphorbia balsamifera Aiton Euphorbia spp. Euphorbia spp. Bayeria spp. Glochidion spp. Glochidion thomoni Hook. fil. Euphorbia spp. Euphorbia spp., Glochidion spp., Phyllanthus spp. Euphorbia maddeni Boiss., Glochidion hohcnatkm' Bedd. Euphorbia maculata L. Euphorbia spp., Hura crepitans L. 46. Moretenol 47. Moretenone 48. Nerifoliol 49. Obtusifoldienol 50. Obtusifoliol 5 1. Oleanolic acid 52. Phyllanthol 53. Taraxasterol (and pseudo-taraxasterol) 54. Taraxerol Aleurites moluccana L., Sapium sebiferum Aleurites moluccana L., Euphorbia spp., Sapium sebifeerum Euphorbia nenifolia L. Euphorbia echinus Hook., E. obtusiifolia Poir. Euphorbia obtusifolia Poir. Euphorbia paralias L. Phyllanthw acidus Skeel, P. englen Euphorbia spp. Bndelia micrantha Baill., Croton sparsaaoms Morong., Euphorbia spp. 55. Taraxerone Briddia micrantha Baill., Euphorbia spp., Trewia nudgora L. 56. Tirucallol 57. Unolic acid 58. Uvaol Euphorbia spp. Euphorbia paralias L. Euphorbia paralias L. Starrat (1966) Rizk & El-Missiry (1986) z z z zyxw zyxwvutsrqponml zyxwvutsrqponm zyxwvutsrqp zyxwvutsrqponmlkj : zyxwvutsrqponm Matsunaga & Morita (1983) Starrat (1969) Rizk & El-Missiry (1986) Rizk & El-Missiry (1986) Rizk & El-Missiry (1986), Rizk et al. (1980b) n 2 z 6 c Rizk & El-Missiry (1986) 8 Takemoto & Inagaki (1958) Rizk et al. (1974, 1980b), Rizk & ElMissiry (1986) Rizk & El-Missiry (1986) Rizk & El-Missiry (1986) Rao & Row (1966) 4 Rizk & El-Missiry (1986) Rizk & Rimpler (1977), Rizk & El-Missiry I19861 Rizk & El-Missiry (1986), Chopra et al. ( 1969) Rizk & El-Missiry (1986) Rizk el al. (1974) Rizk el al. (1974) z=! 5z 2 m 0 c5 N s 298 zyxwvutsrqp zyxwvu zyxwvu zy A.-F. M.RIZK zyx Castor oil contains 80-90y0 of the glycerol ester of ricinoleic acid (Vickery & Vickery, 1979): CH,(CH,),CHOHCH,CH=CH(CH,),COOHRicinoleic acid a-Eleostearic acid has been identified from the seed oil of Trewia nud@ora L., (Sarkar & Chakrabarty, 1956a): CH,(CH,),(CH=CH),(CH,),COOH u-Eleostearic acid A new conjugated fatty acid identified as deca-2,4-trienoic acid along with its four isomers have been detected in the latex of Euphorbia pulcherrima Klotzsch (Baslas, 1982). Euphorbia lagascae Spreng. seed contains a unique epoxy-bearing oil (58-62y0, 12,13-epoxyoleic acid) (Krewson & Scott, 1966). The fatty acids of the triacylglycerol fraction of the latex of Hevea brusiliensis Muell. Arg. consists of 97% of a C, furanoid fatty acid, 1O713-epoxy-1 1-methyloctadeca- 10,12dienoic. A dioxy fatty acid, 1O713-dioxy-1 1-methyloctadecanoic acid was also isolated from the free fatty acid fraction of the same plant (Li Ken Jie & Sinha, 1981). Although the terpenes of the latex of Euphorbiu species have been extensively studied, much less attention has been given to the saponifiable part of the terpene esters (Warnaar, 1981). Triterpene esters in the latex of E . pulcherrimu appeared to be esterified mainly with conjugated decatrienoic acid (Warnaar, 1981). Diterpenes isolated from the latices of E . tirucalli L. (Fuerstenberger & Hecker, 1971a, b; Kinghorn, 1979) and E. lathyris L. (Adolf & Hecker, 1971) were also esterified with conjugated fatty acids. These acids have eight to 14 carbon atoms in the chain which has two to five double bonds conjugated with carboxylic groups. The fatty acids esterified with the triterpene alcohols of E . lathyris were analysed by Warnaar (1981); 77% of the fatty acids were conjugated, the main components of which were decadienoic and decatrienoic acids. Phenolic substances Flavonoids The family Euphorbiaceae is rich in flavonoids, particularly flavones and flavonols, which have been identified from several genera. They occur both as 0- and C-glycosides and as methyl ethers. Flavanones also occur, but in relatively few plants (Table 2 & Fig. 2). The flavonoids were detected in different parts of the plant other than the roots. The two common flavonols kaempferol and quercetin (and their glycosides) are most widely distributed in the different genera of the family. Robidanol (3,7,3',4'5'-pentahydroxyflavene) was identified in Euphorbia palustris L. and E . stepposa Zoz (Bondarenko et al., 1971). Robidanol-3-gallate7 also occurred in E . palustris (Rizk & El-Missiry, 1986). A chalcone identified as 2',4',6'4-tetrahydroxychalcone was isolated from the stem wood of Excoecaria agallocha L. (Prakash, Khan, Khan & Zaman, 1983). Anthocyanins (e.g. cyanidin, delphinidin, and pelargonidin glucosides) were identified in several Euphorbia species (Yoshitama, Ishii & Yasudo, 1980; Baslas, 1982; Rizk, 1986). zyxw RowoH zyxwvutsrqpo 299 CHEMICAL CONSTITUENTS OF EUPHORBIACEAE H o zyxwvutsrqp W 0 OH O H glucosyl \ 6H6 on glucosyl H Orienlin Irovilexin (Sapmarelin) R = H Saponarin: R = glum5e Apigenin OH ,OH zyxwvutsrqpon o W O H H I I -O W H on 0 OH 0 OH o Viieiin 0 Myricelin: R = H Isornyrialrin: R = glumse Gassypelin OH OH Rharnnelin Kaernpferol 0 Ericdiciyol "0. H o P O H m W O H HO zyxwvutsr zyxwv OH 0 Noringenin OH 0 Slewyenin: R = H Slepposide: R = glumse Robidaml Figure 2. Some flavonoids of the Euphorbiaceae. Coumarins These have been isolated from relatively few plants. The seeds of Euphorbia lathyris have been reported to contain two bicoumarins (euphorbetin and isoeuphorbetin) (Table 3 & Fig. 3). Three bergenin derivatives were isolated from the bark of Mallotus japonicus Mue1l.-Arg. and identified as 11-0-galloylbergenin, 4-0-galloylbergenin and 1 1-0-galloyldemethylbergenin (Yoshida, Seno, Takamo & Okuda, 1982). Euphorbia royleana Boiss. contains three benzocoumarins identified as 7-hydroxy-3,4-benzocoumarin, 7-methoxy-3,4-benzocoumarin and 2,7-dihydroxy-3,4-benzocoumarin (Baslas, 1982).Table 3 summarizes the other coumarins isolated from the Euphorbiaceae. Lignans Lignans have been, so far, identified in only two genera, viz. Jatropha and Phyllanthus. The leaves of Phyllanthus niruri L., contain phyllanthin and hypophyllanthin (Rizk & El-Missiry, 1986) (Fig. 4). Jatropha gossypifolia L. (stem, root and the seeds) yielded 2-piperonylidene-3-veratryl-3R-v-butyrolactone (I) (Chatterjee, Das, Pascard & Prange, 1981) and gadain Flavonoids Species I. Flauones z z zyxwv zyxwvutsrqp Table 2. Flavonoids of the Euphorbiaceae w 0 References 1. Apigenin Jatropha mrcas L.,J . gossypifolia L. Rizk & El-Missiry (1986) 2. Apigenin 7-0-glucoside (Cosmosiin) Euphorbia spp. Ismail et al. (1977), Rizk ct 01. (1982), Rizk & El-Missiry (1986) Jefferies (1979), Rizk & El-Missiry (1986) zyxwvutsrqpon zyxwvutsrqponm zyxwvutsrqponmlkjih zyxwvutsrqpon 3. 5,4'-LXhydroxy-3,7,8trimethoxyflavone 4. Isoorientin 5. Isovitexin (Apigenin-6C-glucoside, Saponaretin 6. Orientin 7. 5,7,3',4'-Tetrahydroxy-3,& dimethoxyflavone 8. 5,7,3'-Trihydroxy-3,8,4',5'tetramethoxyfiavone 9. Vicenin-1 10. Vitexin Be- leschenaultii Baill., Ricincarpos muricatus Muell.-Arg. Croton zambezicus Muell. Croton zambezicus Muell., Jatropha spp., Hevea brasiliensis Muell.- 4. Wagner et al. (1970) Rizk & El-Missiry (1986) Croton zambezicus Muell. Ricinocarpos muricatus Wagner et al., (1970) Jefferies (1979), Rizk & El-Missiry (1986) B y m a brcvifolia Baill. Jefferies (1979), Rizk & El-Missiry (1986) Croton ambtzicus Muell. Croton zambezicus Muell., Heuea brasilimis Muell.-Arg., Jatropha SPP. Wagner et al. (1970) Rizk & El-Missiry (1986) II. Flauonols 1 I . Gossypetin hexamethyl ether 12. lsomyricitrin 13. Isoquercitrin 14. Isorhamnetin 15. Isorhamnetin-3-rutinoside ( Narcissin) 16. Kaempferol 17. Kaempferol 3-0-galactoside (Trifolin) 18. Kaempferol 3-0-glucoside (Astragalin) 19. Kaempferol 4'-O-glucoside 20. Kaempferol 3-0-glucuronide 21. Kaempferol 3-0-rhamnoside 22. Kaempferol 3-0-rutinoside 23. Myricetin 24. Myricetin hexamethyl ether Ricinocarpos sglosus Diels Euphorbia spp. Euphorbia seguieriana Neck., E. semiuillosa Prokh. Crotm oblongifolius Roxb., Euphorbia kalenuznkii Czern. ex Trautv. Mercurialis annua L. Rizk & El-Missiry (1986) Euphorbia spp., Phyllanthus emblica Euphorbia mysinitis L. Euphorbia spp., Phyllanthus emblica Euphorbia d e n i Boiss. Euphorbia spp. Euphorbia lunulata Bunge, E. mysinites L. Euphorbia spp., Mercurialis perennis L. Euphorbia spp., Ricinocarpos splosus Ricinocarpos splosus Rizk et a1 (1980a, b ) ,Rizk & El-Missiry ( 1986) Sahai et al. (1981) Rizk & El-Missiry (1986) zyxw zyxwvutsrqpon zyxwv zyxwvu 25. Quercetin 26. Quercetin 3-0-arabinoside 27. Quercetin-3-0-galactoside (Hyperoside, Hyperin) 28. Quercetin-3-digalactoside (Heliosin) 29. Quercetin-3,5-0-di-galactoside (Tithymalin) 30. Quercetin-3-0-galactoside2”-gallate 3 I . Quercetin-3-0-galactoside6-gallate 32. Quercetin-3-0-glucuronide 33. Quercetin-3-0-glucoside 34. Quercetin-3-0-rhamnoside (Quercitrin) 35. Quercetin-3-0-rhamnoglucoside (Quercetin-3-0-rutinoside, Rutin) 36. Quercetin-3’-0-xyloside 37. Rhamnetin 38. Rhamnetin-3-0-arabinoside 39. Rhamnetin-3-0-diarabinoside 40. Rhamnetin-3-0-galactoside 4 I . Rhamnetin-3-0-rhamnoside 42. Rhamnetin-3-0-dirhamnoside Crofon oblongifolius Roxb., Euphorbia spp. Jafropha hqnii Bal., Ricinus communis L. Euphorbia paralias L., E. sfricfa L. Croton oblongiflius Roxb., Euphorbia spp., jatropha heynii Bal., Ricinus communis L. Rizk rt al. (1976. 1982), Rizk & El-Missiry ( 1986) Rizk el al. (1979), Rizk & El-Missiry ( 1986) Rizk et al. (1980), Rizk & El-Missiry ( 1986) Euphorbia heliosropia L Chen el al. (1979), Rizk & El-Missiry ( 1986) Euphorbia hclioscopia L., E. uerrucosa Lam. Pohl el al. (1975) Euphorbia dulcis L., E. plafiphyllos L. Euphorbia cyparissias L., E. lathyris L. Euphorbia spp., Sapium sebiferum Aleuritis cordafa Stand., Euphorbia spp. Rizk & El-Missiry (1986) Aleurifes cordafa Stand., Crofon sparsijorus Motong., Euphorbia spp., Manihof ufilissima Pohl., Mercurialis spp., Ricinus communis L. Ismail el al. (1977), Rizk ef al. (1982), Rizk & El-Missiry (1986) Rizk el al. (1982), Rizk & El-Missiry (1986) Euphorbia paralias L. Euphorbia spp. Euphorbia amygdaloides L. Euphorbia amygdaloidcs L. Euphorbia peplus L., E. prosfrab Aiton Euphorbia amygdaloides L. Euphorbia amygdaloides L. Rizk el al. (1976) Rizk & El-Missiry ( 1986) Mueller & Pohl (1970) Mueller & Pohl (1970) Ismail ef al. (1977), Rizk ef al. (1980a, b) Mueller & Pohl (1970) Mueller & Pohl (1970) Sapium sebzyerum Roxb. Bhat et al. (1981) zyxwvutsrqponm zyxwvutsrqp zyxwvutsrqponmlkjihgfed zyxwvutsrqponmlk III. Flavanones 43. 