Academia.eduAcademia.edu
LIPI A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY 12(4) REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 12(4): 261 - 337, 31 March 2008 Editors ELIZABETH A. WIDJAJA, MIEN A. RIFAI, SOEDARSONO RISWAN, JOHANIS P. MOGEA Correspondece on The Reinwardtia journal and subscriptions should be addressed to HERBARIUM BOGORIENSE, BIDANG BOTANI, PUSAT PENELITIAN BIOLOGI - LIPI, BOGOR, INDONESIA REINWARDTIA Vol 12, Part 4, pp: 301 - 323 FLORISTICS AND STRUCTURE OF A LOWLAND DIPTEROCARP FOREST AT WANARISET SAMBOJA, EAST KALIMANTAN, INDONESIA Received November 3, 2007; accepted January 20, 2008. KUSWATA KARTAWINATA Herbarium Bogoriense, Research Center for Biology - LIPI, Cibinong, Bogor, Indonesia; UNESCO Jakarta Office, Jakarta, Indonesia; Botany Department, Field Museum, Chicago, Illinois 60605-2496, USA. E-mail: kkjak@indo.net.id (author for correspondence). PURWANINGSIH, TUKIRIN PARTOMIHARDJO, RAZALI YUSUF, ROCHADI ABDULHADI & SOEDARSONO RISWAN Herbarium Bogoriense, Research Center for Biology - LIPI, Cibinong, Bogor, Indonesia ABSTRACT. KARTAWINATA, K., PURWANINGSIH, PARTOMIHARDJO, T., YUSUF, R., ABDULHADI, R. & RISWAN, S. 2008. Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan, Indonesia. Reinwardtia 12(4): 301– 323. — The results of a floristic inventory of trees with DBH < 10 cm in a lowland dipterocarp forest in East Kalimantan show that 553 species of 192 genera in 62 families, represented by 5847 individuals, with the total basal area of 350.01 m2 occurred in the plot of 10.5 hectare sampled. The two leading families in terms of number of species were Myrtaceae and Lauraceae while according to the total sum of importance values for families were Dipterocarpaceae and Euphorbiaceae. The forest had the second highest species richness in Indonesia. We recorded 25 species of dipterocarps , constituting 4.53 % of total species with basal area of 85.53 m2. or 24.44 % of the total basal area in the plot. Shorea laevis (a diptererocarp) and Pholidocarpus majadum, (a palm) were the most prominent species occurring here and were two of the ten leading species. The species-area curve rose steadily even up to an area of 10.5 hectare, with a very slight indication of levelling off at about five hectares, indicating high heterogeneity of the forest. Three largest trees were Shorea pauciflora (DBH = 196.50 cm) Dipterocarpus cornutus (DBH = 170.90 cm), and Alstonia scholaris (DBH = 170.00 cm) , Some species could be identified as fruit trees and medicinal plants. Key words: Composition, structure, dipterocarp forest, species richness, East Kalimantan KARTAWINATA, K., PURWANINGSIH, PARTOMIHARDJO, T., YUSUF, R., ABDULHADI, R. & RISWAN, S. 2008. Floristik dan struktur hutan pamah dipterocarpa di Wanariset Samboja, Kalimantan , Indonesia. Reinwardtia 12(4): 301– 323. — Hasil inventarisasi pohon dengan DBH (diameter setinggi dada) > 10 cm menunjukkan bahwa 553 spesies dari 192 marga dalam 62 suku, yang diwakili oleh 5847 batang pohon dengan luas bidang dasar total 350.01 m2, terdapat dalam plot cuplikan 10.5 hektare. Berdasarkan jumlah spesies dua suku utama adalah Myrtaceae dan Lauraceae, sedangkan menurut nilai penting suku adalah Dipterocarpaceae dan Euphorbiaceae. Hutan di sini mempunyai kekayaan spesies pohon tertinggi kedua di Indonesia. Spesies Dipterocarpaceae tercatat 25 spesies atau 4.53 % dari jumlah total spesies dengan luas bidang dasar 85.53 m2 atau 24.44 % dari luas bidang dasar total seluruh pohon mmkkkmmkkkk dalam petak Shorea laevis (diptererokarpa) dan Pholidocarpus majadum ( palem) adalah spesies pohon paling menonjol di sini dan merupakan dua dari sepuluh jenis pohon utama. Kurva spesies-luas menanjak tajam bahkan sampai 10.5 hektare, dan agak mendatar pada luasan lima hektare, yang menunjukkan heterogenitas hutan yang tinggi. Tiga pohon terbesar adalah Shorea pauciflora (DBH = 196.50 cm) Dipterocarpus cornutus (DBH = 170.90 cm), dan Alstonia scholaris (DBH = 170.00 cm) Beberapa jenis dapat diidentifikasi sebagai pohon buah-buahan dan tumbuhan obat Kata kunci: Komposisi, struktur, hutan dipterokarpa, kekayaan jenis, Kalimantan Timur. 301 302 REINWARDTIA INTRODUCTION Borneo is widely acknowledged as one of the most important centers of plant diversity in the world as well as the center of distribution and species diversity for a large number of families and genera within the Malesian archipelago (Whitmore, 1986; Soepadmo, 1995). The most widespread forest ecosystem in Borneo is the mixed dipterocarp forest, mainly characterised by a 40-60 m tall canopy dominated by an association of species of the Dipterocarpaceae family. This forest shows the greatest number of species of any rain forest ecosystem in Malesia (Whitmore, 1986; Philips et al., 1994). Mixed dipterocarp forests are also one of the most productive in the tropics and have been extensively logged during the last 30 years. Harvesting rates range from 80 to100 m3 ha-1 whereas in other parts of the tropics they do not exceed 30 to 50 m3 ha-1 (Sist, 2000). In Kalimantan, most of the lowland dipterocarp forests have been heavily logged and now the hill forests of the interior constitute the remaining primary forest and the main source of timber. Current knowledge of the ecology, floristics, structure and species richness of the lowland mixed dipterocarps forests is mainly based on studies carried out in Sabah, Brunei and Sarawak (e.g. Burgess,1961; Ashton, 1964; Nicholson, 1965; Bruenig, 1969, 1970, 1973; Proctor et al., 1983; Baillie et al., 1987; Ashton et al., 1992; Newberry et al., 1992; Davies & Becker, 1996). For Kalimantan, the studies remain few (Kartawinata et al., 1981; Riswan, 1982; Guhardja et al., 2000; Riswan, 1987a & b; Suselo & Riswan, 1987; Partomihardjo et al., 1987; Soekardjo et al., 1990; Setiadi et al., 1996; Soedjito, 1990; Soedjito & Kartawinata, 1995; Sist & Saridan, 1999; Tanuwijaya et al., 1996). A floristic analysis of the lowland dipterocarp forests of Borneo found that on a regional scale, diversity is highest in southeast Borneo and central Sarawak with Dipterocarpaceae as the most common family followed by Euphorbiaceae and several geographically distinct floristic regions could be detected. (Slik et al. 2003). Based on data from Northern Borneo, mainly Sarawak, Brunei and Sabah, it was suggested that forests of western Borneo were significantly richer in dipterocarp species than those of eastern Borneo (Ashton, 1989; Davies & Becker, 1996). The richness of the lowland rainforest of Sarawak and Brunei might be linked to the higher climatic stability of Northwestern Borneo which experiences less dramatic and severe drought periods attributed to El Niño- [VOL.12 Southern Oscillation (ENSO) events than the eastern part of the island, especially Sabah (Ashton, 1989; Goldammer et al. 1996; Walsh; 1996,) and East Kalimantan (Guhardja et al. 2000; Leighton & Wirawan 1986; ). However, Sist & Saridan (1999) recently reported that the species richness of the mixed dipterocarp forest of Berau in East Kalimantan, in spite of its eastern location and its proximity to Sabah was much higher than that of the forest of Sabah and similar to that recorded in Sarawak. Similarly, the forest at Wanariset Samboja, was reported to be the richest in Borneo and even in the world (Kartawinata et al. 1981, Whitmore 1986). These facts clearly show that our knowledge of the floristic richness and variability of the mixed dipterocarp forest of Kalimantan is still limited. During the last two decades, the forest of Kalimantan has been depleted and is disappearing at an alarming rate. The main causes are intensive and uncontrolled logging, and conversion into industrial plantations. Successive fires following land clearing affected million of hectares during El Nino events (Sunderlin and Resosudarmo, 1996; Dennis, 1999). Regeneration after fires in East Kalimantan was mainly through seedbank germination in lowland dipterocarp forest and through repsrouting in kerangas ( Riswan 1982; Riswan & Kartawinata 1988a, 1989) and dipterocarp forests. The regeneration developed better in the twice-burnt area than that in the area burnt once and the density of young trees was higher and even exceeded that of primary forest (Eichhorn 2006). Furthermore, in the burnt forest, the survival and sprouting capacity of primary forest trees and seedling establishment of pioneer trees and shrubs suppressed the establishment of non-forest species and post fire vegetation was found to be less resilient than it was presumed (Nieuwstadt 2002; Nieuwstadts et al. 2001,). Fires resulted in changes of forest structure and composition, loss of tree species diversity and invasion of pioneer species. In sum, forest recovery was not only affected by burning but also by environmental changes resulting from fire (Simbolon et al. 2005) A better knowledge of basic ecological information, including floristic composition and structure of the forest, are necessary for development of a sustainable forest management scheme. To date, there are still very few detailed descriptions and quantitative assessments of forest floristics and structure from a huge area of the Malesian rain forests (Whitmore & Sidiyasa 1986) and for Indonesia. Kartawinata (2005) reviewed the state of quantitative vegetation studies from 1960’s 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure onwards and recommended a list of future actions on the subject. The Lembaga Biologi Nasional (National Biological Institute), now known as Pusat Penelitian Biologi (Research Center for Biology) noted such needs and in the mid 1970s initiated and integrated the vegetation analysis project into its overall biological research program (Kartawinata 2005). The present study was a part of this program presenting a basic descriptive account of the structure and floristic composition of a 10.5 ha permanent plot set up in a lowland mixed ditperocarp forest in Wanariset Samboja in East Kalimantan. It was intended for use by various future studies in order to provide a permanent basis for long-term study of forest dynamics and floristic changes. In this paper, analysis of the species inventory data collected in the plots will be limited to the description of the forest in terms of the main structural parameters (basal area and density), species richness, pattern of relative abundance and family composition, integrating also data from a 1.6 ha section of this plot reported earlier by Kartawinata et al. (1981) and on forest gaps by Partomihardjo et al. (1987). STUDY SITE AND METHODS The study area is located within a 500-ha research forest managed by the Wanariset (Field Research Station) of the Forest Research and Development Agency (FORDA) of the Ministry of Forestry of Indonesia at Samboja, District of Kutai Kertanegara, East Kalimantan, Indonesia at 0o 59’ Lat. and 116o 57’ Long, about 38 km north of Balikpapan (Figure 1). The physiography is undulating to flat. The forest is lowland dipterocarp forest on dryland with small patches of seasonally swampy ground. The elevation varies between 3 to about 50 m above sea level. The climate is everwet and belongs to the rainfall type A with the ratio between dry and wet months (Q) of 4.4 (Schmidt and Ferguson, 1951). The mean annual rainfall recorded at the nearest meteorological station (Balikpapan BP (Woods and Bower, 1982)) was 2425 mm for the period of 1927-1980. The mean monthly rainfall ranged from126 mm in October to 236 mm in March (Figure 1) and the mean annual number of raindays was 145 with the mean number of monthly raindays ranging from 9 to 14. The forest is situated on the Red Yellow Podsolic Soil and occurs on an alluvial plain of upper Miocene sedimentary rocks (Soepraptohardjo, 1972). 