Academia.eduAcademia.edu
Biological Conservation 157 (2013) 372–385 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon The conservation status of the world’s reptiles Monika Böhm a,⇑, Ben Collen a, Jonathan E.M. Baillie b, Philip Bowles c, Janice Chanson d,e, Neil Cox c,d, Geoffrey Hammerson f, Michael Hoffmann g, Suzanne R. Livingstone h, Mala Ram a, Anders G.J. Rhodin i, Simon N. Stuart j,k,l,m,n, Peter Paul van Dijk l, Bruce E. Young o, Leticia E. Afuang p, Aram Aghasyan q, Andrés García r, César Aguilar s, Rastko Ajtic t, Ferdi Akarsu u, Laura R.V. Alencar v, Allen Allison w, Natalia Ananjeva x, Steve Anderson y, Claes Andrén z, Daniel Ariano-Sánchez aa, Juan Camilo Arredondo ab, Mark Auliya ac, Christopher C. Austin ad, Aziz Avci ae, Patrick J. Baker af,ag, André F. Barreto-Lima ah, César L. Barrio-Amorós ai, Dhruvayothi Basu aj, Michael F. Bates ak, Alexandre Batistella al, Aaron Bauer am, Daniel Bennett an, Wolfgang Böhme ao, Don Broadley ap, Rafe Brown aq, Joseph Burgess ar, Ashok Captain as, Santiago Carreira at, Maria del Rosario Castañeda au, Fernando Castro av, Alessandro Catenazzi aw, José R. Cedeño-Vázquez ax, David G. Chapple ay,az, Marc Cheylan ba, Diego F. Cisneros-Heredia bb, Dan Cogalniceanu bc, Hal Cogger bd, Claudia Corti be, Gabriel C. Costa bf, Patrick J. Couper bg, Tony Courtney bh, Jelka Crnobrnja-Isailovic bi, Pierre-André Crochet ba, Brian Crother bj, Felix Cruz bk, Jennifer C. Daltry bl, R.J. Ranjit Daniels bm, Indraneil Das bn, Anslem de Silva bo,bp, Arvin C. Diesmos bq, Lutz Dirksen br, Tiffany M. Doan bs, C. Kenneth Dodd Jr. bt, J. Sean Doody ay, Michael E. Dorcas bu, Jose Duarte de Barros Filho bv, Vincent T. Egan bw, El Hassan El Mouden bx, Dirk Embert by, Robert E. Espinoza bz, Alejandro Fallabrino ca, Xie Feng cb, Zhao-Jun Feng cc, Lee Fitzgerald cd, Oscar Flores-Villela ce, Frederico G.R. França cf, Darrell Frost cg, Hector Gadsden ch, Tony Gamble ci, S.R. Ganesh cj, Miguel A. Garcia ck, Juan E. García-Pérez cl, Joey Gatus cm, Maren Gaulke cn, Philippe Geniez co, Arthur Georges cp, Justin Gerlach cq, Stephen Goldberg cr, Juan-Carlos T. Gonzalez p,cs, David J. Gower ct, Tandora Grant cu, Eli Greenbaum cv, Cristina Grieco cw, Peng Guo cx, Alison M. Hamilton cy, Kelly Hare cz, S. Blair Hedges da, Neil Heideman db, Craig Hilton-Taylor dc, Rod Hitchmough dd, Bradford Hollingsworth de, Mark Hutchinson df, Ivan Ineich dg, John Iverson dh, Fabian M. Jaksic di, Richard Jenkins dj,dk,dl, Ulrich Joger dm, Reizl Jose dn, Yakup Kaska do, Uğur Kaya dp, J. Scott Keogh dq, Gunther Köhler dr, Gerald Kuchling ds, Yusuf Kumlutasß dt, Axel Kwet du, Enrique La Marca dv, William Lamar dw, Amanda Lane dx, Bjorn Lardner dy, Craig Latta dz, Gabrielle Latta dz, Michael Lau ea, Pablo Lavin eb, Dwight Lawson ec, Matthew LeBreton ed, Edgar Lehr ee, Duncan Limpus ef, Nicola Lipczynski eg, Aaron S. Lobo eh, Marco A. López-Luna ei, Luca Luiselli ej, Vimoksalehi Lukoschek ek,el, Mikael Lundberg em, Petros Lymberakis en, Robert Macey eo, William E. Magnusson ep, D. Luke Mahler eq, Anita Malhotra er, Jean Mariaux es, Bryan Maritz et, Otavio A.V. Marques eu, Rafael Márquez ev, Marcio Martins v, Gavin Masterson et, José A. Mateo ew, Rosamma Mathew ex, Nixon Mathews ey, Gregory Mayer ez, James R. McCranie fa, G. John Measey fb, Fernando Mendoza-Quijano fc, Michele Menegon fd, Sébastien Métrailler fe, David A. Milton ff, Chad Montgomery fg, Sérgio A.A. Morato fh, Tami Mott fi, Antonio Muñoz-Alonso fj, John Murphy fk, Truong Q. Nguyen ao,fl, Göran Nilson fm, Cristiano Nogueira fn, Herman Núñez fo, Nikolai Orlov x, Hidetoshi Ota fp, José Ottenwalder fq, Theodore Papenfuss fr, Stesha Pasachnik fs, Paulo Passos ft, Olivier S.G. Pauwels fu, Néstor Pérez-Buitrago fv, Valentín PérezMellado fw, Eric R. Pianka fx, Juan Pleguezuelos fy, Caroline Pollock dc, Paulino Ponce-Campos fz, Robert Powell ga, Fabio Pupin fd, Gustavo E. Quintero Díaz gb, Raju Radder gc, Jan Ramer gd, Arne R. Rasmussen ge, Chris Raxworthy cg, Robert Reynolds gf, Nadia Richman a, Edmund L. Rico gg, Elisa Riservato gh, Gilson Rivas gi, Pedro L.B. da Rocha gj, Mark-Oliver Rödel gk, Lourdes Rodríguez Schettino gl, Willem M. Roosenburg gm, James P. Ross bt,gn, Riyad Sadek go, Kate Sanders gp, Georgina Santos-Barrera gq, Hermann H. Schleich gr, Benedikt R. Schmidt gs,gt, Andreas Schmitz gu, Mozafar Sharifi gv, Glenn Shea dx, Hai-Tao Shi gw, Richard Shine gc, Roberto Sindaco cw, Tahar Slimani bx, Ruchira Somaweera gc, Steve Spawls gx, Peter Stafford ct, Rob 0006-3207/$ - see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biocon.2012.07.015 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 373 Stuebing fk, Sam Sweet gy, Emerson Sy gz, Helen J. Temple ha, Marcelo F. Tognelli c,hb, Krystal Tolley hc, Peter J. Tolson hd, Boris Tuniyev he, Sako Tuniyev he, Nazan Üzüm ae, Gerard van Buurt hf, Monique Van Sluys hg, Alvaro Velasco hh, Miguel Vences hi, Milan Veselý hj, Sabine Vinke hk, Thomas Vinke hk, Gernot Vogel hl, Milan Vogrin hm, Richard C. Vogt ep, Oliver R. Wearn a, Yehudah L. Werner hn,ho, Martin J. Whiting hp, Thomas Wiewandt hq, John Wilkinson hr, Byron Wilson hs, Sally Wren b, Tara Zamin ht, Kaiya Zhou hu, George Zug cy a Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK Conservation Programmes, Zoological Society of London, Regent’s Park, London NW1 4RY, UK c IUCN – CI Biodiversity Assessment Unit, Conservation International, 2011 Crystal Drive Ste 500, Arlington, VA 22202, USA d Species Programme, IUCN, Rue Mauverney 28, 1196 Gland, Switzerland e IUCN – CI Biodiversity Assessment Unit, c/o 130 Weatherall Road, Cheltenham 3192, Vic., Australia f NatureServe, 746 Middlepoint Road, Port Townsend, WA 98368, USA g IUCN SSC Species Survival Commission, c/o United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK h Ecology and Evolutionary Biology, Faculty of Biomedical & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, Scotland G12 8QQ, UK i Chelonian Research Foundation, 168 Goodrich St., Lunenburg, MA 01462, USA j IUCN Species Survival Commission, Rue Mauverney 28, 1196 Gland, Switzerland k United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntington Road, Cambridge CB3 0DL, UK l Conservation International, 2011 Crystal Drive Ste 500, Arlington, VA 22202, USA m Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK n Al Ain Wildlife Park and Resort, PO Box 45553, Abu Dhabi, United Arab Emirates o NatureServe, 4600 N. Fairfax Dr., 7th Floor, Arlington, VA 22203, USA p Institute of Biological Sciences, University of the Philippines, Los Banos, College, Laguna 4031, Philippines q Protected Areas Management Department, Bioresources Management Agency of Ministry of Nature Protection, Yerevan, Armenia r Estación de Biología Chamela, Instituto de Biología, U.N.A.M., Apdo. Postal 21, San Patricio, Jalisco 48980, Mexico s Departamento de Herpetología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Peru t Institute for Nature Conservation of Serbia, dr Ivana Ribara 91, 11070 Belgrade, Serbia u Doğa Derneği (Nature Association), Hürriyet cad. 43/12 Dikmen, Ankara, Turkey v Departamento de Ecologia, Instituto de Biociencias, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil w Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA x Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Universitetskaya nab. 1, Russia y University of the Pacific, 3601 Pacific Avenue, Stockton, California 95211, USA z Nordens Ark, Åby säteri, SE-456 93 Hunnebostrand, Sweden aa Organización Zootropic, General Projects, 12 Calle 1–25, Zona 10, Edificio Geminis 10, Guatemala 1001, Guatemala ab Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42494, São Paulo 04218-170, Brazil ac Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318 Leipzig, Germany ad Department of Biological Sciences, Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803-3216, USA ae Adnan Menderes University, Faculty of Science and Arts, Department of Biology, Aydın, Turkey af Texas A& M University System, AgriLIFE Research, Blackland Research and Extension Center, 720 E Blackland Rd, Temple, TX 76502, USA ag The Wetlands Institute, 1075 Stone Harbor Blvd, Stone Harbor, NJ 08247, USA ah Universidade Federal do Rio Grande do Sul – Instituto de Biociências, Avenida Bento Gonçalves 9500, Agronomia, 91-540-000 Porto Alegre-RS, Brazil ai Fundación Andígena, PO Box 210, Mérida 5101-A, Mérida, Venezuela aj The Katerniaghat Foundation, C-421 Sector-B, Mahanagar, Lucknow 226 006, India ak Department of Herpetology, National Museum, PO Box 266, Bloemfontein 9300, South Africa al Department of the Environment – Mato Grosso, Brazil am Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA an Mampam Conservation, Glossop, UK ao Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany ap Department of Herpetology, Natural History Museum of Zimbabwe, P.O. Box 240, Bulawayo, Zimbabwe aq University of Kansas Natural History Museum and Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Dyche Hall, 1345 Jayhawk Blvd, Lawrence, KS66045-7593, USA ar Guana Tolomato Matanzas National Estuarine Research Reserve, Ponte Vedra, FL 32082, USA as 3/1 Boat Club Road, Pune 411 001, Maharashtra, India at Laboratorio de Sistemática de Vertebrados e Historia Natural, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias (UDELAR) and Museo Nacional de Historia Natural, Montevideo, Uruguay au Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA av Departamento de Biología, Universidad del Valle, Cali, Colombia aw University of California, Berkeley, CA 94720-3160, USA ax Instituto Tecnológico de Chetumal, Av. Insurgentes No. 330, C.P. 77013, Col. David Gustavo Gtz., Chetumal, Quintana Roo, Mexico ay School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia az Allan Wilson Centre for Molecular Ecology & Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ba CNRS-UMR5175, Centre d’Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier Cedex 5, France bb Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, calle Diego de Robles y Vía Interoceánica, campus Cumbayá, edif. Darwin, DW-010A. Casilla Postal 17-12-841, Quito, Ecuador bc University Ovidius Constanta, Faculty of Natural Sciences, Romania bd Australian Museum, 6 College Street, Sydney, NSW 2010, Australia be Museo di Storia Naturale dell’Università di Firenze, Sezione di Zoologia ‘‘La Specola’’, Italy bf Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil bg Biodiversity Program, Queensland Museum, PO Box 3300, South Bank, Brisbane, Qld 4101, Australia bh Queensland Department of Employment, Economic Development and Innovation, Southern Fisheries Centre, PO Box 76, Deception 4508, Qld, Australia bi Faculty of Sciences and Mathematics, University of Niš & IBISS Beograd, Serbia bj Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA bk INIBIOMA (CONICET-UNComa), Quintral 1250, (8400) Bariloche, Rio Negro, Argentina bl Fauna & Flora International, Jupiter House, Station Road, Cambridge CB1 2JD, UK bm Care Earth Trust, No 5, 21st Street, Thillaiganganagar, Chennai 600 061, India bn Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia bo Rajarata University of Sri Lanka, Mihintale, Sri Lanka bp Amphibian Specialist Group IUCN SSC Working Group, Sri Lanka b 374 bq M. Böhm et al. / Biological Conservation 157 (2013) 372–385 Herpetology Department, Philippine National Museum, Padre Burgos St, Manila, Philippines Reptile and Animal Presentation, Neukirchstr. 37a,13089 Berlin, Germany Department of Biology, Central Connecticut State University, New Britain, CT 06050, USA bt Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA bu Department of Biology, Davidson College, Davidson, NC 28035-7118, USA bv Laboratório de Zoologia de Vertebrados, Universidade Estadual do Rio de Janeiro (LAZOVERTE – UERJ), Brazil bw Department of Economic Development, Environment & Tourism, P. Bag X 9484, Polokwane 0700, Limpopo, South Africa bx Université Cadi Ayyad, Département de Biologie, BP 2390, Marrakech, Morocco by Fundacion Amigos de la Naturaleza, Santa Cruz de la Sierra, Bolivia bz Department of Biology, California State University, Northridge, CA 91330-8303, USA ca Karumbe, D. Murillo 6334, Montevideo, Uruguay cb Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan, China cc Xuzhou Normal University, Jiangsu Province, China cd Texas A&M University, 210 Nagle Hall, College Station, TX 77843-2258, USA ce Museo de Zoologia, Fac. De Cienicas, Universidad Nacional Autónoma de México (U.N.A.M.), Mexico cf Universidade Federal da Paraíba, Rio Tinto, PB, Brazil cg American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA ch Instituto de Ecología, A. C., Chihuahua 31109, Chihuahua, Mexico ci University of Minnesota, Minneapolis, MN 55455, USA cj Chennai Snake Park, Rajbhavan post, Chennai 600 022, Tamil Nadu, India ck Department of Natural Resources, Puerto Rico cl Museo de Zoologı`a, UNELLEZ-Guanare, Venezuela cm Biology Department, University of San Carlos, Cebu, Philippines cn GeoBio Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany co EPHE-UMR5175, Centre d’Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier Cedex 5, France cp Institute for Applied Ecology, University of Canberra, ACT 2601, Australia cq Nature Protection Trust of Seychelles, 133 Cherry Hinton Road, Cambridge CB1 7BX, UK cr Whittier College, Department of Biology, Whittier, CA 90608, USA cs Edward Grey Institute for Field Ornithology, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ct Department of Zoology, Natural History Museum, London SW7 5BD, UK cu San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA cv Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA cw Istituto per le Piante da Legno e l’Ambiente, corso Casale 476, I-10132 Torino, Italy cx Yibin University, Sichuan, China cy Division of Amphibian & Reptiles, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA cz Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand da Department of Biology, Pennsylvania State University, University Park, PA 16802, USA db University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa dc Species Programme, IUCN, 219c Huntingdon Road, Cambridge CB3 0DL, UK dd Department of Conservation, P.O. Box 10-420, Wellington 6143, New Zealand de Department of Herpetology, San Diego Natural History Museum, P.O. Box 121390, San Diego, CA 92112, USA df South Australian Museum, North Terrace, Adelaide, SA 5000, Australia dg Muséum National d’Histoire Naturelle, UMR CNRS 7205 (Origine, Structure et Evolution de la Biodiversite), Departement Systematique et Evolution, CP 30, 25 rue Cuvier, F-75005 Paris, France dh Department of Biology, Earlham College, Richmond, IN 47374, USA di Center for Advanced Studies in Ecology and Biodiversity (CASEB), Catholic University of Chile, Santiago, Chile dj Madagasikara Voakajy, B.P. 5181, Antananarivo, Madagascar dk Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK dl School of Environment, Natural Resources and Geography, Bangor University, Gwynedd LL57 2UW, UK dm State Natural History Museum (Staatliches Naturhistorisches Museum), Pockelsstr. 