5-methylericdictyol 7-0xyloarabinoside 44. Naringenin 45. Naringenin-3-p-coumarylglucoside 46. Naringenin-3,6-dicoumaroylglucoside 47. Naringenin-7-0-glucoside 48. Steppogenin 49. Stepposide Mobca caudafa Peth. Mobea caudafa Barros el al. (1982) Mobea caudafa Euphorbia condylocarpa Bieb. Euphorbia palusfris L., E. sfepposa Zoz. Euphorbia spp. Rizk & El-Missiry (1986) W N 0 zyxwvutsrqponm zyxwvutsrqpo zyxwvutsrqp zyxwvutsrqpon zyxwvuts zyxwvutsrqpo zyxwvutsrqpon Table 3. Some coumarins of the Euphorbiaceae ~~ Coumarins zy z z ~ Species References FLwgga minoCarpa BI., Mallotu j a p o h Muell.-Arg. Euphorbia dranrnculoidcs Lam. Euphorbia tmacina L. Euphorbia lunulata Bunge. Ricinur cmnrmurir L. Ahmad d al. (1972), Shigematsu et al(1983) Chawla ct al. ( 1980) Mahmoud & Abdel Salem (1979) Rizk & El-Missiry (1986) Khafagy ct al. (1979) 1. Bergenin 2. Daphnetin 3. 3,7-Dihydroxycoumarin 4. 6,7-Dihydroxycoumarin 5. 6,7-Dihydroxy-8-methoxy (or 6,8-Dihydroxy-7methoxy) coumarin 6. 3,4-Dimethoxy-6,8dihydroxycoumarin 7. Esculin 8. Esculetin 9. Euphorbetin (and Isoeuphorbetin) 10. Fraxetin 1 1. 3-Hydroxy-7-methoxycoumarin 12. Maoyancaosu 13. Scopoletin Euphrbia acanthohnmnos Heldr. & Sart. Euphorbia spp. Euphmbicr l o ~ y i L. s KaUimanis & Philianos ( I 980) Rizk & El-Missiry (1986) Dutta cf al. (1972, 1975) Jatropha gh&l@ra Euphbia paralias L. Eiphorbia lunulota Bunge. Euphorbia acanthothamnos, Nealchoma yapurmis Huber. 14. Scopolin Euphorbia acanlllothamnos Parthasarathy & Saradhi (1984) Mahmoud & Abdel Salam (1979) Shang ct al. (1979) Gunasekera et al. (1W), Rizk & El-Missiry (1986) Kallimanis & Philianos (1980) Ricirnrr can& L. Khafagy ct al. (1979) CHEMICAL CONSTITUENTS OF EUPHORBIACEAE zy zyxw 303 zyxwvu zyxw OH HO EuphWDelln ls0euwhorDetin Mooyonmow Figure 3. Some coumarins of the Euphorbiaceae. (Banerji, Das, Chatterjee & Shoolery, 1984) A coumarino-lignan (11), involving a dioxan type link between a coumarin and a phenyl propane precursor, similar to the one found in the flavano-lignans, silymarin and hyndocarpin, was isolated from the roots of Jatropha glandulifera Roxb. (Parthasarathy & Saradhi, 1984). Tannins Hydrolysable tannins have been detected in several species of the Euphorbiaceae, e.g. Euphorbia maculata L., Gleditsia japonica Miq., Mallotus japonicus Muel1.-Arg., Phyllanthus emblica L. and Sapium sebiferum Roxb. (Rizk & El-Missiry, 1986). The bark of Phyllanthus sebiferum contains 16.64% tannins. The main tannin of Triadica sebifera Small ( = Sapium sebiferum Roxb.) is geraniin (Fig. 5). The latter compound and mallotusinic acid are the main tannins of Mallotus japonicus (Okuda, Mori & Hatano, 1980a; Okuda, Yoshida & Hatano, 1980b; Okuda & Kaoru, 1981). The leaf of M. juponicus contained a third tannin identified as mallotinic acid (Okuda & Seno, 1981). Corilagin (a hydrolysate product of geraniin) was identified in the bark of the same plant (Yoshida, Seno, Takamo & Okuda, 1982). 0 / zyxwvutsrqp zyxwvut '0 ocH3 Phyllonthin L O L HypOphyllonlhin Godain u Figure 4. Some lignans of the Euphorbiaceae. O I 304 zyxwvutsrqp zyxwvu A.-F. M.RIZK OH OH HO OH Q 60 zyxwvuts zyxwvut $+O 'H OH HO 0 0 Lo do bn Corilagin 0 Nc-0 zyxwvutsrqp Gemniin: R H H O HO Mallatusink acid: R : W O H O-C=O Ellagic acid COOH COOH OH zyxwvutsrqponm zyxwvutsrq Chloropnic acid: R * quinic acid HtO Gallic acid - Vonillic a i d OH OH R*-C or rn-digoilale 'OH zyxwvu Tannic add Figure 5. Some phenolic compounds of the Euphorbiaceae. Ellagic acid (a constituent of some tannins) has been identified in several species, e.g. some species of Euphorbiu (Rizk, Rimpler & Ismail, 1977; Rizk & El-Missiry, 1986)) Mullotus juponicus (Yoshida et ul., 1982) and Supium sebiferum (Kouno, Saishoji, Sugiyama & Kawano, 1983). Tri-0-methylellagic acid was also detected in several species, e.g. Aculyphu indicu L. (Talapatra, Goswami & Talapatra, 1981) and Mullotus juponicus (Yoshida et ul., 1982). 2,3Dimethylellagic acid and 3,3-di-O-methylellagic acid (and its acetate) have been isolated from Euphorbiu royleunu Boiss. (Nazir, Ahmad, Bhatty & Karimullah, 1966) and Euphorbiu wullichii Hook. fil. (Baslas, 1982))respectively. Gallic and tannic acids were identified from Euphorbiu hirtu L. (Rizk, 1986) CHEMICAL CONSTITUENTS OF EUPHORBIACEAE OH Micmndrol E OH zyxw 305 2-Met hylanlhroquinone Microndrol F zyxwvu zyxwvuts zyxw zyxwv H Ubiquinone-8: n . 8 Ubiquinon-9 n = 9 Ubiquinone-10: n 10 Figure 6. Some phenanthrenes and quinones of the Euphorbiaceae. zyxw and phyllembin (ethyl gallate) from Emblica ojicinalis Gaertn. (syn. Phyllanthus emblica L.) (Chopra, Chopra & Varma, 1969). Phenanthrenes and quinones Two micrandrols, E (6-hydroxy-7-methoxy-lY2-dimethylphenanthrene)and F (6-hydroxy-7-methoxy-172-dimethyl-9,10-dihydrophenanthrene) have been identified from the trunk wood of Sagotia racemosa Baill. (Fig. 6) (de Alvarenga, Gottlieb & MagalhPes, 1976). The trunk of Jatropha glandulifera Roxb. contains 3,3-dimethyl-acryl shikonin and acetylshikonin (Ballantine, 1969). 2-Methylanthraquinone was isolated from both Acalypha indica L. (Talapatra et al., 1981) and Euphorbiu pulcherrima (Baslas, 1982). Ubiquinones (-8, -9 and -10) were identified from Hevea brasiliensis (Law, Threlfall & Whistance, 1970). Phenolic acids In addition to ellagic, gallic and tannic acids, several other phenolic acids were identified in plants of this family. Examples of these acids are: vanillic and veratric acids from Euphorbia resinifera (Boe, Wisnes, Nordal & Bernatek, 1969); p-coumaric acid from Euphorbia acanthothamnos Heldr. & Sart. (Kallimanis & Philianos, 1980); chlorogenic and neochlorogenic acids from Ricinus communis L. and Mercurialis perennis L. (Soboleva, 1980); and m-hydroxybenzoic acid from Euphorbia royleanu (Baslas, 1982). Other phenolic compounds Four rottlerin-like phloroglucinol derivatives were isolated from the fruits of Mallotus japonicus; three of which identified as 3-(3,3-dimethylallyl)-5(3-acetyl-2,4 - dihydroxy -5- methyl -6- methoxybenzyl) - phloroacetophenone, 3-(3-methyl-2-hydroxybut-3-enyl)-5-(3-acetyl-2,4dihydroxy-5-methyl-6-methoxybenzy1)-phloroacetophenone (Shigematsu, Kouno & Kawano, 1983) and 2,6-dihydroxy-3-methyl-4-methoxyacetophenone(Kouno, Shigematsu, Iwagam & Kawano, 1985). The structures of these compounds resemble rottlerin from M. phillz$inensis Muell.-Arg. (Shigematsu et al., 1983). The root bark of the Chinese tallow tree, Sapium sebiferum Roxb. contains the 306 zyxwvutsrqp zyxw A.-F. M. RIZK N'-4'-oxcdecamyl- hinlmnlne Glomldln Glochidiclne Ricinine Aslrocotine Sccurinine m Vosicine Vircnccuinin H Ro@ F .I - I.' 'Norrccurinine Spanifiorine R A1 lorccurininc zyxwv zyxwv Crolsparinin: R = R'* H N-Mcthylcmtnporinin : R =H; R ' = CH, # Cmhporlne: N-MetlylcmlsparIne: R R'' HR = H; R'. CHI N.O-Dlmelhylao)rporln~:R = R'*CH3 0 Figure 7. Some alkaloids of the Euphorbiaceae. zy zyx zyx following two compounds: xanthoxylin (2-hydroxy-4,6-dimethoxyacetophenone), and a xylosylglucoside of xanthoxylin identified as 2-acetyl-3,5dimethoxyphenyl-0-fi-xylopyranos yl- ( 1 +6) -fi-~-glucopyranoside(Kouno el al., 1983). Vanillin (p-hydroxy-m-methoxybenzaldehyde) occurred in Croton eluteria Benn. (Claus, 1961 ) . Alkaloids Several classes of alkaloids occur in certain genera of the family Euphorbiaceae and in particular Croton, Phyllanthu and Securinega species CHEMICAL CONSTITUENTS OF EUPHORBIACEAE zyxw 307 OH cH30% N-CHI zyxw 0 0 Flovinanltne: R ' i R3 :CH,; R2; H Flovinine:R' = R 2 = H; R3= CH, Crotonorine Solutoridine: R CH, N-Nonolubridine: R = H Linearirine Sirnutine: R ' = H; R' = CH, Nminwculine: R' * R z = H zyxwv h zyxwvutsrqp zyxwvutsrq CH, in, Milliarnine A. R, = X; Rz: COW, 8. Rl = H i R 2 = X Physosligrniw HsC-.. HN k (+)9-ora-l-methyl aicyclo- t3.3. I] nonon-3-cne zyxwvutsr zyxwvuts Daphniphylline Figure 7 confinucd. (Fig. 7). Imidazole alkaloids have been detected in only the genus Glochidion. Croton species contain several types of alkaloids, viz. isoquinolines (aporphines, e.g. sparsiflorine; proaporphines, e.g. crotsparine; and dihydroproaporphines, e.g. crotsparinine) , morphinandienones (e.g. crotonosine), quinolines (e.g. vasicine) a pyrrolidine alkaloid (4-hydroxyhygrinic acid) and others (e.g. taspine, an alkaloid of unusual structure). Pyrimidine and guanidine alkaloids were isolated from only one species, viz. Alchornea jauanensis Muell.-Arg.; while purine nuclei alkaloids were identified in only Jatropha basiacantha Pax & K. Hoffm. Several quinolizidine alkaloids were identified in the family, but mostly from Phyllanths and Securinega species. The presence of other classes in plants of the Euphorbiaceae was also reported, e.g. pyridine, piperidine and indole alkaloids (Table 4). Glycoalkaloids were reported in Euphorbia dracunculoides ) zyxwvut zyxwv zyxwvutsrqp zyxwvutsrqponm Table 4. Alkaloids of the Euphorbiaceae Alkaloids I. Imiahzole alkaloidr 1. Na-Cinnamoylhistamine 2. Na-4'-Oxodecanoylhistamine } @ Species References GlwhidiOn philippicum (Cav. C . B. Rob. ( = C. philippcnse Benth.) Johns & Lamberton (1967), Manske (1968) zyxwv zyxwvuts I zyxwvutsrqp zyxwvutsrqp 3. Glochidicine 4. Glochidine II. Pyrintdinc alkaloidr 5. Alchornidine 6. Alchornine (2-Isopropenyl7,7-dimethyl-5-oxo-2,3,5,6, 7,&hexahydroimidazo[ I ,%a]pyrimidine Glwhidion philippicvnr (Cav.) C . B. Rob. ( = G. philippme Benth.) Johns & Lamberton (1967) Alchornea javanmcis Muell.