303 A block of 150m x 700 m was set up in 1979 in an undisturbed location within a lowland dipterocarp forest about 50 m to the north of Km 1.6 of the now Semboja-Semoi-Sepaku road. It was constructed by sequentially placing a series of 10 m x 10 m plots, first along the width of the block, thus forming a 150 m x 10 m transect consisting of 15 plots; with the surface of each plot was parallel to the ground. The second, third ….. and 70 th transects were laid down adjacent to one another along the 700-m length of the block Thus 1050 plots were established . The 700-m length of the plot stretched roughly South to North and the 150m width from East to West. The habitat of each plot with reference to topography, whether it is located on a swampy site, a flat dry land, a slope or a ridge was noted qualitatively. In each plot, all the trees with DBH (Diameter at Breast Height) > 10 cm were mapped, numbered with aluminum tags, identified, and measured for DBH. Important features of the forest were also recorded qualitatively. The gaps within the plot were mapped and a profile diagram of a 15 x 60 m2 subplot was made as reported by Partomihardjo (1987). Voucher specimens or fallen leaves (if a leafy twig was not accessible) from each tree was collected for identification at the Herbarium Bogoriense, Bogor. The authority of botanical names of plants in the plot followed Whitmore et al. (1989, 1990), Keßler & Sidiyasa (1994) and Keßler et al. (2000) The inventory was carried out between 1979 and 1981. RESULTS AND DISCUSSION Floristic characteristics and diversity The results of the inventory of trees with DBH > 10 cm showed that 553 species of 192 genera in 62 families, represented by 5847 individuals, with the total basal area of 350.01 m2 (Table 1) occurred in the 10.5 hectare plot. Of 550 species recorded, we were able to name 425 species. Appendix 1 lists all species of trees with DBH > 10 cm by family and reports absolute densities, relative densities, frequencies, relative frequencies, basal areas, relative basal areas and Importance Values (IV). These parameters were calculated following the standard procedure as discussed by MuellerDombois & Ellenberg (1974). The Total Species Importance Values for a Family (TSIVF) indicates the family importance value based on the sum of IVs of all species in a family (Kartawinata et al. 304 REINWARDTIA MM [VOL.12 BALIKPAPAN (3 M) 2425 MM STUDY AREA Figure 1. The location of the study area at Wanariset Samboja, East Kalimantan 2004). It is evident that the forest had a high species richness compared to other areas within the region. No single species was dominant, instead dominance was shared by several common species. The forest was characterized by uneven species composition, certain species were represented by large number of individuals, while the majority of species were represented by only a few individuals and often only by one specimen. (Appendix 1). The ten richest families in terms of number of species are shown in Table 3. Ranked by number of species present, Myrtaceae, Lauraceae, Euphorbiaceae and Myristicaceae were the top four families and Dipterocarpaceae occupied the 5th ranking. In small plots in Borneo and Sumatra, Lauraceae constitutes one of the top three most common families (Whitmore & Sidiyasa 1986). In the lowland forests of West Malesia, Euphorbiaceae is by far the richest family (cf Abdulhadi 1991, Davies & Becker 1996, Poore 1968, Riswan 1982, Sist & Saridan1999, Suselo & Riswan 1987, Whitmore 1986, Whitmore & Sidiyasa 1986). As in the present study, Annonaceae, Burseraceae, Dipterocarpaceae, Moraceae, Myristicaceae and Rubiaceae are also in the top ten families ranked by species richness in Borneo and Sumatra (Kartawinata et al. 1981, Table 1). In terms of the Total Sum of Important Values for Families (TSIVF), the ten most important amilies show different order. Dipterocarpaceae and Euphor- 2008] KARTAWINATA et al: Wanariset dipterocarp forest structure biaceae had the first and second highest values (Table 3). The high value for Dipterocarpaceae was attributed to the presence of large trees in the plots (Annex 1). It is interesting to note that although it contains only three species, Arecaceae had a high TSIVF value, resulting from the high number of individuals of Pholidocarpus majadum and Borassodendron borneensis. In order to determine whether the 550 species recorded in the 10.5-ha plot represent the total number of species in the area studied, a species-area curve was constructed (Figure 2). The 1050 subplots of 10x10 m each were examined to determine the number of additional species recorded each time a subplot was 305 added. A considerable number of additional and it continued to rise steeply even up to 10.5 hectare. There was a very slight indication of leveling off at about five hectares. This implies that a minimum area can not be determined for this forest. This is similar to lowland tropical rain forests elsewhere in Borneo and the Malay Peninsula as reported by various authors (Kartawinata 2006, Kartawinata et al. 1981; Sist & Saridan 1999, Riswan 1982; Whitmore 1986; Wyatt-Smith 1966, etc.), but it is less dramatic compared to lowland forests of Sulawesi (Kartawinata 2005; Whitmore & Sidiyasa 1986). Table 1. Floristic and structural characteristics Stand Characteristics Dipterocarps Number of Species Number of trees Mean Density (Trees/Ha) Basal area (M2) Mean Basal Area/Ha (M2) 25 (4.53 %) 575 (9.83) 54.76 85.53 (24.44 %) 8.48 Non- Dipterocarps 527 (95.47 %) 5272 (90.17 %) 502.10 264.48 (75.56 %) 25.19 Total 552 5847 556.86 350.01 33.33 Table 2. Density and number of species of trees with DBH > 10 cm in selected plots of different forest types in Kalimantan, Sumatra and Sulawesi (Extracted from Kartawinata 2006) Locality EAST KALIMANTAN Wanariset Samboja Malinau 1 Malinau 2 Malinau 3 Berau Lempake Bukit Bangkirai NORTH SUMATRA Leuser National Park Ketambe 1 Ketambe 2 Ketambe 3 Batang Gadis National Park Aek Nauli RIAU Bukit Tigapuluh National Park Bukit Lawang Reference Alt. (m) Plot size (ha) Mean Density (Trees/ha) Number of Species < 100 100 100 <100 <100 <100 110 10.5 2 x1.0 4 x 1.0 1,0 3 x 4.0 1.6 1.0 557 413 759 567 521 445 445 552 240 404 225 538 209 141 Present Study Yusuf (2003) Samsoedin (2005) Kartawinata (unpublished) Sist & Saridan (1999) Riswan, (1987a Simbolon et al. (2005) 450-670 350-450 350-450 1.6 1.6 1.6 538 420 475 116 94 127 Abdulhadi et al. (1989) Abdulhadi (1991) Abdulhadi et al. (1991) 660 1.0 583 182 Kartawinata et al. (2004) 297 1.0 453 216 Polosakan (2001) 306 [VOL.12 REINWARDTIA Table 3. Ten important families in terms of the Total Sum of Importance Values (TSIVF) and number of species arranged in descending order indicating the rank Family 1 2 3 4 5 6 7 8 9 10 Myrtaceae Lauraceae Euphorbiaceae Myristicaceae Dipterocarpaceae Annonaceae Rubiaceae Burseraceae Moraceae Fabaceae No of species 59 51 45 33 25 24 22 21 21 19 The forest of the present study is the second most species rich in East Kalimantan after that in Malinau, which constitutes the richest forest in Indonesia (Kartawinata 2005). It can be seen from Table 2 that if the number of species in one hectare is extrapolated from the number in 10.5 ha plot, as is shown also in the species-area curve (Figure 2, and see also data of Abdulhadi et al. 1981), the total species richness may be comparable to that of Lempake (E. Kalimantan), Gunung Mulu (Sarawak) Belalong and Andulau (Brunei), Bukit Lawang (Riau), Bukit Lagong (Penisular Malaysia), and higher than that of Aek Nauli and Ketambe (Sumatra) and Toraut (Sulawesi). The species richness was however lower than at Malinau 3 (East Kalimantan), at least partly due to different plot design. The calculation of species frequencies was based on the species data from the 70 transects, each consisting of 15 subplots with the total area of 1500 m2. The majority of species had frequencies of less than 50 % and species with frequencies greater than 50 % are shown in Table 5. Interestingly, among dipterocarps only Shorea ovalis and S. laevis howed relatively high frequency, suggesting that most dipterocarps species apparently grow in clumps in this forest. Simple ordination of the plots did not produce a recognizable pattern of grouping the plots that warrants the separation of swampy habitat on flat lands from dry habitat on slopes and ridges. Field observations concurred that the composition of the forest on swampy sites was not much different from that on dryland, although the following species were Order Family TS IV F (%) 1 2 3 4 5 6 7 8 9 10 Dipterocarpaceae Euphorbiaceae Myrtaceae Lauraceae Myristicaceae Arecaceae Sapotaceae Annonaceae Ebenaceae Burseraceae 44.272 29.277 18.592 17.999 17.982 16.608 15.336 13.061 12.164 9.316 600 Number of species Order 500 400 300 200 100 0 0 5 10 15 A rea (HA ) Figure 2. Species-area curve in a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan Table 4. Ten most important species in decending order of Importance Value (IV) N o. 1 2 3 4 5 6 7 8 9 10 S p e cies F a m ily S h o re a la e v is P h o lid o c a r p u s m a ja d u m D io sp y ro s b o r n e e n sis E u s id e r o x y lo n zw a g e r i S c a p h iu m m a c r o p o d u m P o ly a lth ia s u m a tr a n a G a n u a m o tle y a n a B o r a ss o d e n d ro n b o rn e e n s is D ip te ro c a rp u s c o r n u tu s S h o re a o v a lis D ip te ro c a rp a c e a e A recaceae E benaceae L a u ra ce a e S te rc u lia c e a e A nnonaceae S a p o ta c e a e A recaceae D ip te ro c a rp a c e a e D ip te ro c a rp a c e a e IV 1 1 .9 1 0 .6 6 .5 6 .1 5 .8 5 .1 5 .0 4 .9 4 .5 4 .1 4 5 1 3 0 9 7 1 6 5 1 6 2 9 0 0 1 8 8 5 mostly found in or were restricted to the swampy sites:Actynodaphne procera, Cratoxylum laevifolius, Dialium hydnocarpoides, Diospyros elliptica, D. laevifolia, D. maingayi, D. pentaphylla, D. sumatrana, Elipanthus beccarii, Elmerillia tsiampacca, Eugenia accuminatissima, E. beccarii, E. densiflora, E. densinervia, E. lineata, E. oleosa, Ganua motleyana, Horsfieldia crassifolia, Litsea noronhae, Mammea 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure obovata , Urophyllum corymbosum and Xanthophyllum adenotum. Three species of tree palms were prominent in the forest and two of them, Oncosperma horridum and Pholydocarpus majadum, mainly occurred on swampy habitats, while the other, Borassodendron borneensis, was present mainly on dryland. Certain other species which occurred at lower densities were also characteristic of swampy habitats: Anthocephalus cadamba, Knema laurina, Neesia altissima and Pometia pinnata.. The total number of individuals recorded is indicated in Appendix. 