10, 38106 Braunschweig, Germany dn Bohol Island State University, Bohol, Philippines do Pamukkale University, Department of Biology, Denizli, Turkey dp Department of Zoology, Section of Biology, Faculty of Science, Ege University, 35100 Bornova/Izmir, Turkey dq Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia dr Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, D-60325 Frankfurt, Germany ds School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia dt _ Dokuz Eylül University, Faculty of Education, Department of Biology, Buca, Izmir, Turkey du Staatliches Museum für Naturkunde Stuttgart, Zoologie, Rosenstein 1, D-70191 Stuttgart, Germany dv Laboratorio de Biogeografía, Escuela de Geografía, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes, Apartado Postal 116, Merida 5101-A, Venezuela dw University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA dx Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia dy Colorado State University, Fort Collins, CO 80523, USA dz Australian Freshwater Turtle Conservation & Research Association (AFTCRA Inc.), 53 Jubilee Road, Carters Ridge, Qld, Australia ea WWF – Hong Kong, Hong Kong Special Administrative Region eb Universidad Autonoma de Ciudad Juarez, Chihuahua, Mexico ec Zoo Atlanta, 800 Cherokee Avenue, SE Atlanta, GA 30315, USA ed Global Viral Forecasting Initiative, Cameroon ee Illinois Wesleyan University, Bloomington, IL 61702-2900, USA ef Environment and Resource Science Division, Department of Environment and Resource Management, Australia eg WildScreen, Ground Floor, The Rackhay, Queen Charlotte Street, Bristol BS1 4HJ, UK eh Department of Zoology, University of Cambridge CB2 3EJ, UK ei Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Villahermosa, Tabasco, Mexico ej Centre of Environmental Studies Demetra, via Olona 7, 00198 Roma, Italy ek University of California, Irvine, CA 92697, USA el ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia em Staatliche Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstr. 159, D-01109 Dresden, Germany en Natural History Museum of Crete, University of Crete, 71409 Irakleio, Greece eo Department of Biology, Merritt College, 12500 Campus Drive, Oakland, CA 94619, USA br bs M. Böhm et al. / Biological Conservation 157 (2013) 372–385 ep Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, CEP 69083-000, Manaus, Amazonas, Brazil Center for Population Biology, University of California at Davis, Davis, CA 95616, USA School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK es Museum of Natural History, Route de Malagnou 1, 1208 Geneva, Switzerland et School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, P.O. Wits 2050, South Africa eu Laboratório de Ecologia e Evolução, Instituto Butantan, Av. Vital Brazil 1500, São Paulo, SP 05503-900, Brazil ev Fonoteca Zoológica, Dept Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain ew BIOGES, University of Las Palmas, 35001 Las Palmas, Canary Islands, Spain ex Zoological Survey of India, North Eastern Regional Centre, Fruit Garden, Risa Colony, Shillong 793 003, Meghalaya, India ey Wildlife Trust for India (WTI), Species Recovery Program, India ez Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA fa Smithsonian Institution Research Associate, USA fb School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa fc Instituto Tecnológico de Huejutla, Carr. Huejutla-Chalahuiyapa, A.P. 94, Huejutla de Reyes, Hidalgo 43000, Mexico fd Museo Tridentino di Scienze Naturali, Via Calepina 14, 38122 Trento, Italy fe Ch. du Bosquet 6, 1967 Bramois, Switzerland ff CSIRO Marine and Atmospheric Research, P.O. Box 120, Cleveland, 4163 Qld, Australia fg Truman State University, Kirksville, MO 63501, USA fh Universidade Tuiuti do Paraná, Curitiba, Parana State, Brazil fi Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, Brazil fj El Colegio de la Frontera Sur, Chiapas, Mexico fk Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA fl Institute of Ecology and Biological Resources, 18 Hoang Quoc Viet St., Hanoi, Viet Nam fm Göteborg Natural History Museum, Box 7283, SE-402 35 Göteborg, Sweden fn Departamento de Zoologia, Universidade de Brasilia, ICC Ala Sul – Campus Darcy Ribeiro, Asa Norte, Brasilia-DF 70910-900, Brazil fo Museo Nacional de Historia Natural, Interior de la Quinta Normal, Santiago, Chile fp Institute of Natural and Environmental Sciences, University of Hyogo, Yayoigaoka 6, Sanda, Hyogo 669-1546, Japan fq Medio Ambiente, Salud & Seguridad Ocupacional, Aerodom SIGLO XXI, Dominican Republic fr Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3160, USA fs University of Tennessee, Knoxville, TN 37996, USA ft Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, São Cristovão, Rio de Janeiro, RJ 20940-040, Brazil fu Département des Vertébrés Récents, Institut Royal des Sciences naturelles de Belgique, Rue Vautier 29, 1000 Brussels, Belgium fv Universidad de Puerto Rico, Puerto Rico fw Facultad de Biología, Universidad de Salamanca, Salamanca, Spain fx Integrative Biology C0930, The University of Texas at Austin, One University Station, Austin, TX 78712-0253, USA fy Dep Animal Biology, Fac Sciences, Granada Univer, E-18071 Granada, Spain fz Bosque Tropical, A. C., Privada Marlin # 10, Fraccionamiento Roca Azul, Jocotepec 45800, Jalisco, Mexico ga Department of Biology, Avila University, Kansas City, MO 64145, USA gb Universidad Autónoma de Aguascalientes, C. P. 20131, Aguascalientes, Mexico gc School of Biological Sciences A08, University of Sydney, NSW 2006, Australia gd Indianapolis Zoo, Indianapolis, IN 46222, USA ge School of Conservation, The Royal Danish Academy of Fine Arts, Esplanaden 34, DK-1263 Copenhagen K, Denmark gf USGS Patuxent Wildlife Research Center, National Museum of Natural History, Washington, DC 20013-7012, USA gg Fauna & Flora International Philippines, c/o International Institute of Rural Reconstruction Y.C. James Yen Centre Silang, Cavite 4118, Philippines gh Via Maestra 81, I-28100 Novara, Italy gi Museo de Biologia, Facultad Experimental de Ciencias, La Universidad del Zulia, apartado postal 526, Maracaibo 4011, Estado Zulia, Venezuela gj Instituto de Biologia, Universidade Federal da Bahia, 40170-290 Salvador, Bahia, Brazil gk Museum für Naturkunde at the Humboldt University, Invalidenstr. 43, 10115 Berlin, Germany gl Institute of Ecology and Systematics, La Habana, Cuba gm Ohio Center for Ecology and Evolutionary Studies, Department of Biological Sciences, Ohio University, 107 Irvine Hall, Athens, OH 45701, USA gn IUCN SSC Crocodile Specialist Group, USA go Biology Department, American University of Beirut, Beirut, Lebanon gp School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, Australia gq Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (U.N.A.M.), Mexico gr Instituto y Nucleo Zoologico ARCO, E-04200 Tabernas, Spain gs Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland gt karch, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland gu Department of Herpetology & Ichthyology, Muséum d’histoire naturelle, 1 route de Malagnou, 1208 Geneve, Switzerland gv Department of Biology, Razi University, Kermanshah, Iran gw College of Life Science, Hainan Normal University, Haikou 571158, China gx Department of Health and Science, City College, Norwich NR2 2LJ, UK gy Ecology and Evolutionary Biology, University of California, Santa Barbara, CA 93106, USA gz Herpetological Society of the Philippines, Philippines ha The Biodiversity Consultancy, Cambridge, UK hb Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA-CONICET), CC 507, CP 5500 Mendoza, Argentina hc South African National Biodiversity Institute, Private Bag X7, Claremont 7735, Cape Town, South Africa hd Toledo Zoo, PO Box 140130, Toledo, OH 43614, USA he 354000 Sochi, ul. Moskovskaya 21, Russia hf Kaya Oy Sprock 18, Curaçao hg Depto. Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, CEP 20550-013 Rio de Janeiro, Brazil hh IUCN SSC Crocodile Specialist Group, Caracas, Venezuela hi Technical University of Braunschweig (Technische Universität Braunschweig), 38092 Braunschweig, Germany hj Palacký University Olomouc, 771 47 Olomouc, Czech Republic hk Filadelfia 853, 9300 Fernheim, Paraguay hl Society for Southeast Asian Herpetology, Im Sand 3, D-69115 Heidelberg, Germany hm DPPVN, Rače, Slovenia hn Institute of Life Sciences (EEB), The Hebrew University of Jerusalem, 91904 Jerusalem, Israel ho Museum für Tierkunde, Senckenberg Dresden, A. B. Meyer Building, Königsbrücker Landstrasse 159, 01109 Dresden, Germany hp Macquarie University, Sydney, NSW 2109, Australia eq er 375 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 376 hq Wild Horizons, Inc, Iucson, AZ 85703, USA Amphibian and Reptile Conservation, 655A Christchurch Road, Boscombe, Bournemouth, BH1 4AP Dorset, UK University of the West Indies, Mona, Jamaica ht Department of Biology, Queens University, Kingston, Ont., Canada K7L 3N6 hu College of Life Sciences, Nanjing Normal University, Nanjing, China hr hs a r t i c l e i n f o Article history: Received 17 February 2012 Received in revised form 15 June 2012 Accepted 13 July 2012 Keywords: IUCN Red List Extinction risk Threatened species Lizards Snakes Turtles Distribution maps a b s t r a c t Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of humaninduced habitat loss and harvesting, which are the predominant threats to reptiles. Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction Reptiles1 and their immediate diapsid ancestors have had a long and complex evolutionary history, having first appeared on the planet in the late Palaeozoic Era, more than 250 million years ago (based on molecular phylogeny estimates and early fossil records: e.g., Hedges and Poling, 1999; Reisz et al., 2011; van Tuinen and Hadly, 2004). High rates of cladogenesis in the Triassic and Jurassic periods (Vidal and Hedges, 2009) produced a diverse group of animals adapted to almost every temperate, tropical and desert environment, and to terrestrial, freshwater and marine habitats. Reptiles play important roles in natural systems, as predators, prey, grazers, seed dispersers and commensal species; they serve as bioindicators for environmental health, and their often specific microhabitat associations provide the ideal study system to illustrate the biological and evolutionary processes underlying speciation (Raxworthy et al., 2008; Read, 1998). Reptiles generally have narrower distributional ranges than other vertebrates such as birds and mammals (Anderson, 1984; Anderson and Marcus, 1992), making them more susceptible to threat processes; however, it should be noted that there is some marked variation in range size between different clades of reptiles, so that generalisations and comparisons may not hold true universally [e.g., range sizes of snakes are generally larger than those of lizards (Anderson and Marcus, 1992)]. This combination of often small range and narrow niche requirements makes reptiles susceptible to anthropogenic threat processes, and they are therefore a group of conservation concern. Regional assessments in Europe (Cox and Temple, 2009) and southern Africa (South Africa, Lesotho and Swaziland; Bates et al., in press) indicate that one-fifth and one-tenth of reptilian species respectively are threatened with extinction. It has also been proposed that reptilian declines are similar in taxonomic breadth, geographic scope and ⇑ Corresponding author. Tel.: +44 20 7449 6676. E-mail address: monika.bohm@ioz.ac.uk (M. Böhm). 1 Here considered to include the various taxa that belong to the non-avian and nonmammalian amniotes: Crocodylia, Testudines and Lepidosauria (snakes, lizards, amphisbaenians, tuataras). severity to those currently observed in amphibians (Gibbons et al., 2000), although this claim was not quantitatively assessed by the authors. Reptilian declines have been attributed to habitat loss and degradation, as well as unsustainable trade, invasive species, pollution, disease and climate change (Cox and Temple, 2009; Gibbons et al., 2000; Todd et al., 2010). A total of 9,084 species of reptiles have been described so far (Uetz, 2010), and new molecular evidence continues to unearth numerous cryptic species that had not previously been detected by morphological analyses (e.g., Adalsteinsson et al., 2009; Nagy et al., 2012; Oliver et al., 2009). Yet as a group, reptiles are currently poorly-represented on the IUCN Red List of Threatened Species, with only 35% of described species evaluated, and those that are evaluated were done so in a non-systematic manner (IUCN, 2011a). Although the Global Reptile Assessment (GRA) will in the long run address this bias, the current assessment process relies on regional workshops and the formation of IUCN SSC Specialist Groups for specific reptilian taxa, which introduces geographical as well as taxonomic bias into the analysis. Specifically, the Global Reptile Assessment has carried out comprehensive assessments for North America, Madagascar and New Caledonia, with complete endemiconly assessments having been carried out in the Philippines, Europe and selected island groups (Seychelles, Comoros and Socotra). As a result, there are still large geographical gaps which are only slowly being addressed, namely in Africa, Latin America, Asia and Australia. This limits our understanding of how threat processes affect reptiles, so that these taxa are often overlooked in conservation decisions, specifically because the geographical, taxonomic and threatened species bias still inherent in the current IUCN Red List for reptiles makes taking conservation decisions impractical. We present the results of the first assessment of extinction risk in a randomly selected, representative and global sample of 1500 reptiles, as a shortcut for deriving group patterns on which to base sound global conservation action. We produce the first global species- and threatened species-richness maps for reptiles. The results highlight key regions, taxa and anthropogenic threat processes which need to be urgently targeted to effectively conserve the world’s reptiles. M. Böhm et al. / Biological Conservation 157 (2013) 372–385 2. Methods 2.1. Sampled approach to Red Listing Following an approach set out in Baillie et al. (2008), we randomly selected 1500 species from a list of all described reptilian species (Uetz, 2010), using the sample function in R [sample (x, size); R Development Core Team, 2007]. A sample of 1500 species is sufficiently large to report on extinction risk and trends, and buffers against falsely detecting improvements in extinction risk (Baillie et al., 2008). Similarly, the representation of spatial patterns derived from a sample of 1500 species was found to be in broad agreement with spatial patterns derived from comprehensive assessments in both mammals and amphibians (Collen, unpublished data). Although the taxonomy of the full species list by Uetz (2010) does not necessarily follow the taxonomy used by all herpetologists, it is the only comprehensive reptile species list available for the purpose of this project. Nevertheless, taxonomic changes based on new research have been incorporated into the sampled species list throughout the project (e.g., the split of Colubridae into numerous families, as suggested by Zaher et al., 2009). It should be noted that the rapid rate at which new species are being described may have some bearing on the representativeness of our sample in the future. Overall, however, we believe that this sampled approach allows for analysis of extinction risk as well as the depiction of broad-scale spatial threat status and processes. A full list of species in the sample, and summaries by habitat system and biogeographical realm, are given in Tables S1 and S2 in the online supplementary material. Our sample closely reflected the contribution of each group towards total reptilian diversity, with the sample being made up of 58% lizards, 37% snakes, 3% turtles/tortoises, 2% amphisbaenians and <1% crocodiles (tuataras were not represented). Overall, 220 of the 1500 selected species had been previously assessed by IUCN, and these assessments were still up-to-date (i.e., they had been assessed since 2006); for the remaining 1280 species, new or updated assessments were produced through consultation with a global network of herpetologists and following the IUCN Red List Categories and Criteria (IUCN, 2001). Through a centralised editorial and reviewing process we ensured that the IUCN Red List Categories and Criteria were consistently applied between species and regions. A total of 124 species were re-assessed from previous assessments, and genuine changes (category changes showing a real increase or decrease in extinction risk) or non-genuine changes (changes in category which are due to new or better information becoming available, incorrect information used previously, taxonomic change affecting the species, or previously incorrect application of the IUCN Red List Criteria, rather than a true improvement or decline in Red List category) were noted. Extinction risk was assessed using the IUCN Red List Categories and Criteria (IUCN, 2001). The IUCN Red List Categories classify species’ extinction risk from Extinct (EX) and Extinct in the Wild (EW), via the threatened categories Critically Endangered (CR), Endangered (EN) and Vulnerable (VU) to Near Threatened (NT) and Least Concern (LC). A species is listed as Data Deficient (DD) if insufficient data are available to make a conservation assessment. The Red List categories are assigned objectively based on a number of criteria that indicate level of extinction risk, e.g., rate of population decline (Criterion A), population size (Criteria C and D), geographic range size and decline (Criterion B), or quantitative analyses (Criterion E) (IUCN, 2001; Mace et al., 2008). Given the nature of biological information available for reptiles, and the general lack of population data for this group, most of the threatened species in the sample were listed on the basis of restricted 377 geographic range under criteria B or D2 (see Appendix S3 in the online supplementary material for more information on the assessment process and the use of criteria). Threats were recorded for each species. These were coded following Salafsky et al. (2008) and broadly defined as: threats due to agriculture/aquaculture; biological resource use (e.g., hunting and harvesting of species; logging activities); urban development (residential and commercial); pollution; invasive or problematic species; energy production and mining (oil drilling and mining); natural system modifications (e.g., fire regimes, damming and channelling of waterways); climate change and severe weather; human intrusion and disturbance; transportation and service corridors (e.g., roads and shipping lanes); and geological events. All of the species assessments have been reviewed and accepted by the IUCN and are now published online (www.iucnredlist.org, IUCN, 2011a), with the exception of some turtle and crocodilian assessments which are still undergoing sign-off. 2.2. Species distributions and maps of threat processes Distributions were mapped in ArcGIS for 1497 species [three species lacked adequate distributional data: Anolis baccatus (DD), Dipsas maxillaris (DD), Typhlops filiformis (DD)], based