Academia.eduAcademia.edu
Phytotaxa 474 (3): 218–234 https://www.mapress.com/j/pt/ Copyright © 2020 Magnolia Press ISSN 1179-3155 (print edition) Article PHYTOTAXA ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.474.3.2 Pseudocercospora dypsidis sp. nov. (Mycosphaerellaceae) on Dypsis lutescens leaves in Thailand YI-JYUN CHEN1,2,4, RUVISHIKA S. JAYAWARDENA1,2,5, CHITRABHANU S. BHUNJUN1,2,6, DULANJALEE L. HARISHCHANDRA1,2,3,7 & KEVIN D. HYDE1,2,8* 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 4  yui2134000@gmail.com; https://orcid.org/0000-0001-9954-0207 5  ruvi.jaya@yahoo.com; https://orcid.org/0000-0001-7702-4885 6  avnishbhunjun@gmail.com; https://orcid.org/0000-0001-8098-3390 7  dulanjalee.harishchandra@gmail.com; https://orcid.org/0000-0003-1538-4951 8  kdhyde3@gmail.com; https://orcid.org/0000-0002-2191-0762 * Corresponding author email:  kdhyde3@gmail.com 2 Abstract A cercosporoid fungus associated with leaf lesions of Dypsis lutenscens (Arecaceae) was observed in Chiang Rai, Thailand. This study describes the new species Pseudocercospora dypsidis based on morphological characteristics and phylogenetic analyses from three gene regions, ITS, TEF-1α, and ACT. Single gene analyses are generally insufficient for identification of Pseudocercospora species, or for segregation of other genera in the Pseudocercospora complex. A list is provided of all Pseudocercospora species known from Thailand and the need to confirm their identifications by a polyphasic approach is stressed. Key words: 1 new species, multigene analyses, Mycosphaerella, palm, Pseudocercospora spp. in Thailand Introduction Palms are one of the most important ornamental tree groups with approximately 3,000 species (Benítez & Soto 2010). Areca palm (Dypsis lutescens), a member of Arecaceae, has a worldwide distribution and is used for landscaping and decoration. Dypsis lutescens prefers warm and humid sub-tropical to tropical climates, conditions that are favorable for many diseases (Basu & Mondol 2012). As ornamental palms have a high aesthetic value, foliar diseases may cause economic loss (Elliott et al. 2004). In July 2019, numerous plants were observed with widespread leaf lesions in Mae Fah Luang University, Chiang Rai Province, Thailand; these lesions were shown to be caused by a Pseudocercospora sp. Pseudocercospora typified by P. vitis was introduced by Spegazzini (1910). Pseudocercospora are asexual fungi which belong to Mycosphaerecellaceae (Capnodiales, Dothideomycetes), closely related to mycosphaerella-like sexual morphs (Braun et al. 2013, 2014, 2015, Crous et al. 2013a, Silva et al. 2016). Species of Pseudocercospora are identified mainly from tropical and sub-tropical regions (Wanasinghe et al. 2018). They cause leaf spots, blight, and necrotic lesions on flowers and fruits of various cultivated and native plants (Chupp 1954, Agrios 2005, Crous & Braun 2003). The typical characteristic of leaf spots caused by these species are distinct chlorotic margins that demarcate the lesions (Crous et al. 2013a). These fungi typically have scolecosporous conidia and dematiaceous conidiophores with unthickened and not darkened conidiogenous loci and hila (Crous & Braun 2003, Braun et al. 2013). The present study aims to identify the causal agent associated with the foliar infection on Dypsis lutescens observed in Chiang Rai, Thailand using morphological and molecular methods. 218 Accepted by Eric McKenzie: 24 Nov. 2020; published: 3 Dec. 2020 Materials and methods Sample collection and examination of specimens Leaves of Dypsis lutescens with necrotic lesions were collected in 2019 at Mae Fah Luang University, Chiang Rai, Thailand. The specimens were placed in paper bags and taken to the laboratory. Leaf lesions were examined using a stereo microscope and photographed by a Carl Zeiss GmbH (AxioCam ERc5s) stereo microscope. A compound microscope (Nikon ECLIPSE 80i) connected with EOS 600D digital camera (Canon, Japan) was used to observe and photograph the morphology. The fungal strain was isolated in pure culture by single spore isolation on potato dextrose agar (PDA) as described by Chomnunti et al. (2014) and incubated at 25 °C. After 18 hours, germinated spores were transferred to a fresh PDA plate. A living ex-type culture was deposited in Mae Fah Luang University Culture Collection (MFLUCC). The dried leaf specimen was deposited at Mae Fah Luang University (MFLU) Herbarium, Chiang Rai, Thailand. Index Fungorum number (Index Fungorum 2020) and Faces of Fungi number (Jayasiri et al. 2015) were registered. DNA extraction, PCR amplification and sequencing Genomic DNA was extracted from fresh fungal mycelia using the modified CTAB method described by Guo et al. (2000). The internal transcribed spacers (ITS), large subunit rRNA (LSU), translation elongation factor 1-alpha (TEF1α) and α-actin (ACT) regions were amplified with the primers ITS4/ITS5 (White et al. 1990), LROR/LR5 (Vilgalys & Hester 1990), EF1-728F/EF2 (O’Donnell et al. 1998) and ACT512F/ACT783R (Carbone & Kohn 1999), respectively. Polymerase chain reactions (PCR) were conducted in a total volume of 25 μl using PCR mixtures containing 16.2 μl of ddH2O, 1 μl of each primer, 3.0 μl of dNTPs (TaKaRa, China), 2.5 μl of 10x Ex-Taq buffer (TaKaRa, China), 1 μl of genomic DNA, and 0.3 μl of TaKaRa Ex-Taq DNA polymerase (TaKaRa, China). A BIORAD C1000 TouchTM Thermal Cycler was used to perform PCR amplification (Applied Biosystems, Foster City, CA, USA). The thermal cycling programs were accomplished by an initial denaturation for 3 min at 95 °C, followed by 34 cycles of denaturation for 30 s at 95 °C, 30 s of annealing, elongation for 1 min at 72 °C, and a final extension for 10 min at 72 °C. The annealing temperatures for ITS, LSU, TEF-1α, and ACT were 58 °C, 55 °C, 52 °C and 61 °C, respectively. The PCR products were checked on 1% agarose gel stained with ethidium bromide under UV light. Sequences of PCR products were obtained from the Beijing Biomed Gene Technology Co., China. Sequence quality was checked and sequences derived from this study are listed in (Table 1). Phylogenetic analyses Resulting sequences were manually trimmed and subjected to a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast. cgi). Closest matched sequences were downloaded from GenBank and taxa from different clades of Pseudocercospora were also included in this study (Silva et al. 2016, Wang et al. 2019). Sequence alignments were