Academia.eduAcademia.edu
Mediterranean Marine Science Vol. 21, 2020 Isopoda (crustacea) from the Levantine sea with comments on the biogeography of mediterranean isopods CASTELLÓ JOSÉ University of Barcelona; Email: josep.castello@ub.edu; Address: Aribau, 25, 4-1; 08011 Barcelona BITAR GHAZI Lebanese University, Faculty of Sciences, Department of Natural Sciences, Hadath ZIBROWIUS HELMUT Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille https://doi.org/10.12681/mms.20329 Copyright © 2020 Mediterranean Marine Science To cite this article: CASTELLÓ, J., BITAR, G., & ZIBROWIUS, H. (2020). Isopoda (crustacea) from the Levantine sea with comments on the biogeography of mediterranean isopods. Mediterranean Marine Science, 21(2), 308-339. doi:https://doi.org/10.12681/mms.20329 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.20329 Isopoda (Crustacea) from the Levantine Sea with comments on the biogeography of Mediterranean isopods José CASTELLÓ1, Ghazi BITAR2 and Helmut ZIBROWIUS3 2 1 University of Barcelona; Aribau, 25, 4-1; 08011 Barcelona, Spain Lebanese University, Faculty of Sciences, Department of Natural Sciences, Hadath, Lebanon 3 Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France Corresponding author: josep.castello@ub.edu Handling Editor: Agnese MARCHINI Received: 22 April 2019; Accepted: 15 April 2020; Published on line: 19 May 2020 Abstract This study focuses on the isopod fauna of the eastern Mediterranean, mainly from the waters of Lebanon. Ninety-five samples containing isopods were obtained by scuba diving (depths from 0 to 44 m) at 32 stations along the coast of Northern Cyprus, Syria, and Lebanon. The most frequently sampled substrates were caves, vertical walls, and calcareous algae crusts or build-ups. A total of 502 individuals were studied, belonging to 28 species and included in 20 genera, nine families, and three suborders. Four new species from this collection (Atarbolana beirutensis, Cirolana bitari, Cirolana zibrowiusi, and Mesanthura pacoi) have already been published. Brief diagnoses and illustrations were included. The collection studied here consists mostly of Mediterranean species, some already known in the area. Ten (eleven, when the cf. species is confirmed) are new records in the Levantine Sea (Apanthura addui, Cirolana manorae, Cymodoce fuscina, Cymodoce pilosa, Elaphognathia bacescoi, Gnathia illepidus, Gnathia inopinata, Heptanthura cryptobia, Kupellonura serritelson, Metacirolana rotunda, and Pseudocerceis cf. seleneides). Three of these (four, when the cf. species is confirmed) are new records in the Mediterranean Sea (Apanthura addui, Cirolana manorae, Metacirolana rotunda, and Pseudocerceis cf. seleneides). Eight species (28.5%) can be considered non-indigenous (Apanthura addui, Cirolana manorae, Cymodoce fuscina, Metacirolana rotunda, Paracerceis sculpta, Paradella dianae, Pseudocerceis cf. seleneides, and Sphaeroma walkeri). This work also provides an inventory of known Mediterranean isopod fauna (excluding Epicaridea, Oniscidea, and brackish water Aselloidea), which total 295 species. The isopod fauna of various subregions of the Mediterranean, the Suez Canal, and the Red Sea/Gulf of Aden are compared, and the transit of species through the Suez Canal is discussed. The list of non-indigenous species in the Mediterranean Sea is updated to 23. Keywords: Crustacea; Isopoda; taxonomy; biogeography; Levantine Sea; checklist of Mediterranean species; non-indigenous species (NIS); anti-Lessepsian species (Anti_L). Introduction In the Mediterranean, the flora and fauna of the Levantine region have been less studied than those of other regions. However, some progress has been made in the last two decades, with the publication of several studies on marine taxa, e.g., fish (Egypt: Akel & Karachle, 2017; Syria: Ali, 2018), bryozoan (Lebanon: Harmelin et al., 2007; Harmelin et al., 2009; Israel: Sokolover et al., 2016), macrophytes (Lebanon: Bitar et al., 2017; Egypt: Shabaka, 2018), mollusca (Lebanon: Crocetta et al., 2020). Extensive surveys carried out in Lebanon resulted in a series of publications (e.g., Zibrowius & Bitar, 2003; Pérez et al., 2004; Harmelin-Vivien et al., 2005; Vacelet et al., 2007; Crocetta et al., 2013a; Crocetta et al., 2013b; Crocetta et al., 2014; Bitar, 2014). Isopods are a group of 308 peracarid crustaceans with a depressed body and seven pairs of pereopods that are generally similar to each other. Their biological cycle does not include larval stages, except for the Gnathiidae (Cymothoida), which present hematophagous larvae that are parasitic on fish (Hispano et al., 2013). Isopoda is an order of crustaceans of marine origin that have had great evolutionary success. They display wide morphological diversity and have adapted to all environments (marine, freshwater and terrestrial). It is estimated that there are some 6,250 marine species (Poore & Bruce, 2012), with wide bathymetric distribution, from the surface to abyssal depths (10,000 m). Most marine species live on the bottom and are benthic organisms (e.g., Sphaeromatidea and Valvifera). However, there are groups of Asellota with swimming species that have modified appendages and can be considered peMedit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | lagic (e.g., Desmosomatidae and Munnopsidae). In terms of habitat, marine isopods have colonized mediolittoral, infralittoral and circalittoral algal substrates up to bathyal and abyssal muddy bottoms. Some species of Sphaeromatidae are euryhaline (e.g., Lekanesphaera hookeri). Their diet is diverse. Free-living species range from herbivores to omnivorous scavengers. There are also adaptations to ectoparasitism (e.g., Cymothoida), whose species feed on the blood and tissues of diverse hosts, mainly fish, and to endoparasitism (Epicaridea), in which species lose their typical form to adapt to live in a variety of hosts, mainly other crustaceans. Isopods make up an important part of the diet of other animals, especially fish. Isopods do not have powerful means of dispersion. Many species are passively spread by marine currents, using drifting objects (e.g., Idotea), “hitchhiking” on other organisms such as cephalopods or fish (e.g., Cymothoida), or ship hulls (e.g., Limnoria, and Sphaeromatidea). Despite their abundance, diversity and ecological relevance, there is no complete list of species from the Levantine region even though previous faunistic studies (e.g., Bakir et al., 2014; Kirkim et al., 2009, 2015; Kirkim et al., 2010; Koçatas et al., 2001; Koukouras et al., 2002; Larwood, 1940; Monod, 1931, 1933; Müller, 1989c, 1994; Negoescu, 1980a; Negoescu & Wägele, 1984; Omer-Cooper, 1927; Ramadan et al., 2006; Ramdane & Trilles, 2008; Trilles, 1991; Trilles & Bariche, 2006; Trilles & Paperna, 1980; Ulman et al., 2017; Veuille & Koçatas, 1979; Wägele, 1981a, b) have notably contributed to knowledge of this taxon. The present paper focuses on a major collection of isopods from Lebanon put together by Ghazi Bitar (GB, Lebanese University, Hadath) and Helmut Zibrowius (HZ, Station Marine d’Endoume, Marseille, at that time) mainly between 1997 and 2003. Additions are from Syria (GB, 2003) and Northern Cyprus (HZ, 1998). This collection has helped to broaden our taxonomic knowledge of the isopod fauna in the area. It also allowed us to carry out a more comprehensive biogeographical comparison throughout the Mediterranean and assess the level of dispersion of non-indigenous species (NIS). Materials and Methods The 95 samples examined (Table 1) were obtained between 1991 and 2003 by scuba diving during various field work projects. The samples correspond to 32 stations in Cyprus, Syria, and Lebanon. Most of the samples (88) are from Lebanon and were obtained between 1997 and 2003, thanks to the French-Lebanese Cooperation Program CEDRE (Ghazi Bitar [GB], Helmut Zibrowius [HZ]). The three samples from Northern Cyprus were obtained by HZ in 1998, although Castelló (2017b) mistakenly mentioned the holotype of Mesanthura pacoi with GB as collector. The most frequently sampled stations in Lebanon were Ramkine Island (12 samples), Selaata (10 samples), Batroun (7 samples) and Chak El Hatab (6 samples). Figure 1 (map) indicates the sampled localities. For biogeographical comparisons (Table 2, Table S2, Table 3, and Table 4), eight Mediterranean subregions (see the respective boundaries in Figure 2, map) and the Suez Canal, Red Sea and Gulf of Aden were considered. These Mediterranean areas broadly coincide with the subregions of the Marine Strategy Framework Directive (MSFD) (Jensen & Panagiotidis, 2015): Western Mediterranean Sea; Adriatic Sea; Ionian Sea and the Central Mediterranean Sea; and Aegean-Levantine Sea. The main differences are the inclusion of an extra subregion (8) corresponding to the southern coasts of the Western and Central Mediterranean, and the subdivisions of the Ionian and the Central Mediterranean (subregions 4 and 8, partly), and the Aegean and Levantine Seas (subregions 5 and 7) because the present collection refers to the latter area. All these subdivisions were considered for comparison purposes. Fig. 1: Map of sampling localities: See Table 1 for number codes. Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 309 Table 1. List of sampling sites, with indication of date of collection, geographical coordinates, depth, and additional ecological/geographical data. Stations.- 1 Limnitis, Yesilirmak (Cyprus); 2 Mare Monte (Cyprus); 3 Famagusta (Cyprus); 4 Lattakia, Institut Scientifique des Recherches Marines (Syria); 5 Ramkine Island (Lebanon); 6 Tripoli, Outside Harbor (Lebanon); 7 Tripoli, Inside Harbor (Lebanon); 8 Tripoli, Al Bahsas (Lebanon); 9 Ras El Chakaa (Lebanon); 10 El Heri, Marina Beaulieu, exit East (Lebanon); 11 Chak El Hatab (Lebanon); 12 Selaata (Lebanon); 13 Batroun (Lebanon); 14 Kfar Aabida (Lebanon); 15 Jbail (Lebanon); 16 N Tabarja (Lebanon); 17. S Tabarja (Lebanon); 18 Acquamarina, N Jounieh Bay (Lebanon); 19 Beirut Harbor, inner side of breakwater (Lebanon); 20 Beirut, Inside Harbor (Lebanon); 21 Beirut, Inside Harbor, Quay 60 (Lebanon); 22 Beirut Harbor, outer side of breakwater (Lebanon); 23 Beirut, St.George (Lebanon); 24 Beirut, American University Beirut (Lebanon); 25 Raoucheh (Lebanon); 26 Beirut Airport, pillars (Lebanon); 27 Khaldeh, Marina Villamar (Lebanon); 28 Saida, Harf El Rijmeh (Lebanon); 29 El Zahrani, Harf El Hawieh El Jouani (Lebanon); 30 El Kassmieh (Lebanon); 31 Tyr (Lebanon); 32 Naqoura (Lebanon). Sample Date Latitude N - Longitude E Depth range (m) Ecological or/and geographical data 1.1 19.11.98 35.17333º - 32.74500º 4 No data 2.1 18.11.98 35.35583º - 33.20666º 7 No data 3.1 23.11.98 35.13250º - 33.93722º 10 No data 4.1 23.05.03 35.53055º - 35.76694º 10--15 Meadow of Cymodocea nodosa and Penicillus capitatus 5.1 22.10.99 34.49638º - 35.76055º 13 Concretions and corals 5.2 22.10.99 34.49638º - 35.76055º 5 Cave 5.3 22.10.99 34.49638º - 35.76055º 15 Cave 5.4 22.10.99 34.49638º - 35.76055º 13-14 Concretions 5.5 22.10.99 34.49638º - 35.76055º 5 Cave 5.6 31.05.00 34.49638º - 35.76055º 5 Shaded wall 5.7 31.05.00 34.49638º - 35.76055º 5-7 Cave with corals 5.8 01.06.00 34.49638º - 35.76055º 3-5 Under boulders 5.9 01.06.00 34.49638º - 35.76055º 0,5 Dyctyopteris polypodioides and Sargassum 5.10 05.04.01 34.49638º - 35.76055º 1 Fouling of a tourist boat 5.11 14.07.03 34.49638º - 35.76055º 15 Cave 5.12 14.07.03 34.49638º - 35.76055º 15 Cave 6.1 20.09.02 34.45722º - 35.81444º 5 Outer side of the breakwater 7.1 19.09.02 34.45583º - 35.81527º 0 Crust of Spirobranchus kraussii 7.2 19.09.02 34.45583º - 35.81527º 2-5 Dock with oysters and ascidians 7.3 08.07.03 34.45583º - 35.81527º 0 Crust of Spirobranchus kraussii 7.4 08.07.03 34.45583º - 35.81527º 2-5 Oysters, ascidians and Niphates toxifera 8.1 26.11.91 34.41972º - 35.82027º 1 Dyctyopteris polypodioides association 9.1 19.10.99 34.31305º - 35.68305º 5-8 Concretions on vertical wall 9.2 19.10.99 34.31305º - 35.68305º 10 Cave 9.3 04.06.00 34.31305º - 35.68305º 10 Cave 9.4 21.09.02 34.31305º - 35.68305º 10 Photophilous algae 10.1 03.06.00 34.31027º - 35.69750º 2-3 Photophilous algae 10.2 03.06.00 34.31027º - 35.69750º 1 Ellisolandia elongata association 11.1 04.06.00 34.29333º - 35.67138º 6 Cave continued 310 Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Table 1 continued Sample Date Latitude N - Longitude E Depth range (m) Ecological or/and geographical data 11.2 04.06.00 34.29333º - 35.67138º 5 Cave 11.3 05.07.03 34.29333º - 35.67138º 9 Concretions 11.4 05.07.03 34.29333º - 35.67138º 14 Cave 11.5 13.07.03 34.29333º - 35.67138º 12-14 Cave 11.6 13.07.03 34.29333º - 35.67138º 12-14 Cave 12.1 18.10.99 34.28416º - 35.65861º 3-8 Small caves and concretions 12.2 18.10.99 34.28416º - 35.65861º 3-8 Small caves 12.3 23.10.99 34.28416º - 35.65861º 7 Concretions 12.4 23.10.99 34.28416º - 35.65861º 0,5-1 Ellisolandia elongata association 12.5 23.10.99 34.28416º - 35.65861º 1 Ellisolandia elongata 12.6 06.07.03 34.28416º - 35.65861º 6-7 Concretions 12.7 06.07.03 34.28416º - 35.65861º 20 Cave 12.8 06.07.03 34.28416º - 35.65861º 35 Concretions 12.9 06.07.03 34.28416º - 35.65861º 20 Cave 12.10 06.07.03 34.28416º - 35.65861º 35 Concretions 13.1 25.09.93 34.25361º - 35.65527º 3 Photophilous algae 13.2 26.06.97 34.25361º - 35.65527º 1 Dyctiopteris polypodioides association 13.3 16.10.99 34.25361º - 35.65527º 9 Concretion on vertical wall 13.4 16.10.99 34.25361º - 35.65527º 9 Concretions on “Phenician wall” 13.5 26.09.02 34.25361º - 35.65527º 6 Calcareous algae 13.6 15.07.03 34.25361º - 35.65527º 5 Calcareous algae 13.7 15.07.03 34.25361º - 35.65527º 5 Calcareous algae 14.1 30.05.00 34.23388º - 35.65416º 7-8 Small cave, concretions 14.2 30.05.00 34.23388º - 35.65416º 5-12 Photophilous algae 15.1 17.10.99 34.12166º - 35.64111º 15 Concretions, Tablieh Shoal 16.1 10.07.03 34.03555º - 35.62472º 10 Galaxaura rugosa and Halopteris scoparia 17.1 11.07.03 34.02527º - 35.62222º 6 Photophilous algae 17.2 11.07.03 34.02527º - 35.62222º 8-18 Peyssonnelia and Eudendrium 18.1 10.07.03 34.01416º - 35.63250º 10-25 Rocky boulders 18.2 11.07.03 34.01416º - 35.63250º 14-23 Peyssonnelia 19.1 15.09.02 33.90722º - 35.52111º 21 Hard bottom 19.2 09.07.03 33.90722º - 35.52111º 14 Boulders covered by Chama pacifica, Niphates toxifera and Eudendrium 20.1 02.06.00 33.90194º - 35.50861º 1-2 Under stones 20.2 02.06.00 33.90194º - 35.50861º 3-8 Muddy boulders covered by Chama pacifica and Spondylus spinosus continued Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 311 Table 1 continued Sample Date Latitude N - Longitude E Depth range (m) Ecological or/and geographical data 20.3 02.06.00 33.90194º - 35.50861º 1-2 Chama pacifica and Spondylus spinosus (covered with mud) 20.4 02.06.00 33.90194º - 35.50861º 2--5 Muddy boulders covered by Chama pacifica and Spondylus spinosus 312 20.5 15.09.02 33.90194º - 35.50861º 0 Crust of Spirobranchus kraussii 21.1 16.09.02 33.90249º - 35.51638º 0 Spirobranchus kraussii facies 21.2 16.09.02 33.90249º - 35.51638º 5-7 Chama and Spondylus 21.3 16.09.02 33.90249º - 35.51638º 6-8 Chama and Balanus 21.4 16.09.02 33.90249º - 35.51638º 0 Crust of Spirobranchus kraussii 22.1 16.09.02 33.90777º- 35.52083º 5-15 Galaxaura rugosa 22.2 16.09.02 33.90777º- 35.52083º 10 Galaxaura rugosa association and Balanus 22.3 09.07.03 33.90777º - 35.52083º 5-8 Chama pacifica and Balanus 22.4 09.07.03 33.90777º - 35.52083º 15 Concretions 23.1 07.07.03 33.90305º - 35.49527º 10 Dike covered by Ellisolandia elongata and Galaxaura rugosa 23.2 07.07.03 33.90305º - 35.49527º 10 Gastropods epifauna 24.1 09.05.92 33.90333º - 35.48250º 1-2 Pterocladiella capillacea and Ellisolandia elongata association 24.2 17.04.01 33.90333º - 35.48250º 0,5 Photophilous algae 25.1 17.09.02 33.88833º - 35.46694º 0-1 Cave 25.2 17.09.02 33.88833º - 35.46694º 1-3 Cave 25.3 17.09.02 33.88833º - 35.46694º 7-9 Rock 25.4 16.07.03 33.88833º - 35.46694º 5 Cave 26.1 25.09.02 33.84222º - 35.48000º 3-10 Pillar 26.2 16.07.03 33.84222º - 35.48000º 0 Pillar, crust of Spirobranchus kraussii 26.3 16.07.03 33.84222º - 35.48000º 3-11 Pillar 27.1 07.06.00 33.77888º - 35.46944º 1 Photophilous algae 27.2 07.06.00 33.77888º - 35.46944º 3 Stypopodium schimperi association 27.3 07.06.00 33.77888º - 35.46944º 3 