R04/1072 | 30/04/2007

Ecological Risk Assessment for Effects of Fishing

REPORT FOR THE AUTO LONGLINE SUB-FISHERY OF THE CORAL SEA **FISHERY**

Authors

Dianne Furlani Mike Fuller Jo Dowdney Cathy Bulman Miriana Sporcic

This work is copyright. Except as permitted under the *Copyright Act 1968* (*Commonwealth*), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or the Australian Fisheries Management Authority. Neither may information be stored electronically in any form whatsoever without such permission.

This fishery Ecological Risk Assessment (ERA) report should be cited as:

Furlani, D., Fuller, M., Dowdney, J., Bulman, C., and Sporcic, M. (2007) Ecological Risk Assessment for the Effects of Fishing: Report for the Auto longline Sub-fishery of the Coral Sea Fishery. Report for the Australian Fisheries Management Authority, Canberra.

Notes to this document:

This fishery ERA report document contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:

(Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra) Thus, table and figure numbers within the fishery ERA report document are not sequential as not all are relevant to the fishery ERA report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

Executive Summary

This assessment of the ecological impacts of the Coral Sea Fishery: Auto longline Sub-fishery was undertaken using the ERAEF method version 9.2. ERAEF stands for "Ecological Risk Assessment for Effect of Fishing", and was developed jointly by CSIRO Marine and Atmospheric Research, and the Australian Fisheries Management Authority. ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five ecological components – target species; by-product and by-catch species; threatened, endangered and protected (TEP) species; habitats; and (ecological) communities.

ERAEF proceeds through four stages of analysis: scoping; an expert judgement based Level 1 analysis (SICA – Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA – Productivity Susceptibility Analysis); and a model based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery can be thought of as a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at high risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out whole ecological components as well. Level 2 is a screening or prioritization process for individual species, habitats and communities at risk from direct impacts of fishing. The Level 2 methods do not provide absolute measures of risk. Instead they combine information on productivity and exposure to fishing to assess potential risk – the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

For the Coral Sea Fishery, the ERAEF was limited to Level 1 analysis only.

This assessment of the Coral Sea Fishery: Auto longline Sub-fishery includes the following:

- Scoping
- Level 1 results for all components
- No Level 2 analyses have been undertaken at this stage.

Fishery Description:

Gear: Horizontally-set mainline anchored on the ocean floor, hooks

attached by short snood lines, baiting automated prior to

deployment; gear typically divided into sets of 1,000 hooks, and

many kilometers in length.

Area: Sandy Cape, Fraser Island to Cape York, east of Great Barrier

Reef Marine park outer boundary through to the edge of the Australian Fishing Zone (AFZ); Very small focus on Northern Plateau edges, most fishing on localized areas of Seamounts.

Depth range: Generally 30-600m; with observer coverage 50% of lines may be

set <200m – depths of 18-900m noted in observer reports.

Fleet size: 9 fishing concessions exist across the multigear multimethod

fishery – All line-gear types are eligible to operate from each permit (i.e. permits are not gear specific within the line sector). During the 4 year data-period covered in this report (2001-04 calendar years) 2 autolongline boats have operated in each year.

Effort: Confidentiality agreements prohibit disclosure of detailed effort

data; effort has fluctuated, ranging from >80,000 to >330,000 hooks/yr (2001-03), with the latest data recording >200,000

hooks/yr (2004).

Landings: Confidentiality agreements prohibit disclosure of detailed landing

weights; Catch Disposal Records indicate a pattern of decreasing

catch of >30% annually

Discard rate: Summary rate not recorded. Minimal discarding including

dogfish, eels, cucumberfish, and other sharks noted in observer

reports

Main target species: Flame/King Snapper, Northwest rubyfish, blue-eye trevalla,

grouper and rock cod, imperador, nannygai

Management: No Management Plan, MAC or RAG; but a Statement of

Management Arrangements 2004/05 is in place. No TACs or

quotas exist within the Coral Sea Fishery Line sector.

Observer program: Observer coverage required on every 4th trip, with aim of

covering 25% of all hook deployments; lines set < 200m depth

require 50% of deployments to be observed.

Ecological Units Assessed

Target species:9By-product species:62Discard Species:14TEP species:109

Habitats: 266 (262 benthic, 4 overlying pelagic)
Communities: 15 (11 demersal, 4 overlying pelagic)

Level 1 Results

No ecological components were eliminated at Scoping or Level 1. (There was at least one risk score of 3 – moderate – or above for each of the components).

Most hazards (fishing activities) were eliminated at Level 1 (risk scores 1 or 2). Those remaining included:

- Fishing capture (impact on Target, Byproduct, Habitat and Communities components);
- Fishing without capture (impact on Habitat component);
- Gear loss without capture (impact on Target, Byproduct and TEP components);
- Translocation of species (impact on all 5 components);
- Provisioning (impact on TEP component); and
- Gear loss impact through the addition of non-biological material (on Target, Byproduct and TEP components).

One internal hazard - Translocation of species - was rated as major within both the Habitat and Community components (risk score 4).

Translocation of species hazard is scored as very uncertain. It is a low probability but potentially high consequence hazard.

Significant external hazards include

• other fisheries in the region (impact on Habitat and Community components).

Level 2 Results

Species

No Coral Sea Fishery Auto longline species were assessed at Level 2 using the PSA analysis.

Habitats

No Coral Sea Fishery Auto longline habitats were assessed at Level 2 using the habitat PSA analysis.

Communities

The community component was not assessed at Level 2, but should be considered in future assessments when the methods to do this are fully developed.

Summary

Six issues emerged from the ERAEF Level 1 analysis of the Coral Sea Fishery Auto longline sub-fishery:

• Fishing capture was identified as a hazard to Target, Byproduct, Habitat and Communities components;

- Fishing activity without capture was identified as a habitat hazard, due to the nature of the gear set and the lack of regeneration information for tropical-water habitats.
- Gear loss without capture was identified as a hazard to species components, with Fishing Activity Reports (FAR) noting the regular occurrence of gear loss.
- Translocation of species was identified as a moderate hazard to Target, Byproduct and TEP components, and a major risk hazard to Habitat and Community components.
- Provisioning was identified as a hazard to the TEP component; and
- Gear loss impact, through the addition of non-biological material, was identified as a hazard to species components.

Managing identified risks

Using the results of the ecological risk assessment, the next steps for each fishery will be to consider and implement appropriate management responses to address these risks. To ensure a consistent process for responding to the ERA outcomes, AFMA has developed an Ecological Risk Management (ERM) framework.