performed individually by MAFFT v. 7 (https://mafft.cbrc.jp/alignment/server/), using default setting (Katoh et al. 2019). Alignments were trimmed by trimAL with gappyout model (Capella-Gutierrez et al. 2009) and manually edited by BioEdit v.7.0.5.2 (Hall 1999). Phylogenetic analyses were generated by Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) analysis with MrBayes on XSEDE v.3.2.6 (Miller et al. 2010), RAxML-HPC2 on XSEDE (8.2.8) (Stamatakis 2014), and PAUP on XSEDE (Swofford 2002) in the CIPRES Science Gateway, respectively. An initial BI analysis was performed with an individual alignment of LSU data to determine generic rank and a concatenated alignment for the remaining three genes (ITS, TEF-1α and ACT) was run using BI, ML, and MP. Bayesian inference analysis was conducted by GTR +G +I substitution model for 50,000,000 Markov chain Monte Carlo (MCMC) generations, and trees were saved every 1,000th generations. The first 25% of generated trees were discarded as the burn-in value. Posterior probabilities (PP) were estimated from the remaining trees. All trees were visualized in FigTree v1.4.0 (Rambaut 2012). The ML analysis including 1,000 bootstrap replicates was performed using the GTR+G+I substitution model. Maximum parsimony analysis was estimated with heuristic searches of tree-bisection reconnection (TBR) algorithm and 1,000 random stepwise addition. Maximum trees were set to 1,000 and branches of zero length were collapsed. Parsimony scores including homoplasy index (HI), rescaled consistency index (RC), retention index (RI), consistency index (CI), and tree length (TL) were calculated for trees generated under different optimal criteria. PSEUDOCERCOSPORA DYPSIDIS Phytotaxa 474 (3) © 2020 Magnolia Press • 219 220 • Phytotaxa 474 (3) © 2020 Magnolia Press TABLE 1. Collection details and GenBank accession numbers of isolates included in this study. Species Culture accession numbers1 Host Family Origin New Zealand GenBank accession numbers2 LSU ITS TEF-1α GU214410 – – Cladosporium herbarum CBS 723.79 Allium ampeloprasum Amaryllidaceae ACT – Neopseudocercospora terminaliae Pallidocercospora acaciigena CPC 22685 (ex-type) Terminalia sp. Combretaceae Zambia KF777228 – – – CBS 112515 (ex-type) Acacia mangium Fabaceae Venezuela GQ852599 – – – Pallidocercospora crystallina CBS 116158 Eucalyptus bicostata Myrtaceae South Africa DQ204747 – – – Pallidocercospora heimii CBS 110682 Eucalyptus sp. Myrtaceae Madagascar DQ204751 – – – Pallidocercospora holualoana CBS 129063 Hedychium coronarium Zingiberaceae USA JF770467 – – – Paracercospora egenula CPC 12537 Solanum melongena Solanaceae South Korea GU253738 – – – Passalora eucalypti CBS 111318; CPC 1457 (ex-type) CPC 19812 Eucalyptus saligna Myrtaceae Brazil GU253860 GU269845 GU384558 GU320548 Colophospermum mopane Acer albopurpurascens Fabaceae South Africa NG_042683 – – – Aceraceae Taiwan GU253699 GU269650 GU384368 GU320358 Phaeocercospora colophospermi Pseudocercospora acericola CBS 122279 Aeschynomene falcata Fabaceae Brazil KT290173 KT290146 KT290200 KT313501 P. angolensis CPC 25227; COAD 1972 (ex-type) CBS 112933; CPC 4118 Citrus sp. Rutaceae Zimbabwe GU214470 GU269836 GU384548 JQ325010 P. angolensis CBS 149.53 (ex-type) Citrus sinensis Rutaceae Angola JQ324941 JQ324975 JQ324988 JQ325011 P. assamensis CBS 122467; X988 Musa cv. Musaceae India GU253705 GU269656 GU384374 GU320364 P. assamensis CBS 122467 (ex-type) Musa cv. Musaceae India JX901882 EU514281 JX901673 JX902129 P. atromarginalis CBS 114640 Solanum sp. Solanaceae New Zealand GU253706 GU269658 GU384376 GU320365 P. atromarginalis CPC 25230; COAD 1975 Solanum americanum Solanaceae Brazil KT290176 KT290149 KT290203 KT313504 P. basitruncata CBS 114664; CPC 1202 (ex-type) CGMCC 3.19020 Eucalyptus grandis Myrtaceae Colombia GU253710 GU269662 DQ211675 DQ147622 Euonymus japonicus Celastraceae China – MH255813 MH255819 MH392526 Bixa orellana Bixaceae Brazil KT290180 KT290153 KT290207 KT313508 P. boehmeriigena CPC 25244; COAD 1563 (ex-epitype) CPC 25243; COAD 1562 Bohemia nivea Urticaceae Brazil KT290179 KT290152 KT290206 KT313507 P. breonadiae CBS 143489T = CPC 30153 Breonadia microcephala Rubiaceae South Africa MH107959 NR_158961 MH108026 MH107985 P. aeschynomenicola P. beijingensis P. bixae CHEN ET AL. ...continued on the next page PSEUDOCERCOSPORA DYPSIDIS TABLE 1. (Continued) Species Culture accession numbers1 Host Family Origin South Korea GenBank accession numbers2 LSU ITS TEF-1α GU253718 GU269670 GU384387 P. cercidis-chinensis Cercis chinensis Fabaceae Chamaecrista sp. P. chengtuensis CBS 132109; CPC 14481 (ex-epitype) CPC 25228; COAD 1973 (ex-epitype) CBS 131924; CPC 10696 ACT GU320376 Fabaceae Brazil KT290174 KT290147 KT290201 KT313502 Lycium chinense Solanaceae South Korea JQ324942 GU269673 GU384390 GU320379 P. contraria CBS 132108; CPC 14714 Dioscorea quinqueloba Dioscoreaceae South Korea JQ324945 GU269677 GU384394 GU320385 P. cordiana Cordia goeldiana Boraginaceae Brazil GU214472 GU269681 GU384398 GU320387 P. corylopsidis CBS 114685; CPC 2552 (ex-type) MUCC 874 Hamamelis japonica Hamamelidaceae Japan GU253757 GU269721 GU384437 GU320425 P. corylopsidis MUCC 908 (ex-epitype) Corylopsis spicata Hamamelidaceae Japan GU253727 GU269684 GU384401 GU320390 P. cotoneastri MUCC 876 Cotoneaster salicifolius Rosaceae Japan GU253728 GU269685 GU384402 GU320391 P. crousii CBS 119487 Eucalyptus sp. Myrtaceae New Zealand GU253729 GU269686 GU384403 GU320392 P. cruenta CBS 132021; CPC 10846 Vigna sp. Fabaceae Trinidad GU214673 GU269688 GU384404 JQ325012 P. diplusodonii CPC 25179; COAD 1476 (ex-type) MFLUCC 20-0117 (extype) MUCC 925 Diplusodon sp. Lythraceae Brazil KT290162 KT290135 KT290189 KT313490 Dypsis lutescens Arecaceae Thailand MT767884 MT767837 MT772098 MT772099 Elaeocarpus sp. Elaeocarpaceae Japan GU253740 GU269701 GU384417 GU320405 Emmotum nitens Icacinaceae Brazil KT290163 KT290136 KT290190 KT313491 P. euonymi-japonici CPC 25187; COAD 1491 (ex-type) CGMCC 3.18576 Euonymus japonicus Celastraceae China – MH255812 MH255818 MH392525 P. euphorbiacearum CPC 25222; COAD 1537 Dalechampia sp. Euphorbiaceae Brazil KT290172 KT290145 KT290199 KT313503 P. eustomatis CBS 110822 Eustroma grandiflorum Gentianaceae Argentina GU253744 GU269705 GU384421 GU320409 P. exilis Chamaecrista orbiculata Fabaceae Brazil KT290166 KT290139 KT290193 KT313494 P. fukuokaensis CPC 25193; COAD 1501 (ex-epitype) CBS 132111; CPC 14689 Styrax japonicus Styracaceae South Korea