

Fluids, Electrolytes, Acid-Base Disorders, and Nutrition Support Roland N. Dickerson, Pharm.D., BCNSP, FCCP, FCCM, FASHP, FASPEN University of Tennessee College of Pharmacy Memphis, TN

Conflict of Interest Disclosures

- Nestlé Nutrition (consultant; speaker)
- NPS Pharmaceuticals (consultant)

Learning Objectives

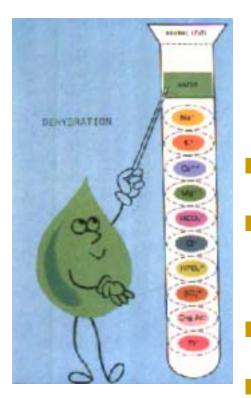
- 1. Assess hypo and hypernatremia and develop an appropriate treatment plan.
- 2. Discuss causes and treatment of common intracellular electrolyte disorders.
- 3. Differentiate causes for metabolic acidosis and alkalosis and construct a therapeutic treatment.
- 4. Specify appropriate route for nutrition therapy, amounts, and component formulation.
- 5. Identify markers for assessing tolerance, safety, and efficacy of enteral or parenteral nutrition.

Learning Objectives (continued)

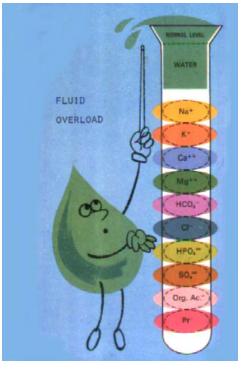
- 5. Describe methods for ensuring glycemic control.
- 6. Identify pertinent drug-nutrient interactions, and provide recommendations for the safe and effective delivery of medications to patients receiving enteral or parenteral nutrition therapy.
- 7. Discuss current controversies regarding nutrition therapy for critically ill patients.

Lecture Outline

- 1. Fluid and Electrolyte Overview (pg 54-56)
- 2. Water and Sodium Aberrations (pg 56-57)
- 3. Intracellular Electrolytes (pg 57-68)
- 4. Acid-Base Disorders (pg 68-74)
- 5. Nutritional Assessment, Energy/Protein Requirements (pg 74-80)
- 6. Enteral Nutrition (pg 80-82)
- 7. Parenteral Nutrition (pg 82-85)
- 8. Glycemic Control (pg 86-88)
- 9. Controversies in Nutrition Support for Critically Ill Patients (pg 88-94)


Body Water and Fluids

- Total body water: ~60% of weight for males;
 55% for females lower % for obese/elderly
- Daily fluid requirements: 30 to 35 mL/kg/d (over-estimates obese, under-estimates small person). Alternative: ~1.4 to 1.5 L/m²/d BSA
- 100 mL/kg for first 10 kg, 50 mL/kg for next 10 kg, and then 20 mL/kg for each kg thereafter
- Insensible losses ~550 mL/m²/d BSA increased ~10% to 15% per degree > 37°C


Fluid Balance Assessment

- Recorded volume intake volume output
- "Normal" fluid balance ~ 600 to 800 mL/d
- "Normal" fluid balance decreased with ventilator dependency (less humidified air lost)
- "Normal" fluid balance increased with fever
- Physical exam (mucous membranes, decreased skin turgor, edema)

Fluid Balance Assessment

- Hemodynamic markers (Swan-Ganz catheter measurements, CVP, tachycardia?)
- Urine output; I/Os, fever
- BUN, BUN/creatinine ratio
- Serum sodium change
 - Alkalemia ("contraction alkalosis")

Glycemic control

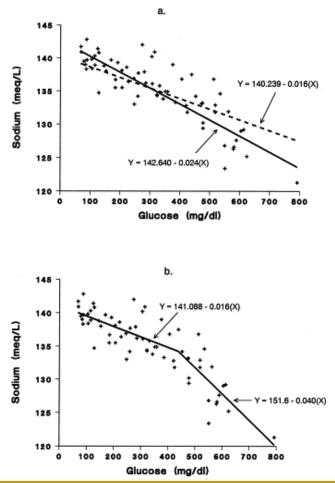
Electrolyte Content of GI Fluids (Table 4)

Fluid	Daily Volume (mL)	Na (mEq/L)	K (mEq/L)	CL (mEq/L)	HCO3 (mEq/L)	Mag (mEq/L)
Stomach	1000 – 2000	60 –90	10-15	100 – 130		0.9
Duodenum	400 - 600	140	5 –10	90 – 120	80	
Small intestine	2000 – 2500	140	5 –10	90 –120	30 – 40	6 –12
Colon	< 300	60	20 – 30	50		6 –12
Pancreas	600 - 800	140	5 –10	75	115	0.4
Bile	300 - 600	140	5 –10	100	30	1.1

Self Assessment Question #2 (pg 52) (from Tables 4 and 5): Which of the following would be the best replacement fluid for nasogastric losses? A. 0.9% sodium chloride and KCL 20 mEq/L

B. 0.45% sodium chloride and KCL 20 mEq/L

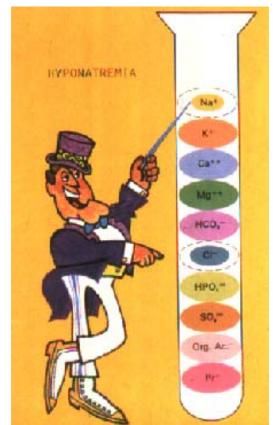
- C. 5% dextrose in 0.225% sodium chloride and KCL 20 mEq/L
- D. Lactated ringers solution

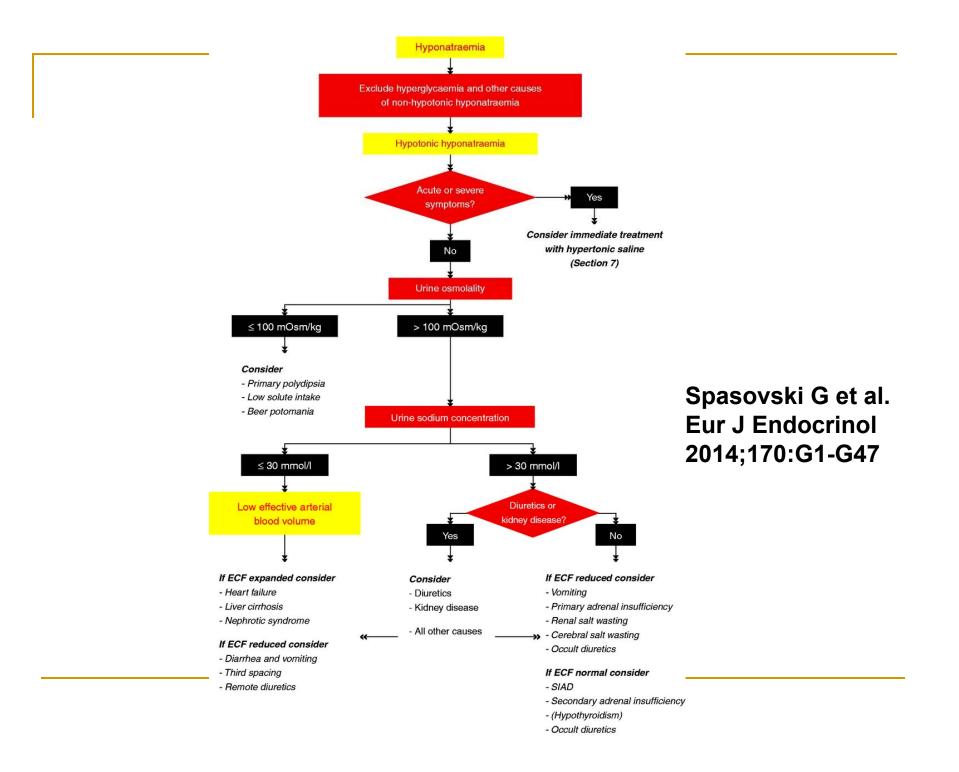

Evaluation of Hyponatremia

- Rule out pseudo or factitious hyponatremia (hyperproteinemia, hyperlipidemia, hypoglycemia)
- Exclude mannitol, glycine for unmeasured osmoles
- Evaluate ECF volume (American method) or urine sodium/osmolality (European method)
- Evaluate urine sodium/osmolality (American method) or ECF volume (European method)