TABLE OF CONTENTS

Executive summary

1. Overview	1
Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework	
The Hierarchical Approach	
Conceptual Model	1
ERAEF stakeholder engagement process	
Scoping	
Level 1. SICA (Scale, Intensity, Consequence Analysis)	
Level 2. PSA (Productivity Susceptibility Analysis)	
Level 3	
Conclusion and final risk assessment report	
Subsequent risk assessment iterations for a fishery	
2. Results	
2.1 stakeholder engagement	
2.2 Scoping	
2.2.1 General Fishery Characteristics (Step 1).	
2.2.2 Unit of Analysis Lists (Step 2)	
2.2.3 Identification of Objectives for Components and Sub-components (Step 3)	
2.2.4 Hazard Identification (Step 4)	
2.2.5 Bibliography (Step 5)	
2.2.6 Decision rules to move to Level 1(Step 6)	
2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)	
2.3.1 Record the hazard identification score (absence (0) presence (1) scores)	
identified at step 3 in the scoping level onto the SICA Document (Step 1)	. 62
2.3.2 Score spatial scale of activity (Step 2)	
2.3.3 Score temporal scale of activity (Step 3)	
2.3.4 Choose the sub-component most likely to be affected by activity (Step 4).	
2.3.5 Choose the unit of analysis most likely to be affected by activity and to ha	
highest consequence score (Step 5)	. 63
2.3.6 Select the most appropriate operational objective (Step 6)	. 63
2.3.7 Score the intensity of the activity for the component (Step 7)	. 63
2.3.8 Score the consequence of intensity for that component (Step 8)	. 64
2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)	. 64
2.3.10 Document rationale for each of the above steps (Step 10)	. 65
2.3.11 Summary of SICA results	. 87
2.3.12 Evaluation/discussion of Level 1	. 90
2.3.13 Components to be examined at Level 2	
2.4 Level 2 Productivity and Susceptibility Analysis (PSA)	93
2.4.1 Units excluded from analysis and document reasons for exclusion (Step 1)	
2.4.2 and 2.4.3 Level 2 PSA (Steps 2 and 3)	
2.4.4 PSA Plot for individual units of analysis (Step 4)	
2.4.5 Uncertainty analysis ranking of overall risk (Step 5)	101
2.4.6 Evaluation of the PSA results (Step 6)	
2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)	
2.5 Level 3	110

3. General discussion and research implications	111
3.1 Level 1	111
3.2 Level 2	112
3.3 Key Uncertainties / Recommendations for Research and Monitoring	112
References	
Glossary of Terms	118
Appendix A: General summary of stakeholder feedback	
Appendix B: PSA results - summary of stakeholder discussions	121
Appendix C: SICA consequence scores for ecological components	

Fishery ERA report documents to be completed

List of Summary documents
2.1 Summary Document SD1. Summary of stakeholder involvement for fishery
List of Scoping documents
Scoping Document S1 General Fishery Characteristics
Scoping Document S2A Species
Scoping Document S2B1. Benthic Habitats
Scoping Document S2B2. Pelagic Habitats
Scoping Document S2C1. Demersal Communities
Scoping Document S2C2. Pelagic Communities
Scoping Document S3 Components and Sub-components Identification of Objectives 47
Scoping Document S4. Hazard Identification Scoring Sheet
List of Level 1 (SICA) documents
2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component; L1.2 - Byproduct and Bycatch Component; L1.3 - TEP Species Component; L1.4 - Habitat
Component; L1.5 - Community Component
Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations.
List of figures
Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in
italics1
Figure 2. Generic conceptual model used in ERAEF.
Figure 13. The axes on which risk to the ecological units is plotted. The x-axis includes
attributes that influence the productivity of a unit, or its ability to recover after
impact from fishing. The y-axis includes attributes that influence the susceptibility
of the unit to impacts from fishing. The combination of susceptibility and
productivity determines the relative risk to a unit, i.e. units with high susceptibility
and low productivity are at highest risk, while units with low susceptibility and
high productivity are at lowest risk. The contour lines divide regions of equal risk
and group units of similar risk levels
Figure 17. Overall risk values in the PSA plot. Left panel. Colour map of the
distribution of the euclidean overall risk values. Right panel. The PSA plot
contoured to show the low risk (blue), medium risk (orange) and high risk (red)
values 101

List of tables

Table 4. Examples of fishing activities
Table 5A. Target Species. Description of consequences for each component and each
sub-component. Use table as a guide for scoring the level of consequence for target
species
Table 5B. Bycatch and Byproduct species. Description of consequences for each
component and each sub-component. Use table as a guide for scoring the level of
consequence for bycatch/byproduct species
Table 5C. TEP species. Description of consequences for each component and each sub-
component. Use table as a guide for scoring the level of consequence for TEP
species
Table 5D. Habitats. Description of consequences for each component and each sub-
component. Use table as a guide for scoring the level of consequence for habitats.
Note that for sub-components Habitat types and Habitat structure and function,
time to recover from impact scales differ from substrate, water and air. Rationale:
structural elements operate on greater timeframes to return to pre-disturbance
states
Table 5E. Communities. Description of consequences for each component and each
sub-component. Use table as a guide for scoring the level of consequence for
communities

1. Overview

Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative "model-based" approach at Level 3 (**Figure 1**). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

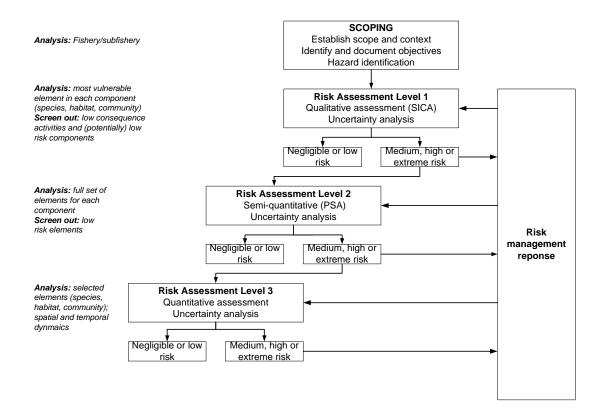


Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in italics.

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological

components are evaluated, corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under Environment Protection and Biodiversity Conservation (EPBC) legislation. The five *components* are:

- Target species
- By-product and by-catch species
- Threatened, endangered and protected species (TEP species)
- Habitats
- Ecological communities

This conceptual model (**Figure 2**) progresses from *fishery characteristics* of the fishery or sub-fishery, \rightarrow *fishing activities* associated with fishing and *external activities*, which may impact the five ecological components (target, byproduct and bycatch species, TEP species, habitats, and communities); \rightarrow *effects of fishing and external activities* which are the <u>direct</u> impacts of fishing and external activities; \rightarrow *natural processes and resources* that are affected by the impacts of fishing and external activities; \rightarrow *sub-components* which are affected by impacts to natural processes and resources; \rightarrow *components*, which are affected by impacts to the sub-components. Impacts to the sub-components and components in turn affect achievement of management objectives.

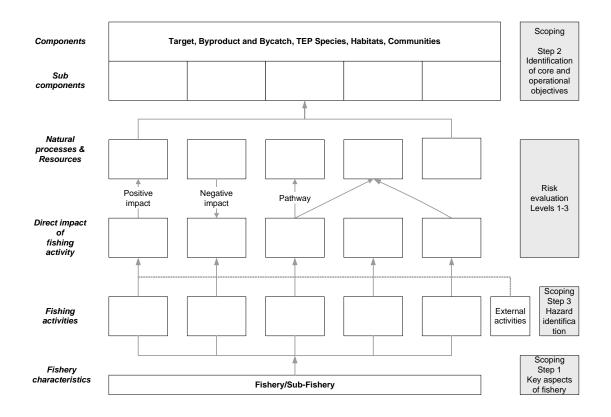


Figure 2. Generic conceptual model used in ERAEF.