GU253750 GU269713 GU384429 GU320417 P. fukuokaensis MUCC 887 (ex-epitype) Styrax japonicus Styracaceae Japan GU253751 GU269714 GU384430 GU320418 P. fuligena CBS 132017; CPC 12296 Lycopersicon sp. Solanaceae Thailand JQ324953 GU269711 GU384427 GU320415 P. chamaecristae P. dypsidis Phytotaxa 474 (3) © 2020 Magnolia Press • 221 P. elaeocarpi P. emmotunicola ...continued on the next page 222 • Phytotaxa 474 (3) © 2020 Magnolia Press TABLE 1. (Continued) Species Culture accession numbers1 Host Family Origin South Korea GenBank accession numbers2 LSU ITS TEF-1α GU253752 GU269715 GU384431 P. glauca CBS 131884; CPC 10062 Albizzia julibrissin Fabaceae ACT GU320419 P. guianensis MUCC 855 Lantana camara Verbenaceae Japan GU253755 GU269719 GU384435 GU320423 P. guianensis MUCC 879 Lantana camara Verbenaceae Japan GU253756 GU269720 GU384436 GU320424 P. hakeae CBS 112226; CPC 3145 Grevillea sp. Proteaceae Australia GU253805 GU269784 GU384495 JQ325017 P. hakeae CBS 144520; CPC 32100 Hakea sp. Proteaceae Australia MK442553 MK442617 MK442708 MK442642 P. latens MUCC 763 Lespedeza wilfordii Fabaceae Japan GU253763 GU269732 GU384445 GU320434 P. longispora CBS 122470 (ex-type) Musa sp. Musaceae Malaysia GU253764 GU269734 GU384447 GU320436 P. lonicericola MUCC 889 (ex-neotype) Caprifoliaceae Japan GU253766 GU269736 JQ324999 GU320438 P. luzardii CPC 2556 Lonicera gracilipes var. glabra Hancornia speciosa Apocynaceae Brazil GU214477 GU269738 GU384450 GU320440 P. luzardii Apocynaceae Brazil KT290167 KT290140 KT290194 KT313495 Lythraceae South Korea GU253771 GU269742 GU384454 GU320444 P. lythri CPC 25196; COAD 1505 (ex- Harcornia speciosa epitype) CBS 132115; CPC 14588 Lythrum salicaria (ex-epitype) MUCC 865 Lythrum salicaria Lythraceae Japan GU253772 GU269743 GU384455 GU320445 P. macrospora CBS 114696; CPC 2553 Bertholletia excelsa Lecythidaceae Brazil GU214478 GU269745 GU384457 GU320447 P. mali MUCC 886 Malus sieboldii Rosaceae Japan GU253773 GU269744 GU384456 GU320446 P. manihotii Manihot sp. Euphorbiaceae Brazil KT290171 KT290144 KT290198 KT313499 P. musae CPC 25219; COAD 1534 (ex-type) CBS 116634 Musa sp. Musaceae Cuba GU253775 GU269747 GU384459 GU320449 P. nephrolepidis CBS 119121 Nephrolepis auriculata Oleandraceae Taiwan GU253779 GU269751 GU384462 GU320453 P. nogalesii CBS 115022 Chamaecytisus proliferus Fabaceae New Zealand JQ324960 GU269752 GU384463 GU320454 P. norchiensis CBS 114641 Rubus sp. Rosaceae New Zealand – GU269772 GU384484 GU320475 P. norchiensis Eucalyptus sp. Myrtaceae Italy GU253780 GU269753 GU384464 GU320455 P. oenotherae CBS 120738; CPC 13049 (ex-type) CBS 131885; CPC 10290 Oenothera odorata Onagraceae South Korea JQ324961 GU269856 GU384567 GU320559 P. oenotherae CBS 131920; CPC 10630 Oenothera odorata Onagraceae South Korea GU253781 GU269755 GU384466 GU320457 P. pallida CBS 131889; CPC 10776 Campsis grandiflora Bignoniaceae South Korea GU214680 GU269758 GU384469 GU320459 P. paraguayensis CBS 111286; CPC 1459 Eucalyptus nitens Myrtaceae Brazil GU214479 DQ267602 DQ211680 DQ147606 P. lythri CHEN ET AL. ...continued on the next page PSEUDOCERCOSPORA DYPSIDIS TABLE 1. (Continued) Species Culture accession numbers1 Host Family Origin Brazil GenBank accession numbers2 LSU ITS KT290159 KT290132 P. perae Pera glabrata Euphorbiaceae P. pini-densiflorae CPC 25171, COAD 1465 (ex-type) MUCC 534 TEF-1α KT290186 ACT KT313487 Pinus thunbergii Pinaceae Japan GU253785 GU269760 GU384471 GU320461 P. piperis FBR 151 Piper aduncum Piperaceae Brazil JX875063 JX875062 JX896123 P. planaltinensis CPC 25189; COAD 1495 (ex-type) CPC 25191; COAD 1498 (ex-epitype) CPC 26081; COAD 1548 Chamaecrista sp. Fabaceae Brazil KT290164 KT290137 KT290191 KT313492 Himatanthus obovatus Apocynaceae Brazil KT290165 KT290138 KT290192 KT313493 Mikania hirsutissima Asteraceae Brazil KT290178 KT290151 KT290205 KT313506 Pothomorphe umbellata Piperaceae Brazil KT290158 KT290131 KT290185 KT313486 P. pouzolziae CPC 25166; COAD 1450 (ex-type) CBS 122280 Gonostegia hirta Urticaceae Taiwan GU253786 GU269761 GU384472 GU320462 P. prunicola CBS 132107; CPC 14511 Prunus xyedoensis Rosaceae South Korea GU253723 GU269676 GU384393 GU320382 P. pseudomyrticola CBS 145554 Myrtus sp. Myrtaceae Italy MK876446 MK876405 MK876499 MK876461 P. purpurea CBS 114163; CPC 1664 Persea americana Lauraceae Mexico GU253804 GU269783 GU384494 GU320486 P. pyracanthae MUCC 892 Pyracantha angustifolia Rosaceae Japan GU253792 GU269767 GU384479 GU320470 P. pyracanthigena CBS:131589; CPC 10808 (ex-type) CBS 131590; CPC 12500 (ex-type) CBS 282.66 Pyracantha angustifolia Rosaceae South Korea – GU269766 GU384478 GU320469 Rhamnella frangulioides Rhamnaceae South Korea GU253813 GU269795 GU384505 GU320496 Rhapis flabellifornis Arecaceae Japan GU253793 GU269770 GU384482 GU320473 Richardia brasiliensis Rubiaceae Brazil KT290181 KT290154 KT290208 KT313509 Palicourea rigida Rubiaceae Brazil KT290161 KT290134 KT290188 KT313489 P. rubi CPC 25248; COAD 1568 (ex-epitype) CPC 25175; COAD 1472 (ex-epitype) MUCC 875 Rubus allegheniensis Rosaceae Japan GU253795 GU269773 GU384485 GU320476 P. sawadae CBS 115024 Psidium guajava Myrtaceae New Zealand JQ324967 GU269775 – GU320478 P. sennae-multijugae Senna multijuga Fabaceae Brazil KT290169 KT290142 KT290196 KT313497 P. serpocaulonicola CPC 25206; COAD 1519 (ex-type) CPC 25077 Serpocaulon triseriale Polypodiaceae Brazil KT037566 NR_147291 KT037485 KT037607 P. solanipseudocapsicicola CPC 25229; COAD 1974 (ex-type) Solanum pseudocapsicum Solanaceae Brazil KT290175 KT290148 KT290202 KT313503 P. plumeriifolii P. plunkettii P. pothomorphes Phytotaxa 474 (3) © 2020 Magnolia Press • 223 P. rhamnellae P. rhapisicola P. richardsoniicola P. rigidae ...continued on the next page 224 • Phytotaxa 474 (3) © 2020 Magnolia Press TABLE 1. (Continued) Species Host Family Origin GenBank accession numbers2 LSU ITS TEF-1α ACT P. sordida MUCC 913 Campsis radicans Bignoniaceae Japan GU253798 GU269777 GU384488 GU320480 P. stephanandrae MUCC 914 (ex-epitype) Stephanandra incisa Rosaceae Japan GU253831 GU269814 GU384526 GU320516 P. struthanthi Struthanthus flexicaulis Loranthaceae Brazil KT290168 KT290141 KT290195 KT313496 P. styracina CPC 25199; COAD 1512 (ex-epitype) COAD 2369 Styrax sp. Styracaceae Brazil MH480643 MH397664 MH480642 MH480641 P. subsessilis CBS 136.94 – – Cuba GU253832 GU269815 GU384527 GU320517 P. subtorulosa CBS 117230 Melicope sp. Rutaceae Taiwan GU253833 GU269816 GU384528 GU320518 P. tecomicola CPC 25260; COAD 1585 