Academia.eduAcademia.edu
Zootaxa 4700 (1): 001–029 https://www.mapress.com/j/zt/ Copyright © 2019 Magnolia Press ISSN 1175-5326 (print edition) Article ZOOTAXA ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4700.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:8EEC6F00-769B-4BF4-B60F-C4AE5D7BB769 New Species of Lissodendoryx Topsent, 1892 (Demospongiae, Poecilosclerida, Coelosphaeridae) and Myxilla Schmidt, 1862 (Demospongiae, Poecilosclerida, Myxillidae) from the Northeast Pacific B. OTT1,2, H. M. REISWIG2,3, N. McDANIEL4 & R. HARBO5 1 Correspondence author, Research Associate, Invertebrate Zoology, pending, Royal British Columbia Museum, 675 Belleville St, Victoria, BC, Canada V8W 9W2, bruce_ott@yahoo.ca 2 Taxonomic author 3 Biology Department, University of Victoria and Royal British Columbia Museum, 675 Belleville St, Victoria, BC, Canada V8W 9W2, hmreiswig@shaw.ca 4 McDaniel Marine Surveys, Vancouver, BC, Canada neil.mcd@telus.net 5 Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville St, Victoria, BC, Canada V8W 9W2, rharbo@shaw.ca ABSTRACT Collections of sponges by the late Dr. William C. Austin and the authors (N. McDaniel, R. Harbo and B. Ott) provided material for descriptions of new species from two genera of Poecilosclerida for shallow waters of Southern British Columbia, Canada and Northern Washington, USA: Lissodendoryx and Myxilla. There have been no new species of these two genera described for the Northeast Pacific since Laubenfels’ work in central California (Laubenfels 1930, 1932) and Lambe’s reports in 1893 to 1895 for Geological Survey of Canada sponge collections from British Columbia, Canada to the Bering Sea. We describe three new species of Lissodendoryx (Lissodendoryx) (Demospongiae, Poecilosclerida, Coelosphaeridae) and one new species of Myxilla (Myxilla) (Demospongiae, Poecilosclerida, Myxillidae): L. (L.) barkleyensis n. sp., L. (L.) littoralis n. sp., L. (L.) toxaraphida n. sp. and M. (M.) austini n. sp. Lissodendoryx (L.) barkleyensis n. sp. is cave-dwelling, has acanthostyles 112–260 µm, tornotes 107–177 µm, arcuate isochelas 8–28 µm and two sizes of sigmas 18–29, 26–55 µm. Lissodendoryx (L.) littoralis n. sp. fistulate habitus is adapted to muddy substrates similar to some Polymastia species also found commonly in the Northeast Pacific. It has subtylostyles 185–336 µm, tylotes 112–229 µm, arcuate isochelas 11–23 µm, and sigmas 30–75 µm. Lissodendoryx (L.) toxaraphida n. sp. is the only described Lissodendoryx species with raphides shaped like toxas. It has acanthostyles 140–286 µm, tornotes 143–195µm, arcuate isochelas 18–34 µm and toxiform raphides 65–156 µm. Myxilla (M.) austini n. sp. has a fistulate habitus and both tornote and tylote megascleres. It appears to be tolerant of low oxygen environments. Myxilla (M.) austini n. sp. has smooth to sparsely spined styles 193–353 µm, tylotes 153–221 µm, tornotes 174–260 µm, two sizes of anchorate isochelas 13–27, 42–81 µm, and two sizes of sigmas 13–47, 33–78 µm. All specimens were collected from shallow water (intertidal to 25 m). Key words: biodiversity, morphology, Northern Washington, Porifera, shallow water, Southern British Columbia, taxonomy INTRODUCTION New species of Lissodendoryx and Myxilla for the Northeast Pacific were described by Lambe: L. (L.) amaknakensis (Lambe, 1895), L. (L.) firma (Lambe, 1895), Myxilla (Burtonanchora) lacunosa Lambe, 1892, M. (Ectyomyxilla) parasitica Lambe, 1893, and M. (M.) berhingensis Lambe, 1895; and by Laubenfels: L. (L.) kyma Laubenfels, 1930, L. (L.) noxiosa Laubenfels, 1930, L. (L.) rex Laubenfels, 1930 and M. (M.) agennes Laubenfels, 1930. Bakus (1966) conducted an extensive examination of Poecilosclerida for the Friday Harbor, Washington, USA area and reported range extensions for Lissodendoryx and Myxilla species previously described for the Northeast Pacific, but no new species of these genera. The number of species of Lissodendoryx reported to occur in the Northeast Pacific is small, numbering just eight (and possibly a ninth). The number of species of Myxilla reported for this area is smaller still, at five. Given the heterogeneity of marine habitats along the Northeast Pacific coast, and that no new species of either genera have been reported since Lambe (1895) and Laubenfels (1930, 1932), suggests the area has been understudied. Accepted by E. Hajdu: 29 Jul. 2019; published: 18 Nov. 2019 1 We describe three new species of Lissodendoryx (Lissodendoryx) and one new species of Myxilla (Myxilla) included in Dr. William Austin’s collections at Khoyatan Marine Laboratory (now in the collections at Royal British Columbia Museum, Victoria, BC, Canada [RBCM]), expanded in number of specimens and new species from collections by N. McDaniel, R. Harbo and B. Ott. MATERIAL AND METHODS Most specimens were preserved and maintained in 70% isopropyl alcohol. Specimens collected by N. McDaniel were preserved in 95% ethanol. Subtidal sponges were collected by SCUBA diving; intertidal sponges were collected by wading. Under material examined, for each described species, we report: museum catalogue number, station number, location, latitude and longitude, depth, date of collection, collector, and number of specimens. Latitude and longitude were measured in the field using a hand-held GPS device (N. McDaniel stations) or from Google Earth™ coordinates (other stations). For most specimens, colour photographs were taken in situ. In these cases, scale bars are approximate. Photos taken together with specimens are assigned the same station number and catalogue number as those specimens. Thick sections of specimens were made by excising approximately one cm3 surface blocks and embedding these in 58ºC melting point histological paraffin. After cooling to room temperature, the blocks were trimmed to either vertical or tangential orientation and re-warmed to 40ºC for one-half hour to prevent cracking during sectioning. Warmed tissue blocks were set into a guiding jig and sectioned by hand with a straight razor at varied, but only marginally controllable thicknesses of between 0.1 and 1.0 mm. The sections were de-paraffinized in xylene and, of those, the best sections were mounted on microscope slides in Canada balsam for photography. Tissue-free spicule preparations were made by dissolving small pieces of sponge in sodium hypochlorite. Using a compound microscope, we measured the length and width (megascleres only) of 50 spicules (unless noted otherwise by N=) for each spicule type. We scanned microscope fields for spicules of variable sizes, but ignored obviously ontogenetically young spicules in determining size ranges. We list spicule dimensions as minimum (mean) maximum. Microscleres were measured using the same method. All measurements are in micrometres (μm). For scanning electron microscopy (SEM), cleaned spicules were either deposited onto membrane filters that were then taped to stubs, or deposited directly on double-sided tape attached to stubs. Preparations were coated with gold-palladium and viewed in a Hitachi S-3500N SEM at the Biology Department, University of Victoria. Holotypes, paratypes and other materials examined have been deposited in the marine invertebrate collections at RBCM. Taxa are arranged alphabetically. Abbreviations used in the text are: BC: British Columbia, Canada; BO: Bruce Ott; coll.: collected; GPS: global positioning system; KML: former Khoyatan Marine Laboratory, North Sidney, BC; NM: Neil McDaniel; RBCM: Royal British Columbia Museum, Victoria, BC; WA: Washington, USA. SYSTEMATICS Class Demospongiae Sollas, 1885 Order Poecilosclerida Topsent, 1928 Family Coelosphaeridae Dendy, 1922 Genus Lissodendoryx Topsent, 1892 Subgenus Lissodendoryx (Lissodendoryx) Topsent, 1892 The subgenus Lissodendoryx (Lissodendoryx) was erected by Topsent (1892) for Dendoryx (now Myxilla) with smooth styles as megaslceres. The subgenus was subsequently elevated to genus (Lundbeck 1905) to distinguish it from Myxilla based on the presence of arcuate rather than anchorate isochelae. The definition of Lissodendoryx was expanded by Hofman & Van Soest (1995) and again in Systema Porifera (Van Soest, 2002a). The currently accepted definition of the genus Lissodendoryx is Coelosphaeridae with ectosomal tornotes of various morphologies (spined or unspined, tylotes, subtylotes, strongyles); choanosomal smooth or spined styles, occasionally absent or modified to strongyles or oxeas; arcuate chelae; and sigmas (which may be absent) (Van Soest, 2002a). 2 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. Five subgenera of Lissodendoryx are currently recognized: L. (Acanthodoryx) Lévi, 1961, L. (Anomodoryx) Burton, 1934, L. (Ectyodoryx) Lundbeck, 1909, L. (Lissodendoryx), and L. (Waldoschmittia) Laubenfels, 1936 (Van Soest, 2002a). Subgenera are separated on the basis of megasclere type and/or skeletal architecture. Based on the subgenera definitions, the subject Lissodendoryx species belong to the subgenus Lissodendoryx. Lissodendoryx (Lissodendoryx) subgenus is defined as Lissodendoryx with ectosomal tylotornotes and choanosomal styles which may or may not bear spines. Smaller echinating acanthostyles are absent; microscleres, including arcuate isochelae and sigmas, may be absent (Van Soest, 2002a). Other microscleres are reported by some authors (including this paper—see Table 2). Nine species of Lissodendoryx (Lissodendoryx) are reported for the Northeast Pacific (Table 1): TABLE 1. Northeast Pacific Lissodendoryx (Lissodendoryx) species Species NE Pacific Geographic Rangea NE Pacific Depth (m)b L. (L.) albemarlensis Desqueyroux-Faúndez & Van Soest, 1997 Galapagos Is (extraterritorial), Southern California, Vancouver Island (?)c littoral to? L. (L.) amaknakensis (Lambe, 1895) Bering Sea, Aleutians, Gulf of Alaska to California 10–28 L. (L.) firma (Lambe, 1895) Aleutians, Haida Gwaii to California littoral–26 L. (L.) kyma Laubenfels, 1930 Southern BC to central California 10–700 L. (L.) laxa Laubenfels, 1935 Gulf of Mexico no data L. (L.) oxeota Koltun, 1958 Jervis Inlet, BCd subtidal L. (L.) noxiosa Laubenfels, 1930 Central California littoral L. (L.) rex Laubenfels, 1930 Central California 700 L. (L.) topsenti (Laubenfels, 1930) Central California subtidal a Van Soest, et al. WORMS Register of Marine Species. Accessed at www.marinespecies.org 20 July 2018 Based on published and grey literature (i.e., species lists) c Desqueyroux- Faúndez & Van Soest (1997), p. 447 d Austin & Ott in Kozloff (1987), p. 30 Spicule dimension in Table 2 b Worldwide there are 68 accepted species of Lissodendoryx (Lissodendoryx) (Van Soest, et al., 2018). Lissodendoryx (Lissodendoryx) species are found in all the world’s oceans (none published for the Caspian Sea) from littoral to nearly 2900 m. Profundal records reflect more where deep dredging expeditions took place, i.e., Azores and North Atlantic, than worldwide depth distribution. Table 2 provides a comparison of the newly described species with worldwide species of Lissodendoryx (Lissodendoryx) spicules and habitus. Spicule types and lengths together with habitus were used to separate described species from the new species discussed. We referenced the most complete descriptions and spicule figures, where available, to complete Table 2, since both acanthostyles/styles and tylotes/tornotes have been used interchangeably in the literature. Lissodendoryx (Lissodendoryx) barkleyensis n. sp. Table 3, Figure 1 Diagnosis. Lissodendoryx (L.) barkleyensis n. sp. is the only shallow cave-dwelling Lissodendoryx recorded for Southern BC. The combination of cave habit, amorphous habitus, micropapillate surface, and spicule form and dimensions distinguish this species from other described Lissodendoryx (Lissodendoryx). Etymology. The sponge is named after the location, Barkley Sound, BC. Material Examined. Holotype: RBCM holotype 019-00101-001, Stn KML 135c/75, Execution Rock Cave, Barkley Sound, BC, 48° 49.9’ N / 125° 10.7’ W, coll. W.C. Austin 1975, low littoral. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 3 4 · Zootaxa 4700 (1) © 2019 Magnolia Press TABLE 2. World Lissodendoryx (Lissodendoryx) spicule comparisons Lissodendoryx (Lissodendoryx) Species barkleyensis n. sp. A St 112–260 To 112–229 littoralis n. sp. toxaraphida n. sp. 140–286 areolata Lévi, 1963 143–195 123–190 albemarlensis Desqueyroux-Faúndez & Van Soest, 1997 amaknakensis (Lambe, 1895) [as Myxilla] Ty 107–177 144 400–440 Si 18–29, 26–55 11–23 30–75 18–34 107–170 137 310-340 500 baculata Topsent, 1897 I 8–28 200–220 cushion strongyles (nd), trichodragmas (40–45) thin encrusting nd nd tylostyles, isochelae anchorate thin encrusting 28–30 180–240 20–23 374–720 42–57 415–460 33–37 135–150 16–22 170 16–26 18–40 85–225 60–90 encrusting 16–18 405–665 calypta Laubenfels, 1954 toxiform raphides (65–156) flabellate behringi Koltun, 1958 108–120 flat cushion 27–30, 35 basispinosa Sarà, 1958 caduca (Schmidt, 1868) [as Desmacidon] (redescribed by Topsent 1938) subtylostyles (185–336) thick encrusting 166–176 buchanani Topsent, 1913 Habitus small, irregular 22 124–160 balanophilus Annandale, 1914 nd 16–26 Other Spicules encrusting thick encrusting 33–34 pseudoxeas (480–550) ramose subtylostyles (nd) flat branches 10, 22 thin encrusting carolinensis Wilson, 1911 160–180 160–180 12–24 20–36 encrusting to lobed catenata Lévi, 1993 550–600 340–400 30 80 no data 420 20, 50 161–204 15–22, 23–32 23–36 strongyles (133–190), trichodragmas (52–71) lobate to tubiform 40–58 17–23, 42–55 strongyles to subtylotes (220–400) lamellate 20 20 certa (Topsent, 1892) [as Dendoryx] 230 600 ciocalyptoides Burton, 1959 colombiensis Zea & Van Soest, 1986 80 420–680 complicata (Hansen, 1885) [as Reniera] (redescribed by Lundbeck 1905) cratera (Row, 1911) [as Myxilla] 280 100–240 thin encrusting 230 digitate cushion OTT ET AL. ...Continued on the next page NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC TABLE 2. (Continued) Lissodendoryx (Lissodendoryx) Species A St To 220 damirioides Burton, 1959 digitata (Ridley & Dendy, 1886) [as Myxilla] 300–400 720–765 fertilior Topsent, 1904 firma (Lambe, 1895) [as Myxilla] Ty 281–366 450 flabellata Burton, 1929 I Si Other Spicules Habitus 20 60 strongyles (410) encrusting to massive 240–270 44 digitate 485–500 43–52 42 222–262 13–19, 52 45 360 21 cylindrical massive flabellate florida Koltun, 1955 189–205 134-170 25–27 23–29 lobate fragilis (Fristedt, 1885) [as Hastatus] (redescrib by Lundbeck 1905) 290–400 200–268 37–60 18–25 thick encrusting fusca (Ridley & Dendy, 1886) [as Myxilla] 520 420 47 50 accessory acanthostyles massive grata (Thiele, 1903) [as Myxilla] 160 230 25 20 strongyles (180), trichodragmas (90) thin encrusting nd oxeas, strongyles (nd) flat branching nd grisea (Hansen, 1885) [as Myxilla] inaequalis (Baer, 1906) [as Dendoryx] 136–180 indistincta (Fristedt, 1887) [as Hastatus] 350–500 166–181 nd Zootaxa 4700 (1) © 2019 Magnolia Press · 372 isodictyalis var. paucispinosa Topsent, 1928 130–200 ivanovi Koltun, 1958 238–384 200 jacksoniana (Lendenfeld, 1888) [as Myxilla] kyma Laubenfels, 1930 340 14–33 26–50 tornostrongyles (200–220) massive, elongate nd nd spined oxeas (nd) no data 21 45 trichodragmas? (nd) pyriform 197 20–23 18–23 massive, lobate, fistulated 180–200 19–21 20 no data nd 280 148–175 isodictyalis (Carter, 1882) [as Halichondria] (redescribed by Rützler, et al. 2007) 25 8–15, 18–44 200–220 infrequens (Carter, 1881) [as Halichondria] innominata Burton, 1929 nd 350 187–228 23–32 200 13 250 25–30 massive thick encrusting 40 massive, lobate encrusting ...Continued on the next page 5 6 · Zootaxa 4700 (1) © 2019 Magnolia Press TABLE 2. (Continued) Lissodendoryx (Lissodendoryx) Species A St To Ty 600 laxa Laubenfels, 1935 lobosa Lundbeck, 1905 310–369 lundbecki Topsent, 1913 (redescribed by Thomkins, et al., 2017) 179–349 I Si 50 250–290 Habitus tylostyles (700) amorphous 38–44 erect, lobed 19–39, 41–72 20–32 200–380 25–50 35–40 isoanchors (30–35) massive, erect microchelifera Hofman & Van Soest, 1995 174–211 4–6, 11–18 27–30 strongyles (169–183) thin encrusting microraphida (Alcolado, 1984) [as Coelosphaera] 120–190 16–28 24–26 strongyles (120–190), trichodragmas (nd), raphides (50–70) massive, oscula on chimneys 18–24 24 small, irregular 177–185 12–14 14–18 thick, encrusting 180–200 28–33 32–40 amorphous, lumpy 240–250 marplatensis Cuartas, 1992 minuta Burton, 1956 160 noxiosa Laubenfels, 1930 180–200 oxeota Koltun, 1958 231–426 239–322 16–21 massive 27–36 lobate, papillate 400 840–910 400–455 105 85–150, 215–250 anastomosing branches 301–384 700 pygmaea (Burton, 1931) [as Myxilla] rarus Hoshino, 1981 200 561–694 papillosa Koltun, 1958 polymorpha (Topsent, 1890) [as Esperiopsis] [Topsent 1928 as Lissodendoryx] 140–160 118–129 monticularis Baer, 1906 paucispinata (Ridley & Dendy, 1886) [as Myxilla] 163–227 Other Spicules 150 170–180 50 56 30–47 13–16, 50–60 12, 21–27 21–27 28 rex Laubenfels, 1930 570 280 similis Thiele, 1899 200 220 30 massive, amorphous 1890 microxeas (13). 1928 no microxeas massive, branched or encrusting massive, flabellate thin encrusting 50–55 massive 22 thin encrusting ...Continued on the next page OTT ET AL. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC TABLE 2. (Continued) Lissodendoryx (Lissodendoryx) Species simplex (Baer, 1906) [as Dendoryx] (redescribed by Samaai & Gibbons 2005, as Myxilla (Myxilla) simplex) A St 166–218 166–218 To 159–166 500–525 simplex Topsent, 1904 Ty I Si Other Spicules Habitus 14–18 22–33 strongyles (162–193) massive, lumpy 390–430 43 sophia (Fristedt, 1887) [as Esperia] 440–518 spinulosa Rützler, Piantoni & Díaz, 2007 162–213 162–213 215–227 10–14, 15–30, 26–39 12–29, 33–40 stephensoni Burton, 1936 127–160 151–180 23–25 45–48 stipitata (Arnesen, 1903) [as Hamigera] 270–340 encrusting 426–676 28–34 364–473 massive, lamellate subtylostyles (162–213) thick encrusting massive, flabellate 29–40 stalked leaf Zootaxa 4700 (1) © 2019 Magnolia Press · 153–182 16–23 styloderma Hentschel, 1914 552–688 312–368 29–33 ternatensis (Thiele, 1903) [as Hamigera] 115–190 160–180 12–20 30–35 thick encrusting timorensis Hofman & Van Soest, 1995 395–560 280–360 16–23 56–93 branchlets topsenti (Laubenfels, 1930) [as Tedania] 222–398 195–333 strongylata Van Soest, 1984 tubicola Burton, 1959 500 vicina Lundbeck, 1905 strongyles (135–160) thick, amorphous subtylostyles (552–688) cylindrical subtylostyles (222–398), subtylotes (195–333) 28–36 encrusting to massive encrusting–massive 204–212 11–14, 24–29 36–42 280 183 29 47 thin encrusting 710–860 320–380 34–57 17–23, 28–33 anastomosing branches tylostyla Li, 1986 variisclera (Swartschewsky, 1905) [as Myxilla] 360 18–34 Notes: A: acanthostyles; St: styles; To: tornotes; Ty: tylotes; I: isochelae; Si: sigmas tylostyles (148–182) flabellate 7 Description External. Small, irregular cushion shape, (10 x 6 x 5 mm) (Fig. 1A). Ostia not visible; oscula microscopic, less than 500 µm diameter, located on some papillae apices. Surface micropapillate; papillae simple or bifurcated (Fig. 1B). Colour in life unknown, in alcohol orange. Consistency easily torn, compressible. FIGURE 1. Lissodendoryx (Lissodendoryx) barkleyensis n. sp. (A) Preserved holotype. (B) Apical cross section. (C) Ectosome. (D) Choanosome. (E) Acanthostyle, whole and enlarged tips. (F) Tornote, whole and enlarged tips. (G) Arcuate isochelae. (H) Large sigma. (I) Small sigmas, lower a flagellate variety. Skeleton. Ectosome a tangential layer of tornotes about 70 µm thick, packed tightly in multispicular bundles and supported by tracts of acanthostyles and tornotes that form brushes projecting beyond the ectosome about 50–100 µm (Fig. 1C). Choanosome porous, open structure with aquiferous canals about 150–250 µm diameter between spicule tracts (Fig. 1D). Spicule tracts composed of multiple acanthostyles, branch and anastomose forming a loose reticulation. Single acanthostyles (Fig. 1D) cross at irregular distances and angles. Tracts average about 60 µm wide. Spicules. Megascleres (Table 3) acanthostyles and tornotes. Acanthostyles commonly gently curved or less frequently straight with usually sharp but less frequently blunt points (Fig. 1E). Shafts sparingly spined decreasing toward smooth points; heads with a cluster of spines, curved or uncurved, 112–260 x 5.2–18.2 µm. Tornotes, 8 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. straight, inequiended with a single spine at each end (Fig. 1F); spine tips either mucronate or acerate. Tornotes are most common at the surface but rare throughout the rest of the sponge, 107–177 x 2.9–7.8 µm. Microscleres (Table 3) arcuate isochelae and two sizes of sigmas. Arcuate isochelae relatively strongly curved shaft (Fig. 1G); teeth short, one third or less than isochela chord length, 7.8–20 µm. Large sigmas (relatively common) simple or contort (Fig. 1H), 26–54.6 µm. Small sigmas (relatively uncommon) simple or contort (Fig. 1I); rarely flagellate (lower sigma in figure) 18.2–28.6 µm. Sigma length ranges overlap but modes (most frequent) are different (small 13 µm; large 39 µm). Sigma hooked points 1/5 to ¼ sigma chord length. Microscleres are found throughout the sponge. TABLE 3. Lissodendoryx (Lissodendoryx) barkleyensis n. sp. spicule dimensions Length (μm) Width (μm) Acanthostyles 112 (197) 260 5.2 (14.4) 18.2 Tornotes 107 (142) 177 2.9 (5.3) 7.8 Large Sigmas 26.0 (40.9) 54.6 Small Sigmas 18.2 (25.4) 28.6 Isochelae 7.8 (12.9) 20.8 Spicule Distribution. Known only from the type location: Execution Rock Cave, Barkley Sound, BC, low littoral. Ecology. L. (L.) barkleyensis n. sp. is one of several Porifera species found in Execution Rock