The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

A full description of the ERAEF method is provided in the methodology document (Hobday *et al* 2007). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

- 1. <u>Identification of units of analysis</u> (species, habitats and communities) potentially impacted by fishery activities (section 2.2.2; Scoping Documents S2A, S2B and S2C).
- 2. Selection of objectives (section 2.2.3; Scoping Document S3) is a challenging part of the assessment, because these are often poorly defined, particularly with regard to the habitat and communities components. Stakeholder involvement is necessary to agree on the set of objectives that the risks will be evaluated against. A set of preliminary objectives relevant to the sub-components is selected by the drafting authors, and then presented to the stakeholders for modification. An agreed set of objectives is then used in the Level 1 SICA analysis. The agreement of the fishery management advisory body (e.g. the MAC, which contains representatives from industry, management, science, policy and conservation) is considered to represent agreement by the stakeholders at large.
- 3. <u>Selection of activities</u> (hazards) (section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was developed following extensive review, and allows repeatability

between fisheries. Additional activities raised by the stakeholders can be included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalize the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholder-agreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) can be undertaken in a workshop situation, or prepared ahead by the draft fishery ERA report author and debated at the stakeholder meeting. Because of the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high risk elements. The rationale for each SICA element must be documented and this may represent a challenge in the workshop situation. Documenting the rationale ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

Level 2. PSA (Productivity Susceptibility Analysis)

Level 1 assessment for the Coral Sea Fishery has been completed as required for the ERAEF Stage 2 process. **No Level 2 analysis has been conducted for the Coral Sea Autolongline sub-fishery.** Information regarding Level 2 analysis is included to provide a full understanding of the ERAEF process.

The semi-quantitative nature of this analysis tier should reduce but not eliminate the need for stakeholder involvement. In particular, transparency about the assessment will lead to greater confidence in the results. The components that were identified to be at moderate or greater risk (SICA score > 2) at Level 1 are examined at Level 2. The units of analysis at Level 2 are the agreed set of species, habitat types or communities in each component identified during the scoping stage. A comprehensive set of attributes that are proxies for productivity and susceptibility have been identified during the ERAEF project. Where information is missing, the default assumption is that risk will be set high. Details of the PSA method are described in the accompanying ERAEF Methods Document. Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. The attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without full stakeholder involvement. This is a consultation of the published scientific literature. Further stakeholder input is required when the preliminary gathering of attribute values

is completed. In particular, where information is missing, expert opinion can be used to derive the most reasonable conservative estimate. For example, if the species attribute values for annual fecundity have been categorized as low, medium and high on the set [<5, 5-500, >500], estimates for species with no data can still be made. Estimated fecundity of a species such as a broadcast-spawning fish with unknown fecundity, is still likely greater than the cutoff for the high fecundity categorisation (>500). Susceptibility attribute estimates, such as "fraction alive when landed", can also be made based on input from experts such as scientific observers. The final PSA is completed by scientists because access to computing resources, databases, and programming skills is required. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final results are then presented to the stakeholder group before decisions regarding Level 3 are made. The stakeholder group may also decide on priorities for analysis at Level 3.

Level 3

This stage of the risk assessment is fully-quantitative and relies on in-depth scientific studies on the units identified as at moderate or greater risk in the Level 2 PSA. It will be both time and data-intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process will result in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by the Australian Fisheries Management Authority (AFMA) for a range of management purposes, including to address the requirements of the Environment Protection and Biodiversity Conservation Act (EPBC Act) as evaluated by Department of the Environment and Heritage (DEH).

Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be reevaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Each fishery ERA report will be revised at least every four years or as required by Strategic Assessment. However, to ensure that actions in the intervening period do not unduly increase ecological risk, each year certain criteria will be considered. At the end of each year, the following trigger questions should be considered by the MAC for each sub-fishery.

- Has there been a change in the spatial distribution of effort of more than 50% compared to the average distribution over the previous four years?
- Has there been a change in effort in the fishery of more than 50% compared to the four year average (e.g. number of boats in the fishery)?

• Has there been an expansion of a new gear type or configuration such that a new sub-fishery might be defined?

Responses to these questions should be tabled at the relevant fishery MAC each year and appear on the MAC calendar and work program. If the answer to any of these trigger questions is yes, then the sub-fishery should be reevaluated.

2. Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the Australian Fishing Zone (AFZ). The fishery may also be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond, is specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/sub-fishery may include any combination of commercial, recreational, and/or indigenous fishers.

The results presented below are for the Auto longline sub-fishery of the Coral Sea Fishery (CSF).

2.1 stakeholder engagement

2.1 Summary Document SD1. Summary of stakeholder involvement for fishery

CSF Auto longline sub-fishery

Fishery ERA report stage	Type of stakeholder interaction	Date of stakeholder interaction	Composition of stakeholder group (names or roles)	Summary of outcome
Scoping	Phone calls & emails; requests for data. Requests for fishers contact details	18/10- 18/11/2005	Justine Johnston- AFMA Philip Domaschenz- AFMA. AFMA data section-Fisher contact details provided following Level 1 (SICA) stakeholder	Data often uncertain or lacking.
	Preliminary scoping and SICA documents sent to AFMA for distribution to fishers	18/11/2005	meeting 2/12/2005.	Instructed by AFMA to move to Level 1
Scoping	Information meeting with stakeholders and initial review by	30/11/2005	Documents distributed to fishers. Tim Smith- AFMA Justine Johnston- AFMA	Limitations of CSF logbook data discussed;
	fisher representatives		Philip Domaschenz- AFMA CSF stakeholder representatives Andy Dustan- Tourism	Feedback on species lists and hazards provided;
Scoping	Data requests for corrected catch data, observer reports and catch disposal records	1/12/2005	Ross Daley- CSIRO Dianne Furlani- CSIRO AFMA data manager CSIRO data manager	Identified data which had not yet been provided. Feedback returned and incorporated into species documents and SICAs
	Phone calls/emails for information		Line operators	Information incorporated into scoping documents and hazard ID's
Level 1 (SICA)	Information meeting with stakeholders and initial review by fisher representatives	30/11/2005	Documents distributed to fishers. Tim Smith- AFMA Justine Johnston- AFMA Philip Domaschenz- AFMA CSF stakeholder representatives Andy Dustan- Tourism Ross Daley- CSIRO Dianne Furlani- CSIRO	Limitations of CSF logbook data discussed; Feedback on species lists and hazards provided; Identified data which had not yet been provided. Debated the scenarios, and explanation of the consequence scoring. Identified areas for further investigation.