Tecoma stans Bignoniaceae Brazil KT290183 KT290156 KT290209 KT313511 P. trinidadensis CPC 26082; COAD 1756 Croton urucurana Euphorbiacea Brazil KT290184 KT290157 KT290210 P. udagawana CBS 131931; CPC 10799 Hovenia dulcis Rhamnaceae South Korea – GU269824 GU384537 GU320527 P. variicolor MUCC 746 Paeoniaceae Japan GU253843 GU269826 GU384538 GU320530 P. vassobiae CPC 25251; COAD 1572 (ex-type) CBS 125998; CPC 15249 (ex-epitype) MUCC 899 Paeonia lactiflora var. trichocarpa Vassobia breviflora Solanaceae Brazil KT290182 KT290155 – KT313510 Viburnum davidii Caprifoliaceae Netherlands GU253827 GU269809 GU384520 GU320512 Weigela coraeensis Caprifoliaceae Japan GU253847 GU269831 GU384543 GU320535 Wulffia stenoglossa Asteraceae Brazil KT290177 KT290150 KT290204 KT313505 Xylopia aromatica Annonaceae Brazil KT290160 KT290133 KT290187 KT313488 P. zelkovae CPC 25232; COAD 1976 (ex-type) CPC 25173; COAD 1469 (ex-type) CBS 132118; CPC 14717 Zelkova serrata Ulmaceae South Korea GU253850 GU269834 GU384546 JQ325028 P. zelkovae MUCC 872 Zelkova serrata Ulmaceae Japan GU253851 GU269835 GU384547 GU320537 P. viburnigena P. weigelae P. wulffiae P. xylopiae 1 Culture accession numbers1 CHEN ET AL. CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at CBS; COAD, CGMCC China General Microbiological Culture Collection Center; MFLUCC: Mae Fah Luang University Culture Collection; MUCC: Culture Collection, Laboratory of Plant Pathology, Mie University, Tsu, Mie Prefecture, Japan. 2 LSU: partial 28S nrRNA gene; ITS: internal transcribed spacer regions 1 & 2 including 5.8S nrRNA gene; TEF-1α: partial translation elongation factor 1-alpha gene; ACT: partial actin gene. The newly generated taxon is highlighted in green and bold. Type strains (ex-type, ex-epitype, and ex-neotype) are in bold. Results Phylogenetic analyses Large subunit (LSU) phylogeny showed that our pseudocercospora-like isolate clustered in Pseudocercospora sensu lato and for further clarification multi-gene phylogenetic analyses was performed. The final aligned LSU dataset comprised 111 ingroup taxa with 1,282 characters and Cladosporium herbarum (CBS 723.79) as the outgroup taxon. Bayesian analysis resulted in a total of 2,111 trees. The first 25% of generated trees were discarded as the burn-in. The consensus trees and posterior probabilities were estimated from the remaining 1,584 trees (Fig. 1). The final concatenated alignment (ITS, TEF-1α, ACT) comprised 102 strains with 971 characters (ITS 1–471, TEF-1α 475–780, ACT 784–971) including gaps. Passalora eucalypti (CBS 111318) served as the outgroup based on its position as sister taxon to Pseudocercospora (Crous et al. 2006). Bayesian inference generated 9,501 trees when the average standard deviation of split frequencies reached 0.01 (stop value). The consensus trees and posterior probabilities were calculated from the remaining 7,126 trees after discarding the first 25% of generated trees for burn-in. The best scoring RAxML tree with the final optimization likelihood value of -10477.381841 (α = 0.300136, TL = 2.802134, substitution rates AC = 1.350659, AG = 3.246614, AT = 1.424190, CG = 0.784644, CT = 4.575591, GT = 1.0000 and estimated base frequencies A = 0.220122, C = 0.280648, G = 0.249246, T = 0.249984). The MP analysis resulted in one most parsimonious tree including 519 constant characters, 115 parsimony-uninformative variable characters, and 337 parsimony-informative characters (TL = 1,803, CI = 0.433, RI = 0.798, RC = 0.345, HI = 0.567). Maximum likelihood and MP analyses produced mostly identical tree topologies with the result of Bayesian analyses. Bootstrap support values of the ML and MP trees were incorporated into the tree that resulted from BI analyses (Fig. 2). Taxonomy Pseudocercospora dypsidis Y.J. Chen, Jayaward. & K.D. Hyde, sp. nov. (Fig. 3) Index Fungorum number: IF557830; Faces of Fungi number: FoF 09219 Type:—THAILAND. Chiang Rai: Thasud, Mueang, Mae Fah Luang University, on leaf of Dypsis lutescens, 31 July 2019, Y.J. Chen, holotype MFLU 20-0502; ex-type culture MFLUCC 20-0117. Associated with leaf blight of Dypsis lutescens Wendel. Symptoms form yellowish brown streaks from the leaf tip, becoming grey in the center with brown border, surrounded by a chlorotic yellow zone, amphigenous, coalescing to form large, brown necrotic areas. Sexual morph: not observed. Asexual morph on host. Sporodochia 64−117 × 63−111 ( = 88 × 88 μm, n=20), erumpent, pale olivaceous brown. Conidiophores 10−30.5 × 1.8−3.9 μm ( = 17.6 × 2.7 μm, n=30), grouped in dense fascicles, unbranched, subcylindrical, straight to curved, 1−2-septate, hyaline to pale olivaceous. Conidiogenous cells 8−15.7 × 1.1−3.3 μm ( = 11.3 × 2 μm, n=25), unbranched, terminal, proliferating sympodially and percurrently, smooth, unthickened wall, pale brown. Conidiogenous loci inconspicuous, unthickened and not darkened. Conidia 21−67 × 1.3−2.9 μm ( = 39 × 2 μm, n=50), solitary, holoblastic, straight or slightly curved, smooth, narrowly obclavate, apex sub-obtuse, base rounded to long obconic-truncate, 1−5-septate, unthickened wall, subhyaline to pale olivaceous brown. Hilum unthickened, not darkened. Culture characteristics:—Colony on PDA reaching a diameter of 80 mm after 7 days at 25 °C, not sporulating. Edge circular to irregular, umbonate, margin entire to undulate, pale grey at center, greenish grey to dark grey towards the margin from above, dark grey to black from below. Etymology:—Refers to the host, Dypsis lutescens. Habitat/Distribution:—Known to inhabit Dypsis lutescens, Chiang Rai Province, Thailand. GenBank accession numbers:—LSU: MT767884; ITS: MT767837; TEF-1α: MT772098; ACT: MT772099. Notes:—Pseudocercospora dypsidis formed a monophyletic lineage with high statistical support (BYPP: 1.0, ML: 93%, MP: 97%; Fig. 2) sister to P. hakeae isolated from leaves of Hakea sp. and Grevillea sp. in Australia (Crous et al. 2019a). Pseudocercospora dypsidis can be distinguished from P. hakeae by its narrower conidia (P. hakae: 30–50 × 4–5 μm) with unthickened wall and narrower and smaller conidiophores (P. hakae: 30–70 × 6–8 μm). Pseudocercospora dypsidis differs from its sister clade taxa, P. musae (Chupp 1954) in having narrower and longer conidiophores (P. musae: 5–25 × 2–2.3 μm) with narrower and shorter conidia (P. musae: 10–80 × 2−4 μm) and from P. longispora (Arzanlou et al. 2008) in having shorter conidia (P. longispora: 82–120 × 2.5−4 μm). To our knowledge P. dypsidis is the