Cave by W.C. Austin. The cave floor consists of tide pools at low tide and is partly flooded at high tide. Light levels are reduced from outside the cave and, other than the ebb and flow of the tides, the water within is calm. Station data information is missing and the location of the specimen in the cave relative to the mouth is not known to the authors. Remarks. Review of Tables 1 and 2 eliminates most described Lissodensoryx (Lissodendoryx) species as conspecifics of L. (L.) barkleyensis n. sp. Lissodendoryx (L.) florida is the closest North Pacific species to L. (L.) barkleyensis n. sp. L. (L.) florida is recorded from the Sea of Okhotsk and Bering Sea from 80 to 100 m depth (Koltun 1958, 1959); not a shallow-water species. Tornotes (134–170 µm) have single spines on each uninflated end and are within the same length range as L. (L.) barkleyensis n. sp. Acanthostyles are within the same length range (189–205 µm) but are completely spined. L. (L.) florida lacks large sigmas (23–29 µm) and its isochelae are larger (23–27 µm). Lissodendoryx (L.) basispinosa is recorded from a cave in the Gulf of Naples (Sarà 1958) and has the same types of spicules as L. (L.) barkleyensis n. sp. But L. (L.) basispinosa is encrusting, soft and sticky, with acanthostyles arising from its base, not in a reticulation. Acanthostyles (85–225 µm) are more densely spined, and tornotes (180–240 µm) have noticeably inflated heads in L. (L.) basispinosa. Lissodendoryx (Lissodendoryx) littoralis n. sp. Table 4, Figure 2 Diagnosis. Encrusting on mud-covered pebbles on intertidal mudflat, mostly buried in mud with surface fistulae rising above mud. Main body of the sponge grows by coalescence of fistulae. Etymology. The species name derives from the intertidal habitat of the sponge. Material Examined. Holotype: RBCM holotype 019-00102-001, Stn. BO 18-07, Ladysmith Harbour, BC, 49° 1.484’ N / 123° 50.889’ W, 13 Aug 2018, coll. B. Ott, R. Harbo, low littoral, 1 specimen. Other material examined. RBCM 019-00103-001, Stn. BO 16-05, Head of Ladysmith Harbour, 49° 1.484’ N / 123° 50.889’ W, coll. B. Ott, R. Harbo, 4 Aug 2016, low littoral, 1 specimen; four stations were sampled at Bush Creek, Ladysmith Harbour, 49° 1.072’ N / 123° 50.567’ W, coll. B. Ott, R. Harbo, R. Waters, 10 Sep 2018, low littoral, RBCM 019-00104-001, Stn. BO 18-03, 1 specimen; RBCM 019-00104-002,, Stn. BO 18-04, 1 specimen; RBCM 019-00104-003, Stn. BO 18-05, 1 specimen; RBCM 019-00104-004, Stn. BO 18-09a, 2 specimens. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 9 Description External. Cake-like, flat top and bottom, 10 cm diameter x 4 cm thick. Fig. 2A shows an emergent specimen other than the holotype. Surface fistulate. Fistulae (Fig. 2B) 2–10 mm long, 1–3 mm diameter; simple or branched; longer fistulae bent; fistula surface rugose, microhispid. Ostia not visible. Oscula visible in preserved specimens on a few tiny conulae, 200–300 µm diameter. Sponge main body pale yellow; fistulae slightly lighter yellow. Consistency of whole sponge very compressible, easily separated into fistulae; fistulae fairly firm, not easily torn. The base and middle areas of the sponge are formed from coalescing fistulae as the sponge grows. FIGURE 2. Lissodendoryx (Lissodendoryx) littoralis n. sp. (A) Sponge in situ. (B) Preserved part of holotype. (C) Ectosome. (D) Central choanosome. (E) Cross section. (F) Subtylostyle, whole and enlarged tips. (G) Tylotes, whole and enlarged tips. (H) Arcuate isochelae. (I) Sigma. 10 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. Skeleton. Ectosome a tangential layer of tylotes 20–30 µm thick interspersed by poorly formed tylote brushes mixed with a few subtylostyles, points out (Fig. 2C). Choanosome wide spicule tracts composed of subtylostyles (Fig. 2D); toward the surface and in fistulae the number of tylotes increases. Tracts branch into fistulae (Fig. 2E). Spicules form a vague reticulation between tracts (Fig. 2D) that is least dense in fistulae and increases toward the base where spicules appear as a confused mass with no indication of reticulation. Exhalant canals 20–30 µm diameter are at the centre of some fistulae but do not open at the apices of fistulae in preserved specimens (Fig. 2E). Aquiferous canals occur throughout the choanosome; canals are 300–1000 µm across, largest are just below the ectosome between fistulae and reduce in size toward the base of the sponge. Numerous sigmas line many of the canals and also concentrate in the ectosome. Isochelae and sigmas are somewhat more abundant in the fistulae than the main body of the sponge. Spicules. Megascleres (Table 4) are subtylostyles and tylotes. Subtylostyles (Fig. 2F) may be bent fairly sharply about one quarter from the head, curved or occasionally straight. Heads are oval and points lanceolate. Heads rarely very sparsely spined. Tylotes (Fig. 2G) are equiended, heads oval with variable thickness shafts. Microscleres (Table 4) arcuate isochelae (Fig. 2H) and contort sigmas (Fig. 2I). Arcuate isochelae teeth are about one-third the chord length of the isochelae. Sigma hooked points are approximately 1/5 the chord length. TABLE 4. Lissodendoryx (Lissodendoryx) littoralis n. sp. spicule dimensions Specimen Subtylostyles Tylotes Isochelae Sigmas OM: BO 16-05 185 (253) 336 x H: 2.6 (9.1) 12.5 x S: 2.3 (8.2) 13.0a 112 (183) 229 x H: 3.6 (7.1) 10.4 x S: 2.1 (4.6) 9.4a 15.6 (18.7) 23.4 44.2 (52.4) 57.2 OM: BO 18-03 221 (255) 294 x H: 7.3 (9.4) 11.7 x S: 6.5 (8.1) 10.1 151 (183) 211 x H: 5.2 (7.6) 9.9 x 10.4 (18.0) 20.8 S: 3.4 (5.0) 10.4 36.4 (55.1) 75.4 OM: BO 18-04 242 (264) 284 x H: 6.5 (8.2) 10.4 x S: 5.7 (7.9) 9.9 164 (191) 213 x H: 5.2 (7.3) 10.4 x S: 3.1 (4.6) 7.3 13.0 (17.5) 21.3 46.8 (53.3) 59.8 OM: BO 18-05 200 (254) 273 x H: 5.5 (8.3) 10.4 x S: 5.7 (7.6) 8.6 164 (188) 205 x H: 5.2 (7.4) 8.1 x 11.0 (17.8) 23.4 S:2.9 (4.7) 6.5 46.8 (53.5) 62.4 HT: BO 18-07 219 (255) 292 x 6.4 (8.4) 11.2 152 (179) 198 x H: 3.0 (6.6) 9.5 x 12.8 (18.7) 21.8 S: 2.3 (4.2) 7.7 29.6 (52.0) 61.6 OM: BO 1809a 221 (255) 294 x H: 5.7 (8.2) 10.9 x S: 4.9 (7.3) 10.4 164 (191) 216 x H: 5.2 (7.2) 10.4 x S: 4.9 (7.3) 10.4 41.6 (51.7) 64.5 13.0 (17.9) 23.4 Notes: All measurements in µm. N = 50 or as indicated. H=head width, S= shaft width, HT=holotype. OM=other material, a: N = 100 Distribution. Known only from its type locality at Ladysmith Harbour, Vancouver Island, BC, Canada. Ecology. The sponge is common intertidally on a large mud flat near the head of Ladysmith Harbour, Vancouver Island, BC. The sponge grows on pebbles with the main body buried in mud and fistulae protruding above the mud. The sponge grows selectively in depressions of the mudflat that remain wetted and is not fully exposed to the air and drying out. Two other Porifera species common on the mudflat in shallow tidal channels are, from Japan: Hymeniacidon sinapium Laubenfels, 1930 (Sim & Bakus 2008), and from the North Atlantic: Halichondria (Halichondria) bowerbanki Burton, 1930. Remarks. Review of Table 2 eliminates most described Lissodendoryx (Lissodendoryx) species as conspecifics of L. (L).littoralis n. sp. Lissodendoryx (L.) tylostyla Li, 1986 is the closest match to L. (L.) littoralis n. sp. and might be suspected to be conspecific given the location of the latter which has a concentration of sponges and other marine fauna introduced from Asia and Europe (Gartner, et al. 2016). However, L. (L.) tylostyla megascleres are tylostyles rather than subtylostyles, are shorter than L. (L.) littoralis n. sp. (148–182 µm vs. 185–336 µm) and have spined heads. Lissodendoryx (L.) tylostyla has two sizes of isochelae rather than one. Lissodendoryx (L.) tylostyla is thickly encrusting, orange in life and has a crisp texture unlike L. (L.) littoralis n. sp. (no skeletal structure provided for L. (L.) tylostyla). Lissodendoryx (L.) albemarlensis Desqueyroux-Faúndez & Van Soest, 1997 has a similar habitus to L. (L.) littoralis n. sp. (cake-like, compressible). The choanosome spicule organization is more regular than L. (L.) littoralis n. sp. Spicule complement of L. (L.) albemarlensis includes styles (123–190 µm) rather than subtylostyles; tylotes (107–170 µm), similar isochelae (11–23 µm), and smaller sigmas (16–26 µm). NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 11 Lissodendoryx (Lissodendoryx) toxaraphida n. sp. Table 5, Figure 3 Diagnosis. Microscleres include toxiform raphides, unreported in other species of Lissodendoryx (Lissodendoryx) including the other new species described in this report. Etymology. The species name refers to the presence of toxa-shaped raphides. Material Examined. Holotype: RBCM holotype 019-00105-001, Stn. NM 281, Knight Inlet Sill, BC, 50° 41.163’ N / 125° 59.782’ W, coll. N. McDaniel, 27 Mar 2012, 18 m depth, 1 specimen. Description External. Sponge (Fig. 3A) encrusting, approximately 5 cm diameter by 2 mm thick between conules; conules up to 3 mm diameter at base x 4 mm high (Fig. 3B), terminating in a single osculum 1 mm diameter (not visible in preserved specimens). Surface microhispid. Area between conules with densely spaced ostia 0.5 mm diameter. Colour in life orange. Consistency compressible, easily torn. Skeleton. Ectosome tornotes form brushes near the surface or are tangential and scattered. In most areas the brushes were worn or pushed down into the acanthostyle tracts and mostly obscured (Fig. 3C). Between the brushes and acanthostyle tracts single tornotes are disposed randomly tangential to the surface. Acanthostyle tracts penetrate the surface at variable intervals, points oriented upward. Tracts penetrate up to 300 μm and are 3 to 5 spicules thick. Choanosome acanthostyles form a multispicular roughly triangular reticulation approximately 100 μm across (Fig. 3D). Primary spicule tracts crossed at random by single acanthostyles, and branch and anastomose from a tangential base to the surface. Aquiferous canals, 500 to 800 µm, are numerous throughout the sponge. Microscleres most abundant near the surface but found throughout the sponge. Spicules. Megascleres (Table 5) are acanthostyles and tornotes. Acanthostyles (Fig. 3E) completely spined except at the tips, moderately curved; rarely strongylote. Spines on the head are longest and point downward unlike those on the shaft which point at right angles or upward; points are sharp, except strongylote forms. Thin ontologically young acanthostyles uncommon. Tornotes (Fig. 3F) straight, inequiended, with single spines on ends, one hastate and one mucronate. Microscleres (Table 5) arcuate isochelae and toxiform raphides. Arcuate isochelae (Fig. 3G) fairly strongly curved; teeth variably one third to slightly more than two fifths chela chord length. Unguiferate (ontologically young) isochelae (Fig. 3H) uncommon. Toxiform raphides, either recurved (Fig. 3I–upper) (less common) or bent at centre (Fig. 3I–lower) (more common); all sharply pointed. TABLE 5. Lissodendoryx (Lissodendoryx) toxaraphida n. sp. spicule dimensions Spicule Length (μm) Width (μm) Number Acanthostyles 140 (191) 286 2.6 (15.2) 20.8 121 Tornotes 143 (169) 195 4.2 (6.8) 7.8 100 Isochelae 18.2 (25.0) 33.8 100 65 (125) 156 100 Toxas Distribution. Known only for the type locality, Knight Inlet, BC, 18 m. Ecology. Lissodendoryx (L.) toxaraphida was collected from a large boulder resting on the glacially-deposited sill adjacent to Hoeya Head in Knight Inlet, BC, Canada. The sill causes gravity wave turbulence and significant mixing of deeper and shallower waters (Thomson 1981, Klymak & Gregg 2006). The sill is subject to upwelling and moderate to strong tidal currents. Remarks. No described Lissodendoryx (Lissodendoryx) other than L. (L.) toxaraphida n. sp. is reported to have toxa-like raphides. All species with raphides have normal thin straight raphides occurring either singly or in trichodragmas. Toxiform raphides of this species may be toxas and not raphides based on their form, either bent or recurved, typical of toxas not raphides. Conservatively, a single specimen of a new species is not sufficient evidence to modify a subgenus definition which excludes toxas. We note other genera, e.g. Myxilla (Myxilla) discussed in this report, have unusual microscleres not included in the genus or subgenus definition, including M. (M.) iophonoides Swartschevsky, 1906 with bipocillons; M. (M.) lobata Hoshino, 1981 and M. (M.) producta Hoshino, 1981 with birotulates. 