Fishery	Type of	Date of	Composition of	Summary of outcome
ERA	stakeholder	stakeholder	stakeholder group (names	
report	interaction	interaction	or roles)	
stage			,	
Level 1 (SICA)	Follow-up Workshop	6/4/2006	Postponed by AFMA	
Level 1 (SICA)	Attend Stakeholder meeting 2006	27/4/2006	AFMA, DEH, QDPIF, DAFF, CSIRO, and CSF operators	Discussion of CSF future research intentions, Ministerial Directives to be met, trap trial outcomes and future trial, issues of discarding, mitigating measures already in place and those being considered.
Level 1 (SICA)	Workshop Rescheduled	28/4/2006	Documents distributed to fishers. Dave Johnson- AFMA Justine Johnston- AFMA Philip Domaschenz- AFMA Tim Smith- AFMA CSF stakeholder representatives – but not attended by auto longline sector DEH representative Tony Smith- CSIRO Dianne Furlani- CSIRO	Feedback on species lists and hazards provided. Debated the scenarios, and explanation of consequence scoring. Considered mitigating measures. Incorporate stakeholder/ AFMA changes as required to reach agreed point where Level 1 is acceptable
Level 2 (PSA) ERAEF Report	Not conducted for CSF in ERA Stage 2. Comments received from AFMA Stakeholder and AFMA comments received	6/06/2006 21/06/2006 14/07/2006 28/09/2006	AFMA	Comments addressed. Final draft submitted Comments addressed and detailed in Appendix A. Final report submitted.

2.2 Scoping

The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed to complete Levels 1 and 2 and at stakeholder meetings. The focus of analysis is the fishery, which may be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. Scoping involves six steps:

Step 1 Documenting the general fishery characteristics

Step 2 Generating "unit of analysis" lists (species, habitat types, communities)

Step 3 Selection of objectives

Step 4 Hazard identification

Step 5 Bibliography

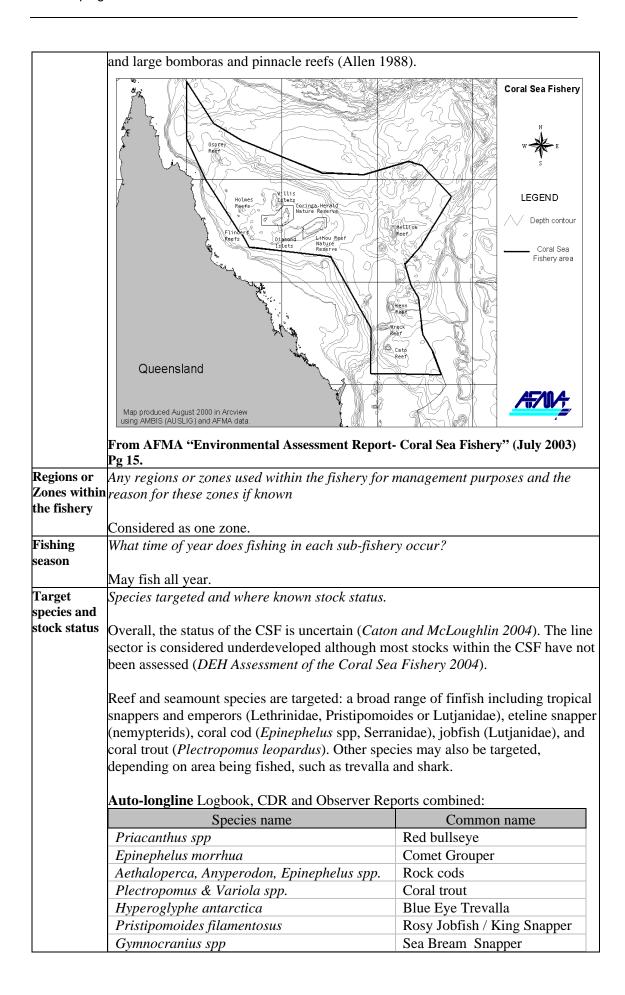
Step 6 Decision rules to move to Level 1

2.2.1 General Fishery Characteristics (Step 1).

The information used to complete this step may come from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents. The level and range of information available will vary. Some fisheries/sub-fisheries will have a range of reliable information, whereas others may have limited information.

Scoping Document S1 General Fishery Characteristics

Fishery Name: Coral Sea Fishery (CSF)- Auto longline sub-fishery


<u>Date of assessment</u>: May 2006 Assessor: Dianne Furlani

NB. All 3 CSF Line Sector sub-fisheries (Auto longline, Demersal longline and 'Other' line) are included in the following *General Fishery Characteristics* table.

General Fishery Characteristics				
Fishery	Coral Sea Fishery- Line sector			
Name	·			
Sub-fisheries	Identify sub-fisheries on the basis of fishing method/area.			
	9 fishing concessions exist across the multigear multimethod fishery – all three			
	gear types (considered in the ERA reports as 'sub-fisheries') are eligible to operate			
	from each permit within the Line sector (ie line sector permits are not gear specific):			
Auto-longline - (BL, identified in logbook records by boat name, fishery II gear; fishing in >200m depth prior to July '04, but can now be shallower w observer on board)				
	Demersal longline -(BL generally with <3,000 hooks, identified in logbook records by boat name, fishery ID and gear)			
	Other line -setline (DL), manual dropline (DLM), hydraulic dropline (DLH),			
	handline (HL) and trotline (TL) methods (AFMA "Environmental Assessment			

Report, CSF", July 2003), identified in logbook records by boat name, fishery ID and gear. **Sub-fisheries** The sub-fisheries to be assessed on the basis of fishing method/area in this report. assessed Information relevant to all 3 sub-fisheries within the CSF line sector is given in this table. All 3 sub-fisheries will be individually assessed during the ERA process. Data assessed for this report covers the complete 2001 to 2004 calendar years. Start Provide an indication of the length of time the fishery has been operating. date/history Prior to the creation of the CSF, fisheries activity occurred within the East Coast Deepwater Crustacean Trawl Fishery (ECDTF) and North East Demersal Line Fishery (NEDLF). The ECDTF Development Plan was established in 1988, and conditions were rolled over annually till 1993. The NEDLF Development plan came into effect in 1991, and continued annually till 1997. Under the NEDLF, access to the fishery was restricted to those operating within the arrangements, prior to 1990. In 1991, a discussion paper, Draft management Arrangements for the East Coast Offshore Line Fishery, was issued. A series of management changes followed which saw the division of the ECDTF into several jurisdictions during 1994. Operators failed to meet performance criteria and no permits were regranted. In 1995, under Offshore Constitutional Settlement (OCS) arrangements, management was rationalized and the CSF was established. 1997 saw the implementation of the AFMA Interim Management Policy, which limited operator numbers to 13, enforced annual criteria, and established non-transferable permits. No additional access has been granted since 1997. In 2000, amendments to the policy allowed for permits to be transferable. To pave the way for a review process, changes were implemented in 2002 which split access to the sectors (line, trawl and 3 hand collection sectors). With performance criteria now required for each sector, enough data for management could be collected. Increased value and effort has resulted from the transferable permits with Gross value of production (GVP) for the CSF, all sectors combined, risen from \$626,700 in 2001/02, to \$1,201,200 in 2002/03 (Caton and McLoughlin 2004). Geographic The geographic extent of the managed area of the fishery. Maps of the managed extent of area and distribution of fishing effort should be included in the detailed description fisherv below, or appended to the end of this table. Waters from Sandy Cape, Fraser Island to Cape York, generally east of the Great Barrier Reef Marine Park outer boundary through to the edge of the Australian Fishing Zone (10 to 100 nautical miles seaward of the Great Barrier Reef). This fishery excludes the areas of the Coringa-Herald and Lihou Reef National nature Reserves. Sub-continental shelf and abyssal plains with scattered reef systems dominate the CSF. The Coral Sea Reef system comprises 6 main habitats: outer reef slope, reef

> crest, back reef, leeward slope or lagoon, pinnacle, and inter-reef channels. The richest areas for fish diversity are the exposed outer slopes of 5-20 m depth

Etelis carbunculus	Northwest Ruby Fish
Etelis coruscans	Flame Snapper

Demersal longline (BL <3,000 hooks); No observer reports are available for the Demersal longline sub-fishery. CDR data is not distinguishable for this sub-fishery as most boats are multi-gear users and CDR data is not delineated by gear. Species list has been compiled using CS01 logbook records only.

