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Abstract:  Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and 
biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene 
concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo). Terpene 
compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in 
other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- 
and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds 
were determined across the species, and out of these only linalool oxide and (E)-γ-bisabolene had phylogenetic 
signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, 
but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf 
elemental composition. Functions such as temperature protection, radiation protection or signaling and 
communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which 
has multiple and very diverse interactions among multiple species. 
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1. Introduction 

Protection, defence and infochemical function have been highlighted as possible role of terpenes 
[1-5]. Examples of these roles are photoprotection [6], thermotolerance) [7-11], protection against 
drought [12, 13] and non-specific antioxidative capacity, whereby terpenes protect photosynthetic 
membranes against peroxidation and reactive oxygen species such as singlet [9, 14-17]. Terpenes also 
have a role in plant defence, acting as deterrents, toxins or modifiers of insect development [18]. They 
are  effective  against   non-adapted   specialist   herbivores  [19],  and  generalist  herbivores  [20-22].          
The dosage dependence for a successful deterrent function can change among terpene compounds [23, 
24]. Moreover, terpenes have several other protective properties such as defence against fungi and 
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[25]. All these physiological and ecological functions are likely to play a fundamental role in the 
tropical ecosystems with multiple and diverse interactions among multiple species. Although there are 
recent efforts to characterize terpene content of the wide diversity of tropical plant species [26], their 
terpene content is mostly unknown. 

Tropical ecosystems are characterized by frequent nutrient limitations and intense herbivore 
pressures [27-30]. Both stresses are known to strongly influence plant terpene concentration [1, 8, 21, 
22, 31-34]. Some studies have already shown multiple terpene ecological functions in tropical 
ecosystems such as insect nest building [35], or insect attraction [36-38].  

Considering the abiotic factors, low terpene production in plants with low nutrient concentration 
and photosynthetic rates can be expected from the “nutrient-driven synthesis” hypothesis that predicts 
a large enzyme (including terpene synthase) production with greater cellular N and P availability. 
Higher nutrient availability is usually expected to translate into higher carbon fixation and activity of 
the enzymes involved in isoprenoid production [39, 40]. In contrast, a greater production of terpenes 
as carbon based secondary compounds under lower nutrient availabilities can be expected from the 
“carbon excess” hypotheses [41-44]. These hypotheses assert that plants allocate carbon to secondary 
metabolism only after growth requirements are met and that growth is constrained more by nutrients 
than by photosynthesis. Thereafter, these secondary metabolites can exert defensive functions.  

From a biotic perspective the role of terpenes has been related to plant defensive capacity. 
Although there are several theories to explain defensive success in plants in different environmental 
situations such as those theories based on an evolutionary basis [45]. This hypothesis proposes that 
plant species adapted to high resource environments will be selected for growth allocation rather than 
for defense while plant species adapted to low resource environments will be selected for increased 
defense allocation, because with herbivore attack it is much more difficult to replace tissue in low 
resource environments than in high resource environments. Thus, there is a quite broad consensus on 
that the resource allocation hypothesis is a general framework in which to study the trade offs between 
growth and defense as a function of resources availability [42, 44-48]. Both “carbon excess” and 
“resource allocation” hypotheses expect higher terpene concentrations related to low nutrient 
concentrations, whereas contrarily, “nutrient-driven” hyphotesis predicts higher terpene concentrations 
related to high nutrient concentrations. 

Several physical leaf properties have proved to be involved in defence mechanisms. Among 
them, LMA, plays a prominent role and has been proven to have a deterrent effect [49, 50]. On the 
other hand, costs for mechanical leaf support increase with increasing leaf size [51, 52], implying 
larger fractional investment in less-palatable veins [51]. Large diversity of leaf shapes and sizes are 
present in tropical forests, suggesting that trade-offs associated with leaf size-shape patterns can be 
important in modifying the linkages of leaf structure and chemistry to herbivory. At this regard higher 
C investment in leaf structures can suppose less allocation to terpenes production. 

 Few studies have investigated in a tropical rainforest the relationships between leaf terpene 
concentrations and other leaf traits related with defense and palatability such as leaf nutrient 
concentration, leaf phenolic concentration and leaf physical defenses, in a representative set of species 
in the field [53-55]. This type of study has been especially scarce comparing the relationships between 
leaf terpene concentrations and other leaf defensive traits. Moreover, there is a lack of terpene content 
screening studies in tropical forest. 

Borneo is the third largest island of the world. It is located in South-eastern Asia and still has a 
great extent of tropical rain forest. Some studies have reported that nutrient availability is limiting for 
woody plant productivity in Borneo rainforest [56-60]. Previous studies have demonstrated that on 
average leaf nutrient concentrations of Borneo plants tend to be low [61] and some leaf nutrients 
concentrations, especially P, are in lower concentrations than in other tropical areas such as Hawaii 
[62]. In these nutrient limiting conditions, plant defence strategy against leaf herbivores might even be 
an evolutionary-acquired tool in order to avoid N and P losses such as predicted by “resource 
allocation” hypothesis [30, 46]. 

In this study, we conducted a screening of leaf terpene content in 75 common forest plant 
species of Borneo. Our aims were: (i) to characterize the mostly unknown terpene concentrations of 
these species and (ii) to study the relationships between the different terpene compounds and the 
concentrations of other carbon based defenses such as phenolics and with leaf morphological traits and 
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C, N, P and K leaf concentrations. While studying these relationships, we also aimed to test the 
“nutrient-driven”, “carbon excess” and “resource allocation” hyphoteses. 

 

2. Materials and Methods 

2.1. Field site and studied species 

The study was conducted in Danum Valley Field Centre located on the east coast of the 
Malaysian state of Sabah, Borneo Island (48.75' E and 5° 01' N). (See supplementary material for 
details). 

A total of 75 common species were sampled (Figure 1, supplemetary material) and their basic 
ecological traits are shown in Table 1 (supplementary material).  
 

2.2. Plant sampling 

Plant sampling was conducted in medium to large gaps (10-100 m diameter). In all cases, leaves 
were sampled from at least three individual plants for each species. The plants were selected at 
random, with the condition that plants from a given species are at least 100 m apart. From each plant, 
even-aged mature non-senescent foliage, 6-12 months old was randomly sampled. (See supplementary 
material for plant sampling details).  

 

2.3. Leaf structural traits 

After sampling, the leaves were sealed in plastic bags with wet filter paper and immediately 
transported to the laboratory. In the laboratory, fresh and dry leaf mass, leaf area, leaf length, leaf mass 
area (LMA), compactness and leaf roundness of individual leaves were determined as described in 
supplementary information.  
 In the dataset, 6 species - Caesalpina major, Cassia alata, Clausena excavata, Fordia 

splendidissima, Reinwardtiodendron humile and Sindora irpicina - are compound-leaved. In the case 
of compound-leaved species, leaflets were considered as functional analogues of simple leaves, and all 
structural and chemical traits refer to leaflets. 
 

2.4. Leaf elemental and phenolic analyses 

See supplementary information for detailed explanation of chemical analyses of leaf elemental 
and phenolic concentrations. Briefly, for C and N sample determination, 1-2 mg of pulverized dried 
sample were mixed with 2 mg of V2O5 as oxidant and analysed by combustion coupled to gas 
chromatography using a Thermo Electron Gas Chromatograph model NA 2100 (C.E. instruments-
Thermo Electron, Milan, Italy). For analyses of other elements, dried and ground samples were 
digested with concentrated HNO3 and H2O2 (30%, w/v). Thereafter, the concentrations of As, Cd, Cr, 
Cu, Mo, Ni, Pb, V and Zn were determined using ICP-MS (Mass Spectrometry with Inductively 
Coupled Plasma) (Perkin-Elmer Corporation, Norwalk, USA) and Ca, Fe, K, Mg, Mn, Na and P were 
determined using ICP-OES (Optic Emission Spectrometry with Inductively Coupled Plasma) (Perkin-
Elmer Corporation, Norwalk, USA). For As analyses, we firstly generated arsenic hydrides and 
analyzed them with ICP-MS. Total phenolic concentration of leaves was determined by the improved 
Folin-Ciocalteu assay [63].  