-Arg. Hart et al. (1969, 1970) 9 r; IIZ. Ppnoidine alkaloids 7. CHydroxy-hygrinic acid Crofon spp. N.Pydim alkaloidr 8. Ricinine 9. Nudiflorine Ricinus convnwris L. Trewia spp. Rizk & El-Mkiry (1986) Ponsinet & Ourisson (1965) Astrocasia phylkanhids Robinson & M a p . Manske (1968) Ponsinet & Ourisson (1965) F E R zyxwvutsrqponmlkji V. Pipendine alkaloids 10. Astrocasine 1I . 2,4-Dimethoxy-3-#-$dimethylallyl-transcinnamoylpiperidide (111) 12. Julocrotine Excwchria agallocha L. M a s h et al. (1983) Julonoton spp. Manske (1968), Yamaguchi (1970) VI. Quidizidirualrtaloidc 13. Allosecurine 14. Dihydrosecurine Phyllanthur discoides Muell.-Arg., Securinega Sufituosa Rehd. Phyllanthur spp., Securincga sufiticosa Rehd. 15. Norexcurinine Fluegga spp., PlyUanthus spp., Securimga uirosa Pax. H o h . 16. Phyllantidine 17. Phyllantine (Metoxysecurinine) Phyllanthus discoides Phyllanthus discoides Bevan et al. (1964) Ponsinet & Ourisson (1965), Rizk & ElMissiry (1986) Ponsinet & Ourisson (1965), Yamaguchi (1970) Parello & Munavalli (1965) Parello & Munavalli (1965) 18. Phyllochrysine 19. Securinine 20. Suffruticosine 2 1. Virosecurinine zyxw zyxwvutsr zyxwvutsrqponml zyxwvutsr zyxwvutsrq VII. QUiMZOlOne alkaloids 22. Tumuriquirensine 23. Vasicine VIII. Isoquinoline alkaloidc (a) Aporphines 24. Glaucine 25. Orotonsine 26. Pronuciforine 27. Sparsiflorine Phyllanthus spp. Phyllanthus spp., Securinega sujhticosa Rehd. Phyllanthus spp. FIuegga spp., Securinega virosa Pax. & Hofm. Ponsinet & Ourisson ( 1 965) Ponsinet & Ourisson (1965), Yamaguchi (1970), Rizk & El-Missiry (1986) Ponsinet & Ourisson (1965) Ponsinet & Ourisson (1965), Yamaguchi (1970) Croton spp. Croton spp. Ponsinet & Ourisson (1965) Ponsinet & Ourisson (1965) Croton draconoides Muell.-Arg. Bettolo & Scarpati (1979) Croton spp. Ponsinet & Ourisson (1965) Croton spp. Ponsinet & Ourisson (1965), Bhakuni et al. (1970) Bettolo & Scarpati (1979) 28. Thaliporphine Croton draconoides Mull.-Arg. (b) Dihydropoaporphines 29. Crotsparinine (Jacularine) Croton linearis Jacq., C. sparsillorus Morong. 30. N-Methylcrotsparinine Croton sparsiJ0m.s Morong. (c) Proaporphines 3 1. Crotsparine (Crotoflorine) Croton sparsj7om.s Morong. (C. bonplandium Bail.) Bhakuni & Dhar (1968), Bhakuni et al. (1970) Croton spars$orus Bhakuni et al. (1970) 32. N,O-Dimethylcrotsparine 33. N-Methylcrotsparine Bhakuni & Dhar (1969), Bhakuni et al. (1970) Bhakuni et al. (1970) 14 zyxwvutsrqponml zyxwvutsrqpo Ix. hforphinandienone alkaloidc 34. 35. 36. 37. 38. Crotonosine Flavinantine Flavinine Linearisine 3-Methoxy-4,6-dihydroxymorphinandien-7-one (IV) 39. N-Norsalutaridine 40.Noninoacutine Croton linearis Jacq. Yamaguchi (1970) Crotonjavm L. Stuart et al. (1969) Croton linearir Jacq. Croton bonplandianum Bail. Yamaguchi (1970) Tiwari el al. (1981) Croton salutaris Casar. Croton spp. Barnes & Soeiro (1981) Manske (1968), Stuart'et al. (1969), Tiwari et al. (1981) b %? z zyxwvu zyxwvuts zyxwvuts zyxw zyxwvutsrqpo w, 0 z Table 4. continued. Alkaloids 41. Salutaridine 42. Salutarine X.Indole alkaloidc 44. Physostigmine 45. Yohimbine zyxwvutsrqpon zyxwvutsrqpo Species Croton salutmir References Casar. Croton saluhrir Casar. *H SPP. A l c h a spp. M a d e (1968), Barnes & Soeiro (1981) Barnes & Soeiro (1981) Ponsinet & Ourisson (1965) Ponsinet & Ourisson (1965) XI. Gnanidinc alkaloiak 46.N' ,N' -Diisopentenyl-guanidine 47. N ,.W,.P-Triipentenylguanidine Akhornca jaoannrriC Muell.-Arg. Hart ct al. (1970) XII. Dikrpmoidalkaloih 48. Milliamine A 49. Milliamine B Euphorbia milli Desmoul. Uemura & Hirata (1971) Euphorbia atoh Forst. Hart et al. (1967) Daphtnphyllum calpinum Benth. Manske (1968 Daphnaphyllum macropodium Miq. Flugga microcarpa Blurnc (F. mrosa Baill.) Daphp;Pnllum macropodium Miq. Jatropha &L Pax & K.Hoffm. Croton spp. Euphorbia hirh L. Daphniphyllum macropodium Miq. Manske (1968) Paris ct al. (1955), Manske (1968) Manske ( 1968) Rizk & El-Missiry (1986) Bettolo & Scarpati (1979) Rizk (1986) M a d e (1968) XIII. Other alkaloidc 50. 9-ha-1-methyl-bicycle [3,3, I]-nonan-3-one 5 1. Daphnicadine 52. Daphnicaline 53. Daphnicamine 54. Daphniphylline 55. Nueggeine 56. Neodaphniphylline 57. Purine nuclei alkaloids 58. Taspine 59. Xanthorhamin 60.Yuzurimine zy zyxw zyxwvutsrqp zyxwv zyxwvuts CHEMICAL CONSTITUENTS OF EUPHORBIACEAE 31 1 Table 5. Cyanogenic Glucosides of the Euphorbiaceae Cyanogenic glucosides Species References I . Aralyphin 2. Linarnarin (Phaseolunatin = rnanihotoxin) 3. Lotaustralin Acalypha indica L. Cnidoscolus texanus MuelLArg., Heuea brasiliensis Muell.-Arg., Manihot spp. Manihot carthaginensis Muell .Arg. Phyllanthus gastroemii Muell.-Arg. Nahrstedt et al. (1982) Valen (1978), Rizk & ElMissiry (1986) 4. Taxiphyllin (Phyllanthin) 5. Triglochinin Andrachne colchia Fisch & Mey., Securinega suJruficosa (Pall.) Rehdr. Valen (1978) Valen ( 1978) Valen (1978), Rizk & ElMissiry ( 1986) Lam. (Singh & Srivastava, 1966) and Euphorbia hirta L. (Rizk & El-Missiry, 1986). Cyanogenic glucosides Though several species of the Euphorbiaceae have been reported as cyanophoric, yet relatively few cyanogenic glucosides have been identified (Table 5 & Fig. 8). Cyanogensis in the family have been surveyed by Valen ( 1978). Cyanophoric taxa occur frequently in the Euphorbiaceae. Both subfamilies, i.e. Phyllanthoideae and Euphorbioideae, comprise taxa which are able to produce hydrocyanic acid (Hegnauer, 1966; Valen, 1978). A number of species belonging to the following genera have been reported as cyanogenic: Andrachne, Btyeria, Bridelia, Cnidoscolus, Colliguaja, Elateriosperrnurn, Euphorbia, Gyrnnanthes, Hevea, Jatropha, Manihot, Mercurialis, Phyllanthus, Poranthera, Securinega (Valen, 1978) and Slillingia (Lewis & Elvin-Lewis, 1977). Glucosinolates Few glucosinolates have been identified from only limited species of the Euphorbiaceae (Fig. 9). Examples of the glucosinolates detected are H.C~O-~-GIUC H,C~O-~-GIUC H3C H5Cz Lolaurtmlin C E N CN H 0&H&zO :H OH I CGN Limmain tH3 Acalyphin H, ,O-p-GluC. Hd Taaiphyllin Triglochinin Figure 8. Cyanogenic glucosides of the Euphorbiaceae. 312 zyx zyx zyxwvutsrqpon A.-F. M. RIZK O H Ho HW s $ zyxwvutsrqpon CHs-CH,-CH-N=C I HO /s--pluc- CHI CH, I Clnrmin 'OW; Glucocochlearin ~/~'CH,CH, OH Glucocleomin s-glucae / CH3-CH-N=C I o' so; CH3 Glumputranjivin Figure 9. Some glucosinolates of the Euphorbiaceae glucoputranjivin, glucocochlearin, glucojaputin and glucocleomin (from kernels of Putranjiua roxburghii Wall.) and benzylisothiocyanate (an enzymatic hydrolysate of a glucosinolate from the latex of Jatropha multifida L.) (Kjaer & Friis, 1962; Rizk & El-Missiry, 1986). Miscellaneous compounds zyxwvu zyx A number of other compounds have been isolated from plants of the Euphorbiaceae (Fig. 10). Examples of these substances are: quinic and shikimic acids from Euphorbia species (Rizk & El-Missiry, 1986); amides, e.g. acalyphamide (an amide of tyramine and acid; C,,H,,COOH) and succinimide from Acalypha indica L. (Talapatra et al., 1981); I-methyl-6hydroxy- 1,2,3,4-tetrahydroxyisoquinoline-3-carboxylic acid from Euphorbia myrsinites L. (Mueller & Schuette, 1968); calcium 5,5-dimethyl-2-oxo-5,6dihydro-2H-pyran-3,4-dicarboxylatefrom Euphorbia biglandulosa Desf. (Falsone & Spur, 1979); 1-tridecene-3,5,7,9,11-pentyne and trans-dehydromatricaria ester from Ricinus communis (Schulte, Reisch & Bornfleth, 1964); D-( + ) - a hydroxyglutaric acid, myoinositol, L ( - )-inositol from Euphorbia resinifera (Boe et al., 1969); cardiac glycosides from Mallotus japonicus (Shigematsu et al., 1983); laiodiplodin, a potent antileukemic macrolide, from the stems of Euphorbia splendens Bojer (E. milii Boiss.) (Lee et al., 1982); melissic acid, CH,(CH,) ,,COOH, from Euphorbia hirla (Rizk, 1986); and diacetylmaderine from Phyllanthus maderaspatensis L. (Chopra, Chopra & Varma, 1969). f& OH "bco%:, HO COOH Ho,*&oH HO I', H;CH H H 6 OH Quinic acid bH Shikimic acid Laicdiplodin Figure 10. Some miscellaneous compounds of the Euphorbiaceae. zyxwvu CHEMICAL CONSTITUENTS OF EUPHORBIACEAE ECONOMIC PLANTS zyx zyx 313 Several plants of the Euphorbiaceae are of considerable economic importance, and products obtained from this family include castor oil (Ricinus), tung oil (Aleurites), cassava, tapioca (Manihot) and rubber (Hevea). By no means have all of these been shown to contain irritant carcinogens (Kinghorn, 1979). Many species, and in particular Euphorbia and Croton species, are reported to cause poisoning of human beings and livestock (Watt & Breyer-Brandwijk, 1962; Kingsbury, 1964). Poisoning is caused by the acrid and irritant substances (recently identified as diterpenoid esters). Ethnobotanical records (Watt & Breyher-Brandwijk, 1962) indicate that the toxicological dangers presented by Euphorbia species have been recognized as far as the succulent species are concerned. Many of these toxic plants are ornamental and household plants, including several Euphorbia species (e.g. E. milii, E. tirucalli L., E. lactea Roxb.), Acalypha wilksiana Muel1.-Arg., Ricinus communis, Jatropha multiJida L., Sapium sebiferum and Syndadenium grantii hook. fil. Industrial plants andlor their products Food plants Manihot: Next to the sweet potato, the cassava (Manihot esculenta Crantz) is the most important of the tropical root crops and furnishes the basic food for millions of people. Cassava also called manioc, mandioc or yuca is one of the most wholesome foods. The tubers are eaten raw or cooked. Cassava bread has a high food value and replaces wheat bread in some diets (Hill, 1952). The tubers of M . esculenta contain about 77.5-88.5% starch (Chopra et al., 1969) but less than 1% protein (Vickery & Vickery, 1979). The fresh tubers contain a useful amount of vitamin C (27 mg per 100 g) and Ca (25 mg per 100 g) (Vickery & Vickery, 1979). Though sweet varieties of cassava contain linamarin, this cyanogenic glucoside occurs only in the outer peel and is removed before the tubers are eaten. Despite its lack of protein, cassava is a useful staple food, as the mature tubers can be left in the ground for up to two years. West African villagers like to keep a plot of cassava in case other crops fail (Vickery & Vickery, 1979). Cassava starch, Para or Brazilian arrowroot, is the starch obtained from the thickened roots of the butter cassava (Manihot utilissima Pohl) and the sweet cassava ( M .palmata Muell.