first record of Pseudocercospora species on the host Dypsis. PSEUDOCERCOSPORA DYPSIDIS Phytotaxa 474 (3) © 2020 Magnolia Press • 225 FIGURE 1. Phylogram (50% majority rule) of 1,584 trees generated from a Bayesian analysis of the LSU sequence alignment. The tree was rooted with Cladosporium herbarum (CBS 723.79). The scale bar represents the expected number of nucleotide substitutions per site. The newly generated taxon is highlighted in red and bold. Ex-type (exepitype and ex-neotype) strains are in bold. 226 • Phytotaxa 474 (3) © 2020 Magnolia Press CHEN ET AL. FIGURE 2. Phylogram of Pseudocercospora species and the outgroup taxon Passalora eucalypti (CBS 111318) generated from Bayesian analysis based on ITS−TEF-1α−ACT sequence data. Support values were calculated via BI (≥0.90 PP), and ML, MP (≥50%) indicated above or below the nodes or with a black arrow, respectively. The scale bar represents the expected number of nucleotide substitutions per site. The newly generated taxon is highlighted in red and bold. Ex-type (ex-epitype and ex-neotype) strains are in bold. PSEUDOCERCOSPORA DYPSIDIS Phytotaxa 474 (3) © 2020 Magnolia Press • 227 FIGURE 3. Pseudocercospora dypsidis. a. Host b, c. Leaf blight on host. d, e. Stromata on host substrate. f. Conidiogenous cells and conidiophores. g. Conidia. h. Germinated conidium. i. Colony on PDA after 2 months. Scale bars c = 3 mm, d, e = 200 μm, f–h = 20 μm. Discussion Pseudocercospora is a large genus comprising about 1,500 morphological species in Species Fungorum, although less than 300 species have molecular data (Hongsanan et al. 2020). The genus is polyphyletic (Crous et al. 2013a). There are few informative morphologies to distinguish taxa within the Pseudocercospora complex (Bakhshi et al. 2014). For example, Neopseudocercospora, Pallidocercospora, Paracercospora and Phaeocercospora belong to Pseudocercospora complex (Bakhshi et al. 2014) and are morphologically similar to Pseudocercospora, but they can be distinguished based on phylogenetic analyses (Crous et al. 2013a, b, Hyde et al. 2013, Hongsanan et al. 2020). Thus, it is important to use sequence data at generic rank to illustrate our pseudocercospora-like isolate which clustered in Pseudocercospora s. lat (Fig. 1). It is recommended to use multi-loci phylogenetic analyses to resolve cryptic species in Pseudocercospora (Crous et al. 2013a, Bakhshi et al. 2014). According to previous studies, the systematic relationships of Pseudocercospora species were evident by the gene regions, ITS, TEF-1α and ACT (Crous et al. 2013a, Bakhshi et al. 2014, Silva et al. 2016, Nesamari et al. 2017). The ITS region alone is not enough to differentiate most taxa at species level based on BI, ML and MP methods (data not shown). This is in accordance to previous studies by Crous et al. (2013a), Bakhshi et al. (2014) and Silva et al. (2016). Pseudocercospora dypsidis could not be distinguished from other Pseudocercospora species based solely on ACT phylogeny, but it is distinct in the TEF-1α (sister taxon to P. hakeae) phylogeny (data not shown). Thailand is a well-known biodiversity hotspot (Hyde et al. 2018). There are 138 records of Pseudocercospora species listed in fungus/host database (Farr & Rossman 2020) (Table 2). Most of these species (94%) have been identified solely on morphological characteristics and host association. Therefore, there is an urgent need to identify and characterize species of Pseudocercospora based on a polyphasic approach. 228 • Phytotaxa 474 (3) © 2020 Magnolia Press CHEN ET AL. TABLE 2. Records of Pseudocercospora species in Thailand. Species Pseudocercospora abelmoschi P. atromarginalis P. balsaminae P. basiramifera Host Hibiscus sp. Host family Malvaceae References Meeboon et al. (2007) Lycianthes biflora Impatiens balsamina Eucalyptus camaldulensis Eucalyptus pellita Solanaceae Balsaminaceae Myrtaceae Myrtaceae P. bauhiniae P. bischofiae P. bradburyae P. buddleiae P. carbonacea Bauhinia racemosa Bischofia javanica Centrosema pubescens Buddleja asiatica Dioscorea bulbifera Dioscorea glabra var. glabra Terminalia tomentosa Centrosema pubescens Eucalyptus camaldulensis Fabaceae Phyllanthaceae Fabaceae Scrophulariaceae ‎Dioscoreaceae Dioscoreaceae ‎Combretaceae Fabaceae Myrtaceae Christella parasitica Justicia gendarussa Dioscorea alata Crotalaria uncinella subsp. elliptica Crateva religiosa Cuphea hyssopifolia Cyclea fissicalyx Cyclea peltata Cyclea sp. Dalbergia cultrata Dalbergia stipulacea Duabanga grandiflora Dypsis lutescens Chromolaena odorata Chromolaena odorata Ficus rumphii Eucalyptus camaldulensis Thelypteridaceae Acanthaceae Dioscoreaceae Fabaceae Phengsintham et al. (2013) Phengsintham et al. (2010, 2013) Crous (1998), Hunter et al. (2011) Crous (1998), Crous et al. (2013b*, 2019b*), Hunter et al. (2011), Quaedvlieg et al. (2014*), Guatimosim et al. (2016*) Nakashima et al. (2007) Phengsintham et al. (2013) Lenné (1990) Nakashima et al. (2007) Meeboon et al. (2007), Phengsintham et al. (2013) Nakashima et al. (2007) Phengsintham et al. (2013) Phengsintham et al. (2013) Cheewangkoon et al. (2008), Hunter et al. (2011), Crous et al. (2013b*, 2019b*), Quaedvlieg et al. (2014*) Phengsintham et al. (2010, 2013), Braun et al. (2013*) Phengsintham et al. (2013) Meeboon et al. (2008) Phengsintham et al. (2013) P. catappae P. centrosematicola P. chiangmaiensis P. christellae P. consociata P. contraria P. cotizensis P. cratevae P. cupheae P. cycleae P. dalbergiae P. duabangae P. dypsidis P. eupatorii-formosani P. eupatorii-formosanii P. fici P. flavomarginata P. fuligena P. getoniae P. glochidionis P. griseola P. heveae P. holmskioldiae P. houttuyniae P. jahnii P. jussiaeae P. lygodii P. lythracearum P. malloticola Lycopersicon esculentum Lycopersicon esculentum var. pyriforme Lycopersicon sp. Solanum lycopersicum Solanum sp. Getonia floribunda Glochidion sphaerogynum Phaseolus vulgaris Hevea sp. Holmskioldia sanguinea Houttuynia cordata Tabebuia chrysotricha Ludwigia prostrata Lygodium flexuosum Lagerstroemia macrocarpa Mallotus barbatus Mallotus japonicus PSEUDOCERCOSPORA DYPSIDIS Capparaceae Lythraceae Menispermaceae Menispermaceae Menispermaceae Fabaceae Fabaceae Fabaceae Arecaceae Asteraceae Asteraceae Moraceae Myrtaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae ‎Combretaceae Phyllanthaceae ‎Fabaceae Euphorbiaceae Lamiaceae Saururaceae Bignoniaceae Onagraceae Lygodiaceae ‎Lythraceae Euphorbiaceae Euphorbiaceae Phengsintham