12 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. FIGURE 3. Lissodendoryx (Lissodendoryx) toxaraphida n. sp. (A) The holotype in situ. (B) Cross section. (C) Ectosome. (D) Choanosome. (E) Acanthostyle, whole and enlarged tips. (F) Tornote, whole and enlarged tips, hastate above and mucronate below. (G) Arcuate isochelae. (H) Ontologically young isochela. (I) Toxas, recurved above and bent below. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 13 Other than the peculiar raphides in L. (L.) toxaraphida, spicule complement and size ranges are similar to L. (L.) amaknakensis (acanthostyles 140–286 µm vs. 144 µm; tornotes 143–195 µm vs. 137 µm; isochelae 18–34 µm vs 22 µm) but the habita of the two are quite different. The habitus of L. (L.) ivanova Koltun, 1958 is similar to L. (L.) toxaraphida and spicule complement the same, but L. (L.) ivanova megascleres are larger (acanthostyles 238–384 µm, tornotes 187–228 µm). As well Koltun’s sponge was collected from deeper waters (124–126 m vs. 18 m). Family Myxillidae Dendy, 1922 Genus Myxilla Schmidt, 1862 Subgenus Myxilla Schmidt, 1862, sensu Desqueyroux-Faúndez & Van Soest, 1996 The genus Myxilla was erected by Schmidt (1862) (for Halichondria rosacea Lieberkühn, 1859, by subsequent designation, based on the presence of anchorate isochelae and sigmas (Laubenfels 1936)). The genus definition was widened by Desqueyroux-Faúndez & Van Soest (1996) to include Myxillidae with mucronate, strongylotylote or tornote ectosomal spicules, stylote (spined or smooth) styles, anchorate isochelae and sigmas. Desqueyroux-Faúndez & Van Soest (1996) proposed separation of Myxilla into four subgenera: Burtonanchora with smooth styles, Ectyomyxilla with strongly spined echinating acanthostyles, Stelodoryx with unguiferate instead of or in addition to anchorate isochelae, and Myxilla for other genera synonymized with the genus Myxilla. Stelodoryx (Topsent, 1904) was subsequently re-elevated to genus and the genus Styloptilon Cabioch, 1968 demoted as a fourth subgenus of Myxilla (Van Soest, 2002b). Two currently accepted species of Myxilla (Myxilla): M. (M.) columna Bergquist & Fromont, 1988 and M. (M.) novaezealandiae Dendy, 1924, as redescribed by Bergquist & Fromont (1988), have unguiferate isochelae (Van Soest,et al., 2019). A number of specimens of Myxilla and Lissodendoryx we have examined have rare to uncommon unguiferate isochelae in addition to the regular isochelae for these genera. In Myxilla and Lissodendoryx, unguiferate isochelae may be developmental forms of anchorate or arcuate isochelae (Hajdu et al. 1994). Both large and small isochelae have unguiferate forms in some of the specimens we examined and discuss in this paper. Based on the subgenera definitions, the Myxilla species herein described belongs to the subgenus Myxilla. Myxilla subgenus is defined as Myxilla with isotropic skeleton made up of acanthostyles in a single size category and sharing the genus characteristics of a reticulate choanosome, ectosomal tylote tornotes and anchorate isochelae with three teeth (Van Soest, 2002b). A few exceptions to the microsclere complement including bipocilla, birotulates and anchorate isochelae with other than three teeth are reported (see Table 7). As well a few species with short choanosomal echinating acanthostyles are included in this subgenus (Van Soest, et al., 2019). TABLE 6. Northeast Pacific Myxilla (Burtanchora) and Myxilla (Myxilla) Species NE Pacific Geographic Rangea NE Pacific Depth (m)b Myxilla (Burtonanchora) lacunosa Lambe, 1892 [1893] Aleutians to Northern Washington 15–91 Myxilla (Ectyomyxilla) parasitica Lambe, 1893 [1894] [non Laubenfels, 1932] Aleutians to BC 14–45, 98–250 Myxilla (Myxilla) agennes Laubenfels, 1930 Central to Southern California littoral Myxilla (Myxilla) berhingensis Lambe, 1895 Aleutians to BC 32–195 Myxilla (Myxilla) incrustans (Johnston, 1842) [NE Pacific synonyms: Myxilla barentisi Lambe, 1895; Myxilla rosacea of Lambe, 1893 (1894)] Bering Sea (extraterritorial) to Southern California littoral–110 a Van Soest, et al. WORMS Registry of Marine Species. Accessed at www.marinespecies.org 20 March 2019 Based on published reports. Spicule dimensions in Table 7 b 14 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC TABLE 7. World Myxilla (Burtonanchora) and Myxilla (Myxilla) spicule comparisons Species A St Ty To I Si Other Habitus isochelae up to 4 alae inverted conical Myxilla (Burtonanchora) Zootaxa 4700 (1) © 2019 Magnolia Press · araucana Hajdu, Desqueyroux-Faúndez, Carvalho, Lôbo-Hajdu & Willenz, 2013 378–504 155–233 43–74 asigmata (Topsent, 1901 [1902]) [Lissodendoryx spongiosa var. asigmata] 715–775 380 60–70 asymmetrica Desqueyroux-Faúndez & Van Soest, 1996 478–571 219–283 20–32 49–65 crucifera Wilson, 1925, 430 [descript. Hooper & Van Soest (Eds.) 2002] 270–300 165–200 10, 40 10, 50–70 gracilis (Lévi, 1965) [Burtonanchora] 110–120 160–180 12–16 15–20 massive 770 350 25–40 70 flattened lamellae lacunosa Lambe, 1893 170–229 170 39 19 massive, subglobular lissostyla Burton, 1938 80 35 11 myxilloides Lévi, 1960 230–260 160–190 15–17, 33–36 pedunculata Lundbeck, 1905 360–500 238–340 54–66 pistillaris Topsent, 1916 [descript. Topsent 1917] 480–500 300 ponceti Goodwin, Brewin & Brickle, 2012 281–369 197–324 31–49, 57–72 sigmatifera (Lévi, 1963) [Burtonanchora] 325–375 180–230 18, 30–36 13, 3550 174–260 13–27, 42–81 13–47, 33–78 hastata Ridley & Dendy, 1886 [descript. Ridley &Dendy 1887]. encrusting, epizootic encrusting–conical– massive tornotes oxeote isochelae unguiferate 12–13, 38–40 flabellaform massive elongate, ramose pedunculate anisochelae (37– 73), raphides (90) thin lamellate lobed massive Myxilla (Myxilla) austini n. sp. 193–353 153–221 unguiferate chelas (juveniles?) encrusting, fistulate ...Continued on the next page 15 16 · Zootaxa 4700 (1) © 2019 Magnolia Press TABLE 7. (Continued) Species A St Ty To I Si Other Habitus acribria Laubenfels, 1942 465 379 90 agennes Laubenfels, 1930 155–175 145–155 27 30–36 amorphous australis (Topsent, 1901). [Dendoryx incrustans var. australis] [ add. descript. Koltun 1964] 440–600 270–350 24, 47–60 30–60 encrusting, massive 176–229 45 22 encrusting 250 21, 42 25, 42 subramose barentsi Vosmaer, 1885, [add. descript. Lambe 1895] 163–314 470 basimucronata Burton, 1932 205–235 behringensis Lambe, 1895 bivalvia Tanita, 1967 200–230 Myxilla brunnea Hansen, 1885 [descript Lundbeck 1905] 238–380 caliciformis Sarà, 1978, 120–130 238–380 360–420 columna Bergquist & Fromont, 1988 compressa Ridley & Dendy, 1886 [descript. Ridley &Dendy 1887] 280 crassa (Bowerbank, 1875) [Halichondria] [descript. incomplete] ? ? amorphous 196 22–52 19–39 massive 165–180 18–20, 45–52 22–28 massive, pyramidal 200–290 27–34, 53–65 120–140 17–20 20–30 29–37 36–42 unguiferate chelas massive, branched 220 44 20, 63 small chelas (nd) massive, flattened ? 24–29 9, 37 massive 35 massive, encrusting 290–340 strongyles & acanthostrongyles (238–380) leaf-shaped massive dendyi Burton, 1959 [add. descript. Thomas 1973] 160 160 20 dentata (Topsent, 1904) [Dendoryx] 420 230–240 30–35, 80 chelas with 5–6 teeth massive, lobate 720 8, 24 subtylostyles (1000) erect, lobate 327–458 71–99 chelas may have 5–7 teeth fragments only distorta Burton, 1954 diversiancorata Lundbeck, 1905 380–620 OTT ET AL. ...Continued on the next page NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC TABLE 7. (Continued) Species A 332–457 elastica Koltun, 1958 elongata Topsent, 1917 St 170 165–250 fibrosa Levinsen, 1893 Ty To I Si Other Habitus 208–260 25–29, 79–115 250–300 28–33 50–60 erect, cylindrical 190–230 20–50 25–50 massive lamellate, pedunculate fimbriata (Bowerbank, 1866) [Isodictya] [descript Lundbeck 1905] 260–430 230–320 22–35, 64–90 cushion-shaped flexitornota Rezvoi, 1925, [add. descript. Hentschel 1929, as M. fibriata var. flexitornota] 214–285 200–260 15–70 19–63 Myxilla funalis (Bowerbank in Jeffreys & Norman, 1875), [Isodictya] [add. descript. Bowerbank & Norman 1882] nd nd nd nd fusca (Whitelegge, 1906) [Dendoryx] 200 180–200 22 15–25 cushion-shaped no spicule dimensions massive massive, short branched Zootaxa 4700 (1) © 2019 Magnolia Press · hastatispiculata Swartschevsky, 1906 [add. descript Hentschel 1929] 173–224 128–150 25–37 acanthostrongyles (188–223) massive hiradoensis Hoshino, 1981 [new name for Dendoryx mollis Lindgren, 1897] 200 200 36 incrustans (Johnston, 1842) [Halichondria] [descript. Bakus 1966] 207–315 162–195 13–20, 53–72 25–60 encrusting to massive erect, cylindrical eliptical incrustans cylindrica Tanita & Hoshino, 1989 255–316 195–210 15, 40–45 15, 60–65, 80–100 incrustans gigantea Koltun, 1959 350–500 266–332 18–23, 50–100 21–75 2 sizes of sigmas, not separated massive ...Continued on the next page 17 18 · Zootaxa 4700 (1) © 2019 Magnolia Press TABLE 7. (Continued) Species inequitornota Burton, 1931 [Folden Fjord] A St 200 620–810 Ty To I Si 200 17, 40 24–40 Other Habitus encrusting, epizootic 310–400 50-57 iophonoides Swartschevsky, 1906 [add. descript. Hentschel 1929] 88–137 116–195 20 iotrochotina (Topsent, 1892) [Dendoryx] [descript. Carballo & Garcia-Gómez 1994] 115–150 130–170 12–15 lobata Hoshino, 1981 160–210, 90–115 macrosigma Boury-Esnault, 1971 [descript. Pooliquen 1972] 140–180 130–170 12–25 25–75 encrusting mexicensis Dickinson, 1945 [add. descript Desqueyroux-Faundez & Van Soest 1996] 163–208 141–273 10–19, 22–29 11–19, 19–35 massive or tubular mirabilis (Whitelegge, 1907 [Dendoryx] 100, 150 180 10, 20 20 encrusting, epizootic 221–280 16–22, 34–49 20–32, 34–79 insolens Koltun, 1964 15–31 40–50 414–526 mollis Ridley & Dendy, 1886 [descript. Ridley & Dendy 1887] [add. descript Desqueyroux-Faundez & Van Soest 1996] globular bipocillons? (14) massive, lobed encrusting birotulates (15) subtylostyles (414– 526); chelas up to 5 teeth massive, lobed massive mucronata Pulitzer-Finali, 1986 110–130 120–150 13–18 16–32 amorphous nodaspera (Topsent, 1913) [Dendoryx] 75–83, 160–165 145–160 13–40 18–20 encrusting, epizootic 240 10, 20–76 470 novaezealandiae Dendy, 1924 [add. descript. Berquist & Fromont 1988] perspinosa Lundbeck, 1905 140–208 130–178 18–30 producta Hoshino, 1981 110–125, 201–220 156–182 30 unguiferate isochelae, 3–4 teeth [B&F] 18–24 laminar, thin slightly lobed birotulates (15–16) branched ...Continued on the next page OTT ET AL. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC TABLE 7. (Continued) Species A prouhoi (Topsent, 1892) [Damiria] [descript. Topsent 1925] [add. descript. Burton 1936–Alexandria fisheries, Pansini 1987] 150–266 pumicea (Whitelegge, 1906) 200–220 St Ty nd ramosa Kieschnick, 1896 [descript. incomplete] To I Si Other Habitus 180–200 28–51 acanthostrongyles (150–266) massive 180 25 ? nd ramose, forked 50 flabellate, lobate reses (Topsent, 1892) [Dendoryx] 210 190 38–40 massive, digitate rosacea (Lieberkühn, 1859), [Halichondria] [descript. incomplete] nd nd nd massive to branched rosacea var. japonica Ridley & Dendy, 1887 140 175 30 45 lobate to digitate ? (300) septentrionalis Fristedt, 1887 [descript. incomplete] Zootaxa 4700 (1) © 2019 Magnolia Press · setoensis Tanita, 1961 130–170, 160–210 seychellensis Thomas, 1981 180–330 encrusting 211–253 150–180 10, 30–35 55–60 erect, lamelliform 211–253 16 26–48 encrusting swartschewskii Burton, 1930 [new name for M. veneta, Schmidt, 1862 of Swartschewski 1905] 146 136 14–20 68 encrusting tarifensis Carballo & García-Goméz, 1996 140–160 130–180 13–16 19–43 encrusting to massive 250 25 victoriana Dendy, 1896 100 200 tylostylotes (250) massive ? = appears to be spicule type from description; descript. = description taken from author listed rather than the original author; add. descript. = additional description from author(s) listed. Numbers in spicule columns refer to lengths in µm. Notes: St = styles, smooth or sparsely spined; A = completely spined acanthostyles; Ty = tylotes; To = tornotes; I = anchorate isochelae; Si = sigmas; nd = no data. 19 Five species of Myxilla are reported for the Northeast Pacific (Table 6). Of these, three species are Myxilla (Myxilla). The other two belong to Myxilla (Burtonanchora) and Myxilla (Ectyomyxilla). Myxilla (Burtonanchora) species (reported as such) are found in the North and South Pacific, North and South Atlantic, Red Sea and Antarctica from littoral to 735 m. Myxilla (Myxilla) species are reported for the North and South Pacific, North and South Atlantic, Bering Sea, Arctic Ocean, Indian Ocean and the Caribbean from littoral to 1100 m. Again, deep depth records reflect deep dredging expeditions. Worldwide there are 56 accepted species of Myxilla (Myxilla) and two not placed in subgenera. There are 12 accepted species of Myxilla (Burtonanchora) (Van Soest, et al. World Porifera database. Accessed at http://www. marinespecies.org/porifera on 1 March, 2019). Since Myxilla (Myxilla) austini n.sp. has a mix of sparingly and unspined styles we include a comparison with Myxilla (Burtonanchora) species. (Van Soest, 2002b) indicated that some Myxilla (Burtonanchora) may have sparsely spined styles. Bakus (1966) reported a few basal or shaft spines on styles of the holotype of Myxilla (Burtonanchora) lacunosa Lambe (1893) described from North of Quatsino Sound, Vancouver Island, BC, Canada. We reviewed both subgenera (and the two species of Myxilla not placed in subgenera) because of possible similarities in skeletal architecture and style/acanthostyle form. Table 7 provides a comparison of the accepted species of Myxilla (Burtonanchora), M. (Myxilla) and the two Myxilla species not placed in a subgenus. We made comparisons on the same basis as those previously described for Lissodendoryx. Myxilla (Myxilla) austini n. sp. Tables 8 and 9, Figure 4 Diagnosis. Sponge surface fistulate, microhispid. Megascleres include fairly common to rare tylotes. Microscleres include uncommon unguiferate isochelae (juvenile forms?) Etymology. The sponge is named in honour of the late Dr. William C. Austin. Bill was a highly regarded marine biologist, environmentalist and educator who studied and documented marine life of the Pacific Coast of North America for close to 60 years. Material Examined. Holotype: RBCM Holotype 019-00106-001, Stn. NM 365, Croker Island, Indian Arm, BC, 49° 25.794’ N / 122° 51.830’ W, coll. N. McDaniel, 25 April 2018, 15 m depth, 1 specimen. Paratype: RBCM Paratype 019-00107-001, Stn. NM 273, Croker Island, Indian Arm, BC, 49° 25.747’ N / 122° 51.874’ W, coll. N. McDaniel, 7 February 2012, 20 m depth, 1 specimen. Other Material Examined: (all deposited at RBCM) RBCM 019-00108-001, Stn. NM 344, Croker Island, Indian Arm, BC, 49° 25.792’ N / 122° 51.889’ W, coll. N. McDaniel, 14 Sep 2016, depth 15 m, 1 specimen. RBCM 019-00108-002, Stn. NM 345, Croker Is., Indian Arm, BC, 49°25.792’N / 122°51.889’ W W, coll. N. McDaniel, 14 Sep 2016, 15 m depth, 1 specimen. RBCM 019-00110-001, Stn. NM 347, Sakinaw Rock, Sechelt, BC, 49° 34.039’ N / 123° 48.178’ W, coll. N. McDaniel, 18 Sep 2016, 25 m depth, 1 specimen. RBCM 019-00111-001, Stn. NM 379, Croker Is., Indian Arm, BC, 49°25.788’ N / 122°51.775’ W W, coll. N. McDaniel, 27 Aug 2018, depth 15 m, 1 specimen. RBCM 019-00111-002, Stn. NM 380, Croker Is., Indian Arm, BC, 49°25.788’ N / 122°51.775’ W, coll. N. McDaniel 27 Aug 2018, depth 15 m, 1 specimen. RBCM 019-00111-003, Stn. NM 381, Croker Is., Indian Arm, BC, 49°25.788’ N / 122°51.775’ W, coll. N. McDaniel, 27 Aug 2018, depth 15 m, 1 specimen. RBCM 019-00112001, Stn. NM 383, Ayers Point, Hood Canal, WA, 47° 22.664’ N / 123° 6.828’ W, coll. G. Jensen, 6 Jan 2018, depth 15 m, 1 specimen. Description External. Sponge thickly encrusting (Fig. 4A). Base averages 2–3 mm thick and 4 x 6 cm wide with fistulate processes extending vertically up to 1 cm high and 1.5 mm average diameter. Fistulae frequently bifurcate or trifurcate. Surface microhispid; spicules project at right angles to surface. Sieve plates occur in some areas of the sponge base consisting of clusters of 1 mm diameter oval ostia; ostia surrounded by 0.5 mm thick white walls. Sponge cream white to whitish yellow in life; tips of fistulae white. Consistency compressible, whole sponge easily separated into fistulae; fistulae not easily torn. 20 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. FIGURE 4. Myxilla (Myxilla) austini n. sp. (A) The holotype in situ. (B) Cross section. (C) Ectosome detail. (D) Choanosome detail. (E) Acanthostyle, whole and enlarged tips. (F) Thin ontologically young acanthostyle. (G) Tylote (Light Microscope). (H) Tornote, whole and enlarged tips. (I) Large anchorate isochelae. (J) Small anchorate isochelae. (K) Large sigma. (L) Small sigma. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 21 Skeleton. The ectosome is composed of a variably thick layer of tornotes and styles in regularly spaced tracts from the top of the choanosome or subdermal aquiferous canals to the surface (Fig. 4B). In some areas and some specimens, the ectosome is compressed into a single tangential multispicular layer of tornotes and styles. Near the surface tracts of mixed styles and tornotes form bouquets that penetrate beyond the surface on average 10 to 20 μm; exceptionally to 100 µm (Fig. 4C). When present, tylotes are found intermingled with tornotes. In the choanosome (Fig. 4D) multispicular tracts of styles/acanthostyles branch and anastomose irregularly around large aquiferous canals. Secondary multispicular tracts form an irregular polygonal reticulation. Single spicules partially infill the spaces in the tract matrix. Large aquiferous canals or lacunae occur throughout the choanosome. This skeletal structure is carried into the fistulae. Microscleres present throughout the sponge and abundant near the surface. Spicules. Megascleres (Table 8) styles to sparsely spined acanthostyles, tornotes and tylotes. Styles/acanthostyles (Fig. 4E) curved or straight, sparingly spined, mostly near and on head (rarely completely spined), sharp points. Ontologically young acanthostyles (Fig. 4F) are thin, sharply pointed, with nubbly spines on head and shaft. Tylotes (Fig. 4G [light microscope]), straight, elliptical smooth heads on each end; uncommon to rare. Tornotes (Fig. 4H) most straight, few bent near one end, equiended with microspined heads and one long central spine, or inequiended with long central spine lacking from one end. Microscleres (Table 9) two sizes of anchorate isochelae and two sizes of sigmas. Large anchorate isochelae (Fig. 4I): moderately curved, teeth about one-third the chela chord length, common. Small anchorate isochelae (Fig. 4J): moderately curved, thinner and smaller than large anchorate isochelae, teeth nearly one half isochela chord length; abundant. Large sigmas (Fig. 4K): simple or contort, hooked points about ¼ sigma chord length, common. Small sigmas (Fig. 4L): simple or contort, hooked points about ¼ sigma chord length, common. TABLE 8. Myxilla (Myxilla) austini n. sp. megasclere dimensions Specimen Styles N Tornotes N Tylotes (LxHWxSW) N PT: NM 273 193 (284) 353 x 10.4 (16.0) 20.5 50 197 (214) 253 x 5.3 (7.0) 8.6 50 174 (187) 198 x 4.9 (5.2) 5.5 x 2.6 (3.2) 3.6 5 OM: NM 344 189 (294) 336 x 10.4 (13.2) 15.6 50 169 (214) 239 x 5.2 (7.5) 8.3 50 164 (184) 203 x 4.9 (6.4) 7.8 x 2.6 (4.4) 5.5 50 OM: NM 345 200 (272) 336 x 11.2 (15.9) 18.2 50 179 (214) 250 x 5.2 (7.7) 7.8 50 161 (184) 221 x 4.7 (6.6) 8.1 x 2.6 (4.2) 5.7 50 OM: NM 347 179 (310) 368 x 10.4 (15.8) 18.2 50 203 (234) 260 x 5.2 (7.5) 8.3 50 174 (189) 203 x 5.5 (7.4) 7.8 x 2.6 (4.7) 5.2 10 HT: NM 365 273 (310) 347 x 10.4 (16.8) 20.8 50 211 (235) 255 x 5.2 (8.2) 10.4 50 153 (187) 213 x 6.5 (7.5) 7.8 x 3.6 (4.6) 5.2 7 OM: NM 379 200 (298) 357 x 10.4 (16.6) 20.8 50 174 (212) 255 x 6.0 (7.7) 10.4 50 174 (181) 187 x 5.2 (6.6) 7.8 x 3.1 (4.6) 5.2 4 OM: NM 380 168 (267) 410 x 12.5 (15.9) 20.8 50 195 (222) 250 x 4.7 (7.3) 9.1 198 x 6.8 x 4.9 1 OM: NM 381 101 (264) 336 x 11.7 (17.2) 20.8 50 182 (208) 239 x 5.2 (8.8) 10.4 50 169 (189) 208 x 5.2 (6.5) 7.8 x 3.9 (4.6) 5.2 2 OM: NM 383 231 (295) 336 x 13.0 (18.0) 20.8 100 177 (223) 247 x 5.2 (7.5) 10.4 100 166 (191) 215 x 5.5 (7.6) 9.1 x 2.9 (4.9) 6.8i 50 93 All dimensions in µm. L=length, HW=head width, SW=shaft width; HT=holotype, PT=paratype, OM=other material Distribution. Croker Island, Indian Arm, BC, 15 m depth (abundant); Sakinaw Rock, Sechelt, BC, 25 m depth; Ayers Point, Hood Canal, WA, 15 m depth. Ecology. Myxilla (M.) austini n. sp. specimens were collected from the top surfaces of bedrock or large boulders. The sponge appears to be tolerant of a range of dissolved oxygen concentrations based on the locations where it was collected. The Ayers Point, Hood Canal location where specimen NM 383 was collected has low oxygen levels (McDonald, et al. 2015) whereas the other locations were not in known low oxygen concentrations. All collecting locations are subject to negligible tidal currents. 