on georeferencing of distribution maps published in the literature, conversion of point locations into ranges and expert feedback. Only extant ranges were included in the analysis (i.e., extinct, possibly extinct and uncertain parts of the range were omitted). We produced maps of global species richness, threatened species richness and Data Deficient species richness, by overlaying a hexagonal grid onto the aggregated species’ distribution. The grid is defined on an icosahedron, projected to the sphere using the inverse Icosahedral Snyder Equal Area (ISEA) projection, and takes account of the Earth’s spherical nature. We then summed the number of species occurring in each hexagonal grid cell (cell size was approximately 7770 km2) to obtain the species richness pattern of our sample. We also mapped the proportion of species classed as threatened (CR, EN and VU categories), Near Threatened and Data Deficient per grid cell. We mapped underlying threat processes for all 1497 mapped species as the number of threatened and Near Threatened species within each grid cell affected by the threat process in question. We expressed threat process prevalence using two approaches. Approach A used the number of species affected by a predominant threat and approach B the proportion of species affected by each predominant threat type out of the total number of species (all categories) present in each grid cell. Although coarse in resolution, as threat processes are unlikely to be equally distributed across a species’ range, these aggregations provide an impression of those locations where each threat is affecting a particularly large number of species. The two approaches to threat mapping are likely to emphasise different aspects of the pattern, with approach A more likely to be influenced by underlying species richness patterns, and approach B by threat patterns being observed across areas of low reptile numbers in our sample, where the presence of threat in one or a few species is going to result in a larger proportional value compared to species rich areas. It is also likely to be more easily affected by biases in our sample in areas of overall low reptile numbers. In terms of conservation action, approach A is likely to correspond most closely to prioritisation measures which maximise species richness through targeted conservation (similar to hotspot approaches, although in this case driven by underlying threat processes), while approach B gives a better indication of areas where a threat process is affecting a larger proportion of species (though most likely in areas of low species richness). 378 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 2.3. Summarising the extinction risk of the world’s reptiles We summarised extinction risk across all reptiles and subgroups (amphisbaenians, crocodiles, lizards, snakes, turtles/tortoises), and by biogeographical realm (see S3.3 in the online supplementary material for information on the geographical extent of biogeographical realms) and habitat system (terrestrial, freshwater, marine). We calculated proportions of threatened (Critically Endangered, Endangered and Vulnerable) species by assuming that Data Deficient species will fall into these categories in the same proportion as non-Data Deficient species: Propthreat ¼ ðCR þ EN þ VUÞ=ðN  DDÞ; where N is the total number of species in the sample, CR, EN and VU are the numbers of species in the Critically Endangered, Endangered and Vulnerable categories respectively, and DD is the number of species in the Data Deficient category. Threat levels have been reported in this way in similar studies (e.g., Clausnitzer et al., 2009; Hoffmann et al., 2010; Schipper et al., 2008), representing the current consensus among conservation biologists about how the proportion of threatened species should be presented, while also accounting for the uncertainty introduced by DD species. The approach is likely to result in a conservative estimate of threat proportions, since Data Deficient reptiles are often rare and restricted in range, thus likely to fall within a threatened category in future based on additional data [although in other taxa, indications are that DD species will often fall into Least Concern categories (e.g., birds; Butchart and Bird, 2010) or remain largely Data Deficient (e.g., mammals; Collen et al., 2011)]. Overall, the re-assessment of DD species into different categories is very taxon-specific and depends greatly on the attitude of the assessor to risk, so that it is difficult to make any generalisations about what the future status of DD species might be. To deal with this uncertainty we calculated upper and lower bounds of threat proportions by assuming that (a) no Data Deficient species were threatened [lower margin: Propthreat = (CR + EN + VU)/(N)], and (b) all Data Deficient species were threatened [upper margin; Propthreat = (CR + EN + VU + DD)/N]. 2.4. Taxonomic differences in extinction risk and the effect of range size We followed Bielby et al. (2006) to evaluate whether extinction risk is randomly distributed across taxonomic families [based on the taxonomy by Uetz (2010), but including some Australasian geckos in the Diplodactylidae (Han et al., 2004), see Table S1 for details], and tested for significant variation in threat levels across families using a chi-square test. The absence of a random distribution of risk suggests that biological or geographical drivers of risk exist, which can help focus conservation activity (Cardillo and Meijaard, 2011). Where we detected taxonomically non-random extinction risk, further analyses were employed to determine which families deviated from the expected level of threat. Using binomial tests, we calculated the smallest family size necessary to detect a significant deviation from the observed proportion of threatened species and excluded families represented by an insufficient number of species from subsequent analysis. We generated a null frequency distribution of the number of threatened species from 10,000 unconstrained randomizations, by randomly assigning Red List categories to all species, based on the frequency of occurrence of each category in the sample. We then counted the number of threatened species in the focal family and compared this with the null frequency distribution. The null hypothesis (extinction risk is taxonomically random) was rejected if this number fell in the 2.5% at either tail. Because reptiles are mostly listed as threatened under the range-size dependent criteria B and D2, we explored differences in range size between species groups (specifically between lizards and snakes) in order to assess whether increased threat status in the absence of population data could be potentially linked to taxa-specific patterns of range size. This is particularly of interest since it has previously been observed that snakes have larger range sizes (and hence extent of occurrences) than lizards (Anderson, 1984; Anderson and Marcus, 1992). All tests and randomizations were conducted in R version 2.11.1 (R Development Core Team, 2007). 3. Results 3.1. Global extinction risk of reptiles We classified more than half of reptilian species (59%) in the assessment as Least Concern, 5% as Near Threatened, 15% as threatened (Vulnerable, Endangered or Critically Endangered) and 21% as Data Deficient. Based on this, we estimated the true percentage of threatened reptiles in the world to be 19% (range: 15–36%), as described in Section 2.3. Using the same approach, another 7% of species are estimated as Near Threatened (range: 5–26%); these species are the most likely candidates to become threatened in the future if measures are not taken to eliminate anthropogenic processes which currently affect populations of these species. None of the species in our sample was classed as Extinct or Extinct in the Wild, although three lizard species in the Critically Endangered category were flagged as possibly extinct (Anolis roosevelti, Ameiva vittata and Stenocercus haenschi) and may be up-listed during future reassessments, once ‘‘exhaustive surveys in known and/or expected habitat, at appropriate times (diurnal, seasonal, annual), throughout its historic range have failed to record an individual’’ (IUCN, 2001). Of the 223 reptilian species classed as threatened, around half (47%) were assigned to the Vulnerable category; another 41% and 12% were assessed as Endangered and Critically Endangered, respectively. Threat estimates for terrestrial species mirrored that recorded for all reptiles (19% threatened), because the vast majority of reptiles inhabit terrestrial systems (N = 1473; Table 1). However, for reptiles associated with marine and freshwater environments, 30% were estimated to be threatened (N = 94; Table 1). Note that 68 species were dependent on both terrestrial and non-terrestrial environments. Of the 124 species reassessed during this project, 72 species did not change from the previously assigned category. Overall, 46 category changes were documented, only three of which were genuine changes showing an increase in extinction risk. All other changes (N = 43) were non-genuine changes. Six species had previously been listed on the IUCN Red List as Not Evaluated, but have now been assigned categories. 3.2. Global species richness and distribution of threatened and Data Deficient reptiles Overall species richness in our sample was highest in tropical regions, specifically in Central America and parts of northern South America (especially Brazil), tropical West Africa, parts of Southeast Africa, Sri Lanka and Southern India and throughout Southeast Asia, from Eastern India to Indonesia and the Philippines (Fig. 1). The tropics also harboured the highest proportions of threatened and Data Deficient species in the sample. Data deficiency was highest in the Indomalayan realm (33%), followed by the Neotropics (20%) and Afrotropics (18%; Table 1). A high percentage of Data Deficient species will give rise to wide margins of uncertainty on any estimates of the percentage of threatened species (see upper and lower margins in Table 1). Oceania had the highest proportion of threatened species (43%; Table 1), although this was based on very low species richness in our sample (N = 7), while M. Böhm et al. / Biological Conservation 157 (2013) 372–385 379 Table 1 Extinction risk in a subsample of 1500 reptiles by order, biogeographic realm and habitat system. The number of species falling into each IUCN Category are listed, from which % threatened has been calculated as described in Section 2.3. Taxon DD LC NT VU EN CR N No. of species % Threatened Described % Sampled Threatened % Lower Upper 9413 181 24 5537 3346 323 15.9 15.5 16.7 15.7 16.6 14.2 18.9 7.1 75 21.2 11.7 51.2 14.9 3.6 75 17.2 8.8 45.7 36.1 53.6 75 36.1 33.2 56.5 Reptiles Amphisbaenia Crocodylia Sauria Serpentes Testudines 318 14 0 164 135 5 881 11 1 506 352 11 78 2 0 48 19 9 105 0 2 72 24 7 92 1 0 63 20 8 26 0 1 14 5 6 1500 28 4 867 555 46 Realm Afrotropical Australasian Indomalayan Nearctic Neotropical Oceanian Palaearctic 53 32 105 2 107 0 25 161 149 167 72 309 4 105 15 9 13 7 27 0 8 33 10 15 7 38 0 6 22 14 10 3 35 2 8 5 5 5 3 11 1 2 289 219 315 94 527 7 154 25.4 15.5 14.3 14.1 20.0 42.9 12.4 20.8 13.2 9.5 13.8 15.9 42.9 10.4 39.1 27.9 42.9 16.0 36.2 42.9 26.6 Habitat system Terrestrial Freshwater and marine Subsurface 313 16 50 861 44 46 78 11 5 105 9 1 91 8 5 25 6 0 1473 94 107 19.1 29.5 10.5 15.0 24.5 5.6 36.3 41.5 57.0 DD – Data Deficient; LC – Least Concern; NT – Near Threatened; VU – Vulnerable; EN – Endangered; CR – Critically Endangered. Percentage threatened: assumes DD species are threatened in the same proportion as non-DD species; Lower margin: no DD species threatened; Upper margin: all DD species threatened. Number of described species is based on Uetz (2010). Rhynchocephalia (Tuatara) was not represented in our random sample. Subsurface includes completely or primarily fossorial families: Amphisbaenidae, Anomalepidae, Dibamidae, Leptotyphlopidae, Trogonophidae, Typhlopidae, Uropeltidae, Xenopeltidae. Fig. 1. Global species richness distribution of the sampled reptile assessment (Nterr/fw = 1485; Nmarine = 22), showing number of species and proportion of species in sample per grid cell. Terr/fw – terrestrial and freshwater species. 25% and 20% of species were estimated as threatened in the Afrotropical and Neotropical realms, respectively (Table 1). The lowest level of extinction risk was recorded in the Palaearctic, where 12% of species were estimated as threatened (Table 1). Localised centres of threatened species richness were particularly apparent in the Caribbean (Hispaniola), Florida and the Florida panhandle, the Ecuadorian Andes, Madagascar, the northeastern Indian subcontinent, Central Asia, Eastern China and oceanic islands such as New Caledonia (Fig. 2A). Prevalence of Near Threatened species was particularly pronounced across Europe, central North America, Central and West Africa, Central China and the South Island of New Zealand (Fig. 2B). Data deficiency was particularly pronounced in tropical regions, specifically in parts of the Indomalayan realm (e.g., throughout India, Borneo and the Philippines) and Central Africa (Fig. 2C). Some apparently low-diversity areas (for species richness, as well as threatened species richness) are likely explained by the lack of research in particularly inaccessible areas (e.g., the Congo basin; Fig. 2C) and isolated island groups. It is likely that both relative spe- cies richness and data deficiency is higher in these areas than is currently apparent. Furthermore, in some localised areas, the fact that all our analysis was based on a random sample may have led to a slight underestimate of species richness, threatened species richness or Data Deficient species richness. Additional maps of species richness are available in the online supplementary material (S4). 3.3. Global distribution of threat processes Over 80% of all threatened species in our sample were affected by more than one threat process. Agriculture and biological resource use (predominantly logging and harvesting) present the most common threats to terrestrial reptiles (74% and 64% of threatened species affected, respectively). Urban development (34%), natural system modification (by use of fire, damming, etc., 25%) and invasive or problematic native species (22%) also played a role in threat to terrestrial species. Biological resource use was also the most significant threat to freshwater and marine reptiles (87% of threatened species), with 380 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 Fig. 2. Distribution of threatened (CR, EN, VU), Near Threatened (NT) and Data Deficient (DD) species in the sample (terrestrial and freshwater only), expressed as the proportion of all species present per grid cell: (A) proportion of species classed as threatened, adjusted to account for DD species as described in Section 2.3; (B) proportion of species classed as Near Threatened, adjusted to account for DD species as described in Section 2.3; and (C) proportion of species classed as Data Deficient per grid cell. most of this threat stemming from targeted harvesting of species. This reflects the large percentage of turtles in the threatened freshwater and marine sample and their role in human trade activities. Agriculture and aquaculture, urban development and pollution (all affecting 43% of threatened species) were also significant threats to non-terrestrial reptiles. Species richness of terrestrial and freshwater species affected by habitat loss was particularly high in tropical regions, especially in the Indomalayan realm (mainland southeast Asia, Sri Lanka, Indonesia, the Philippines and Borneo), but also in Central America (specifically Panama and Costa Rica) and northern South America (especially Brazil) (Fig. 3A). Harvesting was highlighted as a major threat in the Indomalayan realm, specifically in southeastern Asia, Java and eastern parts of the Indian sub-continent (Fig. 3B). Both of these patterns were largely reflecting underlying species distribution and richness patterns shown in Fig. 1. Controlling for species richness per grid cell, habitat loss remained an important factor in parts of Sri Lanka and north-western South America, and additionally in Madagascar, with high risk also in some areas of lower reptilian species richness, namely across central USA, the Caribbean, southwestern Europe (particularly Spain), localised areas of North and East Africa, China, northeastern Australia and the South Island of New Zealand (Fig. 3C). Similarly, the picture of risk through harvesting changed to similar areas of lower richness by controlling for species richness per grid cell, with large parts of Europe and Central Asia particularly highlighted (Fig. 3D). In addition to habitat loss and harvesting, invasive species appear to increase extinction risk on islands, but relatively low frequencies of this threat in our sample mask any pattern at the global scale. However, invasive species pose the main threat in New Caledonia, Oceania, New Zealand, southern Australia and on Caribbean islands. M. Böhm et al. / Biological Conservation 157 (2013) 372–385 381 Fig. 3. Global distribution of species affected by the two major threats to terrestrial and freshwater reptiles: (A) number of species affected by habitat loss from agriculture and logging and (B) number of species affected by harvesting. Controlling for species richness per grid cell, we expressed the number of species in elevated threat categories (CR, EN, VU, NT) affected by the threat in question as the proportion of the total species richness (all categories) per grid cell for (C) habitat loss from agriculture and logging and (D) harvesting. 