 

2.5. Leaf terpene extraction and analysis 

We sampled three plants per species and 10-20 leaves in each plant. Samples were ground in 
liquid N2 1-12 hours after sampling. In each sampled plant we took three samples that were mixed and 
used in a unique extraction. The leaves were crushed in liquid nitrogen with a Teflon pestle in a Teflon 
tube until a homogeneous fine powder was obtained. After homogenization, 1 mL of pentane was 
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added before the pulp defrosted. The tubes were maintained at 25°C during 24 h, and after this period 
a sample of each extract was put into a 300 µL glass vial. The samples were extracted in the 
proportion 20 mg leaf powder: 1 mL of pentane. After extraction, samples were automatically injected 
into the GC-MS. The column was HP-5 crosslinked 5% PH Me Silicone (Supelco Inc.). The initial 
temperature of 40ºC was immediately increased with a ramp of 30 ºC min-1 to 60ºC. The second ramp 
was 10ºC min-1 to 150ºC which was maintained for 3 min. The third ramp was 70ºC min-1 to 250ºC 
which was maintained for 5 min. The carrier gas was helium at 0.7 mL min-1. The mass detector was 
used with an electron impact of 70 eV. Identification of monoterpenes and sesquiterpenes was 
conducted by GC-MS and comparison with standards from Fluka (Buchs, Switzerland), literature 
spectra, and NIST and Wiley libraries. Calibration with common terpenes α-pinene, δ-3-carene, β-
pinene, β-myrcene, p-cymene, limonene, sabinene (monoterpenes) and α-humulene (sesquiterpenes) 
standards was carried out once every five analyses. The standards were purchased from Sigma Aldrich 
(Gilingham, Dorset, UK) and analysed following the same process than for the sample extracts. 
Terpene calibration curves (each one with 4 different terpene concentrations; 0, 0.01, 0.1 and 0.83 mg 
mL-1) were always highly significant (r2 > 0.99 for the relationships between signal and terpene 
concentrations). The most abundant terpenes had similar sensitivity (differences were generally less 
than 5%). To link a peak with a determined compound using standard libraries (NIST and Wiley), we 
established the threshold value of a 95% or more of the percentage of security that the peak should 
correspond to a determined compound. All sampling and analytical procedures were applied in the 
same way for all species. 

 

2.6. Phylogenetic and statistical analysis 

The program Phylomatic [64] was used to build a phylogenetic tree of the species studied 
(Figure S1, supplementary information) as explained in Peñuelas et al. [62]. The statistical 
significance of the genetic differences between different species in explaining the variability of the 
studied variables was calculated employing Matlab 7.6.0 with the PHYSIG module developed by 
Blomberg et al. [65]. 

To analyze the relationships of foliage terpene concentrations with the other leaf studied 
characteristics (nutrient concentrations, leaf morphological traits and the level of herbivore attack), we 
conducted a general linear model (GLM) analysis both taking and not taking into account phylogenetic 
signal using Matlab 7.6.0 with REGRESSIONV2 module [66]. Thereafter, the model with a lower 
Akaike information criterion (AIC) was selected. When dealing with multiple correlations we used 
Bonferroni correction. (See supplementary material for detailed explanation of phylogenetic and 
statistical analyses).  
 

3. Results and discussion 

Foliar terpene presence was detected in 73 out of the 75 species analysed (Table 1). Table 1 and 
S1 (supplementary material) show the mono- and sesqui- that were clearly determined by GC-MS. 
Only Popowia pisocarpa and Xanthophyllum affine leaves did not present mono- and sesquiterpenes 
(Tables 1 and S1, supplementary material). Eighty different terpene compounds were detected in the 
leaves of the analyzed plants, 15 monoterpenes and 65 sesquiterpenes. All the monoterpenes and 62 
out of the 65 sesquiterpenes (Table 1) could be determined. Thus, only 3 peaks that corresponded to a 
sesquiterpene structure could not be identified. Only one leaf monoterpene (Linalool oxide) and one 
sesquiterpene ((E)-δ-Bisabolone) had phylogenetic signal (k = 0.524 and P = 0.020, and k = 0.482 and 
P = 0.022, respectively). Total leaf monoterpene and sesquiterpene concentrations were positively 
correlated (R = 0.31 and P < 0.01) across species. The total number of monoterpene, sesquiterpene and 
total terpene chemical species per each plant species did not have phylogenetic signal (k = 0.072 and P 
= 0.831, k = 0.094 and P = 0.649, and k = 0.079 and P = 0.832, respectively). Total leaf terpene 
concentrations (mg g-1) were not different among the species of different successional stages (P = 
0.84) and ranged on average between 2-3 mg g-1 in all categories of successional stages. 
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Leaf total monoterpenes were not correlated with the studied chemical and physical leaf traits 
(Table S2, supplementary material) and neither with the species succesional stage (data not shown).  

This study provides novel information about terpene concentrations in Borneo plant species. Of 
the 75 species studied, 97% (73) contained terpenes in a detectable amount. This percentage was 
higher than previously observed in other parts of the world (apart from traditional phytotherapy studies 
which focus on plants with high secondary metabolite concentrations) such as Hawaii or the 
Mediterranean region but not compared to others such as the French Guaiana [67]. For instance, 
Sardans et al. (2010) [26] found detectable concentration of foliar terpenes in 25 out of 73 species 
(34%) sampled in Hawaii, and Llusia & Peñuelas (1998, 2000) [13, 68] found detectable foliar terpene 
concentration in 4 out of 7 species studied (57%) in the North Western Mediterranean basin. Courtois 
et al. (2009) [67] found terpene in all 55 species studied in French Guaiane. 

As far as we know, within the 73 species that contained at least one mono- or sesquiterpene 
compound in detectable amounts, only 2 species (Cinnamomum zeylanicum and Dipterocarpus 

gracilis) had been previously reported as monoterpene and/or sesquiterpene-containing species [69, 
70]. Therefore this study reports 71 species for the first time as mono- and/or sesquiterpene-containing 
species (Table 2, supplementary material). Furthermore, we have determined mono- and sesquiterpene 
compounds not previously reported in the two species previously reported as terpene-containing: the 
monoterpenes limonene, α-pinene and β-myrcene and the sesquiterpene γ-elemene in Cinnamomum 

zelynicum, and the monoterpenes limonene and α-pinene and the sesquiterpenes α-cubebene, 
bicyclogermacrene, γ-cadinene, germacrene D and selina-3,7(11)-diene in Dipterocarpus gracilis 
(Table 2, supplementary material). The studied species represent 39 genera, from a total of 64 genera 
studied, with terpene concentration reported for the first time (Agelaea, Ardisia, Artocarpus, 
Baccaurea, Barringtonia, Caesalpinia, Chaetocarpus, Cleistanthus, Clidemia, Combretum, 
Dimorphocalyx, Diospyros, Durio, Endospermum, Etlinglera, Euphoria=Dimocarpus, Eusideroxylon, 
Fordia, Fagraea, Glochidion, Gluta, Hopea, Luvunga, Macaranga, Madhuca, Mallotus, Melastoma, 
Memecylon, Neonauclea, Palanquium, Parashorea, Payena, Pleurocarpidia, Poikilospermum, 
Pterospermum, Reinwarditiodendron, Swintonia, Symplocos, Uncaria) (Table 2, supplementary 
material). In the case of Ardisia elliptica, plants of this species growing in Oahu (Hawaii) were 
analysed with the same protocol used in this study and no mono- and seaquiterpene compounds were 
detected [26]. On the other hand, 23 genera (Callicarpa, Canarium, Cinnamomum, Chisocheton, 
Clausena, Dacryodes, Dipterocarpus, Dryobalanops, Ficus, Lansium, Myristica, Nauclea, 
Podocarpus, Polyalthia, Pouteria, Senna, Shorea, Sindorea, Syzygium, Tabernaemontana, Tarenna, 
Uvaria, Zingiber) had been previously reported as mono- and sesquiterpene-containing genera, but 
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Table 1. Foliar concentrations of monoterpene and sesquiterpene compounds determined in the 75 Borneo rainforest species studied.  