Consider patient conditions/diagnoses

Correcting Serum Sodium Concentration for Hyperglycemia


- For every 100 g/dL increase in BG > 100 mg/dL; serum Na will decrease by ~ 1.6 to 2.4 mEq/L
- Example: A patient with a serum glucose of 300 mg/dL and a Na of 130 mEq/L is given insulin therapy. What is the corrected serum Na once his BG is treated to normal?
- 300 100 = 200; 200/100 = 2
- 2 X (1.6 to 2.4 mEq/L) = 3 to 5 mEq/L
- His "corrected" serum Na would be = 130 + (3 to 5) = 133 to 135 mEq/L



Hillier, TA. Am J Med.1999;106:399-403.

Hyponatremia

- Defined as a serum Na < 135 mEq/L (some clinicians are unconcerned unless serum Na < 130 mEq/L; severe: Na < 120 mEq/L)
- Sodium content within a defined volume of water
- MUST be interpreted with assessment of ECF status
- Patients can be hypovolemic, euvolemic, or hypervolemic (and have a low serum Na)

Causes of Syndrome of Inappropriate Antidiuretic Hormone*

CNS Disorders		
Trauma or stroke (subdural hematoma, subarachnoid or		
intracranial hemorrhage)	AC	
Infection (meningitis, encephalitis, brain abscess)	Cerebr	
Malignancy (brain tumors)	Syndrome of I	
Malignancy	CSWS	
Small cell carcinoma of the lung		
Pancreatic carcinoma	Hyponatremia	
Lymphoma, Hodgkin's disease, sarcoma	Decreased extracellu	
Pulmonary Infection	Negative sodium bala	
Pneumonia	-	
Lung abscess	Negative fluid balance	
Tuberculosis	CVP/PCWP/EDVI de	
Drugs		
Carbamazepine	Decreased body weig	
Nonsteroidal anti-inflammatory drugs	Serum osmolality inc	
Chlorpropamide	Urine osmolality incre	
Tricyclic antidepressants and selective serotonin reuptake inhibitors		
Cyclophosphamide, vincristine, vinblastine		
Narcotics	CVP = central venou EDVI = end-diastolic	
Angiotensin converting enzyme inhibitors		
Clofibrate	PCWP = pulmonary	
Oxytocin		
ADH analogs (desmopressin, vasopressin)		
Antipsychotic agents		
Endocrine Disorders		
Pituitary tumor		
Hypothyroidism		
Adrenal insufficiency		
Other conditions		
Positive pressure ventilation		
AIDS	Di	
Stress response (eg, surgery, trauma, thermal injury, sepsis)	20	

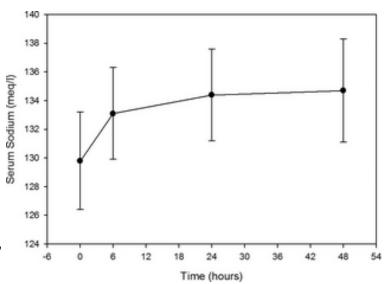
Comparison of Clinical Findings in oral Salt Wasting Syndrome (CSWS) vs Inappropriate Antidiuretic Hormone (SIADH)*

CSWS	SIADH	
Hyponatremia	Hyponatremia	
Decreased extracellular fluid volume	Normal or expanded extracellular fluid volume	
Negative sodium balance	Variable sodium balance	
Negative fluid balance	Positive fluid balance or fluid equilibrium	
CVP/PCWP/EDVI decreased	CVP/PCWP/EDVI normal or increased	
Decreased body weight	Increased body weight	
Serum osmolality increased or normal	Serum osmolality decreased	
Urine osmolality increased	Urine osmolality increased	
Urine sodium concentration increased	Urine sodium concentration increased	

us pressure ic volume index

capillary wedge pressure

Stress response (eg, surgery, trauma, thermal injury, sepsis)


Dickerson RN. Hospital Pharmacy. 2002;37:1336-1339.

Treatment of Hyponatremia

- Acute vs severe symptoms hypertonic saline vs. conivaptan
- Do not increase serum Na > 10-12 mEq/L/d (increased risk for central pontine myelinolysis); most clinicians prefer 6-8mEq/L/d change in absence of seizures, etc.
- ECF expanded fluid and Na restriction
- ECF depleted 0.9% NaCL

Treatment of Hyponatremia

- ECF normal SIADH or adrenal insufficiency
- Fluid restriction first
- Consider conivaptan or tolvaptan if available
- Fluid restriction with use of 0.9% NaCL solution (make PN or EN solutions isonatremic); diuretic therapy may be needed

4.3 <u>+</u> 2.6 mEq/L increase in serum Na 24 hrs after a single 20 mg bolus of conivaptan

Marik PE et al. Pharmacotherapy. 2013;33:51-55.

Patient Case

- 55 yo 70 kg woman with pneumonia. Serum Na of 125 mEq/L on day 5 of hospitalization. BG is 167 mg/dL, BUN 20 mg/dL, creatinine 1.1 mg/dL
- Receiving EN (1kcal/mL, 62 g protein/L) @ 60 mL/hr + D5 ½ NS @ 25 mL/hr
- Fluid balance: + 300 to 600 mL/d for past 3 days. No edema.
- Serum osmolality 265 mOsm/kg, urine osmolality 490 mOsm/kg, urine Na 67 mEq/L

What is the most likely etiology for the patient's hyponatremia?

- A. Factitious hyponatremia
- **B.** Adrenal insufficiency
- C. Cerebral salt wasting

D. SIADH

What would be the most appropriate treatment for this woman?

- A. Sodium chloride tablets 1 g TID
- B. Limit fluids (fluid restriction)
- C. Change the intravenous fluid to 0.9% NaCL
 - D. Provide a short-term infusion of 3% NaCL

Chapter Case, Pg 57

What change in the enteral feeding formula would be best?

- A. Add NaCL 100 mEq/L to the EN formula
 - B. Change the formula to a fish oil enriched formula
- - C. Change the formula to a low carbohydrate, high fat formula
 - D. Change the formula to a 2 kcal/mL formula and decrease the rate

Hypernatremia

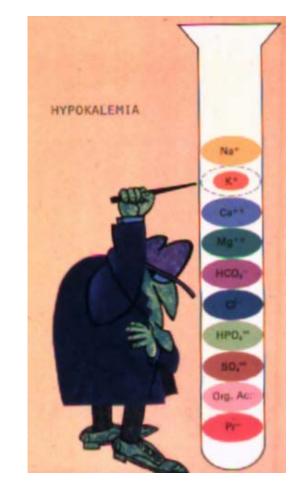
- Hypervolemic: restrict water and Na, diuretics
- Hypovolemic: dehydration (water loss in excess of sodium)
- Euvolemic: primarily free water loss (fever, thermal injury, diabetes insipidous)
- Water deficit (L): body weight(kg)
 X 0.6 X [(serum Na/140)-1]*

HYPERIATRENIA

*commonly reported but ? accuracy – usually underestimates total body water and free water losses. Cheuvront SN et al. Am J Clin Nutr. 2013;97:79-85