3.4. Taxonomic differences in extinction risk The percentage of threatened species varied greatly among higher-level taxa, driven by the relatively higher levels of threat to species associated with freshwater and marine habitats compared with terrestrial ones (Table 1), as well as taxa-specific patterns of range size. Three of the four crocodilian species and 52% of freshwater turtles were estimated to be threatened (N = 37, margins: 46–57%). As a whole, Testudines (N = 46; comprising 37 freshwater species, one marine species and eight terrestrial species) were equally spread among Red List categories, with 51% of species estimated as threatened and another 22% assessed as Near Threatened (Table 1). In contrast, only 21% of lizards, 12% of snakes and 7% of worm lizards were threatened. The lower percentages of threatened species in these groups were paralleled by a lower percentage of species in the Near Threatened category for all three groups (lizards: 7%; snakes: 5%; worm lizards: 14%), compared with Testudines. Proportions of threatened worm lizards were affected by high levels of data deficiency in this group (50% versus 11% in the Testudines, 19% in lizards and 24% in snakes; Table 1). Similarly, our sample contained large numbers of Data Deficient species in snake families that are exclusively, or largely, fossorial or semi-fossorial, such as Typhlopidae [24 out of 49 species (49%) were Data Deficient], Leptotyphlopidae [4 out of 10 (40%)] and Uropeltidae [5 out of 13 (38%)]. Overall, of the exclusively or primarily fossorial families, 47% of species were classed as Data 382 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 Deficient. As a result, the estimated percentage of threatened fossorial species is relatively low at 11%, but this is associated with a wide margin of uncertainty (range: 6–57%). Criterion B was applied to 72% of species assessed as threatened, with another 12% of species being listed under criterion D2. As such, the majority of threatened listings were based on criteria of restricted range rather than population data (only 12% of species, mainly turtles and crocodiles, were listed under criterion A). As a result, range size differences between taxa may at least in part explain differences in perceived extinction risk. Range sizes were significantly larger for snakes compared to lizards (for terrestrial species only: Kruskal–Wallis v2 = 44.8, d.f. = 1, p < 0.001). Median range size was 24,510 km2 for lizards and 110,175 km2 for snakes (additional information is available in Section S5 of the online supplementary material). To establish whether a particular taxonomic family was at greater risk of extinction than expected by chance (p < 0.025) required a minimum of three non-Data Deficient species in our sample from that family, given a background proportion of 223 threatened species from 1182 species assessed in non-Data Deficient categories. As a result, 18 families were excluded from the analysis (Table 2). Each family required a minimum number of 18 species in our sample to establish whether a family was less threatened than expected by chance (p < 0.025). Threat was not evenly distributed across families (v2 = 141.73, d.f. = 44, p < 0.001), with 34 of the 45 families more threatened than expected by chance and only one (Colubridae) less threatened than expected by chance (Table 2). Of the nine families which showed non-significant differences between observed and expected proportions of threatened species, six were snakes, two were lizards and one was turtles (Table 2). Overall, the most threatened families were the Geoemydidae (turtles, 88% threatened, N = 8), Crocodylidae (crocodiles, 75%, N = 4), Pygopodidae (lizards, 75%, N = 4), Xantusiidae (lizards, 75%, N = 4), Chelidae (turtles, 50%, N = 11) and Iguanidae (lizards, 50%, N = 4) (Table 2). 4. Discussion 4.1. Extinction risk of the world’s reptiles This analysis starts to close the knowledge gap between the extinction risk of reptiles and other better-studied vertebrate groups. By establishing a shortcut using a representative sample of 1500 species, we gain for the first time an overview of the global distribution of reptilian diversity and threat, consequently highlighting important areas for conservation attention and gaps in knowledge. Our results support recent reports of high levels of threat in freshwater habitats (e.g., freshwater crabs; Cumberlidge et al., 2009). In particular, freshwater turtles were highly threatened (46–57%), thus mirroring the alarming trends reported elsewhere (Buhlmann et al., 2009). Some authors have argued that reptiles are undergoing similar declines to those experienced by amphibians, in terms of taxonomic breadth, geographic scope and severity (Gibbons et al., 2000). On a global scale, our assessment shows that threat levels are more severe in amphibians (42% of amphibians are threatened, assuming Data Deficient species are threatened in the same proportion as non-Data Deficient species) relative to reptiles (20%). Overall, threat levels in reptiles are slightly lower than those observed in other taxa such as mammals and freshwater fish (both 25% threatened; Collen, B., unpublished data; Hoffmann et al., 2010), but higher than in birds (13%; IUCN, 2011a). Estimates of 5% for Near Threatened species were similar to those observed in other vertebrate species groups, such as mammals, amphibians (6% each) and freshwater fishes (4%). Recently reported local declines in snake and lizard populations (Cagle, 2008; Reading et al., 2010; Sinervo et al., 2010) suggest localised elevated extinction risks for both taxa. While we estimate that about one in five lizard species is threatened with extinction, only 12% of snakes were estimated to be threatened with extinction. One barrier to listing, which could be partly responsible for the discrepancy between our analysis and those of snake population trends, is that in the majority of cases there are sufficient data on species distributions only, rather than population trends, at a global scale. Therefore the majority of reptilian species were listed under criteria B and D2 (restricted range). The differences in extinction risk between snakes and lizards may therefore be partly explained by the fact that snakes in our sample (and in previous studies, e.g., Anderson and Marcus, 1992) had larger ranges than lizards. Local population declines such as those reported by Sinervo et al. (2010) are evaluated with finer scale population data than those used to evaluate extinction risk, so could serve as a warning sign of what is to come. In order to understand more fully what is happening to the world’s snakes, it is vital that we obtain better global population data for this species group. Based on range size estimation alone, we may be missing ongoing declines which are occurring at sub-threshold levels and thus underestimating extinction risk to this particular species group. Furthermore, snakes are morphologically more conservative and harder to sample (fewer specimens are generally available compared to lizards) which, compared to lizards, makes it harder to detect cryptic species. Thus, larger ranges for some snake species may be masking the range of one or more cryptic species. 4.2. Data deficiency: addressing the knowledge gap High proportions of data deficiency can significantly hinder our understanding of threat, yet such uncertainty is apparent in many species groups that have been assessed to date. Levels of data deficiency in reptiles (21%) were lower than those reported for amphibians (25%; IUCN, 2011a), dragonflies and damselflies (35%; Clausnitzer et al., 2009) and freshwater crabs (49%; Cumberlidge et al., 2009), but still exceeded those of the more charismatic or conspicuous birds and mammals (less than 1% and 15% respectively; BirdLife International, 2008b; Schipper et al., 2008). Patterns of regional or taxonomical data deficiency could be used to prompt research programmes on specific local faunas or taxonomical groups. For example, data deficiency in reptiles was highest in tropical regions and in exclusively fossorial or semifossorial reptiles such as the Amphisbaenia. Similar patterns have been observed in amphibians, where approximately two-thirds of caecilians were classified as Data Deficient (Gower et al., 2005), despite estimates that fossorial species potentially comprise around 20% of the world’s herpetofauna (Measey, 2006). It is clear that research attention should focus specifically on fossorial and other elusive taxa (e.g., arboreal species) in order to reduce rates of data deficiency during the course of future re-assessments of the sample. 4.3. Conservation prioritisation: lessons from the world’s reptiles Conservation priorities often focus on regions of high biodiversity value and/or high threat to effectively target conservation funds (Brooks et al., 2006). The assessment of biodiversity value often relies on the distribution patterns of certain indicator taxa (e.g., birds), and the effectiveness of the resulting prioritisation mechanism greatly depends on the degree to which such distribution patterns are congruent with those of other taxa. However, cross-taxon congruence varies with given metrics of biodiversity M. Böhm et al. / Biological Conservation 157 (2013) 372–385 383 Table 2 Threat distribution across families included in our random sample of 1500 species: ns, not significant;  significantly under threatened; + significantly over threatened. Family Proportion observed Proportion expected Total species (nonDD) >Expected threat level pvalue <Expected threat level pvalue Under or over threatened Agamidae Amphisbaenidae Anguidae Atractaspidae Boidae Calamariidae Carphodactylidae Chamaeleonidae Chelidae Colubridae Cordylidae Crocodylidae Crotaphytidae Diplodactylidae Dipsadidae Elapidae Emydidae Gekkonidae Geoemydidae Gerrhosauridae Gymnophthalmidae Homalopsidae Iguanidae Lacertidae Lamprophiidae Leptotyphlopidae Natricidae Pelomedusidae Phrynosomatidae Phyllodactylidae Polychrotidae Psammophiidae Pseudoxenodontidae Pygopodidae Scincidae Sphaerodactylidae Teiidae Testudinidae Trionychidae Tropiduridae Typhlopidae Uropeltidae Varanidae Viperidae Xantusiidae 0.05 0.07 0.29 0.00 0.15 0.18 0.17 0.43 0.50 0.04 0.44 0.75 0.33 0.23 0.10 0.15 0.33 0.12 0.88 0.17 0.39 0.17 0.50 0.16 0.27 0.00 0.04 0.00 0.17 0.08 0.31 0.00 0.00 0.75 0.22 0.22 0.22 0.43 0.33 0.13 0.20 0.00 0.00 0.19 0.75 0.05 0.01 0.01 0.00 0.01 0.01 0.00 0.03 0.01 0.07 0.01 0.00 0.00 0.01 0.08 0.05 0.00 0.08 0.01 0.00 0.03 0.00 0.00 0.03 0.03 0.00 0.02 0.00 0.03 0.01 0.05 0.00 0.00 0.00 0.14 0.03 0.01 0.00 0.00 0.04 0.02 0.00 0.01 0.04 0.00 61 14 17 6 13 11 6 35 10 78 9 4 3 13 98 55 6 91 8 6 31 6 4 37 30 6 26 4 30 13 61 4 3 4 167 32 18 7 3 45 25 8 10 42 4 0.635 <0.001 <0.001 0.714 <0.001 <0.001 <0.001 <0.001 <0.001 0.98 <0.001 <0.001 <0.001 <0.001 0.147 <0.001 <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.72 0.049 0.566 <0.001 <0.001 <0.001 0.596 0.468 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.832 0.875 <0.001 <0.001 0.365 1 1 0.286 1 1 1 1 1 0.02 1 1 1 1 0.853 1 1 0.999 1 1 1 1 1 1 1 0.28 0.951 0.434 1 1 1 0.404 0.532 1 1 1 1 1 1 1 1 0.168 0.125 1 1 ns + + ns + + + + +  + + + + ns + + + + + + + + + + ns + ns + + + ns ns + + + + + + + + ns ns + + (Grenyer et al., 2006). While reptilian species richness broadly mirrored species richness patterns observed in mammals, amphibians and birds (BirdLife International, 2008a; Schipper et al., 2008; Stuart et al., 2004), additional areas rich in reptiles (e.g., around the Gulf of Guinea and southern Africa) or threatened reptiles (e.g., islands such as Hispaniola, Sri Lanka, New Caledonia) were highlighted in our assessment and may be overlooked if conservation priorities are set based on patterns in a small number of nonreptilian taxa alone. This has also recently been demonstrated for Australian lizards (Powney et al., 2010). Thus far, both amphibians and reptiles have been greatly overlooked in reserve selection strategies based on coarse-scale biodiversity surrogate measures (Araújo et al., 2001). Our results provide the opportunity for a more representative view of biodiversity to be compiled in order to benefit multiple taxa. Assessing the global distribution of threat processes, both current and projected, has the potential to provide another powerful tool for conservation prioritization. While for some taxa, the distribution of predominant threats significantly overlaps areas of high species richness (e.g., amphibians, Hof et al., 2011), other studies have shown incongruence between threat distribution and endemic or threatened species richness (e.g., Grenyer et al., 2006; Lee and Jetz, 2008; Orme et al., 2005); however, the latter has traditionally been favoured as a selection tool for conservation priority areas. Similarly, distributions of different threat types may not always spatially overlap (Hof et al., 2011), so that effective mitigation strategies have to be developed in a spatially explicit context in order to reduce extinction risk of species. Reptiles in general are particularly sensitive to habitat degradation because of their comparatively low dispersal ability, morphological specialisation on substrate type, relatively small home ranges and thermoregulatory constraints (Kearney et al., 2009). Clearly, the distribution and severity of threat processes, such as habitat loss from agricultural conversion, logging and over-exploitation, will shape the future fortune of reptiles. Identifying centres of threat, and tackling the origins and effects of anthropogenic threats in these regions through targeted projects (particularly in areas affected by multiple threat processes such as Southeast Asia) will allow more proactive action to be taken to secure the future of reptiles. At the moment the spatial resolution of our species-specific maps of threat processes is still somewhat coarse and allows only the depiction of broad patterns in threat distribution, but future 384 M. Böhm et al. / Biological Conservation 157 (2013) 372–385 developments and refinements of the method are likely to provide a powerful tool with which to focus threat-specific mitigation projects. 