et al. (2013) Meeboon et al. (2007) Phengsintham et al. (2012) Phengsintham et al. (2012, 2013) Phengsintham et al. (2012) Meeboon et al. (2007) Nakashima et al. (2007) Phengsintham et al. (2010, 2013) Present study Phengsintham et al. (2013) Barreto & Evans (1994) Meeboon et al. (2007) Hunter et al. (2006, 2011), Crous et al. (2013a*, 2013b*, 2019b*), de Miranda et al. (2014*), Quaedvlieg et al. (2014*), Videira et al. (2016*, 2017*) Phengsintham et al. (2013) Meeboon et al. (2008) Osorio et al. (2015*), Guatimosim et al. (2016*) Phengsintham et al. (2012) Silva et al. (2016*) Phengsintham et al. (2013) Meeboon et al. (2007) Meeboon et al. (2007) Crous & Braun (2003) Nakashima et al. (2007) Nakashima et al. (2007) Phengsintham et al. (2013) Phengsintham et al. (2013) Phengsintham et al. (2013) Phengsintham et al. (2013) Phengsintham et al. (2012, 2013) Phengsintham et al. (2012) ...continued on the next page Phytotaxa 474 (3) © 2020 Magnolia Press • 229 TABLE 2. (Continued) Species Host Mallotus thorelii P. melanolepidis Mallotus pierrei P. mombin Spondias pinnata P. mori Morus alba P. musae Musa acuminata Musa paradisiaca P. nephrolepidigena Nephrolepis biserrata P. nymphaeacea Nymphaea stellata P. olacicola Olax scandens Olax sp. Olax wightiana Olax zeylanica Ximenia sp. P. oroxyli Oroxylum indicum P. paederiae Paederia chinensis Paederia foetida Paederia scandens Paederia tomentosa P. panacis Polyscias balfouriana P. paraguayensis Eucalyptus sp. P. phyllitidis Nephrolepis biserrata Nephrolepis cordifolia P. polysciatis Polyscias balfouriana Polyscias guilfoylei Polyscias sp. P. pteridophytophila Cyclosorus parasiticus P. puderi Rosa sp. P. puerariicola Pueraria phaseoloides P. punicae Punica granatum P. radermachericola Radermachera ignea P. rhinacanthi Rhinacanthus nasutus P. riachueli Vitis sp. P. riachueli var. horiana Vitis vinifera P. rosae Rosa canina P. schizolobii Eucalyptus camaldulensis P. scopariicola Scoparia dulcis P. solani-melongenicola Solanum melongena Pseudocercospora sp. Musa acuminata P. sphaerellae-eugeniae Syzygium cumini P. stahlii Passiflora foetida P. stizolobii Mucuna bracteata Mucuna pruriens P. subsessilis Melia azedarach P. tamarindi Tamarindus indica P. tecomae-heterophyllae Tecoma stans P. thailandica Acacia mangium P. timorensis P. trematicola Eucalyptus camaldulensis Operculina sp. Trema orientale Trema orientalis Solanum sp. P. trichophila var. punctata P. viticicola Vitex quinata P. vitis Vitis sp. P. wrightiae Wrightia pubescens * Indicates the species has sequence data. 230 • Phytotaxa 474 (3) © 2020 Magnolia Press Host family Euphorbiaceae Euphorbiaceae Anacardiaceae Moraceae Musaceae Musaceae Nephrolepidaceae Nymphaeaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae ‎Bignoniaceae ‎Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Myrtaceae Nephrolepidaceae ‎Nephrolepidaceae ‎Araliaceae Araliaceae Araliaceae Thelypteridaceae Rosaceae ‎Fabaceae Lythraceae Bignoniaceae ‎Acanthaceae Vitaceae Vitaceae Rosaceae Myrtaceae ‎Plantaginaceae ‎Solanaceae Musaceae Myrtaceae Passifloraceae Fabaceae Fabaceae Meliaceae Fabaceae ‎Bignoniaceae Fabaceae Myrtaceae Convolvulaceae Cannabaceae Cannabaceae Solanaceae References Phengsintham et al. (2012) Meeboon et al. (2007) Phengsintham et al. (2013) Phengsintham et al. (2013) Meeboon et al. (2008) Phengsintham et al. (2013) Braun et al. (2013) Meeboon et al. (2008) Phengsintham et al. (2012, 2013) Phengsintham et al. (2012) Phengsintham et al. (2012) Phengsintham et al. (2012) Phengsintham et al. (2012) Meeboon et al. (2007); Phengsintham et al. (2013) Phengsintham et al. (2012) Phengsintham et al. (2012) Phengsintham et al. (2012) Phengsintham et al. (2012, 2013) Phengsintham et al. (2013) Meeboon et al. (2007); Phengsintham et al. (2013) Nakashima et al. (2007) Meeboon et al. (2007) Phengsintham et al. (2012) Phengsintham et al. (2012) Phengsintham et al. (2012) Kirschner & Liu (2014) Phengsintham et al. (2013) Phengsintham et al. (2013) Phengsintham et al. (2011, 2013) Phengsintham et al. (2010, 2013) Meeboon et al. (2007) Jayawardena et al. (2018b*) Phengsintham et al. (2013) Wanasinghe et al. (2018) Crous et al. (2009a, b), Hunter et al. (2011) Phengsintham et al. (2013) Meeboon et al. (2007) Lumyong et al. (2003) Phengsintham et al. (2013) Phengsintham et al. (2013) Nakashima et al. (2007) Phengsintham et al. (2013) Meeboon et al. (2007) Liu et al. (2015) Nakashima et al. (2007) Crous et al. (2004), Braun et al. (2014*), Liang et al. (2016*) Hunter et al. (2011) Phengsintham et al. (2013) Phengsintham et al. (2010) Phengsintham et al. (2013) Phengsintham et al. (2013) Lamiaceae Vitaceae Apocynaceae Nakashima et al. (2007) Jayawardena et al. (2018a*, b*) Phengsintham et al. (2013) CHEN ET AL. Acknowledgements Y.J. Chen and R.S. Jayawadena would like to thank Mae Fah Luang University for financial support. K.D. Hyde thanks the Thailand Research Fund for the grant RDG6130001MS Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion. References Agrios, G.N. (2005) Plant pathology, 5th edition. Academic Press, New York, 922 pp. Arzanlou, M., Groenewald, J.Z., Fullerton, R.A., Abeln, E.C., Carlier, J., Zapater, M.F., Buddenhagen, I.W., Viljoen, A. & Crous, P.W. (2008) Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana. Persoonia 20: 19–37. https://doi.org/10.3767/003158508X302212 Bakhshi, M., Arzanlou, M., Babai-Ahari, A., Groenewald, J.Z. & Crous, P.W. (2014) Multi-gene analysis of Pseudocercospora spp. from Iran. Phytotaxa 184 (5): 245–264. https://doi.org/10.11646/phytotaxa.184.5.1 Barreto, R.W. & Evans, H.C. (1994) The mycobiota of the weed Chromolaena odorata in southern Brazil with particular reference to fungal pathogens for biological control. Mycological Research 98: 1107–1116. https://doi.org/10.1016/S0953-7562(09)80196-2 Basu, S.K. & Mondol, S. (2012) Precocious flowering in Dypsis lutescens. Phytotaxonomy 12: 175–177. Benítez, B. & Soto, F. (2010) El cultivo de la palma areca (Dypsis lutescens, H. Wendel). Cultivos Tropicales 31 (1): 62–69. Braun, U., Nakashima, C. & Crous, P.W. (2013) Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus 4: 265–345. https://doi.org/10.5598/imafungus.2013.04.02.12 Braun, U., Crous, P.W. & Nakashima, C. (2014) Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus 5: 203–390. https://doi.org/10.5598/imafungus.2014.05.02.04 Braun, U., Crous, P.W. & Nakashima, C. (2015) Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses). IMA