-Arg.). These plants are reported to produce large roots weighing as much as 5 kg (Hill, 1952). Cassava is one of the principal crops in much of Africa, India and Brazil. The latter is the largest world producer of Cassava (Vickery & Vickery, 1979). In India it is grown as a subsidiary food crop and as an excellent raw material for sago manufacture (Chopra et al., 1969). Other plants: The otaheite gooseberry (Phyllanthus acidus) yields yellow cherrylike fruits (Hill, 1952). The dried bark of Croton eluteria Benn. is used in flavouring liquors and in scenting tobacco. It contains 1-1.5y0 volatile oil containing eugenol, limonene, cascarillin, tannin and vanillin (Claus, 1961). The nuts of Cnidoscolus marcgravii Pohl., a tree identical with Jatropha oligandra 314 zyxwvutsrqpon zyxwvu zyxw A.-F. M. RIZK Muel1.-Arg. are used by the natives in Rio de Janeiro as food and the oil is pressed from them for cooking (Bondar, 1942). Fatty oils and waxes Castor oil: The seeds of Ricinus communis L., are the source of castor oil, the yield being up to 54%. Castor oil contains 1% tocopherol, 21.6% non-sterol fraction of the unsaponifiable matter and 0.9% castor germ oil. The main constituents of the oil are glycerin esters of ricinoleic acid (Rizk, 1986). Castor oil has been put to many industrial uses, in addition to its traditional use as a soothing local application and as a successful local application to get rid of warts. I t is useful as a plasticizer in the lacquer industry, mixed with oil derivatives as a lubricant and mixed with alcohol as a brake fluid. I t is also used in making Turkey red oil, a moistener used in the textile industry (Watt & Breyer-Brandwijk, 1962). The oil is water resistant and therefore is used for coating fabrics and for protective coverings for aeroplanes, insulation, food containers, gums, etc. It is also used in paints, varnishes, soap, inks, plastics and as an illuminant. Ricinus zansibarinus G. H. Popova yields 53.7-65.0% oil resembling castor oil and is usable for the same purposes (Watt & Breyer-Brandwijk, 1962). Tung oil: Tung oil, sometimes called Chinawood oil is the fixed oil obtained from the seeds of both Aleurites fordii Hemsl. and A . montana E. H. Wilson. The oil is not edible but is a quick-drying solvent for paints and varnishes. It is a good preservative and very resistant to weathering and is therefore valuable for outside paints. It is also used in the manufacture of linoleum, oilcloth, water proofing fabrics, brake linings, leather dressings, soap, inks, insulating compounds and fibreboard. The quick-drying properties of tung oil are due to its content of eleostearic acid (Hill, 1952; Vickery & Vickery, 1979). Candlenut oil, also known as lumbang oil, is obtained from the hard-shelled seeds or roots of Aleurites moluccana Willd. and has similar uses as tung oil. The oil is also used as a preservative of the hulls of vessels (Hill, 1952). Aleurites species are a profitable source of income, and have also solved the problem of eroded and waste land as they grow on soils unsuitable for other types of agriculture (Hill, 1952). The seeds of Trewia nudijora L. yield an oil similar to tung oil (Sarkar & Chakrabarty, 1956a). Tallow: The seeds of Sapium sebiferum represent the source of Chinese vegetable tallow (Hill, 1952). An early report suggested its use as a possible substitute of animal tallows in the manufacture of cotton (Puntambeker & Krishna, 1932). The outer layer of the seeds of Stillingia sebifeera Trillot contained 54.5% tallow (Kaufmann & King, 1939). Candilla wax: Candilla wax is obtained from Euphorbia antisyphilitica Zucc., E. cerifera Alcocet, Pedilanthus aphyllus Boiss. and P. pavonis Boiss. (Hill, 1952; Daugherty et al., 1953). I t is generally used as extender wax mixed with others. Other oils: The evaluation of the seed oils of several other Euphorbiaceous plants has been reported. Some of the oils have been reported as equal or superior to the common oils, e.g. the seed oils of Euphorbia heterophylla L. and E. marginata Pursh have been stated as equal to, or superior to, linseed as a drying oil (Earle et al., 1960). Seeds of Jutropha gossypifoolia L. were reported as a zy zy zyxw zyxwvuts CHEMICAL CONSTITUENTS OF EUPHORBIACEAE 315 common oilseed crop as compared with palm oil (Husain et al., 1982). The nutkernels of Cnidoscolus margravii contained 28.8% total fat and may serve for the manufacture of paints, soap and other articles where soybean oil is used (Bondar, 1942). Chrozophora plicata A. Juss. yields lineolate rich seed oil (Hassan et al., 1980). The seed oil content of some other species are shown in Table 6. Rubber plants Several rubber plants belong to the family Euphorbiaceae. The Hevea or Para rubber tree (Hevea brasiliensis) is the major source of the rubber produced throughout the world. Elastica, caoutchouc or India rubber is the prepared latex or milk of Hevea brasilensis and probably of other species of Hevea (Claus, 1961). Ceara or manicobe rubber is obtained from Manihot glaziovii Muel1.-Arg., while caura rubber of Venezuela is obtained from species of Micandra. Species of Cnidoscolus yield chilte rubber (Hill, 1952). Many Euphorbia species either yield, or have been reported as a possible source of, rubber, e.g. E. i n t i v (Hill, 1952). The latex obtained from E. caducifolia Haines gives marginally better natural rubber than does Calotropis proceru (Banerji & Millns, 1981). The rubber percentages of some other Euphorbia lattices are as follows: E. abyssinica J. F. Gmel., 16.7%; E. candelabrum Trem. ex Klotzsch, 20%; E. dregeana E. Mey., 17.6%; and E. mauritanica L., 15.81% (Watt & Breyer-Brandwijk, 1962). zyxwvut Wood and paper Few Euphorbiaceous trees have been reported to provide timber suitable for making furniture and for structural work. Examples of these plants are: the sandbox tree (Hura crepitans L.) which produces timber suitable for furniture (Vickery & Vickery, 1979); trees of Bridelia ferruginea Benth., Oldfeldia africana Benth. & Hook. fil. and Uapaca species provide timber for structural work (Vickery & Vickery, 1979); Androstachy johnsonii Prain produces a hard timber, durable and resistant to termites (Watt & Breyer-Brandwijk, 1962); and Ricinodendron africanus Muell.-Arg. produces a valuable timber (Watt & BreyerBrandwijk, 1962). Table 6. The seed-oil content of some euphorbiaceous plants ~~ Oil (%) Species 1 . Anlidesma diandrum Spreng. 2. BischoJiajauanica Blume 3. Euphorbia calycina N. E. Br. 4. E . dracunculoides Lam. 5. E. gregaria Marl. 6. E. helioscopia L. 7. Heuea brasilimsis (A. Juss.) Muell.Arg. 8. Jatropha spp. 9. Ricinodmdron africannum Muell.-Arg. 10. R. rautancnii Schinz. 10.2 21.4 20.8 25.0 40.8 32.6 References } Sarkar & Chakrabarty (1965b) } Watt & Breyer-Brandwijk (1962) Singh & Srivastava (1966) Watt & Breyer-Brandwijk (1962) ~~~ ~ zyxwvuts 23-32 32.0 15.5 30-40 (edible oil) Hill (1952) Sarkar & Chakrabarty (1956b) } Watt & Breyer-Brandwijk (1962) 316 zyxwvutsrqpo zyxwvu zyxwvu zyxwvu A.-F. M. RIZK Possibilities of obtaining pulp and paper from many plants of the Euphorbiaceae are reported, e.g. Hura crepitans (Rojas, 1964), Macaranga tanorius Muell.-Arg. (Hui, Li & Ng, 1975), Ricinodendron heudelotti Pax (Vickery & Vickery, 1979) and Sapium sebiferum (Tutiya & Kato, 1940). Ricinus communis L. yields a fibre suitable for paper making of superior quality, if made with an admixture of bamboo pulp (Watt & Breyer-Brandwijk, 1962). The mucilages of Munihot are used for paper making (Oguri & Shinohara, 1957). Petroleum plants Some crops have been recently developed for the production of fuels and materials in addition to food and fibre. Euphorbia species, and in particular E. lathyris, have been suggested as crops for the production of a whole-plant oil low in isoprene content. Research on several latex-rich species showed that low molecular weight hydrocarbons suitable for cracking to liquid fuels occur in reasonable percentages (10% or more of total dry weight) in many species of the Euphorbiaceae. The Gopher plant (Euphorbia lathyris), ranked among the highest species analysed, contains up to 10% reduced hydrocarbons (acetone extractable material) (Rizk, 1986). Euphorbia lathyris is one of the plants which pass through summer drought conditions, overwinter and, with warming temperatures in spring, commence growth. The plant has been estimated to yield approximately ten barrels of hydrocarbon material per acre in a 7-month growing period on semiarid land (Calvin, 1979). The product is a mixture of hydrocarbons consisting mainly of open-chain and cyclic terpenoid isoprenes (Nemethy, Otvos & Calvin, 1981a). According to Calvin (1982), 95% of the oil from E . lathyris can be cracked to useful products, making it very valuable petrochemical feedstock from which gasoline itself can be made. The evaluation of this species as one of the few potential hydrocarbon-producing crops has been reported by several authors (e.g. Calvin, 1979, 1980, 1982, 1983; Calvin, Nemethy, Redenbaugh & Otvos, 1982; Hinman, Hoffman, McLaughlin & Peoples, 1980; Nemethy et al., 1981a, b; Peoples et al., 1981). Fish poison The latex of several genera of the Euphorbiaceae, and in particular species of Euphorbia, have been used extensively by fishermen in different countries as a fish poison of high biological activity (Watt & Breyer-Branwijk, 1962; Novack, Crea & Falsone, 1980). The rhizomes of Euphorbia biglundulosa Desf., for example, are pounded in order to free the latex and thrown into stagnant waters or rivers with a lower water level. The rapidly dissolving poison then kills the fish by an apparent paralysis. However, though the