4.4. Reptile conservation: the next steps This study provides a first step in assessing the global extinction risk of reptiles by employing a short-cut method based on a representative sample of 1500 species. While this assessment feeds into broader scale assessments of biodiversity as a whole, as part of the Sampled Red List Index project (Baillie et al., 2008), it is also important to feed this information into similar regional assessments, since concrete policy decisions are generally being taken at subglobal levels. Specifically, it is important that the data presented here is used to assess how existing and planned protected areas are benefitting the world’s reptiles. This will allow us to identify species which at present fall outside protected areas and are most in need of conservation actions, and address the fact that the world’s herpetofauna is still often overlooked when conservation decisions are taken. The Global Reptile Assessment (GRA) is currently carrying out assessments via regional workshops, which bring together species experts to discuss extinction risk and conservation priorities. For example, the recent assessment of Madagascan snakes and lizards has helped in evaluating the effectiveness of protected areas for reptiles, with new conservation areas being designated across the island aiming to provide protection to some of the most threatened species (IUCN, 2011b). While the extensive expert network established during this project is undoubtedly going to feed into global and regional assessment projects, regional data gaps are apparent. It is vital that these are addressed in order to complete our picture of the distribution and extinction risk patterns of reptiles, so that conservation actions can be targeted at regions and areas most in need. Specifically, surveys are needed for key areas (e.g., areas rich in Data Deficient reptiles) and species (e.g., possibly extinct and Data Deficient species; establishing snake population time series to complement distribution data) in order to fill knowledge gaps and to build regional survey capacity via collaborations and targeted capacity building projects. While we have established a snapshot of the current status of reptiles worldwide, it is now vital to establish trends in this status in order to gauge the rate of change in reptilian extinction risk over time. The next step is to establish a baseline for reptilian extinction risk against which we can compare current status as well as future re-assessments of the sample. This information is vital in order to assess our progress toward global biodiversity targets, such as the Aichi targets and the Millennium Development Goals, and fuel efforts to address the conservation needs of reptiles. Acknowledgements MB and MR were funded by a grant from the Esmée Fairbairn Foundation, BC by the Rufford Foundation. North American and Mexican species assessments were funded by the Regina Bauer Frankenberg Foundation for Animal Welfare. Species assessments under the Global Reptile Assessment (GRA) initiative are supported by: Moore Family Foundation, Gordon and Betty Moore Foundation, Conservation International, Critical Ecosystem Partnership Fund (CEPF), and European Commission. Additional acknowledgements are included in the online supplementary material. The assessment workshop for Mexican reptiles was kindly hosted by Ricardo Ayala and the station personnel of the Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autonoma de Mexico. Workshop and logistical organisation of the Philippines assessments was provided by the Conservation International Philippines Office, in particular Ruth Grace Rosell- Ambal, Melizar V. Duya and Oliver Coroza. Workshop and logistical organisation for the European Reptile and Amphibian Assessments was provided by Doğa Derneği, in particular Özge Balkiz and Özgür Koç. Workshop and logistical organisation for assessments of sea snakes and homalopsids was provided by the International Sea Turtle Symposium and Dr. Colin Limpus (Australian Government Environmental Protection Agency). Special thanks to Jenny Chapman (EPA) and Chloe Schauble (ISTS). Thank you also to Dr. Gordon Guymer (Chief Botanist – Director of Herbarium) for accommodating us at the Herbarium in the Brisbane Botanical Gardens, and Mark Read and Kirsten Dobbs (Great Barrier Reef Marine Parks Association) and Dave Pollard and Brad Warren (OceanWatch Australia) for institutional support. Mohamed Bin Zayed Species Conservation Fund, Conservation International Madagascar and the Darwin Initiative contributed to funding the costs of the Madagascar reptile workshop. We would also particularly like to thank all our assessors and the following people who helped with the compilation and finalisation of SRLI Red List assessments and distribution maps: Jennifer Sears, Gary Powney, Paul Lintott, Sarah Lewis, Penny Wilson, Maiko Lutz, Felix Whitton, Ranmali de Silva and Harriet Milligan. For facilitating working groups at GRA and other workshops: Melanie Bilz, Thomas Brooks, Oliver Coroza, Naamal De Silva, Melizar V. Duya, Michael Jensen, Jason Van de Merwe, Kate Hodges, Matthew Foster, Penny Langhammer, Seema Mundoli, Ana Nieto, Lily Paniagua, Ruth Grace Rosell-Ambal, Jan Schipper and Sarah Wyatt. Shai Meiri, Lital Dabool, Anat Feldman, Yuval Itescu, Amy Kadison, Erez Maze, Maria Novosolov, Lian Pin Koh and other anonymous reviewers commented on and helped to greatly improve an earlier version of this manuscript. Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.biocon.2012. 07.015. References Adalsteinsson, S.A., Branch, W.R., Trape, S., Vitt, L.J., Hedges, S.B., 2009. Molecular phylogeny, classification, and biogeography of snakes of the Family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 2244, 1–50. Anderson, S., 1984. Aerography of North American fishes, amphibians, and reptiles. American Museum Novitates 2802, 1–6. Anderson, S., Marcus, L.F., 1992. Aerography of Australian Tetrapods. Australian Journal of Zoology 40, 627-651. Araújo, M.B., Humphries, C.J., Densham, P.J., Lampinen, R., Hagemeijer, W.J.M., Mitchell-Jones, A.J., Gasc, J.P., 2001. Would environmental diversity be a good surrogate for species diversitys. Ecography 24, 103–110. Baillie, J.E.M., Collen, B., Amin, R., Akcakaya, H.R., Butchart, S.H.M., Brummitt, N., Meagher, T.R., Ram, M., Hilton-Taylor, C., Mace, G.M., 2008. Towards monitoring global biodiversity. Conservation Letters 1, 18–26. Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J., de Villiers, M.S. (Eds.), in press. Atlas and Red List of the reptiles of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, South Africa. Bielby, J., Cunningham, A.A., Purvis, A., 2006. Taxonomic selectivity in amphibians: ignorance, geography or biology? Animal Conservation 9, 135–143. BirdLife International, 2008a. State of the world’s birds: indicators for our changing world. BirdLife International, Cambridge, UK. BirdLife International, 2008b. State of the world’s birds: indicators for our changing world. BirdLife International, Cambridge, UK. Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D., Rodrigues, A.S.L., 2006. Global biodiversity conservation priorities. Science 313, 58–61. Buhlmann, K.A., Akre, T.S.B., Iverson, J.B., Karapatakis, D., Mittermeier, R.A., Georges, A., Rhodin, A.G.J., van Dijk, P.P., Gibbons, J.W., 2009. A global analysis of tortoise and freshwater turtle distributions with identification of regional priority conservation areas. Chelonian Conservation and Biology 8, 116–149. Butchart, S.H.M., Bird, J.P., 2010. Data Deficient birds on the IUCN Red List: what don’t we know and why does it matter? Biological Conservation 143, 239–247. Cagle, N.L., 2008. Snake species distributions and temperate grasslands: a case study from the American tallgrass prairie. Biological Conservation 141, 744– 755. M. Böhm et al. / Biological Conservation 157 (2013) 372–385 Cardillo, M., Meijaard, E., 2011. Are comparative studies of extinction risk useful for conservation? Trends in Ecology & Evolution 27, 167–171. Clausnitzer, V., Kalkman, V.J., Ram, M., Collen, B., Baillie, J.E.M., Bedjanic, M., Darwall, W.R.T., Dijkstra, K.-D.B., Dow, R., Hawking, J., Karube, H., Malikova, E., Paulson, D., Schütte, K., Suhling, F., Villanueva, R., von Ellenrieder, N., Wilson, K., 2009. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biological Conservation 142, 1864–1869. Collen, B., Turvey, S.T., Waterman, C., Meredith, H.M.R., Kuhn, T.S., Baillie, J.E.M., Isaac, N.J.B., 2011. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philosophical Transactions of the Royal Society of London B 366, 2611–2622. Cox, N.A., Temple, H.J., 2009. European Red List of Reptiles. Office for Official Publications of the European Communities, Luxembourg. Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhães, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.-L., Darwall, W., McIvor, A., Baillie, J.E.M., Collen, B., Ram, M., 2009. Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservation 142, 1665–1673. Gibbons, J.W., Scott, D.E., Ryan, T.J., Buhlmann, T.D., Metts, B.S., Greene, J.L., Mills, T., Leiden, Y., Poppy, S., Winne, C.T., 2000. The global decline of reptiles, déjà vu amphibians. BioScience 50, 653–666. Gower, D.J., Stuart, S.N., Bhatta, G., Cox, N., Gerlach, J., Loader, S.P., Long, J., Lynch, J.D., Measey, G.J., Nussbaum, R.A., Oommen, O.V., Manamendra-Arachchi, K., Ravichandran, M.S., Wilkinson, M., Young, B.E., 2005. Caecilians and the 2004 global amphibian assessment. Conservation Biology 19, 54–55. Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L., Owens, I.P.F., 2006. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96. Han, D., Zhou, K., Bauer, A.M., 2004. Phylogenetic relationships among gekkotan lizards inferred from Cmos nuclear DNA sequences and a new classification of the Gekkota. Biological Journal of the Linnean Society 83, 353–368. Hedges, S.B., Poling, L.L., 1999. A molecular phylogeny of reptiles. Science 283, 998– 1001. Hof, C., Araújo, M.B., Jetz, W., Rahbek, C., 2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516– 519. Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T.M., Butchart, S.H.M., Carpenter, K.E., Chanson, J., Collen, B., Cox, N.A., Darwall, W.R.T., Dulvy, N.K., Harrison, L.R., Katariya, V., Pollock, C.M., Quader, S., Richman, N.I., Rodrigues, A.S.L., Tognelli, M.F., Vié, J.-C., et al., 2010. The impact and shortfall of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. IUCN, 2001. IUCN Red List Categories and Criteria: Version 3.1. IUCN, Gland, Switzerland. IUCN, 2011a. The IUCN Red List of Threatened Species 2011.2. IUCN, 2011b. News release (10/11/2011): another leap towards the barometer of life. IUCN, Gland, Switzerland. <http://www.iucnredlist.org/news/another-leaptowards-the-barometer-of-life>. Kearney, M., Shine, R., Porter, W.P., 2009. The potential for behavioral thermoregulation to buffer ‘‘cold-blooded’’ animals against climate warming. Proceedings of the National Academy of Sciences USA 106, 3835–3840. Lee, T.M., Jetz, W., 2008. Future battlegrounds for conservation under global change. Proceedings of the Royal Society B – Biological Sciences 275, 1261–1270. Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akcakaya, H.R., LeaderWilliams, N., Milner-Gulland, E.J., Stuart, S.N., 2008. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology 22, 1424–1442. Measey, G.J., 2006. Surveying biodiversity of soil herpetofauna: towards a standard quantitative methodology. European Journal of Soil Biology 42, S103–S110. 385 Nagy, Z.T., Sonet, G., Glaw, F., Vences, M., 2012. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLos One 7, e34506. Oliver, P.M., Adams, M., Lee, M.S.Y., Hutchinson, M.N., Doughty, P., 2009. Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proceedings of the Royal Society B – Biological Sciences 276, 2001–2007. Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., Webster, A.J., Ding, T.S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Owens, I.P.F., 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. Powney, G.D., Grenyer, R., Orme, C.D.L., Owens, I.P.F., Meiri, S., 2010. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19, 386–396. R Development Core Team, 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Raxworthy, C.J., Pearson, R.G., Zimkus, B.M., Reddy, S., Deo, A.J., Nussbaum, R.A., Ingram, C.M., 2008. Continental speciation in the tropics: contrasting biogeographic patterns of divergence in the Uroplatus leaf-tailed gecko radiation of Madagascar. Journal of Zoology 275, 423–440. Read, J.L., 1998. Are geckos useful bioindicators of air pollution? Oecologia 114, 180–187. Reading, C.J., Luiselli, L.M., Akani, G.C., Bonnet, X., Amori, G., Ballouard, J.M., Filippi, E., Naulleau, G., Pearson, D., Rugiero, L., 2010. Are snake populations in widespread decline? Biology Letters 6, 777–780. Reisz, R.R., Modesto, S.P., Scott, D.M., 2011. A new early permian reptile and its significance in early diapsid evolution. Proceedings of the Royal Society BBiological Sciences 278, 3731–3737. Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O’Connor, S., Wilkie, D., 2008. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology 22, 897–911. Schipper, J., Chanson, J.S., Chiozza, F., Cox, N.A., Hoffmann, M., Katariya, V., Lamoreux, J., Rodrigues, A.S.L., Stuart, S.N., Temple, H.J., Baillie, J., Boitani, L., Lacher, T.E., Mittermeier, R.A., Smith, A.T., Absolon, D., Aguiar, J.M., Amori, G., Bakkour, N., Baldi, R., et al., 2008. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230. Sinervo, B., Méndez-de-la-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., VillagránSanta Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M.L., Meza-Lázaro, R.N., Gadsden, H., Avila, L.J., Morando, M., De la Riva, I.J., Sepulveda, P.V., Duarte Rocha, C.F., Ibargüengoytía, N., Aguilar Puntriano, C., Massot, M., Lepetz, V., et al., 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L., Waller, R.W., 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786. Todd, B.D., Willson, J.D., Gibbon, J.W., 2010. The global status of reptiles and causes of their decline. In: Sparling, D.W., Linder, G., Bishop, C.A., Krest, S. (Eds.), Ecotoxicology of Amphibians and Reptiles, second ed. CRC Press, Boca Raton, USA. Uetz, P., 2010. The original descriptions of reptiles. Zootaxa 2334, 59–68. van Tuinen, M., Hadly, E.A., 2004. Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks. Journal of Molecular Evolution 59, 267–276. Vidal, N., Hedges, S.B., 2009. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies 332, 129–139. Zaher, H., Grazziotin, F.G., Cadle, J.E., Murphy, R.W., de Moura-Leite, J.C., Bonatto, S.L., 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia 49, 115–153. Supplementary online material S1. List of species included in the random representative sample of 1,500 reptiles. Taxonomy largely follows Uetz, 2010 (Reptile Database, http://www.reptiledatabase.org), but including some recent revisions. Red List category (RL): DD – Data Deficient, LC – Least Concern, NT – Near Threatened, VU – Vulnerable, EN – Endangered, CR – Critically Endangered, CR* - Critically Endangered, Possibly Extinct, † denotes species which are likely to change category following recent GRA workshops; System: T- Terrestrial, F – Freshwater, M – Marine; Realm: Af – Afrotropical, Aus – Australasian, Ind – Indomalayan, Ne – Nearctic, Neo – Neotropical, Oc – Oceanian, Pa – Palearctic. * denotes non-native realms into which a species has been introduced; + denotes a species which has been introduced to other countries within its native realm. Family AMPHISBAENIA Amphisbaeniidae1 Trogonophidae1 CROCODILES Crocodylidae Genus Species RL System Realm Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Amphisbaena Blanus Blanus Cynisca Cynisca Cynisca Cynisca Cynisca Loveridgea Monopeltis Monopeltis Monopeltis Zygaspis Zygaspis Agamodon absaberi alba gracilis hyporissor lumbricalis neglecta polygrammica polystegum pretrei ridleyi schmidti scutigerum slevini tragorrhectes cinereus mettetali bifrontalis feae kraussi schaeferi senegalensis ionidesii anchietae guentheri jugularis kafuensis nigra arabicus DD LC DD NT DD DD DD LC LC LC NT DD DD DD LC LC LC LC EN DD DD LC LC DD DD DD LC DD T T T T T T T T T T T T T T T T T T T T T T T T T T T T Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Pa Pa Af Af Af Af Af Af Af Af Af Af Af Pa Crocodylus Crocodylus Crocodylus Crocodylus acutus moreletii palustris rhombifer VU LC VU CR T,F,M T,F T,F T,F Neo Neo Ind,Pa Neo LIZARDS Agamidae Acanthocercus Acanthocercus Acanthocercus Acanthosaura Agama Agama Agama Agama Agama Agama Amphibolurus Aphaniotis Brachysaura Bronchocela Bronchocela Calotes Calotes Calotes Ceratophora Chlamydosaurus Ctenophorus Ctenophorus Ctenophorus Ctenophorus Diporiphora Diporiphora Diporiphora Diporiphora Draco Draco Draco Draco Draco Draco Draco Draco Gonocephalus Gonocephalus Harpesaurus Hypsilurus Hypsilurus Japalura Japalura Japalura Japalura Japalura Japalura Laudakia Laudakia Laudakia annectens atricollis cyanogaster lepidogaster bocourti boueti cornii hispida mwanzae spinosa norrisi fusca minor jubata smaragdina chincollium ellioti medogensis aspera kingii maculosus nuchalis ornatus tjantjalka albilabris convergens lalliae linga bimaculatus cornutus haematopogon jareckii lineatus maculatus reticulatus taeniopterus grandis lacunosus modigliani binotatus bruijnii dasi fasciata flaviceps grahami tricarinata variegata erythrogastra lehmanni microlepis LC LC LC LC DD LC DD LC LC LC LC LC DD LC VU LC LC DD VU LC LC LC LC LC LC DD LC LC LC DD LC LC LC LC LC LC LC DD DD LC DD DD LC LC DD LC LC LC LC LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Af Af Ind Af Af Af Af Af Pa Aus Ind Ind,Pa Ind Ind Ind Ind Ind Ind Aus Aus Aus Aus Aus Aus Aus Aus Aus Ind Ind Ind Ind Aus,Ind Ind Ind Ind Ind Aus Ind Aus Aus Pa Ind,Pa Ind,Pa Pa Ind,Pa Ind Pa Pa Pa Anguidae Anniellidae Carphodactylidae Lophognathus Lyriocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Phrynocephalus Pogona Psammophilus Pseudocalotes Pseudocalotes Pseudocophotis Rankinia Salea Sitana Trapelus Trapelus Tympanocryptis Uromastyx Uromastyx Abronia Abronia Abronia Celestus Celestus Celestus Celestus Celestus Diploglossus Elgaria Gerrhonotus Mesaspis Mesaspis Mesaspis Ophisaurus Ophisaurus Ophisaurus Ophisaurus Ophisaurus Anniella Nephrurus Nephrurus Nephrurus Orraya Phyllurus gilberti scutatus arabicus axillaris helioscopus luteoguttatus melanurus ornatus przewalskii strauchi theobaldi versicolor vlangalii barbata dorsalis brevipes dringi sumatrana diemensis horsfieldii ponticeriana jayakari ruderatus uniformis alfredschmidti ocellata martindelcampoi oaxacae smithi crusculus curtissi enneagrammus scansorius sepsoides lessonae velazquezi infernalis antauges monticola moreletii ceroni hainanensis harti koellikeri wegneri pulchra levis stellatus wheeleri occultus gulbaru LC NT LC LC LC LC LC LC LC VU LC LC LC LC LC LC DD DD LC LC LC DD LC DD NT LC EN VU LC LC VU LC NT LC LC LC LC DD LC LC EN VU LC LC DD LC LC LC LC DD CR T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Aus Ind Pa Pa Pa Pa Pa Pa Ind Pa Pa Pa Pa Aus Ind,Pa* Ind Ind Ind Aus Ind Ind Pa Pa Aus Pa Pa Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne Ne,Neo Neo Neo Neo Neo Ind Ind Pa Ind Ne Aus Aus Aus Aus Aus Chamaeleonidae Cordylidae Corytophanidae Crotaphytidae Phyllurus Saltuarius Bradypodion Bradypodion Bradypodion Bradypodion Bradypodion