              Species 

                                                  
                                                           This study 
 

Previous reports in the 
literature 

Monoterpenes                                           Sesquiterpenes 

Mono- and Sesquiterpenes 
reported in the same 
species (labeled with *) or 
in the other species of the 
same Genus 

Agelaea borneensis 

Limonene (56.0),  
α-Pinene (8.5),  
Total (64.5) 

β-Caryophyllene (11.4), Germacrene D (2.5), Total (53.4)  

Ardisia elliptica 

Limonene (4.4 + 1.9), 
Total (4.4 + 1.9) 

α-Copaene (45.3 + 32.0), β-Caryophyllene (485 + 285), α-Cubebene (13.6 + 
11.1), α-Ylangene (0.58 + 0.47), α-Farnesene (2.13 + 1.74), α-Caryophyllene 
(99.0 + 45.9), γ-Cadinene (11.4 + 4.7), β-Selinenen (11.5 + 5.4), α-Selinene (693 
+ 493), Total (1331 + 872) 

 

Arctocarpus 

odoratissimus 

Limonene (13.7),  
α-Pinene (60.4),  
Total (74.3) 

α-Copaene (33.5), β-Caryophyllene (84.5), Aromadendrene (99.8),  
Bicyclogermacrene (15.4), α-Mururolene (15.5 + 12.7), Total (260) 

 

Baccaurea macrocarpa 

Limonene (1.99 + 
1.15), α-Pinene (1.70 + 
0.98) , Total (2.46 + 
1.01) 
 

Bicyclogermacrene (0.64 + 0.37), Bicycloelemene (14.3 + 8.3),  
α-Caryophyllene (4.78 + 2.76), α-Muurolene (15.5 + 12.7),  Germacrene D (3.4 
+ 2.8), Total (32.1 + 26.2) 

 

Barringtonia 

sarctostachys 

Limonene (3.1),  
α-Terpinene (15.4),  
Total (18.5) 

α-Copaene (13.3), α-Amorphene (5.55), Calarene (7.3), E-Caryophyllene (578), 
Bicyclogermacrene (11.2), α-Caryophyllene (223), Germacrene D (181), Total 
(1020) 

 

Caesalpinia mezzoneuron 

Limonene (7.3 + 2.0),  
β-Ocimene (56.3 + 
48.7), γ-Terpinene (9.6 
+ 8.3),  
E-Sabinene (2.66 + 
2.31), Linalool (9.1 + 
7.9),  
α-Pinene (3.8 + 2.5), 
Sabinene (16.0 + 13.9), 
Total (108 + 50.6) 

Bicycloelemene (10.0 + 8.6), α-Copaene (33.3 + 26.5), β-Caryophyllene (97.7 + 
50.9), γ-Elemene (564 + 488), α-Cubebene (10.4 + 9.0), (-)-β-Elemene (547 + 
474), β-Cubebene (452 + 391), β-Gurjunene (5.1 + 4.4), α-Amorphene (0.96 + 
0.83), ∆-Elemene (180 + 156), E-Caryophyllene (61.5 + 53.3), 
Bicyclogermacrene (145 + 126), α-Caryophyllene (375 + 175) γ-Cadinene (3.7 + 
3.2), β-Selinene (129 + 111), Germacrene D (4.4 + 2.2), Selina-3,7(11)-diene 
(2.1 + 1.8), Total (2619 + 1404) 

 

Callicarpa longifolia β-Pinene (332 + 271), α-Copaene (21.7 + 11.5), α-Santalene (18.6 + 10.8), β-Caryophyllene (166 + C. americana and C. 
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Limonene (302 + 172),  
γ-Terpinene (54.9 + 
44.8), Linalool oxide 
(2.94 + 1.70), α-
Terpinene (34.6 + 
20.0), α-Pinene (846 + 
488), Sabinene (147 + 
85), Total (1275 + 
1040) 

96), E-α-Bisabolene (3.2 + 1.9), E-γ-Bisabolene (2.2 + 1.3), γ-Elemene (2.6 + 
2.2), β-Gurjunene (11.7 + 6.8), α-Amorphene (2.75 + 1.6), Calerene (3.1 + 2.5), 
1,5,5-thrimethyl cyclohexane (146 + 64), α-Caryophyllene (141 + 69), 
Germacrene D (47.7 + 38.9), Total (410 + 287) 

japonica (Cantrell et al. 
2005) [86], C. microphylla 
(Chung et al. 2005) [87] 

Canarium decumanum Limonene (3.4) β-Caryophyllene (1454), α-Caryophyllene (429), Total (1883) C .album (Giang et al. 
2006) [88], C. boivbinii 
(Billet et al. 1971) [89], C. 

Zeylanicum (Bandaranayake 
1980) [90] 
 
 

Canarium denticulatum 

Limonene (37.0 + 
13.4), β-Ocimene (14.0 
+ 11.4), α-Pinene (39.1 
+ 23.1), Total (90.0 + 
46.3) 

α-Copaene (153 + 101), β-Caryophyllene (329 + 155), γ-Elemene (32.3 + 19.1), 
α-Cubebene (38.1 + 31.1), (-)-β-Elemene (107 + 37), ∆-Elemene (94.3 + 39.5), 
1,5,5-trimethyl-6-methylene-cyclohexene (319 + 90), α-Guaiene (9.9 + 6.8), 
Allomadendrene (4.2 + 3.4), α-Caryophyllene (22.0 + 12.6), γ-Cadinene (14.4 + 
0.8), Germacrene D (255 + 154), Selina-3,7(11)-diene (14.4 + 4.1), β-Bisabolene 
(81.8 + 28.6), Total (1474 + 380) 

Cassia (Senna) alata 

Limonene (141), α-
Pinene (9.3), Total 
(150) 
 

α-Copaene (64), (-)-β-Elemene (146), ∆-Elemene (651), E-Caryophyllene 
(1139), β-Selinene (4233), Germacrene D (750), Selina-3,7(11)-diene (646), 
Total (6683) 

C. fistula (Tzakou et al. 
2007) [91], C. javanica 

(Chaudhuri & Chawla 1987) 
[92]  

Chaetocarpus 

castanocarpus 

Limonene (3.9), α-
Pinene (1.31), Total 
(5.3) 

α-Caryophyllene (84.1), Total (84.1)  

Chisocheton sarawakensis 

Camphene (33.2), β-
Pinene (25.5), 
Limonene (230), α-
Pinene (1592), 
Sabinene (193), Total 
(2073) 

β-Caryophyllene (6.2), α-Ionone (5.6), α-Caryophyllene (12.0), β-Selinene (4.4), 
Germacrene D (11.7), (+)-Spathulenol (9.7), Total (49.5) 

C. penduliflorus 
(Phongmaykyn et al. 2008) 
[93] 

Cinnamomum zeylanicum 

Limonene (48.8 + 
26.0), α-Pinene (170 + 
96), β-Myrcene (15.9 + 
9.2), Total (156 + 125) 

β-Caryophyllene (83.0 + 38.4), γ-Elemene (6.9 + 5.6), α-Caryophyllene (40.4 + 
12.9), Germacrene D (10.2 + 8.3), Total (99.4 + 55.5) 

C.burmanii (Sardans et al. 
2010) [26], C. malabatrum 
(Leela et al. 2009) [94],  
(Jayaprakasha et al. 2003; 
Yang et al. 2005;Tira-Picos 
et al. 2009; Wang et al. 
2009) [95-98], C. 

zeylanicum (Chen et al. 
2010)[70]* 
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Clausena excavata 

Limonene (56.9 + 
46.5), α-Pinene (30.2 + 
24.7), β-Myrcene (49.4 
+ 33.5), Total (134 + 
104) 
 
 

α-Copaene (22.8 + 11.8), β-Copaene (3.6 + 3.0), β-Caryophyllene (2.92 + 2.40), 
γ-Elemene (8.5 + 7.0), (-)-β-Elemene (24.5 + 20.0), α-Amorphene (634 + 511), 
∆-Elemene (115 + 94), E-Caryophyllene (358 + 289), Bicyclo[3,1,1]hept-2-ene-
2,6-dimethyl-3-penthyl) (16.7 + 13.6), β-Selinene (1005 + 414), ∆-Cadinene (3.6 
+2.9), β-Panasinsene (9.2 + 7.5), Selina-3,7(11)-diene (7206 + 160), Nerolidol 
(65.3 + 53.3), Caryophyllene oxide (34.4 + 8.8), Germacrene D (219 + 154), 
Total (2537 + 1284) 