Species name	Common name
Galeocerdo cuvier	Tiger Shark
Carcharhinus sp	Blacktip sharks
Triaenodon obesus	White tip reef shark
Carcharhinus amblyrhynchos	Grey reef shark
Plectropomus & Variola spp.	Coral trout
Sphyrna lewini	Scalloped Hammerhead
Etelis coruscans	Flame Snapper
Epinephelus ergastularius & E. septemfasciatus	Bar Rockcod

Other line ((DL) (DLM) (DLH) (HL) (TL) (TR)); No observer reports are available for the Other Line sub-fishery. CDR data is not distinguishable for this sub-fishery as most boats are multi-gear users and CDR do not delineated by gear. A species list has been compiled using CS01 logbook records only:

Species name	Common name
Pristipomoides filamentosus	Rosy Jobfish / King Snapper
Etelis carbunculus	Northwest Ruby Fish
Epinephelus ergastularius E. septemfasciatus	Bar Rockcod
Wattsia mossambica	Mozambique bream
Pristipomoides multidens & P. typus	Tropical snapper
Epinephelus morrhua	Comet Grouper
Carcharhinus spp	Whaler sharks
Lutjanus sebae	Red Emperor
Lethrinus miniatus	Redthroat emperor
Acanthocybium solandri	Wahoo
Scomberomorus commerson	Spanish mackerel
Squalus mitsukurii	Greeneye dogfish
Carcharhinus brachyurus	Bronze Whaler
Aprion virescens	Green Jobfish
Plectropomus & Variola spp.	Coral trout
Variola louti	Coronation Grouper
Glaucosoma spp	Pearl perch
Gempylidae – species ID undetermined	Gemfish
Aphareus rutilans	Jobfish
Etelis coruscans	Flame Snapper
Aethaloperca, Anyperodon & Epinephelus spp.	Rock cods
Galeocerdo cuvier	Tiger Shark
Identify bait species and source of bait used in the	e sub-fishery. Describe methods

Bait Collection and usage

Identify bait species and source of bait used in the sub-fishery. Describe methods of setting bait and trends in bait usage.

No bait collection occurs. Bait (predominantly pilchards or mackerel) must be purchased.

Current

The number of current entitlements in the fishery. Note latent entitlements. entitlements Licences/permits/boats and number active.

9 fishing concessions were regranted in 2004, across the multi-gear multi-method Line sector. All line sub-fisheries are eligible to operate from each permit (i.e. permits are not gear specific within the line sector).

recent TACs, quota _{table form} trends by method

Current and The most recent catch quota levels in the fishery by fishing method (sub-fishery). Summary of the recent quota levels in the fishery by fishing method (sub-fishery).In

> As limited species data is available from which to set catch limits, no TAC's or quotas exist within the Line sub-fisheries.

recent trends by method

Current and The most recent estimate of effort levels in the fishery by fishing method (subfishery). Summary of the recent effort trends in the fishery by fishing method (subfishery effort_{fishery}). In table form

Data assessed for this report covers the complete 2001 to 2004 calendar years.

CS01 logbook effort data for the following 3 sub-fisheries indicates: **Auto-longline** – On average, effort (total hooks/yr) was low for the 2001 calendar year, more than doubled for 2002, and increased a further 60% for 2003 before falling again to 2002 levels. The number of hooks used for autolongline has increased from approximately 85 thousand hooks in 2001 to 201 thousand hooks in 2004. Two boats operated with autolongline gear over each of the 4 calendar years considered in the autolongline sub-fishery report.

Demersal longline – Effort has been noted for the calendar years 2001 (2 boats) and 2004 (3 boats) only (ie there is no catch or effort reported in CS01 logbook records for 2002 and 2003 calendar years). The number of total shots has increased by ~50% although the number of hours fished is relatively constant and the number of lines set has fallen (\sim 25%). Despite this, the total number of hooks used for demersal longline between the two years has increased dramatically, from <2 thousand hooks in 2001 to >25 thousand hooks in 2004.

Other line – Effort for 2001 and 2002 calendar years was relatively constant with the principal increase a doubling of hours fished, but the 2003 data records a 2-3 fold increase in the number of line lifts, another doubling of hours fished, and a 75% increase in the number of shots. The 2004 data records another doubling in line lifts and a 25% increase in the number of shots. 2004 data also records a doubling in the number of hooks/line used. In summary, the 2004 effort in terms of line lifts/year and hooks used per line is up to 8 times greater than 2001. The number of hooks used for the other line sub-fishery has increased from approximately 150 thousand hooks in 2001 to 1,450 thousand hooks in 2004. In total, eighteen (18) boats have contributed to this effort, with the number of boats involved annually ranging from 6-10 boats over the 4 calendar years considered in the Other line sub-fishery report.

recent trends by method

Current and The most recent estimate of catch levels in the fishery by fishing method (subfishery) (total and/or by target species). Summary of the recent catch trends in the **fishery catch** fishery by fishing method (sub-fishery). In table form

> For the combined CSF, catches have steadily increased from a 40 tonne catch in 1998/99 to 150 tonnes catch in 2001/02 (AFMA Environmental Assessment Report, CSF, July 2003). No data summaries exist for the CSF sectors itself. Where less than 5 boats are involved, confidentiality agreements prohibit presentation of detailed data for the sub-fisheries.

CS01 logbook catch data for the following sub-fisheries indicates:

Auto-longline – Total catches for 2002 and 2003 calendar years were >30 tonnes, falling by >50% for 2004. (Catch Disposal Records indicate a combined catch weight decrease of 30% from 2002 to 2003, and a further 30% decline to 2004. Catches of all target species decreased, often considerably, and in 2003 and 2004 many new species appeared on the catch lists.)

Demersal longline – No fishing catch was recorded for 2002 and 2003 calendar years. Catches for 2004 are more than a 5 fold increase over the 2001 catches, reflecting the increase in total hook effort, but not the magnitude. Catches for 2001 year were less than half the autolongline catch for the same period, but were greater than the autolongline catches for the 2004 year.