Bradypodion Brookesia Brookesia Brookesia Brookesia Brookesia Brookesia Brookesia Calumma Calumma Calumma Calumma Calumma Calumma Chamaeleo Chamaeleo Chamaeleo Chamaeleo Furcifer Furcifer Furcifer Rhampholeon Rhampholeon Rhampholeon Trioceros Trioceros Trioceros Trioceros Trioceros Trioceros Trioceros Trioceros Cordylus Cordylus Cordylus Cordylus Cordylus Cordylus Platysaurus Platysaurus Platysaurus Platysaurus Basiliscus Crotaphytus ossa cornutus caffer dracomontanum setaroi taeniabronchum transvaalense ventrale bekolosy exarmata griveaudi stumpffi therezieni tuberculata valerieae boettgeri fallax gallus glawi peyrierasi tigris calyptratus dilepis namaquensis senegalensis campani cephalolepis tuzetae marshalli spectrum spinosus chapini cristatus feae hoehnelii incornutus ituriensis laterispinis montium aridus campbelli meculae rivae spinosus tasmani imperator intermedius pungweensis torquatus vittatus reticulatus LC LC EN LC LC EN LC LC EN EN NT LC LC VU EN LC DD EN EN VU EN LC LC LC LC VU LC DD VU LC EN LC LC NT LC VU LC VU NT EN DD EN LC LC VU VU LC LC LC LC VU T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Neo Aus Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af,Ne* Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Neo Ne Dibamidae Diplodactylidae Eublepharidae Gekkonidae Crotaphytus Gambelia Dibamus Dibamus Dibamus Bavayia Bavayia Bavayia Diplodactylus Diplodactylus Eurydactylodes Naultinus Naultinus Rhacodactylus Rhacodactylus Strophurus Strophurus Strophurus Strophurus Coleonyx Afroedura Agamura Alsophylax Alsophylax Alsophylax Asiocolotes Asiocolotes Bunopus Carinatogecko Chondrodactylus Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cnemaspis Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus vestigium copeii bourreti novaeguineae smithi exsuccida geitaina pulchella granariensis ornatus symmetricus gemmeus manukanus auriculatus trachyrhynchus ciliaris jeanae michaelseni taenicauda elegans nivaria persica pipiens przewalskii tokobajevi depressus levitoni tuberculatus aspratilis angulifer anaikattiensis argus flavolineata jacobsoni kandiana koehleri limi podihuna tropidogaster adleri annandalei ayeyarwadyensis biordinis brevidactylus cavernicolus chrysopylos deveti feae gordongekkoi gubernatoris irianjayaensis LC LC DD LC DD EN NT NT LC LC EN NT DD LC EN LC LC LC NT LC LC LC LC LC LC LC LC LC DD LC CR DD DD DD LC LC LC LC DD LC DD DD DD DD VU DD DD DD DD NT DD T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ne Ne,Neo Ind Aus,Ind Ind Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Neo Af Ind,Pa Pa Pa Pa Ind,Pa Pa Ind,Pa Pa Af Ind Ind Ind Ind Ind Af Ind Ind Ind Ind Ind Ind Aus Ind Ind Ind Aus Ind Aus Ind Aus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtodactylus Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Cyrtopodion Dixonius Ebenavia Elasmodactylus Elasmodactylus Eublepharis2 Geckoella Geckolepis Geckolepis Geckolepis Gehyra Gehyra Gehyra Gehyra Gehyra Gehyra Gehyra Gekko Gekko Gekko Gekko Gekko Gekko Gekko Gekko Gekko Gekko Gekko Goggia Goggia Goggia Goniurosaurus2 Hemidactylus Hemidactylus Hemidactylus Hemidactylus malcomsmithi sumonthai sworderi wakeorum wetariensis agamuroides caspium elongatum fortmunroi gastrophole kohsulaimanai potoharense russowii scabrum stoliczkai walli vietnamensis inunguis tetensis tuberculosus hardwickii triedrus maculata polylepis typica australis barea borroloola brevipalmata butleri dubia pilbara auriverrucosus badenii chinensis grossmanni hokouensis kikuchii porosus scabridus smithii swinhonis tawaensis essexi gemmula hexapora kuroiwae arnoldi depressus foudaii frenatus DD DD DD DD DD LC LC LC LC DD LC LC LC LC LC LC LC LC LC LC LC NT LC DD LC LC EN LC DD DD LC LC DD DD LC DD LC DD LC DD LC VU LC LC DD LC EN DD LC LC LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ind Ind Ind Ind Aus Ind,Pa Pa+ Pa Ind,Pa Pa Ind Ind,Pa Pa Af+,Ne*,Pa+ Ind,Pa Ind,Pa Ind Af+ Af Af Ind Ind Af Af Af Aus Aus Aus Ind Ind Aus Aus Pa Ind Ind,Pa Ind Ind Ind Ind Ind Ind Ind,Pa Pa Af Af Af Ind Af Ind Pa Af*,Aus,Ind,Neo*,Oc* Hemidactylus Hemidactylus Hemidactylus Hemidactylus Hemidactylus Hemidactylus Hemidactylus Hemidactylus Hemiphyllodactylus Homopholis Lepidodactylus Lepidodactylus Lepidodactylus Lepidodactylus Lucasium Luperosaurus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Lygodactylus Nactus Nactus Pachydactylus Pachydactylus Pachydactylus Pachydactylus Pachydactylus Phelsuma Phelsuma Phelsuma Phelsuma Phelsuma Phelsuma Phelsuma Pseudogekko Ptenopus Ptychozoon Ptychozoon Ptychozoon Tropiocolotes Tropiocolotes Tropiocolotes Tropiocolotes Urocotyledon Urocotyledon Uroplatus imbricatus mindiae palaichthus porbandarensis scabriceps smithi subtriedrus yerburyi aurantiacus walbergii balioburius mutahi oortii vanuatuensis byrnei iskandari blanci chobiensis grandisonae gravis klemmeri nigropunctatus pauliani picturatus pictus multicarinatus pelagicus fasciatus labialis maculatus tsodiloensis vansoni andamanense comorensis flavigularis mutabilis pronki standingi v-nigra smaragdinus kochi horsfieldii intermedium lionotum helenae latifi nubicus tripolitanus inexpectata weileri henkeli LC LC LC DD DD DD DD LC LC LC LC LC DD LC LC DD VU LC DD VU NT LC DD LC LC LC LC LC LC LC NT LC LC LC EN LC CR VU LC LC LC DD NT LC DD LC DD LC LC DD VU T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ind,Pa Pa Neo Ind Ind Af Ind Af,Pa Ind Af Ind Aus Ind Aus Aus Aus Af Af Af Af Af Af Af Af Af Aus Oc Af Af Af Af Af Ind Af Af Af Af Af Af Ind Af Ind Ind Ind Pa Pa Pa Pa Af Af Af Gerrhosauridae Gymnophthalmidae Helodermatidae Hoplocercidae Iguanidae Cordylosaurus Gerrhosaurus Tetradactylus Zonosaurus Zonosaurus Zonosaurus Alopoglossus Amapasaurus Anadia Anadia Anadia Arthrosaura Arthrosaura Bachia Bachia Bachia Bachia Calyptommatus Cercosaura Cercosaura Colobodactylus Euspondylus Gymnophthalmus Gymnophthalmus Gymnophthalmus Gymnophthalmus Leposoma Leposoma Leposoma Macropholidus Neusticurus Pholidobolus Placosoma Potamites Potamites Psilophthalmus Ptychoglossus Ptychoglossus Riama Riama Riama Riama Riama Riama Riama Heloderma Morunasaurus Ctenosaura Ctenosaura Cyclura Sauromalus subtessellatus skoogi africanus haraldmeieri karsteni quadrilineatus angulatus tetradactylus bitaeniata marmorata pulchella kockii synaptolepis bresslaui flavescens panoplia trisanale confusionibus argulus schreibersii dalcyanus guentheri lineatus pleii underwoodi vanzoi parietale percarinatum rugiceps ruthveni tatei annectens cordylinum apodemus cochranae paeminosus bicolor stenolepis balneator inanis luctuosa oculata petrorum shrevei stigmatoral suspectum peruvianus oedirhina similis cornuta hispidus LC LC LC NT LC VU LC DD DD VU VU LC LC VU LC LC DD EN LC LC DD LC LC EN LC DD LC LC LC LC LC EN LC LC LC VU VU LC EN DD DD EN EN DD VU NT DD EN LC EN NT T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Af Af Af Af Af Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne,Neo Neo Neo Ne+,Neo* Neo Ne Lacertidae Opluridae Phrynosomatidae Acanthodactylus Acanthodactylus Acanthodactylus Acanthodactylus Acanthodactylus Adolfus Adolfus Anatololacerta Australolacerta Dinarolacerta Eremias Eremias Iberolacerta Ichnotropis Iranolacerta Lacerta Lacerta Lacerta Lacerta Lacerta Latastia Mesalina Nucras Ophisops Ophisops Ophisops Parvilacerta Pedioplanis Pedioplanis Phoenicolacerta Phoenicolacerta Phoenicolacerta Podarcis Podarcis Pseuderemias Takydromus Takydromus Takydromus Takydromus Timon Timon Tropidosaura Zootoca Oplurus Cophosaurus Petrosaurus Phrynosoma Sceloporus Sceloporus Sceloporus Sceloporus arabicus blanci busacki erythrurus haasi alleni vauereselli anatolica australis mosorensis acutirostris nigrolateralis aurelioi grandiceps brandtii agilis bilineata media schreiberi trilineata cherchii brevirostris scalaris elbaensis jerdonii microlepis parva gaerdesi laticeps cyanisparsa kulzeri laevis hispanicus melisellensis striatus hani kuehnei sexlineatus toyamai lepidus princeps cottrelli vivipara quadrimaculatus texanus mearnsi mcallii aeneus angustus arenicolus horridus LC EN LC LC LC VU LC LC LC VU LC LC EN DD DD LC LC LC NT LC LC LC DD DD LC LC LC LC LC LC EN LC LC LC DD DD LC LC EN NT LC NT LC LC LC LC NT LC LC VU LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Pa Pa Pa Pa Af Af Pa Af Pa Pa Pa Pa Af Pa Pa Ne*,Pa Pa Pa Pa Af Ind,Pa Af Pa Ind,Pa Ind Pa Af Af Pa Pa Pa Pa Pa Af Ind Pa Ind Pa Pa Pa Af Pa Af Ne,Neo Ne Ne Ne,Neo Ne Ne Ne,Neo Phyllodactylidae Polychrotidae Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Sceloporus Uma Urosaurus Urosaurus Urosaurus Uta Uta Uta Asaccus Haemodracon Homonota Phyllodactylus Phyllodactylus Phyllodactylus Phyllodactylus Phyllodactylus Phyllodactylus Phyllodactylus Phyllodactylus Tarentola Tarentola Tarentola Tarentola Anisolepis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis hunsakeri jarrovi lineatulus magister mucronatus orcutti poinsettii pyrocephalus serrifer siniferus smithi spinosus subpictus teapensis undulatus vandenburgianus variabilis inornata auriculatus nigricaudus ornatus encantadae palmeri squamata platyrhynchus trachyrhinus fasciata bugastrolepis clinatus inaequalis interandinus lanei leei reissii tuberculosus americana boettgeri delalandii mindiae grilli ahli allogus altae alumina alvarezdeltoroi amplisquamosus armouri baccatus bimaculatus caquetae carpenteri LC LC LC LC LC LC LC LC LC LC LC LC DD LC LC LC LC EN EN LC LC VU VU LC DD LC LC LC DD LC LC LC VU LC LC LC LC LC LC LC EN LC LC NT DD EN NT DD LC DD LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ne,Neo Ne,Neo Ne Ne,Neo Ne,Neo Ne Ne,Neo Neo Ne,Neo Neo Neo Ne,Neo Neo Neo Ne Ne Neo Ne Neo Ne,Neo Ne,Neo Neo Neo Ne Pa Af Neo Ne Neo Neo Neo Ne,Neo Neo Neo+ Neo Neo Pa Pa Pa Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis Anolis centralis clivicola crassulus cristifer cusuco cymbops eulaemus festae fitchi fortunensis fraseri gadovi gemmosus grahami granuliceps guafe haetianus jacare juangundlachi koopmani lemniscatus lineatus lionotus longiceps loveridgei lynchi maculigula marron megalopithecus monticola muralla nebuloides nubilis occultus oculatus olssoni pachypus parvicirculatus pinchoti pogus polyrhachis proboscis pygmaeus quercorum roosevelti ruizii semilineatus sericeus sminthus spectrum strahmi LC LC LC DD EN DD LC LC LC DD LC LC LC LC LC EN EN LC CR EN DD LC LC VU EN LC VU EN DD NT VU LC LC LC LC LC LC LC VU VU DD EN EN LC CR* EN LC LC DD NT EN T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo + Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Pygopodidae Scincidae Anolis Anolis Anolis Diplolaemus Enyalius3 Enyalius3 Leiosaurus Polychrus Pristidactylus Aprasia Delma Delma Delma Ablepharus Acontias Acontias Acontias Acontias Afroablepharus Afroablepharus Afroablepharus Amphiglossus Amphiglossus Amphiglossus Amphiglossus Amphiglossus Amphiglossus Amphiglossus Amphiglossus Anomalopus Anomalopus Barkudia Barkudia Bassiana Brachymeles Brachymeles Brachymeles Carlia Carlia Carlia Carlia Carlia Carlia Celatiscincus Chalcides Chalcides Chalcides Chalcides Chalcides Chalcides Chioninia valencienni ventrimaculatus whitemani darwinii bibronii pictus catamarcensis peruvianus torquatus aurita fraseri labialis torquata deserti breviceps gracilicauda percivali plumbeus africana annobonensis wilsoni alluaudi ardouini crenni elongatus frontoparietalis johannae melanurus punctatus brevicollis gowi insularis melanosticta trilineatus elerae pathfinderi talinis bicarinata diguliensis dogare gracilis rubrigularis tetradactyla euryotis colosii guentheri lanzai pseudostriatus sphenopsiformis striatus fogoensis LC NT LC LC LC LC LC DD LC CR LC VU VU LC NT LC LC LC VU CR DD VU VU LC DD LC LC LC LC LC LC DD DD LC DD DD LC LC LC LC LC LC LC EN LC VU NT NT LC LC DD T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Neo Neo Neo Neo Neo Neo Neo Neo Neo Aus Aus Aus Aus Pa Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Aus Aus Ind Ind Aus Ind Ind Ind Aus Aus Aus Aus Aus Aus Aus Pa Pa Pa Pa Pa Pa Af Chioninia Cryptoblepharus Cryptoblepharus Cryptoblepharus Cryptoblepharus Cryptoblepharus Cryptoblepharus Ctenotus Ctenotus Ctenotus Ctenotus Ctenotus Ctenotus Ctenotus Cyclodomorphus Dasia Egernia Egernia Emoia Emoia Emoia Emoia Emoia Emoia Emoia Emoia Emoia Eremiascincus Eremiascincus Eulamprus Eulamprus Eulamprus Eulamprus Eutropis Eutropis Eutropis Geomyersia Geoscincus Glaphyromorphus Hemiergis Hemiergis Isopachys Isopachys Kaestlea Lamprolepis Lankascincus Lankascincus Larutia Larutia Leptosiaphos Leptosiaphos vaillantii ater gloriosus leschenault novaeguineae renschi rutilus allotropis burbidgei gagudju gemmula helenae inornatus leonhardii celatus olivacea kingii rugosa adspersa aneityumensis boettgeri isolata lawesi loveridgei nativitatis oribata submetallica brongersmai timorensis heatwolei luteilateralis sokosoma tryoni bibronii carinata novemcarinata coggeri haraldmeieri crassicaudus decresiensis quadrilineatum anguinoides roulei travancorica nieuwenhuisi deignani taprobanensis miodactyla sumatrensis aloysiisabaudiae meleagris DD DD VU LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC EN EN EN VU EN LC CR DD LC LC DD LC LC LC LC DD LC LC VU CR LC LC LC LC DD LC LC EN NT LC DD LC VU T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Af Af Aus Aus Ind Oc Aus Aus Aus Aus Aus Aus Aus Aus Ind Aus Aus Oc Aus Aus Aus Oc Aus Ind Aus Aus Aus Aus Aus Aus Aus Aus Ind Ind Aus,Ind Aus Aus Aus Aus Aus Ind Ind Ind Ind Ind Ind Ind Ind Af Af Leptosiaphos Leptosiaphos Lerista Lerista Lerista Lerista Lerista Lerista Lerista Lerista Lerista Liburnascincus Liopholis Liopholis Liopholis Lioscincus Lipinia Lipinia Lipinia Lipinia Lipinia Lobulia Lygisaurus Lygosoma Lygosoma Lygosoma Lygosoma Lygosoma Lygosoma Lygosoma Lygosoma Lygosoma Mabuya Mabuya Madascincus Madascincus Marmorosphax Melanoseps Menetia Menetia Microacontias Mochlus Mochlus Morethia Nannoscincus Nannoscincus Nannoscincus Neoseps Oligosoma Oligosoma Oligosoma pauliani rhodurus allochira connivens elongata kennedyensis onsloviana stylis taeniata vermicularis walkeri scirtetis inornata striata whitii greeri auriculata infralineolata miangensis vulcania zamboangensis glacialis sesbrauna anguinum ashwamedhi carinatum frontoparietale haroldyoungi koratense mafianum productum singha bistriata carvalhoi intermedius nanus montana ater amaura concinna lineatus guineensis sundevalli boulengeri gracilis hanchisteus slevini reynoldsi acrinasum fallai notosaurus EN DD LC LC LC LC LC LC LC LC LC LC LC LC LC DD LC LC DD DD DD DD LC DD DD DD DD LC LC EN LC DD LC LC LC VU VU LC LC DD LC LC LC LC VU CR EN VU NT VU DD T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Af Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Aus Ind Aus Ind Ind Ind Aus Aus Ind Ind Ind Ind Ind Ind Af Af Ind Neo Neo Af Af Aus Af Aus Aus Af Af Af Aus Aus Aus Aus Ne Aus Aus Aus Oligosoma Oligosoma Oligosoma Oligosoma Ophiomorus Panaspis Panaspis Panaspis Panaspis Paracontias Paracontias Phoboscincus Plestiodon Plestiodon Plestiodon Prasinohaema Prasinohaema Proablepharus Pseudemoia Pseudemoia Pseudoacontias Ristella Saproscincus Scelotes Scelotes Scincella Scincella Scincella Scincopus Scolecoseps Sepsina Sigaloseps Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Sphenomorphus Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis oliveri otagense suteri zelandicum raithmai cabindae helleri quattuordigitata togoensis holomelas rothschildi bocourti copei fasciatus gilberti flavipes prehensicauda reginae baudini pagenstecheri angelorum rurkii czechurai inornatus mossambicus monticola punctatolineata vandenburghi fasciatus acontias alberti ruficauda abdictus cyanolaemus decipiens diwata dussumieri fasciatus jagori microtympanus mindanensis nigrolineata tritaeniatus tropidonotus victoria bayonii bensonii bocagii lacertiformis lavarambo madagascariensis NT EN LC LC LC DD LC DD LC LC CR EN LC LC LC LC LC LC DD LC EN VU LC EN LC NT DD LC DD VU LC VU LC NT LC DD LC LC LC DD NT LC DD LC NT DD DD LC LC VU LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Aus Aus Aus Aus Ind Af Af Af Af Af Af Aus Ne,Neo Ne Ne Aus Aus Aus Aus Aus Af Ind Aus Af Af Ind Ind Pa Pa Af Af Aus Ind Ind Ind Ind Ind Ind Ind Aus Ind Aus Ind Aus Ind Af Af Af Af Af Af Sphaerodactylidae Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis Trachylepis Tribolonotus Tropidophorus Tropidophorus Tropidophorus Tropidoscincus Typhlosaurus Typhlosaurus Vietnascincus Aristelliger Coleodactylus Coleodactylus Gonatodes Gonatodes Gonatodes Gonatodes Lepidoblepharis Lepidoblepharis Lepidoblepharis Lepidoblepharis Pristurus Pristurus Pristurus Quedenfeldtia Saurodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus Sphaerodactylus margaritifera punctatissima socotrana tandrefana tavaratra vato vezo vittata blanchardi laotus latiscutatus mocquardi boreus caecus lineatus rugosus lar natalensis septentrionalis albogularis caudiscutatus hasemani seigliei colombianus montecanoensis sanctaemartae xanthostigma ornithocephalus rupestris saada trachyblepharus mauritanicus argus armasi callocricus corticola difficilis dunni glaucus goniorhynchus klauberi nicholsi pimienta richardi savagei scaber scapularis storeyae streptophorus thompsoni torrei LC LC LC LC VU LC DD LC VU LC DD LC