Photophilous algae 28.1 05.06.00 33.56666º - 35.36944º 11 Stypopodium schimperi, Colpomenia sinuosa and Spondylus spinosus 29.1 06.06.00 33.49611º - 35.33361º 10 Corallinaceae 29.2 06.06.00 33.49611º - 35.33361º 14 Corallinaceae 29.3 06.06.00 33.49611º - 35.33361º 14 Flat rocky bottom 30.1 25.10.99 33.33944º - 35.23861º 44 Coralligenous bottom and freshwater sources 31.1 25.10.99 33.26555º - 35.19000º 12 High bottom, on a boulder 32.1 01.05.01 33.11583º - 35.11972º 8 Cystoseira sp. and Halopteris scoparia association Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Table 2. Mediterranean distribution of isopod species, excluding Epicaridea, Oniscidea, and brackish water Aselloidea, by subregions (species present in the Suez Canal and the Red Sea are also indicated); see Figure 2 for number codes. *not in WoRMS (last accessed: 20 November 2019); ** doubtful record; ***uncertain validity; ****uncertain taxonomic significance; abbreviations: A, absent; P, previously cited; S, found in the present study; RS, Red Sea; SC, Suez Canal; NIS, non-indigenous species in the Mediterranean; New NIS, non-indigenous species in the Mediterranean considered in the present study and not recorded before. SPECIES MEDITERRANEAN SUBREGIONS 1 ASELLOTA GNATHOSTENETROIDOIDEA Gnathostenetroididae Caecostenetroides ischitanum Fresi & Schiecke, 1968 Gnathostenetroides laodicense Amar, 1957 JANIROIDEA Desmosomatidae Chelator chelatus (Stephensen, 1915) Chelator insignis (Hansen, 1916) Desmosoma affine Fresi & Schiecke, 1969 Desmosoma atypicum Schiecke & Fresi, 1969 Desmosoma elegans Fresi & Schiecke, 1969 Desmosoma latipes Hansen, 1916 Desmosoma lineare Sars, 1864 Desmosoma puritanum Fresi & Schiecke, 1969 Desmosoma serratum Fresi & Schiecke, 1969 Desmosoma thoracicum Fresi & Schiecke, 1969 Desmosoma tyrrhenicum Fresi & Schiecke, 1969 Echinopleura aculeata (Sars, 1864) Eugerda filipes (Hult, 1936) Pseudomesus bispinosus Chardy, 1974 Mirabilicoxa curticoxalis Pasternak, 1982 Whoia angusta (Sars, 1899) Ischnomesidae Gracilimesus tropicalis (Menzies, 1962) Ischnomesus bispinosus (Sars, 1868) Janirellidae Janirella bonnieri Stephensen, 1915 Janirella nanseni Bonnier, 1896 Janiridae Austrofilius majoricensis Castelló, 2008* Austrofilius mediterraneus Castelló, 2002 [New NIS] Carpias crosslandi (Stebbing, 1910) Carpias galloprovincialis (Amar, 1950) Carpias stebbingi (Monod, 1933) Ianiropsis breviremis (Sars, 1883) [NIS] Ianiropsis serricaudis Gurjanova, 1936 Jaera (Jaera) albifrons Leach, 1814 Jaera (Jaera) bocqueti Veuille & Koçatas, 1979 Jaera (Jaera) hopeana Costa, 1853 Jaera (Jaera) italica Kesselyak, 1938 Jaera (Jaera) nordica Lemercier, 1958 Jaera (Jaera) nordmanni (Rathke, 1837) Jaera (Jaera) petiti Schulz, 1953 Jaera (Jaera) sarsi Valkanov, 1936 Jaera (Jaera) schellenbergi Kesselyak, 1938 Jaera (Jaera) sorrentina Verhoeff, 1943 2 3 4 5 6 P P P P 7 8 A A P, S P P (cf.) P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P, S P P P P P P P P P A A A A A A A A A A A A A A A A A A A A P P P P SUEZ CANAL/ RED SEA 9 P P P P P P P P P P P P P P P P P P P P A A RS A A A A A A A A A A A A A A continued Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 313 Table 2 continued SPECIES Janira alta (Stimpson, 1853) Janira denticulata Gourret, 1891 Janira maculosa Leach, 1814 Microjaera anisopoda Bocquet & Lévi, 1955 Microjanira dentifrons Schiecke & Fresi, 1970 Joeropsididae Joeropsis brevicornis Koehler, 1885 [subsp. littoralis Amar, 1949] Joeropsis dollfusi Norman, 1899 Joeropsis legrandi Juchault, 1962 Joeropsis mediterranea Amar, 1961* Joeropsis montalentii Fresi, 1968* [New NIS] Joeropsis rathbunae Richardson, 1902 Microparasellidae Angeliera phreaticola Chappuis & DelamareDeboutteville, 1952 Microcharon marinus Chappuis & DelamareDeboutteville, 1954 Microcharon motasi Serban, 1964 Microcharon oltenicus Serban, 1964 Microcharon orghidani Serban, 1964 Microcharon ullae Pesce, 1981 Munnidae Munna fabricii Kröyer, 1846 Munna limicola Sars, 1866 Munna wolffi Fresi & Mazzella, 1974 Uromunna mediterranea (Pierantoni, 1916) Uromunna petiti (Amar, 1948) Uromunna similis (Fresi & Mazzella, 1971) Munnopsidae Aspidarachna sekhari (George & Menzies, 1968) Belonectes parvus (Bonnier, 1896) Disconectes cf. furcatus (Sars, 1870) Disconectes cf. phalangium (Sars, 1864) Disconectes picardi (Amar, 1957) Eurycope laticuneata Pasternak, 1982 Munnopsurus atlanticus (Bonnier, 1896) Ilyarachna calidus George & Menzies, 1968* Ilyarachna calva Pasternak, 1982 Ilyarachna longicornis (Sars, 1864) Ilyarachna medorientalis Chardy, 1974 Nannoniscidae Austroniscus coronatus Schiecke & Modigh-Tota, 1976 Paramunnidae Boreosignum maltinii (Schiecke & Fresi, 1972) Tethygonium variabile (Schiecke & Modigh-Tota, 1976) Pleurocopidae Pleurocope dasyura Walker, 1901 STENETRIOIDEA Stenetriidae Stenetrium mediterraneum Hansen, 1905 MEDITERRANEAN SUBREGIONS 1 P P P P 2 P P P P 3 4 P 5 6 7 P P P 8 P P P P P P P P A P A A A A SC P, S P P P P P A P A P P P A A A A P P P P P P P P P P P P P P P P P P P P P P P P P P SUEZ CANAL/ RED SEA 9 A A A A A P P P P P P P P P A A A A A A A A A A A A A A A A A P A P P A A P A P P P A continued 314 Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Table 2 continued SPECIES MEDITERRANEAN SUBREGIONS 1 Tristenium longicorne (Lucas, 1849) CYMOTHOIDA CYMOTHOOIDEA Aegidae Aega affinis Milne-Edwards, 1840 Aega bicarinata Leach, 1818 Aega hirsuta Schiödte & Meinert, 1879 Aega psora (Linnaeus, 1758) Aega rosacea (Risso, 1816)**** Aegapheles deshaysiana (Milne-Edwards, 1840) Aegiochus incisa (Schiödte & Meinert, 1879) Rocinela danmoniensis Leach, 1818 Rocinela dumerilii (Lucas, 1849) Rocinela ophthalmica Milne-Edwards, 1840 Syscenus infelix Harger, 1880 Cymothoidae Anilocra frontalis Milne-Edwards, 1840 [New NIS] Anilocra leptosoma Bleeker, 1857 Anilocra physodes (Linnaeus, 1758) [NIS] Anilocra pilchardi Bariche & Trilles, 2006 Ceratothoa capri (Trilles, 1964) Ceratothoa collaris Schiödte & Meinert, 1883 Ceratothoa gaudichaudii Milne-Edwards, 1840*** Ceratothoa gobii Schiödte & Meinert, 1883 [New NIS] Ceratothoa imbricata (Fabricius, 1775) Ceratothoa italica Schiödte & Meinert, 1883 Ceratothoa oestroides (Risso, 1816) Ceratothoa oxyrrhynchaena Koelbel, 1878 Ceratothoa parallela (Otto, 1828) Ceratothoa steindachneri Koelbel, 1879 Cymothoa gibbosa Gourret, 1892 [NIS] Cymothoa indica Schiödte & Meinert, 1884 Cymothoa nigropunctata Risso, 1816 [New NIS] Elthusa nanoides (Stebbing, 1905) Elthusa sinuata (Koelbel, 1879) Emetha adriatica Bovallius, 1885 Emetha audouini (Milne-Edwards, 1840) Idusa dieuzeidei Dollfus, 1950 Livoneca pomatomi Gaillat Airoldi, 1940 **** Livoneca punctata (Uljanin, 1872)* [New NIS] Livoneca redmanii Leach, 1818 Mothocya belonae Bruce, 1986 Mothocya contracta Costa, 1851**** Mothocya epimerica Costa, 1851 Mothocya nana (Schiödte & Meinert, 1884) Mothocya taurica (Czerniavsky, 1868) Nerocila bivittata (Risso, 1816) Nerocila cuspidata Costa, 1851**** Nerocila orbignyi (Guérin-Méneville, 1832) Nerocila rhabdota Koelbel, 1879* 2 3 P 4 P P 5 6 7 P 8 P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P SUEZ CANAL/ RED SEA 9 A A A A A A A A A A A A A RS A A A A A A RS A A RS A A A A A RS A A A A A A A A A A A A SC A A A continued Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 315 Table 2 continued SPECIES MEDITERRANEAN SUBREGIONS 1 Nerocila swainsoni Leach, 1818 Olencira lamarckii Leach, 1818 Gnathiidae Elaphognathia bacescoi (Kussakin, 1969) Gnathia dentata (Sars, 1872) Gnathia fallax Monod, 1926 Gnathia illepidus (Wagner, 1869) Gnathia inopinata Monod, 1925 Gnathia maxillaris (Montagu, 1804) Gnathia oxyuraea (Lilljeborg, 1855) Gnathia phallonajopsis Monod, 1925 Gnathia venusta Monod, 1925 Gnathia vorax (Lucas, 1849) Paragnathia formica (Hesse, 1864) ANTHUROIDEA Antheluridae Ananthura ovalis Barnard, 1925 Anthelura elongata Norman & Stebbing, 1886 Anthuridae Amakusanthura libyana (Negoescu, 1980) Anthura filiformis Lucas, 1846**** Anthura gracilis (Montagu, 1808) [New NIS] Apanthura addui Wägele, 1981 Apanthura corsica Amar, 1953 [NIS] Apanthura sandalensis Stebbing, 1900 Apanthura tyrrhenica Wägele, 1980 Apanthuroides mediterranea (Negoescu, 1981) Apanthuroides spathulicauda (Wägele, 1981) Cyathura carinata (Kröyer, 1847) Haliophasma alaticauda Amar, 1966 Haliophasma caprii Wägele, 1981 Indanthura larwoodi (Wägele, 1981) Mesanthura pacoi Castelló, 2017* [NIS] Mesanthura cf. romulea Poore & Lew-Ton, 1986 Notanthura maroccana (Wägele & Platvoet, 1982) Pilosanthura fresii (Wägele, 1980) Expanathuridae Eisothistos macrurus Wägele, 1979 Eisothistos pumilus Wägele, 1979 Heptanthura cryptobia (Wägele, 1979) Hyssuridae Hyssura ligurica Wägele, 1981 Hyssura profunda Barnard, 1925 Kupellonura flexibilis (Pasternak, 1982) Kupellonura mediterranea Barnard, 1925 Kupellonura serritelson Wägele, 1981 Neohyssura spinicauda (Walker, 1901) Leptanthuridae Leptanthura apalpata Wägele, 1981 Leptanthura muelleri Negoescu, 1980 Leptanthura sculpta Pasternak, 1982 2 P** 3 4 P** 5 6 7 8 P S P, S P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P S S P P P P P P P P P P P P P P P P P A A P P P A A A A A RS A A A A A A A A A A A P P S P P P P P P P P P P P P P P P P P P P P S P P P P P P P P P P P P P P, S A A A S P P P P P P P P P P P S P P A A A A A A A A A A A P, S P P P SUEZ CANAL/ RED SEA 9 A A P P P A A A A A A A A A continued 316 Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Table 2 continued SPECIES Paranthuridae Paranthura costana Bate & Westwood, 1866 [NIS] Paranthura japonica Richardson, 1909 Paranthura nigropunctata (Lucas, 1846) CIROLANOIDEA Cirolanidae Atarbolana beirutensis Castelló, 2017 Cirolana bitari Castelló, 2017 Cirolana bovina Barnard, 1940 Cirolana cranchii Leach, 1818 Cirolana ferruginosa Risso, 1826 [New NIS] Cirolana manorae Bruce & Javed, 1987 Cirolana parva Hansen, 1890 Cirolana zibrowiusi Castelló, 2017 Conilera cylindracea (Montagu, 1804) Eurydice affinis Hansen, 1905 Eurydice czerniavsky Bacescu, 1948 Eurydice dollfusi Monod, 1930 Eurydice grimaldii Dollfus, 1888 Eurydice inermis Hansen, 1890 Eurydice longispina Jones, 1969 Eurydice pontica (Czerniavsky, 1868) Eurydice pulchra Leach, 1815 Eurydice racovitzai Bacescu, 1949 Eurydice rotundicauda Norman, 1906 Eurydice spinigera Hansen, 1890 Eurydice truncata (Norman, 1868) Eurydice valkanovi Bacescu, 1949 [New NIS] Metacirolana rotunda (Bruce & Jones, 1978) Natatolana borealis (Lilljeborg, 1851) Natatolana caeca (Dollfus, 1903) Natatolana gallica (Hansen, 1905) Natatolana hirtipes (Milne-Edwards, 1840) Natatolana neglecta (Hansen, 1890) Saharolana seurati Monod, 1930 LIMNORIIDEA LIMNORIOIDEA Limnoriidae Limnoria carinata Menzies & Becker, 1957 Limnoria lignorum (Rathke, 1799) Limnoria mazzellae Cookson & Lorenti, 2001 Limnoria quadripunctata Holthuis, 1949 Limnoria tripunctata Menzies, 1951 Limnoria tuberculata Sowinsky, 1884 Limnoria turae Castelló, 2011* MICROCERBERIDEA Microcerberidae Coxicerberus adriaticus (Karaman, 1955) Coxicerberus arenicola (Chappuis & DelamareDeboutteville, 1952) 7 8 SUEZ CANAL/ RED SEA 9 P P P P A A A MEDITERRANEAN SUBREGIONS 1 2 3 4 5 P P P P P P P P P P P P P P P P 6 P S S P P, S P P S P** S P P P P P P P P P P P P P P (cf.) P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P S RS P A A A A A A P P P P P P P** P P P P** P P** P P P P P** P** P P P A A SC, RS A A SC SC**, RS** A A A A A A RS A A SC, RS A A A A A P** P P** P P P P P P P A SC A A A A A A A continued Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 317 Table 2 continued SPECIES Coxicerberus remanei (Chappuis & DelamareDeboutteville, 1952) Microcerberus remyi Chappuis, 1953 SPHAEROMATIDEA SPHAEROMATOIDEA Sphaeromatidae Campecopea hanseni (Racovitza, 1908) Campecopea hirsuta (Montagu, 1804) Campecopea ischiana (Verhoeff, 1943) Cymodoce emarginata Leach, 1818 [New NIS] Cymodoce erythraea Nobili, 1906 [NIS] Cymodoce fuscina Schotte & Kensley, 2005 Cymodoce hanseni Dumay, 1972 Cymodoce pilosa Milne-Edwards, 1840 Cymodoce rubropunctata (Grube, 1864) Cymodoce spinosa (Risso, 1816) Cymodoce tattersalli Torelli, 1929 Cymodoce truncata Leach, 1814 Cymodoce tuberculata Costa, 1851 Dynamene bicolor (Rathke, 1837) Dynamene bidentata (Adams, 1800) Dynamene bifida Torelli, 1930 Dynamene edwardsi (Lucas, 1849) Dynamene magnitorata Holdich, 1968 Dynamene tubicauda Holdich, 1968 [New NIS] Dynamenella savignii (Milne-Edwards, 1840) Ischyromene bicarinata Harrison, 1981 Ischyromene lacazei Racovitza, 1908 Lekanesphaera ephippium (Costa, 1882) Lekanesphaera hookeri (Leach, 1814) Lekanesphaera levii (Argano & Ponticelli, 1981) Lekanesphaera marginata (Milne-Edwards, 1840) Lekanesphaera monodi (Arcangeli, 1934) Lekanesphaera rugicauda (Leach, 1814) Lekanesphaera weilli (Elkaïm, 1967) [NIS] Paracerceis sculpta (Holmes, 1904) [NIS] Paradella dianae (Menzies, 1962) [New NIS] Pseudocerceis cf. seleneides Messana, 1988 Sphaeroma boryi Guérin-Méneville, 1832 Sphaeroma emarginatum Grube, 1864 Sphaeroma serratum (Fabricius, 1787) Sphaeroma venustissimum Monod, 1931 [NIS] Sphaeroma walkeri Stebbing, 1905 VALVIFERA Arcturidae Arcturina rhomboidalis Koehler, 1911 Arcturinella banyulensis Poisson & Maury, 1931 Arcturinella deltensis Castelló, Molina, Constenla & Soler, 2016* Arcturopsis giardi (Bonnier, 1896) 7 8 SUEZ CANAL/ RED SEA 9 P P A MEDITERRANEAN SUBREGIONS 1 2 3 P P P P P P P P P P P P P P P P** P P P P P P P P P P P 4 P P P P P P P P P 6 A P P P P P P P P P P P P P P** P P P P 5 P P P P (aff.) P P P P P P P P P P P P P P P P P P P** P P P P P S P S P P P P** P P P, S P** P P P, S P P P P P P P P P P P P P** P P P P RS P, S P A A A A A A A A A SC A A A A SC, RS A SC, RS P P P P P P P P P P, S P, S S P P P P P P P P P P P P P A A A A RS A A RS A SC, RS A SC, RS A A SC, RS A SC, RS A A P P P P P P P, S P P P A A P A P A continued 318 Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Table 2 continued SPECIES Astacilla axeli Castelló, 1992 Astacilla bonnierii Stephensen, 1915 Astacilla carlosoteroi (Reboreda, Wägele & Garmendia, 1994) Astacilla cingulata Castelló & Carballo, 2000 Astacilla damnoniensis (Stebbing, 1874) Astacilla depressa Castelló & Poore, 1998 Astacilla dilatata Sars, 1882 Astacilla gorgonophila Monod, 1925 Astacilla laevis Castelló & Poore, 1998 Astacilla longicornis (Sowerby, 1806) Astacilla mediterranea Koehler, 1911 Astacilla monodi Tattersall, 1925 Astacilla paucisaetosa Castelló & Carballo, 2000 Chaetiliidae Parachiridotea mediterranea Roman, 1991 Proidotea haughi Racovitza & Sevastos, 1910***** Saduria entomon (Linnaeus, 1758) Holognathidae Cleantis prismatica (Risso, 1826) Idoteidae Idotea balthica (Pallas, 1772) Idotea chelipes (Pallas, 1766) Idotea emarginata (Fabricius, 1793) Idotea granulosa Rathke, 1843 Idotea linearis (Linnaeus, 1766) Idotea metallica Bosc, 1802 Idotea neglecta Sars, 1897 Idotea ostroumovi Sowinsky, 1895 Idotea pelagica Leach, 1815 Stenosoma aaseni Artüz & Kubanç, 2015 Stenosoma acuminatum Leach, 1814 Stenosoma albertoi (Castellanos & Junoy, 2005) Stenosoma appendiculatum (Risso, 1826) Stenosoma bellonae (Daguerre de Hureaux, 1968) Stenosoma capito (Rathke, 1837) Stenosoma carinata (Lucas, 1814) Stenosoma inonuei Artüz & Kubanç, 2015 Stenosoma lancifer Miers, 1881 Stenosoma mediterranea (Rezig, 1989) Stenosoma nadejda (Rezig, 1989) Stenosoma raquelae (Hedo & Junoy, 1999) Stenosoma spinosum (Amar, 1957) Stenosoma stephenseni Santos & Xavier, 2011 Stenosoma teissieri (Prunus & Pantoustier, 1976) [New NIS] Synidotea variegata Collinge, 1917 Synischia hectica (Pallas, 1772) MEDITERRANEAN SUBREGIONS 1 P P 2 3 4 5 6 7 8 P P P P P P P P P A P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P A P P P P P P RS A A A A RS A A A A A A A A A A A A A A A A A A SC, RS A P P P P P P P P P P P P P P P P P P P P P P P P P P P P** P P P P P P P P P P P P P P P P P P P P P P P P P P A A A A A A A A A A A A A P P P P P SUEZ CANAL/ RED SEA 9 A A P P P Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 319 320 Table 3. Species shared among the areas considered (Epicaridea, Oniscidea, and brackish water Aselloidea excluded). *doubtful record; **not in WoRMS (last accessed: 20 November 2019). Number of species in the region Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Number of shared species Mediterranean Sea [MS] Suez Canal [SC] Red Sea [RS] Gulf