22 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. TABLE 9. Myxilla (Myxilla) austini n. sp. microsclere dimensions Specimen Large Isochelae Small Isochelae a b Small Sigmas 32.7 (50.7) 61.2 17.0 (22.9) 30.8 PT: NM 273 46.6 (67.7) 73.1 OM: NM 344 41.6 (58.8) 67.6 15.6 (19.8) 23.4 36.4 (45.1) 57.2 18.2 (25.9) 36.4 OM: NM 345 41.6 (66.6) 80.6 13.0 (17.4) 27.3 44.2 (54.8) 78.0 13.0 (26.2) 46.8 OM: NM 347 52.0 (65.2) 75.4 13.0 (16.7) 23.4 46.8 (54.6) 65.0 18.2 (23.4) 36.4 HT: NM 365 41.6 (72.0) 83.2 14.3 (18.2) 23.4 46.8 (57.5) 78.0 13.0 (22.7) 31.2 OM: NM 379 46.8 (59.7) 67.6 13.0 (18.1) 26.0 39.0 (52.4) 59.0 15.6 (24.3) 28.6 OM: NM 380 54.6 (68.4) 78.0 13.0 (16.3) 20.8 33.0 (53.4) 65.0 15.6 (25.6) 36.4 OM: NM 381 44.2 (66.9) 83.2 11.7 (18.6) 33.8 36.4 (49.7) 67.6 15.6 (25.6) 41.6 35.1 (62.6) 72.8 14.3 (18.9) 28.6 35.1 (53.8) 63.0 18.2 (25.9) 33.8 OM: NM 383a a All dimensions in µm. N=100. b 13.9 (18.0) 22.1 Large Sigmas N=93. HT=holotype, PT=paratype, OM=other material Remarks. Myxilla (Myxilla) austini n. sp. is not conspecific with any of the five Myxilla species reported for the Northeast Pacific (Table 6). While M. (B.) lacunosa Lambe, 1892 [1893] was reported by Bakus (1966) to have sparsely spined styles (similar to M. (M.) austini n. sp.), its habitus differs from M. (M.) austini (massive with large compound oscula) and M. (B.) lacunosa has only one size of anchorate isochelae and sigmas. Myxilla (Ectyomyxilla) parasitica Lambe, 1893 [1894] has echinating acanthostyles. M. (M.) agennes Laubenfels, 1930 habitus is amorphous and spicule complement includes only one size of anchorate isochelae and sigmas. M. (M.) incrustans (Johnston, 1842) may be the closest to M. (M.) austini n.sp. However, M. (M.) incrustans found in Southern BC / Northern Washington in shallow water are almost always encrusting scallop shells and, if free living, massive. No fistulate forms have been reported. Skeletal architecture matches approximately, but is similar in all Myxilla (Myxilla). Spicules match approximately as well. However, while M. (M.) incrustans is common, there are no reports of tylotes or subtylotes in the species. Given the bedrock/boulder substrate and fistulate form of M. (M.) austini n. sp., together with the consistent occurrence of tylotes, we conclude M. (M.) austini n. sp. is not conspecific with M. (M.) incrustans. Review of Table 7 eliminates most described Myxilla (Burtonanchora) and M. (Myxilla) as conspecifics of M. (M.) austini n. sp. We discounted no mention of sparsely spined styles in published descriptions of M. (B.) given the discussion above. None of the species listed in Table 7 (except M. (M.) austini n. sp.) are fistulate. Three (possibly four) species of M. (M.) are reported to have tylotes: M. (M.) columna Bergquist & Fromont, 1988 is massive or branched and lacks tornotes; M. (M.) distorta Burton, 1954 is erect, lobate, has subtylostyles rather than styles and lacks sigmas; M. (M.) victoriana Dendy, 1896 is massive and has tylostylotes. Based on its description, M. (M.) seychellensis Thomas, 1981 may have tylotes but acanthostyles are completely spined. DISCUSSION Our review of Lissodendoryx and Myxilla species for this paper highlights the need for additional study of BC coast sponges. Family level studies that included BC since Lambe’s reports (op. cit.) have been limited to Poecilosclerida (Bakus 1966), Axinellida (Austin et al. 2013), Hadromerida (Austin et al. 2014), Hexactinellida (Reiswig 2014) and Latrunculiidae (Kelly et al. 2016). The central and northwestern Pacific coasts of the USA have received somewhat more attention: California (e.g. Laubenfels 1927, 1932, 1948, Bakus & Green 1977, Sim & Bakus 1986, Sim & Bakus 2008); Friday Harbor/Puget Sound (Bakus 1966) and Alaska/Aleutians (e.g. Lehnert et al. 2006 a. b; Lehnert & Stone 2013, 2015, 2016; Stone et al. 2014). Some of the species from the USA studies range into BC (based on the RBCM collections of Dr. W.C. Austin). Ranges of northeast Pacific sponges are listed in an on-line database at https://www.pacificsponges.ca and can be retrieved by species from Van Soest, et al. WORMS Register of Marine Species. At Ladysmith Harbour, Hymeniacidon sinapium may have been imported with Japanese oysters (Crassostrea gigas) to the Northeast Pacific (Fuller & Hughey 2013). Halichondria (Halichondria) bowerbanki Burton,1930 may have arrived as a fouling organism on ship hulls, or on solid ships ballast deposited in harbours, likely on rocks NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 23 (Levings et al. 2002). This is more likely than transport in ballast water given the relatively short life span (a few hours to a few days) of free-living sponge planula larvae in water (Bergquist 1978). Introduction of H. (H.) bowerbanki may also have taken place with the import of Atlantic oysters, Crassostrea virginica, to Ladysmith Harbour and other sites along the coast in the late 1800’s and early 1900’s. There are extensive collections of BC and adjacent waters sponges at the Canadian Museum of Nature, Ottawa, Canada and RBCM (W.C. Austin collection, R. Stone collection) that warrant additional study and could result in new species and range extensions. ACKNOWLEDGEMENTS We wish to thank Ms. Heidi Gartner, Invertebrates Collection Manager and Researcher, RBCM for her assistance with cataloguing and accessioning specimens, Dr. Henry Choong, Curator of Invertebrate Zoology, for making facilities available at RBCM, Rob Waters for assisting with collection of sponges from Ladysmith Harbour, Dr. Brent Gowan for help with SEMs, Greg Jensen for providing the authors with Ayers Point sponge, Karen Sanamyan for Russian translations and Doug Swanston and Geoff Grognet for collecting assistance during SCUBA dives. We would like to thank Doug and Peggy Kolosoff and Warren Johnny, Stz’uminus First Nations for access to field sites. Anonymous reviewers provided comments that helped improve the manuscript. Most of all, we owe a debt of gratitude to the late Dr. William C. Austin for his passion for sponges and his extensive collections and biogeographic data which were drawn upon for development of this paper. REFERENCES Alcolado, P.M. (1984) Nuevas especies de esponjas encontradas en Cuba [New species of sponges from Cuba]. Poeyana, 271, 1–22. https://doi.org/10.5962/bhl.part.5625 Annandale, N. (1914) Fauna symbiotica indica. 5. Some sponges commonly associated with oysters and mussels in Madras Harbour and the Chilka Lake. Records of the Indian Museum, 10, 149–158. Arnesen, E. (1903) Spongien von der norwegischen Küste. II. Monaxonida: Halichondrina. Bergens Museum Åarbog, 1903, 1–30, pls. I–VII. Austin, W.C., Ott, B.S., Reiswig, H.M., Romagosa, P. & McDaniel, N.G. (2013) Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia and adjacent waters. ZooKeys, 338, 11–28. https://doi.org/10.3897/zookeys.338.5535 Austin, W.C., Ott, B.S., Reiswig, H.M., Romagosa, P. & McDaniel, N.G. (2014) Taxonomic review of Hadromerida (Porifera, Demospongiae) from British Columbia, Canada, and adjacent waters, with the description of nine new species. Zootaxa, 3823 (1), 1–57. https://doi.org/10.11646/zootaxa.3823.1.1 Baer, L. (1906) Silicispongien von Sansibar, Kapstadt and Papeete. (Inaugural Dissertation: Berlin). Archiv für Naturgeschichte, 72 (1), 1–32, pls. I–V. Bakus, G.J. (1966) Marine poeciloscleridan sponges of the San Juan Archipelago, Washington. Journal of Zoology, 149, 415– 531, pls. I–II. Bakus, G.J. & Green, K. (1977) Porifera of the Pacific coast of North America. In: Southern California Coastal Water Research Project, Taxonomic Standardization Program: Sponge Workshop. . Joint Powers of Authority, State of California, Costa Mesa, California, pp. 1–22. Bergquist, P.R. & Fromont, P.J. (1988) The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 4 Poecilosclerida. New Zealand oceanographic Institute Memoir, 96, 1–197. Boury-Esnault, N. (1971) Spongiaires de la zone rocheuse de Banyuls-sur-Mer. II. Systématique. Vie et Milieu, 22 (2), 287– 349. Bowerbank, J.S. (1866) A Monograph of the British Spongiadae. Vol. 2. Ray Society, London, xx + 388 pp. Bowerbank, J.S. (1875) Contributions to a General History of the Spongiadae. Part VII. Proceedings of the Zoological Society of London, 1875, 281–296. Bowerbank, J.S. (1875) Submarine-cable fauna. In: Jeffreys, J.G., Norman, A.M. (Eds.), Annals and Magazine of Natural History, Series 4, 15 (87), pp. 169–176. https://doi.org/10.1080/00222937508681053 Bergquist, P.R. (1978) Sponges. University of California Press, Berkeley and Los Angeles, 268 pp. Burton, M. (1929) Porifera. Part II. Antarctic sponges. British Antarctic (‘Terra Nova’) Expedition, 1910. Natural History Report, London, British Museum (Natural History). Zoologist, 6 (4), 393–458, pls. I–V. 24 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. Burton, M. (1930a) Additions to the Sponge Fauna at Plymouth. Journal of the Marine Biological Association of the United Kingdom, 16 (2), 489–507. https://doi.org/10.1017/S0025315400072891 Burton, M. (1930b) Norwegian Sponges from the Norman Collection. Proceedings of the Zoological Society of London, 1930 (2), 487–546, pls. I–II. https://doi.org/10.1111/j.1096-3642.1930.tb00989.x Burton, M. (1931) The Folden Fiord. Report on the sponges collected by Mr. Soot-Ryven in the Folden Fiord in the year 1923. Tromsø Museum Skrifter, 1 (13), 1–8. Burton, M. (1931) On a Collection of Marine Sponges mostly from the Natal Coast. Annals of the Natal Museum, 6 (3), 337–358. Burton, M. (1932) Sponges. Discovery Reports, 6, 237–392, pls. 48–57. https://doi.org/10.5962/bhl.part.24379 Burton, M. (1934) Sponges. Scientific Reports of the Great Barrier Reef Expedition 1928–29, 4 (14), 513–621, pls. 1–2. Burton, M. (1936) Notes on Sponges from South Africa, with Descriptions of new Species. Annals and Magazine of Natural History, Series 10, 17 (97), 141–147. https://doi.org/10.1080/03745481.1936.10801394 Burton, M. (1936) The fishery ground near Alexandria. IX. Sponges. Notes and Memoirs of the Fisheries Research Directorate, Cairo, 17, 1–28. Burton, M. (1954) Sponges. In: The ‘Rosaura’ Expedition. Part 5. Bulletin of the British Museum (Natural History), Zoology, 2 (6), 215–239, pl. 9. Burton, M. (1956) The sponges of West Africa. Atlantide Report (Scientific Results of the Danish Expedition to the Coasts of Tropical West Africa, 1945-1946, Copenhagen) 4, 111–147. Burton, M. (1959) Sponges. In: Scientific Reports. John Murray Expedition 1933–34. 