1. The area of the swampy sites was difficult to quantify precisely because they were patchy, but they occurred mainly on the northern part of the plot and there was no ambiguity in assigning trees to this habitat type. Table 5. Ten species with highest frequency No. Species Family Frequency (%) 1 2 3 4 5 6 7 8 9 10 Eben Anno Laur Arec Arec Sapo Euph Dipt Burs Dipt Diospyros borneensis Polyalthia sumatrana Eusideroxylon zwageri Borassodendron borneensis Pholidocarpus majadum Madhuca sericea Mallotus leptophyllus Shorea laevis Dacryodes rugosa Shorea ovalis 87.14 87.14 78.57 74.29 67.14 62.86 61.43 60.00 60.00 57.14 Some species could be identified as (potential) fruit trees and medicinal plants, including the followings: (1) Fruit trees: Anacardiaceae (Bouea macrophylla, Mangifera caesia, M. foetida, M. pajang). Bombacaceae ( Durio acutifolius, D. dulcis, D. graveolens, D. kutejensis, D. lanceolatus, D. oxleyanus), Burseraaceae ( Canarium dichotomum, C. denticulatum, D. littorale, D. patentinervium, D. pilosum, D. rugosum), Clusiaceae ( Garcinia celebica, G. littorale, G. nervosa), Euphorbiaceae (Baccaurea deflexa, B. kunstleri, B. racemosa, B. rumphii, B. sumatrana), Fabaceae (Parkia roxburghii, P. speciosa), Meliaceae (Sandoricum borneensis) and Sapindaceae (Nephelium lappaceum, Pometia pinnata) , and (2) Medicinal plants: Apocynaceae (Alstonia angustifolia, A. scholaris, Dyera costulata), Thymelaeaceae (Aquilaria malacensis) and Annonaceae ( Cananga odorata). 307 Structure The basal area of each tree recorded in the plot was calculated. Appendix 1 shows these data grouped by family, as well as for individual species, along with other measures. The total basal area of trees recorded in the plot was 350.01 m2, resulting in a mean basal area of 33.33 m2/ha (Table 1). Ten species with the highest basal areas are presented in Table 4, in which Shorea laevis, Pholidocarpus adum and Scaphium macropodum were the most prominent. It was also evident that ten dipterocarp species were prevalent, with a total basal area of 53.86 m2 (46.74%) As a whole, the dipterocarps were the largest trees and dominated the forest with 25 species (representing 4.47% of the total species richness) occupying a total basal area of 85.53 m2 (24.96 %). Most species had basal areas of less than 1.0 m2 and only 71 species (12.90 %) had basal areas greater than 1.0 m2, of which the highest basal areas of 10-31 m2 were shared by three species (Figure 3), i.,e. Shorea laevis, Pholidocarpus majadum and Scaphium macropodum (Table 6). Table 6. Ten species with highest BA in a 10.5-ha plot No. Species Family BA (M2) 1 2 3 4 5 6 7 8 9 10 Shorea laevis Pholidocarpus majadum Scaphium macropodum Anthocephalus cadamba Eusideroxylon zwageri Dipterocarpus cornutus Ganua motleyana Shorea parvifolia Shorea ovalis Shorea pauciflora Dipt Arec Ster Rubi Laur Dipt Sapo Dipt Dipt Dipt 30.455 16.534 16.500 9.734 9.379 9.315 9.223 7.242 6.844 6.499 121.725 Figure 4 shows the diameter class distribution of trees with DBH > 10 cm in the 10.5-ha plot. The data show more or less a typical size class distribution of tropical undisturbed primary forest. This reveals that 79.13% of the total trees had DBH of less than 30 cm and only 20.87 % occurred in the diameter class greater than 30 cm. The trees with large DBH were mainly dipterocarps. Three largest tree species were Shorea pauciflora ( DBH =196.50 cm), Dipterocarpus cornutus (170.90 cm ) and Alstonia scholaris (170.0 cm). It is interesting to note that a pioneer species, Anthocephalus cadamba, developed well in this forest, where trees were distributed in all diameter classes and reached a maximum DBH of 128 cm. In contrast, Alstonia scholaris, another pioneer species, demonstrated a disjunct size distribution (Table 7) 308 [VOL.12 REINWARDTIA 160 NUMBER OF SPECIES 140 138 128 120 100 84 80 61 60 36 40 22 20 10 3 0 0 .0 0 1 0 .0 3 0 0 .0 3 0 0 .0 9 9 0 .1 -0 .4 9 0 .5 -0 .9 9 1 . 0 - 2 .9 9 2 . 0 - 4 .9 9 5 . 0 - 9 .9 0 1 0 .0 -3 1 .0 B A S A L A R E A (S Q . M . ) Figure 3. Basal area class distribution and number of tree species with DBH > 10 cm in a 10.5-ha plot in a lowland dipterocarp forest at Wanariset Samboja, E. Kalimantan 10-14.90 DIAMETER CLASS (CM) 15-19.90 2367 1202 20-29.9 1260 30-39.90 533 40-49.90 207 50-59.9 101 60-79.9 99 80-99.9 45 100-200 33 0 500 1000 1500 2000 2500 NUMBER OF TREES Figure 4. Diameter class distribution and number of tree species with DBH > 10 cm in a 10.5-ha plot in a lowland dipterocarp forest at Wanariset Samboja, E. Kalimantan. NUMBER OF TREES/10.5 HA disjunct size distribution (Table 7) with only two large individuals of DBH 140 cm and 170 cm (Appendix 1). A. cadamba is a light-demanding species (Whitmore 1986) and, in this study, had a large number of individuals with big diameters and a low number of small individuals. This pattern contrasts that of shade-demanding species, such as Dipterocarpus cornutus, which had a higher number of individuals of small sizes (Figure 5). Other secondary forest species present in a relatively high number of individuals in the plot are shown in Table 7, but none were as large as A. cadamba and Alstonia scholaris. These species appeared to occur on sites previously occupied by gaps. An earlier study on this plot (Partomihardjo et al. 1987) (Figure 6) reported that gaps covered a total area of 17, 399 m2 (16.6 % of the canopy) and gap formation was estimated to be 1,187 m2 (1.05 % of the canopy opening annually) and the recovery rate was about 16 years. Meanwhile, a man-made gap of 0.5 ha in a lowland dipterocarp forest at Lempake, about 100 km north east of Wanariset Samboja (Riswan 1982; Riswan & Kartawinata 1989) was immediately occupied by secondary forest species after clearing. The primary forest species arrived later and achieved a 50% proportion of all species after 18 months. The primary forest arrivals included dipterocarps, Hopea rudiformis, Shorea parvifolia and Shorea leprosula, which were present also in the present study (Appendix 1) and have been reported to behave like pioneer species (Riswan 1982; Riswan & Kartawinata 1989, 1991). Furthermore, in a 35 year old 0.8-ha gap at Lempake the large trees were dominated by secondary forest species, primarily Macaranga spp. (Riswan 1982; Riswan &Kartawinata 1988a). 30 25 Dipterocarpus cornutus Athocephalus cadamba 20 15 10 5 0 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 >60 DIAMETERCLASS(CM) Figure 5. Number of individuals of a light-demander (Anthocephalus cadamba) and shade-demander (Dipterocarpus cornutus) according to diameter-class in a 10.5-ha plot of a lowland dipterocarp forest at Wanariset Samboja, Kalimantan Timur 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure Table 7. 309 Number of trees of major secondary forest species according to diameter class in the 10.5-ha plot of lowland dipterocarp forest at Wanariset Samboja, East Kalimantan. 10 15 70-79.9 80-89.9 3 2 3 3 2 1 20 3 2 130-170 60-69.9 1 1 1 2 1 7 3 1 110-129.9 50-59.9 1 3 2 2 2 12 2 1 1 3 1 100-109.9 40-49.9 8 5 4 12 13 3 15 2 8 2 4 14 7 2 90.99.9 30-39.9 Anthocephalus cadamba Alstonia scholaris Alstonia angustifolia Artocarpus anisophyllus Artocarpus rigidus Buchanania sessifolia Dillenia excelsa Endospermum diadenum Porterandia anisophylla Macaranga gigantea Macaranga hypoleuca Macaranga tanarius Parinari oblongifolia Schima wallichii 20-29.9 SPECIES 10-19.9 DIAMETER CLASS 2 1 1 2 2 1 3 2 1 30 1 1 2 40 50 60 M 10 5 0 GAP MATURE BUILDING MATURE BUILDING MATURE GAP 30M 0 12 M Figure 6. Canopy phases and a profile diagram of a portion of the 10.5-ha plot within a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan. D – Dysoxylum sp., Dl – Drypetes laevis, Dr – Dacryodes rostrata, Gb – Gonystylus bancanus, H – Horsfieldia sp., Kc – Knema cinerea, Km – Koompasia malaccensis, Madhuca sp., Mc – Microcos crassifolia, Ml – Mallotus leptophyllus, Ms – Madhuca sericea, Nk – Neoscortechinia kingii, P – Polyalthia sp., Pl – Polyalthia rumphii, Sl – Shorea laevis, So – Shorea ovalis, Sp – Shorea parvifolia, Vu – Vatica umbonata. (After Partomihardjo et al. 1987) 310 REINWARDTIA ACKNOWLEDGEMENT We thank the Forest Research and Development Agency for allowing us to undertake the study at the forest at the Wanariset Samboja. We are also grateful to Mrs. J.J. Affriastini and Mr. Ismail Rahman of the Herbarium Bogoriense for assisting us in field identification and identifying voucher specimens, as well as to others who have in many ways helped us in the field. REFERENCES ABDULHADI, R., 1991. A Meliaceae forest in Ketambe, Gunung Leuser National Park, Sumatra with special reference to the status of Dipterocarp species. In Soerianegara, S.S. Tjitrosomo, R.C.Umaly & I. Umboh (Eds.). Proceedings of the Fourth Roundtable Conference on Dipterocarps. Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41: 307-315, ABDULHADI, R., MIRMANTO, E. & YUSUF, R.1989. Struktur dan komposisi petak hutan Dipterocarpaceae di Ketambe, Taman Nasional G. Leuser, Aceh. Ekologi Indonesia 1: 29-36. ABDULHADI, R. , YUSUF, R, & KARTAWINATA, K. 1991. A riverine tropical rain forest in Ketambe, Gunung Leuser National Park, Sumatra, Indonesia. In Soerianegara, S.S. Tjitrosomo, R.C.Umaly & I. Umboh (Eds.). Proceedings of the Fourth Roundtable Conference on Dipterocarps. Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41: 247-255. ASHTON, P.S. 1964. Ecological studies in the mixed dipterocarp forests of Brunei state. Clarendon Press, Oxford. 75 pp ASHTON, P. S. 1989. Dipterocarp reproductive biology. In Lieth, H. and Werger, M.J.A. (Eds.). Tropical rain forest ecosystems: biogeographical and ecological studies. : 219-240. Elsevier, Amsterdam. ASHTON, P. S. & HALL, P. 1992. Comparison of structure among mix dipterocarp forests of North West Borneo. Journal of Ecology 80 : 459-481. BAILLIE, I.C. & ASHTON, P.S. 1983. Some soil aspects of the nutrient cycle in mixed dipterocarp forests in Sarawak. In Sutton, S.I., Whitmore, T.C. & Chadwick, A.C. (Eds.), Tropical Rain Forest: Ecology and Management. :347-356. Blackwell Scientific Publications, Oxford. . BAILLIE, I.C., ASHTON, P.S., COURT, M.N., ANDERSON, J.A.R., FITZPATRICK, E.A. & TINSLEY, J. 1987. Site characteristics and the distribution of tree species in mixed dipterocarp forest on tertiary sediments in central Sarawak, Malaysia. Journal of Tropical Ecology 3: 201-220. BRUENIG, E.F. 1969. The classification of forests types in Sarawak. Malayan Forester 32: 143-179. BRUENIG, E.F. 1970. Stand structure, physiognomy and environmental factors in some lowland forests in Sarawak. Tropical Ecology 11 (1) : 26-43. [VOL.12 BRUENIG, E.F. 1973. Species richness and stand diversity in relation to site and succession of forests in Sarawak and Brunei. Amazoniana 4 (3): 293-320 BURGESS, P.F. 1961. The structure and composition of lowland tropical rainforest in North Borneo. Malaysian Forester 24: 66-80. DAVIES, S.J. & BECKER, P. 1996. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. Journal of Tropical Forest Science 8 (4): 542-569. DENNIS, R. 1999. A review of fire projects in Indonesia (1982-1998). CIFOR Publication, 105 pages. EICHHORN, K. (2006). Plant diversity after rain-forest fires in Borneo. Blumea Suplement 18: 1-140 GOLDAMMER, J.G., SEIBERT & SCHINDELE, W. 1996. Fire in dipterocarp forests. In Schulte A. & Schöne D. (Eds) . Dipterocarp Forest Ecosystems, Towards Sustainable Management. :155-185. World Scientific Publishing, Singapore. GUHARDJA, E., FATAWI, M., SUTISNA, M., MORI, T., OHTA, S. (Eds.), 2000. Rainforest ecosystems of East Kalimantan: El Niño, drought, fire and human impacts. Ecological Studies 140:1-330. Springer-Verlag, Tokyo. KARTAWINATA, K. 2005. Six decades of natural vegetation studies in Indonesia. In Soemodihardjo, S. & S.D. Sastrapradja (Eds.), Six Decades of Science and Scientists in Indonesia. :95-140. Naturindo, Bogor. KARTAWINATA, K. ROCHADI, A. & PARTOMIHARDJO, J. 1981. Composition and structure of a lowland dipterocarp forest at Wanariset, East Kalimantan (Indonesia). Malaysian Forester 44, 2/3 : 397-406. KARTAWINATA, K., SAMSOEDIN, I. HERIYANTO, M. & AFRIASTINI, J.J. 2004. A tree species inventory in a one hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12: 145-157. KEßLER, P.J.A. & SIDIYASA, K. 1994. Trees of the Balikpapan-Samarinda area, East Kalimantan, Indonesia: A manual to 280 selected species. Tropenbos Series 7. The Tropenbos Foundation, Wageningen. KEßLER, P.J.A., PELSER, P.B., RIDSDALE, C.E. & SIDIYASA, K. 2000. Secondary forest trees of Kalimantan, Indonesia – A manual to 300 selected species. Tropenbos-Kalimantan Series 3. MOFFEC-Tropenbos-Kalimantan Project, Wanariset Samboja, Balikpapan. LEIGHTON, M. & WIRAWAN, N. 1986. Catastrophic drought and fire in Borneo tropical rain forest associated with the 1982-1983 El Niño Southern Ocilation event. In Prance, G.T. (Ed.) . Tropical Rain Forest and the World Athmosphere. :75-102 Westview, Bopulder, Colorado. . MANOKARAN, N. & SWAINE, M.D. 1994. Population dynamics of trees in dipterocarps forests of Malaysia. Malaysian Forest Record . 41. Forest 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure Research Institute Malaysia, Kepong. MUELLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York NEWBERY,D (MC C.), CAMPBELL, E.J.F., LEE, Y.F., RIDSDALE, C.E. & STILL, M.J. 1992. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia : structure, relative abundance and family composition. Philosophical Transactions of the R.oyal Society B 335 : 341-356. NICHOLSON, D.I. 1965. A study of virgin forest near Sandakan, North Borneo. In Proceedings of the Symposium on Humid Tropics Vegetation. :67-87. Kuching, UNESCO, Paris. NIEUWSTADT, M. G. L .VAN., D. SHEIL, & K. KARTAWINATA. 2001. The ecological consequences of logging in the burned forest of East Kalimantan, Indonesia. Conservation Biology 15:1183-1186 NIEUWSTADT, M. G. L .VAN, 2002. Trial by fire: Positive development of a tropical dipterocarp forest. Ph. D. dissertation, Utrecht University, Utrecht PARTOMIHARDJO, T.,YUSUF, R. SUNARTI, S., PURWANINGSIH, ABDULHADI, R. AND KARTAWINATA , K. 1987. A preliminary notes on gaps in a lowland dipterocarp forest in Wanariset, East Kalimantan. In Kostermanns, A.J.G.H. (Ed): Proceedings of the Third International Round Table on Dipterocarps. :241-253. UNESCO, Jakarta, Indonesia. PHILIPS, O.L., HALL, P., GENTRY, A.H., SAWYER, S.A. & VASQUEZ, R. 1994. Dynamics and species richness of tropical rain forests. Proceedings of the National Academy of Sciences 91: 2805-2809. POLOSAKAN, R. 2001. Komposisi jenis pohon di hutan kawasan Taman Nasional Bukit Tigapuluh, Propinsi Riau. In Sunaryo and Six Others (Eds.). Laporan Teknik 2001: 31-40. Proyek Inventarisasi dan Karakterisasi Sumberdaya Hayati, Pusat Penelitian Biologi, LIPI, Bogor. POULSEN, A.D., NIELSEN, I.C., TAN, S. & BALSLEV, H. 1996. A quantitative inventory of trees in one hectare of mixed dipterocarp forest in Temburong, Brunei Darussalam. In Edwards, D.S., Booth, W.E., & Choy, S.C. (Eds). Tropical Rain Forest Research - Current Issues. Dordrecht, the Netherland’s Kluwer Academic Press.(In Press cited by Davies & Becker 1996) POORE, M.E.D. 1968. Studies in Malaysian rainforests. I. The forest on triassic sediments in Jengka forest reserve. Journal of Ecology 56 : 143-196. PROCTOR, J., ANDERSON, J.M., CHAI, P. & WALLACK, H.W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu national park. I. Forest environment, structure and floristics. Journal of Ecology 71 : 237-260. RISWAN, S. 1982. Ecological studies on primary, secondary and experimentally cleared mixed dipterocarp forest and kerangas forest in East 311 Kalimantan, Indonesia. Ph.D. thesis, University of Aberdeen. Aberdeen. RISWAN, S. 1987a. Structure and floristic composition of mixed dipterocarp forest at Lempake, East Kalimantan In Kostermanns, A.J.G.H. (Ed): Proceedings of The third International Round Table on Dipterocarps. :435-457. UNESCO, Jakarta, Indonesia. RISWAN, S. 1987b. Kerangas forest at Gunung Pasir, Samboja, E. Kalimantan. In Kostermans, A.J.G..H. (Ed). Proceedings of The third International Round Table on Dipterocarps. :471-494. UNESCO, Jakarta, Indonesia. RISWAN, S. & . KARTAWINATA, K. 1988a. Regeneration after disturbance in a kerangas (heath) forest in East Kalimantan, Indonesia. In Soemodihardjo, S. (Ed.). Some ecological aspects of tropical forest of east kalimantan: a collection of research reports. MAB Indonesia Contribution No. 48: 61-85. RISWAN, S. & KARTAWINATA, K. 1988b. A lowland dipterocarp forest 35 years after pepper plantation in East Kalimantan, Indonesia. In Soemodihardjo, S. (Ed.). Some ecological aspects of tropical forest of East Kalimantan: A collection of Research Reports. MAB Indonesia Contribution No. 48: 139. RISWAN, S. &. KARTAWINATA, K. 1989. Regeneration after disturbance in a lowland mixed dipterocarp forest in East Kalimantan, Indonesia. Ekologi Indonesia 1: 9 28. RISWAN, S. & KARTAWINATA, K. 1991. Regeneration after disturbance in a lowland mixed dipterocarp forest in East Kalimantan, Indonesia. In Gomez Pompa, A., Whitmore, T.C. & Hadley, M. (Ed.). Rain Forest Regeneration and Management. Man and the Biosphere Series Vol. 6: 295-301. UNESCO, Paris and Parthenon Publishing Group Park Ridge.. SAMSOEDIN, I. 2005. Biodiversity and sustainability in the Bulungan Research Forest, East Kalimantan, Indonesia: The response of plant species to logging. Ph. D. Thesis, University of Stirling. Stirling. SCHMIDT, F.H. & J.H. FERGUSON (1951). Rainfall types based on wet and dry period ratios for Indonesia with Western New Guinea.. Verhandelingen Djawatan Meteorolgi dan Geofisika, Djakarta 42. SETIADI, Y. , PERT, D.R., WEBB, C.O. & LEIGHTON, M. 1996. Abundance and spatial distribution of seedling recruitment around adult treess of five Shorea species in the Gunung Palung National Park, West Kalimantan, Indonesia. Tropical Biodiversity 3: 169-179. SIMBOLON, H., SIREGAR, M., WAKIYAMA, S., SUKIGARA, N., ABE, Y. & SHIMIZU, H. 2005. Impacts of forest fires on tree diversity in tropical rain forest of East Kalimantan, Indonesia. Phyton 45: 551-559. 312 REINWARDTIA SIST, P. 2000. Reduced impact logging in the tropics: objectives, principles and impacts. International Forestry Review 2: 3-10. SIST, P. & SARIDAN, A. 1999. Stand structure and floristic composition of a primary lowland dipterocarp forest in East Kalimantan. Journal of Tropical Forest Science, 11: 704-722. SLIK, J.F.F. and 16 others, 2003. A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography 30: 1517-1531. SOEDJITO, H. 1990. Root systems of successional mand old growth forest species and its role on nutrient dynamics within a tropical rainforest in Indonesia. Ph.D. dissertation, Rutgers, University, New Brunswick. SOEDJITO, H. & KARTAWINATA, K. 1995. Longterm ecological research in Indonesia : achieving sustainable forest management. In Primack R.B. & Lovejoy, T.E. (Eds) “Ecology, Conservation and Management of South East Asian Rainforests”. :129-139. Yale University Press, USA. SOEKARDJO, S, HAGIHARA, A., YAMAKURA, T., OGAWA, H. 1990. Floristic composition of a tropical rainforest in Indonesian Borneo. Bull.. Nagoya University For. 10: 1- 43. (Quoted by Ruslim, Y, Matius, P. & Sutisna, M. 2000. In Guhardja et al.. (Eds.). Rainforest Ecosystems of East Kalimantan: El Niño, Drought, Fire and Human Impacts. Ecological Studies Vol. 49. SpringerVerlag, Tokyo. SOEPADMO, E. 1995. Plant diversity of the Malesian tropical rainforest and its phytogeographical and economic significance. In Primack R.B. & Lovejoy, T.E. (Eds). Ecology, Conservation and Management of South East Asian Rainforests. :19-40. Yale University Press, USA. SOEPRAPTOHARDJO, M. 1972. Generalized soil map, Indonesia. Scale 1: 2,500,000. 3rd Ed. Soil Research Institute, Bogor SUNDERLIN, W.D., RESOSUDARMO, I. A. P. 1996. Rate and causes of deforestation In indonesia: towards [VOL.12 a resolution of the ambiguities. CIFOR occasional paper n° 9, 19 pp. SUSELO, T.B, & RISWAN, S. 1987. Compositional and structural pattern of lowland mixed dipterocarp forest in the Kutai National park, East Kalimantan. In KOSTERMANS, A.J.G.H. (Ed). Proceedings of the Third International Round Table on Dipterocarps. :459-470. UNESCO, Jakarta, Indonesia. TANUWIJAYA, S.M., ALIMUDIN, R.H., PERT, D.RA., WEBB, C.O. & LEIGHTON, M. 1996. Population structure and regeneration in two potentially valuable leguminous rain forest tree species, Sindora coriacea and Dialium platysepalum in Gunung Palung National Park, Indonesia. Tropical biodiversity 3: 157-168. WALSH, R.P.D. 1996. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12: 385-407. WHITMORE, T. C. 1986. Tropical rain forests of the Far East . English Language Book Society/ Oxford University Press, Oxford, 1st edition. WHITMORE, T.C. & K. SIDIYASA. 1986. Composition and structure of a lowland rain forest at Toraut, northern Sulawesi. Kew Bulletin 41: 747-756. WHITMORE, T.C., TANTRA, I.G.M. AND SUTISNA, U. 1989. Tree flora of Indonesia. Check List for Kalimantan. Part I. Forest Research and Development Centre, Bogor. WHITMORE, T.C., TANTRA, I.G.M. AND SUTISNA, U. 1990. Tree flora of Indonesia. Check List for Kalimantan, Part II. Forest Research and Development Centre, Bogor. WOODS, T.N. & BOWER, R.P. 1982. Rainfall records, East Kalimantan - Catatan curah hujan Kalimantan Timur. Report: Analysis summaries and histograms. Transmigration Area Development Project, Dinas Pekerjaan Umum Propinnsi Daerah Tingkat I, Kalimantan Timur. Samarinda. 