of Aden [GA] Indian Ocean [IO] 295 25 72 16 860 34: 15SC, 23RS, 1GA, 19IO Angeliera phreaticola [IO] Anilocra leptosoma [RS] Apanthura addui [IO] Apanthura sandalensis [RS, GA, IO] Carpias crosslandi [RS, IO] Ceratothoa imbricata [RS, IO] Ceratothoa oxyrrynchaena [RS] Cirolana bovina [SC, RS, IO] Cirolana cranchii [IO] Cirolana manorae [SC, IO] Cirolana parva* [SC, RS] Cymodoce erythraea [RS] Cymodoce fuscina [IO] Cymodoce pilosa [RS] Cymodoce spinosa [SC, RS] Species shared Cymodoce truncata [SC, RS] among the areas Dynamene bidentata* [SC, RS] considered (species in Dynamene edwardsi [SC, RS] alphabetical order) Dynamenella savignii [RS, IO] Elthusa nanoides [RS, IO] Eurydice inermis [RS] Eurydice pulchra [SC, RS, IO] Idotea balthica [RS] Idotea metallica [RS, IO] Joeropsis rathbunae [SC] Limnoria lignorum* [SC] Metacirolana rotunda [RS, IO] Nerocila bivittata [SC] Paracerceis sculpta [SC, IO] Pleurocope dasyura [IO] Pseudocerceis cf. seleneides [IO] Sphaeroma serratum [SC, RS, IO] Sphaeroma walkeri [SC, RS, IO] Synidotea variegata [SC, RS] 22: 15MS, 17RS, 1GA, 9IO 48: 23MS, 17SC, 6GA, 30IO 9: 1MS, 1SC, 6RS, 6IO 41: 19MS, 9SC, 30RS, 6GA Carpias stylodactylus [RS] Cirolana anadema** [RS] Cirolana bovina [MS, RS, IO] Cirolana manorae [MS, IO] Cirolana parva* [MS, RS] Cirolana theleceps [RS, IO] Cymodoce spinosa [MS, RS] Cymodoce truncata [MS, RS] Cymothoa exigua [RS] Dynamene bidentata* [MS, RS] Dynamene edwardsi [MS, RS] Eurydice pulchra [MS, RS, IO] Gnathia rhinobatis** [RS] Joeropsis rathbunae [MS] Limnoria lignorum* [MS] Nerocila bivittata [MS] Paracerceis sculpta [MS, IO] Paradella heptaphymata [RS] Rocinela orientalis [RS, GA, IO] Sphaeroma serratum [MS, RS, IO] Sphaeroma walkeri [MS, RS, IO] Synidotea variegata [MS, RS, IO] Aegiochus dollfusi [IO] Amakusanthura motasi [GA] Anilocra leptosoma [MS, IO] Apanthura sandalensis [MS, GA, IO] Argathona macronema [IO] Carpias algicola [IO] Carpias crosslandi [MS, IO] Carpias stylodactylus [SC] Ceratothoa guttata [IO] Ceratothoa imbricata [MS, IO] Ceratothoa oxyrrynchaena [MS] Cilicaea latreillei [IO] Cirolana anadema** [SC] Cirolana bovina [MS, SC, IO] Cirolana corrugis [IO] Cirolana parva* [MS, SC] Cirolana theleceps [SC, IO] Cymodoce erythraea [MS] Cymodoce pilosa [MS] Cymodoce spinosa [MS, SC] Cymodoce truncata [MS, SC] Cymothoa eremita [GA, IO] Cymothoa exigua [SC] Dynamene bidentata* [MS, SC] Dynamene edwardsi [MS, SC] Dynamenella savignii [MS, IO] Elthusa nanoides [MS, IO] Eurydice inermis [MS] Eurydice pulchra [MS, SC, IO] Excirolana orientalis [IO] Gnathia rhinobatis** [SC] Hansenium chiltoni [IO] Idotea balthica [MS] Idotea metallica [MS, IO] Amakusanthura motasi [RS] Apanthura sandalensis [MS, RS, IO] Arcturinoides gibbosus [IO] Caenanthura indica [IO] Cymothoa eremita [RS, IO] Haliophasma adinae [IO] Leptanthura thalassae [RS] Rocinela orientalis [SC, RS, IO] Sphaeroma granti [RS] Aegiochus dollfusi [RS] Angeliera phreaticola [MS] Anilocra leptosoma [RS] Apanthura addui [MS] Apanthura sandalensis [MS, RS, GA] Arcturinoides gibbosus [GA] Argathona macronema [RS] Carpias cf. algicola [RS] Carpias crosslandi [MS, RS] Caenanthura indica [GA] Ceratothoa guttata [RS] Ceratothoa imbricata [MS, RS] Cilicaea latreillei [RS] Cirolana bovina [MS, SC, RS] Cirolana corrugis [RS] Cirolana cranchii [MS] Cirolana manorae [MS, SC] Cirolana theleceps [SC, RS] Cymodoce fuscina [MS] Cymothoa eremita [RS, GA] Dynamenella savignii [MS, RS] Elthusa nanoides [MS, RS] Eurydice pulchra [MS, SC, RS] Excirolana orientalis [RS] Haliophasma adinae [GA] Hansenium chiltoni [RS] Idotea metallica [MS, RS] Lanocira latifrons [RS] Lanocira zeylanica [RS] Machatrium monodi [RS] Metacirolana rotunda [MS, RS] Mothocya melanosticta [RS] Nerocila sigani [RS] Paracerceis sculpta [MS, SC] continued http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Medit. Mar. Sci., 21/2, 2020, 308-339 Table 3 continued Mediterranean Sea [MS] Suez Canal [SC] Red Sea [RS] Gulf of Aden [GA] Lanocira latifrons [IO] Lanocira zeylanica [IO] Leptanthura thalassae [GA] Machatrium monodi [IO] Metacirolana rotunda [MS, IO] Mothocya melanosticta [IO] Nerocila sigani [IO] Paracilicaea mossambica [IO] Paradella heptaphymata [SC] Rocinela orientalis [SC, GA, IO] Sphaeroma granti [GA] Sphaeroma serratum [MS, SC, IO] Sphaeroma walkeri [MS, SC, IO] Synidotea variegata [MS, SC, IO] Species shared among the areas considered (species in alphabetical order) Indian Ocean [IO] Paracilicaea mossambica [RS] Pleurocope dasyura [MS] Pseudocerceis cf. seleneides [MS] Rocinela orientalis [SC, RS, GA] Sphaeroma serratum [MS, SC, RS] Sphaeroma walkeri [MS, SC, RS] Synidotea variegata [SC, RS] Table 4. Autoecology and global distribution of the species present in the Suez Canal and nearby areas (the species recorded in the Suez Canal not extended to other areas [Anilocra meridionalis, Cyathura francispori, and Renocila thresherorum] are not included). Anti_L: anti-Lessepsian, NIS: non-indigenous species, *doubtful record; **not in WoRMS (last accessed: 20 November 2019). Sources consulted: Borja et al., 2000; Castelló, 2011; Cookson, 1991; El-Komi et al., 1998; Geldiay & Kocataş, 1972; Holdich, 1970; Jacobs, 1987; Martínez-Laiz et al., 2018; Müller, 1993; Vieira et al., 2016; WoRMS Editorial Board, 2019. Bathymetric and ecological characteristics Species (in alphabetical order) Habitat / Feeding type Cirolana manorae Joeropsis rathbunae Scavenger, predator Intertidal Natural spread, vessel hulls Vessel hulls Shallow 0-36 m Limnoria lignorum* Mainly untreated timbers, xylophagous Vessel hulls, rafting on wood debris 0-20 m Nerocila bivittata Fish host, parasitic By host Depth range according to host Means of dispersion Westernmost distribution Easternmost distribution (SC considered more eastern than the Mediterranean [subr. 7] for analysis purposes) Considered as (Anti_L, NIS) SPECIES REPORTED FROM BOTH THE MEDITERRANEAN SEA AND THE SUEZ CANAL Mediterranean [7] North West Atlantic Indian Ocean (Pakistan) Suez Canal NIS NIS Not predictable due to Northern hemisphere Northern hemisphere the probable invalidity (*doubtful Mediterranean (*doubtful of Mediterranean records) Mediterranean records) records (Castelló, 2011; Cookson, 1991) North East Atlantic Suez Canal Anti_L 321 continued 322 Table 4 continued Habitat / Feeding type Means of dispersion Bathymetric and ecological characteristics Westernmost distribution Paracerceis sculpta Algae; fouling substrates; floating structures (MartínezLáiz et al., 2018) Natural spread, vessel hulls Shallow. Tolerant to disturbance (Borja et al., 2000) North West Atlantic North East Pacific Considered as (Anti_L, NIS) NIS SPECIES REPORTED FROM BOTH THE MEDITERRANEAN SEA, THE SUEZ CANAL, AND THE RED SEA / GULF OF ADEN Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Species (in alphabetical order) Easternmost distribution (SC considered more eastern than the Mediterranean [subr. 7] for analysis purposes) Cirolana bovina Scavenger, predator Natural spread, vessel hulls Intertidal South East Atlantic Cirolana parva* Scavenger, predator Natural spread, vessel hulls Shallow Gulf of Mexico, Caribbean Sea Cymodoce spinosa Algae; sponge (Geldiay & Kocataş, 1972) Natural spread, vessel hulls Shallow (0-1 m). Very sensitive to disturbance (Borja et. al., 2000) North East Atlantic Red Sea Anti_L Cymodoce truncata Photophile and sciaphile algae, and Posidonia Natural spread, vessel hulls 0-25 m. Very sensitive to disturbance (Borja et. al., 2000) North East Atlantic Red Sea Anti_L Dynamene bidentata* Mid- to lower littoral algae, and also in rock pools in the upper littoral zone; also in barnacles (Vieira et al., 2016) Natural spread, vessel hulls North East Atlantic Shallow. Indifferent to (*doubtful disturbance (Borja et al., Mediterranean records) 2000) Red Sea Not predictable due to the probable invalidity of Mediterranean records (Holdich, 1970; Vieira et al., 2016) Natural spread, vessel hulls 0-10 m. Indifferent to disturbance (Borja et al., 2000) North East Atlantic Red Sea Anti_L Natural spread, vessel hulls Estuarine North East Atlantic Red Sea Anti_L Dynamene edwardsi Eurydice pulchra Algae; amongst mussels and tube worm colonies and barnacle tests; associated with encrusting matter on solid surfaces in some harbors and canals; in empty Chthamalus (Vieira et al., 2016) Intertidal Indian Ocean (India) Red Sea (*doubtful records) NIS Not predictable due to the probable invalidity of Mediterranean, Suez Canal, and Red Sea records (Bruce, in WoRMS Editorial Board, 2019) continued http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Medit. Mar. Sci., 21/2, 2020, 308-339 Table 4 continued Species (in alphabetical order) Habitat / Feeding type Means of dispersion Bathymetric and ecological characteristics Westernmost distribution Easternmost distribution (SC considered more eastern than the Mediterranean [subr. 7] for analysis purposes) Sphaeroma serratum Intertidal; under stones Natural spread, vessel hulls 0-1 m. Eurihaline. Tolerant to disturbance (Borja et al., 2000) North East Atlantic W Australia Anti_L Sphaeroma walkeri Intertidal; crevices of rock and wood or in empty shells; outside wall of ships (Jacobs, 1987) Natural spread, vessel hulls Estuarine Worldwide Worldwide NIS Synidotea variegata Shallow, infratidal Natural spread, vessel hulls, rafting on floating objects 1-20 m South Africa Indochina NIS Carpias stylodactylus Intertidal and shallow rockpools; algae; dead corals; under stones (Müller, 1993) Natural spread, vessel hulls Shallow North West Atlantic South East Pacific Cirolana anadema** Algae Natural spread, vessel hulls 2-3 m Suez Canal Red Sea Cirolana theleceps Scavenger, predator Natural spread, vessel hulls Intertidal South Africa Red Sea Cymothoa exigua Fish host, parasitic By host Depth range according to host Galapagos Islands, Eastern Pacific Red Sea (origin: alien [WoRMS Editorial Board, 2019]) Gnathia rhinobatis** Praniza on fish host, parasitic By host Depth range according to host Suez Canal Red Sea Paradella heptaphymata Bulk community of fouling (ElKomi et al., 1998) Natural spread, vessel hulls Shallow (on buoys (ElKomi et al., 1998)) Suez Canal Red Sea Rocinela orientalis Fish host, parasitic By host Depth range according to host (22-500 m) South Africa Eastern Australia Considered as (Anti_L, NIS) SPECIES REPORTED FROM BOTH THE SUEZ CANAL AND THE RED SEA / GULF OF ADEN Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean Candidate for future possible introduction in the Mediterranean 323 Fig. 2: Biogeographical subregions distinguished here for comparison purposes: Subregion 1. Western Mediterranean: Iberian Peninsula (Strait of Gibraltar, Alboran Sea, and Mediterranean Sea), eastern archipelagos of the Iberian Peninsula, and Roussillon (France); Subregion 2. Western coasts of Italy and French Provence: Ligurian and Tyrrhenian Seas; Subregion 3. Eastern coasts of Italy: Adriatic Sea; Subregion 4. Eastern coasts of Italy: Ionian Sea; Subregion 5. Aegean and Marmara Seas; Subregion 6. Black Sea; Subregion 7. Levant Sea: Southern Turkey, Cyprus, Syria, Lebanon, Israel, and Egypt; Subregion 8. Algeria, Tunisia, Libya, and Malta; Subregion 9. Suez Canal/Red Sea. The list of 165 species for the entire Mediterranean (no subdivisions) by Van der Land (2001) was considered as the starting point for constructing Table 2. The systematic criteria of Martin & Davis (2001) and Brandt & Poore (2003) were used for the assignment to supra-generic categories. The World Register of Marine Species (WoRMS Editorial Board, 2019) was used to update data from the literature that was consulted. The species considered taxa inquirenda (uncertain validity) and nomina dubia (uncertain taxonomic significance) were included in Table 2 and Table S2 (indicated with three [***] and four [****] asterisks respectively). The subspecies were not considered. For example, for Jaera nordmanni, data on its distribution at species level were compiled using data from different subspecies. A single exception can be seen in Table 2: the Mediterranean distribution of Joeropsis brevicornis refers only to the subspecies littoralis, while the subspecies brevicornis is restricted to the North Atlantic. The Oniscidea are not included in Table 2 because they are considered terrestrial in the WoRMS database (WoRMS Editorial Board, 2019), although many species of several genera (e.g., Ligia, Halophiloscia, and Tylos) are common in the supralittoral zone or interstitial in sandy beaches. Species that have not been cited since their original description, of which the holotype is not known to exist, are included in Table 2 if their status in the WoRMS database is “accepted” (e.g., Arcturinella banyulensis, Cirolana ferruginosa). Table S2 provides a list of species reported from the Indian Ocean, Gulf of Aden, Red Sea, and Suez Canal, with an indication of the Mediterranean subregions in which they also occur. For each subregion, the sources concerning the species included in Table 2 and Table S2 are given in Table S3, and the publications that are referred to are mainly 324 those with the most inclusive lists. The term “Lessepsian” (L) is applied, according to Por (1978), to species that crossed the Suez Canal by their own means and reached the Mediterranean Sea. As “non-indigenous species” (NIS), all authors refer to species introduced into the Mediterranean, regardless of the route and means of entry. Therefore, all Lessepsian species can be considered non-indigenous but not vice versa. Por (1978) also used the term “anti-Lessepsian” (Anti_L) to refer to species that follow a path opposite to Lessepsians. From a biogeographical point of view, “pre-Lessepsian” (PL) species are those that shared the Mediterranean Sea and the Red Sea before the opening of the Suez Canal, and relict species (R) are those that existed in the Tethys before the separation of the Mediterranean Sea and the Indian Ocean. For biogeographic considerations, the area of analysis that is considered is the Mediterranean Sea. Therefore, non-exclusive terms such as NIS refer to this area. Furthermore, terms such as Anti_L may be equivalent to NIS for the Red Sea. Results Taxonomy A total of 28 species were found, included in 20 genera, 9 families, and 3 suborders. Taxonomic descriptions of four new species from this collection (Mesanthura pacoi, Atarbolana beirutensis, Cirolana bitari, and Cirolana zibrowiusi) have already been published by Castelló (2017b). Here, brief diagnoses and illustrations (Figs. 3-6) with useful morphological details for identification are included. The origin, collecting data and material examined are detailed in Table 1 and Table S1. Order Isopoda Latreille, 1817 Suborder Asellota Latreille, 1802 Superfamily Gnathostenetroidoidea Kussakin, 1967 Family Gnathostenetroididae Kussakin, 1967 Gnathostenetroides laodicense Amar, 1957 Distribution in this study: Stations 5, 11, 12, 13, 17, 30. General distribution: Mediterranean Sea (subregions 2 and 7). Remarks: The male of sample 30.1 has no mandibular process; this absence is interpreted as a juvenile feature. Other differences with regards to the adult male in sample 12.9 are: Antenna 1 has fewer articles and Pleopod 1 has 8 + 8 setae (13 + 13 in male 12.9). Gnathostenetroides laodicense is the only species of this genus in the Mediterranean Sea. Superfamily Janiroidea Sars, 1897 Family Janiridae Sars, 1897 Carpias stebbingi (Monod, 1933) Distribution in this study: Stations 7, 11, 12, 13, 14, 17, 23. General distribution: Mediterranean Sea (subregions 1, 2, 3, 5 and 7). Remarks: Three species of this genus have been reported from the Mediterranean Sea: C. crosslandi (StebMedit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | bing, 1910), C. galloprovincialis (Amar, 1950), and C. stebbingi (Monod, 1933). Family Joeropsididae Nordenstam, 1933 Joeropsis legrandi Juchault, 1962 Distribution in this study: Stations 5, 12, 25. General distribution: Mediterranean Sea (subregions 1 and 7). Remarks: Six Mediterranean species of this genus (J. brevicornis Koehler, 1885 [subsp. littoralis Amar, 1949], J. dollfusi Norman, 1899, J. legrandi Juchault, 1962, J. mediterranea Amar, 1961, J. montalentii Fresi, 1968, and J. rathbunae Richardson, 1902). Suborden Cymothoida Leach, 