C. harmandiana 
(Thongthoom et al. 2010) 
[99], C. heptaphylla (Sohrab 
et al. 1999) [100], C. 

lansium (Chokeprasert et al. 
2007) [101] 

Cleistanthus bridelifolius 
Limonene (81), α-
Pinene (21.1) , Total 
(27.2) 

α-Copaene (6.4),β-Copaene (4.7), Aromadendrene (2.61), α-Pharnesene (54.1), 
Total (67.8) 

 

Clidemia hirta 
Limonene (18.2), Total 
(18.2) 

β-Cubebene (5.7), Total (5.7)  

Combretum nigrescens 
Limonene (3.64), α-
Pinene (1.87), Total 
(5.5) 

α-Copaene (5.2), E-α-Bergamolene (3.6), Germacrene D (7.4), Total (16.1)  

Dacryodes rugosa 

Limonene (495), α-
Pinene (2402), Total 
(2897) 
 

α-Copaene (14.3), β-Caryophyllene (10.8), γ-Elemene (10.5), (-)-β-Elemene 
(13.9), α-Amorphene (19.0), Allomadendrene (58.5), α-Caryophyllene (13.3), 
Germacrene D (4.5), Total (133) 

D. edulis (Ekong & Okogun 
1969) [102] 

Dimocarpus longan 
subsp. malesianus = 
Euphoria malaiensis 

Limonene (15.3), α-
Pinene (1.44), Total 
(16.7) 
 

α-Copaene (397 + 62), β-Caryophyllene (1392 + 25), γ-Elemene (270 + 143), 
(+)-Aromadendrene (1.72), α-Cubebene (2.7),  Calerene (103 + 44), 1,5,5-
trimethyl-6-methylene-cyclohexene (32.6 + 9.2), Bicyclo[3,1,1]hept-2-ene-2,6-
dimethyl-3-penthyl) (76.9 + 35.5), β-Sesquiphenentrene (14.0 + 8.1), 
Allomadendrene (147 + 40), α-Caryophyllene (1352 + 59), Germacrene D (415 + 
278), Selina-3,7(11)-diene (62.6 + 9.8), Total (3104 + 1270) 

 

Dimorphocalyx murinus 

Limonene (5.3), α-
Pinene (4.8), Total 
(10.1) 
 
 
 

γ-Elemene (28.6), α-Cubenene (9.5), α-Ylangene (8.8), (-)-β-Elemene (68.5), α-
Cadinol (32.9), α-Selinene (143), α-Amorphene (19.0), Bicycloelemene (6.5), α-
Gurjunene (6.9), E-Caryophyllene (68.3), ∆-Cadinene (50.9), E-α-Bergamotene 
(51.8), α-Caryophyllene (68.3), β-Selinene (112), β-Panasinsene (5.2), Selina-3,7 
(11)-diene (113), Germacrene D (443), ∆-Cadinene (50.9), Total (1316) 

 

Diospyros durinoides 

Limonene (6.3 + 0.3), 
α-Pinene (33.6 + 14.6), 
Total (26.6 + 15.9) 

β-Caryophyllene (1.7 + 1.0), γ-Elemene (0.43 + 0.35), α-Caryophyllene (3.0 + 
0.9), Globulol (21.1 + 6.2), Germacrene D (1.5 + 0.9), Total (19.1 + 10.4) 

 

Dipterocarpus 

sarawakensis 

Limonene (5.9), Total 
(5.9) 
 

β-Caryophyllene (31.8), 1,5,5-trimethyl-6-methylene-cyclohexene (43.5), 
Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-methyl-9-methylene (178), Germacrene B 
(6.6), α-Guaiene (6.2), α-Caryophyllene (11.), Germacrene D (6.8), Total (284) 

D. species (Messer et al. 
1990) [69]*, D. kerrii 
(Richardson et al. 1989 and 



                              Leaf terpene concentration of 75 borneo rainforest plant species  27 

 

Dipterocarpus applanatus 

Limonene (29.6 + 
81.2), α-Pinene (27.9 + 
16.1), Total (38.3 + 
21.1) 
 

α-Copaene (653 + 377), β-Caryophyllene (1097 + 633), β-Cubebene (416 + 
240), Bicyclogermacrene (3543 + 1934), Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-
methyl-9-methylene (158 + 92), α-Caryophyllene (1217 + 635), Germacrene D 
(52.9 + 43.2), γ-Cadinene (1425 + 823), Total (5818 + 560) 

1991) [103, 104] 

Dipterocarpus gracilis 

Limonene (6.3 + 3.6), 
α-Terpinene (14.8 + 
8.5), α-Pinene (0.26 + 
0.15), Total (14.2 + 
11.6) 

β-Caryophyllene (698 + 401), α-Cubebene (55.7 + 32.2), β-Cubebene (14.8 + 
8.5), E-Caryophyllene (283 + 164), Aromadendrene (139 + 80),  
Bicyclogermacrene (155 + 90), Germacrene D (78.2 + 63.8), Selina-3,7(11)-
diene (16.9 + 9.8), α-Caryophyllene (674 + 153), β-Selinene (56.6 + 46.2), Total 
(1400 + 633) 
 
 

Dryobalanops lanceolata 

Camphene (286 + 165), 
Limonene (11.4 + 5.1), 
α-Pinene (0.40 + 0.23), 
Total (199 + 161) 

α-Copaene (122 + 71), β-Caryophyllene (5.9 + 3.4), α-Amorphene (25.2 + 14.5), 
Aromadendrene (5.8 + 3.3), α-Caryophyllene (2.9 + 1.7), γ-Cadinene (21.1 + 
12.2), β-Selinene (1.2 + 1.0), Germacrene D (8.8 + 7.2), Selina-3,7(11)-diene 
(13.2 + 7.6), Total (142 + 91.2) 

D. aromatica (Park et al. 

2003)  [105] 

Durio kutejensis 
Limonene (14.3), α-
Pinene (265), Total 
(280) 

  

Endospermum diadenum 

Limonene (19.5), β-
Ocimene (124), γ-
Terpinene (81.0), E-
Sabinene (44.9), Z-
Sabinene hydrate 
(54.4), Linalool (183), 
γ-Terpinene (5.2), α-
Pinene (20.7), Sabinene 
(442), Myrcene (19.5) , 
Total (994) 

Bicycloelemene (29.1), α-Copaene (375), α-Cubebene (45.9), E-Caryophyllene 
(109), Bicyclogemacrene (496), α-Caryophyllene (293), Total (1484) 

 

Etlingera brevilabrum 
Limonene (24.1), α-
Pinene (656), Total 
(680) 

α-Copaene, (176) (-)-β-Elemene (15.6), β-Cubebene (921), 1,4,7-
Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,Z- (14.0), Total (1126) 

 

Eusideroxylon zwangeri 

β-Pinene (63.4 + 27.3), 
Limonene (16.5 + 2.3), 
α-Pinene (362 + 11), 
Total (316 + 30) 

α-Copaene (1049 + 108), β-Caryophyllene (2972 + 460), γ-Elemene (448 + 184), 
α-Cubebene (533 + 57), α-Ylangene (103 + 28), β-Cubebene (1046 + 47), 
Calarene (138 + 72), 1,5,5-trimethyl-6-methylene-cyclohexene (12.5 + 7.5), E-
Caryophyllene (1777 + 377), Bicyclogermacrene (2290 + 614), α-Guaiene (681 
+ 556), E-β-Phanesene (48.1 + 14.6), α-Caryophyllene (31.4 + 1.3), γ-Cadinene 
(163 + 40), α-Muurolene (28.7 + 12.5), α-Cadinol (119 + 48), Germacrene D 
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(611 + 499), Selina-3,7(11)-diene (61.8 + 2.5), Total (8886 + 3628) 

Ficus aurata 
Limonene (7.7), α-
Pinene (8.5), Total 
(16.2) 

 F. carica (Gibernau et al. 
1997) [106], F. exasperate 
(Sonibare et al. 2006) [107] 

Fordia splendidissima 
Limonene (20.3) , Total 
(20.3) 

β-Caryophyllene (6.6), α-Caryophyllene (21.1), Total (27.7)  

Fagraea cuspidata 
Limonene (5.8), α-
Pinene (0.66) , Total 
(6.4) 

  

Glochidion rubrum 

Limonene (168), γ-
Terpinene (106), α-
Pinene (1402), 
Phellandrene (453), 
Total (2128) 