sap causes intensive irritation of the human skin, surprisingly, no intoxications of the people who handle the latex and eat the fish were described (Novack, Crea & Falsone, 1980). Examples of the Euphorbiaceous plants used as fish poison are Aleurites montana E. H. Wilson, Antidesma uenosum E. Mey., Croton sylvaticus Hochst. (Watt & Breyer-Brandwijk, 1962), Elaeophorbia drupifera Stapf (Vickery & Vickery, 1979) and Euphorbia species (Baslas, 1982). zyx zyxwvutsrq CHEMICAL CONSTITUENTS OF EUPHORBIACEAE 317 zyxwvuts Arrow poison In the past, arrow poisons have been very important to the people of Africa and other countries, as they were often the only way of killing large animals, especially in poaching valuable game animals such as leopards and lions (Vickery & Vickery, 1979). Examples of the plants used as arrow poisons are Euphorbia species (Watt & Breyer-Brandwijk, 1962) and Hippomane mancinella L. (Ayensu, 1981). Other uses The main toxic principle of the seeds of Ricinus communis is the phytotoxin ricin (a protein of the globulin type) converted by acid hydrolysis into non-toxic compounds which are of nutritional value. The seed cake (after removal of the oil) is used as a fertilizer. The oil cake of Aleurites species is a good fertilizer, but cannot be used as a feed (Hill, 1952). Androstachysjohnsonii Prain has been used as an animal feed (Watt & Breyer-Brandwijk, 1962). Medicinal plants Since antiquity curative effects have been attributed to many plants of the Euphorbiaceae; for example Euphorbia jischeriana Steud. ( = E. pallasii Turcz.) has been used in traditional Chinese medicine for more than 2000 years as antitumour drug (Schroeder et al., 1980). Plants of this family have been used to treat cancer, tumours and warts from at least the time of Hippocrates (circa 400 B.c.), and references to their used have appeared in the literature of many countries (Kupchan et al., 1976). Certain species have been described in homoeopathic pharmacopoeias, e.g. Acalypha indica (Nahrstedt, Kant & Wray, 1982). In India, members of the following genera are reported as medicinal plants: Acalypha, Aleurites, Andrachne, Antidesma, Aporosa, Baliospermum, Bischoja, Breynia, Bridelia, Chrozophora, Cicca, Cleistanthus, Croton, Euphorbia, Excoecaria, Fluegga, Glochidion, Hippomane, Homonoia, Hura, Jatropha, Macaranga, Mallotus, Manihot, Phyllanthus, Putranjiva, Ricinus, Sapium, Sebastiania, Tragia and Trewia (Chopra el al., 1983; Kirtikar & Basu, 1984). Species of Euphorbiaceae have been used by local populations of many countries in folk medicines as remedies against several diseases. Table 7 summarizes the medicinal uses. The plants of this family are known to be extremely toxic; causing inflammations of the skin and mucous membranes, conjuctivitis and even blindness. Several species are toxic to livestock and allelopathic to desirable forage plants. Examples of the poisonous plants are Aleurites fordii Hemsl., Croton species, Euphorbia species, Excoecaria venenifera Pax, Hippomane mancinella, Hura crepitans, Jatropha species, Pedilanthus tithymaloides Poi t., Phyllanthus species, Sapium species, Stillingia treculeana I. M. Johnston and Syndenium grantii (Watt & BreyerBrandwijk, 1962; Kingsbury, 1964; Lewis & Elvin-Lewis, 1977). The attempts over 150 years to establish the cathartic principles of Croton tiglium L. were given a new impetus after the discovery of the tumour-promoting (carcinogenic) activity of Croton oil (Kinghorm, 1979). These efforts culminated with the isolation of the irritant cocarcinogenic factors of the oil as esters of zyxwvut zyxw zyxwvutsrq zyxwvut Table 7. Medicinal uses of some euphorbiaceous plants W e Used as/Treatment of I . Abdominal pains 2. Abortion 3. Anthelmintic (Vermifuge) 4. Antiasthmatic Species Croton spp., Euphorbia spp., Jatropha gossypifolia L., Ricinus C0mmuni.I L. AcalVplur wilkcsimra Mud.-@., Cnidoscolus u r m Arthur, Croton seilowii Baill., EuphorbL spp., Flueggea virosa Baill. (Willd.) Baill., Souropus rostratus Miq. 6. Anticancer Croton spp., Euphorbia spp. 7. Antihistaminic Euphorbia hi& L. Euphorbia ncrifolia L. 9. Antispasmodic (spasmolytic) 10. Aphrodisiac 1 1. Bronchitis Eupkorbia spp. Mallotuc spp., Phyllanthus spp., R i c h grandis Vahl. Euphbia spp. 12. C h a t complaints C r o t o n ~ c n sL., E@hrococca r i g d ~ o l i aPax., Euphorbia spp., 13. Choleretic 14. Conjunctivitis 15. Contraceptive 16. Cough 19. Diaphoretic zy Watt & Breyer-Brandwijk (1962) Ayensu (1978) Caius & Mhaskar (1923), Watt & BreyerBrandwijk (1962), Lewis & Elvin-Lewis (1977), Ayensu (1978, 1981), Biswas & Chopra ( 1982) Claw (1961), Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Baslas (1982), Boulos (1983), Duke & Ayensu (1985) Watanabe ct al. (1956), Watt & BreyerBrandwijk (1962), Lewis & Elvin-Lewis (1977), Adesina ct al. (1980), Duke & Ayensu (1985) Kupchan ct d . (1976), Let ct al. (1982), Baslas (1982) Duke & A y e ~ u(1985) Watt & Breyer-Brandwijk (1962), Hallet & Parks (1953) Baslas (1982), Duke & Ayensu (1985) Ayensu (1978), Duke & Ayensu (1985) Ayensu (1978), Chen ct al. (1979), Baslas (1982) Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Boulos (1983), Duke & Ayensu (1985) Baslas (1982) Ayensu (1978), Duke & Ayensu (1985) Duke & Ayensu (1985) Lewis & Elvin-Lewis (1977), Ayensu (1978) Lewis & Elvin-Lewis (1977), Duke & Ayensu (1985) Gohalons & Fontana (1926), Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Baslas & Agarwal ( 1980) Watt & Breyer-Brandwijk (1962) zyxwvutsrq zyxwvutsrqponml 8. Antipyretic (antifebrile) 18. Diabetes W zyxwvutsrq Antiahma m s u m E. Mey., Briedilia sclcronncroides Pax A&homea cord$olia (Schum. & Thonn.) Stapf, Brioklia micrantha Hochst. (Baill.) (anti-abortive) Acalypha indica L., Alchomea cord$olia, Andrachnc ovalis Muell.-Arg., Croton macrostachys A. Rich., Euphorbia spp., jatropha curcar L., Maliotus spp. 5. Antibiotic (mainly antibacterial) 17. Dermatitis References Fiueggea mrosa Baill., Mildbracdiafallax Hutch., Monaahium immustwn N . E. Br., Phyllanthus muell(0.Ktze.) E x d . Euphorbia spp. Bride& &antha, Croton tiglium L., PlyllantluLc spp. Mallohrr philiPpinmriS Muell.-Arg. Alchomea cord$olia, Elaeophorbia drupiiia (Thonn.), Phyllanthus mgleri Pax Croton corlcsionus H. B. & K., Glochidion spp. Bridclia f-inca Benth., Croton spp., Euphorbin hirta L., Phyllanthus spp. Euphorbia gmishidcs Berg. zyxwvutsrqponmlkjih zyxwv Acalypha australis L., Alchonua cordifolia, Bridelia femrginea, Euphmbia spp., Jatropha spp., Phyllanthus spp., ricinus communis L., Ricinodcndron afncanum Muell.-Arg., Sauropus rostratus Miq. Acalypha cvrardii Gagnep., Alchonua cordijolia, Bischovia javanica BI., Bridelia fermginea, Euphorbia spp., Hippomane mancinclla L., Homonoia riparia L., Jatropha curcas L., Kirganelia reticulafa (Poir.) Baill., Mercurialis amua L., Manihof esculenfa Crantz, Phyllanthui spp., Sapium sebifrum (L.) Roxb. Acalypha australis L., Alchornea cordifolia, Brcynia spp., Brihlia fmuginea, Caloxylon spp., Euphorbia spp., Glochidion spp., Mallotus opposififolius (Geisel.) Muell.-Arg. Euphorbia antiquorum L., Jafropha curcar 1. Glochidion p u b m m (L.) Hutch., Hura crcpitans L. Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Baslas & Aganval (1980), Boulos ( 1983) Woerd (1941), Watt & Breyer-Brandwijk (1962), Chopra el al. (1969), Lewis & Elvin-Lewis (1977), Baslas (1982), Biswas & Chopra (1982), Boulos (1983), Kouno ef al. (1983), Duke & Ayensu (1985) Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Duke & Ayensu (1985) Watt & Breyer-Brandwijk (1962), Ayensu (1978, 1981), Duke & Ayensu (1985) 35. Hypnotic 36. Hypotensive 37. Influenza Acalypha indica, Alchonua cordijolia, Euphorbia spp., Hura crepitans, Jatr~phacurcas, Marcya minanlha Muell.-Arg., Mildraedia fal1a.x Hutch., Pedilanthus tithymaloides Poit. Ricinus communis Jatropha curcar, Mallofus opposififolius Muell.-Arg., Phyllanfhus mwllcrianus (Kuntze) Exell. Acdrpha indua Sarococca prunijomis Lindl. Acal.ha ausfralis, Alchonua cordijolia, Breynia spp., Bridclia fmuginea, Croton linearis, Euphorbia spp., jatropha spp., Phyllanthus spp., Sauropus rosfratus, Miq., Saussurea lappa C. B. Clarke, Tefrorchidium didyostemon (Baill.) Pox & K. Hoffm., Trigonostrmon l o n g i f o h Baill. Euphorbia spp. Euphorbia hirta L. Acalypha australis, Alchonua cordgolia, Breynia spp. Euphorbia sp1enden.s Bojer (E. millii Desmoulins), Mallofus apclta (Lour.) Muell.-Arg., Phyllanthus urinaria L. Euphorbia spp. Alcurites fordii, Euphorbia maddmi Clufia abyssinica Spach., Glochidion purpureum (L.) Hutch. 38. Insecticides Croton spp., Hura ncpitans, Mallofus rapandus (Willd.) Muell.-Arg. 39. Jaundice Euphorbia humijiusa Willd., Jatropha curcas, Ricinus communis 40. Lactogogue 4 1. Leprosy Euphorbia f h F y o l i a L., Jatropha curcar Hura ncpitans, Marcya micranfha, Ricinus communis 42. Malaria Alchonua cordifolia, Crofon spp., Glochidion puberum Hutch.: 20. Diarrhoea 21. Diuretic 22. Dysentry 23. Dyspepsia 24. Elephantiansis Ayensu (1978), Duke & Ayensu (1985) Chopra et al. (1969), Duke & Ayensu (1985) 25. Emetic 26. Emmenagogue 27. Enema 31. 32. 33. 34. n 0 s zyxwvuts zyxwvutsrqpon zyxwvut zyxwvutsrqpon zyxwvutsrqponmlk zyxwvutsr 28. Expectorant 29. Febrifuge 30. Fevers Watt & Breyer-Brandwijk (1962) Ayensu (1978) Galactogogue Heart diseases Haemorrhage Hepatitis Lewis & Elvin-Lewis (1977) Chopra el al. (1969) Serra (1944), Chopra el al. (1969), Lewis & Elvin-Lewis (1977), Ayensu (1978, 1981), Duke & Ayensu (1985) Watt & Breyer-Brandwijk (1962) Ayensu (1978) Ayensu (1978), Duke & Ayensu (1985) Lce el al. (1982), Duke & Ayensu (1985) Baslas (1982) Claw (1961), Sahai cl al. (1981) Watt & Breyer-Brandwijk (1962), Duke & Ayensu (1985) Lewis & Elvin-Lewis (1977), Duke & Ayensu (1985) Ayensu (1978), Boulos (1983), Duke & Ayensu (1985) Ayensu (1978, 1981) Chopra cl al. (1969), Ayensu (1978), Boulos (1983) Watt & Breyer-Brandwijk (1962), Ayensu (1978), Duke & Ayensu (1985) w X 0 m bm & zyxwvu zyxwvutsr z zyxwv zyxwvutsrqpo Table 7. continued Used as/Treatment of Species 43. Menstruation 44. Nephritis 45. Neuralgia Euphorbia atoto Forst. Euphorbia spp., Phyllanthus urinaria L. Euphorbia tirucalli Bridc[ia fmuginea Acaltha spp., Alchornea cordgolia, Euphorbia spp., Jatropha ncrcas, Phyllanthur mueNnianuF Alchornea cord$olia, Atnamnus lucidus (Sw.) Rohrn., Homonia riparia Lour., Mallotur of@ositifolius (Geisel.) Muell.