Fungus 6: 25–97. https://doi.org/10.5598/imafungus.2015.06.02.09 Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.2307/3761358 Cheewangkoon, R., Crous, P.W., Hyde, K.D., Groenewald, J.Z. & To-anan, C. (2008) Species of Mycosphaerella and related anamorphs on Eucalyptus leaves from Thailand. Persoonia 21: 77–91. https://doi.org/10.3767/003158508X370857 Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Peršoh, D., Dhami, MK., Alias, A.S., Xu, J.C., Liu, X.Z., Stadler, M. & Hyde, K.D. (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5 Chupp, C. (1954) A monograph of the fungus genus Cercospora. Published by the author, Ithaca, New York, USA. Crous, P.W. (1998) Mycosphaerella spp. and their anamorphs: associated with leaf spot diseases of Eucalyptus. Mycological Memoirs 21: 1–170. Crous, P.W. & Braun, U. (2003) Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands. CBS Biodiversity Series 1: 1–571. Crous, P.W., Groenewald, J.Z., Pongpanich, K., Himaman, W., Arzanlou, M. & Wingfield, M.J. (2004) Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Studies in Mycology 50: 457–469. Crous, P.W., Liebenberg, M.M., Braun, U. & Groenewald, J.Z. (2006) Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55: 163–173. PSEUDOCERCOSPORA DYPSIDIS Phytotaxa 474 (3) © 2020 Magnolia Press • 231 https://doi.org/10.3114/sim.55.1.163 Crous, P.W., Summerell, B.A., Carnegie, A.J., Wingfield, M.J. & Groenewald, J.Z. (2009a) Novel species of Mycosphaerellaceae and Teratosphaeriaceae. Persoonia 23: 119–146. https://doi.org/10.3767/003158509X479531 Crous, P.W., Summerell, B.A., Carnegie, A.J., Wingfield, M.J., Hunter, G.C., Burgess, T.I., Andjic, V., Barber, P.A. & Groenewald, J.Z. (2009b) Unravelling Mycosphaerella: do you believe in genera? Persoonia 23: 99–118. https://doi.org/10.3767/003158509X479487 Crous, P.W., Braun, U., Hunter, G.C., Wingfield, M.J., Verkley, G.J.M., Shin, H.D., Nakashima, C. & Groenewald, J.Z. (2013a) Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. https://doi.org/10.3114/sim0005 Crous, P.W., Quaedvlieg, W., Sarpkaya, K., Can, C. & Erkýlýç, A. (2013b) Septoria-like pathogens causing leaf and fruit spot of pistachio. IMA Fungus 4: 187–199. https://doi.org/10.5598/imafungus.2013.04.02.04 Crous, P.W., Schumacher, R.K., Akulov, A., Thangavel, R., Hernández-Restrepo, M., Carnegie, A.J., Cheewangkoon, R., Wingfield, M.J., Summerell, B.A., Quaedvlieg, W., Coutinho, T.A., Roux, J., Wood, A.R., Giraldo, A. & Groenewald, J.Z. (2019a) New and interesting fungi. 2. Fungal Systematics and Evolution 3: 57–134. https://doi.org/10.3114/fuse.2019.03.06 Crous, P.W., Wingfield, M.J., Cheewangkoon, R., Carnegie, A.J., Burgess, T.I., Summerell, B.A., Edwards, J., Taylor, P.W.J. & Groenewald, J.Z. (2019b) Foliar pathogens of eucalypts. Studies in Mycology 94: 125–298. https://doi.org/10.1016/j.simyco.2019.08.001 de Miranda, B.E.C., Ferreira, B.W., Alves, J.L., de Macedo, D.M. & Barreto, R.W. (2014) Pseudocercospora lonicerigena a leaf spot fungus on the invasive weed Lonicera japonica in Brazil. Australasian Plant Pathology 43: 339–345. https://doi.org/10.1007/s13313-014-0275-x Elliott, M.L., Broschat, T.K., Uchida, J.Y. & Simone, G.W. (2004) Compendium of ornamental palm diseases and disorders. American Phytopathological Society, St. Paul. Farr, D.F. & Rossman, A.Y. (2020) Fungal Databases, systematic mycology and microbiology laboratory, ARS, USDA. Available from: http://nt.ars-grin.gov/fungaldatabases/ (accessed 10 July 2020) Guatimosim, E., Schwartsburd, P.B., Barreto, R.W. & Crous, P.W. (2016) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia 37: 106–141. https://doi.org/10.3767/003158516X690934 Guo, L.D., Hyde, K.D. & Liew, E. (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist 147 (3): 617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. Hongsanan, S., Hyde, K.D., Phookamsak, R., Wanasinghe, D.N., McKenzie, E.H.C., Sarma, V.V., Boonmee, S., Lücking, R., Pem, D., Bhat, J.D., Liu, N., Tennakoon, D.S., Karunarathna, A., Jiang, S.H., Jones, E.B.G., Phillips, A.J.L., Manawasinghe, I., Tibpromma, S., Jayasiri, S.C., Sandamali, D., Jayawardena, R.S., Wijayawardene, N.N., Ekanayaka, A.H., Jeewon, R., Lu, Y.Z., Dissanayake, A.J., Luo, Z.L., Tian, Q., Phukhamsakda, C., Thambugala, K.M., Dai, D.Q., Chethana, T.K.W., Ertz, D., Doilom, M., Liu, J.K., PérezOrtega, S., Suija, A., Senwanna, C., Wijesinghe, S.N., Konta, S., Niranjan, M., Zhang, S.N., Ariyawansa, H.A., Jiang, H.B., Zhang, J.F., de Silva, N.I., Thiyagaraja, V., Zhang, H., Bezerra, J.D.P., Miranda-Gonzáles, R., Aptroot, A., Kashiwadani, H., Harishchandra, D., Aluthmuhandiram, J.V.S., Abeywickrama, P.D., Bao, D.F., Devadatha, B., Wu, H.X., Moon, K.H., Gueidan, C., Schumm, F., Bundhun, D., Mapook, A., Monkai, J., Chomnunti, P., Samarakoon, M.C., Suetrong, S., Chaiwan, N., Dayarathne, M.C., Jing, Y., Rathnayaka, A.R., Bhunjun, C.S., Xu, J.C., Zheng, J.S., Liu, G., Feng, Y. & Xie, N. (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11 (1): 1553–2107. https://doi.org/10.5943/mycosphere/11/1/13 Hunter, G.C., Crous, P.W., Wingfield, B.D., Pongpanich, K. & Wingfield, M.J. (2006) Pseudocercospora flavomarginata sp. nov., from Eucalyptus leaves in Thailand. Fungal Diversity 22: 71–90. Hunter, G.C., Crous, P.W., Carnegie, A.J., Burgess, T.I. & Wingfield, M.J. (2011) Mycosphaerella and Teratosphaeria diseases of Eucalyptus; easily confused and with serious consequences. Fungal Diversity 50: 145–166. https://doi.org/10.1007/s13225-011-0131-z Hyde, K.D., Jones, E.G., Liu, J.K., Ariyawansa, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P.W. & Dai, D.Q. (2013) Families of Dothideomycetes. Fungal Diversity 63: 1–313. https://doi.org/10.1007/s13225-013-0263-4 232 • Phytotaxa 474 (3) © 2020 Magnolia Press CHEN ET AL. Hyde, K.D., Norphanphoun, C., Chen, J., Dissanayake, A.J., Doilom, M., Hongsanan, S., Jayawardena, R.S., Jeewon, R., Perera, R.H., Thongbai, B., Wanasinghe, D.N., Wisitrassameewong, K., Tibpromma, S. & Stadler, M. (2018) Thailand’s amazing diversity—up to 96% of fungi in northern Thailand are novel. Fungal Diversity 93: 215–239. https://doi.org/10.1007/s13225-018-0415-7 Index Fungorum (2020) Available from: http://www.indexfungorum.org/Names/Names.asp (accessed 10 July 2020) Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I. & Jeewon, R. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8 Jayawardena, R.S., Hyde, K.D., Chethana, K.W.T., Daranagama, D.A., Dissanayake, A.J., Goonasekara, I.D., Manawasighe, I.S., Mapook, A., Jayasiri, S.C., Karunarathna, A., Li, C.G., Phukhamsakda, C., Senanayake, I.C., Wanasinghe, D.N., Camporesi, E., Bulgakov, T.S., Li, X.H., Liu, M. , Zhang, W. & Yan, J.Y. (2018a) Mycosphere notes 102–168: Saprotrophic fungi on Vitis in China, Italy, Russia and Thailand. Mycosphere 9 (1): 1–114. https://doi.org/10.5943/mycosphere/9/1/1 Jayawardena, R.S., Purahong, W., Zhang, W., Wubet, T., Li, X.H., Liu, M., Zhao, W., Hyde, K.D., Liu, L.H. & Yan, J. (2018b) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Diversity 90: 1–84. https://doi.org/10.1007/s13225-018-0398-4 Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166. https://doi.org/10.1093/bib/bbx108 Kirschner, R. & Liu, L.C. (2014) Mycosphaerellaceous fungi and new species of Venustosynnema and Zasmidium on ferns and fern allies in Taiwan. Phytotaxa 176 (1): 309–323. https://doi.org/10.11646/phytotaxa.176.1.29 Lenné, J.M. (1990) World list of fungal diseases of tropical pasture species. Phytopathology Papers 31: 1–162. Liang, C., Jayawardena, R.S., Zhang, W., Wang, X., Liu, M., Liu, L., Zang, C., Xu, X., Hyde, K.D., Yan, J., Li, X. & Zhao, K. (2016) Identification and characterization of Pseudocercospora species causing grapevine leaf spot in China. Journal of Phytopathology 164: 75–85. https://doi.org/10.1111/jph.12427 Liu, J.K., Hyde, K.D., Jones, E.B.G., Ariyawansa, H.A., Bhat, D.J., Boonmee, S., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Phookamsak, R., Phukhamsakda, C., Shenoy, B.D. , Abdel-Wahab, M.A., Buyck, B., Chen, J., Camporesi, E., Zhao, R.L., Yan, J.Y., Xu, J.C., Wen, T.C., Zeng, X.Y., Matsumura, M., Liu, X.Z., Liu, Z.Y., Mortimer, P.E., von Brackel, W., Mapook, A., Li, W.J., Pang, K.L., Norphanphoun, C. & D’Souza, M.J. (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1–197. https://doi.org/10.1007/s13225-015-0324-y Lumyong, P., Photita, W., McKenzie, E.H.C., Hyde, K.D. & Lumyong, S. (2003) Saprobic fungi on dead wild banana. Mycotaxon 85: 345–346. Meeboon, J., Hidayat, I. & To-anun, C. (2007) An annotated list of cercosporoid fungi in Northern Thailand. Journal of Agricultural Technology 3: 51–63. Meeboon, J., Hidayat, I., To-anun, C. & Nakashima, C. (2008) Cercosporoid fungi from Thailand II. New species of Cercospora and Passalora. Sydowia 60: 253–260. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA. https://doi.org/10.1109/GCE.2010.5676129 Nakashima, C., Motohashi, K., Meeboon, J. & To-anun, C. (2007) Studies on Cercospora and allied genera in northern Thailand. Fungal Diversity 26: 257–270. Nesamari, R., Coutinhoa, T.A. & Rouxb, J. (2017) Investigations into Encephalartos insect pests and diseases in South Africa and identification of Phytophthora cinnamomi as a pathogen of the Modjadji cycad. Plant Pathology 66: 612–622. https://doi.org/10.1111/ppa.12619 O’Donnell, K., Kistler, H.C., Cigelnik, E. & Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95 (5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044 Osorio, J.A., Wingfield, M.J., De Beer, Z.W. & Roux, J. (2015) Pseudocercospora mapelanensis sp. nov., associated with a fruit and leaf disease of Barringtonia racemosa in South Africa. Australasian Plant Pathology 44: 349–359. PSEUDOCERCOSPORA DYPSIDIS Phytotaxa 474 (3) © 2020 Magnolia Press • 233 https://doi.org/10.1007/s13313-015-0357-4 Phengsintham, P., Chukeatirote, E., McKenzie, E.H.C., Moslem, M.A., Hyde, K.D. & Braun, U. (2010) Two new species and a new record of cercosporoids from Thailand. Mycosphere 1 (3): 205–212. Phengsintham, P., Chukeatirote, E., McKenzie, E.H.C., Hyde, K.D. & Braun, U. (2011) Tropical phytopathogens 1: Pseudocercospora punicae. Plant Pathology & Quarantine 1 (1): 1–6. https://doi.org/10.5943/ppq/1/1/1 Phengsintham, P., Chukeatirote, E., McKenzie, E.H.C., Moslem, M.A., Hyde, K.D. & Braun, U. (2012) Fourteen new records of cercosporoids from Thailand. Maejo International Journal of Science and Technology 6: 47–61. Phengsintham, P., Braun, U., McKenzie, E.H.C., Chukeatirote, E., Cai, L. & Hyde, K.D. (2013) Monograph of cercosporoid fungi from Thailand. Plant Pathology & Quarantine 3 (2): 67–138. https://doi.org/10.5943/ppq/3/2/2 Quaedvlieg, W., Binder, M., Groenewald, J.Z., Summerell, B.A., Carnegie, A.J., Burgess, T.I. & Crous, P.W. (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40. https://doi.org/10.3767/003158514X681981 Rambaut, A. (2012) FigTree version 1.4.0. Available from https://tree.bio.ed.ac.uk/software/figtree/ (accessed 10 December 2019) Silva, M., Barreto, R.W., Pereira, O.L., Freitas, N.M., Groenewald, J.Z. & Crous, P.W. (2016) Exploring fungal mega-diversity: Pseudocercospora from Brazil. Persoonia 37: 142–172. https://doi.org/10.3767/003158516X691078 Species Fungorum (2020) http://www.speciesfungorum.org/Names/Names.asp. (accessed 10 July 2020) Spegazzini, C. (1910) Mycetes argentinenses (series V). Anales del Museo Nacional de Historia Natural, Buenos Aires 20: 329–467. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 Swofford, D.L. (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland. Videira, S.I.R., Groenewald, J.Z., Braun, U., Shin, H.D. & Crous, P.W. (2016) All that glitters is not Ramularia. Studies in Mycology 83: 49–163. https://doi.org/10.1016/j.simyco.2016.06.001 Videira, S.I.R., Groenewald, J.Z., Nakashima, C., Braun, U., Barreto, R.W., de Wit, P.J.G.M. & Crous, P.W. (2017) Mycosphaerellaceae – chaos or clarity? Studies in Mycology 87: 257–421. https://doi.org/10.1016/j.simyco.2017.09.003 Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990 Wanasinghe, D.N., Phukhamsakda, C., Hyde, K.D., Jeewon, R., Lee, H.B., Gareth Jones, E.B., Tibpromma, S., Tennakoon, D.S., Dissanayake, A.J., Jayasiri, S.C., Gafforov, Y., Camporesi, E., Bulgakov, T.S., Ekanayake, A.H., Perera, R.H., Samarakoon, M.C., Goonasekara, I.D., Mapook, A., Li, W.-J., Senanayake, I.C., Li, J. , Norphanphoun, C., Doilom, M., Bahkali, A.H., Xu, J., Mortimer, P.E., Tibell, L., Tibell, S. & Karunarathna, S.C. (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi in Rosaceae. Fungal Diversity 89: 1–236. https://doi.org/10.1007/s13225-018-0395-7 Wang, Q., Liu, Z.C., He, W. & Zhang, Y. (2019) Pseudocercospora spp. from leaf spots of Euonymus japonicus in China. Mycosystema 38 (2): 159–170. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18 (1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 234 • Phytotaxa 474 (3) © 2020 Magnolia Press CHEN ET AL.