α-Caryophyllene (15.6), Total (15.6)  

Gluta macrocarpa 

Limonene (32.1), β-
Ocimene (3229), α-
Pinene (33.7), B-
Myrcene (94.0), Total 
(3389) 
 

β-Caryophyllene (914), (+)-Aromadendrene (36.1), 8-Isopropanyl-1,5-dimethyl-
cyclodeca 1,5-diene (86.4), ∆-Elemene (725), Aromadendrene (67.3), E-α-
Bergamotene (48.7), α-Caryophyllene (378), γ-Cadinene (82.7), β-Selinene 
(1383), Germacrene D (1711), Selina-3,7(11)-diene (62.7), Total (5515) 

 

Zingiber odoriferum 

Limonene (35.0), α-
Pinene (492), Total 
(527) 

α-Copaene (260),β-Copaene (14.4), Bicyclogermacrene (715), Germacrene D 
(23.6) 
Aromadendrene (9.0), Total (1022) 

Z. aromaticum (Kirara et al. 
2003) [108], Z. nimmonii 
(Baby et al. 2006) [109], Z. 

ottensii (Akiyama et al. 
2006) [110], Z. officinalis 

(Rani 1999; Bartley & 
Jacobs 2000; Ma et al. 
2004; Picaud et al. 2006;  
Ma & Gang 2006; Menon et 

al. 2007) [111-116], Z. 

zerumbet (Damodaran & 
Dev 1967; Jang & Seo 
2005; Sadhu et al. 2007; Yu 
et al. 2008a and 2008b) 
[117-121] 

Hopea griffithii 

β-Pinene (331), 
Limonene (40.9), α-
Pinene (2812), 

α-Copaene (62.5), Calarene (50.5), E-Caryophyllene (38.9), β-Cubebene (2), α-
Caryophyllene (30.7), Germacrene D (19.1), Total (219) 
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Sabinene (52.2), β-
Myrcene (93.0), Total 
(3329) 

Hopea nervosa 

Camphene (0.64 + 
0.58), β-Pinene (0.6662 
+ 0.57), Limonene 
(80.9 + 69.2), β-
Ocimene (21.6 + 19.7), 
Linalool (14.8 + 13.5), 
α-Terpinene (9.5 + 
8.7),  α-Pinene (387 + 
352), D-Calerene (0.69 
+ 0.63), Total (1134 + 
1027) 

Bicycloelemene (5.8 + 5.3), α-Copaene (22.9 + 14.3), α-Satalene (9.4 + 6.6), β-
Caryophyllene (117 + 75), γ-Elemene (14.2 + 12.9), α-Cubebene (2.14 + 1.62), 
β-Elemene (0.87 + 0.79), (-)-β-Elemene (4.9 + 4.4),�β-Cubebene (3.0 + 2.7), 
Bicyclogermecrene (55.2 + 50.1), Aromadendrene (1.2 + 1.1), α-Farnesene (1.3 
+ 1.2), α-Caryophyllene (39.2 + 17.2), γ-Cadinene (5.7 + 3.6), β-Selinene (10.8 + 
9.4), ∆-Elemene (7.0 + 6.4), 1,5,5-trimethyl-6-methylene-cyclohexene (0.44 + 
0.41), E-Caryophyllene (7.8 + 6.9), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-3-
penthyl) (4.8 + 4.4), E-α-Bergamolene (33.1 + 20.7),  β-Bisabolene (57.2 + 
52.3), Germacrene D (140 + 65), Selina-3,7(11)-diene (6.1 + 5.4), (+)-β-
Gurjunene (0.41 + 0.38), ∆-Cadinene (8.2 + 7.5), Total (557 + 225) 

Hopea nutans 

Limonene (5.0 + 2.9), 
β-Ocimene (34.6 + 
20.0), Total (26.4 + 1.6) 
 

α-Copaene (34.2 + 19.7), β-Caryophyllene (97.5 + 24.8), γ-Elemene (331 + 270), 
(-)-β-Elemene (254 + 208), β-Cubebene (259 + 150), ∆-Elemene (91.7 + 74.9), 
α-Caryophyllene (30.0 + 7.4), γ-Cadinene (7.8 + 4.5), Selina-3,7(11)-diene (3.8 + 
2.2), Total (995 + 714) 

Hopea sangal 
 (-)-β-Elemene (372), α-Lonone (1439), Bicyclogermacrene (21.0), γ-Cadinene 

(56.0), Aromadendrene (8.1), Total (1893) 

Lansium domesticum 

Limonene (6.31), α-
Pinene (32.9 + 23.7), 
Total (39.3 + 24.8) 
 

α-Copaene (1.3 + 1.0), β-Caryophyllene (30.6 + 20.2), γ-Elemene (105 + 84), α-
Cubebene (48.5 + 34.7), β-Cubebene (188 + 63), Calarene (5.5 + 4.5), 1,4,7-
Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,Z- (4.0 + 3.3), α-Caryophyllene (24.0 
+ 16.2), γ-Cadinene (24.5 + 11.2), Total (432 + 142) 

L. anamalayanum 
(Krishnappa & Dev 1973) 
[122] 

Luvunga heterophylla 

Limonene (10.7), α-
Pinene (5.8), Total 
(16.5) 
 
 

α-Copaene (1384), β-Caryophyllene (15.9), α-Cubebene (74.2), α-Ylangene 
(116), (-)-β-Elemene (800), α-Amorphene (168), ∆-Elemene (1448), α-
Gurjunene (59.8), E-Caryophyllene (254), Bicyclogermecrene (2201), 
Germacrene B (397), α-Guaiene (349), α-Caryophyllene (1790), β-Selinene 
(2079), γ-Selinene (1379), 5-Azulenemethanol (193), Germacrene D (70.9), Total 
(12778) 

 

Macaranga conifera 

β-Pinene (241), γ-
Terpinene (80.3), α-
Pinene (273), 
Phellandrene (132), 
Total (706) 

α-Caryophyllene (11.0), Total (11.0)  

Macaranga gigantea 
Limonene (8.2 + 6.7), 
α-Pinene (4.2 + 3.4), 

α-Copaene (35.2 + 28.7), β-Caryophyllene (564 + 240), (-)-β-Elemene (26.0 + 
21.2), 8-Isopropanyl-1,5-dimethyl-cyclodeca 1,5-diene (13.8 + 11.2), β-
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Total (12.3 + 5.8) 
 
 
 

Cubebene (9.5 + 7.8), ∆-Elemene (27.5 + 16.2), Bicyclo[3,1,1]hept-2-ene-2,6-
dimethyl-6-(4-methyl-3-pentenyl)- (56.9 + 39.0), E-α-Bergamolene (9.8 + 8.0),  
β-Bisabolene (84.2 + 68.7), E-β-Pharnesene (5.2 + 4.3), α-Caryophyllene (913 + 
570), γ-Cadinene (18.9 + 15.4), β-Selinene (16.7 + 13.6), Veridiflorol (32.8 + 
28.8), Total (1780 + 810) 

Madhuca korthalsii 

Limonene (6.3), α-
Pinene (33.6), Total 
(40.0) 
 
 

Bicycloelemene (12.4), α-Copaene (14.6), (-)-β-Elemene (13.3), α-Amorphene 
(4.3), Calarene (3.0), E-Caryophyllene (34.5), Aromadendrene (2.6), 
Bicyclogermacrene (181), Germacrene D (288), Selina-3,7(11)-diene (3.5), α-
Caryophyllene (19.1), Total (580) 

 

Mallotus mollissimus 

β-Pinene (823 + 373), 
Limonene (49.5 + 
19.5), γ-Terpinene 
(12.6 + 5.2), α-Pinene 
(2197 + 900), Total 
(3082 + 1254)  

α-Copaene (83.5 + 35.8), Caryophyllene (252 + 179), (-)-α-Selinene (341 + 
160), α-Cubebene (4.7 + 3.8), β-Elemene (4.5 + 3.7), Aromadendrene (31.2 + 
19.8), Bicyclogermacrene (330 + 156), Germacrene B (109 + 59), α-
Caryophyllene (265  + 132), β-Panasinsene (77.2 + 63.1), Selina-3,7(11)-diene 
(60.7 + 49.6), Germacrene D (62.5 + 41.8), Total (1622 + 763) 