10 (5). British Museum (Natural History), London, pp. 151–281. Cabioch, L. (1968) Contribution à la connaissance de la faune des Spongiaires de la Manche occidentale. Démosponges de la région de Roscoff. Cahiers de Biologie Marine, 9 (2), 211–246. Carballo, J.L. & Garcia-Gómez, J.C. (1994) Esponjas del Estrecho de Gibraltar y áreas próximas, con nuevas aportaciones para la fauna Iberica [Porifera from the Straits of Gibraltar and nearby areas, new species of the Iberian fauna]. Cahiers de Biologie Marine, 35 (2), 193–211. Carballo, J.L. & García-Gómez, J.C. (1996) Myxilla tarifensis sp.nov. (Porifera, Poecilosclerida) with remarks on the genus Myxilla in the Strait of Gibraltar. Journal of the Marine Biological Association of the United Kingdom, 76, 875–884. https://doi.org/10.1017/S0025315400040856 Carter, H.J. (1881) Supplementary Report on Specimens dredged up from the Gulf of Manaar, together with others from the Sea in the Vicinity of the Basse Rocks and from Bass’s Straits respectively, presented to the Liverpool Free Museum by Capt. H. Cawne Warren. Annals and Magazine of Natural History, Series 5, 7 (41), 361–385, pl. XVIII. https://doi.org/10.1080/00222938109459534 Carter, H.J. (1882) Some Sponges from the West Indies and Acapulco in the Liverpool Free Museum described, with general and classificatory Remarks. Annals and Magazine of Natural History, Series 5, 9 (52), 266–301 + 346–368, pls. XI–XII. https://doi.org/10.1080/00222938209459039 Cuartas, E.I. (1992) Poríferos de la provincia biogeográfica argentina. III. Poecilosclerida (Demospongiae), del litoral marplatense. Physis, Buenos Aires, (A), 47, 73–88. Dendy, A. (1896) Catalogue of Non-Calcareous Sponges collected by J. Bracebridge Wilson, Esq., M.A., in the neighbourhood of Port Phillip Heads. Part II. Proceedings of the Royal Society of Victoria, New Series, 8, 14–51. Dendy, A. (1924) Porifera. Part I. Non-Antarctic sponges. Natural History Report. British Antarctic (Terra Nova) Expedition, 1910 (Zoology), 6 (3), 269–392, pls. I–XV. Desqueyroux-Faúndez, R. & Van Soest, R.W.M. (1996) A review of Iophonidae, Myxillidae and Tedaniidae occurring in the South East Pacific (Porifera: Poecilosclerida). Revue suisse de Zoologie, 103 (1), 3–79. https://doi.org/10.5962/bhl.part.79938 Desqueyroux-Faúndez, R. & Van Soest, R.W.M. (1997) Shallow water Demosponges of the Galápagos Islands. Revue suisse de Zoologie, 104 (2), 379–467. https://doi.org/10.5962/bhl.part.80003 Dickinson, M.G. (1945) Sponges of the Gulf of California. In: Reports on the collections obtained by Alan Hancock Pacific Expeditions of Velero III off the coast of Mexico, Central America, South America, and Galapagos Islands in 1932, in 1933, in 1934, in 1935, in 1936, in 1937, in 1939, and 1940. The University of Southern California Press, Los Angeles, pp. 1–55, pls. 1–97. Fristedt, K. (1885) Bidrag till Kännedomen om de vid Sveriges vestra Kust lefvande Spongiae. Kungliga Svenska vetenskapsakademiens handlingar, 21, 1–56, pls. I–IV. Fristedt, K. (1887) Sponges from the Atlantic and Arctic Oceans and the Behring Sea. Vega-Expeditionens Vetenskap. Iakttagelser, Nordenskiöld, 4, 401–471, pls. 22–31. Fuller, T.F., Hughey, J. R. (2013) Molecular investigation of the invasive sponge Hymeniacidon sinapium (de Laubenfels, 1930) in Elkhorn Slough, California. Aquatic Invasions, 8 (1), 59–66. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 25 https://doi.org/10.3391/ai.2013.8.1.07 Gartner, H.N., Murray, C.C., Frey, M.A., Nelson, J.C., Larson, K.J., Ruiz, G.M. and Therriault, T.W. (2016) Non-indigenous invertebrate species in the marine fouling communities of British Columbia Canada. BioInvasions Records 5 (4), 205–212. http://dx.doi.org/10.3391/bir.2016.5.4.03 Hajdu, E., Van Soest, R.W.M. & Hooper, J.N.A. (1994) Proposal for a phylogenetic subordinal classification of poecilosclerid sponges. In: Van Soest, R.W.M., Van Kempen, Th. M.G. & Braekman, J.-C. (Eds.), Sponges in Time and Space. Balkema, Rotterdam, pp. 123–139. Hansen, G.A. (1885) Spongiadae. The Norwegian North-Atlantic Expedition 1876–1878, Zoology, 13, 1–26, pls. I–VII, 1 map. Hentschel, E. (1914) Monaxone Kieselschwämme und Hornschwämme der Deutschen Südpolar-Expedition 1901–1903. Deutsche Südpolar-Expedition, 15 (1), 35–141, pls. IV–VIII. Hentschel, E. (1929) Die Kiesel- und Hornschwämme des Nördlichen Eismeers. In: Römer, F., Schaudinn, F., Brauer, A. & Arndt, W. (Eds.), Fauna Arctica. Eine Zusammenstellung der arktischen Tierformen mit besonderer Berücksichtigung des Spitzbergen-Gebietes auf Grund der Ergebnisse der Deutschen Expedition in das Nördliche Eismeer im Jahre 1898. 5 (4). G. Fischer, Jena, pp. 857–1042, pls. XII–XIV. Hofman, C.C. & Van Soest, R.W.M. (1995) Lissodendoryx species of the Indo-Malayan Archipelago (Demospongiae: Poecilosclerida). Beaufortia, 45 (6), 77–103. Hoshino, T. (1981) Shallow-Water Demosponges of Western Japan, 1. Journal of Science of the Hiroshima University, (B), 29 (1), 47–205. Johnston, G. (1842) A History of British Sponges and Lithophytes. W.H. Lizars, Edinburgh, xii + 264 pp., XXV pls. https://doi.org/10.5962/bhl.title.51495 Kelly, M., Sim-Smith, C., Stone, R., Samaai, T., Reiswig, H., Austin, W. (2016) New taxa and arrangements within the family Latrunculiidae (Demospongiae, Poecilosclerida). Zootaxa 4121 (1), 1–48. https://doi.org/10.11646/zootaxa.4121.1.1 Kieschnick, O. (1896) Silicispongiae von Ternate nach den Sammlungen von Herrn Prof. Dr. W. Kükenthal. Zoologischer Anzeiger, 19 (520), 526–534. Klymak, J.M. & Gregg, M.C. (2004) Tidally generated turbulence over the Knight Inlet sill. Journal of Physical oceanography, 34, 1135–1151. https://doi.org/10.1175/1520-0485(2004)034<1135:TGTOTK>2.0.CO;2 Koltun, V.M. (1955) [New genera and species of sponges (Spongia, Cornacuspongida) from the Okhotsk and Bering Seas.]. Trudÿ Zoologicheskogo Instituta Akademiya Nauk SSSR, 18 (1), 13–18, pl. 1. [in Russian] Koltun, V.M. (1958) [Cornacuspongia of sea waters washing the South Sakhalin and the South Kurile Island region]. Issledovaniya dal’nevostochnÿkh morei SSR, 5, 42–77, figs. 1–25. [in Russian] Koltun, V.M. (1959) [Siliceous horny sponges of the northern and fareastern seas of the U.S.S.R.]. opredeliteli po faune SSR, izdavaemye Zoologicheskim muzeem Akademii nauk, 67, 1–236 [in Russian]. Koltun, V.M. (1964) Sponges of the Antarctic. 1 Tetraxonida and Cornacuspongida. In: Pavlovskii, E.P., Andriyashev, A.P. & Ushakov, P.V. (Eds.), Biological Reports of the Soviet Antarctic Expedition (1955–1958). Akademya Nauk SSSR, MoskvaLeningrad, pp. 6–133 + 443–448. [English translation, 1966, Israel Program for scientific translation] Kozloff, E.N. (1987) Marine Invertebrates of the Pacific Northwest. University of Washington Press, Seattle and London, vi + 511 pp. Lambe, L.M. (1892 [1893]) On some Sponges from the Pacific Coast of Canada and Behring Sea. Transactions of the Royal Society of Canada, 10 (4), 67–78, pls. III–VI. Lambe, L.M. (1893 [1894]) Sponges from the Pacific coast of Canada. Transactions of the Royal Society of Canada, 11 (4), 25–43, pls. II–IV. Lambe, L.M. (1894 [1895]) Sponges from the Western Coast of North America. Transactions of the Royal Society of Canada, 12 (4), 113–138, pls. II–IV. Laubenfels, M.W. de (1927) The red sponges of Monterey Peninsula, California. Annals and Magazine of Natural History, Series 9, 19 (110), 258–266. https://doi.org/10.1080/00222932708633594 Laubenfels, M.W. de (1930) The Sponges of California. Abstracts of dissertations for the degree of doctor of philosophy. Stanford University Bulletin, 5 (98), 24–29. Laubenfels, M.W. de (1932) The marine and fresh-water sponges of California. Proceedings of the United States National Museum, 81 (2927), 1–140. https://doi.org/10.5479/si.00963801.81-2927.1 Laubenfels, M.W. de (1935) Some Sponges of Lower California, Mexico. American Museum Novitates, 779, 1–14. Laubenfels, M.W. de (1936) A Discussion of the Sponge Fauna of the Dry Tortugas in Particular and the West Indies in General, with Material for a Revision of the Families and Orders of the Porifera. Carnegie Institute of Washington Publication, 467 (Tortugas Laboratory Paper 30), 1–225, pls. 1–22. Laubenfels, M.W. de (1948) The order Keratosa of the phylum Porifera—a monographic study. Allan Hancock Foundation. occasional Papers, 3, 1–217. Laubenfels, M.W. de (1954) The Sponges of the West-Central Pacific. oregon State Monographs. Studies in Zoology, 7, i–x + 26 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. 1–306, pls. I–XII. https://doi.org/10.5962/bhl.title.6516 Lendenfeld, R. von. (1888) Descriptive Catalogue of the Sponges in the Australian Museum, Sidney. Taylor & Francis, London, xiv + 260 pp., 12 pls. Lehnert, H. & Stone, R.P. (2013) Four new species of Haplosclerida (Porifera, Demospongiae) from the Aleutian Islands, Alaska. Zootaxa, 3700 (4), 573–587. https://doi.org/10.11646/zootaxa.3700.4.5 Lehnert, H. & Stone, R.P. (2015) New species of sponges (Porifera, Demospongiae) from the Aleutian Islands and Gulf of Alaska. Zootaxa, 4033 (4), 451–483. https://doi.org/10.11646/zootaxa.4033.4.1 Lehnert, H. & Stone, R.P. (2016) A comprehensive inventory of the Gulf of Alaska sponge fauna with the description of two new species and geographic range extensions. Zootaxa, 4144 (3), 365–382. https://doi.org/10.11646/zootaxa.4144.3.5 Lehnert, H., Stone, R. & Heimler, W. (2006a) New species of Poecilosclerida (Demospongiae, Porifera) from the Aleutian Islands, Alaska, USA. Zootaxa, 1155 (1), 1–23. https://doi.org/10.11646/zootaxa.1155.1.1 Lehnert, H., Stone, R. & Heimler, W. (2006b) New species of deep-sea demosponges (Porifera) from the Aleutian Islands (Alaska, USA). Zootaxa, 1250, 1–35. Levings, C., Keiser, D., Jamieson, G.S. & Dudas, S. (2002) Marine and estuarine alien species in the Strait of Georgia, British Columbia. In: Claudi, R., Nantel, P. & Muckle-Jeffs, E. (Eds.), Alien invaders in Canada’s waters, wetlands, and forests. Natural Resources Canada, Canadian Forest Service, Science Branch Ottawa, pp. 111–131. Levinsen, G.M.R., (1893) Annulata, Hydroidae, Anthozoa Porifera.