Other line – Catches for the 2001 and 2002 calendar years remained stable. The 2003 catches increased more than 4-fold, and although effort increased in the 2004 calendar years, catches were 10% less than the 2003 levels. In comparison, otherline catches for the 2003 and 2004 years were 3 and 6 times greater respectively that autolongline catches for the same period, and more than 3 times the 2004 demersal catch.

recent value

Current and Note current and recent value trends by sub-fishery. In table form

of fishery (\$) Confidentiality prohibits using detailed sub-fishery data. GVP figures for the combined CSF has risen steadily from ~\$150,000 in 1998/99 (AFMA) Environmental Assessment Report CSF July 2003) to \$626,700 in 2001/02, and reported as \$1,201,200 in 2002/03 (Bureau of Rural Sciences, Fishery status report 2004). GVP for 2003/4 and 2004/5 are reported at around \$850,000 and \$1,100,000 respectively. (Department of Agriculture, Fisheries and Forestry Oct. 2005)

with other fisheries

Relationship Commercial and recreational, state, national and international fisheries List other fisheries operating in the same region any interactions

> **Auto-longline** Demersal longline Other line

Species common to the CSF and other fisheries operating in the area (South East Trawl (SET) and Gillnet, Hook and Trap fisheries (GHATF)) are coral trout, snapper, emperors, and other reef fish species.

It is unknown if any of these resources are shared. Limited recreational fishing may also compete for resources.

Gear

and methods trip.

Fishing gear Description of the methods and gear in the fishery, average number days at sea per

Lines are generally set from the stern of the boat, with hooks baited before deployment. Fishing trip lengths have been reported from 1-24 days, but an average of 6-10 days at sea per fishing trip appears to be the norm (FAR 2004/05).

Further detail of method is given below in the section headed "**How gear set**".

Auto-longline (BL)

	Demonsol landing (DI)
	Demersal longline (BL)
	Other line (includes setline (DL), dropline manual hauling (DLM), dropline
	hydraulic hauling (DLH), handline (HL), troll (TR) and trotline (TL)).
	Description of the selectivity of the sub-fishery methods
gear and fishing	Predominantly demersal finfish and shark species, but due to its vertical set,
methods	dropline and setline methods may also be selective for pelagic species.
Spatial gear	Description where gear set i.e. continental shelf, shelf break, continental slope
zone set	(range nautical miles from shore)
	Auto-longline and Demersal longline deep waters on the continental slope; usually steep rocky slopes, not reefs but banks; avoid seamount areas as these have proved not profitable (Operator comment, <i>CSF Workshop, Nov 2005</i>) but logbook records show effort to have a very small focus on Northern Plateau edges, but mostly on Southern Seamounts.
	Other line
	Depth range gear set at in metres
gear set	And In the second of the secon
	Auto-longline – waters deeper than 200 m; with observer coverage, 50% of lines can be set shallower than 200 m depth. Depth range noted in autolongline Observer
	Reports is 18—900 m depth. The depth limits are to be reviewed in light of the
	observer information, and reported back to industry (CSF Stakeholder Meeting April 2005)
	Demersal longline (BL) – logbook records indicate the range of depths fished is from 12-500 m.
	Other line ((DL) (DLM) (DLH) (HL) (TR) (TL)) – logbook records indicate depths of between 12 and 500m are fished, with the predominant depths being 40-450 m depth.
How gear set	Description how set, pelagic in water column, benthic set (weighted) on seabed
	Auto-longline – sinking mainline set horizontally on the ocean floor and anchored, with baited hooks attached to the longline by short (35-60 cm) 'snood' lines hanging off at intervals of ~1m (<i>Observer Reports</i>). Each snood carries a hook at one end. Baiting of hooks occurs before deployment, as is automated. Gear is divided into a number of sets. May be many kilometers in length and typically carry 1,000 hooks per set. Can be set in deep waters on the continental slope and in areas of strong tidal currents.
	Demersal longline – (BL) gear is set as for auto-longline, but hook baiting is manual. Each set is end anchored by 25kg weights, with floats along the length of the set to maintain hooks at ~1-2m off bottom (Operator comment Stakeholder meeting 2006). Gear is set over the stern and retrieved over the side. Generally, 200-300 hooks/line, with 1,000 hooks set each day and another 1,000 set each night, i.e. over 10 day trip, ~ 20,000 hooks set.
	Other line dropline (DLM) (DLH)- float dropline mainline set vertically with a 6kg bottom weight and a top float, between 10 and 100 snoods off the mainline and a series of hooks attached to the snoods at the deeper end of the line (hook baiting is manual).

	Shorter than longline gear and carrying less hooks. Set in 60-500m depth (<i>CSF Workshop, Nov 2005</i>). Reel dropline is deployed in a similar configuration, but no top float as the lines remain attached to the boat, with 4 lines set on the port side and another 4 lines set on the starboard side.		
	- <i>trotline</i> (TL) – similar to demersal longline, but with mainline suspended off the seabed to avoid snagging and snoods weighted to hang vertically under the mainline. Snoods attached at 6-10 cm intervals; hooks baited before deployment <i>setline</i> - (DL) a line to which 1 or more lures or baits are attached. Set and retrieved manually, but may be employ motor to reduce labour.		
Area of gear	Description of area impacted by gear per set (square metres)		
impact per	Description of area impacted by gear per set (square metres)		
set or shot	Auto-longline – From CS01 logbooks, shot length are between 9 and 10 km with length of snoods between 35-50cm (<i>Observer Reports</i>)		
	Demersal longline - From CS01 logbooks, shot length may vary from ~4 to 11 km with snoods length of 35-50cm.		
	Other line – Limited area of impact on bottom as gears are predominantly set vertically in the water column.		
Capacity of gear	Description number hooks per set, net size weight per trawl shot		
5 042	Auto-longline – generally 1,000+ hooks per set; no more than 15,000 hooks to be used, stowed or secured on the boat when fishing.		
	Demersal longline – generally 60 to 200 hooks per line but may be as great as 700 hooks per line (CS01 logbook data)		
	Other line – 5 linesX40 hooks (DLM), 60-70 hooks (DLH), 250 hooks/set (TL) (CSF Stakeholder Meeting, April 2004)		
Effort per annum all boats	Description effort per annum of all boats in fishery by shots or sets and hooks, d for all boats		
	See comments in "Current and recent fishery catch trends by method" section.		
Lost gear and ghost fishing	Description of how gear is lost, whether lost gear is retrieved, and what happens to gear that is not retrieve, and impacts of ghost fishing		
	Individual Fishing Activity Reports indicate loss of line from ~50% of trips, with loss of sinkers, and between 10-60 hooks reported generally through snagging in 200-350 m depths (<i>FAR Oct. 2005</i>) particularly for drop line method (Other line sub-fishery). FAR Reports note that broken or bitten lines are a regular occurrence, with 300-1000 hks/trip documented. Operator comments indicate, on average, 10% of hooks lost/trip (<i>CSF Workshop, Nov 2005</i>).		
Issues			
Species lists	Species list by component (including target, by-catch/by-product and TEP), habitat		
by component	and community tables		
, , , , , , , , , , , , , , , , , , ,	See Scoping Document S1.2		
	Species validation issues exist for several species within the Coral Sea Fishery, as noted in specific fishery reports. In the line fishery, <i>Lutjanus malabaricus</i> has been noted in CS01 logbooks as discard from auto-longline and demersal longline, and in particularly large quantities from the Other line sub-fishery. This species has		

been recorded over several years from a number of boats. The species distribution does not overlap with the jurisdictional boundaries of the CSF, but as little Observer data is available to provide the correct species identification, and none from the Other line gear, it has been retained in CS01-derived species lists as "Lutjanus malabaricus – unvalidated". Observer data or species taxonomic validation is recommended to clarify this species issue.