 

Mallotus wrayi 

Limonene (4.6 + 2.2), 
α-Pinene (3.69 + 0.41), 
Total (8.3 + 2.5)  
 
 

α-Copaene (28.4 + 14.5), α-Cubebene (71.1 + 58.0), β-Elemene (3.8 + 3.1), α-
Amorphene (32.5 + 26.5), E-Caryophyllene (153 + 113), Bicyclogermacrene (8.1 
+ 5.2), Germacrene B (1.9 + 1.6), α-Farnesene (47.1 + 38.4), α-Caryophyllene 
(120 + 79), α-Muurolene (8.3 + 6.6), β-Bisabolene (12.1 + 9.9), ∆-Cadinene 
(44.3 + 33.8), Globulol (11.1 + 9.0), Viridiflorol (32.8 + 26.8), Germacrene D 
(155 + 65), Selina-3,7(11)-diene (87.1 + 71.1), (+)-β-Gurjunene (5.4 + 4.4), Total 
(801 + 321) 

Melastoma 

malabathricum 

Limonene (11.9 + 1.0), 
γ-Terpinene (12.5 + 
10.2), α-Pinene (41.1 + 
3.1), Total (75.7 + 23.0) 

α-Caryophyllene (43.0 + 24.8), Total (43.0 + 24.8)  

Memecylon laevigatum 

Limonene (3.3), α-
Pinene (19.5), Total 
(22.8) 

α-Copaene (5.5), E-α-Bergamolene (4.7), α-Caryophyllene (567), γ-Cadinene 
(11.0), β-Selinene (59.3), (+)-Spathulenol (16.0), Aromadendrene (70.0), Total 
(736) 

 

Myristica maxima 

 
 

α-Copaene (22.1), Calarene (30.4), Aromadendrene (478), Bicyclogermacrene 
(105), α-Caryophyllene (392), ∆-Cadinene (7.4), Germacrene D (750), Selina-
3,7(11)-diene (750), Total (1784) 

M. malabarica (Baby et al. 
2007) [123] 

Nauclea subdita 

Limonene (3.8), α-
Pinene (1.90), Total 
(5.7) 
 

α-Copaene (8.0), β-Caryophyllene (115),γ-Elemene (776), (-)-β-Elemene (7.9), 
E-Caryophyllene (33.1), Bicyclogermacrene (36.0), α-Caryophyllene (75.2), 
Germacrene D (129), Total (404) 

N. latifolia (Maikal & Kobo 
2008; Okwu & Uchenna 
2009) [124, 125] 
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Neonauclea artocarpoides 

Limonene (5.0), α-
Pinene (47.7), Total 
(52.7) 
 
 

α-Copaene (427), γ-Elemene (776), α-Cubebene (155), β-Elemene (457), (-)-β-
Elemene (23.5), E-Caryophyllene (200), Aromadendrene (118), 
Bicyclogermacrene (751), Germacrene B (1332), α-Guaiene (918), α-
Caryophyllene (459), β-Selinene (228), Azulene (2321), ∆-Cadinene (215), 
Viridiflorol (85.3), Total (8455) 

 

Palaquium microphyllum 

Limonene (11.1), α-
Pinene (25.3), Total 
(36.3) 
 

Bicycloelemene (35.1), α-Cubebene (52.0), β-Elemene (57.7 + 49.9), (-)-β-
Elemene (24.7), Bicyclogermacrene (449), α-Caryophyllene (224) , Total (784) 

 

Parashorea malaanonan 

β-Pinene (28.2 + 24.4), 
Limonene (26.8 + 
12.9), γ-Terpinene 
(19.9 + 10.9), Linalool 
(778 + 674), α-Pinene 
(185 + 141), Sabinene 
(14.3 + 12.4), 
Phellandrene (61.8 + 
53.6), β-Myrcene (17.0 
+ 14.8), Total (1130 + 
934)  
 

α-Copaene (25.3 + 20.1), β-Caryophyllene (63.0 + 45.5), γ-Elemene (6.8 + 5.9), 
(-)-β-Elemene (232 + 201), ∆-Elemene (11.4 + 9.9), 1,5,5-trimethyl-6-
methylene-cyclohexene (23.0 + 19.9), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-3-
penthyl) (47.5 + 41.2), β-Cubebene (6.0 + 5.2), Bicyclogermacrene (61.3 + 49.7),  
Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-methyl-9-methylene (30.7 + 26.6), α-
Loone (6.9 + 6.0), α-Guaiene (5.2 + 4.8), E-β-Farnesene (3.3 + 2.9), α-
Caryophyllene (113 + 90), γ-Cadinene (46.7 + 40.4), E-α-Bergamotene (111 + 
10), β-Bisabolene (17.8 + 15.4), (+)-Spathulenol (4.4 + 3.8), Germacrene D (20.3 
+ 13.6), β-Selinene (96.2 + 67.4), Caryophyllene oxide (33.3 + 28.8), Total (941 
+ 100) 

 

Parashorea tomentella 

Camphene (3.9 + 3.4), 
β-Pinene (10.5 + 9.4), 
Limonene (17.7 + 9.1), 
α-Pinene (203 + 167), 
Total (235 + 179)  
 
 

Bicycloelemene (18.2 + 16.3), α-Copaene (95.6 + 69.3), β-Copaene (7.0 + 4.4), 
β-Bourbonene (15.6 + 14.1), γ-Elemene (75.2 + 67.3), Isospathulenol (4.5 + 3.0), 
α-Ylangene (59.7 + 53.4), α-Cubebene (64.6 + 34.3), (-)-β-Elemene (9.0 + 5.9), 
∆-Elemene (40.5 + 31.9), E-Caryophyllene (546 + 488), Bicyclogermacrene (362 
+ 147), α-Guaiene (3.8 + 3.2), α-Farnesene (2.6 + 2.3), α-Caryophyllene (474 + 
298), ∆-Cadinene (9.6 + 4.2), (+) Spathulenol (40.8 + 36.1), Germacrene D (384 
+ 155), Total (2213 + 990) 

Payena acuminata 
Limonene (11.1), α-
Pinene (107), Total 
(118) 

β-Caryophyllene (94.3), α-Caryophyllene (36.7), Total (131)  

Pleiocarpidia 

sandahanica 

Limonene (5.1 + 0.5), 
α-Pinene (5.1 + 1.8), 
Total (6.8 + 3.4) 
 

Bicycloelemene (15.0 + 8.7), α-Copaene (2.78 + 1.60), (+)-Aromadendrene (10.4 
+ 6.0), (-)-β-Elemene (3.4 + 2.8), α-Amorphene (131 + 76), E-Caryophyllene 
(9.0 + 5.2), Bicyclogermacrene (61.4 + 35.5), Viridiflorol (5.4 + 3.1), 
Germacrene D (3.3 + 2.7), Selina-3,7(11)-diene (4.9 + 2.8), Total (163 + 133) 

 

Podocarpus neriifolius 
Limonene (1.6 + 0.9), 
α-Pinene (1.45 + 0.84), 

Bicycloelemene (4.0 + 2.3), α-Copaene (2.4 + 1.4), α-Cubebene (11.4 + 6.6), α-
Amorphene (3.0 + 1.8), Calerene (1.8 + 1.5), Bicycloelemene (3.56 + 2.05), E-

P. andina (Kubo et al. 
1992) [126], P. halli (Perry 
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Total (2.04 + 1.67) 
 
 

Caryophyllene (93.6 + 2.4), Bicyclogermacrene (88.5 + 7.4), α-Caryophyllene 
(53.4 + 1.9), Germacrene D (36.2 + 28.7), (+)-β-Gurjunene (3.0 + 1.8) , Total 
(212 + 9.7) 

et al. 2007) [127], P. sensu 

latissimo (Abdillahi et al. 
2010) [128], P. spicatus 
(Lorimer & Weavers 1987) 
[129] 

Poikilospermum 

cordifolium 

Limonene (8.8 + 1.3), 
α-Pinene (1.05 + 0.61), 
Total (6.5 + 3.1)  
 
 