LC LC LC DD NT DD LC LC LC LC DD DD DD LC LC DD LC DD NT LC LC EN VU LC LC LC LC NT LC LC EN NT LC LC VU EN LC NT VU T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Af Af Af Af Af Af Af Pa Aus Ind Ind Ind Aus Af Af Ind Neo Neo Neo Neo Neo+ Neo Neo Neo Neo Neo Neo Pa Af,Pa Pa Pa Pa Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Teiidae Tropiduridae Sphaerodactylus Sphaerodactylus Teratoscincus Ameiva Ameiva Ameiva Ameiva Ameiva Ameiva Ameiva Aspidoscelis Aspidoscelis Aspidoscelis Aspidoscelis Aspidoscelis Aspidoscelis Aspidoscelis Cnemidophorus Cnemidophorus Crocodilurus Kentropyx Tupinambis Ctenoblepharys Eurolophosaurus Eurolophosaurus Leiocephalus4 Leiocephalus4 Leiocephalus4 Leiocephalus4 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 vincenti williamsi przewalskii chrysolaema corax corvina lineolata maynardii quadrilineata vittata arizonae burti deppei flagellicauda guttata neomexicana pai gramivagus vacariensis amazonicus viridistriga merianae adspersa amathites nanuzae carinatus greenwayi melanochlorus schreibersii arambarensis archeforus atacamensis austromendocinus capillitas chaltin constanzae curicensis dicktracyi duellmani fitzgeraldi fitzingerii flavipiceus gallardoi hellmichi hernani josephorum juanortizi maldonadae mapuche nigromaculatus LC CR LC LC VU VU LC VU LC CR* NT LC LC LC LC LC LC LC DD LC LC LC NT DD NT LC VU NT LC EN LC LC LC LC DD LC DD LC DD LC LC DD LC LC NT DD LC DD DD LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Neo Neo Pa Neo Neo Neo Neo Neo Neo Neo Ne Ne Ne Ne Ne Neo Neo Neo Neo Neo+ Neo Neo Neo Ne*,Neo Neo Neo Ne*,Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Varanidae Xanthusiidae Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Liolaemus5 Microlophus Microlophus Microlophus Microlophus Phymaturus5 Phymaturus5 Plica Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Stenocercus Tropidurus Tropidurus Tropidurus Tropidurus Tropidurus Tropidurus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Varanus Lepidophyma olongasta petrophilus platei pleopholis reichei signifer somuncurae stolzmanni vallecurensis williamsi xanthoviridis albemarlensis peruvianus tarapacensis yanezi calcogaster palluma lumaria aculeatus crassicaudatus festae frittsi haenschi imitator marmoratus nigromaculatus praeornatus prionotus scapularis torquatus arenarius chromatops erythrocephalus psammonastes semitaeniatus torquatus bengalensis boehmei exanthematicus finschi glauerti indicus jobiensis primordius rosenbergi salvator scalaris telenesetes yemenensis flavimaculatum LC LC LC DD LC LC DD LC LC DD DD LC LC DD DD DD LC LC LC VU VU LC CR* LC LC DD DD LC LC VU DD LC NT DD LC LC LC DD LC LC LC LC LC LC LC LC LC DD DD LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T,F T T T T T T T T T T T T T Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ind,Pa Ind Af Aus Aus Aus,Oc+ Aus Aus Aus Ind Aus Aus Pa Neo SNAKES Acrochordidae Anomalepididae Atractaspididae Boidae Calamariidae Colubridae Lepidophyma Lepidophyma Lepidophyma gaigeae lipetzi reticulatum VU EN VU T T T Ne,Neo Neo Neo Acrochordus Liotyphlops Liotyphlops Liotyphlops Amblyodipsas Amblyodipsas Amblyodipsas Amblyodipsas Amblyodipsas Aparallactus Aparallactus Atractaspis Atractaspis Micrelaps Polemon Xenocalamus Boa Charina Corallus Epicrates Epicrates Eunectes Eunectes Liasis6 Morelia6 Morelia6 Morelia6 Python6 Python6 Ungaliophis Calamaria Calamaria Calamaria Calamaria Calamaria Calamaria Calamaria Calamaria Calamaria Macrocalamus Macrocalamus Pseudorabdion Pseudorabdion Aeluroglena Ahaetulla Bogertophis granulatus argaleus beui schubarti concolor microphthalma rodhaini teitana ventrimaculata capensis lineatus irregularis reticulata bicoloratus barthii michellii constrictor bottae cropanii inornatus monensis beniensis deschauenseei fuscus amethistina spilota viridis anchietae regius continentalis abstrusa† boesemani hilleniusi ingeri† lumbricoidea modesta muelleri nuchalis septentrionalis chanardi lateralis oxycephalum saravacense† cucullata prasina subocularis LC LC LC DD LC LC DD DD LC LC DD LC DD LC DD DD LC LC EN LC EN LC DD LC LC LC LC LC LC NT EN DD LC EN LC LC LC LC LC LC LC LC DD DD LC LC F,M T T T T T T T T T T T T T T T T T T T T T T,F T T T T T T T T T T T T T T T T T T T T T T T Aus,Ind Neo Neo Neo Af Af Af Af Af Af Af Af Af Af Af Af Neo Ne Neo Neo Neo Neo Neo Aus Aus Aus Aus Af Af Neo Ind Aus Ind Ind Ind Ind Aus Aus Ind Ind Ind Ind Ind Af Ind Ne Boiga Boiga Boiga Boiga Boiga Cemophora Chrysopelea Conopsis Dasypeltis Dasypeltis Dendrelaphis Dendrelaphis Dendrelaphis Dendrelaphis Dendrelaphis Dendrelaphis Dendrelaphis Drymarchon Drymobius Drymobius Dryocalamus Dryophiops Eirenis Eirenis Eirenis Eirenis Eirenis Eirenis Elachistodon Ficimia Ficimia Gongylosoma Lampropeltis Leptophis Leptophis Liopeltis Lycodon Lycodon Lycodon Lycodon Lycodon Lycodon Lytorhynchus Lytorhynchus Macroprotodon Masticophis Mastigodryas Mastigodryas Meizodon Oligodon Oligodon beddomei bourreti† forsteni multifasciata trigonata coccinea pelias amphisticha fasciata scabra bifrenalis calligastra cyanochloris gorei grandoculis lorentzi punctulatus caudomaculatus melanotropis rhombifer gracilis rubescens collaris decemlineatus eiselti levantinus mcmahoni medus westermanni ruspator streckeri scripta† alterna ahaetulla santamartensis rappi dumerili effraenis jara osmanhilli paucifasciatus zawi maynardi ridgewayi cucullatus slevini heathii melanolomus plumbiceps affinis cinereus DD DD LC DD LC LC LC NT LC LC LC LC LC LC NT LC LC LC LC LC DD LC LC LC LC LC LC LC LC DD LC DD LC LC DD DD LC LC LC LC VU LC LC LC LC LC LC LC LC DD LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ind Ind Ind Ind,Pa Ind,Pa Ne Ind Neo Af Af,Pa Ind Aus Ind Ind,Pa Ind Aus Aus Neo Neo Neo Ind Ind Pa Pa Pa Pa Ind,Pa Pa Ind Neo Ne,Neo Ind Ne Neo Neo Ind Ind Ind Ind Ind Ind Ind Ind,Pa Ind,Pa + Pa Ne Neo Neo Af Ind Ind Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Oligodon Omoadiphas Oocatochus Opheodrys Philothamnus Phyllorhynchus Pituophis Pituophis Platyceps Platyceps Pseudocyclophis Ptyas Ptyas Rhinobothryum Salvadora Salvadora Sibynophis Sibynophis Sibynophis Spalerosophis Spalerosophis Stegonotus Stenorrhina Symphimus Symphimus Tantilla Tantilla Tantilla Tantilla Tantilla Tantilla Tantilla Tantilla Tantilla Tantilla Telescopus Telescopus cyclurus durheimi erythrorhachis forbesi joynsoni juglandifer lacroixi† macrurus planiceps† pulcherrimus† sublineatus taeniolatus templetoni torquatus unicolor texiguatensis rufodorsatus aestivus irregularis decurtatus deppei melanoleucus florulentus najadum persicus carinata dipsas bovallii hexalepis mexicana bistrigatus bivittatus collaris dolichospilus microlepis florensis degenhardti leucostomus mayae bairdi boipiranga johnsoni moesta nigra robusta sertula slavensi vermiformis wilcoxi rhinopoma variegatus LC DD DD LC LC VU DD DD DD DD LC LC DD DD LC DD LC LC LC LC LC LC LC LC LC LC DD LC LC LC DD LC LC DD LC DD LC LC LC DD VU DD LC DD DD DD DD DD LC LC LC T T T T T T T T T T T T T T T T T,F T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ind Ind Ind Aus Ind Ind Ind Ind Ind Ind Ind Ind,Pa Ind Ind Ind Neo Pa Ne,Neo Af Ne,Neo Ne,Neo Ne Af,Pa Pa Ind,Pa Ind Aus Neo Ne,Neo Ne,Neo Ind Ind Ind,Pa Pa Pa Aus Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne,Neo Ind,Pa Af Dipsadidae Thelotornis Trachischium Trimorphodon Zamenis Adelphicos Adelphicos Alsophis Alsophis Apostolepis Apostolepis Apostolepis Apostolepis Arrhyton Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Atractus Caraiba Carphophis Chapinophis Clelia Clelia Coniophanes Coniophanes Coniophanes Conophis Conophis Conophis Dipsas Dipsas Dipsas Dipsas Dipsas Dipsas Dipsas Dipsas Echinanthera Enulius Erythrolamprus Farancia capensis guentheri biscutatus lineatus quadrivirgatum visoninum antiguae sanctonum goiasensis multicincta phillipsae polylepis taeniatum albuquerquei biseriatus bocourti crassicaudatus duidensis limitaneus major modestus nicefori obtusirostris paravertebralis pauciscutatus poeppigi roulei snethlageae andreae amoenus xanthocheilus clelia hussami bipunctatus dromiciformis imperialis lineatus morai vittatus catesbyi chaparensis maxillaris nicholsi pavonina peruana sanctijoannis viguieri undulata oligostichus bizonus abacura LC LC LC DD DD LC CR EN DD NT LC DD LC LC DD LC LC LC LC LC VU VU DD DD DD LC VU LC LC LC DD LC DD LC VU LC LC DD LC LC LC DD LC LC LC DD LC LC DD LC LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T F Af Ind Neo Pa Ne,Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne Neo Neo Neo Neo Neo Ne,Neo Neo Neo Ne,Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne,Neo Geophis Geophis Geophis Geophis Geophis Geophis Geophis Helicops Helicops Heterodon Hydrops Hydrops Hypsiglena Imantodes Imantodes Imantodes Liophis Liophis Liophis Liophis Liophis Liophis Liophis Liophis Lygophis Lygophis Lygophis Lystrophis Lystrophis Mussurana Ninia Ninia Nothopsis Oxyrhopus Oxyrhopus Oxyrhopus Oxyrhopus Phalotris Phalotris Philodryas Philodryas Philodryas Philodryas Philodryas Plesiodipsas Pliocercus Pseudalsophis Pseudoboa Pseudoeryx Psomophis Rachidelus bicolor brachycephalus cancellatus dunni nasalis pyburni ruthveni scalaris trivittatus simus caesurus martii torquata inornatus phantasma tennuissimus ceii jaegeri janaleeae longiventris melanotus problematicus viridis williamsi dilepis elegantissimus vanzolinii histricus semicinctus bicolor espinali sebae rugosus leucomelas melanogenys occipitalis petola lemniscatus tricolor argenteus livida psammophidea tachymenoides varia perijanensis euryzonus elegans haasi plicatilis obtusus brazili DD LC LC DD LC DD LC LC LC VU LC LC LC LC DD LC LC LC LC LC LC DD LC EN LC LC DD LC LC LC NT LC LC LC LC LC LC LC LC LC VU LC LC LC DD LC LC LC LC LC LC T T T T T T T F,M T,F T F F T T T T T T T T T,F T T T T T T T T T T T T T T T T T T T T T T T T T T T T,F T T Ne,Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne Neo Neo Ne,Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Elapidae Rhadinaea Rhadinaea Rhadinaea Rhadinaea Rhadinaea Rhadinaea Rhadinaea Rhadinaea Sibon Sibon Sibynomorphus Siphlophis Siphlophis Siphlophis Siphlophis Synophis Tachymenis Taeniophallus Taeniophallus Thamnodynastes Thamnodynastes Thamnodynastes Thamnodynastes Trimetopon Tropidodryas Umbrivaga Umbrivaga Urotheca Urotheca Xenodon Xenopholis Acanthophis Aipysurus Aipysurus Astrotia Bungarus Calliophis Calliophis Demansia Dendroaspis Drysdalia Drysdalia Echiopsis Elapsoidea Elapsoidea Emydocephalus Emydocephalus Ephalophis Furina Hemachatus Hemibungarus cuneata gaigeae godmani kinkelini macdougalli montana schistosa serperastra dunni linearis ventrimaculatus compressus leucocephalus pulcher worontzowi lasallei chilensis affinis nebularis corocoroensis marahuaquensis pallidus strigatus slevini serra mertensi pyburni dumerilli guentheri neuwiedii scalaris rugosus fuscus tenuis stokesii andamanensis bibroni intestinalis torquata polylepis mastersii rhodogaster curta chelazzii nigra annulatus ijimae greyae dunmalli haemachatus calligaster DD DD LC LC DD EN LC DD DD DD LC LC LC LC LC DD LC LC DD LC LC LC LC NT LC DD DD DD LC LC LC LC EN DD LC VU LC LC DD LC LC LC NT EN EN LC LC LC VU LC LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T M M M T T T T T T T T T T M M M T T T Neo Neo Neo Neo Neo Ne Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Aus Aus Aus Aus,Ind Ind Ind Ind Aus Af Aus Aus Aus Af Af Aus Aus Aus Aus Af Ind Homalopsidae Hoplocephalus Hydrophis Hydrophis Hydrophis Hydrophis Hydrophis Laticauda Laticauda Micruroides Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Micrurus Naja Naja Notechis Ophiophagus Oxyrhabdium Parapistocalamus Pelamis Prosymna Prosymna Prosymna Prosymna Pseudohaje Rhinoplocephalus Rhinoplocephalus Simoselaps Simoselaps Simoselaps Sinomicrurus Suta Suta Toxicocalamus Vermicella Bitia Cantoria Cantoria Enhydris Enhydris Enhydris Enhydris Erpeton Homalopsis stephensii atriceps elegans klossi macdowelli sibauensis guineai laticaudata euryxanthus bogerti dissoleucus elegans isozonus langsdorffi limbatus multiscutatus paraensis pyrrhocryptus ruatanus tener kaouthia siamensis† scutatus hannah leporinum hedigeri platura ambigua angolensis janii ornatissima nigra bicolor pallidiceps australis incinctus littoralis japonicus flagellum nigriceps misimae snelli hydroides annulata violacea enhydris indica longicauda punctata tentaculatum buccata NT LC LC DD LC DD NT LC LC DD LC LC LC LC LC DD LC LC CR LC LC LC LC VU LC LC LC LC LC LC CR LC LC LC LC LC LC NT LC LC DD LC LC DD LC LC DD VU DD LC LC T M F,M M M F T,M T,M T T T T T T T T T T T T T T T T T T M T T T T T T T T T T T T T T T F,M F,M F,M T,F T,F T,F T,F T,F T,F Aus Aus,Ind Aus Aus Aus Ind Aus Aus,Ind Ne,Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Neo Ne,Neo Ind Ind Aus Ind Ind Aus Af,Aus,Ind,Neo,Oc Af Af Af Af Af Aus Aus Aus Aus Aus Pa Aus Aus Aus Aus Ind Aus Ind Aus,Ind Ind Ind Ind Ind Aus,Ind Lamprophiidae Leptotyphlopidae Natricidae Duberria Duberria Gonionotophis Ithycyphus Lamprophis Lamprophis Lamprophis Leioheterodon Liophidium Liophidium Liophidium Liophidium Liopholidophis Lycodonomorphus Lycodonomorphus Lycodonomorphus Lycodonomorphus Lycodryas Lycodryas Lycodryas Lycodryas Lycophidion Lycophidion Lycophidion Lycophidion Lycophidion Madagascarophis Mehelya Mehelya Phisalixella Pseudoxyrhopus Pseudoxyrhopus Pseudoxyrhopus Thamnosophis Epictia Epictia Epictia Epictia Epictia Guinea Leptotyphlops Namibiana Rena Tricheilostoma Afronatrix Amphiesma Amphiesma Amphiesma Amphiesma Amphiesma Anoplohydrus lutrix variegata grantii perineti aurora fiskii geometricus modestus apperti therezieni trilineatum vaillanti grandidieri bicolor inornatus subtaeniatus whytii carleti citrinus granuliceps inopinae acutirostre hellmichi nanus ornatum semicinctum colubrinus capensis nyassae arctifasciata heterurus imerinae sokosoko stumpffi collaris melanurus rufidorsa subcrotilla tricolor bicolor jacobseni rostrata nicefori joshuai anoscopus flavifrons† groundwateri inas popei sieboldii aemulans LC LC LC LC LC DD EN LC DD VU DD LC VU LC LC LC LC NT VU LC EN LC DD VU LC LC LC LC LC LC LC NT VU VU LC DD LC DD LC LC LC DD DD LC LC NT DD LC LC DD DD T T T T T T T T T T T T T F T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T,F Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Af Neo Neo Neo Neo Neo Af Af Af Neo Neo Af Ind Ind Ind Ind Ind,Pa Ind Pareatidae Psammophiidae Pseudoxenodontidae Tropidophiidae Typhlopidae Aspidura Atretium Balanophis Clonophis Natriciteres Natriciteres Natrix Nerodia Nerodia Nerodia Opisthotropis Opisthotropis Opisthotropis Paratapinophis Regina Rhabdophis Seminatrix Sinonatrix Storeria Thamnophis Thamnophis Tropidonophis Tropidonophis Tropidonophis Tropidonophis Tropidonophis Tropidonophis Xenochrophis Aplopeltura Pareas Hemirhagerrhis Psammophis Psammophis Psammophylax Plagiopholis Plagiopholis Plagiopholis Pseudoxenodon Tropidophis Tropidophis Afrotyphlops Afrotyphlops Austrotyphlops Austrotyphlops Austrotyphlops Austrotyphlops Austrotyphlops Austrotyphlops Letheobia Letheobia Ramphotyphlops copei schistosum ceylonensis kirtlandii fuliginoides olivacea tessellata clarkii harteri sipedon alcalai maxwelli spenceri praemaxillaris† septemvittata nuchalis pygaea aequifasciata occipitomaculata butleri chrysocephalus dahlii elongatus mairii parkeri punctiventris statistictus punctulatus boa boulengeri hildebrandtii condanarus subtaeniatus tritaeniatus delacouri† nuchalis† styani inornatus hendersoni pardalis blanfordii gierrai endoterus hamatus kimberleyensis pilbarensis proximus waitii erythraea graueri bicolor DD LC NT NT LC LC LC LC NT LC EN DD DD DD LC LC LC LC LC LC LC LC DD LC LC DD LC LC LC LC LC LC LC LC LC DD LC LC CR LC DD EN LC LC LC LC LC LC DD LC LC T T T T,F T,F T T,F M T,F T,F T T,F F T F T F T,F T T T T,F T T,F,M T T,F T F,M T T T T T T T T T T T T T T T T T T T T T T T Ind Ind Ind Ne Af Af Pa Ne,Neo Ne Ne Ind Ind Ind Ind Ne Ind Ne,Neo Ind Ne Ne Neo Aus Aus Aus Aus Ind Aus Ind Ind Ind Af Ind Af Af Ind Ind Ind,Pa Ind Neo Neo Af Af Aus Aus Aus Aus Aus Aus Af Af Aus Uropeltidae Ramphotyphlops Ramphotyphlops Rhinotyphlops Rhinotyphlops Rhinotyphlops Rhinotyphlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Typhlops Melanophidium Platyplectrurus Platyplectrurus Rhinophis Rhinophis Rhinophis Uropeltis Uropeltis Uropeltis Uropeltis Uropeltis Uropeltis Uropeltis cumingii similis episcopus feae praeocularis stejnegeri amoipira arenarius biminiensis bothriorhynchus canlaonensis capitulatus conradi diardii domerguei etheridgei filiformis hectus hedraeus hypomethes hypsobothrius jamaicensis koshunensis† luzonensis manni mcdowelli meszoelyi oligolepis pammeces reticulatus reuteri schmutzi siamensis sulcatus syntherus tenuicollis tenuis wilsoni wynaudense madurensis trilineatus drummondhayi fergusonianus oxyrhynchus arcticeps ocellatus petersi pulneyensis rubromaculatus smithi woodmasoni DD DD DD LC LC DD DD DD NT DD DD EN DD LC DD DD DD EN DD LC DD LC LC DD VU DD DD DD LC LC DD EN DD LC NT DD LC DD LC DD LC NT DD LC LC LC DD LC DD DD LC T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Ind Aus Pa Af Af Af Neo Af Neo Ind Ind Neo Ind Ind Af Af Ind Neo Ind Neo Ind Neo Ind