—Det videnskabelige udbytte af Kanonbaader “Hauchs” Togter i de Danske have idenfor Skagen i aarene, 1883–86, 317–427. Lévi, C. (1961) Spongiaires des Iles Philippines, principalement récoltées au voisinage de Zamboanga. Philippine Journal of Science, 88 (4), 509–533. Lévi, C. (1963) Spongiaires d’Afrique du Sud. (1) Poecilosclérides. Transactions of the Royal Society of South Africa, 37 (1), 1–72, pls. I–X. https://doi.org/10.1080/00359196309519054 Lévi, C. (1993) Porifera Desmospongiae: Spongiaires bathyaux de Nouvelle-Calédonie, récoltés par le Jean Charcot Campagne. In: Résultats des Campagnes Musorstom. Vol. 11. Éditions du Muséum national d’Histoire naturelle, Paris, pp. 1–88, 10 pls. Li, J. (1986) Sponges as marine fouling organisms in China waters. I. Studia Marina Sinica, 26 (2), 76–116 [in Chinese] Lieberkühn, N. (1859) Neue Beiträge zur Anatomie der Spongien. Archiv für Anatomie und Physiologie 30(3), 353–382, 515– 529, pls. IX–XI. Lindgren, N.G. (1897) Beitrag zur Kenntniss der Spongienfauna des malayischen Archipels und der chinesischen Meere. Zoologischer Anzeiger, 20, 480–487. Lundbeck, W. (1905) Porifera. (Part II.) Desmacidonidae (pars.). In: The Danish Ingolf-Expedition. 6 (2). BiancoLuno, Copenhagen, pp. 1–219, pls. I–XX. Lundbeck, W. (1909) The Porifera of East Greenland. Meddelelser om Grønland, 29, 423–464, pl. XIV. McDonald, P.S., Essington, T.E., Davis, J.P., Galloway, A.W.E., Stevick, B.C., Jensen, G.C., Van Blaricom, G.R. & Armstrong, D.A. (2015) Distribution, abundance, and habitat associations of a large bivalve (Panopea generosa) in a eutrophic fjord estuary. Journal of Shellfish Research, 24, 137–145. https://doi.org/10.2983/035.034.0117 Pansini, M. (1987) Report on a collection of Demospongiae from soft bottoms of the Eastern Adriatic Sea. In: Jones, W.C. (Ed.), European contributions to the taxonomy of sponges. Publications of the Sherkin Island Marine Station, 1, pp. 41–53. Pouliquen, L. (1972) Les spongiaires des grottes sous-marines de la région de Marseille: Ecologie et systématique. Téthys, 3 (4), 717–758. Pulitzer-Finali, G. (1986) A collection of West Indian Demospongiae (Porifera). In appendix, a list of the Demospongiae hitherto recorded from the West Indies. Annali del Museo civico di storia naturale Giacomo Doria, 86, 65–216. Reiswig, H.M. (2014) Six new species of glass sponges (Porifera: Hexactinellida) from the north-eastern Pacific Ocean. Journal of the Marine Biological Association of the United Kingdom, 94 (02), 267–284. https://doi.org/10.1017/S0025315413000210 Rezvoi, P. (1925) Über neue Schwämme aus den Meeren der russischen Arctis. Zoologischer Anzeiger 62 (9/10), 193–201. Ridley, S.O. & Dendy, A. (1886) Preliminary report on the Monaxonida collected by H.M.S. Challenger. Part I. Annals and Magazine of Natural History, Series 5, 18 (108), 325–351 + 470–493. https://doi.org/10.1080/00222938609459998 Ridley, S.O. & Dendy, A. (1887) Report on the Monaxonida collected by H.M.S. ‘Challenger’ during the years 1873–76. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76, Zoology, 20 (part 59), i–lxviii, 1–275, pls. 1–51, 1 map. Row, R.W.H. (1911) Reports on the Marine Biology of the Sudanese Red Sea, from Collections made by Cyril Crossland, M.A., B.Sc., F.Z.S. XIX. Report on the Sponges collected by Mr. Cyril Crossland in 1904–5. Part II. Non-Calcarea. Journal of the NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 27 Linnean Society, Zoology, 31 (208), 287–400, pls. 35–41. https://doi.org/10.1111/j.1096-3642.1911.tb00461.x Rützler, K., Piantoni, C. & Díaz, M.C. (2007) Lissodendoryx: rediscovered type and new tropical western Atlantic species (Porifera: Demospongiae: Poecilosclerida: Coelosphaeridae). Journal of the Marine Biological Association of the United Kingdom, 87 (6), 1491–1510. https://doi.org/10.1017/S0025315407059243 Samaai, T. & Gibbons, M.J. (2005) Demospongiae taxonomy and biodiversity of the Benguela region on the west coast of South Africa. African Natural History, 1, 1–96. Sarà, M. (1958) Studio sui Poriferi di una grotta di marea del Golfo di Napoli. Archivo Zoologico Italiano 43, 203–281, pls. I–II. Sarà, M. (1978) Demospongie di acque superficiali della Terra del Fuoco (Spedizioni AMF Mares—GRSTS e SAI). Bollettino dei Musei e degli Istituti Biologici della (R.) Università di Genova, 46, 7–117. Schmidt, O. (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, Leipzig, viii + 88 pp., 7 pls. Schmidt, O. (1868) Die Spongien der Küste von Algier. Mit Nachträgen zu den Spongien des Adriatischen Meeres (Drittes Supplement). Wilhelm Engelmann, Leipzig, iv + 44 pp., V pls. Sim, C.J.; Bakus, G.J. 1986. Marine Sponges of Santa Catalina Island, California. occasional Papers of the Allan Hancock Foundation (5), 1–23. Sim, C.J., Bakus, J. (2008) Systematics of intertidal sponges from California and Korea. Korean Journal of Systematic Zoology, 24 (1), 43–57. https://doi.org/10.5635/KJSZ.2008.24.1.043 Stone, R.P., Lehnert, H., Reiswig, H. (2011) A guide to the deep-water sponges of the Aleutian Island Archipelago. NoAA Professional Paper NMFS, 12, 1–187. Swartschewsky, B. (1905) Materialui faunui ghubok Chernaghomorya (Monaxonida). (Beitrag zur Kenntniss der SchwammFauna des Schwarzen Meeres). Zapiski Kïevskago obshchestva estestvoispÿtatelei (Mémoires de la Société des Naturalistes de Kiew), 20 (1), 1–48. [in Russian, German summary 49–59, pls. 1–7] Swartschewsky, B. 1906. Materialui dlya faunui ghubok Belago Morya i otchasti Murmanskogo poberjya (Monaxonida) (Beiträge zur Spongien-Fauna des Weissen Meeres). Zapiski Kïevskago obshchestva estestvoispÿtatelei (Mémoires de la Société des Naturalistes de Kiew), 20 (2), 307–355 [in Russian, German summary 356–371, pls. 10–16] Tanita, S. (1961) Report on the sponges collected from the Kurushima Strait, Seto Inland Sea. Memoirs of the Ehime University, Sect II (B) 4, 335–354. Tanita, S. (1967) Report on the sponges obtained from Tajima District, southwestern region of the Japan Sea. Bulletin of the Japan Sea Regional Fisheries Research Laboratory, 17, 111–126. Tanita, S. & Hoshino, T. (1989) The Demospongiae of Sagami Bay. Biological Laboratory Imperial Household, Tokyo, xiii + 197 pp. (in English), 166 pp., 19 pls. (in Japanese), 1 map. Thiele, J. (1899) Studien über pazifische Spongien. II. Ueber einige Spongien von Celebes. Zoologica. original-Abhandlungen aus dem Gesamtgebiete der Zoologie, Stuttgart, 24 (2), 1–33, pls. I–V. https://doi.org/10.5962/bhl.title.106767 Thiele, J. (1903) Kieselschwämme von Ternate. II. Abhandlungen herausgegeben von der Senckenbergischen naturforschenden Gesellschaft, 25, 933–968, pl. XVIII. Thomas, P.A. (1981) A second collection of marine Demospongiae from Mahe Island in the Seychelles Bank (Indian Ocean). Annales du Musée royal de l’Afrique centrale, Tervuren, Sciences zoologiques, 233, 1–63. Tomkins, G., Baker, E., Anstey, L., Walkusz, W., Siferd, T. & Kenchington, E. (2017) Sponges from the 2010–2014 Paamiut Multispecies Trawl Surveys, Eastern Arctic and Subarctic: Class Demospongiae, Subclass Heteroscleromorpha, Order Poecilosclerida, Family Coelosphaeridae, Genera Forcepia and Lissodendoryx. Canadian Technical Report of Fisheries and Aquatic Sciences, 3224, i–v + 1–129. Thomson, R.E. (1981) Oceanography of British Columbia. Canadian Special Publication of Fisheries and Aquatic Sciences, 56, 1–291. Topsent, E. (1892) Contribution à l’étude des Spongiaires de l’Atlantique Nord (Golfe de Gascogne, Terre-Neuve, Açores). Résultats des campagnes scientifiques accomplies par le Prince Albert I, Monaco, 2, 1–165, pls. I–XI. Topsent, E. (1897) Spongiaires de la Baie d’Amboine. (Voyage de MM. M. Bedot et C. Pictet dans l’Archipel Malais). Revue suisse de Zoologie, 4, 421–487, pls. 18–21. https://doi.org/10.5962/bhl.part.35507 Topsent, E. (1901) Spongiaires. Résultats du voyage du S.Y. ‘Belgica’en 1897-99 sous le commandement de A. de Gerlache de Gomery. Expédition antarctique belge, Zoologie, 4, 1–54, pls. I–VI. Topsent, E. (1904) Spongiaires des Açores. Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco, 25, 1–280, pls. 1–18. https://doi.org/10.5962/bhl.title.61852 Topsent, E. (1913) Spongiaires de l’Expédition Antarctique Nationale Ecossaise. Transactions of the Royal Society of Edinburgh, 49 (3), 579–643, pls. I–VI. https://doi.org/10.1017/S0080456800013119 Topsent, E. (1917) Spongiaires. In: Joubin, L. (Ed.), Deuxième Expédition Antarctique Française (1908–1910) Commandée par 28 · Zootaxa 4700 (1) © 2019 Magnolia Press OTT ET AL. le Dr. Jean Charcot. Sciences Physiques: Documents Scientifiques. Vol. 4. Masson & Cie, Paris, pp. 1–88, pls. 1–6. Topsent, E. (1928) Spongiaires de l’Atlantique et de la Méditerranée provenant des croisières du Prince Albert ler de Monaco. Résultats des campagnes scientifiques accomplies par le Prince Albert I, Monaco, 74, 1–376, pls. I–XI. Van Soest, R.W.M. (1984) Marine sponges from Curaçao and other Caribbean localities. Part III. Poecilosclerida. In: Hummelinck, P.W. & Van der Steen, L.J. (Eds.), Uitgaven van de Natuurwetenschappelijke Studiekring voor Suriname en de Nederlandse Antillen. No. 112. Studies on the Fauna of Curaçao and other Caribbean Islands, 66 (199), pp. 1–167. Van Soest, R.W.M. (2002a) Chapter 061 Coelosphaeridae. In: Hooper, J.N.A. & Van Soest, R.W.M. (Eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp. 528–546. Van Soest, R.W.M. (2002b) Chapter 068 Myxillidae. In: Hooper, J.N.A. & Van Soest, R.W.M. (Eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp. 602–620. Van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez, B., Hajdu, E., Pisera, A.B., Manconi, R., Schönberg, C., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C., Cárdenas, P., Carballo, J.L., Ríos, P. & Downey, R. (2019) World Porifera database. Accessed from: http://www.marinespecies.org/porifera (accessed 1 March 2019) Vosmaer, G.C.J. (1885) The Sponges of the ‘Willem Barents’ Expedition 1880 and 1881. Bijdragen tot de Dierkunde, 12 (3), 1–47, pls. I–V. Whitelegge, T. (1906) Sponges. Part 1. Monaxonida, Ridley and Dendy. In: Scientific Results of the Trawling Expedition of H.M.C.S. ‘Thetis’ off the Coast of New South Wales in February and March, 1898. Memoirs of the Australian Museum, 4 (9), 453–484, pls. XLIII–XLIV. Whitelegge, T. (1907) Sponges. Part I.—Addenda. Part II. Monaxonida continued. In: Scientific Results of the Trawling Expedition of H.M.C.S. ‘Thetis’ off the Coast of New South Wales in February and March, 1898. Memoirs of the Australian Museum, 4 (10), 487–515. Wilson, H.V. (1911) Development of sponges from dissociated tissue cells. Bulletin of the Bureau of Fisheries, 30, 1–30, pls. 1–5. WoRMS Editorial Board (2019) World Register of Marine Species. VLIZ. Available from: http://www.marinespecies.org (accessed 20 March 2019) https://doi.org/10.14284/170 Zea, S. & Van Soest, R.W.M. (1986) Three new species of sponges from the Colombian Caribbean. Bulletin of Marine Science, 38, 355–365. NEW LISSoDENDoRyx AND MyxILLA FROM NORTHEAST PACIFIC Zootaxa 4700 (1) © 2019 Magnolia Press · 29