1814 Superfamily Anthuroidea Leach, 1814 Family Anthuridae Leach, 1814 Apanthura addui Wägele, 1981 Distribution in this study: Stations 3, 13, 14, 17, 19, 20, 22, 25. General distribution: Maldive Islands (Indian Ocean). The present records are the first in the Mediterranean Sea (Lebanon and Cyprus; see Table 2 and Figure 1 for details). This disjunct distribution could be a symptom of human-mediated introduction, and it may be considered a non-indigenous species (NIS), although it could also be a relict species (R). Fig. 3: Mesanthura pacoi Castelló, 2017. Useful morphological details for its identification. Ovigerous female, sample 7.4: A, Body, anterior section, lateral view; B, Body, posterior section, lateral view; C, Pereopod 1; Female, sample 3.1: D, Maxilliped, detail of palp apical segment: note the stout plumose seta; Male, sample 7.4: E, Pleopod 2, detail of appendix masculina. Scale bars: A, B, 1 mm; C, 0.5 mm; D, 0.035 mm; E, 0.12 mm. Remarks: There are four species of this genus in the Mediterranean Sea (A. addui Wägele, 1981, A. corsica Amar, 1953, A. sandalensis Stebbing, 1900, and A. tyrrhenica Wägele, 1980). Mesanthura pacoi Castelló, 2017 (Fig. 3) Distribution in this study: Stations 3, 5, 7, 10, 11, 12, 20, 21, 22, 25, 26, 27. Brief diagnosis: Yellowish color, without chromatophores; dorsal coloring only present in the largest adults (Figs. 3A, B). Maxillipedal palp article 1 with outer margin slightly excavated, apical article with plumose seta and 3 simple setae mediodistally and robust plumose seta basally (Fig. 3D). Pereopod 1 (Fig. 3C) palm with shallow crenulated basal step; dactylus with toothed boss at the base of the unguis. Male pleopod 2 (Fig. 3E) with appendix masculina inserted at a third of the length of the endopod, reaching beyond its end. Remarks: The genus Mesanthura was cited in the Mediterranean by Lorenti et al. (2009) for specimens from Italy considered Mesanthura sp. and subsequently identified by Ulman et al. (2017) as M. cf. romulea Poore & Lew-Ton, 1986 with additional new records from the Levant area. Thus, Mesanthura pacoi is the second species of Mesanthura found in the Mediterranean Sea. Family Expanathuridae Poore, 2001 Eisothistos macrurus Wägele, 1979 Distribution in this study: Stations 11, 12. General distribution: Mediterranean Sea (subregions 2 and 7). Remarks: Two species of this genus in the Mediterranean Sea (E. macrurus Wägele, 1979, and E. pumilus Wägele, 1979). Heptanthura cryptobia (Wägele, 1979) Distribution in this study: Station 11. General distribution: Mediterranean Sea (subregions 1, 2 and 7). Remarks: The specimen examined is a damaged juvenile (without cephalon and pereonite 1). All features of pereopods 2-7, pleopods, and pleotelson match the description and figures of Wägele’s (1979) immature adult. Although the individual had initially been identified as cf. (compared favorably), there is no reason to leave the identification open. Heptanthura cryptobia is the only species of this genus in the Mediterranean Sea. Family Hyssuridae Wägele, 1981 Kupellonura serritelson Wägele, 1981 Distribution in this study: Station 7. General distribution: Bermuda Islands (North Atlantic Ocean) and Mediterranean Sea (subregions 2 and 7). Remarks: Three species of this genus in the Mediterranean Sea (K. flexibilis (Pasternak, 1982), K. mediterranea Barnard, 1925, and K. serritelson Wägele, 1981). Superfamily Cymothooidea Leach, 1814 Family Cirolanidae Dana, 1852 Atarbolana beirutensis Castelló, 2017 (Fig. 4) Distribution in this study: Station 25. Brief diagnosis: Body 2.4 times longer than wide (Fig. 4A, B). Apex of pleotelson truncated, with 10 robust setae (Fig. 4D). Uropodal exopod like an elongated spoon, with a concave section (Fig. 4C). Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 325 Fig. 4: Atarbolana beirutensis Castelló, 2017. Useful morphological details for its identification. Ovigerous female, sample 25.1: A, Body, dorsolateral view; B, Body distal section, dorsal view; C, Uropod; D, Telson, apex. Scale bars: A, 1 mm; B, 0.5 mm; C,D, 0.25 mm. Remarks: The genus Atarbolana Bruce & Javed, 1987 comprises 5 species (A. beirutensis Castelló, 2017, A. exoconta Bruce & Javed, 1987, A. setosa Javed & Yasmeen, 1989, A. dasycolus Yasmeen, 2004, and A. makranensis Khalaji-Pirbalouty, Naderloo & Keikhosravi, 2015). A. beirutensis significantly expands the known distribution of the genus Atarbolana, the other species known from Pakistan and Iran (the Gulf of Oman). Cirolana bitari Castelló, 2017 (Fig. 5) Distribution in this study: Stations 7, 19, 22, 26. Brief diagnosis: Body flat, depressed, about 3.0 times as long as wide (Figs. 5A, B). Dorsal surface of body without tubercles. Posterior margin of pereonites and pleonites without denticles or nodules (Fig. 5E). Stiff setae on pleonite 5 and pleotelson (Fig. 5F). Penes flat, well-developed (Fig. 5C). Male pleopod 2 (Fig. 5D) with appendix masculina robust, curved, surpassing length of endopod, with thin and winding apex. Remarks: Seven species of this genus are known from the Mediterranean Sea (C. bitari Castelló, 2017, C. bovina Barnard, 1940, C. cranchii Leach, 1818, C. ferruginosa Risso, 1826, C. manorae Bruce & Javed, 1987, C. parva Hansen, 1890, and C. zibrowiusi Castelló, 2017). However, according to Bruce (in WoRMS Editorial Board, 2019), the Mediterranean record (Ayari & Afli, 2003; Ayari, 2004) of the species C. parva is a misidentification, as its distribution is restricted to the Caribbean 326 Fig. 5: Cirolana bitari Castelló, 2017. Useful morphological details for its identification. Male, sample 19.2: A, Body, lateral view; B, Body, ventrolateral view; C, Penes: note a pair, flat, well-developed; D, Pleopod 2, with appendix masculina; Female, sample 19.2: E, Pleonites 4-7; F, Pleotelson, stiff setae. Scale bars: A, B, E, 1 mm; C, D, F, 0.5 mm. region and the Pacific coast of Panama. Cirolana cranchii Leach, 1818 Distribution in this study: Station 1. General distribution: North East Atlantic Ocean, South Africa, and Mediterranean Sea (subregions 1, 2, 5, 7 and 8). Remarks: The specimen studied is an 11mm male from Cyprus. Appendix masculina of Pl2 slightly exceeding the endopodite, slightly curved at its distal part, and smooth, without spines on its surface. Cirolana manorae Bruce & Javed, 1987 Distribution in this study: Station 26. General distribution: Pakistan (Indian Ocean). Remarks: None of the males studied had penes. There are two nodes on pleonite 5 and four nodes on the pleotelson, no dorsal setae on the pleotelson, and few lateral setae on the uropods (only in the distal half of the exopod). These characters point to C. manorae. However, antenna 2 reaches the end of pereonite 3, which is a character of C. bovina. In our opinion, C. bovina needs to be described again to specify whether penes are present, and antenna 2 needs to be compared with that of C. manorae. The present record from Lebanon is the first in the Mediterranean Sea. It can be considered a non-indigenous species (NIS), introduced by ship transport. Cirolana zibrowiusi Castelló, 2017 (Fig. 6) Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Fig. 6: Cirolana zibrowiusi Castelló, 2017. Useful morphological details for its identification. Ovigerous female, sample 26.3: A, Body, anterior section, lateral view; B, Body, posterior section, lateral view; Ovigerous female, sample 26.1: C, Pleotelson: note the conspicuous stiff setae; D, Pleonites 4-7; Male, sample 26.1: E, Body distal section, dorsal view; F, Pleopod 2, detail of appendix masculina. Scale bars: A, B, D, E, 1 mm; C, F, 0.5 mm. Distribution in this study: Stations 21, 26. Brief diagnosis: Body rounded, slightly depressed, about 3.7 times as long as wide (Figs. 6A, B). Posterior margin of pereonites 5–7 and pleonites 2–5 with denticles or nodules present (Fig. 6D) or absent (Fig. 6E). Stiff setae on pereonite 7, pleonites 2–5 and pleotelson (Figs. 6C, E). Penes flat, well-developed. Male pleopod 2 with appendix masculina robust, curved, surpassing the length of the endopod (Fig. 6F). Metacirolana rotunda (Bruce & Jones, 1978) Distribution in this study: Stations 3, 5, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 22. General distribution: East Africa (Indian Ocean) to Northern Red Sea. Remarks: In the Cirolanidae the sex can commonly be distinguished when the appendix masculina is already present (for example, from 20 mm long in Natatolana borealis (Lilljeborg 1851), see Wong & Moore (1996), and from 6 mm in Baharilana richmondi, see Bruce & Svavarsson (2003)). Adult males and females of Metacirolana are morphologically similar, except for “swimming” males. These are characterized by a more elongate pleon, larger eyes, and longer antennulae and antennae (see Bruce (1986) for M. serrata (Bruce, 1980), with a swimming male illustration). They also differ because males have penial processes and appendix masculina in pleopod 2, whereas females have oostegites or oostegites buds. In the case of M. rotunda, no specimens with appendix masculina or penial processes or vas deferens have been observed. Thus, the sex of many specimens that are considered immature remains uncertain. Juveniles (mancas) do not have pereopod 7 yet. The examination of a large series suggests that adult males are rare. Bruce & Jones (1978) and Bruce (1981) did not mention any adult males. Metacirolana rotunda was originally described as Cirolana rotunda from the gulfs of Suez and Aqaba. Other previous records were from the island of Mbudya in Tanzania. The present records from Lebanon and Cyprus are the first from the Mediterranean Sea. It can be considered a non-indigenous species (NIS), introduced by ship transport. Family Gnathiidae Leach, 1814 Elaphognathia bacescoi (Kussakin, 1969) Distribution in this study: Stations 5, 10, 12, 13, 14, 27, 30. General distribution: Mediterranean Sea (subregions 6 and 7). Remarks: The genus Elaphognathia currently includes 23 species, of which E. bacescoi is the only one occurring in the Mediterranean Sea. Here it was found for the first time outside the Black Sea. Gnathia dentata (Sars, 1872) Distribution in this study: Stations 3, 12. General distribution: North East Atlantic and Mediterranean Sea (subregions 1, 7 and 8). Remarks: Nine species of this genus occur in the Mediterranean Sea (G. dentata (Sars, 1872), G. fallax Monod, 1926, G. illepidus (Wagner, 1869), G. inopinata (Monod, 1925), G. maxillaris (Montagu, 1804), G. oxyuraea (Lilljeborg, 1855), G. phallonajopsis Monod, 1925, G. venusta Monod, 1925, and G. vorax (Lucas, 1849)). Gnathia illepidus (Wagner, 1869) Distribution in this study: Station 26. General distribution: Mediterranean Sea (subregions 1, 2, 3, 4, 5 and 7). Gnathia inopinata (Monod, 1925) Distribution in this study: Station 13. General distribution: Mediterranean Sea (subregions 1, 2, 5 and 7). Gnathia vorax (Lucas, 1849) Distribution in this study: Station 12. General distribution: North East Atlantic and Mediterranean Sea (subregions 1, 2, 3, 4, 5, 6, 7 and 8). Gnathiidae sp. Material examined: Sample 13.4: 1 damaged female, Sample 18.2: 1 praniza, Sample 27.3: 1 praniza, Sample 31.1: 2 praniza. Remarks: Identification impossible, possibly Elaphognathia or Gnathia. Elaphognathia bacescoi and Gnathia inopinata were found in station 13 and Elaphognathia bacescoi, in station 27. Suborder Sphaeromatidea Wägele, 1989 Superfamily Sphaeromatoidea Latreille, 1825 Family Sphaeromatidae Latreille, 1825 Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 327 Cymodoce fuscina Schotte & Kensley, 2005 Distribution in this study: Stations 4, 26. General distribution: Persian Gulf (Indian Ocean) and Mediterranean Sea (subregions 5 and 7). Remarks: Collected in Syria and Lebanon, thereby confirming its presence in the Mediterranean. Previously recorded in Greece by Ulman et al. (2017) as Cymodoce aff. fuscina. Considered a non-indigenous species (NIS). Ten species of this genus in the Mediterranean Sea (C. emarginata Leach, 1818, C. erythraea Nobili, 1906, C. fuscina Schotte & Kensley, 2005, C. hanseni Dumay, 1972, C. pilosa Milne-Edwards, 1840, C. rubropunctata (Grube, 1864), C. spinosa (Risso, 1816), C. tattersalli Torelli, 1929, C. truncata Leach, 1814, and C. tuberculata Costa, 1851). Cymodoce pilosa Milne-Edwards, 1840 Distribution in this study: Stations 2, 3, 5, 10, 13, 29, 32. General distribution: Mediterranean Sea (subregions 1, 2, 3, 5, 7 and 8), and Red Sea. Cymodoce sp. Material examined: Sample 7.4: 1 juvenile. Dynamene bicolor (Rathke, 1837) Distribution in this study: Stations 5, 6, 8, 13, 18, 24, 25, 28, 29, 32. General distribution: Mediterranean Sea (subregions 1, 2, 3, 4, 5, 6, 7 and 8). Remarks: Six species of this genus in the Mediterranean Sea (D. bicolor (Rathke, 1837), D. bidentata (Adams, 1800), D. bifida Torelli, 1930, D. edwardsi (Lucas, 1849), D. magnitorata Holdich, 1968, and D. tubicauda Holdich, 1968). According to Holdich (1970) and Vieira et al. (2016), the distribution of D. bidentata is restricted to the Atlantic Ocean and most Mediterranean records are due to misidentifications. However, there are records by Larwood (1940) and Elsayed & Dorgham (2019) for Alexandria (Egypt), by Shoukr et al. (1991) for the Suez Canal and by El-Komi et al. (1998) for the Suez Bay (Red Sea). In addition, the WoRMS database (WoRMS Editorial Board, 2019) displays an Atlanto-Mediterranean distribution for this species. These records were not discussed by Vieira et al. (2016). Therefore, the Mediterranean records of D. bidentata are treated as doubtful in Table 2, Table S2, Table 3, and Table 4. Dynamene magnitorata Holdich, 1968 Distribution in this study: Stations 7, 20. General distribution: North East Atlantic and Mediterranean Sea (subregions 1, 2, 5, 7 and 8). Dynamene sp. Material examined: Sample 24.2: 1 male juvenile. Remarks: Unidentified juveniles. Dynamene magnitorata has been found in another locality in Beirut (20) and D. bicolor has been found in two other localities also in Beirut (24, 25). Ischyromene bicarinata Harrison, 1981 Distribution in this study: Station 5. General distribution: Mediterranean Sea (subregion 7). Remarks: Two species of this genus are reported from the Mediterranean Sea (I. bicarinata Harrison, 1981, and 328 I. lacazei Racovitza, 1908). Paracerceis sculpta (Holmes, 1904) Distribution in this study: Station 26. General distribution: Northeastern Pacific region (from California to Southern Baja California (Mexico), South Africa, Northwestern Pacific region (China, Hong Kong, Japan and Taiwan), Australia, Hawaii, Atlantic Ocean, the Mediterranean Sea (subregions 1, 2, 3, 4, 5, 7 and 8) and Suez Canal (subregion 9). Remarks: Paracerceis sculpta is the only species of this genus found in the Mediterranean Sea. Considered a well-established non-indigenous species (NIS) (Ulman et al., 2017; Martínez-Laiz et al., 2018). Paradella dianae (Menzies, 1962) Distribution in this study: Stations 7, 21, 26. General distribution: Northeastern Pacific region (from California to Michoacán, Mexico), Atlantic Ocean (Florida, Puerto Rico, and Brazil), Indian Ocean (Pakistan), Australia (Western Australia and Queensland), Hong Kong, and the Mediterranean Sea (subregions 1, 2, 5, 7 and 8). Remarks: Paradella dianae is the only species of this genus present in the Mediterranean Sea. It is considered a non-indigenous species (NIS) (Ulman et al., 2017; Martínez-Laiz et al., 2018). Pseudocerceis cf. seleneides Messana, 1988 Distribution in this study: Station 20. General distribution: Indian Ocean (Somalia) and the Mediterranean Sea (subregion 7). Remarks. Castelló (2017b) included a descriptive note on a single collected female specimen because the features of the appendages are similar to those of the males used by Messana (1988) to describe Pseudocerceis seleneides. As in the case of many Sphaeromatidae, the examination of an adult male is essential to identify the species. Therefore, the identification was left open (cf.), pending its confirmation in the future. Pseudocerceis seleneides is the only species of this genus found in the Mediterranean Sea (Beirut). Its disjunct distribution means that it can be considered non-indigenous (NIS), introduced by human transport. However, it could also be a relict species (R). Sphaeroma walkeri Stebbing, 1905 Distribution in this study: Stations 5, 21, 26. General distribution: South Africa, Indian Ocean (Mozambique, India and Sri Lanka), Australia, China, Hong Kong, Hawai, Atlantic Ocean (California), Mediterranean Sea (subregions 1, 2, 5, 6, 7 and 8), Suez Canal and Red Sea (subregion 9). Considered a non-indigenous species (NIS) (Ulman et al., 2017; Martínez-Laiz et al., 2018). Remarks: Five species of this genus are known in the Mediterranean Sea (S. boryi Guérin-Méneville, 1832, S. emarginatum Grube, 1864, S. serratum Fabricius, 1787, S. venustissimum Monod, 1931, and S. walkeri Stebbing, 1905). Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Species richness It is surprising that none of the species in the examined material belong to the suborder Valvifera. Elsewhere, Valvifera commonly represents a significant percentage of the total coastal species. For example, 40 species have been cited in the Iberian Peninsula, corresponding to 18% of the total (Junoy & Castelló, 2003). Furthermore, the suborder Asellota constitutes only 10.7% of the species collected in this study. This is probably due to insufficient sampling of the habitat preferred by valviferan and asellotan isopods, namely the algal substrate. Conversely, the suborder Cymothoida is well-represented and diverse (5 species of Anthuroidea and 11 species of Cymothooidea), as well as the suborder Sphaeromatidea, which includes 9 species of Sphaeromatidae. Biogeography The biogeography of the Levantine Sea is of particular interest. This region faces the Mediterranean opening of the Suez Canal, which represents the entry point of non-indigenous Indo-Pacific species, and it has even been called “Lessepsian province” (Por, 1990). The term “Lessepsian migration” (also called “Erythrean invasion”) was introduced by Por (1971, 1978). It refers to the unidirectional transit of species from the Red Sea to the Mediterranean Sea via the Suez Canal and, sensu stricto, does not include their passive transport. The introduction of species through human means of transport, mainly vessels, is globally acknowledged as a major pathway of introduction for marine NIS (Coll et al., 2010). This pathway may include several associated transport vectors (e.g., hull fouling, ballast water, and sea chests (Ulman et al., 2017)). Transport associated with marine cultures should also be considered. The discussion section will analyze these aspects, to establish a hypothesis regarding the introduction vectors of some non-indigenous species encountered in our material. George & Menzies, 1968; Chardy, 1974; Cartes & Sorbe 1993; Madurell & Cartes, 2003; Kavanagh et al., 2006). For each geographical subregion, the respective number of species is subregion 1, 149; subregion 2, 174; subregion 3, 80; subregion 4, 61; subregion 5, 96; subregion 6, 45; subregion 7, 105; and subregion 8, 108. For the Suez Canal, 25 species have been cited. These data indicate a significant difference in species richness, with the highest levels found in the western Mediterranean subregions and the lowest in the enclosed Black Sea, the Ionian Sea, and the Adriatic Sea. The African coasts of Algeria, Tunisia and Libya have been less investigated. The French expeditions to Algeria (Lucas, 1849) represent the only major work in that subregion, and other relevant contributions are the study of Monod (1925), the descriptions of new species of Anthuridae by Negoescu (1980a, 1981), and some other study on parasitic species and their hosts (e.g., Ramdane et al., 2007), as well as species records in biogeographical (e.g., Holdich, 1970; Vieira et al., 2016) and ecological studies (e.g., Ayari & Afli, 2003, Pérez-Domingo et al., 2008). In recent years, the number of records in subregion 8 has increased notably, especially due to the list of species from Malta (Mifsud, 2017). The list of 105 species for subregion 7 (Levantine Sea) is significantly longer than those previously compiled by Koukouras et al. (2001: 44 species), and Coll et al. (2010: 34 species). Similarly, our collection comprises 28 species, of which 15 are new to subregion 7 (Levantine Sea): Elaphognathia bacescoi, Gnathia illepidus, Gnathia inopinata, Apanthura addui, Heptanthura cryptobia, Kupellonura serritelson, Mesanthura pacoi, Atarbolana beirutensis, Cirolana bitari, Cirolana manorae, Cirolana zibrowiusi, Metacirolana rotunda, Cymodoce fuscina, Cymodoce pilosa, and Pseudocerceis cf. seleneides. Eight of them (Apanthura addui, Atarbolana beirutensis, Cirolana bitari, Cirolana manorae, Cirolana zibrowiusi, Mesanthura pacoi, Metacirolana rotunda, and Pseudocerceis cf. seleneides) are also new for the entire Mediterranean Sea. Origin of Mediterranean isopod fauna Distribution of species To date, no exhaustive biogeographical study has been carried out of free-living isopods in the entire Mediterranean Sea. Some fairly complete regional lists do exist (e.g., Junoy & Castelló, 2003; Castelló, 2017a, for the Iberian peninsula; and Argano & Campanaro, 2010, for Italy), while other Mediterranean subregions are still insufficiently sampled. Here, an effort is made to compile all the existing data (see Table 2 and Table S2). Table 2 is intended as an inventory of the majority of Mediterranean isopod fauna, from near-shore waters to the open sea. It comprises 295 species but still excludes Epicaridea, Oniscidea and the brackish water Aselloidea of the genera Asellus, Chthonasellus, Proasellus (Asellidae) and Stenasellus (Stenasellidae). Species found on the continental shelf are the majority, but information is also available on bathyal fauna down to great depths (e.g., According to Rodríguez (1982), the Mediterranean region is constituted by a set of species of diverse origin, mainly ancient Tethys, Atlantic Ocean, from boreal to tropical regions, and immigrants from the Black Sea and the Red Sea. Regarding the western Mediterranean, since the beginning of the Pliocene some five million years ago, the sea has been connected to the Atlantic Ocean only via the Strait of Gibraltar. Presumably, most Mediterranean species of isopods have this origin (Coll et al., 2010). In the eastern Mediterranean, according to Por (1978), marine contact existed between the Mediterranean and the central Indian Ocean until sometime in the first half of the Miocene. Later, in the Pliocene, the Red Sea was connected to the Mediterranean again but opened for the first time to the Indian Ocean, and consequently acquired mixed fauna. In the Pleistocene, various oscillations in sea level could have made possible the relicts of the Tethys and the pre-Lessepsian Red Sea species Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 329 (Hofrichter, 2004). Now, since the opening of the Suez Canal in 1869, it has become the main entrance pathway for alien species (the other two being maritime traffic and aquaculture). International organizations are aware of the importance of monitoring the arrival of alien species. The Mediterranean Science Commission (CIESM) has already produced a series of atlases documenting alien species in the Mediterranean (crustacean decapods: Galil et al., 2002; fish: Golani et al., 2002; macrophytes: Verlaque et al., 2015; molluscs: Zenetos et al., 2004). A growing interest has been repeatedly expressed in creating additional, representative lists of introduced species because of their impact on ecosystems (e.g., Katsanevakis et al., 2014). The fauna of Red Sea isopods differs considerably from that of the rest of the Indian Ocean, due to its large number of endemisms (63%, according to Kensley, 2001, including Epicaridea). Kensley (2001) noted the presence of 61 species of isopod (now 82) in the Red Sea and Gulf of Aden (equivalent to approximately 9.3% of the known Indian Ocean isopod fauna). Of these species, only 23 were introduced into the Mediterranean Sea (see Table S2 and Table 3). Their presence in the Mediterranean does not necessarily mean that they are all are also established in the Suez Canal, where 25 species are currently known (see Table S2 and Table 3). Seventeen species are reported from both the Red Sea and the Suez Canal (see Table S2 and Table 3). Moreover, only 15 of the known species from the Suez Canal have been cited in the Mediterranean Sea (see Table S2 and Table 3). Table 4 summarizes the autoecology and global distribution of the species reported in the Suez Canal and nearby areas, to establish how their presence in these areas can be explained. The transit of species is schematized in Figure 7. Doubtful records regarding Cirolana parva, Dynamene bidentata, and Limnoria lignorum (indicated in Table 2, Table S2, and Table 3) are mentioned in Taxonomy and Concluding remarks sections. In Table 2, doubtful records for Nerocila swainsoni in subregions 2 and 4 are due to the distribution given by Leach (1818) (Sea of Sicily, without distinction between the Tyrrhenian and Ionian Seas). For Synisoma lancifer, the doubtful record for subregion 1 is due to its possible confusion with Synisoma capito (Junoy & Castelló, 2003). Discussion About 8.1% of the species present in the Mediterranean Sea are non-indigenous (NIS). The alien species of isopods in the Mediterranean Sea listed in Zenetos et al. (2010) includes Anilocra pilchardi, Apanthura sandalensis, Cymothoa indica, Mesanthura sp., Paracerceis sculpta, Paradella dianae, Sphaeroma venustissimum, and Sphaeroma walkeri. Galil et al. (2016) added Paranthura japonica. Sphaeroma venustissimum was subsequently removed from the list of alien species (Zenetos et al., 2012). Its type locality is in North West Africa and it entered the Mediterranean by natural range expansion, not by human introduction. Mesanthura sp. was identified by Ulman et al. (2017) as M. cf. romulea Poore & Lew-Ton, 330 Fig. 7: Diagram showing the transit of species through the Suez Canal and nearby regions. In yellow, species of Red Sea origin introduced to the Mediterranean Sea; in blue, species of Atlanto-Mediterranean origin introduced to the Red Sea. The arrows indicate the transit of species between the areas considered: from left to right, (A) the Mediterranean Sea and the Red Sea/ Gulf of Aden but not the Suez Canal, (B) the Mediterranean Sea and the Suez Canal, (C) the Suez Canal and the Red Sea/Gulf of Aden. Species with doubtful identity (Cirolana parva, Dynamene bidentata, and Limnoria lignorum) are not considered. 1986, a species from South East Australia which can be considered NIS, awaiting confirmation of identification of the Mesanthura specimens. Some species (Paracerceis sculpta, Paradella dianae, and Paranthura japonica) arrived via either maritime traffic or aquaculture, as studied in detail by Marchini et al. (2014) for P. japonica. The latter was probably introduced in the Mediterranean Sea as shellfish import from Arcachon Bay (France, Atlantic Ocean), and spread secondarily to further Mediterranean marinas (Dailianis et al., 2016; Ferrario et al., 2016; Ferrario et al., 2017; Lavesque et al., 2013; Lorenti et al., 2016; Marchini et al., 2014; Marchini et al., 2015; Tempesti et al., 2016; Ulman et al., 2017). Ulman et al. (2017) cited seven NIS collected in marinas throughout the Mediterranean. Ianiropsis serricaudis (present in subregions 2 and 3) was probably introduced into the Mediterranean through the oyster trade (Marchini et al., 2016). For Sphaeroma walkeri, Carlton & Iverson (1981) revised its introduction history and proposed a route via the Suez Canal (Omer-Cooper, 1927; Larwood, 1940) at the time of its opening. Considering the geographical distribution, it can be inferred that Cymodoce fuscina (found Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | in subregions 5 and 7) entered the Mediterranean Sea through the Suez Canal on the hulls of ships or boats. The four remaining species are widely distributed throughout the Mediterranean (Mesanthura cf. romulea, Paranthura japonica, Paracerceis sculpta, and Paradella dianae). The distribution tables of the species, by regions and subregions (Table 2 and Table S2) provide solid support for analyzing how the species recorded in the Suez Canal were able to expand to nearby areas (Table 3). In addition, the discussion is based on factors that affect the bioecological characteristics of the species and are briefly described below. (a) Biological cycle: species that show larval stages during their development are potentially more able to move through the Canal. (b) The increase in temperature in the Levantine Sea, due to climate change, also helps species adaptation (Galil, 2006; Raitsos et al., 2010; Rilov et al., 2018). (c) Salinity: the dissolution of the Bitter Lakes’ salt bed was complete by the 1960s (Galil, 2006) and so it no longer acted as a barrier. (d) Bathymetry: the fauna that manages to cross the canal is typical of coastal areas. Por (1971) rules out the transit of sublittoral and bathyal species. However, some Lessepsian immigrants expanded their range beyond the coastal shelf (Galil et al., 2019). (e) Habitat: the fauna of muddy bottoms has more chance of crossing the canal, due to the similarity of this habitat to the bottom. (f) Water turbidity: Por (1971) dismisses the possibility that the fauna of rocky bottoms and transparent waters can pass. (g) Dispersal capacity of the species: isopods have little independent dispersal capacity. Only a few groups (e.g., Cirolanidae and some species of Sphaeromatidae) with habitats generally of muddy bottoms can transit through the canal, crossing turbid and polluted waters, unlike other groups (e.g., Asellota, Anthuridea and Valvifera) with a preference for algal substrates and clear waters. The dispersal capacity increases greatly in the case of ectoparasitic species of other organisms at particular stages of their biological cycle. For example, Aegidae, Cymothoidae and Gnathiidae parasitize fish. In terms of passive dispersion, some species take advantage of human means of transport. Species of Asellota (Janiridae or Joeropsididae) (Hobbs et al., 2015; Kensley & Schotte, 2002), Anthuridea (Ulman et al., 2019), Sphaeromatidae (Shoukr et al., 1991; El-Komi et al., 1998; Ramadan et al., 2006), and Valvifera (Shoukr et al., 1991; Ramadan et al., 2006) can be found in the fouling of ship hulls. The presence of Idotea species (Valvifera) is common on floating objects (e.g., Abelló & Frankland, 1997). The Limnoriidae drill wood and, therefore, can be found mainly in floating objects (Cookson, 1991). Currently, there are almost no wooden boats and the main means of transport is rafting on driftwood transported by currents (Borges et al., 2014). Anthuridea and Asellota species may also be found in oyster cultures (Faasse, 2007; Lavesque et al., 2013). Species using these means of dispersion to cross the canal more easily and quickly can be termed NIS but not Lessepsian. The species that are most likely to become Lessepsian are those that are well-established in the canal (Por, 1973). For example, Carpias stylodactylus was reported by Glynn (1972) as very abundant. However, we believe this is quite unlikely unless they have the help of human means of transport. This information is summarized for each species in Table 4. New species in the Mediterranean that are suspected to be non-indigenous (NIS) are: Anilocra leptosoma, Apanthura addui, Carpias crosslandi, Ceratothoa imbricata, Cirolana manorae, Cymodoce erythraea, Dynamenella savignii, Elthusa nanoides, Joeropsis rathbunae, Livoneca redmanii, Metacirolana rotunda, Pseudocerceis cf. seleneides, and Synidotea variegata (see Table 2). Therefore, the list of NIS known so far (Zenetos et al., 2010; Ulman et al., 2017; Martínez-Laiz et al., 2018) is updated with 13 new species and a total of 23 has been reached. Information or biogeographic comments to consider these new species as NIS in the Mediterranean can be found in Table 2, Table S2, and Table 4, and in the Taxonomy and Biogeography sections or in the Discussion. The distribution of Livoneca redmanii is restricted to the Eastern coast of America, at least from New York to Rio de Janeiro (Trilles, 1991) and it was surprisingly identified on mugiliid fry (Mahmoud et al., 2019) in the Mediterranean Sea (subregion 7). Some