α-Copaene (544 + 314), α-Cubebene (28.8 + 16.6), γ-Elemene (79.3 + 64.7),� 
α-Ylangene (45.2 + 26.1), β-Elemene (191 + 110), �∆-Elemene (423 + 345), E-
Caryophyllene (98.0 + 48.0), Aromadendrene (24.8 + 14.3), α-Guaiene (134 + 
78), α-Caryophyllene (340 + 196), ∆-Cadinene (48.3 + 27.0), α-Selinene (507 + 
292), 5-Azulenemethanol (62.9 + 36.3), Germacrene D (596 + 482), (+)-β-
Gurjunene (746 + 431), Total (2946 + 2392) 

 

Polyalthia sumatrana 

Limonene (3.3 + 0.6), 
α-Pinene (32.8 + 17.3), 
Total (24.1 + 18.8)  
 
 

α-Copaene (2.8 + 1.6), β-Caryophyllene (6.9 + 2.9), γ-Elemene (4.8 + 4.0), α-
Cubebene (1.7 + 1.0), α-Ylangene (19.4 + 11.2), (-)-β-Elemene (1.85 + 1.51), 
1,4,7-Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,Z- (3.7 + 2.2), Allomadendrene 
(2.8 + 1.6), γ-Cadinene (7.5 + 4.4), β-Selinene (4.0 + 3.3), Globulol (1.6 + 0.9), 
α-Selinene (2.3 + 1.3), Total (43.2 + 33.2) 

P. cerasoide 
(Kanokmedhakul et al. 
2007) [130], P. longifolia 
(Ogunbinu et al. 2007) 
[131], P. suaveolens 

(Nyegue et al. 2008) [132] 
Popowia pisocarpa    

Pouteria malaccensis 

Limonene (3.9), Total 
(87.1) 
 
 
 

β-Burbonene (5.6), β-Caryophyllene (270), (+)-Aromadendrene (36.9), E-α-
Bisabolene (36.9), (-)-α-Selinene (161), α-Cubebene (62.1), 8-Isopropanyl-1,5-
dimethyl-cyclodeca-1,5-diene (14.9), Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-
methyl-9-methylene (6.5), E-α-Bergamotene (49.7), α-Caryophyllene (93.6), γ-
Cadinene (81.2), β-Selinene (178), β-Bisabolene (6.8), (+)-Spathulenol (7.5), 
Germacrene D (37.2), Selina-3,7(11)-diene (77.2), Total (929) 

P. caimito (Adron et al. 
1972) [133], P. splendens 
(Sotes et al. 2006) [134] 

Pterospermum stapfianum 

Camphene (41.2), 
Limonene (17.1), α-
Pinene (94.5), Total 
(152.8) 

α-Copaene (6.1), β-Caryophyllene (6.0), α-Cubebene (3.2), α-Caryophyllene 
(11.5), γ-Cadinene (14.6), β-Selinene (201), Selina-3,7(11)-diene (77.2), 
Veridiflorol (24.1), α-Selinene (190), Total (457) 

 

Reinwardtiodendron 

humile 

 
 
 
 

α-Copaene (518 + 226), β-Caryophyllene (396 + 228), (+)-Aromadendrene (65.2 
+ 37.6), α-Cubebene (30.9 +17.8), α-Caryophyllene (12670 + 285), β-Elemene 
(13.9 + 8.0), (-)-β-Elemene (192 + 157), α-Amorphene (58.7 + 33.9), Calarene 
(299 + 244), 1,5,5-trimethyl-6-methylene-cyclohexene (23.0 + 13.3), Azulene 
(363 + 221), α-Muurolene (32.7 + 26.7), Viridiflorol (30.5 + 17.7), α-Gurjunene 
(147 + 85), E-Caryophyllene (1187 + 684), Germacrene D (100 + 82), Selina-
3,7(11)-diene (150 + 87), α-Guaiene (158 + 78), Bicyclogermacrene (626 + 361), 
α-Caryophyllene (12670 + 285), (+)-Spathulenol (7.1 + 4.1), Total (3899 + 
2510) 
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Shorea acuta 

Limonene (49.1), β-
Ocimene (560), 
Linalool (154),  α-
Terpinene (2990), β-
Myrcene (36.3), ∆-3-
Carene (32.8), Total 
(3822) 

γ-Elemene (565), α-Cubebene (163), β-Elemene (10435), Germacrene B (4469), 
Germacrene D (5024), Total (20657) 

S. species (Bisset et al. 
1971) [135], S negrosensis 
(Ishi & Kadoya 2003) [136] 

Shorea fallax 

Limonene (1.14 + 
0.93), α-Pinene (0.71 + 
0.58), Total (1.85 + 
1.51) 
 
 

β-Caryophyllene (1.5 + 1.2), �α-Cubebene (14.2 + 11.1), (-)-β-Elemene (13.6 + 
11.1), 1,5,5-trimethyl-6-methylene-cyclohexene (27.9 + 16.2), 
Bicyclogermacrene (202 + 165), β-Sesquiphellandrene (16.6 + 13.5), E-
Caryophyllene (38.8 + 25.0), Allomadendrene (3.1 + 2.6), α-Caryophyllene (22.0 
+ 13.5), β-Selinene (118 + 96), Germacrene D (224 + 187) , Total (692 + 2278) 

Shorea johorensis 

Limonene (6.8 + 5.6), 
α-Terpinene (37.8 + 
30.9), α-Pinene (14.8 + 
8.3), Total (59.3 + 31.9) 
 

β-Caryophyllene (25.3 + 20.7), α-Cubebene (5.2 + 3.4), β-Elemene (31.5 + 
27.5), α-Amorphene (6.4 + 3.7), Bicycloelemene (3.2 + 2.6), E-Caryophyllene 
(324 + 205), Bicyclogermacrene (132 + 83), Germacrene B (39.1 + 31.9), α-
Caryophyllene (201 + 125), Germacrene D (294 + 64), Total (1062 + 436) 

Sindorea irpicina 

 
 
 

α-Copaene (33.1 + 15.3), β-Caryophyllene (4.3 + 2.5), γ-Elemene (133 + 108), 
β-Elemene (803 + 563), β-Cubebene (29.5 + 17.1), Calarene (51.3 + 41.9), ∆-
Elemene (29.4 + 24.0), E-Caryophyllene (91.5 + 52.9), Bicyclogermacrene (298 
+ 172), Germacrene B (2.9 + 2.3), α-Caryophyllene (15.5 + 3.3), β-Selinene (239 
+ 195), Germacrene A (55.6 + 32.1), ∆-Cadinene (3.8 + 2.2), Germacrene D (60 
+ 33), Total (1404 + 851) 

S. sumatrana (Heymann et 

al. 1994; Jang et al. 2004) 
[137, 138] 

Swintonia acuta 
Limonene (1.75), α-
Pinene (1.84), Total 
(3.6) 

β-Caryophyllene (132), α-Cubebene (3.7), α-Ylangene (14.3), Bicycloelemene 
(3.3), Bicyclogermacrene (35.2), α-Caryophyllene (95.1), Total (284) 

 

Symplocos fasciculata 

 
 

β-Caryophyllene (288), γ-Elemene (5358), α-Cubebene (88.7), 8-Isopropanyl-
1,5-dimethyl-cyclodeca-1,5-diene (4045), Bicycloelemene (1327), 
Bicyclogermacrene (2383), α-Caryophyllene (86.6), Total (13577) 

 

Syzygium campanulatum 

β-Pinene (30.0 + 24.5), 
Limonene (22.5 + 1.9), 
β-Ocimene (212 + 
122), γ-Terpinene (0.96 
+ 0.78), Linalool oxide 
(1.53 + 0.88), Linalool 
(21.6 + 12.4), α-

α-Copaene (6.8 + 3.9), α-Santalene (70.4 + 40.6), β-Caryophyllene (107 + 62), 
E-α-Bisabolene (4.9 + 2.8), E-γ-Bisabolene (3.2 + 1.8), γ-Elemene (2.8 + 2.3), α-
Cubebene (38.4 + 22.1), (-)-β-Elemene (7.8 + 6.4), α-Amorphene (4.5 + 2.6), ∆-
Elemene (26.2 + 21.4,), 1,5,5-trimethyl-6-methylene-cyclohexene (2.9 + 1.9),E-
α-Bergamolene (2.4 + 2.0), α-Caryophyllene (82.6 + 3.0), α-Muurolene (1.8 + 
1.1), Selina-3,7(11)-diene (6.2 + 3.6), Total (273 + 121) 