Hypernatremia

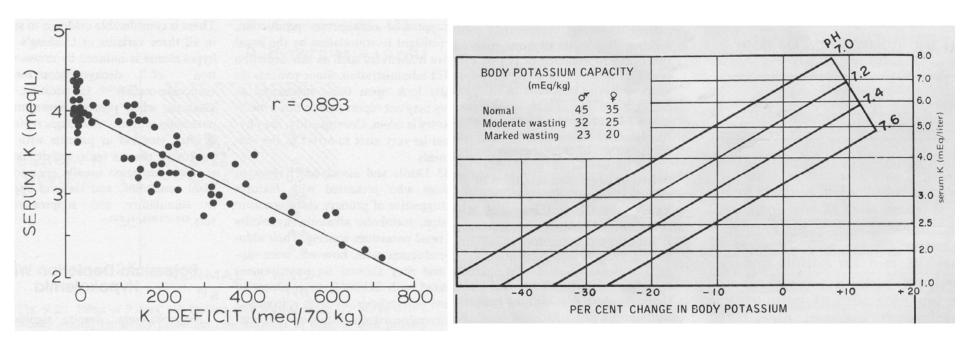
- Assess ECF volume status
- Do not decrease > 10-12 mEq/L/d (cerebral edema)
- Hypervolemic: reduce Na and fluid intake
- Hypovolemic: hypotonic fluids (e.g., $\frac{1}{2}$ NS, D5 ¹/₄ NS, D5W, water boluses per tube/po; delete Na in PN temporarily)
- Euvolemic: hypotonic fluids, (central DI: nasal desmopressin 10 mcg BID, IV desmopressin 1-2 mcg BID), (nephrogenic DI: Na


restriction, thiazides –paradoxical Tx)

Potassium Homestasis

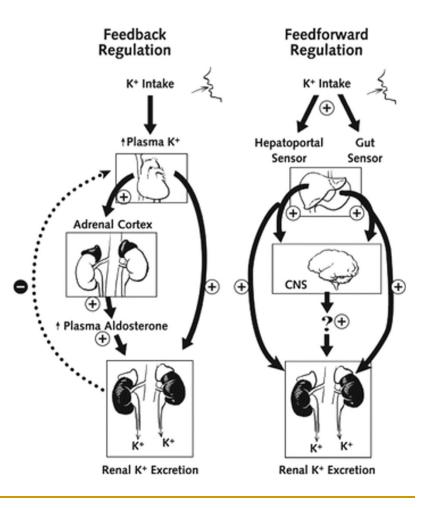
- Total body stores 35 50 mEq/kg in normal healthy adults (25 – 30 mEq/kg if undernourished)
- Serum K influenced by changes in pH (for every 0.1 increase in pH, serum K decreases by ~ 0.6 mEq/L and vice-versa
- Average requirement ~ 0.5 to 1.2 mEq/Kg/d
- Kidney is primary route of elimination
- Magnesium is required for normal potassium homeostasis

Etiologies for Hypokalemia


- Increased requirements due to building of new muscle/tissue
- Increased gastrointestinal fluid losses
- Hypomagnesemia
- Medications –Beta agonists, catecholamines, insulin, amphotericin B, diuretics, bicarbonate

Increased urinary losses (DI, DKA)

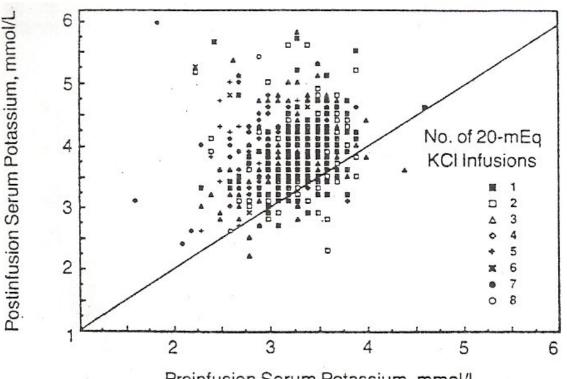
Estimating Potassium Deficit


- Based on estimate of total body potassium
- Serum K = 3 mEq/L ~ 10% total body deficit
- Serum K = 2.5 mEq/L ~20% total body deficit

Sterns RH et al. Medicine.1981;60:339.

Treatment of Hypokalemia Enteral vs Parenteral

- Enteral K is safer due to slower/controlled absorption rate
- Enteral K is safer due to feedforward regulation of K homeostasis
- Enteral K may be more difficult for some patients

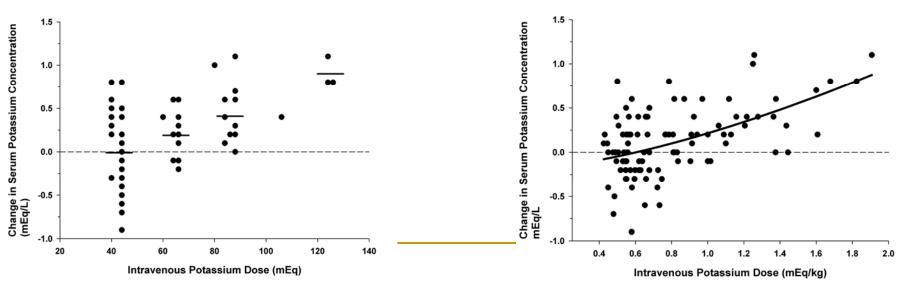

Greenlee ML al. Ann Intern Med 2009;150:619-625

Intravenous Potassium Therapy

- When po potassium not possible or if patient has severe hypokalemia
- Maximum concentration of 60 mEq/L of KCL for a peripheral IV.
- "Boluses" (e.g., 40 mEq) cannot be given via peripheral IV: burning, phlebitis, pain. Must be given via central vein.
- Maximum infusion rate of 10 mEq/hr (when pt is not on an ECG monitor); 20 mEq/hr if pt is being monitored.
- 40 mEq/hr only if patient has paralysis or lifethreatening arrhythmia.

Intravenous Potassium Dosage

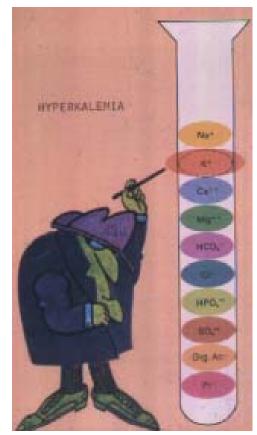
- For every 40 mEq IV KCL given, serum K increases by 0.5 to 0.6 mEq/L?
- 495 infusion sets in 190 patients
- KCL 20 mEq IV over 1 hour
- 0.25 mEq/L increased per 20 mEq dose


Preinfusion Serum Potassium, mmol/L

Potassium Dosing: Effect of Body Size, Renal Function, Nutrition Therapy?

Empiric Dosing Guidelines for Potassium Chloride

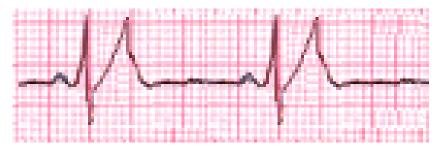
Serum K (mEq/L)	Potassium Dosage (mEq)*
3.5 – 3.9	40 mEq X 1 dose
3.0 - 3.4	40 mEq X 2 doses
< 3	40 mEq X 3 doses


*Use half dose for renal impairment; may need to be adjusted based on body size, nutrition therapy, and ongoing losses. Given at 10 mEq/hr.

Johnston C et al. ASPEN meeting. February 2015.