of the new NIS in the Mediterranean (e.g., Carpias crosslandi) could even be pre-Lessepsian (PL). Furthermore some species with a clear disjunct distribution, recorded from the Indian Ocean and the Mediterranean Sea (e.g., Angeliera phreaticola, Apanthura addui, Pleurocope dasyura, and Pseudocerceis cf. seleneides) may be relicts (R), from when the seas were joined. However, some caution is required, because the gaps of knowledge in the geographical distribution of single species may limit our understanding of their spreading history. Concluding remarks: with a total of at least 295 species (excluding Epicaridea, Oniscidea, and brackish water Aselloidea), the Mediterranean isopod fauna is much more diverse than previously suggested (Koukouras et al., 2001; Van der Land, 2001; Coll et al., 2010). The species richness is the highest in the Western Mediterranean (subregions 1 [149 sp.] and 2 [174 sp.]), and the lowest in the Black Sea (subregion 6 [45 sp., as is to be expected in an enclosed sea]), and the Ionian Sea (subregion 4 [61 sp.]). The number of species in the African region (subregion 8 [108 sp.]) is quite high, especially due to recent studies and listings. In the other subregions, the known isopod fauna still has fairly high richness, with 80 species in the Adriatic Sea (subregion 3), 96 species in the Aegean Sea (subregion 5), and 105 species in Levantine Sea (subregion 7). In the westernmost Mediterranean Sea, closer to the Strait of Gibraltar, there may be many “Atlantic” species that have not passed the Sicily Channel. In contrast, in the eastern subregions there may be species derived from the “salty lakes” of Paratethys, especially in the Black Sea. Regional research in each of these areas is essential. In recent decades, investigations in the Aegean Sea (e.g., Bakir & Katagan, 2005; Çinar et al., 2002; Çinar et al., 2008; Dounas & Koukouras, 1986; Geldiay & Kocataş, 1972; Kirkim et al., 2005a; Kirkim et al., 2005b; Kirkim et al., 2006; Kirkim et al., 2010; Kitsos & Koukouras, 2003; Koçatas, 1976; Koçatas et al., 2004; Koukouras et al., 1985; Koukouras et al., 2001; Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 331 Koukouras et al., 2002), the Marmara Sea (e.g., Bakir, 2012), Black Sea (e.g., Akbulut et al., 2009; Sezgin & Çil, 2010) and Turkey in general (e.g., Bakir et al., 2014) have greatly helped to broaden knowledge. As a result of the collection studied here, the number of known species in the Levantine Sea has risen to 105. Several (86) of the species found here had been previously recorded in other Mediterranean subregions. Some strangely disjunct distributions (e.g., Gnathostenetroides laodicense, Joeropsis legrandi, and Lekanesphaera rugicauda) with the presence of the species only in the western and eastern subregions, indicate that significant gaps of knowledge exist. Another 19 species seem to be restricted to the Levantine Sea (see Table 2). Table 4 allows the study of the species’ dispersion capacity and the probability that they crossed the Suez Canal in one direction or the other (only considering species present in the Suez Canal). For the first group of five species, which coexist in the Mediterranean and the Suez Canal, Cirolana manorae probably crossed the Suez Canal from the Indian Ocean. At present, there are no records in the Red Sea/Gulf of Aden. This species was probably helped by maritime transport, but we cannot rule out the possibility that it reached the Mediterranean on its own. The Cirolanidae are good swimmers and mostly live on muddy bottoms. Limnoria lignorum is xylophagous and can easily spread in perforated hulls of vessels. This species is widely distributed in the Northern Hemisphere, and was also recorded in the Mediterranean (subregions 1, 2, 3, 4, 5, 7 and 8). Nevertheless, Cookson (1991) and Borges et al. (2014) restricted its distribution to the temperate and boreal Northern hemisphere, and Castelló (2011) pointed out that it was confused with Limnoria mazzellae on the Spanish shores. For this reason, the Mediterranean records are considered doubtful. The NIS Paracerceis sculpta has been thoroughly studied (e.g., Ulman et al., 2017; Martínez-Laiz et al., 2018). The case of Nerocila bivittata is that of a parasitic species that is mainly dependent on fish. It has an Atlanto-Mediterranean distribution. It has been recorded profusely in the Mediterranean, and has reached the Suez Canal (Trilles, 1991). It can be considered Anti_L. The case of Joeropsis rathbunae is problematic because of its geographical distribution (Bermuda Islands and the Gulf of Mexico, Mediterranean [subregion 7], and the Suez Canal), probably due to transport by vessels. Currently, it is sensible to classify it as NIS in the Mediterranean Sea, while we await further data. The second group comprises 10 species that coexist in the Mediterranean, the Suez Canal, and the Red Sea/Gulf of Aden. The two species of Sphaeroma (S. serratum, S. walkeri) have been studied extensively. Sphaeroma walkeri is widely represented in almost all Mediterranean subregions and has a cosmopolitan global distribution (Ulman et al., 2017; MartínezLaiz et al., 2018). With respect to S. serratum, its wide distribution throughout the Atlantic European coasts and the Mediterranean since before the opening of the Suez Canal means that it can be catalogued as Anti_L. Cymodoce spinosa, C. truncata and Dynamene edwardsi are in the same situation as S. serratum (Anti_L). Any biogeographic consideration regarding Dynamene bidentata is 332 speculative at the moment, given the uncertain status of its Mediterranean records (see the Taxonomy section). Eurydice pulchra, which is present in the North East Atlantic and in the Mediterranean (subregions 5, 6, 7 and 8), probably reached the Red Sea through the Suez Canal. Its absence in the Mediterranean subregions 1, 2, 3 and 4 may be due to a lack of sampling. It is considered Anti_L. Cirolana bovina, with a wide distribution in the Indian Ocean (South Africa, Kenya, India, Red Sea, and the Suez Canal), is only present in Mediterranean subregion 7. Therefore, it is considered NIS. According to Bruce (in WoRMS Editorial Board, 2019), for Cirolana parva, the Mediterranean record (subregion 8) and the records from the Suez Canal and the Red Sea should be considered inaccurate, due to misidentifications. Therefore, it is not possible to develop a sound hypothesis regarding its biogeographic distribution. Synidotea variegata is present in the Indian Ocean, from South Africa to Indochina. It probably reached the Red Sea transported by ships and then expanded towards the canal. It is well-established in the canal (Glynn, 1972), and was already recorded in the East Harbor of Alexandria (Ramadan et al., 1998). Finally, the third group is composed of seven species that coexist in the Suez Canal and the Red Sea/Gulf of Aden. These species are candidates for future possible introduction via the Suez Canal or on the hull of vessels crossing the Canal. Carpias stylodactylus, with a wide but disjunct range of distribution (Caribbean Sea and South Pacific), may have been dispersed due to maritime traffic. It was probably introduced into the Suez Canal from the Red Sea. Cirolana anadema may even have come by its own means, as it is a genus with a habitat of muddy bottoms and good dispersion capacity and has been present in the canal for years. Cirolana theleceps has a distribution restricted to South Africa and it may be expanded due to maritime traffic. The type locality of Paradella heptaphymata is Lake Timsah (Suez Canal) and its distribution is restricted to the Suez Canal and the Red Sea. Cymothoa exigua is known only from the Galapagos Islands and it is considered an alien species in the Red Sea (WoRMS Editorial Board, 2019). Like Rocinela orientalis and Gnathia rhinobatis, these species are parasitic on fish, the latter of them in larval phase, which increases the probability that they can reach the Mediterranean. Furthermore, 13 species are found in both the Mediterranean Sea and the Red Sea/Gulf of Aden, but not in the Suez Canal. Among them, Ceratothoa oxyrrynchaena (type locality: Japan), present in the Red Sea, has a wide distribution (see Bariche & Trilles, 2005, and Table 2) but it is discontinuous (absent in the Indian Ocean). Currently, it is difficult to know if its presence in the Mediterranean (see Table 2) occurred via the Suez Canal or followed the reverse path. After studying their geographical distribution and their dispersal capacity, it can be inferred that eight of the remaining species (Anilocra leptosoma, Apanthura sandalensis, Carpias crosslandi, Ceratothoa imbricata, Cymodoce erythraea, Dynamenella savignii, Elthusa nanoides, and Metacirolana rotunda) are non-indigenous (NIS) in the Mediterranean and four species (Cymodoce pilosa, Eurydice inermis, Idotea balthica, and Idotea metallica) Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | are anti-Lessepsian (Anti_L). Their absence in the Suez Canal can be attributed to the fact that the Canal can be crossed by vessels. The absence of established populations of these twelve species in the Suez Canal confirms that they are neither Lessepsian nor anti-Lessepsian (by their own means) species. In summary, the opening of the Suez Canal facilitated the exchange of isopod species. There is no clear trend to confirm a predominance of traffic in one direction or the other (see Figure 7). Species displacement was possible due to maritime traffic and there are no clearly Lessepsian species. Al-Zubaidy, A.B., Mhaisen, F.T., 2013. The First Record of Three Cymothoid Isopods from Red Sea Fishes, Yemeni Coastal Waters. International Journal of Marine Science, 3 (21), 166-172. Amar, R., 1957. Gnathostenetroides laodicense nov. gen. nov. sp. Type nouveau d’Asellota et Classification des Isopodes Asellotes. Bulletin de l’Institut Océanographique. Monaco, 1100, 1-10. Amar, R., 1961. Jaeropsis mediterranea nov. sp. (Isopode Asellote) et les Jaeropsis méditerranéennes. Recueil des Travaux de la Station Marine d’Endoume, 23 (37), 121-129. Argano, R., Campanaro, A., 2010. Isopoda. Biologia Marina Mediterranea, 17 (suppl. 1), 491-498. The following acronyms were used: CNRS, Centre Argano, R., Ferrara, F., Guglielmo, L., Riggio, S., Ruffo, S., 1995. Crustacea Malacostraca II. (Tanaidacea, Isopoda, National de la Recherche Scientifique, France; (ScientifAmphipoda, Euphausiacea). In: Checklist delle specie della ic Research National Center, France); TÜBITAK, Türkiye fauna italiana, Minelli, A., Ruffo, S., La Posta, S. (Eds.), Bilimsel ve Teknolojik Araştırma Kurumu (The Scienti30. Ed. Calderini, Bologna. fic and Technological Research Council, Turkey). Artüz, M.L., Kubanç C., 2015. Two new species of Stenosoma (Isopoda, Idoteidae) from the Sea of Marmara. Crustaceana, 88 (10-11), 1201-1220. Acknowledgements Ateş, A.S., Trilles, J.P., Işmen, A., Çigdem-Yigin, C., 2006. New unusual associations involving parasitic isopods. Sampling along the coast of Lebanon (GB, HZ) was Crustaceana, 79 (3), 375-380. mainly supported by CEDRE, the French-Lebanese Cooperation Program. A French-Turkish convention of Atta, M.M., 1991. The occurrence of Paradella dianae (Menzies, 1962) (Isopoda, Flabellifera, Sphaeromatidae) in Medcooperation (CNRS and TÜBITAK) allowed HZ to do iterranean waters of Alexandria. Crustaceana, 60 (2), 213field work in Northern Cyprus together with a team from 218, notes and news. Ege University, Izmir. Niel Bruce (Queensland Museum) provided comments on Metacirolana. Two anonymous Ayari, R., 2004. Les peuplements macro-zoobenthiques du petit golfe de Tunis: Structure, Organisation et Etat sanitaire. reviewers contributed to streamlining the presentation MSc Thesis. University of Carthage, Faculté des Sciences of the results. We are especially grateful to Agnese Marde Bizerte. chini who, with her valuable comments on ecology and biogeography, has greatly contributed to the approach in Ayari, R., Afli, A., 2003. Bionomie benthique du petit golfe de Tunis. Bulletin de l’Institut Nationale des Sciences et Techthis work. Argyro Zenetos carefully read the latest vernologies de la Mer de Salammbô, 30, 79-90. sion and contributed to improving it. Michael Maudsley (Serveis Lingüístics, Universitat de Barcelona) revised Bacescu, M., 1948. Les représentants du genre Eurydice (Crustacés Isopodes) dans la Mer Noire. Notationes Biologicae, the English of the manuscript. Bucarest, 6, 108-122. Bacescu, M., 1958. Les répresentants du genre Cymodoce (Crustacés Isopodes) de la mer Noire: Cymodoce erythraea References euxinica et Cymodoce aff. tattersalli Tor. (I). Vie et Milieu, 9, 431-443. Abelló, P., Frankland, R.J., 1997. Population characteristics of the neustonic isopod Idotea metallica (Crustacea, Isopoda, Bakir, K., 2012. Contributions to the knowledge of crustaceans on soft bottoms in the sea of Marmara, with a checklist. Idoteidae) in the western Mediterranean (June 1993). ScienCrustaceana, 85 (2), 219-236. tia Marina, 61 (3), 409-414. Akbulut, M., Ustaoğlu, M.R., Çelik, E.Ş., 2009. Freshwater and Bakir, K., Katagan, T., 2005. Crustacean diversity of the coralligenous beds of Markiz Island (Aegean coast of Turkey). brackish water Malacostraca (Crustacea-Arthropoda) fauCrustaceana, 78 (7), 873-883. na of Sinop and Samsun and their ecology. Journal of the Bakir, K., Katagan, T., Aker, H.V., Özcan T., Sezgin, M. et al., Black Sea / Mediterranean Environment, 15, 47-60. 2014. The marine arthropods of Turkey. Turkish Journal of Akel, E.H., Karachle, P.K., 2017. The marine ichthyofauna of Zoology, 38, 765-831. Egypt. Egyptian Journal of Aquatic Biology and Fisheries, Bariche, M., Trilles, J.P., 2005. Preliminary check-list of Cy21 (3), 81-116. mothoids (Crustacea: Isopoda) parasitic on marine fishes Ali, M.F., 2018. An updated checklist of the marine fishes from from Lebanon. Zoology in the Middle East, 34, 53-60. Syria with emphasis on alien species. Mediterranean MaBariche, M., Trilles, J.P., 2006. Anilocra pilchardi n.sp., a new rine Science, 19 (2), 388-393. parasitic cymothoid isopod from off Lebanon (Eastern Al-Zahaby, A.S., Abd El-Aal, M.A., Abd El-Bar, S.Z., 2001. A Mediterranean). Systematic Parasitology, 64, 203-214. stereoscopic study of the mouthparts of the marine isopod, Cirolana bovina (Isopoda: Flabellifera). Proceedings of the Barnard, K.H., 1936. Isopods collected by the R.I.M.S. “Investigator”. Records of the Indian Museum, 38 (2), 147-191. First International Conference (Egyptian British Biological Bitar, G., 2014. Les Mollusques exotiques de la côte libanaise. BuSociety, EBB Soc). Egyptian Journal of Biology, 3, 20-28. Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 333 lletin de la Société Zoologique de France, 139 (1-4), 37-45. Bitar, G., Ramos-Esplá, A. A., Ocaña, O., Sghaier, Y. R., Forcada, A. et al., 2017. Introduced marine macroflora of Lebanon and its distribution on the Levantine coast. Mediterranean Marine Science, 18 (1), 138-155. Borg, J.A., Rowden, A.A., Attrill, M.J., Schembri, P.J., Jones, M.B., 2006. Wanted dead or alive: high diversity of macroinvertebrates associated with living and “dead” Posidonia oceanica matte. Marine Biology, 149, 667-677. Borges, L.M.S., Merckelbach, L.M., Cragg, S.M., 2014. Biogeography of Wood-Boring Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters. PLOS ONE, 9 (10), e109593. Borja, A., Franco, J., Pérez, V., 2000. A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments. Marine Pollution Bulletin, 40 (12), 1100-1114. Brandt, A., Poore G.C.B., 2003. Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. Invertebrate Systematics, 17, 893-923. Bruce, N.L., 1981. New records of Cirolanidae (Crustacea: Isopoda) from the Tanzanian coast of East Africa. Journal of Crustacean Biology, 1 (3), 457-460. Bruce, N.L., 1986. Cirolanidae (Crustacea: Isopoda) of Australia. Records of the Australian Museum, Supplement 6, 1-239. Bruce, N.L., Jones, D.A., 1978. The systematics of some Red Sea Isopoda (Family Cirolanidae) with descriptions of two new species. Journal of Zoology, London, 185, 395-413. Bruce, N. L., Svavarsson, J., 2003. A new genus and species of cirolanid isopod (Crustacea) from Zanzibar, Tanzania, western Indian Ocean. Cahiers de Biologie Marine, 44, 1-12. Carlton, J.T., Iverson, E.W., 1981. Biogeography and natural history of Sphaeroma walkeri Stebbing (Crustacea: Isopoda) and its introduction to San Diego Bay, California. Journal of Natural History, London, 15, 31-48. Cartes, J., Sorbe, J.C., 1993. Les communautés suprabenthiques bathyales de la Mer Catalane (Méditerranée occidentale): données préliminaires sur la répartition bathymétrique et l’abondance des Crustacés Péracarides. Crustaceana, 64 (2), 155-171. Castelló, J., 2011. The genus Limnoria (Limnoriidae, Isopoda, Crustacea) in Europe, including a key to species. Zootaxa, 2968, 1-25. Castelló, J., 2012. Isopods (Isopoda), excluding Epicaridea, from the oceanographic espeditions «Fauna III/IV» (MNCN) in the Levantine archipelagos of the Iberian Peninsula (Western Mediterranean). Crustaceana, 85 (11), 1281-1304. Castelló, J., 2017a. Crustáceos Isópodos. Boletín oficial del Estado (BOE) 55, 6 March 2017, 16648-16649. Resolución de 17 de febrero de 2017, de la Secretaría de Estado de Medio Ambiente, por la que se establecen tres listas patrón: la de las especies terrestres, la de las especies marinas y la de los hábitats terrestres, presentes en España. Available at: http:// www.mapama.gob.es/es/costas/temas/proteccion-medio-marino/biodiversidad-marina/habitats-especies-marinos/default.aspx. Castelló, J., 2017b. New and little-known species of isopods (Crustacea, Isopoda) from the Eastern Mediterranean. Zootaxa, 4311 (2), 151–182. 334 Castelló, J., Molina, C., Constenla, M., Soler-Membrives, A., 2016. Description of Arcturinella deltensis sp. nov. (Crustacea, Isopoda, Arcturidae) from the Ebro Delta (Western Mediterranean Sea), with remarks on the status of the genus Arcturinella Poisson & Maury, 1931. Marine Biodiversity, 48 (11), 1413-1420. Chappuis, P. A., Delamare-Deboutteville, C., 1952. Nouveaux isopodes (Crustacea) du sable des plages du Roussillon. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 234,2014-2016. Chardy, P., 1974. Deux espèces nouvelles d’isopodes asellotes récoltées en Méditerranée profonde. Vie et Milieu, 24 (2B), 409-420. Çinar, M.E., Katagan, T., Ergen, Z., Sezgin, M., 2002. Zoobenthos-inhabiting Sarcotragus muscarum (Porifera: Demospongiae) from the Aegean Sea. Hydrobiologia, 482, 107-117. Çinar, M.E., Katagan, T., Öztürk B., Egemen, Ö., Ergen, E. et al., 2008. Faunal assemblages of the mussel Mytilus galloprovincialis in and around Alsancak Harbour (Izmir Bay, eastern Mediterranean) with special emphasis on alien species. Journal of Marine Systems, 71, 1-17. Coll, M., Piroddi, C., Steenbeek J., Kaschner K., Ben Rais Lasram, F. et al., 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLOS ONE, 5 (8), e11842. Colombo, A., 1885. Racolte zoologiche eseguite del R. Piroscofa Washington nelle campagna abissale talassografica dell’anno 1885. Rivista Marittima, 1-34. Cookson, L.J., 1991. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of Museum Victoria, 52 (2), 137-262. Crocetta, F., Bitar, G., Zibrowius, H., Capua, D., Dell’Angelo, B. et al., 2014. Biogeographical homogeneity in the eastern Mediterranean Sea – III. New records and a state of the art of Polyplacophora, Scaphopoda and Cephalopoda from Lebanon (Mollusca). Spixiana, 37 (2), 183-206. Crocetta, F., Bitar, G., Zibrowius, H., Oliverio, M., 2013a. Biogeographical homogeneity in the eastern Mediterranean Sea - II. Temporal variation in Lebanese bivalve biota. Aquatic Biology, 19, 75-84. Crocetta, F., Bitar, G., Zibrowius H., Oliverio, M., 2020. Increase in knowledge of the marine gastropod fauna of Lebanon since the 19th century. Bulletin of Marine Science, 96 (1), 1-22. Crocetta, F., Zibrowius, H., Bitar, G., Templado, J., Oliverio, M., 2013b. Biogeographical homogeneity in the eastern Mediterranean Sea – I: the opisthobranchs (Mollusca: Gastropoda) from Lebanon. Mediterranean Marine Science, 14 (2), 403-408. Dailianis, T., Akyol, O., Babali, N., Bariche, M., Crocetta, F. et al., 2016. New Mediterranean biodiversity records. Mediterranean Marine Science, 17 (2), 608-626. Dounas, C., Koukouras, A., 1986. The genus Cymodoce Leach (Isopoda, Flabellifera) in the North Aegean Sea. Crustaceana, 51 (3), 306-308. El-Komi, M.M., Emara, A.M., Mona, M.H., 1998. Ecology and settement of marine fouling in the Suez Bay, Egypt. Pakistan Journal of Marine Science, 7 (1), 11-26. Elsayed, R., Dorgham, M., 2019. Macrofauna associated with a recently described bryozoan species in the Eastern Harbour Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | of Alexandria, Egypt. Mediterranean Marine Science, 20 (2), 248-259. Elshahawy, I.S., Desouky, A.R.Y., 2012. First record of Mothocya melanosticta Schioedte and Meinert, 1884 (Isopoda: Cymothoidae) from Egyptian pinecone soldierfish with special reference to its infestation status. Turkish Journal of Veterinary and Animal Sciences, 36 (6), 577-584. Eman, M.Y., Nahla, H.S., Eissa, I.A.M., Zak, M.S., 2014. Parasitological studies on the isopoda (Cymothoidae) parasites infesting some marine fishes at Suez Canal area at Ismailia Province, Egypt with a key to the cymothoid genera. Life Science Journal, 11 (1), 227-231. Faasse, M.A., 2007. De zeepissebed Ianiropsis sp. (Crustacea: Isopoda: Janiridae) geïntroduceerd in Nederland. Het Zeepaard, 67, 125-127. Ferrario, J., Caronni, S., Occhipinti-Ambrogi, A., Marchini, A., 2017. Role of commercial harbours and recreational marinas in the spread of non-indigenous fouling species. Biofouling, 30 (8), 651-660. Ferrario, J., Ulman, A., Marchini, A., Saracino, F., Occhipinti-Ambrogi, A., 2016. Non-indigenous fouling species in the marina of Rome. Biologia Marina Mediterranea, 23 (1), 224-225. Galil, B., 2006. The Marine Caravan – The Suez Canal and the Erythrean Invasion. In: Gollasch, S., Galil, B.S., Cohen, A.N. (Eds). Bridging Divides – Maritime Canals as Invasion Corridors. Springer International Publishing, Cham, Switzerland, pp 207-300. Galil, B.S., Danovaro, R., Rothman, S.B.S., Gevili, R., Goren, M., 2019. Invasive biota in the deep-sea Mediterranean: an emerging issue in marine conservation and management. Biological Invasions, 21 (2), 281-288. Galil, B., Froglia, C., Noel, P.Y., 2002. CIESM Atlas of Exotic Crustaceans in the Mediterranean. Volume 2 - Crustacean Decapods and Stomatopods. F. Briand (Ed.). Monaco: CIESM Publishers, 192 pp. Galil, B.S., Marchini, A., Occhipinti-Ambrogi, A., 2016. East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuarine, Coastal and Shelf Science. 201, 7-16. Gavino, G., 1858-1859. Repertorio di Storia Naturale. Tipografia Anglo-Maltese. Gavino, G., 1873. Faune Maltese indice dei crostacei. Il-Barth, 15-16, 314-315. Geldiay, R., Kocataş, A., 1972. Isopods collected in Izmir Bay, Aegean Sea. Crustaceana, suppl. 3, 19-30. George, R.Y., Menzies, R.J., 1968. Additions to the Mediterranean deep-sea isopod fauna (Vema-14). Revue Roumaine de Biologie, Zoologie, 13 (6), 367-383. Glynn, P.W., 1972. Contributions to the knowledge of Suez Canal migration. Isopoda of the Suez Canal. Israel Journal of Zoolgy, 21, 275-300. Golani, D., Orsi-Relini, L., Massutí, E., Quignard, J.P., 2002. CIESM Atlas of Exotic Species in the Mediterranean. Volume 1 – Fishes. CIESM Publishers, 256 pp. Gönlügür-Demirci, G., 2006. Crustacea Fauna of the Turkish Black Sea coasts: a check list. Crustaceana, 79 (9), 11291139, notes and news. Grube, A.E., 1864. Die insel Lussin und ihre Meeresfauna: Nach einem Sechswöchentlichen Aufenthalte. F. Hirt, Bre- slau, 116 pp. Hadfield, K.A., Smit, N.J., 2017. Revision of the fish parasitic genus Pleopodias Richardson, 1910 (Isopoda, Cymothoidae), with the description of a new species and key to the genus. ZooKeys, 667, 21-37. Harmelin, J.G., Bitar, G., Zibrowius, H., 2007. Schizoretepora hassi n. sp. (Bryozoa, Phidoloporidae) from Lebanon (Eastern Mediterranean) and reappraisal of Schizotheca serratimargo (Hincks, 1886). Cahiers de Biologie Marine, 48, 179-186. Harmelin, J.G., Bitar, G., Zibrowius, H., 2009. Smittinidae (Bryozoa, Cheilostomata) from coastal habitats of Lebanon (Mediterranean Sea), including new and non-indigenous species. Zoosystema, 31 (1), 163-187. Harmelin-Vivien, M.L., Bitar, G., Harmelin, J.G., Monestiez, P., 2005. The littoral fish community of the Lebanese rocky coast (eastern Mediterranean Sea) with emphasis on Red Sea immigrants. Biological Invasions, 7, 625-637. Hispano, C., Bultó, P., Blanch, A.R., 2013. Gnathia maxillaris infestation in exhibition aquaria: control and treatment strategies. Journal of Applied Ichthyology, 29, 1139-1144. Hobbs, N.V., Lazo-Wasem, E., Faasse, M., Cordell, J.R., Chapman, J.W. et al., 2015. Going global: The introduction of the Asian isopod Ianiropsis serricaudis Gurjanova (Crustacea: Peracarida) to North America and Europe. Aquatic Invasions, 10 (2), 177-187. Hofrichter, R., 2004. El mar Mediterráneo. Fauna, flora, ecología. I. Parte general. Ediciones Omega, S.A., Barcelona. Holdich, D.M., 1970. The distribution and habitat preferences of the Afro-European species of Dynamene (Crustacea: Isopoda). Journal of Natural History, 4, 419-438. Horton, T., Diamant, A., Galil, B.S., 2005. Ceratothoa steindachneri (Isopoda, Cymothoidae): an unusual record from the Mediterranean. Crustaceana, 77 (9), 1145-1148. Jacobs, B.J.M., 1987. A taxonomic revision of the European, Mediterranean and NW African species generally placed in Sphaeroma Bosc, 1802 (Isopoda: Flabellifera: Sphaeromatidae). Zoologische Verhandelingen, 238, 1-71. Jensen, H.M., Panagiotidis, P. (comps.), 2015. Delineation of the MSFD Article 4 marine regions and subregions. European Topic Centre. Inland, coastal, marine waters. Jones, D.A., 1969. The genus Eurydice (Crustacea: Isopoda) in the Aegean Sea, including E. longispina sp. nov.. Cahiers de Biologie Marine, 10, 15-29. Jones, D.A., Nithyanandan, M., 2012. Taxonomy and distribution of the genus Eurydice Leach, 1815 (Crustacea, Isopoda, Cirolanidae) from the Arabian region, including three new species. Zootaxa, 3314, 45-57. Junoy, J., Castelló, J., 2003. Catálogo de las especies ibéricas y baleares de isópodos marinos (Crustacea: Isopoda). Boletín del Instituto Español de Oceanografía, 19 (1-4), 293-325. Karaman, S.L., 1955. Über eine neue Microcerberus-art aus dem Küstengrundwasser der Adria. Fragmenta Balcanica, 1, 141-148. Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M.E. et al., 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquatic Invasions, 9 (4), 391-423. Kavanagh, F.A., Wilson, G.D.F., Power, A.M., 2006. Heterochrony in Haplomesus (Crustacea: Isopoda: Ischnomesidae): Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 335 revision of two species and description of two new species. Zootaxa, 1120, 1-33. Kazmi, Q.B., Yousuf, F., 2013. Checklist of Peracarida of Pakistan. A-Marine and B-Terrestrial Isopoda Marine Tanaidacea. FUUAST Journal of Biology, 3 (2), 129-139. Kensley, B., 2001. Biogeography of the marine Isopoda of the Indian Ocean, with a check-list of species and records. p. 205-264. In: Isopod Systematics and Evolution. Kensley, B., Brusca, R.C. (Eds.). Crustacean Issues, 13. Roterdam/ Brookfield: A.A. Balkema. Kensley, B., Schotte, M., 2002. New species and records of Asellota from the Indian Ocean (Crustacea: Peracarida: Isopoda). Journal of Natural History, 36, 1421-1461. Kirkim, F., Koçatas, A., Katagan, T., Sezgin, M., Suat-Ates, A., 2005a. Crustacean Biodiversity of Padina pavonia (L.) Facies Along the Aegean Coasts of Turkey. Turkish Journal of Zoology, 29, 159-166. Kirkim, F., Koçatas, A., Katagan, T., Sezgin, M., 2006. Contribution to the knowledge of the Free-Living Isopods of the Aegean Sea Coast of Turkey. Turkish Journal of Zoology, 30, 361-372. Kirkim, F., Özcan, T., Bakir, K., Katagan, T., 2017. The Isopod Crustacea of Fethiye Bay, Levantine Sea, Turkey. North-Western Journal of Zoology, 13 (2), 244-250. Kirkim, F., Özcan, T., Katagan, T., 2009. Four species of parasitic isopods (Isopoda, Cymothoidae) new to the fauna of Cyprus. Crustaceana, 82 (8), 1079-1085. Kirkim, F., Özcan, T., Katagan, T., 2015. On the occurrence of Paradella dianae (Isopoda) in Fethiye Bay (Levantine Sea). Journal of the Black Sea/Mediterranean Environment, 21 (3), 323-327. Kirkim, F., Özcan, T., Katagan, T., Bakir, K., 2010. First record of five free-living Isopod species from the coast of Cyprus. Acta Adriatica, 51 (1), 101-105. Kirkim, F., Sezgin, M., Katagan, T., Koçatas, A., Suat-Ates, A., 2005b. Peracarid crustacea fauna of rocky communities in Turkish Aegean Sea coasts. Ege University Journal of Fisheries & Aquatic Sciences, 22 (1-2), 101-107 [In turkish]. Kitsos, M.S., Koukouras, A., 2003. Effects of a tidal current of graded intensity on the midlittoral hard substratum peracaridan fauna in the Aegean Sea. Crustaceana, 76 (3), 295-306. Koçatas, A., 1976. Tanaïdacés et isopodes recueillis dans le golfe d’Izmir, Turquie. Crustaceana, 30 (1), 68-72. Koçatas, A., Katagan, T., Benli, H.A., 2001. Contribution to the knowledge of the Crustacean fauna of Cyprus. Israel Journal of Zoology, 47, 147-160. Koçatas, A., Katagan, T., Sezgin, M., Kirkim, F., Koçak, C., 2004. Crustacean Diversity among the Cystoseira Facies of the Aegean Coast of Turkey. Turkish Journal of Zoology, 28, 309-316. Kopuz, U., Kirkim, F., Agirbas, E., Gozler, A.M., 2011. New records of two species of Gnathiid Isopods, Paragnathia formica (Hesse, 1864) and Gnathia maxillaris (Montagu, 1804) (Isopoda, Gnathiidae) from the Black Sea. Crustaceana, 84 (14), 1719-1725. Koukouras, A., Chartosia, N., Apostolaki, E., 2002. New records of isopod crustaceans from the continental rise of the Aegean Sea. Crustaceana, 75 (7), 915-923, notes and news. Koukouras, A., Voultsiadou-Koukoura, E., Chintiroglou, H., Dounas, C., 1985. Benthic bionomy of the North Aegean 336 Sea. III. A comparison of the macrobenthic animal assemblages associated with seven sponge species. Cahiers de Biologie Marine, 26, 301-319. Koukouras, A., Voultsiadou, E., Kitsos, M.S., Doulgeraki, S., 2001. Macrobenthic fauna diversity in the Aegean Sea, affinities with other Mediterranean regions and the Black Sea. BIOS (Macedonia, Greece), 6, 61-76. Kvach, Y., 2009. First report of Saduria (Mesidotea) entomon (Linnaeus, 1758) (Isopoda: Chaetiliidae) in the Black Sea. Aquatic Invasions, 4 (2), 393-395. Larwood, H.J., 1940. The fishery Grounds near Alexandria. XXI. Tanaidacea and Isopoda. Notes Fisheries Research Dir. Cairo, 35, 1-72. Larwood, H.J.C., 1954. LXIX. Crustacea Tanaidacea and Isopoda from the Suez Canal. Annals & Magazine Natural History, 7 (80), 561-577. Lavesque, N., Sorbe J.C., Bachelet, G., Gouillieux, B., De Montaudouin, X. et al., 2013. Recent discovery of Paranthura japonica Richardson, 1909 (Crustacea: Isopoda: Paranthuridae) in European marine waters (Arcachon Bay, Bay of Biscay). Bioinvasions Records, 2 (3), 215-219. Leach, W.E., 1818. Cymothoadées. In: Cuvier (Ed.). Dictionnaire des Sciences Naturelles, 12, 338-354. Lorenti, M., 2006. Isopod crustaceans inside Mediterranean seagrasses: borers, miners and intruders. Biologia marina mediterranea, 13 (4), 154-157. Lorenti, M., Dappiano, M., Gambi, M.C., 2009. Occurrence and ecology of Mesanthura (Crustacea: Isopoda: Anthuridea) in two Italian harbours. Marine Biodiversity Records, 2, E48. Lorenti, M., Keppel, E., Petrocelli, A., Sigovini, M., Tagliapietra, D., 2016. The non-indigenous Paranthura japonica Richardson, 1909 (Isopoda: Anthuroidea: Paranthuridae) from the Mar Piccolo lagoon, Taranto (Italy, Mediterranean Sea). Environmental Science and Pollution Research, 23 (13), 12791-12796. Lucas, H., 1849. Histoire naturelle des Animaux Articulés. Exploration scientifique de l’Algérie pendant les années 1840, 1841, 1842. Sciences Physiques, Zoologie, I, 1-403. Madurell, T., Cartes, J.E., 2003. The suprabenthic peracarid fauna collected at bathyal depths in the Ionian Sea (Eastern Mediterranean). Crustaceana, 76 (5), 611-624. Mahmoud, N.E., Fahmy, M.M., Abuowarda, M.M., Zaki, M.M., Ismail, E.M. et al., 2019. Mediterranean Sea fry; a source of isopod infestation problem in Egypt with reference to the effect of salinity and temperature on the survival of Livoneca redmanii (Isopoda: Cymothoidae) juvenile stages. Journal of the Egyptian Society of Parasitolgy (JESP), 49 (1), 235-242. Marchini, A, Ferrario, J., Minchin, D., 2015. Marinas may act as hubs for the spread of the pseudo-indigenous bryozoan Amathia verticillata (Delle Chiaje, 1822) and its associates. Scientia Marina, 79 (3), 355-365. Marchini, A., Ferrario, J., Occhipinti-Ambrogi, A., 2016. Confirming predictions: the invasive isopod Ianiropsis serricaudis Gurjanova, 1936 (Crustacea: Peracarida) is abundant in the Lagoon of Venice (Italy). Acta Adriatica, 57 (2), 331-336. Marchini, A., Sorbe, J., Torelli, F., Lodola, A., Occhipinti-Ambrogi, A., 2014. The non-indigenous Paranthura japonica Richardson, 1909 in the Mediterranean Sea: travelling with shellfish? Mediterranean Marine Science, 15 (3), 545-553. Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Martin, J.W., Davis, G.E., 2001. An Updated Classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series, 39, 124 pp. Martínez-Laiz, G., Ros, M., Guerra-García, J.M., 2018. Marine exotic isopods from the Iberian Peninsula and nearby waters. PeerJ, 6: e4408. Masry, D., 1970. Microcerberus remanei israelis new subspecies (Isopoda) from the Mediterranean shores of Israel. Crustaceana, 19 (2), 200-204. Messana, G., 1988. Researches on the coast of Somalia. Pseudocerceis seleneides n. sp., a new marine isopod (Sphaeromatidae Dynameninae) from the somalian coast. Crustaceana, 55, 306-312. Mifsud, C., 2017. Notes on some Marine Invertebrates from the Maltese Islands, 2. Annotated checklist of the marine Crustacea (Branchiopoda: Ostracoda: Hexanauplia: Malacostraca) of the Maltese Islands. Sunland Printers Limited. ISBN 978-99957-1-105-4. Monod, T., 1925. Tanaidacés et Isopodes aquatiques de l’Afrique occidentale et septentrionale (1re partie: Tanaidacea, Anthuridea, Valvifera). Bulletin de la Societée des Sciences Maroc, 3, 61-85. Monod, T., 1931. Crustacés de Syrie. In: Les États de Syrie. Richesses marines et fluviales. Exploitation actuelle – Avenir. Bibliothèque de la faune des colonies françaises, Gruvel, A. (Ed.). p. 3: 397-435. Paris, Monod, T., 1933. Mission Robert-Ph. Dollfus en Égypte. Tanaidacea et Isopoda. Mémoires de l’Institut d’Égypte, 21, 162-264. Müller, H.G., 1989a. Acanthocope pentacornis n. sp. from the Deep Sea of the Gulf of Aden. Senckenbergiana Maritima, 20 (3/4), 125-129. Müller, H.G., 1989b. Arcturinoides gibbosus n. sp. from the Gulf of Aden (Crustacea: Isopoda: Arcturidae). Senckenbergiana Maritima, 20 (5/6), 195-199. Müller, H.G., 1989c. Marine Isopoda from the Levantine basin of the Mediterranean Sea (Crustacea). Senckenbergiana Maritima, 20 (5/6), 237-240. Müller, H.G., 1991. Four new species of shallow-water Asellota from the Gulf of Aden (Crustacea: Isopoda). Senckenbergiana Maritima, 21 (5/6), 205-214. Müller, H.G., 1993. Marine Janiroidea from Martinique, French Antilles, with descriptions of a new genus and four new species (Crustacea : Isopoda). Cahiers de Biologie Marine, 34, 433-460. Müller, H.G., 1994. World catalogue ot the Anthuridean Isopods. Wetzlar. ISBN 3-930311-09-7. Negoescu, I., 1980a. Contribution to the study of Anthurid Isopods (Isopoda, Anthuridea) from the Mediterranean (Libya) with the description of two new species. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, 21, 89-102. Negoescu, I., 1980b. Littoral anthuridean isopods (Isopoda, Anthuridea) from the north-western Indian Ocean. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, 22, 401-420. Negoescu, I., 1981. New data about the fauna of Anthuridean Isopods (Isopoda, Anthuridea) from the Libyan Coast and the Suez Canal. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, 23, 109-122. Negoescu, I., 1984. The study of the Anthuridean Isopods (Crustacea, Isopoda, Anthuridea) from the cruises of the french oceanographic vessels. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, 26, 45-59. Negoescu, I., Wägele, J.W., 1984. World list of the Anthuridean Isopods (Crustacea, Isopoda, Anthuridae). Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, 25, 99-146. Öktener, A., Trilles, J.P., 2004. Report on cymothoids (Crustacea, Isopoda) collected from marine fishes in Turkey. Acta adriatica, 45 (2), 145-154. Öktener, A., Türker, D., Alaş, A., 2018. First record of Ceratothoa oxyrrynchaena (Isopoda: Cymothoidae) from Turkish marine waters. Annales, Series Historia Natralis, 28 (1), 7-14. Omer-Cooper, J., 1927. Report on the Crustacea Tanaidacea and Isopoda. Cambridge Expedition to the Suez Canal, 1924, XII. Transactions of the Zoological Society of London, 22, 201-209. Özbek, M., Ustaoğlu, M.R., 2006. Check-list of Malacostraca (Crustacea) Species of Turkish Inland Waters. E.U. Journal of Fisheries & Aquatic Sciences, 23 (1-2), 229–234. Papoutsoglou, S.E., 1976. Metazoan parasites of fishes from Saronicos Gulf, Athens – Greece. Thalassographica, 1, 69102. Pérez, T., Vacelet, J., Bitar, G., Zibrowius, H., 2004. Two new Lithistids (Porifera: Demospongiae) from a shallow eastern Mediterranean cave (Lebanon). Journal of the Marine Biological Association of the United Kingdom, 84, 15-24. Pérez-Domingo, S., Castellanos, C., Junoy, J., 2008. The sandy beach macrofauna of Gulf of Gabès (Tunisia). Marine Ecology, 29 (Suppl. 1), 51-59. Poore, G.C.B., 2001. Families and genera of Isopoda Anthuridea. In: Kensley, B. & Brusca, R.C. Isopod systematics and evolution. Crustacean Issues, 13, 63-173. Poore, G.C.B., Bruce, N.L., 2012. Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts). PLOS ONE, 7 (8), e43529. Por, F.D., 1971. One hundred years of Suez Canal – A century of lessepsian migration: retrospect and iewpoints. Systematic Zoology, 20, 138-159. Por, F.D., 1973. The nature of the Lessepsian migration through the Suez Canal. Rapports de la Commission Internationale de la Mer Méditerranée, 21 (9), 679-682. Por, F.D., 1978. Lessepsian Migration. The Influx of Red Sea Biota into the Mediterranean by Way of the Suez Canal. Ecological Studies, 23, 228 pp., Springer Verlag, Berlin. Por, F.D., 1990. Lessepsian migration. An appraisal and new data. Bulletin de l’Institut Océanographique de Monaco, 7, 1-10. Radujković, B.M., Šundić, D., 2011. Catalogue of Parasitofauna of Montenegro. Montenegrin Academy of Sciences and Arts, Catalogues 6, Section of natural sciences 5. Raitsos, D.E., Beaugrand, G., Georgopoulos, D., Zenetos, A., Pancucci-Papadopoulou, A.M. et al., 2010. Global climate change amplifies the entry of tropical species into the Eastern Mediterranean sea. Limnology and Oceanography, 55 (4), 1478-1484. Ramadan, S.E., Dowidar, N.M., Khalil, A.N., Elsonbaty, S.M., 1998. Redescription of three new records of Isopoda (Crustacea) associated with fouling communities in the Eastern harbour of Alexandria, Egypt. Bulletin of the National Research lnstitute of Oceanography & Fisheries, Arab Repub- Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | 337 lic of Egypt., 24, 197-220. Ramadan, S.E., Kheirallah, A.M., Abdel-Salam, K.M., 2006. Marine fouling community in the Eastern harbour of Alexandria, Egypt compared with four decades of previous studies. Mediterranean Marine Science, 7 (2), 19-29. Ramdane, Z., Bensouilah, M.A., Trilles, J.P., 2007. Comparaison entre les Cymothoidae (Crustacea, Isopoda) recés sur les poissons Téleotéens des côtes tunisiennes et algeriennes. Bull. INSTM, N° Spécial (Actes des 8èmes Journées des Sciences de la Mer), 11, 29-33. Ramdane, Z., Trilles, J.P., 2008. Cymothoidae and Aegidae (Crustacea, Isopoda) from Algeria. Acta Parasitologica, 53 (2), 173-178. Rania, A.A., Rehab, R.A., 2015. Some studies on parasitic isopods of some marine fishes. Egyptian Journal of Chemistry and Environmental Health, 1 (1), 400-420. Rilov, G., Peleg, O., Yeruham, E., Garval, T., Vichik, A. et al., 2018. Alien turf: overfishing, overgrazing and invader domination in South-eastern Levant reef ecosystems. Aquatic Conservation, 28 (2), 351-369. Rincón, B., Arranz, S., Junoy, J., 2018. Isopods of the genus Astacilla (Valvifera, Arcturidae) from the LIFE + INDEMARES project off Alborán Island (S Spain), with the description of a rare species A. carlosoteroi (Reboreda, Wägele & Garmendia, 1994). Mediterranean Marine Science, 19 (3), 504-512. Robinson, D.J., Menzies, R.J., 1961. Munna spinifera, a new species of isopod crustacean from bathyal regions in the Gulf of Aden. Crustaceana, 3, 110-114. Rodríguez, J., 1982. Oceanografía del mar Mediterráneo. Ediciones Pirámide S.A., Madrid. Santos, A.M., Xavier, R., Zenboudji, S., Branco, T., Branco, M., 2011. Stenosoma stephenseni sp. n. (Isopoda, Idoteidae), from the southwestern Mediterranean, with a note on the nomenclatural status of Synisoma Collinge, 1917. ZooKeys, 141, 29-44. Sezgin, M., Çil, E.A., 2010. Rocky Bottom Crustacean Fauna of Sinop (Black Sea, Turkey) Coast. Zoologica Baetica, 21, 5-14. Shabaka, S.H., 2018. Checklist of seaweeds and seagrasses of Egypt (Mediterranean Sea): A review. The Egyptian Journal of Aquatic Research, 44 (3), 203-212. Shoukr, F.A., Mona, M.H., El Sheikh, H., 1991. Identification of Marine Fouling Crustacea in the Suez Canal, with a Note on Distribution and Migration. Pakistan Journal of Zoology, 23 (1), 79-83. Siewing, R., 1959. Angeliera xarifae, ein neuer Isopode aus dem Kustengrundwasser der Insel Abd-el-Kuri (Golf von Aden). Zoologischer Anzeiger, 163 (11-12), 365-370. Skolka, M., Gomoiu, M.T., 2004. Specii invazive in Marea Negra: impactul ecologic al patrunderii de noi specii in ecosistemele acvatice. Constanta: Ovidius University Press. [In Romanian]. Sokolover, N., Taylor, P.D., Ilan, M., 2016. Bryozoa from the Mediterranean coast of Israel. Mediterranean Marine Science, 17 (2), 440-458. Tempesti, J., Rossano, C., Gambineri, S., Plaiti, W., Scapini, F., 2016. New records in the Mediterranean for the non-indigenous species Paranthura japonica (Richardson, 1909) (Anthuridea, Isopoda). Biologia Marina Mediterranea, 23 (1), 249-250. 338 Trilles, J.P., 1972. Les Cymothoidae (Isopoda, Flabellifera) du Muséum national d’Histoire naturelle de Paris. Étude crique accompagné de précisions en particulier sur la répartition géographique et l’écologie des différentes espèces représentées. I. Les Ceratothoinae Schioedte et Meinert, 1883. Bulletin du Muséum d’Histoire Naturelle., Paris, 3e sér., 91 (Zoologie 70), 1231-1268. Trilles, J.P., 1991. Les Cymothoidae (Crustacea, Isopoda) du monde (Prodrome pour une faune). Studia Marina, 21/22 (1-2), 5-288. Trilles, J.P., Bariche, M., 2006. First record of the Indo-Pacific Cymothoa indica (Crustacea, Isopoda, Cymothoidae), a Lessepsian species in the Mediterranean Sea. Acta Parasitologica, 51 (3), 223-230. Trilles, J.P., Colorni, A., Golani, D., 1999. Two new species and a new record of Cymothoid Isopods from the Red Sea. Cahiers de Biologie Marine, 40, 1-14. Trilles, J.P., Öktener, A., 2004. Livoneca sinuata (Crustacea; Isopoda; Cymothoidae) on Loligo vulgaris from Turkey, and unusual cymothoid associations. Diseases of Aquatic Organisms, 61, 235-240. Trilles, J.P., Paperna, I., 1980. Sur quelques Crustacés Isopodes (Corallanidae, Lironecinae et Anilocridae) d’Israel. Bulletin du Muséum National d’Histoire Naturelle., Paris, 4e. Sér., 2, section A, nº 2, 445-454. Ulman, A., Ferrario, J., Forcada, A., Seebens, H., Arvanitidis, C. et al., 2019. Alien species spreading via biofouling on recreational vessels in the Mediterranean Sea. Journal of Applied Ecology, 56 (12), 2620-2629. Ulman, A., Ferrario, J., Occhipinti-Ambrogi, A., Arvanitidis, C., Bandi, A. et al., 2017. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ., 5: e3954. Vacelet, J., Bitar, G., Carteron, S., Zibrowius, H., Pérez, T., 2007. Five new sponge species (Porifera: Demospongiae) of subtropical or tropical affinities from the coast of Lebanon (Eastern Mediterranean). Journal of the Marine Biological Association of the United Kingdom, 87. 1539-1552. Van der Land, J., 2001. Isopoda – excluding Epicaridea. In: European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, Costello, M.J., Emblow C., White, R. (Eds.), p. 50, 315-321. Veini, M., Kiortsis, V., 1974. Amphipodes et Isopodes planctoniques de mer Égée. Rapports de la Commission Internationale de la Mer Méditerranée, 22 (9). 93-95. Vereshchaka, A.L., Anokhina L.L., 2014. Composition and Dynamics of the Black Sea Benthopelagic Plankton and Its Contribution to the Near-Shore Plankton Communities. PLOS ONE, 9 (6), e99595. Verlaque, M., Ruitton, S., Mineur, F., Boudouresque, C.F. et al., 2015. CIESM Atlas of Exotic Species in the Mediterranean. Volume 4 – Macrophytes. CIESM Publishers, 364 pp. Veuille, M., 1979. L’évolution du genre Jaera Leach (Isopodes: Asellotes) et ses rapports avec l’histoire de la Méditerranée. Bijdragen tot de Dierkunde, 49, 105-218. Veuille, M., Koçatas, A., 1979. Les Jaera (Isopodes, Asellotes) des côtes de Turquie. Étude comparative et biogéographique. Vie et Milieu, 28-29 (4), sér. AB: 597-611. Vieira, P.E., Quiroga, H., Costa, F.O., Holdich, D.M., 2016. Medit. Mar. Sci., 21/2 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Distribution and species identification in the crustacean isopod genus Dynamene Leach, 1814 along the North East Atlantic – Black Sea axis. ZooKeys, 635, 1-29. Wägele, J.W., 1979. Stellanthura nov. gen. cryptobia nov. spec.: Ein neuer Isopode aus dem Tyrrhenischen Meer (Crustacea, Isopoda, Anthuridea). Mitteilungen aus dem Zoologischen Museum der Universität Kiel, 1, 21-27. Wägele, J.W., 1981a. Study of the Anthuridae (Crustacea: Isopoda: Anthuridea) from the Mediterranean and the Red Sea. Israel Journal of Zoology, 30, 113-159. Wägele, J.W., 1981b. Study of the Paranthuridae (Crustacea: Isopoda: Anthuridea) from the Mediterranean. Israel Journal of Zoology, 30, 211-229. Wägele, J.W., 1982. On a new Microcerberus from the Red Sea and the relationship of the Microcerberidea to the Anthuridea (Crustacea, Isopoda). Zoologica Scripta, 11 (4), 21-286. Wong, Y.M., Moore, P.G., 1996. Observations on the Activity and Life History of the Scavenging Isopod Natatolana borealis Lilljeborg (Isopoda: Cirolanidae) from Loch Fyna, Scotland. Estuarine, Coastal and Shelf Science, 42 (2), 247-262. WoRMS Editorial Board, 2019. World Register of Marine Species. VLIZ. Available from: http://www.marinespecies.org at VLIZ. (last accessed on 20 November 2019) Xavier, R., Zenboudji S., Lima, F.P., Harris, D.J., Santos, A.M. et al., 2011. Phylogeography of the marine isopod Steno- soma nadejda (Rezig, 1989) in North African Atlantic and western Mediterranean coasts reveals complex differentiation patterns and a new species. Biological Journal of Linnean Society, 104, 419-431. Zakhama-Sraieb, R., Sghaier, Y.R., Guesmi, S., Charfi-Cheikhroua, F., 2011. Peracarid crustaceans associated with the red alga Corallina elongata in Rafraf, Tunisia (Mediterranean Sea). Crustaceana, 84 (1), 69-80. Zenetos, A., Gofas, S., Russo, G., Templado, J., 2004. CIESM Atlas of Exotic Species in the Mediterranean. Volume 3 – Molluscs. CIESM Publishers, 376 pp. Zenetos, A., Gofas, S., Verlaque, M., Cinar, M.E., García-Raso, J.E. et al., 2010. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science, 11 (2), 381-493. Zenetos, Α., Gofas, S., Morri, C., Rosso, A., Violanti, D. et al., 2012. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterranean Marine Science, 13 (2), 328-352. Zibrowius, H., Bitar, G., 2003. Invertébrés Marins Exotiques sur la Côte du Liban. Lebanese Science Journal, 4 (1), 67-74. Supplementary data The following supplementary information is available on line for the article: Table S1. Material examined, per species; see Table 1 for number codes. Table S2. List of isopod species (excluding Epicaridea, Oniscidea, and brackish water Aselloidea) reported from the Suez Canal, Red Sea, and Gulf of Aden. Additional information: shared species with other Indian Ocean regions, and with the Mediterranean Sea, with subregions indicated in square brackets (see Figure 2 for number codes). *type locality of the species identified in this study; **doubtful record; ***uncertain validity; ****uncertain taxonomic significance; *****not in WoRMS (last accessed: 20 November 2019); abbreviations: A, absent; P, previously cited; S, found in the present study. Table S3. Sources used in Table 2 and Table S2, by regions and subregions. Medit. Mar. Sci., 21/2, 2020, 308-339 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 01/06/2021 17:38:59 | Powered by TCPDF (www.tcpdf.org) 339