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 313 Appendix 1. Number of Species in a Family (in parenthesis), Number of occurrence, Frequency (%), Number of trees, Basal Area ( cm2), Relative Basal Area (%), Relative Frequency (%), Relative Density (%, ) Importance Value in a 10.5 ha plot of lowland dipterocarp forest at Wanariset Semboja, East Kalimantan, Indonesia. The Family Importance Value is the Total Spesies Importance Values for a Family (TSIVF). No. Family and Species Number of Occurrence in plots Frequency Number of (%) Trees (in 10.5 Ha) Basal Area (Cm2) Relative Basal Area (%) Relative Frequency (%) Relative Density (%) Importance Value 1 1 2 Actinidiaceae (2 spp.) Saurauia sp. 1 Saurauia sp. 2 Family Importance Value 1 1 1.43 1.43 1 1 132.73 196.07 0.004 0.006 0.027 0.027 0.017 0.017 0.048 0.050 0.098 2 3 Alangiaceae (1 sp.) Alangium ebenaceum Family Importance Value 20 28.57 26 6,899.50 0.201 0.538 0.446 1.186 1.186 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Anacardiaceae ( 15) Bouea oppositifolia Buchanania sessifolia Campnosperma coriaceum Koordersiodendron pinnatum Mangifera caesia Mangifera foetida . Mangifera indica Mangifera macrocarpa Mangifera pajang Melanochyla bracteata Melanochyla fulvinervis Parishia maingayi Semecarpus bunburyanus Semecarpus forstenii Semecarpus glauca Family Importance Value 7 17 2 1 10 9 1 1 4 4 7 2 1 3 1 10.00 24.29 2.86 1.43 14.29 12.86 1.43 1.43 5.71 5.71 10.00 2.86 1.43 4.29 1.43 8 23 2 1 10 10 1 1 4 4 8 2 1 3 1 2,910.34 6,344.42 1,005.31 426.38 9,984.09 2,646.81 84.95 343.07 4,616.66 716.21 1,873.00 7,853.05 271.72 1,740.21 4,185.39 0.085 0.185 0.029 0.012 0.291 0.077 0.002 0.010 0.135 0.021 0.055 0.229 0.008 0.051 0.122 0.188 0.457 0.054 0.027 0.269 0.242 0.027 0.027 0.108 0.108 0.188 0.054 0.027 0.081 0.027 0.137 0.395 0.034 0.017 0.172 0.172 0.017 0.017 0.069 0.069 0.137 0.034 0.017 0.051 0.017 0.411 1.037 0.117 0.057 0.732 0.491 0.047 0.054 0.311 0.197 0.380 0.317 0.052 0.183 0.166 4.552 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Annonaceae (24) Cananga odorata Cyathocalyx sumatrana Goniothalamus macrophylla Meiogyne virgata Mitrephora polypyrena Monocarpia marginalis Oxymitra sp. Polyalthia lateritica Polyalthia glauca Polyalthia lateriflora Polyalthia rumphii Polyalthia sp. 1 Polyalthia sp. 2 Polyalthia sp. 3 Polyalthia sp. 4 Polyalthia sp. 5 Polyalthia sumatrana Popowia hirta Popowia sp. 1 Popowia sp. 2 Popowia tomentosa Xylopia ferruginea Xylopia malayana Xylopia sp. 1 Family Importance Value 5 1 4 5 1 9 1 2 1 31 19 1 1 1 1 1 61 6 1 1 2 2 13 1 7.14 1.43 5.71 7.14 1.43 12.86 1.43 2.86 1.43 44.29 27.14 1.43 1.43 1.43 1.43 1.43 87.14 8.57 1.43 1.43 2.86 2.86 18.57 1.43 6 3 4 5 1 13 1 2 1 78 26 1 1 1 1 1 143 6 1 1 2 2 16 1 8,079.85 1,359.32 637.27 1,111.89 132.73 7,056.34 122.72 753.94 109.36 29,839.03 6,745.95 426.38 124.69 116.90 692.79 829.58 37,494.99 1,025.05 162.86 95.03 276.78 979.93 5,242.90 86.59 0.236 0.040 0.019 0.032 0.004 0.206 0.004 0.022 0.003 0.871 0.197 0.012 0.004 0.003 0.020 0.024 1.094 0.030 0.005 0.003 0.008 0.029 0.153 0.003 0.134 0.027 0.108 0.134 0.027 0.242 0.027 0.054 0.027 0.834 0.511 0.027 0.027 0.027 0.027 0.027 1.641 0.161 0.027 0.027 0.054 0.054 0.350 0.027 0.103 0.051 0.069 0.086 0.017 0.223 0.017 0.034 0.017 1.339 0.446 0.017 0.017 0.017 0.017 0.017 2.455 0.103 0.017 0.017 0.034 0.034 0.275 0.017 0.473 0.118 0.195 0.253 0.048 0.671 0.048 0.110 0.047 3.043 1.154 0.057 0.048 0.047 0.064 0.068 5.189 0.294 0.049 0.047 0.096 0.117 0.777 0.047 13.061 5 43 44 45 Apocynaceae (5) Alstonia angustifolia Alstonia scholaris Dyera sp. 6 11 1 8.57 15.71 1.43 7 11 1 2,778.12 41,046.72 1,231.63 0.081 1.198 0.036 0.161 0.296 0.027 0.120 0.189 0.017 0.363 1.683 0.080 314 [VOL.12 REINWARDTIA No. Family and Species 46 Dyera lowii 47 Willughbeia firma Family Importance Value 6 Aquifoliaceae (1) 48 Ilex cymosa Family Importance Value Number of Frequency Number of Occurrence (%) Trees in plots (in 10.5 Ha) Basal Area (Cm2) Relative Relative Basal Area Frequency (%) (%) Relative Density (%) Importance Value 1 3 1.43 4.29 1 4 1,063.62 3,277.67 0.031 0.096 0.027 0.081 0.017 0.069 0.075 0.245 2.445 4 5.71 4 17,262.70 0.504 0.108 0.069 0.680 0.680 7 49 50 51 Arecaceae (3 ) Borassodendron borneensis Oncosperma horridum Pholidocarpus majadum Family Importance Value 52 13 47 74.29 18.57 67.14 120 25 266 49,993.30 8,783.28 165,336.91 1.459 0.256 4.825 1.399 0.350 1.264 2.060 0.429 4.566 4.917 1.035 10.655 16.608 8 52 53 54 55 56 57 58 Bombacaceae (7) Durio acutifolius Durio dulcis Durio graveolens Durio kutejensis Durio lanceolatus Durio oxleyanus Neesia synandra Family Importance Value 17 9 16 1 12 17 12 24.29 12.86 22.86 1.43 17.14 24.29 17.14 28 9 17 1 16 22 13 13,674.62 27,197.65 7,520.90 314.16 3,490.79 11,462.90 12,072.47 0.399 0.794 0.220 0.009 0.102 0.335 0.352 0.457 0.242 0.430 0.027 0.323 0.457 0.323 0.481 0.154 0.292 0.017 0.275 0.378 0.223 1.337 1.190 0.942 0.053 0.699 1.169 0.898 6.289 9 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 Burseraceae (21) Canarium decumanum Canarium denticulatum Canarium dichotomum Canarium hirsutum Canarium littorale Canarium patentinervum Canarium pilosum Dacryodes laxa Dacryodes rostrata Dacryodes rubiginosa Dacryodes rugosa Haplolobus moluccanus Santiria griffithii Santiria laevigata Santiria megaphylla Santiria sp. 1 Santiria sp. 2 Santiria sp. 3 Santiria sp. 4 Santiria tomentosa Trioma malaccensis Family IV 1 1 3 6 6 1 3 1 39 1 42 7 14 1 6 1 1 1 1 7 6 1.43 1.43 4.29 8.57 8.57 1.43 4.29 1.43 55.71 1.43 60.00 10.00 20.00 1.43 8.57 1.43 1.43 1.43 1.43 10.00 8.57 1 1 4 6 6 1 5 1 62 1 66 7 19 1 6 1 1 1 1 7 7 143.14 224.32 765.21 1,248.98 965.46 232.35 1,618.41 193.59 21,663.10 535.02 17,259.69 1,833.09 5,495.28 3,067.96 1,003.10 502.73 730.62 165.13 103.87 2,042.89 1,540.18 0.004 0.007 0.022 0.036 0.028 0.007 0.047 0.006 0.632 0.016 0.504 0.053 0.160 0.090 0.029 0.015 0.021 0.005 0.003 0.060 0.045 0.027 0.027 0.081 0.161 0.161 0.027 0.081 0.027 1.049 0.027 1.130 0.188 0.377 0.027 0.161 0.027 0.027 0.027 0.027 0.188 0.161 0.017 0.017 0.069 0.103 0.103 0.017 0.086 0.017 1.064 0.017 1.133 0.120 0.326 0.017 0.103 0.017 0.017 0.017 0.017 0.120 0.120 0.048 0.051 0.172 0.301 0.293 0.051 0.214 0.050 2.745 0.060 2.766 0.362 0.863 0.134 0.294 0.059 0.065 0.049 0.047 0.368 0.326 9.316 10 80 81 82 Celastraceae (3 ) Bhesa paniculata Euonymus javanicus Lophopetalum javanicum Family Importance Value 16 2 1 22.86 2.86 1.43 22 2 1 6,563.37 460.45 91.61 0.192 0.013 0.003 0.430 0.054 0.027 0.378 0.034 0.017 1.000 0.102 0.047 1.148 11 83 84 85 86 87 88 Chrysobalanaceae (6 ) Atuna racemosa ssp. excelsa Licania splendens Maranthes corymbosa Parastemon urophyllus Parinari oblongifolia Parinari sp. Family Importance Value 7 19 2 4 13 1 10.00 27.14 2.86 5.71 18.57 1.43 7 27 3 4 15 1 7,044.01 27,448.19 1,596.52 4,844.15 15,568.71 84.95 0.206 0.801 0.047 0.141 0.454 0.002 0.188 0.511 0.054 0.108 0.350 0.027 0.120 0.463 0.051 0.069 0.257 0.017 0.514 1.776 0.152 0.318 1.061 0.047 3.867 12 89 90 91 Clusiaceae (19 ) Calophyllum pulcherrimum Calophyllum soulattri Garcinia celebica 3 11 8 4.29 15.71 11.43 3 11 10 1,347.71 42,461.00 6,005.72 0.039 1.239 0.175 0.081 0.296 0.215 0.051 0.189 0.172 0.172 1.724 0.562 2008] No. Family and Species KARTAWINATA et al::Wanariset dipterocarp forest structure Number of Frequency Number of Occurrence (%) Trees in plots (in 10.5 Ha) 2 2.86 2 1 1.43 1 4 5.71 4 2 2.86 2 2 2.86 2 3 4.29 3 2 2.86 2 2 2.86 2 1 1.43 1 4 5.71 4 11 15.71 14 1 1.43 1 1 1.43 1 1 1.43 1 1 1.43 1 1 1.43 1 Basal Area (Cm2) 642.71 114.99 1,002.63 3,808.13 1,093.09 1,589.75 569.29 1,328.64 390.57 538.77 4,794.23 143.14 320.63 298.50 102.07 95.03 Relative Relative Basal Area Frequency (%) (%) 0.019 0.054 0.003 0.027 0.029 0.108 0.111 0.054 0.032 0.054 0.046 0.081 0.017 0.054 0.039 0.054 0.011 0.027 0.016 0.108 0.140 0.296 0.004 0.027 0.009 0.027 0.009 0.027 0.003 0.027 0.003 0.027 315 Relative Density (%) 0.034 0.017 0.069 0.034 0.034 0.051 0.034 0.034 0.017 0.069 0.240 0.017 0.017 0.017 0.017 0.017 Importance Value 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 Garcinia dioica Garcinia lateriflora Garcinia nervosa Garcinia parvifolia Garcinia rigida Garcinia sp. 1 Garcinia sp. 2 Garcinia sp. 3 Garcinia sp. 4 Garcinia tetrandra Kayea macrantha Mammea acuminata Mesua borneensis Mesua caroidea Mesua sp. 1 Mesua sp. 2 Family Importance Value 0.107 0.047 0.206 0.199 0.120 0.179 0.105 0.127 0.055 0.192 0.676 0.048 0.053 0.053 0.047 0.047 4.719 13 108 109 110 Combretaceae (3 ) Terminalia foetidissima Ellipanthus beccarii Mastixia tricholoma Family Importance Value 4 1 3 5.71 1.43 4.29 4 1 4 1,342.12 314.16 689.22 0.039 0.009 0.020 0.108 0.027 0.081 0.069 0.017 0.069 0.215 0.053 0.169 0.438 14 Crypteroniaceae (1 ) 111 Crypteronia cumingii Family Importance Value 13 18.57 15 59,833.97 1.746 0.350 0.257 2.353 2.353 15 Ctenolophonaceae (1 ) 112 Ctenolophon parviflorus Family Importance Value 3 4.29 2 495.60 0.014 0.081 0.034 0.129 0.129 16 113 114 115 116 Dilleniaceae (4 ) Dillenia excelsa Dillenia grandiflora Dillenia obovata . Dillenia pentagyna Family Importance Value 18 12 6 1 25.71 17.14 8.57 1.43 21 13 7 1 7,974.88 5,501.57 8,360.12 116.90 0.233 0.161 0.244 0.003 0.484 0.323 0.161 0.027 0.360 0.223 0.120 0.017 1.077 0.706 0.526 0.047 2.357 17 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 Dipterocarpaceae (25 ) Anisoptera costata Dipterocarpus cornutus Dipterocarpus gracilis Dipterocarpus humeratus Hopea dryobalanoides Hopea mengerawan Hopea rudiformis Parashorea malaanonan Shorea acuminatissima Shorea almon Shorea gibbosa Shorea johorensis Shorea kunstleri Shorea laevis Shorea lamellata Shorea leprosula Shorea ovalis Shorea palembanica Shorea parvifolia Shorea pauciflora Shorea smithiana . Upuna borneensis Vatica macrantha Vatica rassak . Vatica umbonata Family Importance Value 1 33 15 8 10 9 1 5 2 7 6 1 1 42 20 17 40 8 29 5 17 1 22 12 39 1.43 47.14 21.43 11.43 14.29 12.86 1.43 7.14 2.86 10.00 8.57 1.43 1.43 60.00 28.57 24.29 57.14 11.43 41.43 7.14 24.29 1.43 31.43 17.14 55.71 1 56 18 9 11 24 1 6 2 11 6 1 1 112 26 29 63 8 42 7 18 1 48 18 56 3,903.63 93,147.45 22,960.57 2,949.50 1,602.06 9,409.26 1,320.25 2,822.65 2,255.07 8,868.85 4,801.37 226.98 555.71 304,547.17 64,794.59 27,590.48 68,438.42 5,381.47 72,416.11 64,986.79 38,451.69 615.75 20,564.74 10,256.16 22,428.86 0.114 2.719 0.670 0.086 0.047 0.275 0.039 0.082 0.066 0.259 0.140 0.007 0.016 8.888 1.891 0.805 1.997 0.157 2.114 1.897 1.122 0.018 0.600 0.299 0.655 0.027 0.888 0.403 0.215 0.269 0.242 0.027 0.134 0.054 0.188 0.161 0.027 0.027 1.130 0.538 0.457 1.076 0.215 0.780 0.134 0.457 0.027 0.592 0.323 1.049 0.017 0.961 0.309 0.154 0.189 0.412 0.017 0.103 0.034 0.189 0.103 0.017 0.017 1.922 0.446 0.498 1.081 0.137 0.721 0.120 0.309 0.017 0.824 0.309 0.961 0.158 4.567 1.383 0.456 0.505 0.929 0.083 0.320 0.154 0.636 0.404 0.051 0.060 11.940 2.875 1.760 4.155 0.510 3.614 2.151 1.888 0.062 2.016 0.931 2.665 44.272 316 [VOL.12 REINWARDTIA Number of Frequency Number of Occurrence (%) Trees in plots (in 10.5 Ha) Basal Area (Cm2) Relative Relative Basal Area Frequency (%) (%) Relative Density (%) Importance Value 1.641 0.054 0.134 0.323 0.511 0.027 0.403 0.027 0.027 0.054 0.134 0.215 3.347 0.034 0.137 0.309 0.824 0.017 0.446 0.017 0.017 0.051 0.103 0.206 6.512 0.139 0.619 0.845 1.946 0.059 1.015 0.047 0.050 0.114 0.257 0.561 12.164 0.182 0.020 0.016 0.187 0.010 0.323 0.054 0.027 0.242 0.027 0.206 0.034 0.034 0.189 0.017 0.710 