Hyperkalemia

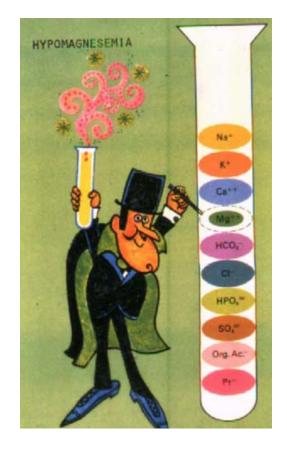
- Rule out factitious hyperkalemia
- Etiologies: excessive intake, acidemia, renal impairment, tissue catabolism (chemotherapy, rhabdomyolysis), elderly are susceptible, hyporeninemic hypoaldosteronism, blood transfusion



 Etiologies – Drugs (K sparing diuretics, ACE and ARBs, NSAIDs, Heparin, Trimethoprim, Octreotide, Pen G (1.6 mEq K/million units).

Hyperkalemia

Treatment of Hyperkalemia


- Dextrose/Insulin 50 g / 15 units IV
- Sodium bicarbonate 50 100 mEq IV
- Calcium gluconate 2 g IV
- Potent beta-2 agonist (albuterol)
- Sodium polystyrene sulfonate 15 to 60 g up to every 6 hrs (in-vivo exchange capacity of ~ 1 mEq K per g).
- Discontinue all sources of K intake
- ? Loop diuretic therapy
- Dialysis

Magnesium Homeostasis

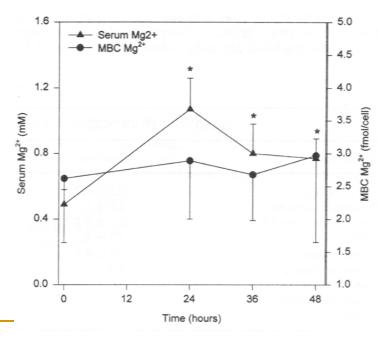
- 50% of magnesium is in bone; 1% of total body magnesium is in the ECF
- Normal serum magnesium: 1.8 to 2.4 mg/dL
- Serum: 60% ionized; 15% complexed; 25% protein bound.
- Kidney is primary route of elimination
- Influences potassium and calcium metabolism

Hypomagnesemia

- Definition: < 1.8 mg/dL</p>
- Symptomatic: < 1.5 mg/dL</p>
- Causes hypokalemia
- Causes hypocalcemia
- Chvostek's/Trousseau's/QT prolongation, weakness, tetany
- Etiologies: diarrhea, alcohol, sepsis/critical illness, pancreatitis, burns, brain injury, drugs (see next slide)

Drug-Induced Hypomagnesemia

- Diuretics
- Amphotericin B
- Cyclosporin/tacrolimus
- Foscarnet
- Pentamidine
- Cisplatin/Carboplatin/ifosfamide/Cetuximab
- Lactulose/orlistat


Treatment of Hypomagnesemia

- 32 to 48 mEq/d (4-6 g/d) sufficient to maintain normal serum Mg concentrations
- Estimated magnesium deficit: for a serum Mg concentration < 1.5 mg/dL, a 1 to 2 mEq/kg deficit can be expected
- Should be replaced over 4-5 days
- Treat the etiology (ies)
- Takes 48 hrs for the serum concentration to equilibrate following a short term infusion

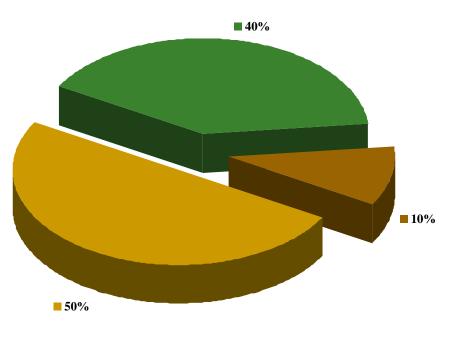
Empiric Magnesium Dosing Guidelines

Serum magnesium (mg/dL)	Intravenous Magnesium Sulfate dosage (g/kg)*
1.6 to 1.8	0.05 g/kg
1.0 to 1.5	0.1 g/kg
< 1.0	0.15 g/kg

*Use half dose for renal impairment; may need to be adjusted based on body size, nutrition therapy, and ongoing losses. Given at 1 g/hr.

Sacks et al. Nutrition.1997;13:303-8.

Common Oral Magnesium Products and Dosing


Salt Form	Strength (mg)	Elemental Mg (mEq)	Usual Dosing
Oxide	400 100	19.8 6.9	1-2 tablets BID-TID
Gluconate	500	2.2	1-2 tablets BID-TID
Chloride	100	2.6	1-2 tablets BID-TID

Calcium Homeostasis

- Ionized calcium (iCa): physiologically active fraction of serum total calcium
- "Normal" serum calcium concentration is 8.5 to 10.5 mg/dL
- "Normal" serum ionized calcium concentration is 1.12 – 1.32 mmol/L

Calcium Homeostasis

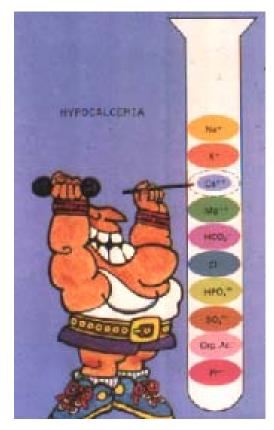
- Ionized calcium (iCa): physiologically active fraction of serum total calcium
- "Normal" serum calcium concentration is 8.5 to 10.5 mg/dL
- "Normal" serum ionized calcium concentration is 1.12 – 1.32 mmol/L

■ Free ■ Protein-Bound ■ Complexed

Calcium Homeostasis

- Average daily requirement with PN: 15 mEq/d calcium gluconate
- Kidney is primary route of elimination
- Magnesium can influence calcium homeostasis (end organ resistance to PTH +/- impaired secretion of PTH)
- Mild hypocalcemia will correct within ~ 48 hrs after correction of hypomagnesemia

Correcting Serum Calcium Conc for a Low Serum Albumin Conc

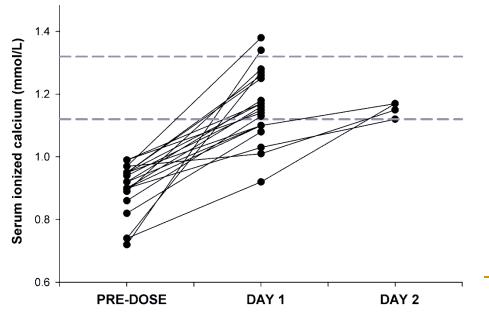

- For every 1 g/dL decrease in serum albumin concentration, serum calcium concentration will decrease by 0.8 mg/dL- Endres, 1999; Orrell, 1971;35:483-489
- Only use in NON-ICU patients!
- Use of the modified Orrell equation (above) correctly identified 1 out of 21 hypocalcemic patients (from a total of 100 NSS trauma patients) - Dickerson RN. JPEN. 2004;28:133-41.

Correcting Serum Calcium Conc for a Low Serum Albumin Conc

- Example: A patient with a serum albumin 2 g/dL, serum calcium 7 mg/dL
- Normal serum albumin = 4 g/dL
- 4 2 = 2
- 2 X 0.8 = 1.6
- "Corrected" serum calcium = 7 + 1.6 = 8.6 mg/dL

Hypocalcemia

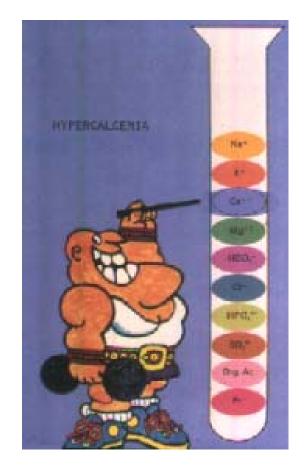
- Prolonged QTc, parasthesias, Chvostek's and Trousseau's signs, PVCs, seizures, tetany, torsades des pointes
- Mild: iCa 1 1.12 mmol/L
- Moderate to severe: iCa < 1 mmol/L
- Multiple causes: critical illness, CRRT, massive blood transfusion, alkalemia, hypomagnesemia, hyperphosphatemia, pancreatitis, drugs (see hypoMg drugs)


When Should Hypocalcemia be Treated?