-Arg. Acaltha spp., Alchornea cord$olia, Bridelia spp., Claoxylonpolot Merr., Clutia atgssinica Spach., Croton spp., Elaeophorbia durpijina Stapf., Euphorbia spp., Hippomane mancinClla L., Homaia riparia Lour., Hura crcpitonr, Jatropha spp., Mallotus philippirumis Muell.-Arg., Mapouna a f i a n a Muell.-Arg., Mareya micrantha (Benth.), Muell.-Arg., Mercurialis annua L., Midbraedia fallax Hutch., Phyllanth spp., Pseudolachnosrylis spp., Ricinur comnutnis, Sapium sebifmtm, Tetrochidium diapostenwn (Baill.) Pax & K. Hoffm. Alchonuo cordifoh, Bridelia fmuginea, Croton spp., Euphrbia spp., Jarropha spp., Mareya micrantha, Mncurialis annua, Ricinus communis, Sarococca pruniformis Lindl., Spnanskia tubnculata (Bunge) Baill. Bridclio micrantha (Hochst.) Baill. Euphorbia pekinmcis Rupr. Pedilanthus tithymaloides Poit. Kirganelia retidata (Poir.) Baa. ( = Phyllanthus reticulatus Poir.) A c d t h a spp., Cluytia similis Muell.-Arg., Eiaeophorbia drupifera, Erythrococca rigidgolia Pax, Euphorbia spp.> Manihot esculenh Crantz., Mareya micrantha, Sapium sebifcrum Alchonua spp., Bischoja jauanica, Brey’na spp., Croton alamosanum N. E. Rose, Euphorbia spp,, Ricinus communis Croton eluuria (L.) Sw., Euphorbia spp. Alchornea cordgolia, Bri&lia f m g i n e a , Breyia spp., Euphorbia spp., Hippomane mancinella, Homonia riparia, Jatrobha curcas, Kirganeiia reticulata Baill., Mallotus spp., Mareya micrantha, Monadenium lugardac N. E. Br., Phyllanthur spp., Ricinodmdron afkanum Muell.-Arg. Croton humilis L. 46. Oedema 47. Ophthalmic diseases 48. Piles 49. Purgative (Cathartic, Laxative) 50. Rheumatism 5 1. Scabies 52. Schistosomicidal 53. Scorpion-bite 54. Smallpox 55. Snake-bite 56. Toothache 57. Tonic 58. Veneral diseases References Lewis & Elvin-Lewis (1977) Duke & Ayensu (1985) Baslas (1982) Ayensu (1978) Ayensu (1978), Boulos (1983), Duke & Ayensu ( 1985) Ayensu (1978, 1981), Biswas & Chopra zyxwvutsrq zyxwvu ( 1982) Clam (1961), Watt & Breyer-Brandwijk (1962), Chopra et al. (1969), Ayensu (1978, 1981), Biswas & Chopra (1982), Baslas (1982), Lewis & Elvin-Lewis (1977), Kouno et al. (1983), Duke & Ayensu (1985) ? t; F Ballantine ( 1969), Chopra et al. ( 1969), Ayensu (1978, 1981), Baslas (1982), Boulos (1983), Duke & Ayensu (1985) E F Ayensu (1978) Duke & Ayensu (1985) Chopra et aI. (1969) Chopra ct al. (1969) Watt & Breyer-Brandwijk (1962), Lewis & Elvin-Lewis (1977), Ayensu (1978, 1981), Duke & Ayensu (1985) Lewis & Elvin-Lewis (1977), Ayensu (1978, zyxwvuts 1981) Ayensu (1978, 1981) Watt & Breyer-Brandwijk (1962), Chopra et ul. (1969), Ayensu (1978, 1981), Biswas & Chopra (1982), Duke & Ayensu (1985) zyxwvutsrqponmlk (Gonorrhoea and syphilis) 59. Urinary diseases u Lewis & Elvin-Lewis (1977) zyx zyxwvu CHEMICAL CONSTITUENTS O F EUPHORBIACEAE 32 1 tetracyclic diterpenoid phorbol (Hecker, 1968). After the structure elucidation of phorbol, many related diterpene esters have been identified from the family Euphorbiaceae, especially from Euphorbia species (Evans & Soper, 1978; Kinghorn, 1979). Certain of these compounds are tumour promoters while others have anti-tumour action. However, all of them are extremely potent direct primary irritants on mammalian skin (Rizk, 1986). Investigation of Euphorbia esula L. and Crolon liglium L. which have been used widely in folk medicine for treating cancers led to the isolation of two diterpenoid esters which showed antileukemic activity (Kupchan, 1976). O n the other hand there are several genera which have been reported either responsible for irritant dermatitis (e.g. Cnidoscolus, Dalechampia, Jatropha and Trugia) or causing allergic reactions (e.g. Codiaeum, Croton, Euphorbia, Hippomane, Hura and Phyllanthus) (Lewis & Elvin-Lewis, 1977). zyx zyx zyxwvutsr REFERENCES ADESINA, S. K., OGANTIMEIN, B. J. & AKINWUSHI, D. D., 1980. Phytochemical and biological evaluation of the leaves of Acalypha wikesiana (red acalypha, Euphorbiaceae). Qprterly Journal of Crude Drug Research, 18: 45-48. ADOLF, W. & HECKER, E., 1971. Further new diterpene esters from the irritant and co-carcinogenic seed oil and latex of the caper spurge. Experientia, 27: 1393-1394. AFZA, N., MALIK, A. & SIDDIQUI, S., 1979a. A new triterpenoid from Euphorbia tirucelli. Pakistan Journal of Scientific and Industrial Research, 22: 124-127. AFZA, N.,MALIK, A. & SIDDIQUI, S., 1979b. Isolation and structure of cycloeuphornol, a new triterpene from Euphorbia tirucalli. Pakistan Journal of Scientific and Industrial Research, 22: 173-1 76. AHMAD, S. A., KAPOOR, S. K. & ZAMAN, A., 1972. Bergenin in Fluegga microcarpa. Phytochemistry, 11: 452. AIYAR, V. N. & SESHADRI, T. R., 1971. Chemical components of Croton oblongifolius Roxb. Part V. Indian Journal of Chemistry 9: 613. DE ALVARENGA, M. A., GOTTLIEB, 0. R. & MAGALHAES, M. T., 1976. Methyl-phenanthrenes from Sagotia racemosa. Phytochemisty, 15: 844-845. ANJANEYULU, V., RAO, G. S. & CONNOLLY, J. D., 1985. Occurrence of 24-epimers of cycloart-25-ene3, 24-diols in the stem of Euphorbia trigona. Phytochemistry, 24: 1610-1612. AYENSU, E. S., 1978. Medicinal Plants of West Africa. Algonac, Michigan, U.S.A.: Reference Publications, Inc. AYENSU, E. S., 1981. Medicinal Plants of West Indies. Algonac, Michigan, U.S.A.: Reference Publications Inc. BALLANTINE, J. A., 1969. The isolation of two esters of the naphthaquinone alcohol, shikonin, from the shrub Jatropha glandulifua. Phytochemistry, 8: 1587-1590. BANERJI, M. S. & MILLNS, W., 1981. Rubber India, 33(1): 13-18, (via Chemical Abstracts, 96: 105549). BANERJI, J., DAS, B., CHATTERJEE, A. & SHOOLERY, J. N., 1984. Gadain, a lignan from Jatropha gossrpijolia, Phytochemistry, 23: 2323-2327. BARNES, R. A., & SOEIRO, 0. M., 1981. The alkaloids of Croton salutaris. Phytochemistry, 20: 543-544. BARROS, D. A. D., DE ALVARENGA, M. A., GOTTLIEB, 0. R. & GOTTLIEB, H. E., 1982. Naringenin coumaroylglucosides from Mobea caudata, Phytochemistry, 21: 2 107-2109. BASLAS, P. K. & AGARWAL, R., 1980. Isolation and characterization of different constituents of Euphorbia hirta Linn. Current Science. 49: 311-312. BASLAS, R. K., 1982. Phyiochemical studies of the plants of the genera Euphorbia. Part 11. Herba Hungarica, 21: 115-126. BENTLEY, R. & TRIMEN, H., 1880. Medicinal Plants, 4 . London: J. A. Churchill. BETTOLO, R. M. & SCARPATI, M. L., 1979. Alkaloids of Croton draconoides. Phytochemistry, 18: 520. BEVAN, C. W. L., PATEL, M. B. & REES, A. H., 1964. Minor alkaloids of Phyllanthus discoides. Chemistry and Industry, 2054. BHAKUNI, D. S. & DHAR, M. M., 1968. Crotsparine, a new proaporphine alkaloid from Croton sparsijlorus Morong. Experientia, 24: 10-1 1. BHAKUNI, D. S. & DHAR, M. M., 1969. Crotsparinine, a dihydroaporphine alkaloid from Croton sparsijorus. Exberientia. 25: 354. BHAKUNI, D. S., SATISH, S. & DHAR, M. M., 1970. The alkaloids of Croton sparsijlorus. Phytochemistry, 9: 2573-2580. BHAT, S. K., DIXIT, V. & SINGH, K. V., 1981. A flavanone glycoside from seeds of Sapium scbiferum. Plylochemistry, 20: 2442. zyxw zyx 322 zyxwvutsr zyxwvutsrqp zyx zy zy A.-F. M. RlZK BHAT, V. S., JOSHI, V. S. & NANAVATI, D. D., 1982. Cycloroylenol, a cyclopropane containing euphoid from Euphorbia roylana. Tetrahedrom Letters, 5207-52 10. BHUSHAN, D., RAM, A. & PRAKASH, O., 1951. Mandara seed and its oil. Journal and Proceedings of the Oil Technologists Association, Kanpur, India, 7: 68-73; (via Chemical Abstracts, 48: 9720). BISWAS, K. & CHOPRA, R. N., 1982. Common Medicinal Plants of Darjeeling and the Sikkim Himalayas. Delhi: Periodical Experts Book Agency. BOE, J. E., WINSNES, R., NORDAL, A. & BERNATEK, E., 1969. New constituents of Euphorbia resinifera. Acia Chemica Scandinavica, 23: 3609. BONDARENKO, 0. M., CHAGOVETS, R. K., LITVINENKO, V. I., OBOLENTSEVA, G . V., SILA, V. 1. & KIGEL, T. B., 1971. Euphorbia palustris and Euphorbia stepposa flavonoids and their pharmacological properties. Farmatscvticheskii <hurnal (Kiev), 26(6): 46-48; (via Chemical Abstracts, 76: 121697). BONDAR, G., 1942. PenHo, a new source of oil (in the province) of Bahia; Cnidoscolus marcgravii Pohl. Revista de quimica industrial (Rio de Janeiro), lI(128): 15-18; (via C h i c a l Abstracts, 37: 4267). BOULOS, L., 1983. Medicinal Plants of North Africa. Algonac, Michigan: Reference Publications, Inc. CAIUS, J. F. & MHASKAR, K. S., 1923. The correlation between the chemical composition of anthelmintics and their therapeutic value in connection with the hookworm inquiry in the Madras Presidency. XXI. Miscellaneous anthelmintics. Indian J o u m l of Medical Research, I I : 353-370. CALVIN, M., 1979. Petroleum plantations. In R. R. Hautala, R. B. King & C. Kutal (Eds), Solar Energy: Chemical Conversion and Storage. U.S.A.: The Humana Press. CALVIN, M., 1980. Hydrocarbons from plants; analytical method and observations. Natunuissmschaflm, 67: 525-533. CALVIN, M., 1982. Energy agriculture. Presented at the Symposium on Con17Or~er~d Topics in Agricultural and Food Chemistry, American Chemical Society, Kansas City, Mo, U.S.A., 7-12 Sept.: 1-46. CALVIN, M., 1983. New sources for fuel materials. Science, 219: 24-26. CALVIN, M., NEMETHY, E. K., REDENBAUGH, K. & OTVOS, J. W., 1982. Plants as a direct source of fuel. Experientia, 38: 18-22. CHATTERJEE, A., DAS, B., PASCARD, C. & PRANGE, T., 1981. Crystal structure of a lignan from jatropha gossypifolia. Phytochemistry 20: 2047-2048. CHAWLA, H. M., CHAKRABARTY, K., CHIBBER, S. S., KALIA, A. N. & CHAUDHURY, N. C., 1980. Daphnetin from Euphorbia dracunculoides. Indian Journal of Pharmaceutical Science, 42: 138- 139. CHEN, Y., TANG, Z.