0.109 0.077 0.618 0.054 1.568 0.021 0.146 0.166 0.072 0.014 0.066 0.005 0.040 0.040 0.173 0.014 0.394 0.016 0.003 0.376 0.018 0.004 0.006 0.012 0.013 0.053 0.014 0.035 0.432 0.003 0.123 0.026 1.638 0.003 0.110 0.523 0.006 0.050 0.038 0.044 0.038 0.177 0.034 0.020 0.083 0.007 0.360 0.465 0.307 0.030 0.726 0.430 0.134 0.054 0.108 0.027 0.215 0.215 0.484 0.081 0.753 0.108 0.027 0.188 0.027 0.027 0.027 0.027 0.027 0.242 0.081 0.081 0.565 0.027 0.430 0.081 0.888 0.027 0.215 0.592 0.027 0.081 0.161 0.188 0.108 0.215 0.134 0.081 0.323 0.054 1.022 1.157 0.807 0.017 0.498 0.412 0.103 0.034 0.086 0.034 0.137 0.137 0.395 0.051 0.721 0.069 0.017 0.120 0.017 0.017 0.017 0.017 0.051 0.154 0.051 0.051 0.429 0.017 0.412 0.017 1.339 0.017 0.189 0.652 0.017 0.069 0.103 0.120 0.086 0.154 0.086 0.086 0.257 0.034 1.184 1.785 0.669 0.068 1.370 1.008 0.309 0.102 0.260 0.067 0.392 0.392 1.052 0.147 1.868 0.192 0.047 0.684 0.062 0.048 0.050 0.056 0.091 0.450 0.146 0.167 1.426 0.047 0.966 0.124 3.864 0.047 0.514 1.767 0.050 0.199 0.303 0.353 0.231 0.547 0.255 0.186 0.663 0.095 2.566 3.407 1.783 No. Family and Species 18 142 143 144 145 146 147 148 149 150 151 152 153 Ebenaceae (12) Diospyros borneensis Diospyros buxifolia Diospyros elliptica Diospyros macrocarpa Diospyros maingayi Diospyros malayana Diospyros oblonga Diospyros sp 1 Diospyros sp. 2 Diospyros sp. 3 Diospyros sumatrana Diospyros wallichii Family Importance Value 61 2 5 12 19 1 15 1 1 2 5 8 87.14 2.86 7.14 17.14 27.14 1.43 21.43 1.43 1.43 2.86 7.14 11.43 195 2 8 18 48 1 26 1 1 3 6 12 52,219.17 1,755.56 11,884.09 7,307.95 20,940.24 510.71 5,646.10 111.22 191.18 287.15 677.98 4,804.86 1.524 0.051 0.347 0.213 0.611 0.015 0.165 0.003 0.006 0.008 0.020 0.140 19 154 155 156 157 158 Elaeocarpaceae (5) Elaeocarpus glaber Elaeocarpus obtusus Elaeocarpus oxypyrens Elaeocarpus polystachyus Sloanea javanica Family Importance Value 12 2 1 9 1 17.14 2.86 1.43 12.86 1.43 12 2 2 11 1 6,224.44 701.87 545.17 6,417.47 346.36 20 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 Euphorbiaceae (45) Antidesma neurocarpum Aporusa elmeri Aporusa falcifera Aporusa lucida Aporusa lunata Aporusa maingayi Aporusa nitida Aporusa sp. Aporusa sphaeridophora Baccaurea costulata Baccaurea kunstleri Baccaurea macrocarpa Baccaurea minor Baccaurea parviflora Baccaurea racemosa Baccaurea sp. 1 Baccaurea sp. 2 Baccaurea sp. 3 Baccaurea sp. 4 Baccaurea sp. 5 Baccaurea sumatrana Blumeodendron elatriospermum Blumeodendron tokbrai Chaetocarpus castanocarpus Cleistanthus maingayi Croton oblongus Drypetes crassipes Drypetes laevis Drypetes littoralis Drypetes longifolia Drypetes minahasae Drypetes sp. Endospermum diadenum Fahrenheitia pendula Glochidion philippicum Glochidion rubrum Macaranga gigantea Macaranga hypoleuca Macaranga lowii Macaranga tanarius Macaranga winkleri Mallotus penangensis Mallotus leptophyllus Neoscortechinia kingii 1 27 16 5 2 4 1 8 8 18 3 28 4 1 7 1 1 1 1 1 9 3 3 21 1 16 3 33 1 8 22 1 3 6 7 4 8 5 3 12 2 38 43 30 1.43 38.57 22.86 7.14 2.86 5.71 1.43 11.43 11.43 25.71 4.29 40.00 5.71 1.43 10.00 1.43 1.43 1.43 1.43 1.43 12.86 4.29 4.29 30.00 1.43 22.86 4.29 47.14 1.43 11.43 31.43 1.43 4.29 8.57 10.00 5.71 11.43 7.14 4.29 17.14 2.86 54.29 61.43 42.86 1 29 24 6 2 5 2 8 8 23 3 42 4 1 7 1 1 1 1 3 9 3 3 25 1 24 1 78 1 11 38 1 4 6 7 5 9 5 5 15 2 69 104 39 706.86 5,017.06 5,683.79 2,450.46 478.95 2,271.45 184.92 1,368.64 1,368.64 5,928.13 493.87 13,486.93 553.61 113.10 12,883.86 615.75 136.85 188.69 408.28 436.76 1,814.82 488.67 1,188.70 14,811.69 95.03 4,227.28 900.26 56,120.60 95.03 3,770.41 17,926.66 201.06 1,701.44 1,317.20 1,510.91 1,294.68 6,069.00 1,181.77 669.15 2,836.33 250.65 12,328.46 15,928.22 10,504.88 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure Number of Occurrence in plots 203 Pimeleodendron griffithianum 23 1 204 Ptychopyxis bacciformis Family Importance Value No. Family and Species Frequency Number of (%) Trees (in 10.5 Ha) 32.86 28 1.43 1 Basal Area (Cm2) Relative Basal Area (%) 8,699.46 0.254 201.06 0.006 Relative Frequency (%) 0.619 0.027 317 Relative Density (%) 0.481 0.017 Importance Value 1.353 0.050 29.824 21 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 Fabaceae (19) Archidendron clypearia Archidendron microcarpum Crudia reticulata Crudia ripicola Dialium hydnocarpoides Dialium indum Dialium platysepalum Dialium sp. Koompassia excelsa Koompassia malaccensis Milletia sericea Parkia speciosa Parkia timoriana . Phitecelobium sp. Pithecellobium microcarpum Saraca declinata Sindora leiocarpa Sindora velutina Uittienia modesta Family Importance Value 5 5 2 1 1 7 5 1 13 32 2 1 5 1 3 3 2 12 2 7.14 7.14 2.86 1.43 1.43 10.00 7.14 1.43 18.57 45.71 2.86 1.43 7.14 1.43 4.29 4.29 2.86 17.14 2.86 5 5 2 1 1 9 5 1 15 76 2 2 5 1 3 3 2 17 2 1,420.93 6,417.90 168.27 962.11 547.39 2,909.06 3,675.24 2,436.69 14,019.13 42,828.62 193.22 4,964.70 29,722.22 141.03 988.22 431.36 254.63 8,645.59 228.97 0.041 0.187 0.005 0.028 0.016 0.085 0.107 0.071 0.409 1.250 0.006 0.145 0.867 0.004 0.029 0.013 0.007 0.252 0.007 0.134 0.134 0.054 0.027 0.027 0.188 0.134 0.027 0.350 0.861 0.054 0.027 0.134 0.027 0.081 0.081 0.054 0.323 0.054 0.086 0.086 0.034 0.017 0.017 0.154 0.086 0.017 0.257 1.304 0.034 0.034 0.086 0.017 0.051 0.051 0.034 0.292 0.034 0.262 0.408 0.093 0.072 0.060 0.428 0.328 0.115 1.016 3.415 0.094 0.206 1.088 0.048 0.161 0.145 0.096 0.867 0.095 8.995 22 224 225 226 227 228 229 230 231 232 233 234 235 Fagaceae 12) Castanopsis costata Castanopsis javanica Castanopsis lucida Castanopsis sp. Lithocarpus blumeanus Lithocarpus conocarpus Lithocarpus hystrix Lithocarpus sp. 1 Lithocarpus sp. 2 Lithocarpus sundaicus Quercus argentata Quercus gemelliflora Family Importance Value 2 1 1 1 18 5 2 1 1 4 8 2 2.86 1.43 1.43 1.43 25.71 7.14 2.86 1.43 1.43 5.71 11.43 2.86 2 1 2 1 29 5 2 1 1 4 10 2 995.29 1,116.28 732.57 452.39 15,863.89 1,545.08 2,133.34 186.27 769.45 3,680.77 7,462.50 475.36 0.029 0.033 0.021 0.013 0.463 0.045 0.062 0.005 0.022 0.107 0.218 0.014 0.054 0.027 0.027 0.027 0.484 0.134 0.054 0.027 0.027 0.108 0.215 0.054 0.034 0.017 0.034 0.017 0.498 0.086 0.034 0.017 0.017 0.069 0.172 0.034 0.117 0.077 0.083 0.057 1.445 0.265 0.150 0.049 0.067 0.284 0.605 0.102 3.301 23 Flacourtiaceae (1) 236 Hydnocarpus polypetala Family Importance Value 23 32.86 32 5,820.27 0.170 0.619 0.549 1.338 1.338 24 Hypericaceae (2) 237 Cratoxylon cochinchinense 238 Cratoxylon hypericinum Family Importance Value 1 5 1.43 7.14 1 5 1,075.21 4,156.45 0.031 0.121 0.027 0.134 0.017 0.086 0.075 0.342 0.417 26 Icacinaceae (1) 239 Stemonurus sp. Family Importance Value 1 1.43 1 229.66 0.007 0.027 0.017 0.051 0.051 1 4 1 8 9 9 7 20 1 1 1 3 1 1 1.43 5.71 1.43 11.43 12.86 12.86 10.00 28.57 1.43 1.43 1.43 4.29 1.43 1.43 1 6 1 9 11 9 7 24 1 1 1 3 1 1 283.53 1,347.67 138.93 4,093.17 4,027.09 8,616.86 1,734.66 5,837.79 349.67 206.12 314.16 892.88 193.59 219.04 0.008 0.039 0.004 0.119 0.118 0.251 0.051 0.170 0.010 0.006 0.009 0.026 0.006 0.006 0.027 0.108 0.027 0.215 0.242 0.242 0.188 0.538 0.027 0.027 0.027 0.081 0.027 0.027 0.017 0.103 0.017 0.154 0.189 0.154 0.120 0.412 0.017 0.017 0.017 0.051 0.017 0.017 0.052 0.250 0.048 0.489 0.548 0.648 0.359 1.120 0.054 0.050 0.053 0.158 0.050 0.050 27 240 241 242 243 244 245 246 247 248 249 250 251 252 253 Lauraceae (51) Actinodaphne glomerata Actinodaphne procera Alseodaphne sp. 1 Alseodaphne sp. 2 Alseodaphne oblanceolata Alseodaphne umbelliflora Beilschmiedia glabra Beilschmiedia maingayi Beilschmiedia sp. 1 Beilschmiedia sp. 2 Cryptocarya crassifolia Cryptocarya crassinervia Cryptocarya cumingii Cryptocarya ferrea 318 [VOL.12 REINWARDTIA No. Family and Species 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 Dehaasia borneensis Dehaasia caesia Dehaasia firma Dehaasia incrassata Dehaasia sp. Endiandra beccariana Endiandra rubescens Eusideroxylon zwageri Litsea accendens Litsea angulata Litsea crassifolia Litsea elliptica Litsea ferruginea Litsea firma Litsea grandis Litsea lancifolia Litsea mappacea Litsea noronhae Litsea resinosa Litsea robusta Litsea sp. 1 Litsea sp. 2 Litsea sp. 3 Litsea sp. 4 Litsea sp. 5 Litsea sp. 6 Litsea sp. 7 Litsea sp. 8 Litsea sp. 9 Litsea sp. 10 Litsea sp. 11 Litsea tomentosa Litsea wallichii Neolitsea cesiaefolia Notaphoebe sp. Notaphoebe umbelliflora Phoebe laevis Family Importance Value 28 291 292 293 294 295 Lecythidaceae (5) Barringtonia acutangula Barringtonia lanceolata Barringtonia macrostachya Barringtonia sp. Planchonia valida Family Importance Value Number of Occurrence in plots 1 5 1 2 1 5 18 55 2 1 1 11 10 2 9 2 1 4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 8 4 Frequency Number of (%) Trees (in 10.5 Ha) 1.43 1 7.14 5 1.43 1 2.86 2 1.43 1 7.14 6 25.71 19 78.57 112 2.86 2 1.43 1 1.43 1 15.71 13 14.29 12 2.86 2 12.86 10 2.86 2 1.43 1 5.71 4 15.71 16 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 5.71 4 1.43 1 11.43 10 5.71 4 Basal Area (Cm2) 444.88 3,377.01 136.85 255.64 404.71 1,140.00 7,708.87 93,791.11 487.39 397.61 459.96 6,147.83 8,534.30 712.37 3,329.13 308.14 390.57 1,672.54 10,845.73 314.16 346.36 637.94 89.92 102.07 118.82 183.85 452.39 471.44 539.13 725.83 1,152.09 98.52 84.95 505.50 237.79 10,307.36 1,922.09 Relative Basal Area (%) 0.013 0.099 0.004 0.007 0.012 0.033 0.225 2.737 0.014 0.012 0.013 0.179 0.249 0.021 0.097 0.009 0.011 0.049 0.317 0.009 0.010 0.019 0.003 0.003 0.003 0.005 0.013 0.014 0.016 0.021 0.034 0.003 0.002 0.015 0.007 0.301 0.056 Relative Frequency (%) 0.027 0.134 0.027 0.054 0.027 0.134 0.484 1.479 0.054 0.027 0.027 0.296 0.269 0.054 0.242 0.054 0.027 0.108 0.296 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.108 0.027 0.215 0.108 Relative Density (%) 0.017 0.086 0.017 0.034 0.017 0.103 0.326 1.922 0.034 0.017 0.017 0.223 0.206 0.034 0.172 0.034 0.017 0.069 0.275 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.069 0.017 0.172 0.069 Importance Value 0.057 0.319 0.048 0.096 0.056 0.271 1.035 6.139 0.102 0.056 0.057 0.698 0.724 0.109 0.511 0.097 0.055 0.225 0.887 0.053 0.054 0.063 0.047 0.047 0.048 0.049 0.057 0.058 0.060 0.065 0.078 0.047 0.047 0.191 0.051 0.688 0.232 17.408 1 7 15 1 3 1.43 10.00 21.43 1.43 4.29 1 9 19 1 3 286.52 4,867.72 5,246.79 95.03 1,047.29 0.008 0.142 0.153 0.003 0.031 0.027 0.188 0.403 0.027 0.081 0.017 0.154 0.326 0.017 0.051 0.052 0.485 0.883 0.047 0.163 1.630 29 Loganiaceae (1) 296 Strychnos lucida Family Importance Value 1 1.43 1 188.69 0.006 0.027 0.017 0.050 0.050 30 Lythraceae (1) 297 Lagerstroemia floribunda Family Importance Value 6 8.57 9 6,505.05 0.190 0.161 0.154 0.506 0.506 2 1 2 4 2.86 1.43 2.86 5.71 3 1 2 4 430.96 122.72 367.57 663.21 0.013 0.004 0.011 0.019 0.054 0.027 0.054 0.108 0.051 0.017 0.034 0.069 0.118 0.048 0.099 0.196 0.460 6 2 7 6 3 32 8.57 2.86 10.00 8.57 4.29 45.71 6 2 8 8 3 60 2,593.09 320.27 2,081.88 1,263.34 357.79 11,172.08 0.076 0.009 0.061 0.037 0.010 0.326 0.161 0.054 0.188 0.161 0.081 0.861 0.103 0.034 0.137 0.137 0.051 1.030 0.340 0.097 0.386 0.336 0.143 2.217 31 298 299 300 301 Magnoliaceae (4) Elmerillia tsiampacca Magnolia candollii Magnolia elegans Magnolia sp. Family Importance Value 32 302 