- Significant or symptomatic hypocalcemia
- Massive blood transfusion with pre-existing myocardial disease
- Calcium channel blocker overdose
- Receiving inotropic agents and/or vasopressors
- Adjunct to emergent management of severe hyperkalemia
- Coagulopathy?
- Prevention of worsening hypocalcemia?

Treatment of Hypocalcemia

Treat the cause if possible!

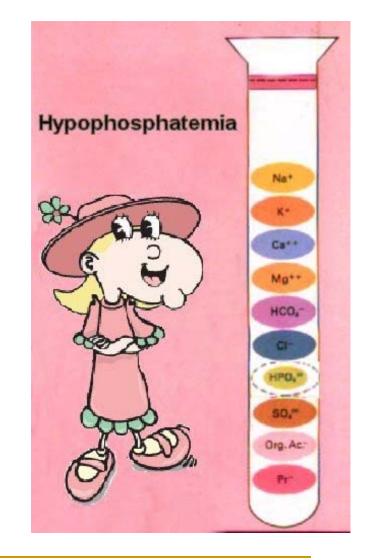

iCa (mmol/L)	IV calcium gluconate dose
1 – 1.12	2 g in 100 mL over 2 hrs
< 1	4 g in 100 mL over 4 hrs

Dickerson. JPEN.2005;29:436-431. Dickerson. JPEN.2007;31:228-233. Dickerson. Nutrition.2007;23:9-15.

Etiologies for Hypercalcemia

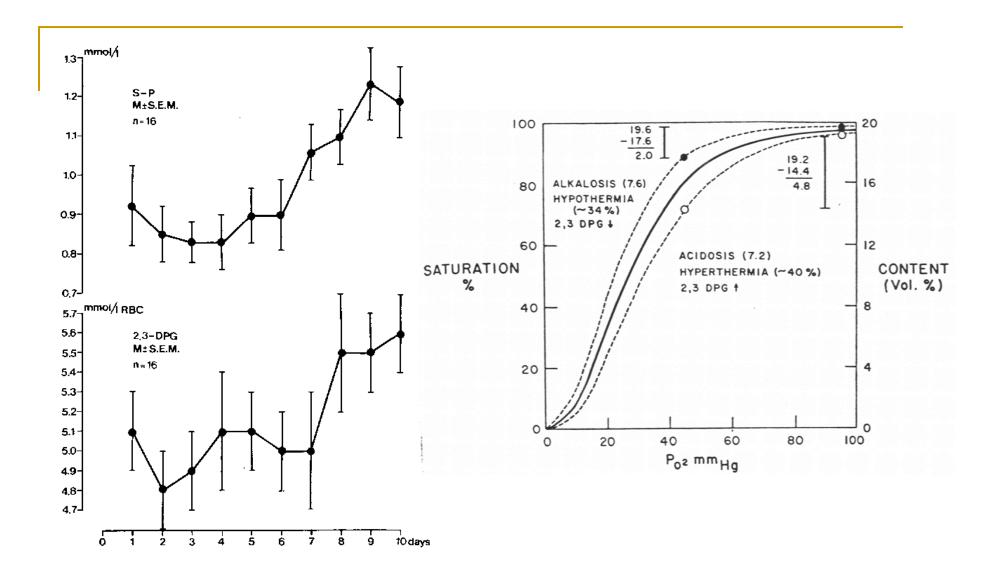
- Immobilization
- Metabolic bone disease
- Immobility
- Excessive intake
- Malignancy
- Drugs (vitamin D)
- Dehydration
- Granulomatous diseases (TB, sarcoidosis)

Treatment of Hypercalcemia


- IV fluids/Rehydrate! Add furosemide if necessary.
- Mobilize the patient
- Calcitonin
- Pamidronate

Phosphorus Homeostasis

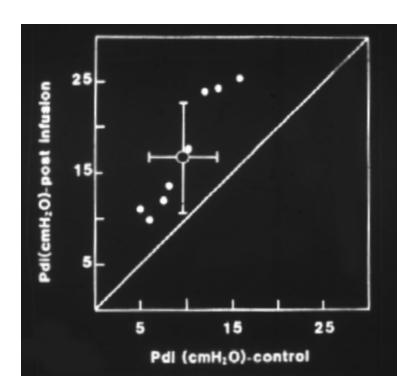
- Regulated by vitamin D and PTH
- Normal serum concentration: 2.5 4.5 mg/dL
- During critical illness, goal is to achieve ~ 4 mg/dL (based on Zazzo and Aubier studies)
- Kidney is primary route of elimination
- Mean Renal Phosphate Threshold Conc (TmP/GFR) is ~ 3 – 3.3 mg/dL (trauma and thermally injured patients – Dickerson, 2001)


Etiologies of Hypophosphatemia

- Malnourishment
- Alcoholism
- Refeeding syndrome
- Drugs (insulin, catecholamines)
- Critical Illness/TBI/Thermal injury/DKA/alkalemia
- Hepatic Resection
- Hyperparathyroidism
- Cancer (fibroblast growth factors)

Hollywood and Refeeding Syndrome

- HBO's Band of Brothers. Easy Company, 101st Airborne, US Army during WWII.
- Liberation of Landsberg Concentration Camp.



Loven L. J Trauma.1986;26:348-52. Sheldon GF. J Trauma.1973;15:971-9.

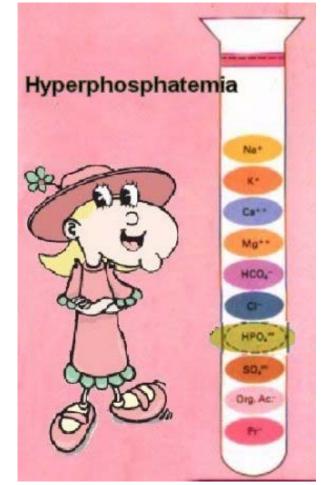
Effect of Phosphorus Supplementation on Organ Function

Variable	Before	After	P <
Phos	1.0 <u>+</u> 0.4	3.8 <u>+</u> 1.4	0.01
HR	102 <u>+</u> 17	105 <u>+</u> 13	NS
CI	3.8 <u>+</u> 1.9	4.5 <u>+</u> 1.8	0.01

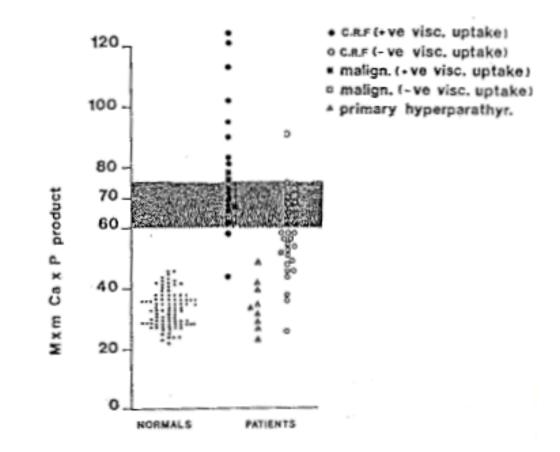
Zazzo. Inten Care Med.1995;21:826-31.

Aubier. NEJM.1995;313:420-4.