Target species issues

List any issues, including biological information such as spawning season and spawning location, major uncertainties about biology or management, interactions etc

Families targeted are highly fecund, but little specific information is available, and no information for the Coral Sea particularly. Lutjanids are estimated to live between 8-15 years, Lethrinids 15-25 years. Coral cods are known to be subject to localised depletion in the Great Barrier Reef.. Gemfish is listed as a target species for the Other Line sub-fishery, but no validated identification is available to determine the species concerned.

Monitoring of all catches of target species has been recommended for this sector to allow consideration of trends, and develop management responses by the end of 2006 (*DEH 2004*). At present, no summary data is available.

Auto-longline –

Species name	Common name	
Epinephelus morrhua	Comet Grouper	
Aethaloperca, Anyperodon, Epinephelus spp.	Rock cods	
Plectropomus & Variola spp.	Coral trout	
Priacanthus spp	Red bullseye	
Etelis carbunculus	Northwest Ruby Fish	
Pristipomoides filamentosus	Rosy Jobfish / King Snapper	
Etelis coruscans	Flame Snapper	
Gymnocranius spp	Sea Bream Snapper	
Hyperoglyphe antarctica	Blue Eye Trevalla	

Demersal longline -

Species name	Common name	
Galeocerdo cuvier	Tiger Shark	
Carcharhinus sp	Blacktip sharks	
Triaenodon obesus	White tip reef shark	
Carcharhinus amblyrhynchos	Grey reef shark	
Plectropomus & Variola spp.	Coral trout	
Sphyrna lewini	Scalloped Hammerhead	
Etelis coruscans	Flame Snapper	
Epinephelus ergastularius/ septemfasciatus	Bar Rockcod	

Other line – This species listing has been compiled from logbook records. The catch data indicates that the species composition of catches is changing, the proportion of catches of individual species is changing, and suggests that some byproduct species are approaching Target species status.

Species name	Common name
Pristipomoides filamentosus	Rosy Jobfish / King Snapper

nd bycatch sues and iteractions	List any issues, as for the target species above There is no by-catch action plan for the CSF. Sp measures are not in place.	ecific by-catch mitigation	
yproduct	List any issues as for the target species above		
	Galeocerdo cuvier	Tiger Shark	
	Aethaloperca, Anyperodon, Epinephelus spp.	Rock cods	
	Etelis coruscans	Flame Snapper	
	Aphareus rutilans	Jobfish	
	Gempylidae – species ID undetermined	Gemfish	
	Glaucosoma spp	Pearl perch	
	Variola louti	Coronation Grouper	
	Plectropomus & Variola spp.	Coral trout	
	Aprion virescens	Green Jobfish	
	Carcharhinus brachyurus	Bronze Whaler	
	Squalus mitsukurii	Greeneye dogfish	
	Scomberomorus commerson	Spanish mackerel	
	Acanthocybium solandri	Wahoo	
	Lethrinus miniatus	Redthroat emperor	
	Lutjanus sebae	Red Emperor	
	Carcharhinus spp	Whaler sharks	
	Epinephelus morrhua	Comet Grouper	
	Pristipomoides multidens & P. typus	Tropical snapper	
	Wattsia mossambica	Mozambique bream	
	Epinephelus ergastularius/septemfasciatus	Bar Rockcod	
	Etelis carbunculus	Northwest Ruby Fish	

Monitoring of all catches of bycatch and byproduct species has been recommended for this sector to allow consideration of trends, and develop management responses by the end of 2006 (*DEH 2004*). At present, no summary data is available.

Byproduct species, for each specific gear type, are listed in the relevant subfishery report under Scoping Document S2A

TEP issues and interactions

List any issues. This section should consider all TEP species groups: marine mammals, chondrichthyans (sharks, rays etc.), marine reptiles, seabirds, teleosts (bony fishes), include any key spawning/breeding/aggregation locations that might overlap with the fishery/sub-fishery.

AFMA has recently gained funding for an Ecological Based Fisheries Management (EBFM) Project aimed at enhanced data collection for the 2004/5 and 2005/6 financial years. "The final report should provide data collection, handling and associated reporting in Commonwealth fisheries in areas where adequate information does not currently exist (for example interactions with protected species and other high risk species)" (CSF Stakeholders Meeting April 2005).

At present, there are no recorded wildlife interactions (FAR Oct. 2005). Although low level interactions are expected to occur, the Statement of Management Arrangements provide measures to ensure all reasonable steps are taken to reduce impact on these species (DEH Assessment of the Coral Sea Fishery 2004). A list of TEP species is provided with this document.

Consideration has been given to catches of turtles in particular, and operators have been instructed on how best to remove and return turtles to the water to achieve optimum survival rates (CSF Stakeholders Meeting April 2005). Data is being collected in logbooks and through observer coverage and further consideration of TEP species interactions is expected to occur during the ERA process, using these data. Observer Reports note sightings of shy albatross, whitecrested noddy, brown booby, turtles and seal. Habitat List any issues for any of the habitat units identified in **Scoping Document S1.2**. issues and This should include reference to any protected, threatened or listed habitats interactions There is an absence of information on which to base habitat issues and interactions. The Coral Sea Reef system comprises 6 main habitats: outer reef slope, reef crest, back reef, leeward slope or lagoon, pinnacle, and inter-reef channels. Coringa-Herald and Lihou Reef National Nature Reserves are closed to fishing due to their high conservation value. Typically reefs are isolated shallow platforms dropping off steeply into deep water, with exposed outer slope and intertidal zone of consolidated limestone (Allen Community List any issues for any of the community units identified in Scoping Document issues and S1.2. interactions Insufficient data is available to categorically determine the impact of demersal line fishing on target species, and thus on the food chain and the larger community. There are no listed threatened ecological communities in the CSF area (DEH) Assessment of the Coral Sea Fishery 2004). Summary of discarding practices by sub-fishery, including by-catch, juveniles of Discarding target species, high-grading, processing at sea. CS01 logbook data reports discarding for the 3 line sub-fisheries as follows: **Autolongline**: Logbook data and Observer Reports Species name Common name Bigeye thresher Alopias superciliosus Carcharhinus altimus Bignose shark Congridae Eel "Lutjanus malabaricus-unvalidated" Large Mouth Nannygai Gymnothorax sp moray eel Gymnothorax sp 1 moray eel Gymnothorax sp 2 moray eel Paraulopus okamurai Piedtip cucumberfish Squalus megalops Spurdog Squalus mitsukurii Greeneye dogfish Cirrhigaleus barbifer Mandarin shark Squalus sp B Dogfish Squalus sp F dogfish Erthrocles schlegeli **Demersal longline**: no observer data collected. Species name Common name Squalus mitsukurii Green-Eyed Dogfish

Squalus megalops	Spurdog	
"Lutjanus malabaricus-unvalidated"	Large Mouth Nannygai	
Nebrius ferrugineus	Tawny shark	

Other line: no observer data collected.