303 304 305 306 307 Melastomataceae (14) Memecylon beccarianum Memecylon costatum Memecylon lilacinum Memecylon ovatum Pternandra azurea Pternandra caerulescens 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure No. Family and Species 308 309 310 311 312 313 314 315 Pternandra cordata Pternandra galeata Pternandra latifolia Pternandra rostrata Pternandra sp. 1 Pternandra sp. 2 Pternandra sp. 3 Pternandra sp. 4 Family Importance Value 33 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 Meliaceae (17) Aglaia macrocarpa Aglaia odorata Aglaia silvestris Aglaia sp. Aphanamixis polystachya Chisocheton cumingianus Chisocheton medusae Chisocheton sp. Chisocheton patens Dysoxylum arborescens Dysoxylum densiflorum Dysoxyllum excelsum Dysoxylum macrocarpum Dysoxylum pachyrache Kokoona littoralis Lansium domesticum 332 Sandoricum borneense Family Importance Value 34 Monimiaceae (1) 333 Kibara coriacea Family Importance Value 35 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 Moraceae (21) Artocarpus altilis Artocarpus anisophyllus Artocarpus champeden Artocarpus dadah Artocarpus kemando Artocarpus longifolius Artocarpus nitidus Artocarpus rigidus Artocarpus sp. 1 Artocarpus sp.2 Artocarpus tamara Ficus ampelas Ficus aurata Ficus crassiramica Ficus sp. 1 Ficus sp. 2 Ficus sumatrana Ficus sundaica Ficus variegata Ficus xanthophylla Family Importance Value 36 354 355 356 357 358 359 360 361 362 363 Myristicaceae (33) Gymnacranthera contracta Gymnacranthera sp. 1 Gymnacranthera sp. 2 Gymnacranthera sp. 3 Horsfieldia bracteosa Horsfieldia crassifolia Horsfieldia glabra Horsfieldia grandis Horsfieldia irya Horsfieldia punctatifolia Number of Occurrence in plots 26 21 2 14 1 1 1 1 Frequency (%) 37.14 30.00 2.86 20.00 1.43 1.43 1.43 1.43 Number of Trees (in 10.5 Ha) 57 25 2 21 1 1 1 1 6 2 26 1 12 1 5 5 1 1 2 16 4 4 3 21 8.57 2.86 37.14 1.43 17.14 1.43 7.14 7.14 1.43 1.43 2.86 22.86 5.71 5.71 4.29 30.00 6 Basal Area (Cm2) Relative Frequency (%) 0.699 0.565 0.054 0.377 0.027 0.027 0.027 0.027 319 10,460.75 4,376.10 254.01 2,786.40 130.70 86.59 186.27 136.85 Relative Basal Area (%) 0.305 0.128 0.007 0.081 0.004 0.003 0.005 0.004 Relative Density (%) 0.978 0.429 0.034 0.360 0.017 0.017 0.017 0.017 Importance Value 13 2 32 1 15 1 6 1 1 1 2 25 4 4 3 21 2,514.29 221.24 6,969.66 109.36 4,866.39 143.14 2,331.40 246.06 86.59 881.41 364.57 5,843.87 3,081.34 598.12 1,641.02 4,071.20 0.073 0.006 0.203 0.003 0.142 0.004 0.068 0.007 0.003 0.026 0.011 0.171 0.090 0.017 0.048 0.119 0.161 0.054 0.699 0.027 0.323 0.027 0.134 0.134 0.027 0.027 0.054 0.430 0.108 0.108 0.081 0.565 0.223 0.034 0.549 0.017 0.257 0.017 0.103 0.017 0.017 0.017 0.034 0.429 0.069 0.069 0.051 0.360 0.458 0.095 1.452 0.047 0.722 0.048 0.306 0.159 0.047 0.070 0.099 1.030 0.266 0.194 0.180 1.044 8.57 7 2,706.12 0.079 0.161 0.120 0.361 6.576 4 5.71 4 670.89 0.020 0.108 0.069 0.196 0.196 6 13 1 5 6 1 27 12 8 1 1 1 2 1 2 2 3 2 1 4 8.57 18.57 1.43 7.14 8.57 1.43 38.57 17.14 11.43 1.43 1.43 1.43 2.86 1.43 2.86 2.86 4.29 2.86 1.43 5.71 6 17 2 14 9 1 38 16 9 1 1 1 2 1 2 2 3 2 1 4 2,939.32 6,330.02 1,719.72 5,363.16 3,150.37 235.06 11,924.51 3,729.70 7,243.06 174.37 664.10 130.70 211.76 136.85 295.98 463.40 327.63 335.08 160.61 3,609.92 0.086 0.185 0.050 0.157 0.092 0.007 0.348 0.109 0.211 0.005 0.019 0.004 0.006 0.004 0.009 0.014 0.010 0.010 0.005 0.105 0.161 0.350 0.027 0.134 0.161 0.027 0.726 0.323 0.215 0.027 0.027 0.027 0.054 0.027 0.054 0.054 0.081 0.054 0.027 0.108 0.103 0.292 0.034 0.240 0.154 0.017 0.652 0.275 0.154 0.017 0.017 0.017 0.034 0.017 0.034 0.034 0.051 0.034 0.017 0.069 0.350 0.826 0.111 0.531 0.408 0.051 1.726 0.706 0.581 0.049 0.063 0.048 0.094 0.048 0.097 0.102 0.142 0.098 0.049 0.282 6.363 36 1 1 1 18 1 20 10 2 13 51.43 1.43 1.43 1.43 25.71 1.43 28.57 14.29 2.86 18.57 69 1 1 1 27 1 32 12 4 25 21,616.58 363.05 498.76 257.30 10,393.08 2,463.01 14,414.24 1,783.58 1,863.20 9,126.34 0.631 0.011 0.015 0.008 0.303 0.072 0.421 0.052 0.054 0.266 0.968 0.027 0.027 0.027 0.484 0.027 0.538 0.269 0.054 0.350 1.184 0.017 0.017 0.017 0.463 0.017 0.549 0.206 0.069 0.429 2.784 0.055 0.059 0.052 1.251 0.116 1.508 0.527 0.177 1.045 1.983 1.122 0.096 0.818 0.048 0.047 0.049 0.048 3.519 320 No. Family and Species 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 Horsfieldia sp. 1 Horsfieldia sp. 2 Horsfieldia sp. 3 Horsfieldia sp. 4 Knema cinerea Knema conferta Knema latericia Knema latifolia Knema laurina Knema lunduensis Knema percoriacea Knema sp. 1 Knema sp. 2 Knema sp. 3 Knema sp. 4 Knema sp. 5 Knema sp. 6 Myristica gaulterifolia Myristica iners Myristica lanceifolia Myristica maxima Myristica sp. Myristica villosa Family Importance Value 37 Myrsinaceae (1) 387 Ardisia sp. Family Importance Value 38 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 [VOL.12 REINWARDTIA Myrtaceae (59) Cleistocalyx operculata Eugenia acuminatissima Eugenia acutangula Eugenia albidiramea Eugenia aquea Eugenia beccarii Eugenia boerlagei Eugenia bruneorhamea Eugenia corymbosa Eugenia decipiens Eugenia densiflora Eugenia densinervia Eugenia excelsa Eugenia fastigiata Eugenia jamboloides Eugenia lanceolata Eugenia lineata Eugenia ochneocarpa Eugenia oleosa F. Muell. Eugenia opaca K. & V. Eugenia operculata Eugenia rostrata Bedd. ex Dut Eugenia sp. 1 Eugenia sp. 2 Eugenia sp. 3 Eugenia sp. 4 Eugenia sp. 5 Eugenia sp. 6 Eugenia sp. 7 Eugenia sp. 8 Eugenia sp. 9 Eugenia sp. 10 Eugenia sp. 11 Eugenia sp. 12 Eugenia sp. 13 Eugenia sp. 14 Eugenia sp. 15 Eugenia sp. 16 Eugenia sp. 17 Number of Occurrence in plots 1 1 1 1 28 24 19 4 9 23 8 1 1 1 1 1 1 19 2 1 4 1 3 Frequency Number of (%) Trees (in 10.5 Ha) 1.43 1 1.43 1 1.43 1 1.43 1 40.00 72 34.29 42 27.14 24 5.71 6 12.86 13 32.86 29 11.43 13 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 27.14 25 2.86 2 1.43 1 5.71 5 1.43 1 4.29 4 Basal Area (Cm2) 254.47 206.12 153.94 176.71 21,642.47 10,594.10 5,754.04 1,248.47 2,643.36 7,643.17 2,975.00 283.53 467.59 514.72 376.68 452.39 174.37 10,447.70 286.07 339.79 1,198.73 176.71 583.19 Relative Basal Area (%) 0.007 0.006 0.004 0.005 0.632 0.309 0.168 0.036 0.077 0.223 0.087 0.008 0.014 0.015 0.011 0.013 0.005 0.305 0.008 0.010 0.035 0.005 0.017 Relative Frequency (%) 0.027 0.027 0.027 0.027 0.753 0.646 0.511 0.108 0.242 0.619 0.215 0.027 0.027 0.027 0.027 0.027 0.027 0.511 0.054 0.027 0.108 0.027 0.081 Relative Density (%) 0.017 0.017 0.017 0.017 1.236 0.721 0.412 0.103 0.223 0.498 0.223 0.017 0.017 0.017 0.017 0.017 0.017 0.429 0.034 0.017 0.086 0.017 0.069 Importance Value 0.051 0.050 0.049 0.049 2.621 1.676 1.091 0.247 0.542 1.339 0.525 0.052 0.058 0.059 0.055 0.057 0.049 1.245 0.096 0.054 0.228 0.049 0.166 7.572 1 1.43 1 105.68 0.003 0.027 0.017 0.047 0.047 1 7 35 10 3 2 6 5 21 4 1 2 1 25 8 1 7 17 9 13 1 2 4 3 7 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1.43 10.00 50.00 14.29 4.29 2.86 8.57 7.14 30.00 5.71 1.43 2.86 1.43 35.71 11.43 1.43 10.00 24.29 12.86 18.57 1.43 2.86 5.71 4.29 10.00 1.43 5.71 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1 12 62 15 4 2 9 6 38 8 1 2 1 40 9 1 7 25 20 16 1 2 4 6 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 441.15 3,825.07 22,772.72 9,549.71 884.95 2,140.21 4,743.91 1,066.18 15,267.54 2,846.91 176.71 745.47 706.86 17,213.92 4,955.50 191.18 1,151.49 10,150.70 11,454.01 5,807.38 441.15 617.52 854.31 2,111.62 5,842.20 465.31 394.28 83.32 98.52 109.36 124.69 136.85 143.14 151.75 206.12 268.80 352.99 397.61 452.39 0.013 0.112 0.665 0.279 0.026 0.062 0.138 0.031 0.446 0.083 0.005 0.022 0.021 0.502 0.145 0.006 0.034 0.296 0.334 0.169 0.013 0.018 0.025 0.062 0.171 0.014 0.012 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.006 0.008 0.010 0.012 0.013 0.027 0.188 0.941 0.269 0.081 0.054 0.161 0.134 0.565 0.108 0.027 0.054 0.027 0.672 0.215 0.027 0.188 0.457 0.242 0.350 0.027 0.054 0.108 0.081 0.188 0.027 0.108 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.017 0.206 1.064 0.257 0.069 0.034 0.154 0.103 0.652 0.137 0.017 0.034 0.017 0.687 0.154 0.017 0.120 0.429 0.343 0.275 0.017 0.034 0.069 0.103 0.172 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.057 0.506 2.670 0.805 0.175 0.151 0.454 0.269 1.663 0.328 0.049 0.110 0.065 1.861 0.514 0.050 0.342 1.183 0.920 0.794 0.057 0.106 0.201 0.245 0.530 0.075 0.136 0.046 0.047 0.047 0.048 0.048 0.048 0.048 0.050 0.052 0.054 0.056 0.057 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure No. Family and Species 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 Eugenia sp. 18 Eugenia sp. 19 Eugenia sp. 20 Eugenia sp. 21 Eugenia sp. 22 Eugenia sp. 23 Eugenia sp. 24 Eugenia sp. 25 Eugenia sp. 26 Eugenia sp. 27 Eugenia sp. 28 Eugenia sp. 29 Eugenia sp. 30 Eugenia suringariana Rhodamnia cinerea Rhodamnia sp. 1 Syzygium aqueum Syzygium corymbosum Tristaniopsis obovata Tristanopsis whiteana Family Importance Value 38 Ochnaceae (1) 447 Gomphia serrata Family Importance Value Number of Occurrence in plots 1 1 1 1 1 1 1 1 1 1 1 1 1 19 7 1 1 1 1 4 Frequency Number of (%) Trees (in 10.5 Ha) 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 1.43 1 27.14 43 10.00 8 1.43 1 1.43 1 1.43 1 1.43 1 5.71 7 Basal Area (Cm2) 530.93 660.52 730.62 764.54 907.92 907.92 951.15 1,029.22 1,640.30 83.32 98.52 109.36 124.69 22,042.61 3,765.40 172.03 114.99 226.98 260.16 3,347.54 Relative Basal Area (%) 0.015 0.019 0.021 0.022 0.026 0.026 0.028 0.030 0.048 0.002 0.003 0.003 0.004 0.643 0.110 0.005 0.003 0.007 0.008 0.098 Relative Frequency (%) 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.511 0.188 0.027 0.027 0.027 0.027 0.108 321 Relative Density (%) 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.738 0.137 0.017 0.017 0.017 0.017 0.120 Importance Value 0.060 0.063 0.065 0.066 0.071 0.071 0.072 0.074 0.092 0.046 0.047 0.047 0.048 1.892 0.435 0.049 0.047 0.051 0.052 0.325 14.918 3 4.29 4 3,252.70 0.095 0.081 0.069 0.244 0.244 Olacaceae (5) Anacolosa frutescens Ochanostachys amentacea Scorodacarpus borneensis Strombosia ceylanica Strombosia javanica Family Importance Value 1 40 12 2 4 1.43 57.14 17.14 2.86 5.71 1 72 17 2 4 201.06 25,596.86 7,612.93 535.05 1,298.09 0.006 0.747 0.222 0.016 0.038 0.027 1.076 0.323 0.054 0.108 0.017 1.236 0.292 0.034 0.069 0.050 3.059 0.837 0.104 0.214 4.263 40 Oxalidaceae (1) 453 Sarcotheca glauca Family Importance Value 1 1.43 1 498.76 0.015 0.027 0.017 0.059 0.059 41 Podocarpaceae (1) 454 Nageia wallichiana Family Importance Value 3 4.29 4 1,208.91 0.035 0.081 0.069 0.185 0.185 1 2 10 1 1 1 1 11 1.43 2.86 14.29 1.43 1.43 1.43 1.43 15.71 1 2 12 1 1 1 1 13 263.02 571.78 7,025.07 1,562.28 143.14 598.28 3,631.68 4,704.18 0.008 0.017 0.205 0.046 0.004 0.017 0.106 0.137 0.027 0.054 0.269 0.027 0.027 0.027 0.027 0.296 0.017 0.034 0.206 0.017 0.017 0.017 0.017 0.223 0.052 0.105 0.680 0.090 0.048 0.062 0.150 0.656 1.842 43 Proteaceae (2) 463 Helicia robusta 464 Heliciopsis incisa Family Importance Value 1 1 1.43 1.43 1 1 224.32 229.66 0.007 0.007 0.027 0.027 0.017 0.017 0.051 0.051 0.101 44 Rhamnaceae (1) 465 Zizyphus angustifolius Family Importance Value 4 5.71 4 4,146.51 0.121 0.108 0.069 0.297 0.297 6 4 5 8.57 5.71 7.14 8 5 1 7,184.41 