IV Phosphorus Dosing for Hospitalized Patients


Serum Phosphorus Conc (mg/dL)	Dosage (mmol/kg) General/ICU	Dosage (mmol/kg) Trauma/Burn 0.32
2.3 to 3 mg/dL	0.16	0.64
1.6 to 2.2 mg/dL	0.32	• 0.04
<u> < 1.5 mg/dL </u>	0.64	1

Infuse intravenous phosphorus at 7.5 mmol/hr


Hyperphosphatemia

Renal failure

- Immobility/chronic critical illness-associated metabolic bone disease
- Vitamin D toxicity
- Excessive phosphorus intake

Hyperphosphatemia

Velentzas. Adv Exper Med Biol. 1978;103:195-201.

Treatment of Hyperphosphatemia Phosphate Binders

Initial Dose

30 ml Q6hr

DrugP-binding capacityAluminum hydroxide22.3 mg/ 5 ml(not recommended in renal failure)

Calcium carbonate 43 mg/ g calcium 1 g QID (less effective at higher gastric pH; higher Ca content)

Calcium acetate 106 mg/ g calcium 1334 to 2001 mg TID (lower in calcium content than Ca carbonate)

Sevelamer 800 mg/cap or packet 800 mg TID (Maximal binding at pH 7; powder or capsule)

Lanthanumdata not available500 mg TID

Schucker et al. Am J Health-Syst Pharm.2005;62:2355-61.

Patient Case

- 55 yo 70 kg man, s/p total colectomy and hepatic resection for stage IV colon Ca. Twenty pound unintentional weight loss. Frequent ETOH. NG output > 2 L/d. PN initiated.
- Na 140 mEq/L, K 3.2 mEq/L, CL 102 mEq/L, tot CO2 25 mEq/L, BUN 14 mg/dL, creat 0.9 mg/dL, Ca 8.1 mg/dL, phos 2 mg/dL, mag 1.4 mg/dL, albumin 2.5 g/dL.

Which potassium-phosphorus dosing regimen is best for this patient?

- A. KCL liquid 40 mEq per NGT X 2 doses,
 2 Neutra-Phos capsules in water per NGT
- B. Kphos 30 mmol IV X 1 dose, 2 doses of KCL liquid 40 mEq per NGT
- C. KCL 40 mEq IV X 1, Kphos 45 mmol IV X 1
- D. KCL 40 mEq IV X 1, Kphos 30 mmol IV X 1

The patient is also given Mag Sulfate 6 g IV over 6 hrs. His repeat serum Mag the next day is 1.9 mg/dL. Which next therapeutic option is best?

- A. Magnesium oxide 500 mg BID X 4-5days
 - B. Magnesium sulfate 2-4 g IV daily X 4-5 days
 - C. Give a second dose of 6 g of Mag Sulfate IV
 - D. No additional treatment is necessary

Patient Case

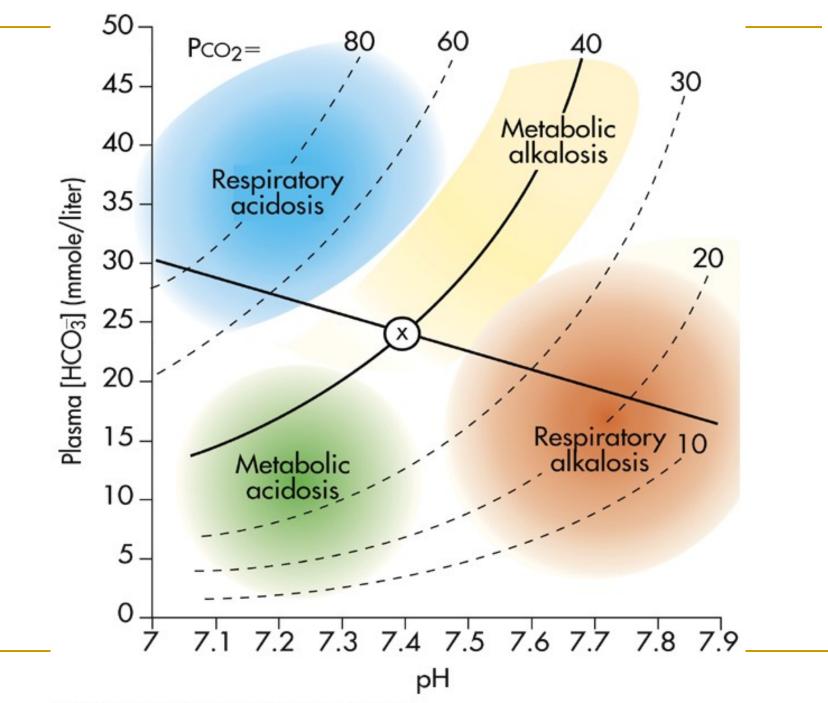
- 24 yo 70 kg man s/p GSW abdomen with multiple abdominal injuries. He received 10 units of PRBC.
- Serum iCa is 0.86 mmol/L, K 4.6 mEq/L, Mag 1.8 mEq/L.
- Good renal function (sCr 0.8 mg/dL and UOP > 0.5 mL/kg/hr).

What is the most likely etiology for his hypocalcemia?

- A. Hypomagnesemia
- B. Excessive urinary diuresis
- C. Blood transfusion

Patient Case, Pg 65, Question #6

Which therapeutic regimen would be best for this patient?


- A. Calcium gluconate 2 g IV over 2 hrs
 - B. Calcium gluconate 4 g IV over 4 hrs
- C. Calcium chloride 1 g IV push over 5 to 10 min
 - D. No calcium therapy necessary

Lecture Outline

- 1. Fluid and Electrolyte Overview (pg 54-56)
- 2. Water and Sodium Aberrations (pg 56-57)
- 3. Intracellular Electrolytes (pg 57-68)
- 4. Acid-Base Disorders (pg 68-74)
- 5. Nutritional Assessment, Energy/Protein Requirements (pg 74-80)
- 6. Enteral Nutrition (pg 80-82)
- 7. Parenteral Nutrition (pg 82-85)
- 8. Glycemic Control (pg 86-88)
- 9. Controversies in Nutrition Support for Critically Ill Patients (pg 88-94)

Acid-Base Disorders

- Severe Acidemia (pH < 7.25)</p>
- Severe Alkalemia (pH ≥ 7.55)
- Metabolic acidosis
- Metabolic alkalosis
- Compensatory response to A-B disorders
- Base Excess freedom from memorizing acid-base correction formulas?

Mosby items and derived items copyright @ 2004, 2000 by Mosby, Inc.