-J., JIANG, F.-X., ZHANG, X.-X. & LAO, AI-NA., 1979. Studies on the active principles of Ze-Qi (Euphorbia helioscopia L.), a drug used for chronic bronchitis. Tao Hsueh Hsueh Pao, 14(2): 91-95. (via Chnical Abstracts; 92: 72680). CHOPRA, R. N., CHOPRA, I. C. & VARMA, B. S., 1969. Supplement to Glossary of Indian Medicinal Plants. New Delhi: Publications & Information Directorate. CHOPRA, I. C., ABROL, B. K., HANDA, K. L.,PARIS, R. & DILLEMAN, G., 1983. Medicinal Plants of the Arid <ones. New Delhi: Today and Tomorrow’s Printers & Publishers. CLAUS, E. P., 1961. Pharmacognosy, 4th edition. Philadelphia: Lea & Febiger. CRAVEIRO, A. A., MONTE, F. J., MATOS, F. J. A. & ALENCAR, J. W., 1978. Volatile constituents of Croton aff. agyrophylloids Muell.-Arg. Revista latinoamericann dc quimica, 9: 98-99. CRAVEIRO, A. A., RODRIGUEZ, A. S., ANDRADE, C. H. S., MATOS, F. J. A., ALENCAR, J. W. & MACHADO, M. I. L., 1981. Volatile constituents of Brazilian Euphorbiaceae. Genus Croton. Journal of Natural Products, 44: 602-608. DAUGHERTY, P. M., SINEATH, H. H. & WASTLER, T. A., 1953. Industrial raw material of plant origin, 111. Candelilla and candilella wax. Feth und Scifm, 55: 113-1 18. DUKE, J. A. & AYENSU, E. S., 1985. Medicinal Plants of China, 1. Algonac, Michigan: Reference Publications, Inc. DUTTA, P. K., BANERJEE, D. & DUTTA, N. L., 1972. Euphorbetin: A new bicoumarin from Euphorbia l a t h y i L., Tetrahedron Letters, 601-604. DUTTA, P. K., MAJUMDER, P. C. & DUTTA, N. L., 1975. Synthetic approaches towards bicoumarins. Synthesis of euphorbetin and isoeuphorbetin. Tetrahedron, 31: 1 167-1 170. EARLE, F. R., MCGUIRE, T. A., MALLAN, J., BAGBY, M. 0. & WOLFF, I. A., 1960. Search for new industrial oils. 11. Oils with high iodine value. Journal of the American Oil Chemists’ Sociely, 37: 48-50. EVANS, F. J. & SOPER, C. J., 1978. The tigliane, daphnane and ingnane diterpenes, their chemistry, distribution and biological activities. A review. Lloydia, 41: 193-233. FALSONE, G. & SPUR, B., 1979. Constituents of Euphorbiaceae. V. Synthesis of calcium 5,5-dimethyl-Zoxo-5,6-dihydro-2H-pyran3,4-dicarboxyiate. Liebigs Annalm die Chemie, 923-926. FUERSTENBERGER, G . & HECKER, E., 1977a. New highly irritant Euphorbia factors from the latex of Euphorbia timalli L. Experimtia, 33: 986-988. FUERSTENBERGER, G . & HECKER, E., 1977b. The new diterpene 4-deoxyphorbol and its highly unsaturated irritant esters. Tetrahedron Letters, 11: 925-928. GORALONS, G. P. & FONTANA, A., 1926. Effect of Phyllanthus sellowianus Muell. on blood sugar concentration. Archives argentinos de mfemdades del aparato digestivo y de la nutricidn, I : 993-998 (via Chemical Abstracts, 22: 988). GOVARDHAN, CH., REDDY, P. R. & SUNDRARARAMAIAH, T., 1984. 3-Epicycloaudenol and known triterpenes from Euphorbia caudicijioolia. Phytochemisty, 23: 41 1 4 1 3 . zyxwvutsrq zyxwv zyxwvut zyx zyx zyxwv zyxwvu zyxwvu zyx zyxwvuts zyx CHEMICAL CONSTITUENTS O F EUPHORBIACEAE 323 GUNASEKERA, S. P., CORDELL, G. A. & FARNSWORTH, N. R., 1980. Constituents of Nealchornea yapurensis (Euphorbiaceae). Journal of Natural Products, 43: 285-287. HELLETT, F. P. & PARKS, L. M., 1953. The antispasmodic principle of Euphorbia PiluliJzra. Journal of the American Pharmaceutical Association 42: 607-609. HAMMOUDA, F. M., RIZK, A. M., EL-MISSIRY, M. M. & RADWAN, H. M., 1984. Constituents of the latex of Euphorbia roykana. Fitoterapia, 55: 245-247. HART, N. K., JONES, S. R. & LAMBERTON, J. A,, 1967. (+)-9-Aza-I-methyl-bicyclo[3,3,1] nonan-3~ 20: 561-563. one, a new alkaloid from Euphorbia atoto Forst. Australian J o uof ~Chnnishy, HART, N. K., JONES, S. R. & LAMBERTON, J. A., 1969. Hexahydroimidazo-pyrimidines, a new class alkaloids from Alchomea javanensis. Journal of the Chnnical Sociep, D: 1484-1485. HART, N. K., JONES, S. R., LAMBERTON, J. A. & WILLIG, R. J., 1970. Alkaloids of Alchomea javanmris: the isolation of hexahydroimidazo [ 1,2a] pyrimidines and guanidines. Australian ,journal of Chemistry, 23: 1679-1693. HASSAN, S . Q.,AHMED, I., SHERWANI, M. R. K., ANSARI, A. A. & OSMAN, S. M., 1980. Studies on herbaceous seed oils. X. Fette, SeiJen, Anstrichmittel, 82: 204-205. HECKER, E., 1968. Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Research, 28: 2338-2349. HEGNAUER, R., 1966. Chemotaxonomie der VanZen, Bd. 4. Dicotyledoneae: Daphniphyllaceae-Lythraceae, Basel & Stuttgart: Birkhaeuser Verlag. HILL. A. F., 1952. Economic Botany-A Textbook of Useful Plants and Plant Products. 2nd edition. Bombav. New " Delhi: Tata McGraw-Hill Pubiishing Co. Ltd: HINMAN. C. W.. HOFFMAN, 1. P.. MCLAUGHLIN, S. P. & PEOPLES, T. R.. 1980. Hvdrocarbon production from arid land p l k t species. Proceedings the 1980 Annual Meeting, American Siction of the International Solar Energy SocieLy, Inc.: 110-1 14. HUI, W.-H., LI, M.-M. & NG, K.K., 1975. Terpenoids and steroids from Macarango tanarius. Phytochemistry 14: 816-817. HUSAIN, S. R., AHMAD, M. S., AHMAD, S. M., AHMAD, M. & OSMAN, S. M., 1982. Studies on herbaceous seed oils. XIII. Journal of the Oil Technologists Association of India, 14(2): 61-63. ISMAIL, S. I., EL-MISSIRY, M. M., HAMMOUDA, F. M. & RIZK, A. M., 1977. Flavonoids of Euphorbia gmiculata and Euphorbia prostrata. Pharmazie, 32: 538. JEFFERIES, P. R., 1979. Studies on the resin chemistry of some Western Australian plants. Journal of the Royal Sociep of Western Australia, 62: 95-107. JOHNS, S. R. & LAMBERTON, J. A., 1967. New imidazole alkaloids from a Clochidion species (family Euphorbiaceae). Australian Journal of Chemistry, 20: 555-560. KALLIMANIS, G. & PHILIANOS, S., 1980. Constituants chimiques des feuilles d'Euphorbia acanthofhamnos Heldr. st Start. Plantes medicinales Phytothnapie, 14: 233-237. KAUFMANN, H. P. & KING, B.-W., 1939. Fats from the seeds of Stillingia scbvera Trillot. Fette und SeiJm,46: 388-390. KHAFAGY, S. M., MAHMOUD, 2. F. & ABDEL SALAM, N. A., 1979. Coumarins and flavonoids of Ricinus communis growing in Egypt. Planta Medica, 37: 191. KINGHORN, A. D., 1979. Carcinogenic irritant Euphorbiaceae. In A. D.Kinghorn, (Ed.), Toxic Plants; 137-159. New York: Columbia University Press. KINGSBURY, J. M., 1964. Poisonous Plants of the United States and Canada. New Jersey: Prentice Hall, Inc. KIRTIKAR, K. R. & BASU, B. D., 1984. Indian Medicinal Plants, 2: 21W2290. Allahabad, India: Lalit Mohan Basu Publisher. KJAER, A. & FRIIS, P., 1962. Isothiocyanates XLIII. Isothiocyanates from Putranjiua roxburghii Wall. including (S)-2-methylbutyl isothiocyanate, a new mustard oil of natural derivation. Acta Chemica Scandinauica, 10: 936-946. KOUNO, I., SAISHOJI, T., SUGIYAMA, M. & KAWANO, N., 1983. A xylosyl-glucoside of xanthoxylin from Sapium sebiJerum root bark. Phytochernistry, 22: 790-791. KUONO, I., SHIGEMATSU, N., IWAGAM, M. & KAWANO, N., 1985. Further phloroglucinol derivatives in the fruits of Mallotus japonicus, Phytochemistv, 24: 620-621. KREWSON, C. F. & SCOTT, W. E., 1966. Euphorbia lagascae Spreng., an abundant source of epoxyloeic acid; seed extraction and oil composition. Journal of the American Oil Chemists' Sociep, 43: 171-174. KUPCHAN, S. M., UCHIDA, I., BRANFMAN, A. R., DAILEY, R. G., JR. & FEI, B. Y., 1976. Antileukemic principles isolated from Euphorbiaceae plants. Science, 191: 571-572. LAW, AH., THRELFALL, D. R. & WHISTANCE, G. R., 1970. Ubiquinones of Heva brasiliensis. Phytochernistry, 9: 246 I . LEE, Y. C. & NOBLES, W. L., 1959. Journal of the American Pharmaceutical Association, ScientiJic Edition, 48: 162- 165. LEE, K.-H., HAYASHI, N., OKANO, M., HALL, I. H., WU, R.-Y., & MCPHAIL, A., 1982. Lasiodiplodin, a potent antileukemic macrolide from Euphorbia splendenr. Phytochemistry, 21: I 1 19-1 121. LEWIS, W. H. & ELVIN-LEWIS, M. P. F., 1977. Medical Botany. New York, London: John Wiley & Sons. LI KEN JIE, M. S. F. & SINHA, S., 1981. Fatty acid composition and the characterisation of a novel dioxo C , fatty acid in the latex of Heva brasiliensis. Phytochemistry, 20: 1863-1866. I . 2 324 zyxwvutsrqp zyxwvutsrq zyxwvu A.-F. M.R I Z K zyxwvutsr zyxwvut zyx zyxwvutsr MAHMOUD, Z. F. & ABDEL SALAM, N. A., 1979. Coumarins of Euphorbia lerracina and Euphorbia paralias growing in Egypt. Phamazie, 34: 446-447. MANNERS, G. D. & DAVIS, D. G., 1984. Epicuticular wax constituents of north American and European Euphorbia esula biotype. Phytochemistry, 23: 1059-1062. MANSKE, R.H.F., 1968.Alkaloids unclassified and of unknown structure. In R. H. F. Manske (Ed.), The Alkaloids, Chemistry and Physiology, 10: 545-595.New York, London: Academic Press. MATSUNAGO, S. & MORITA, R., 1983. Hopenol-B, a triterpene alcohol from Euphorbia supina. Phytochemistry, 22: 605-606. MUELLER, R. & POHL, R., 1970. Die Flavonolglykoside von Euphorbia amygdaloides und ihre Quantitative Bestimmung in Verschieden Entwicklungsstadien der Pfanze. 5. Mitteilung ueber die Flavonoide einheimisher Euphorbiaceen. Planta Medica, 18: 1 14- 129. MUELLER, P. & SCHUETTE, H. R., 1968. Biochemistry and physiology of latex. XVIII. I-Methyl-6hydroxy-l,2,3,4-tetrahydroxyisoquinoline-3-carboxy~ic acid in Euphorbia myrsinites latex. Zeitschrvt fur Naturforschung, B, 23: 491-493. NAHRSTEDT, A., KANT, J.