3,632.48 804.25 0.210 0.106 0.023 0.161 0.108 0.134 0.137 0.086 0.017 0.508 0.299 0.175 0.983 39 448 449 450 451 452 42 455 456 457 458 459 460 461 462 45 466 467 468 Polygalaceae (8) Xanthophyllum adenotus Xanthophyllum affine Xanthophyllum scortechinii Xanthophyllum sp.1 Xanthophyllum sp. 2 Xanthophyllum sp. 3 Xanthophyllum sp. 4 Xanthophyllum stipitatum Family Importance Value Rhizophoraceae (3) Carallia brachiata Pelacalyx axilaris Pellacalyx lobbii Family Importance Value 322 [VOL.12 REINWARDTIA Number of Occurrence in plots Frequency Number of (%) Trees (in 10.5 Ha) No. Family and Species 46 469 470 471 472 473 Rosaceae (4) Licania splendens Prunus arborea Prunus beccarii Prunus sp. 1 Prunus sp. 2 Family Importance Value 27 10 13 1 1 38.57 14.29 18.57 1.43 1.43 27 10 15 47 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 Rubiaceae (22) Adina minutiflora Anthocephalus cadamba Gardenia forsteniana Gardenia sp. Gardenia tubifera . Ixora .grandifolia Lasianthus sp. Nauclea junghuhnii Nauclea sp. Nauclea subdita Petunga sp. Porterandia anisophylla . Randia sp. Tarenna winkleri Timonius flavescens Timonius sericeus Tricalysia malaccensis Tricalysia singularis Urophyllum arboreum Urophyllum borneensis Urophyllum corymbosum Urophyllum polyneurum Family Importance Value 5 20 4 1 1 3 1 2 1 1 1 10 1 3 7 2 1 3 5 2 2 12 48 Sabaiaceae (1) 496 Meliosma sumatrana Family Importance Value 49 Santalaceae (1) 497 Scleropyrum wallichianum Family Importance Value 50 498 499 500 501 502 503 504 505 506 507 508 509 510 Sapindaceae (13) Allophylus cobe Didymocarpus sp. Didymocarpus longan Guioa sp. Nephelium cuspidatum Nephelium lappaceum Nephelium maingayi Nephelium ramboutan-ake Paranephelium sp. Pometia pinnata Rhysotoechia acuminata Xerospermum laevigatum Xerospermum xanthophyllum Family Importance Value 51 511 512 513 514 515 516 517 518 519 520 521 Sapotaceae (16) Chrysophyllum lanceolatum Ganua motleyana Madhuca ligulata Madhuca magnifolia Madhuca malaccensis ( Madhuca motleyana Madhuca sericea Madhuca sessiliflora Palaquium calophyllum Palaquium dasyphyllum Palaquium ferox Basal Area (Cm2) Relative Basal Area (%) Relative Frequency (%) Relative Density (%) Importance Value 1 27,448.19 4,280.74 3,070.82 240.53 3,216.99 0.801 0.125 0.090 0.007 0.094 0.726 0.269 0.350 0.027 0.027 - 0.463 0.172 0.257 0.000 0.017 1.991 0.566 0.697 0.034 0.138 1.434 7.14 28.57 5.71 1.43 1.43 4.29 1.43 2.86 1.43 1.43 1.43 14.29 1.43 4.29 10.00 2.86 1.43 4.29 7.14 2.86 2.86 17.14 5 28 4 1 1 4 1 2 1 2 1 10 1 3 7 2 1 3 5 2 2 23 6,614.45 98,044.19 1,163.60 349.67 268.80 395.95 145.27 516.50 201.06 714.43 196.07 2,952.47 314.16 1,075.01 1,664.09 1,082.48 93.31 320.17 1,119.94 282.03 268.05 2,867.25 0.193 2.861 0.034 0.010 0.008 0.012 0.004 0.015 0.006 0.021 0.006 0.086 0.009 0.031 0.049 0.032 0.003 0.009 0.033 0.008 0.008 0.084 0.134 0.538 0.108 0.027 0.027 0.081 0.027 0.054 0.027 0.027 0.027 0.269 0.027 0.081 0.188 0.054 0.027 0.081 0.134 0.054 0.054 0.323 0.086 0.481 0.069 0.017 0.017 0.069 0.017 0.034 0.017 0.034 0.017 0.172 0.017 0.051 0.120 0.034 0.017 0.051 0.086 0.034 0.034 0.395 0.413 3.880 0.210 0.054 0.052 0.161 0.048 0.103 0.050 0.082 0.050 0.527 0.053 0.164 0.357 0.120 0.047 0.142 0.253 0.096 0.096 0.801 7.759 5 7.14 5 2,767.26 0.081 0.134 0.086 0.301 0.301 5 7.14 5 1,237.81 0.036 0.134 0.086 0.256 0.256 1 1 7 1 4 4 1 5 1 14 1 2 3 1.43 1.43 10.00 1.43 5.71 5.71 1.43 7.14 1.43 20.00 1.43 2.86 4.29 1 1 7 1 4 4 1 5 1 17 1 2 4 162.86 226.98 930.20 183.85 539.34 635.56 122.72 2,089.81 141.03 3,697.80 543.25 613.26 1,460.11 0.005 0.007 0.027 0.005 0.016 0.019 0.004 0.061 0.004 0.108 0.016 0.018 0.043 0.027 0.027 0.188 0.027 0.108 0.108 0.027 0.134 0.027 0.377 0.027 0.054 0.081 0.017 0.017 0.120 0.017 0.069 0.069 0.017 0.086 0.017 0.292 0.017 0.034 0.069 0.049 0.051 0.336 0.049 0.192 0.195 0.048 0.281 0.048 0.776 0.060 0.106 0.192 2.383 1 24 1 6 1 3 44 1 10 22 10 1.43 34.29 1.43 8.57 1.43 4.29 62.86 1.43 14.29 31.43 14.29 1 101 2 7 3 4 80 1 14 32 12 576.80 92,233.50 2,116.49 8,087.12 1,620.98 3,721.56 21,007.02 130.70 6,978.71 9,954.55 9,806.05 0.017 2.692 0.062 0.236 0.047 0.109 0.613 0.004 0.204 0.291 0.286 0.027 0.646 0.027 0.161 0.027 0.081 1.183 0.027 0.269 0.592 0.269 0.017 1.734 0.034 0.120 0.051 0.069 1.373 0.017 0.240 0.549 0.206 0.061 5.071 0.123 0.518 0.126 0.258 3.170 0.048 0.713 1.432 0.761 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure Number of Occurrence in plots 26 3 1 15 1 Frequency (%) 37.14 4.29 1.43 21.43 1.43 Number of Trees (in 10.5 Ha) 41 3 1 20 1 52 Simarubaceae (1) 527 Irvingia malayana Family Importance Value 5 7.14 53 Sonneratiaceae (1) 528 Duabanga moluccana Family Importance Value 1 Sterculiaceae (9) Heritiera javanica Heritiera littoralis Heritiera simplicifolia Pterocymbium tubulatum Pterygota sp. Scaphium macropodum Sterculia gilva Sterculia rubiginosa Sterculia sp.1 Family Importance Value 55 Symplocaceae (1) 538 Symplocos odorartissima Family Importance Value No. Family and Species 522 523 524 525 526 Palaquium rostratum Palaquium sericeum Palaquium sp. Payena lucida Payena sericea Family Importance Value 54 529 530 531 532 533 534 535 536 537 Basal Area (Cm2) Relative Frequency (%) 0.699 0.081 0.027 0.403 0.027 323 12,565.50 413.71 1,590.43 8,807.83 107.51 Relative Basal Area (%) 0.367 0.012 0.046 0.257 0.003 Relative Density (%) 0.704 0.051 0.017 0.343 0.017 Importance Value 5 4,917.83 0.144 0.134 0.086 0.364 1.43 1 122.72 0.004 0.027 0.017 0.048 0.048 1 8 6 8 2 20 4 7 1 1.43 11.43 8.57 11.43 2.86 28.57 5.71 10.00 1.43 1 8 6 8 2 26 5 7 1 176.71 3,001.48 3,826.99 1,943.91 3,079.08 165,001.32 2,058.76 2,062.43 136.85 0.005 0.088 0.112 0.057 0.090 4.816 0.060 0.060 0.004 0.027 0.215 0.161 0.215 0.054 0.538 0.108 0.188 0.027 0.017 0.137 0.103 0.137 0.034 0.446 0.086 0.120 0.017 0.049 0.440 0.376 0.409 0.178 5.800 0.253 0.369 0.048 7.923 1 1.43 1 100.29 0.003 0.027 0.017 0.047 0.047 1.770 0.144 0.090 1.004 0.047 15.335 56 539 540 541 Theaceae (3) Schima wallichii Tetramerista glabra Thea sp. Family Importance Value 5 8 1 7.14 11.43 1.43 5 11 1 4,723.370 18,722.63 80.12 0.138 0.546 0.002 0.134 0.215 0.027 0.086 0.189 0.017 0.358 0.950 0.046 1.309 57 542 543 544 545 Thymelaeaceae (4) Aquilaria malaccensis Gonystylus forbesii Gonystylus macrophyllus Gonystylus velutinus Family Importance Value 22 1 7 4 31.43 1.43 10.00 5.71 30 1 7 4 18,030.69 113.10 1,530.18 1,242.89 0.526 0.003 0.045 0.036 0.592 0.027 0.188 0.108 0.515 0.017 0.120 0.069 1.633 0.047 0.353 0.213 2.246 58 546 547 548 549 Tiliaceae (4) Microcos crassifolia Microcos hirsuta Pentace laxiflora Pentace triptera Family Importance Value 3 2 21 1 4.29 2.86 30.00 1.43 3 2 30 1 403.18 202.39 9,843.85 174.37 0.012 0.006 0.287 0.005 0.081 0.054 0.565 0.027 0.051 0.034 0.515 0.017 0.144 0.094 1.367 0.049 1.654 59 Ulmaceae (2) 550 Gironniera nervosa 551 Gironniera subaequalis Family Importance Value 26 1 37.14 1.43 54 1 19,101.88 237.79 0.557 0.007 0.699 0.027 0.927 0.017 2.184 0.051 2.235 0.053 1 1.43 1 298.65 0.009 0.027 0.017 60 Urticaceae (1) 552 Poikilospermum suaveolens Family Importance Value 1 143.00 1 298.65 0.009 0.027 0.017 0.053 0.053 61 Verbenaceae (2) 553 Teijsmanniodendron bogoriense 554 Teijsmanniodendron coriaceum Family Importance Value 2 1 2.86 1.43 2 1 4,183.23 81.71 0.122 0.002 0.054 0.027 0.034 0.017 0.210 0.046 0.257 62 Violaceae (1) 555 Rinorea benghalensis Family Importance Value 17 24.29 28 13,946.90 0.407 0.457 0.481 1.345 1.345 100.378 303.726 TOTAL 3,762 5,515.86 5,848 3,500,424.54 102.162 101.187 324 REINWARDTIA [VOL.12 INSTRUCTION TO AUTHORS Manuscripts intended for publication in Reinwardtia should be written either in English, French or German, and represent articles wich have not been published in any other journal or proceedings. Each manuscript received will be considered and processes further if it is accompanied by signed statements given independently by two reviewers chosen by the author (s) attestingto its merits as well as its scientific suitability for publication in Reinwardtia. Two printed copies (on A4 paper) of the manuscript of not more than 200 pages should be sent to Editors, together with an electronic copy prepared on Word Processor computer programme using Times New Romance letter type and saved as Rich Text File must be submitted. For the style of presentation autohrs should follow the latest issue of Reinwardtia very closely. Title of the article should be followed by author's name and mailing address and one-paragraphed abstract in English (with French or German abstract for paper in french or German) of not more than 250 words.Keywords should be given below each abstract, on a peparated paper author(s) sholud the preferred running title of the article submitted. Taxonomic keys should be prepared using the aligned-couplet type. Strict adherence to the International Code of Botanica Monenclatural is observed, so that taxonamix and nomenclatural novelties sholud be clearly shown, Latin description for new taxon proposed should be provided, and the herbaria where type specimens are deposited should be indicated. Synonyms should be presented in the long form [name of taxon, author's name, year of publication, abbreviated journal or book title, volume (number): [page]. Maps, line drawing illustrations or photographs preferably should be prepared in landscape presentation to occupy two columns. Illustrations must be submitted as original art accompanying, but separated from the manuscript. On electronic copy, the illistration sholud be saved in .jpg or .gif format. Legends for illustrations must be submitted separately at the end of the manuscript. Bibliography, list of literature cited or references follow the Harvard system. For each paper published author(s) will receive 25 copies of reprints free og charge, any additional copies should be ordered in advance and the author(s) will be charged accordingly. ISSN 0034 365 X REINWARDTIA Vol. 12. No. 4. 2008 CONTENTS Page J.F. VELDKAMP. The correct name for the Tetrastigma (Vitaceae) host of Rafflesia (Rqfflesiaeeae) in Malesia and a (not so) new species ... 261 WJ.J.ODE WILDE &B.E.E. DUYFES. Miscellaneous South East Asian cucurbit news 267 M.A. RIFAI. Endophragmiella bogoriensis Rifai,spec. nov (Hyphomycetes) 275 M.A. RIFAI. Another note on PodoconismegaspemiaBoedijn(Hyphomycetes) 277 TOPIK HID A W ; M. ITO; T. YUKAWA. The phylogenetic position of the Papuasian genus Sarcochilus R.Br. (Orchidaceae: Aeridinae): evidence frommolecular data 281 C.E. RIDSDALE. Notes on MaiesiznNeonaucleea 285 C.E. RIDSDALE. Thorny problems in the Rubiaceae: Benkara, Fagerlindia andOxyceros 289 KUSWATAKARTAWINAIA, PURWANINGSIH, T. PARTOMIHARDJO, R. YUSUF, R. ABDULHADI, S. RISWAN. Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan, Indonesia 301 RUGAiAH & S. SUNARTI. Two new wild species of Averrhoa (Oxalidaceae) from Indonesia 325 ATIKRETNOWATI. Anew Javanese species of Marasmius (Trichlomataceae ) 334 Reinwardtia is a LEPI acredited Journal (80/Akred-LIPI/P2MBI/5/2007) HERBARIUM BOGORIENSE BIDANG BOTANI PUS AT PENELITIAN BIOLOGI - LIPI BOGOR, INDONESIA ,