Metabolic Acidosis: Anion Gap Anion Gap = Na – CL – HCO3 Normal range: ~3 – 11 or 12 mEq/L

- Every 1 g/dL decrease in serum Alb < 4 g/dL contributes to an unmeasured ~2.5 mEq/L in gap
- Example: Na 145 mEq/L, CI 110 mEq/L, HCO3 20 mEq/L, albumin 2 g/dL
- Anion Gap = 145 110 20 = 15
- Correction Factor = 4-2 = 2 X 2.5 = 5
- Corrected Anion Gap = 15 + 5 = 20

Causes of an Anion Gap Acidosis A MUD PIE

- Aspirin (salicylates)
- Methanol
- Uremia (renal failure) including rhabdomyolysis
- Diabetes (Diabetic Ketoacidosis)
- Paraldehyde
- Infection or Ischemia (Lactic acidosis)
- Ethylene Glycol or Ethanol toxicity

Causes of a Non-Anion Gap Acidosis ACCRUED

- Ammonium Chloride or Acetozolamide (urine bicarbonate loss)
- Chloride intake (sources: PN, IVs, etc.)
- Cholestyramine (GI bicarbonate loss)
- Renal Tubular Acidosis- Type I, II, IV
- Urine diverted into the bowel
- Endocrine disorders (e.g., aldosterone deficiency)
- Diarrhea (also enterocutaneous fistulas)

Anion Gap Metabolic Acidosis Use of the Delta Ratio

- sometimes used in the assessment of elevated anion gap metabolic acidosis to determine if a mixed acid base disorder is present.
- Delta ratio = △ Anion gap/△ [HCO3-] or ↑anion gap/ ↓ [HCO3-]
- DR = <u>Measured anion gap Normal anion gap</u>
 Normal [HCO3-] Measured [HCO3-]

Evaluating Metabolic Acidosis: the Delta Ratio

Delta Ratio	Assessment Guidelines
< 0.4	Hyperchloremic normal anion gap acidosis
< 1	High anion gap acidosis and normal anion gap acidosis
1 to 2	Anion gap acidosis
> 2	High anion gap acidosis and concurrent metabolic alkalosis OR a pre-existing compensated respiratory alkalosis

Determining Extent of Compensation and Mixed Acid-Base Disorders (see Table 17)

- Chronic Respiratory Acidosis: For every 10 mm Hg increase in pC02, serum HCO3 should increase by ~ 4 mEq/L
- Chronic Respiratory Alkalosis: For every 10 mm Hg decrease in pCO2, serum HCO3 should decrease by ~ 5 mEq/L
- Metabolic Acidosis: pCO2 = ~ (1.5 X HCO3) + 8
- Metabolic Alkalosis: widely variable increase in pCO2 pCO2 = ~(0.7 X HCO3) + 21

Evaluating Acid-Base Disorders at the Bedside

- Know the clinical details of the patient
- Is the "snap-shot" reflective of the current clinical situation
- Find the cause for the acid-base disorder
- Is compensation appropriate?
- Is the pH severe enough to warrant therapy?
- Plan a therapeutic treatment regimen

Treatment of Metabolic Acidosis Intravenous sources of alkali

- Sodium bicarbonate
- Sodium acetate
- Sodium citrate
- THAM (0.3 N Tromethamine)
- Lactate

Treatment of Metabolic Acidosis Use of bicarbonate

Total dose of bicarbonate = 0.5 X Wt (kg) X (24 – [HCO3])

- Give one half to one third (OR 1 to 2 mEq/kg) over several hours (avoid boluses) to get pH > 7.25
- Once pH > 7.25, slower correction without increasing HCO3 > 4 to 6 mEq/L to avoid overalkalinization
- Serial ABGs (e.g., Q6h)

Treatment options for Metabolic Alkalosis depends on:

- Sodium Chloride Responsive (urinary Cl < 25 mEq/L)
- Sodium Chloride Resistant (urinary Cl > 40 mEq/L)

Causes of Sodium Chloride Responsive Metabolic Alkalosis

- Excessive gastric fluid losses
- Diuretic therapy (especially loop)
- Dehydration (contraction alkalosis)
- Hypokalemia

Causes of Sodium Chloride Resistant Metabolic Alkalosis

- Excessive mineralocorticoid activity (hyperaldosteronism, glucocorticoid excess/Cushing's disease, glycyrrhizic acid)
- Massive blood transfusion
- Milk alkali syndrome
- Large doses of large penicillins

Treatment of Saline Responsive Alkalemia

- Treat the etiology
- 0.9% NaCl + KCL to replenish deficits
- Acetozolamide 250 375 mg QD-TID
- HCL therapy

Hydrochloric Acid Therapy

- Only if NaCl and KCl not possible
- Central venous administration only
- Glass bottle
- 0.1 or 0.2 N HCL (0.2 N for fluid restricted patients)

Hydrochloric Acid Therapy Calculating the Dose

Chloride deficit method

mEq HCL= 0.2 X WT (kg) X (103 – serum Cl)

Bicarbonate excess method

mEq HCL= 0.5 X WT (kg) X (serum HCO3 - 24)

- Give ~ ½ of the above calculated dose over 12 hrs and reassess. ABGs Q6h.
- Stop infusion at ~ pH 7.45 to avoid overcorrection

Patient Case

- 70 yo, 40 kg female s/p radical cystectomy with ileal conduit, post-op ileus, NG output 1.5 L/d, and requires PN.
- 0.45% NaCl + KCL 20 mEq/L @ 50 mL/hr
- PN electrolyte daily intake: NaCL 60 mEq, K
 Acetate 40 mEq, Na Phos 15 mmol, Mg sulfate
 24 mEq, calcium gluconate 10 mEq.
- After a few days of PN, her ABG was pH7.29, pO2 95, pCO2 35, HCO3 21. Serum Na 141, K 3.9, CL 117, total CO2 content 22

Which best describes her acidbase disorder?

- A. Hyperchloremic, normal AG acidosis
 - B. AG acidosis
- C. AG acidosis with hyperchloremia
 - D. Respiratory acidosis with concurrent metabolic alkalosis

Patient Case, Pg 72; Question #8

Which is the most appropriate treatment algorithm?

- A. Substitute the NaCL in the PN solution with Na Acetate
 - B. Sodium bicarbonate 100 mEq IV
- Change the IV solution to Lactated Ringers solution
- D. Add 100 mEq of sodium bicarbonate to the PN solution

Lecture Outline

- 1. Fluid and Electrolyte Overview (pg 54-56)
- 2. Water and Sodium Aberrations (pg 56-57)
- 3. Intracellular Electrolytes (pg 57-68)
- 4. Acid-Base Disorders (pg 68-74)
- 5. Nutritional Assessment, Energy/Protein Requirements (pg 74-80)
- 6. Enteral Nutrition (pg 80-82)
- 7. Parenteral Nutrition (pg 82-85)
- 8. Glycemic Control (pg 86-88)
- 9. Controversies in Nutrition Support for Critically Ill Patients (pg 88-94)

Nutritional Assessment

- ASPEN definitions vs "Classic" definitions
- Mild, moderate, severe based on IBW
- Underweight BMI < 18.5 (kg/m²)
- Obese BMI ≥ 30 (kg/m²)
- Serum proteins albumin/prealbumin decreased with stress
- Weight loss is significant when > 10% unintentional wt loss within 6 months

Caloric Content of Macronutrients

- Glucose 3.4 kcal/g
- Carbohydrate 4 kcal/g
- Protein/Amino acids 4 kcal/g
- Fat 9 kcal/g
- IV Fat ~10 kcal/g (IV fat emulsion contains glycerol and phospholipids; 10% = 1.1 kcal/mL, 20% = 2 kcal/mL, 30% = 3 kcal/mL)
- Propofol: administered in 10% lipid emulsion!

Recommended Caloric Intake An Over-Simplification

- Critically ill patients: 25 to 30 kcal/kg/d
- MICU patients: 25 to 27 kcal/kg/d (no more than 30 kcal/kg/d)
- SICU: 25 to 30 kcal/kg/d (no more than 35 kcal/kg/d)
- Trauma: 25 to 32 kcal/kg/d (no more than 35 kcal/kg/d)
- Burns: Other formulas used; hypermetabolic.