-D. & WRAY, V., 1982.Acaiyphic, a cyanogenic glucoside from Acabpha indica. Phytochemistry, 21: 101-105. NAZIR, M., AHMAD, I., BHATTY, M. K. & KARIMULLAH, 1966. Chemical constituents of Euphorbia royleana. Pakistan Journal of Scientijc and Industrial Research, 9: 38-40. NEMETHY, E. K., OTVOS, J. W. & CALVIN, M., 1979. Analysis of extractables from one Euphorbia. Journal of the American Oil Chemists’ Sociep, 56: 957-960. NEMETHY, E. K., OTVOS, J. W. & CALVIN, M., 1981a.Natural production of high-energy liquid fuels from plants. In D. L. Klass & G. H. Emert (Eds), Furisfrom Biomass and Wastes: 405419.Michigan: Ann Arbor Publishers Inc. NEMETHY, E. K., OTVOS, J. W. & CALVIN, M., 1981b. Hydrocarbons from Euphorbio lathyris. Pure and Applied Chemistry, 53: 1101-1 108. NOVACK, E. A., CREA, A. E. G. & FALSONE, G., 1980. Inhibition of mitochondria1 oxidative phosporylation by 4-deoxyphorbol triesters, a poisonous constituent of the latex of Euphorbio biglandulosa Desf. Toxicon, 18: 165-174. OGURI, S. & SHINOHARA, I., 1957. Effects of standing, heating and stirring on mucilage for Japanese paper making. Kogyo Kagaku <asshi, @ 467-469; I: (via Chemical Abstracts, 53: 7592). OKUDA, T. & KARU S., 1981. Studies of the tannins and polyphenols of Mallotus japonicus. I. Mallotus japonicus leaf tannins. Nippon Kagaku Kaishi: 671-677. (via Chemical Abstracts, 95: 3440). OKUDA, T. & SENO, K., 1981.Cited in Yoshida et al., 1982. OKUDA, T., MORI, K. & HATANO, T., 1980a.T h e distribution of geraniin and mallotusinic acid in the order Geraniales. Phytochemistry, 19: 547-55 I. OKUDA, T., YOSHIDA, T. & HATANO, T., 1980b. Equilibrated stereo-structures of hydrated geraniin and mallotusinic acid. Tetrahedron Letters, 21: 2561-2564. PARELLO, J. & MUNAVALLI, S., 1965. Phyllantine and phyllantidine, alkaloids of Phyllanthus discozdes. Comptes Rendus, 260: 337-340. PARIS, R. A., MOYSE-MIGNON, H. & MEN, J. LE., 1955. Alkaloids of Flueggea wirosa. Annales pharmaceutiquesfrancaises, 13: 245-249. PARTHASARATHY, M. R. & SARADHI, K. P., 1984. A Coumarino-lignan from Jatropha glandul$era. Phytochemistry, 23: 867-869. PEOPLES, T. R., ALCORN, S., BLOSS, H. E., CLAY, W. F., FLUG, M., HOFFMAN, J. J., LEE, C. W., LUNA, S., MCLAUGHLIN, S. P. el al., 1981.Euphorbia lathyris L.: A future source of extractable liquid fuels. Biosources Digest 3: 1 17-123; (via Chemical Abstracts, 95: 222769). PIATAK, M. D., & REIMANN, K., 1972. Plant investigation. IV. Corollatadiol, a new triterpene from Euphorbio corollala. Tetrahedron Lttcrs, 44: 45254528. POHL, R., JANISTYN, B. & NAHRSTEDT, A,, 1975. Die Flavonolglykoside von Euphorbia helioscopia, E . stricta, E. uerrucosa and E . dulcis. 9. Mitteilung ueber die Flavonoide eimheimisher Euphorbiaceen. Planta Medica, 27: 301-303. PONSINET, G . & OURISSON, G., 1965. etudes chimico-taxonomiques dans la famille des Euphorbiacees-I. Introduction gCnOrale et separation et identification des triterpknes titracycliques monohydroxyles naturels. Phytochemistry, 4: 799-81 I. PRAKASH, S., KHAN, M. A., KHAN, H. & ZAMAN, A., 1983. A piperidine alkaloid from Excnecharia agallocha. Phyfochemistry, 22: 1836-1837. PUNTAMBEKAR, S. V. & KRISHNA, S., 1932. The seeds of Valeria indica Linn. as a source of vegetable tallow. Indian Forester, 58: 68-74; (via Chemical Abstracts, 28: 6005). RAO, D. N. & ROW, L. R., 1966. Crystalline constituents of Euphorbiaceae. 111. The triterpenes of Euphorbia nerifolia. Current Science, 34: 432. RIZK, A. M., 1986. The Phytochemistry of the Flora of Qatar. The Scientific and Applied Research Centre, Qatar University. London: Kingprint Press. RIZK, A. M. & EL-MISSIRY, M. M., 1986. Non-diterpenoid constituents of Euphorbiaceae and Thymelaeaceae. In F. J. Evans (Ed.), Naturalb Occurring Phorbol Esters: 107-138. Boca Raton: C R C Prcss. RIZK, A. M. & RIMPLER, H.,1977.Investigation of Euphorbia indica. Planta Mcdica, 32: 177-180. RIZK, A. M., YOUSSEF, A. M., DIAB, M. A. & SALEM, H. M., 1974. Constituents of Egyptian zyxwvutsrq zyxw zyxwvutsrq zyxwvu zyx zyxwvuts CHEMICAL CONSTITUENTS OF EUPHORBIACEAE 325 Euphorbiaceae. 1. Triterpenoids and related substances of Euphorbia paralias. zeitschrft fur Naturfrschung, 29C: 529-531. RIZK, A. M., YOUSSEF, A. M., DIAB, M. A. & SALEM, H. M., 1976. Flavonoids of Euphorbia paralias. Pharmazie, 31: 405. RIZK, A. M., RIMPLER, H. & ISMAIL, S. I., 1977.Flavonoids and ellagic acid from Euphorbia hypericiiolia ( = E . indica). Fitoterapia, 48: 99-100. RIZK, A. M., HAMMOUDA, F. M., SEIF EL-NASR, M. M. & EL-MISSIRY, M. M., 1978. Phytochemical investigation of Euphorbia geniculata and E . prostrata. Pharmazic, 33: 540-54 1. RIZK, A. M., AHMED, S. S. & DIM, M. M., 1979. Further investigation of the flavonoids of Euphorbia paralias L. Planta Medico, 36: 189-190. RIZK, A. M., HAMMOUDA, F. M., SEIF EL-NASR, M. M. & ABOU-YOUSSEF, A. A., 1980a. Phytochemical investigation of Euphorbia pcplu. Fitoterapia, 51: 223-227. RIZK, A. M., HAMMOUDA, F. M., EL-SHAMY, A. M. & EL-MISSIRY, M. M., 1980b. Triterpenoids from latices of Euphorbia paralias and E. geniculata, Fitoterapia, 51: 31 3-31 6. RIZK, A. M., AL-NAGDY, S. A. & EL-MISSIRY, M. M., 1982. Investigation of Euphorbia granulata. Phannazie, 37: 737-738. ROJAS, H. C., 1964. Possibilities of obtaining pulp and paper from some national raw materials. Tccnologia, 6: 26-32; (via Chemical Abstracts, 66: 66932). ROSHCHIN, YU. V. & KIR'YALOV, N. P., 1970. Tetracyclic triterpenoid compounds from Euphorbia condylocarpa. Khimiya prirodnykh soedinenij, 6: 483 (via Chemical Abstracts, 74: 10351). SAHAI, R., DUBE, M. P. & RASTOGI, R. P., 1981. Chemical and pharmacological study of Euphorbia maddeni. Indian Journal of Pharmaceutical Science, 43: 216-2 19. SAINSBURY, M., 1970. Fridelin and epifriedlinol from the bark of Prunus and a review of their natural distribution. Phytochemistry, 9 : 2209-2215. SARKAR, S. & CHAKRABARTY, M. M., 1956a. Seed fats of the Euphorbiaceae family. I. Chemical examination of the seed fat from Trewia nudiflra. Science and Culture, 21: 473-474; (via Chemical Abstracts, 50: 10427). SARKAR, S. & CHAKRABARTY, M. M., 1956b. Seed fats of the Euphorbiaceae 11. The chemical composition of the seeds fats from BischoJia javanica and Antidesma diandrum. Science and Culture, 22: 336-337; (via Chemical Abstracts, 51: 12511). SCHROEDER, G., ROHMER, M., BECK, J. P. & ANTON, R., 1980. 7-Oxo-,7 a-hydroxy- and 7 8hydroxysterols from Euphorbiafircheriana, Phytochemistry, 19: 2213-2215. SCHULTE, K. E., REISCH, J. & BORNFLETH, H., 1964.The occurrence of tram-dehydromatricaria ester and I-tridecene-3,5,7,9,1 I-pentyne in Ricinus communis, Archiv der Phannaie, 297: 443. SEKULA, B. C. & NES, W., 1980.The identification of cholesterol and other sterols in Euphorbia pulchcrrima. Phytomistry, 19: 1509- 1512. SERRA, R. M., 1944. Investigation of quinine in Phyllanthus nururi L. Anales Uniuersidad Santo Domingo, 8: 295-297; (via Chemical Abstracts, 41: 1812). SHANG, T.-M., WANG, L., LIANG, H.-T., LIN, X.-Y., XIAO, J.-M. & NIU, S.-L., 1979. Studies on the constituents of Mao-Yan-Cao (Euphorbia lunulata Bge). Hua Hsueh Hsueh Pao, 37: 119-128; (via Chnical Abstracts, 92: 3 184). SHIGEMATSU, N., KOUNO, I. & KAWANO, N., 1983. Phloroglucinol derivatives from fruits of Mallotu japonicus. Phytochemistry, 22: 323-325. SINGH, A. & SRIVASTAVA, S. N., 1966. Chemical examination of Euphorbia dracunculoides Lam. Indian Journal of Chemistry, 4: 420. SOBOLEVA, V. A., 1979.Flavonoids of some Euphorbia species. Khimiya Prirodnykh Soedinenij, 5: 855-856; (via Chemical Abstracts, 93: 3899). SOBOLEVA, V. A., 1980. Polyphenol compounds of Ricinus communis and Mercurialis perennis. Khimiya Prirodnykh Soedinenij, 123- 124; (via Chemical Abstracts, 92: 177454). STARRAT, A. N., 1966.Triterpenoid constituents of Euphorbia cyparissias. Phytochemistry, 5: 1341-1 344. STARRAT, A. N., 1969. Isolation of Hopenone-B from Euphorbia cyparissias. Phytochemistry, 8: 1831-1832. STUART, K. L., CHAMBERS, C. & BYFIELD, D., 1969. Morphinandienone alkaloids from CrotonJavcm L., Journal of the Chemical Society ( C ) , 168-1684. TAKEMOTO, T. PC INGAKI, M., 1958.Constituents of Euphorbia marulata. rakugaku zasshi, 78: 292-294. TAKEMOTO, T. & ISHIGURO, T., 1966. Constituents of Euphorbia watanabei. I. rakugaku zusshi, 86: 530-533. TALAPATRA, B., GOSWAMI, S. & TALAPATRA, S. K., 1981. Acalyphamide, a new amide and other constituents of Acalypha indica Linn. Indian Journal of Chemistry, 20B: 974-977. TIWARI, K. P., CHOUDHARY, R. N. & PANDY, G. D., 1981.3-Methoxy-4,6-dihydroxymorphinandien7-one,an alkaloid from Croton bonpalandianum. Phytochemistry, 20: 863-864. TIPATHI, R. D. & TIWARI, K. P., 1980. Geniculatin, a triterpenoid saponin from Euphorbia geniculata. Phytochemistry, 19: 2163-2 166. TUTIYA, M. & KATO, Y.,1940. Foliaceous woods as raw material from pulp in Formosa. Journal of thc Agricultural Chemical Society of Japan, 16: 224-226. UEMURA, D. & HIRA'IA, Y.,1971.The isolation and structures of two new alkaloids milliamines A and B, obtained from Euphorbia millii. Tetrahedron Letters, 3673-3676. zyxwvut 326 zyxwvutsrqpo zyxwvu zyxwvutsrq zyxwvutsr zyxw A.-F. M. RIZK VALEN, F., VAN., 1978. Contribution to the knowledge of cyanogenesis in Angiosperms. 10. Communication. Cyanogenesis in Euphorbiaceae. Planta Medica, H: 408-413. VICKERY, M. L. & VICKERY, B., 1979. Plant Products of Tropical A f k a . London: MacMillan. WAGNER, H., HOERHAMMER, L. & KIRALY, I. C., 1970. Flavon-C-Glykoside in Crolon zambezicw. Phytochnutry, 9: 897. WARNAAR, F., 1981. Conjugated fatty acids from latex of Euphorbia lathyris. Phytochrmistry: 20: 89-91. WATANABE, T. A., ARAKI, T., OGATA, K., GOTO, M. & HOMU, I., 1956. Antibiotic components of plants. 11. Takeda Knutyusho Nrmpo, 15: 129-139. (via Chemical Abstracts, 51: 8367). WATT, J. M. & BREYER-BRANDWIJK, M. G., 1962. The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd edition. Edinburgh, London: E. & S. Livingstone Ltd. WOERD, L. A., VAN DER., 1941. The native medicines of the East Indian Archipelago. VII. The diuretic action of the most common herbs used in the Netherland East Indies in native medicine against diseases of the urinary system. Geneeskundif Tijhchrifr uoor Nederlandsch-Indie, 81: 1963-1980. (via Chemical Abstracts, 36: 160). zyxwvut zyxwvutsrq YAMAGUCHI, K., 1970. Spectral Data of Natural Products, I. Amsterdam: Elsevier. YOSHIDA, T., SENO, K., TAKAMO, Y. & OKUDA, T., 1982. Bergenin derivatives from Malloltu japonicus. P&tochemistry, 21: 118&1182. YOSHITAMA, K., ISHII, K. & YASUDO, H., 1980. A chromatographic survey of anthocyanins in the flora of Japan. journal of the Facully of Science of Shinrhu Universily, 15: 19-25.