S. aromaticum 
(Gopalakrishnan 1994; 
López et al. 2006) [139, 
140], S. formosanum 

(Chang et al. 1999) [141] 



    Sardans et al., Rec. Nat. Prod. (2015) 9:1 19-40 34 

 

Terpinene (2.52 + 
1.46), α-Pinene (26.7 + 
15.4), Sabinene (5.5 + 
3.2), Total (226 + 68.5) 

Tarbernaemontana 
macrocarpa 

Limonene (22.3), α-
Pinene (10.1), Total 
(32.4) 

Bicyclogermacrene (10.8), α-Caryophyllene (20.9), Germacrene D (4.7), Total 
(36.1) 

T. markgrafiana (Nielsen et 

al. 1994) [142] 

Tarenna cumingiana 

β-Pinene (528), 
Limonene (22.8), α-
Pinene (1082), β-
Myrcene (54.9), Total 
(1687) 
 

α-Copaene (1879), β-Caryophyllene (71.2), E-α-Bisabolene (5010), α-Cubebene 
(202), (-)-β-Elemene (2079), 8-Isopropanyl-1,5-dimethyl-cyclodeca-1,5-diene 
(201), ∆-Elemene (158), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-6-(4-methyyl-3-
pentenyl)- (442), E-α-Bergamolene (4815), β-Sesquiterpene (399), α-
Caryophyllene (1746), γ-Cadinene (282), β-Selinene (757), Allomadendrene 
(162), β- Bisabolene (4518), Selina-3,7(11)-diene (3869), (+)-Spathulenol (161), 
Germacrene D (356), Total (27109) 

T. madagascariensis 
(Salmoun et al. 2007) [143] 

Uncaria cordata 
Limonene (5.7), α-
Pinene (2.57), Total 
(8.3) 

  

Uvaria sorzogonensis 

Camphene (93.8), 
Limonene (8.6), Total 
(102) 

β-Caryophyllene (12.5), α-Guaiene (3.4), Germacrene B (7.5), α-Caryophyllene 
(13.8), (+)-Spathulenol (62.1), Total (99.0) 

U. species (Parmar et al. 
1994) [144], U. lucida 
(Weenen & Nkunya 1990) 
[145], U. scheffleri (Nkunya 
2005) [146], U. tanzaniae 
(Weenen et al. 1991) [147] 

Xanthophyllum affine    

 
We show only the chemical species that were determined with more than 95% of certainty according with literature spectra. Values between brackets are mean + S.E. (µg g-1). 
The existence of previous studies on mono- and sesquiterpenes for the same species and genus are reported in the last column. 
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species of these genera studied here had not been previously reported as mono- and/or sesquiterpene 
containing species (Table 2, supplementary material). We did not detect terpenes in the species studied 
of the genera Popowia and Xanthophyllum. As far as we know, no previous studies have described 
terpene content in species of these genera. We report for the first time that two of the three 
Dipterocarpus studied species (D. sarawakensis and D. applanatus), are terpene containing species. 
The third studied species, D. gracilis, had already been reported as containing different caryophyllene 
isomers [69], but we have determined for the first time α-Cubebene, β-Cubebene, Bicyclogermacrene, 
γ-Cadinene, Germacrene D and Selina-3,7,(11)-diene for this species. Finally, Cinnamonum 

zeylanicum had already been reported as terpene containing species [70].  
This high proportion of terpene containing taxa in this old tropical forest suggests that terpene 

content can be a favourable selective trait in these environmental conditions. These results also 
suggest that terpene accumulation can be widespread in tropical rainforest plants. Further research is 
necessary to corroborate whether this higher frequency of species terpene accumulators in tropical 
rainforest than in other forest ecosystems is a general trend or not, and to gain knowledge on the 
ecological significance of this higher frequency of accumulator species in these tropical ecosystems. 
Moreover, Courtois et al. (2009) [67] have also observed in a set of 55 tree species of a rainforest in 
the French Guiana that all studied species emitted VOCS, most of them mono- and sesquiterpenes, 
further suggesting the widespread terpene production of rainforest trees. 

There were poor relationships between leaf terpene concentrations and phylogeny among the 75 
studied species. This agrees with results observed in similar studies in other floras such as those for 73 
Oahu forest species [26]. Moreover, the number of different mono- and sesquiterpene chemical 
species per each plant species did not present phylogenetic signal. As far as we know, there is a lack of 
comparable studies on the phylogenetic signal of leaf terpene concentrations in a broad set of plant 
species but the results are in accordance with terpenes being found in most plant Families [71], and 
also with studies finding genes linked to terpene biosynthesis pathways in several plant groups [72].
 Higher nutrient availability may be expected to translate into higher carbon fixation and 
activity of the enzymes involved in isoprenoid production [38, 40]. But it might also be expected the 
other way around, that a higher nutrient availability translates into more growth than allocation to 
carbon based secondary compounds such as terpenes, following the “carbon excess” hypotheses [42, 
44]. The available literature does not show clear general relationships between leaf N and P 
concentrations and/or availability with leaf terpene concentrations [34, 73]. This study confirms most 
of the available literature: Leaf terpene concentration had no relationship with nutrient concentrations. 
The lack of relationships between leaf terpene concentration and leaf nutrient concentrations does not 
thus support the “nutrient driving synthesis hypothesis” [39, 40], nor the “carbon excess hypotheses”. 
In general, previous studies have not detected relationships between N and P concentrations or 
availability and leaf terpene concentrations. For example, although NPK fertilization increased terpene 
concentrations in Chrysanthemum boreale [33], and increased some monoterpene compounds and 
decreased others in Larix lariciana [74], no relationships have been observed between P concentration 
and terpene concentration in the leaves of Eucalyptus polybractea [75], or in the leaves of Pinus 

halepensis and Quercus ilex [34]. Studies on the relationships between leaf N and terpene 
concentrations, although scarce, are more abundant than those of P concentrations and terpene 
concentrations relationships. While some studies have observed an increase [76-78] or decrease [79] in 
leaf terpene concentrations with increasing N availability and/or concentration, other studies have not 
either detected a clear relationship [34, 44, 75, 80], or have shown a different direction of the 
relationship depending on the species [32] or depending on the leaf age [81]. Thus, the results of the 
study observing no relationships between leaf N concentration with terpene concentration largely 
agree with previous literature, suggesting multiple factors affecting the nutrient-terpene relationship 
including the strength of the nutrient limitation and the ecological benefits of terpene production in 
each environmental circumstance. 

The observed negative relationships between leaf terpene concentration and leaf length 
corroborates previous studies that have shown that leaf morphological traits exert some effect on 
terpene concentration storage capacity through regulation of gland dimensions [75] or in the 
accumulation of enzymes responsible for terpene synthesis per unit of leaf area [82]. However, we did 
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not find any significant relationship between leaf mono- and sesquiterpene concentration and the other 
leaf morphological traits nor with leaf photosynthetic capacity. 

Thus, there were not general relationships between leaf terpene concentrations and leaf trais 
related to defence and to production capacity. This can be due to the highly diverse functions of 
terpenes and not related to a single compound or structure. The relationships between herbivores and 
plants in tropical rainforest are very diverse [30, 61]. Previous studies have also observed poor 
relationships between leaf anatomical traits and leaf terpene concentrations in tropical rainforest [83]. 
Certainly, as commented previously, terpenes can act as herbivore deterrents [18, 19] mainly against 
generalist herbivores [20-22], but they also have other properties, such as defence against fungi and 
pathogens [25] and against abiotic stresses such as high temperature, ozone or excess of radiation [4, 
5, 84] and signaling and communication [11, 85]. These roles for terpenes can be advantageous in 
tropical ecosystems where the radiation intensity and temperatures are high and where there are 
multiple and diverse biotic interactions due to the high species diversity and organisms density. 

Summarizing, the high proportion of species that accumulate terpenes and the general lack of 
phylogenetic conservatism suggest that terpene accumulation is a widespread trait in this tropical 
forest that confers adaptative advantage in all plant taxon spectrum across a wide range of angiosperm 
phylogeny. The negative correlation between monoterpene concentration and leaf length might 
suggest a link between leaf anatomy and the capacity to store terpenes. Functions such as temperature 
protection, radiation protection or signaling and communication could underlie the high frequency of 
terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions 
among multiple species. 
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