Recommended Caloric Intake An Over-simplification

- Weight based caloric intakes are erroneous in small (~50 kg), older (> 65 to 70 yrs), or obese patients (BMI <u>></u> 30 kg/m²)
- Small/Elderly = ~1.2 to 1.3 X BEE (Harris-Benedict equations), no more than 1.5 X BEE
- Obese = < 25 kcal/kg IBW/d (in conjunction with a high protein intake)

Avoid Overfeeding

Do not exceed:

Glucose/carbohydrate: 5 mg/kg/min

Fat (IV): 2.5 g/kg/d (keep \leq 1.5 g/kg/d)

- Hypercapnia (an excess in total kcals are more likely to cause hypercapnia vs. % CHO vs. % fat)
- Hyperglycemia
- Fatty infiltration of the liver/hepatic steatosis/cholestasis

Protein Requirements

- Critically ill patients: 1.5 to 2 g/kg/d requirements greater for surgical/trauma vs. medical ICU patients
- European vs American guidelines
- SCCM-ASPEN: 1.2 to 2 g/kg/d; higher amounts likely needed for multiple trauma or burns

Protein Requirements

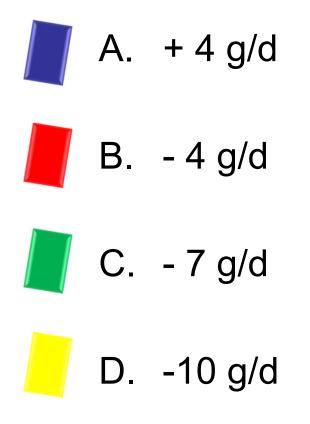
- Trauma/Burns: 2 2.5 g/kg/d
- Renal Failure:
 - □ AKI/CKD: 0.6 1 g/kg/d
 - Hemodialysis: 1 1.5 g/kg/d
 - CRRT: 2 2.5 g/kg/d
- Obese: 2 2.5 g/kg IBW/d
 - BMI < 40: 2 g/kg IBW/d</p>
 - □ BMI <u>></u> 40: 2.5 g/kg IBW/d

Patient Case

- 40 kg woman admitted to the trauma ICU receives a PN solution containing 350 g dextrose, 160 g amino acids, and 80 g of lipid daily.
- Her most ABG revealed: a pH of 7.30, pCO2 of 55, PO2 of 96, and HCO3 of 31.
- Her BGs from the past 24 hours range from 150 to 180 mg/dL.

Which change would be best to recommend concerning her PN?

- A. Decrease dextrose to 175 g/d, increase lipid to 120 g/d.
 - B. Add 20 units of regular human insulin.
- . Decrease all the macronutrients by about one-half.
- D. Increase the acetate content.


Assessing Protein Requirements Nitrogen Balance

- NB (g/d) = Nin Nout
- NB > +4 g/d = anabolic
- NB -4 to + 4 g/d = nitrogen equilibrium
- NB worse than -4 g/d = catabolic
- Classic NBAL equation
 - □ NB = Protein in (g/d)/6.25 UUN (g/d) 4 g/d
 - If BUN change <> 5 mg/dL, add to losses (see chapter pg 30)
- Highly catabolic patients may use different NB calculation (pg 30)

Patient Case

- A 24 hr urine collection was done to determine nitrogen balance for a 45 yo obese man with pancreatitis and sepsis receiving hypocaloric, high protein (24 kcal/kg IBW/d, 2 g/kg IBW or150 g/d of protein) PN.
- The urine urea nitrogen (UUN) concentration was 900 mg/dL and urine volume output was 3000 mL. The BUN was unchanged during the NB determination.

Using the classic NB equation, what was his nitrogen balance?

What changes would be best to make to the PN regimen?

- A. Increase the protein and non-protein energy content
- B. Increase the protein content, decrease the non-protein energy content
- C. Increase the protein content
 - D. Increase the non-protein content

Indications for EN

- If the patient is unable to ingest adequate amounts to achieve goal nutritional intake
- Early EN is beneficial for critically ill patients (ESPEN 2006; SCCM/ASPEN 2009)
- Definition of early? 24 hrs to 48 hrs post admission to ICU (max 72 hrs)
- How much EN is necessary for a beneficial effect? controversial

Which EN formula?

See Table 22 pg 32 highlighting different commercially available EN formulas that are indicated for different clinical conditions.

Important EN-Medication Interactions

- Whereby TF may be held 1 hr prior to and after medication administration:
 - Warfarin
 - Phenytoin
 - Levothyroxine*
 - Fluroquinolones*
 - Itraconazole*

*Interaction may be overcome by providing a higher dosage; readjust doses when EN d/c'd

Indications for PN

- ESPEN 2009: Patients not expected to receive EN within 3 days should receive PN within 24-48 hrs if EN contraindicated
- SCCM-ASPEN 2009: PN indicated only after first 7 days of hospitalization when EN not possible
- Depends on state of malnourishment, catabolic state of patient; outcomes more variable for medical vs surgical patients

Central vs. Peripheral PN

- Peripheral PN requires low concentrations of macronutrients and high volume of fluid to keep osmolality tolerable (e.g., < ~800 mOsm/kg)
- Approx Osmol = (dextrose g/L X 5) + (% amino acids X 100) + (% lipid X 15) + 200*

*estimate of electrolyte, vitamins, minerals contribution to osmolality

Glucose

- Obligatory requirements: 130 g/d
- Surgical wound: 80 to 150 g/d
- Don't exceed 5 mg/kg/min
- Glucose 3.4 kcal/g
- Provides the majority of non-protein kcals

Lipid Emulsion

- 10%=1.1 kcal/mL; 20%=2 kcal/mL;30%=3 kcal/mL
- To prevent EFAD in adults: at least 100 to 150 g/weekly (e.g., 1 – 1.5 g/kg weekly)
- Preferably give < 1.5 g/kg/d and definitely not
 > 2.5 g/kg/d (adults)
- Do not allow triglycerides to exceed 400 mg/dL

Predisposing Conditions to Impaired IV Triglyceride Clearance

- Excessive lipid intake (propofol!)
- Acute pancreatitis
- Uncontrolled diabetes
- Kidney failure
- End-stage sepsis
- Obesity
- HIV
- Hyperlipidemia

Vitamins and Trace Minerals

- Additional zinc may be indicated for patients with intractable diarrhea, intestinal fistulae, critical illness
- Copper and manganese should be withheld in patients with significant hepatobiliary/cholestatic liver disease
- Supplemental thiamine indicated for ETOHics and severely malnourished patients

Lecture Outline

- 1. Fluid and Electrolyte Overview (pg 54-56)
- 2. Water and Sodium Aberrations (pg 56-57)
- 3. Intracellular Electrolytes (pg 57-68)
- 4. Acid-Base Disorders (pg 68-74)
- 5. Nutritional Assessment, Energy/Protein Requirements (pg 74-80)
- 6. Enteral Nutrition (pg 80-82)
- 7. Parenteral Nutrition (pg 82-85)
- 8. Glycemic Control (pg 86-88)
- 9. Controversies in Nutrition Support for Critically Ill Patients (pg 88-94)

Glycemic Control

- SCCM: keep BG < 150 mg/dL for most patients and absolutely < 180 mg/dL</p>
- ASPEN: target BG 140 to 180 mg/dL
- ADA: target BG 140 to 180 mg/dL lower BG target may be appropriate in select patients.
- "Select patients": trauma, thermal injury, CT surgery (e.g., BG < 140 to 150 mg/dL)
- Avoid BG < 70 mg/dL; definitely avoid < 40 mg/dL

Lecture Outline

- 1. Fluid and Electrolyte Overview (pg 54-56)
- 2. Water and Sodium Aberrations (pg 56-57)
- 3. Intracellular Electrolytes (pg 57-68)
- 4. Acid-Base Disorders (pg 68-74)
- 5. Nutritional Assessment, Energy/Protein Requirements (pg 74-80)
- 6. Enteral Nutrition (pg 80-82)
- 7. Parenteral Nutrition (pg 82-85)
- 8. Glycemic Control (pg 86-88)
- 9. Controversies in Nutrition Support for Critically Ill Patients (pg 88-94)