Ind Af Aus Ind Ind Ind Neo Af Aus Ind Neo Neo Ind Neo Pa Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind Viperidae Xenodermatidae Xenopeltidae Xenophiidae Agkistrodon Agkistrodon Atheris Atheris Atheris Atheris Atropoides Bitis Bitis Bothriopsis Bothrocophias Bothropoides Bothropoides Bothrops Bothrops Cerastes Crotalus Crotalus Crotalus Crotalus Crotalus Crotalus Crotalus Cryptelytrops Cryptelytrops Cryptelytrops Echis Echis Echis Gloydius Himalayophis Hypnale Macrovipera Montivipera Ovophis Parias Popeia Protobothrops Protobothrops Protobothrops Protobothrops Protobothrops Pseudocerastes Rhinocerophis Trimeresurus Trimeresurus Achalinus Achalinus Xenopeltis Xenophidion contortrix taylori barbouri ceratophora chlorechis hirsuta nummifer atropos peringueyi oligolepis myersi erythromelas lutzi jararacussu lojanus vipera aquilus catalinensis cerastes durissus pricei ravus scutulatus albolabris erythrurus insularis hughesi megalocephalus pyramidum saxatilis tibetanus nepa schweizeri latifii monticola sumatranus fucata jerdonii kaulbacki mucrosquamatus sieversorum† xiangchengensis persicus itapetiningae brongersmai† gramineus ater jinggangensis unicolor acanthognathus LC LC VU VU LC VU LC LC LC LC LC LC LC LC EN LC LC CR LC LC LC LC LC LC LC LC DD DD LC LC LC LC EN EN LC LC LC LC DD LC LC LC LC LC VU DD LC DD LC DD T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T,F T T T T Ne Ne,Neo Af Af Af Af Ne,Neo Af Af Neo Neo Neo Neo Neo Neo Pa Ne,Neo Ne Ne Neo Ne,Neo Ne,Neo Ne,Neo Ind Ind Ind Af Af Pa Pa Ind Ind Pa Pa Ind Ind Ind Ind Ind,Pa Ind Ind Ind Pa Neo Ind Ind Ind Ind Aus Ind TURTLES & TORTOISES Chelidae Acanthochelys macrocephala NT T,F Neo Acanthochelys pallidipectoris VU T,F Neo Acanthochelys radiolata DD T,F Neo Acanthochelys spixii NT T,F Neo Chelodina pritchardi EN T,F Aus Elseya novaeguineae LC T,F Aus Elusor macrurus EN T,F Aus Emydura victoriae LC T,F Aus Mesoclemmys hogei CR T,F Neo Mesoclemmys tuberculata VU T,F Neo Rhinemys rufipes LC T,F Neo Cheloniidae Eretmochelys imbricata CR T,M Af,Aus,Ind,Ne,Neo,Oc,Pa Emydidae Emys orbicularis NT T,F Pa+ Emys trinacris DD T,F Pa Graptemys barbouri VU T,F Ne Malaclemys terrapin VU T,F Ne Pseudemys concinna LC T,F Ne Pseudemys nelsoni LC T,F Ne+ Terrapene nelsoni DD T,F Neo Terrapene ornata NT T,F Ne Geomydidae Batagur kachuga CR T,F Ind Batagur trivittata EN T,F Ind Cuora mouhotii EN T,F Ind,Pa Cyclemys atripons VU T,F Ind Hardella thurjii EN T,F Ind Heosemys annandalii EN T,F Ind Mauremys mutica EN T,F Ind,Pa Pangshura tecta LC T,F Ind Kinosternidae Kinosternon alamosae DD T,F Neo Sternotherus depressus CR T,F Ne Pelomedusidae Pelusios carinatus NT T,F Af Pelusios castaneus NT T,F Af,Neo* Pelusios gabonensis NT T,F Af Pelusios subniger NT T,F Af,Neo* Podocnemididae Podocnemis erythrocephala VU T,F Neo Testudinidae Chersina angulata LC T Af Gopherus polyphemus EN T Ne Kinixys erosa NT T Af Psammobates oculifer DD T Af Stigmochelys pardalis LC T Af Testudo graeca LC T Pa+ Testudo horsfieldii VU T Ind,Pa Testudo kleinmanni CR T Pa Trionychidae Apalone spinifera LC T,F Ne+ Chitra chitra CR F Ind Dogania subplana LC T,F Ind 1 Amphisbaenians have more recently been placed within the lacertiform lizard radiation (e.g., Townsend et al., 2004; Vidal and Hedges, 2005; Wiens et al., 2010). 2 has been more commonly placed under the family Eublepharidae (Kluge 1987; Grismer 1988) 3 has also been placed under family Leiosauridae (Frost et al., 2001) has also been placed under its own family, Leiocephalidae (Frost et al., 2001). 5 has also been placed under either Liolaemidae (Frost et al., 2001) or family Iguanidae, subfamily Tropidurinae, tribe Liolaemini (Schulte et al., 2003). 6 has also been placed under its own family, Pythonidae, by various authors (e.g., see Vidal and Hedges, 2004). 4 S2. Summary of species per major taxonomic groups (crocodiles, turtles & tortoises, lizards, snakes, amphisbaenia) by A) habitat system (terrestrial, freshwater, marine) and B) biogeographical realm. Some species fall within multiple system/realms. Realm: Af – Afrotropical, Aus – Australasian, Ind – Indomalayan, Ne – Nearctic, Neo – Neotropical, Oc – Oceanian, Pa – Palearctic. A) Amphisbaenia (N = 28) Crocodiles (N = 4) Lizards (N = 867) Snakes (N = 555) Turtles & tortoises (N = 46) Terrestrial 28 4 867 529 45 B) Amphisbaenia (N = 28) Crocodiles (N = 4) Lizards (N = 867) Snakes (N = 555) Turtles & tortoises (N = 46) Af 11 0 174 95 9 Aus 0 0 150 64 5 Freshwater 0 4 1 38 37 Ind 0 1 151 150 12 Ne 0 0 44 41 9 Marine 0 1 0 21 1 Neo 14 3 280 193 11 Oc 0 0 5 1 1 Pa 3 1 106 36 8 S3. Additional methodology information. S3.1 Red List assessment process and review Species assessments were produced using a network of more than 300 species experts. Draft assessments for the majority of species which did not fall under Red List initiatives via a dedicated IUCN SSC Specialist Group or Red List programme [such as the Global Reptile Assessment (GRA) or the Global Marine Species Assessment (GMSA)] were collated from published literature, reports and grey literature by the Zoological Society of London (ZSL). These draft assessments included the IUCN category based on the information available so far. These were then circulated to previously identified species experts (to act as assessors) and respective Specialist Groups for review and comment. This required the inclusion of any additional information that may have been missed in the initial draft assessment, as well as verification of the information collated thus far (including verification of the species’ distribution maps). Lastly, the IUCN Categories and Criteria were again applied to the updated assessments and sent out to the experts for final approval. All approved assessments and distribution maps were submitted to the IUCN Red List office for review. This entails the signing off on each assessment by a minimum of two reviewers (for example, the relevant Red List Authority for a specific taxon or experts on the Red Listing process) and the passing of standards and consistency checks by the IUCN Red List office, before publication on the IUCN Red List. Because of the nature of the Red List network, other programmes and species specialist groups were involved in the assessment process. The Global Reptile Assessment steered the assessment process for North American squamates in conjunction with NatureServe, and contributed to and reviewed assessments for Central America, Madagascar and the Western Ghats. The Global Marine Species Assessment (GMSA) and the IUCN SSC Sea Snake Specialist Group coordinated the assessment of sea snakes. Assessments for the following taxa were carried out in collaboration with the respective IUCN SSC specialist groups: chamaeleons (IUCN SSC Chamaeleon Specialist Group), crocodiles (IUCN SSC Crocodile Specialist Group), iguanas (IUCN SSC Iguana Specialist Group), marine turtles (IUCN SSC Marine Turtle Specialist Group), sea snakes (IUCN SSC Sea Snake Specialist Group), and tortoises and freshwater turtles (IUCN SSC Tortoise and Freshwater Turtle Specialist Group). S3.2 IUCN Criteria used to assess the extinction risk of 1,500 reptiles In order to standardise the estimation of extinction risk across different taxa and by different people, the IUCN have produced a set of Red List Categories and Criteria which have several specific aims: 1) to provide a system that can be applied consistently by different people; 2) to improve objectivity by providing users with clear guidance on how to evaluate different factors which affect the risk of extinction; 3) to provide a system which will facilitate comparisons across widely different taxa; 4) to give people using threatened species lists a better understanding of how individual species were classified. Specifically, different types of data are available for different taxa and extinction risk can be estimated via a number of factors which are correlated with increased risk, such as knowledge of population estimates or decline, range size estimates or range configuration. The IUCN Red List Categories and Criteria provide us with five different criteria to assess a species’ extinction risk, based on: • Reduction in population size (Criterion A) • Restricted geographic range (Criterion B) • Small population size and decline (Criterion C) • Very small population size (Criterion D/D1) or very restricted range (Criterion D2) • Quantitative analysis of probability of extinction (Criterion E) Meeting any one of these criteria qualifies a taxon for listing at that level of threat. In our sample, the 223 threatened species were categorised using the following criteria: Criterion A: 28 species (12.6%) Criterion B: 162 species (72.7%) Criterion C: 6 species (2.7%) Criterion D/D1: 3 species (1.3%) Criterion D2: 27 species (12.1%) Because they were the most widely used criteria to list species in threatened categories, we compile a short description of criteria A, B and D2, based on the information given in the Guidelines for using the IUCN Red List Categories and Criteria (IUCN Standards and Petitions Subcommittee. 2011. Guidelines for Using the IUCN Red List Categories and Criteria. Version 9.0. Prepared by the Standards and Petitions Subcommittee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf, 2001). Criterion A: The A criterion is designed to highlight taxa that have undergone a significant decline in the near past, or are projected to experience a significant decline in the near future. The criterion is split into the criteria A1, A2, A3 and A4 (IUCN Standards and Petitions Subcommittee, 2011). Criterion A1 deals with reductions in the past 10 years or three generations (whichever is longer) and is applicable to taxa in which the causes of reduction are clearly reversible AND understood AND have ceased (IUCN Standards and Petitions Subcommittee, 2011). Criterion A1 has been applied to seven of the 28 species classed as threatened under criterion A. Criterion A2 also deals with reductions in the past 10 years or three generations (whichever is longer) but for taxa where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible (IUCN Standards and Petitions Subcommittee, 2011). Criterion A2 has been applied to 25 of the 28 species classed as threatened under criterion A. Criterion A3 deals with population reductions projected or suspected to be met in the future 10 years or three generations (whichever is longer, but up to a maximum of 100 years) (IUCN Standards and Petitions Subcommittee, 2011). Criterion A3 has been applied to only one of the 28 species classed as threatened under criterion A. Criterion A4 deals with reductions observed, estimated, inferred, projected or suspected over any 10 year or three generation time period (up to a maximum of 100 years into the future), where the time period must include both the past and the future, and where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible (IUCN Standards and Petitions Subcommittee, 2011). Criterion A4 has been applied to nine of the 28 species classed as threatened under criterion A. The reduction can be the reduction based on (a) direct observation (A1, A2 and A4 only), (b) an index of abundance appropriate to the taxon, (c) a decline in area of occupancy, extent of occurrence and/or quality of habitat, (d) actual or potential levels of exploitation, and/or (e) the effects of introduced taxa, hybridization, pathogens, pollutants, competitors or parasites (IUCN Standards and Petitions Subcommittee, 2011). Criterion B: The B criterion has been designed to identify populations with restricted distributions that are also severely fragmented, undergoing a form of continuing decline, and/or exhibiting extreme fluctuations (in the present or near future; IUCN Standards and Petitions Subcommittee, 2011). To qualify for criterion B, the general distributional threshold must first be met for one of the categories of threat, either in terms of extent of occurrence (Criterion B1: EOO is 20,000 km2 for VU; 5,000 km2 for EN; 100 km2 for CR) or area of occupancy (Criterion B2: AOO is 2,000 km2 for VU; 500 km2 for EN; 10 km2 for CR) (IUCN Standards and Petitions Subcommittee, 2011). The taxon must then meet at least TWO of the three options listed for criterion B: (a) severely fragmented or known to exist in no more than x locations (x being 10 locations for VU; 5 locations for EN; 1 location for CR), (b) continuing decline in range (extent of occurrence or area of occupancy), habitat (quality or extent) or numbers of mature individuals, locations or subpopulations, or (c) extreme fluctuation in range (extent of occurrence or area of occupancy) or numbers of mature individuals, locations or subpopulations (IUCN Standards and Petitions Subcommittee, 2011). In our analysis, 157 species qualified as threatened under criterion B1 and 20 under criterion B2 (out of a total of 162 species classed under criterion B). Criterion D2 Criterion D identifies very small or restricted populations. Under Vulnerable, the criterion is split into D1 (very small population size of less than 1,000 mature individuals) and D2 (very restricted population with a plausible threat) (IUCN Standards and Petitions Subcommittee, 2011). Typically, and as a guideline, criterion D2 suggests an area of occupancy of less than 20 km2 or that the species exists at typically five or fewer locations; however, the thresholds are not intended to be interpreted in a strict sense and species-specific (IUCN Standards and Petitions Subcommittee, 2011). Crucially, restriction in itself is no cause for a listing under criterion D2; instead, there needs to be a plausible natural or anthropogenic threat which is likely to affect the species in the near future, i.e., within a very short time period (e.g., one or two generations) in an uncertain future, the species is capable of becoming Critically Endangered or even Extinct due to the plausible threat (IUCN Standards and Petitions Subcommittee, 2011). S3.3 Useful links on the IUCN Red List Categories and Criteria and the Red List Index (RLI) and Sampled Red List Index (SRLI) The following links provide valuable information about the IUCN Red List Categories and Criteria, their application and the standards and documentation requirements of the IUCN. IUCN Red List Categories and Criteria, Version 3.1: http://www.iucnredlist.org/documents/redlist_cats_crit_en.pdf Guidelines for using the IUCN Red List Categories and Criteria, Version 9.0: http://www.iucnredlist.org/documents/RedListGuidelines.pdf Documentation Standards and Consistency Checks for IUCN Red List Assessments and Species Accounts, Version 1.1. This also contains a map defining the geographic extent of biogeographical realms: http://www.iucnredlist.org/documents/RL_Standards_Consistency_1_1.pdf Information about the Red List Index: http://www.iucnredlist.org/about/publicationslinks#Red_List_Index IUCN Red List Index Guidelines for the Sampled Approach: http://static.zsl.org/files/iucn-rli-sampled-approach-guidelines-652.pdf The geographic extent of biogeographical realms are defined as laid out in the Millennium Ecosystem Assessment, see Figure 1.3 in the following document link (or go to the Documentation Standards and Consistency Checks for IUCN Red List Assessments and Species Accounts, Version 1.1 document above): http://www.maweb.org/documents/document.354.aspx.pdf S4. Species richness of threatened and Data Deficient reptiles in the sample. A) threatened species in the sample (Nterr/fw = 221; Nmarine = 2); B) Data Deficient species in the sample (Nterr/fw = 313; Nmarine = 3). A B S5. Histogram of the proportion of all non-Data Deficient lizards and snakes by range size category (terrestrial species only). Snake ranges in the sample were larger than the ranges of lizards, which may have contributed to the fact that proportionally more lizards were classed as threatened than snakes. Over half of terrestrial snake species had ranges of more than 100,000 km2, while comparatively more lizards fell into the smaller range classes than snakes. S6. Additional References in Supplementary Material IUCN Standards and Petitions Subcommittee, 2011. Guidelines for Using the IUCN Red List Categories and Criteria. Version 9.0. Prepared by the Standards and Petitions Subcommittee. Download: http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Frost, D.R, Etheridge, R., Janies, D., Titus, T.A., 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates 3343, 1-38. Schulte, J.A. II, Valladares, J.P., Larson, A., 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of Iguanian lizards. Herpetologica 59, 399-419. Townsend, T.M., Larson, A., Louis, E., Macey, J.R., 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology 53, 735–757. Vidal, N., Hedges, S.B., 2004. Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society London B, Suppl. 271: 226-229. Vidal, N., Hedges, S.B., 2005. The phylogeny of squamate reptiles (lizards, and amphisbaenians) inferred from nine protein-coding genes. Comptes Rendu Biologies 328, 1000-1008. Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G., Sites Jr, J.W., 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59, 674-688.