Species name	Common name	
Nebrius ferrugineus	Tawny shark	
Lutjanus bohar	Red bass	
"Lutjanus malabaricus-unvalidated"	Large Mouth Nannygai	
Balistidae and Monacanthidae	Leatherjacket	
Triaenodon obesus	Whitetip Reef Shark	
Heniochus diphreutes	Schooling bannerfish	
Triakidae	Hound sharks	
Congridae	Eel	
Gymnosarda unicolor	Dogtooth Tuna	
Seriolella brama	Blue warehou	
Rhinidae	Wedgefishes	
Lutjanus erythropterus	Crimson snapper	
Bodianus flavipinnis	Yellowfin pigfish	
Brachaeluridae	Nurse/Zebra sharks	
Siganidae	Rabbitfish	
Lutjanus gibbus	Paddletail	
Auxis rochei	Frigate mackerel	
Ephippidae, Drepanidae	Batfish	
Trachyscorpia sp	Ocean perch	
Acanthuridae, Zanclidae	Moorish idol/surgeonfish	
Tetraodontidae	Toadfishes	
Nelusetta ayraudi	Chinaman-Leatherjacket	
Lepidocybium flavobrunneum	Black Oilfish/escolar	
Caranx lugubris	Black Trevally	
Centrophorus moluccensis	Endeavour Dogfish	

and graded discarding of...

Species name Common name		
Carcharhinus spp	Blacktip sharks	
Carangidae	Trevally	
Lutjanus spp.	Tropical snapper	
Sharks - other		
Thyrsites atun	Barracouta	
Abalistes stellaris	Starry Trigger Fish	
Lethrinus laticaudis	Grass Emperor	
Sphyrna lewini	Scalloped Hammerhead	

Management: planned and those implemented

Objectives

Management | The management objectives from the most recent management plan

Rather than a Management Plan, a Statement of Management Arrangements 2004/05 is in place for this fishery. In November 2004, the fishery was accredited as meeting the EPBC Act requirements. The CSF does not have a formal MAC or RAG process to discuss fishery-specific research priority setting or call for research proposals. Great Barrier Reef zoning changes may re-direct more attention (illegal and recreational).).

Fishery	Is there a fisheries management plan is it in the planning stage or implemented
management	what are the key features
plan	
	No Management Plan exists for any sector of the Coral Sea Fishery.
Input	Summary of any input controls in the fishery, e.g. limited entry, area restrictions
controls	
Controls	(zoning), vessel size restrictions and gear restrictions. Primarily focused on target
	species as other species are addressed below.
	Auto-longline, Demersal longline and Other line restrictions include:
	limited entry provisions
	single jurisdiction fishing trips
	a specified minimum of 20 fishing days per permit per season,
	operational ICVMS
	completion of catch disposal records,
	"Taking or carrying tuna like species".
	Taking of earlying tuna like species.
	ATMA and forms and the submitted within 21 days of each fishing twin
	AFMA proforma must be submitted within 21 days of each fishing trip.
	Observers used on every 4 th trip, with the aim to cover 25% of all shots. Lines set
	in less than 200m must have observer on board and coverage on 50% of
	deployments.
	Auto longline operators must have bird scaring tori lines installed.
	The 2005 stakeholders meeting agreed to look at the rational of depth limits for
	auto-longliners, particularly with regard to comparison of differences in target and
	by-catch species at different depths, between the GHATF and the CSF. To date,
	· · ·
0 1 1	there has been no further communication on these depth issues.
Output	Summary of any output controls in the fishery, e.g. quotas. Effort days at sea.
controls	Primarily focused on target species as other species are addressed below.
	TAC's, spatial controls
Technical	Summary of any technical measures in the fishery, e.g. size limits, bans on females,
measures	closed areas or seasons. Gear mesh size, mitigation measures such as TEDs.
	Primarily focused on target species as other species are addressed below.
	Gear restrictions, size limits,
Regulations	
Regulations	
	communities; MARPOL and pollution; rules regarding activities at sea such as
	discarding offal and/or processing at sea.
	"Taking or carrying tuna like species" restrictions apply to all CSF sectors.
	Effectively this excludes the taking of billfish (Istiophoridae and Xiphiidae) and
	pomfrets or ray's bream (Scombridae and Bramidae), but allows the catch of
	mackerels (Scomberomorus, Scomber, Acanthocybium, Grammatorcynus and
	Rastrelliger).
	All sharks taken must be landed in a prescribed manner. Shark fins not attached to
	their carcass are prohibited, and shark liver cannot be carried unless the carcass is
	also landed.
	All operators are aware of MARPOL requirements. Only 1 vessel in the CSF is not
	covered (by vessel size or weight) within these regulations.
Initiatives	BAPs; TEDs; industry codes of conduct, MPAs, Reserves

and						
strategies	CSF excludes the areas of the Coringa-Herald and Lihou Reef National nature					
Strategies	Reserves.					
Enabling processes	Monitoring (logbooks, observer data, scientific surveys); assessment (stock assessments); performance indicators (decision rules, processes, compliance; education; consultation process					
	Line fishery operators are required to complete CS01 (Commonwealth Coral Line, Trawl & Collection Daily Logbook), with catches verified through the SESS2 (Catch Disposal Record)					
	Failure to meet performance criteria will result in permits not being renewed.					
	Autolongline operators must employ observer data collection strategies					
Other	State, national or international conventions or agreements that impact on the					
	management of the fishery/sub-fishery being evaluated.					
	By means of measures such as limited entry provisions within the CSF, catch levels have been caped at precautionary levels to ensure sustainability of commercial species. Areas or species identified through the ERA as high risk will have management measures implemented to minimize impacts. This will occur after consultation with stakeholders, and in line with AFMA legislative objectives.					
	A proposal has recently been presented involving a voluntary exclusion of hook fishing on a number of reefs, with a Memorandum of Understanding (MoU) to accommodate tourism practices. This MoU is expected to encompass 5 reefs.					
Data						
Logbook data	Verified logbook data; data summaries describe programme					
	There are no data summaries available for the CSF. Raw logbook data from the CSO1 logbook has been provided but, with the 5-boat ruling and constraints of confidentiality, can only be used in general terms. Catch Disposal Records have also be accessed					
Observer	Observer programme describe parameters as below					
data	F. Co. minute and the first an					
	Observer coverage is not required for demersal longline or Otherline operations.					
	As part of the autolongline permit condition, Observers must be used on autolongline vessels on every 4 th trip, with the aim to cover 25% of all shots. Autolonglines set in less than 200m must have observer on board and coverage on 50% of deployments.					
	Purpose: As no previous species data is available for the CSF for setting species quotas, observer coverage -together with the minimum operational commitment-has been made a permit condition to ensure adequate verified data is available for use in future species assessment and quota establishment. This data is required for all components of risk assessment. Data obtained by Observers is used to verify target species, catch and effort, discard and byproduct species, and TEP interactions with the fishery, as well as monitoring compliance with access conditions.					
	Data collection, collation and checking do not appear to be monitored for the CSF, and Experience, Education, Training and Resources appears to be limited. As					

	noted in the section Species list by component , there are species validation issues for the CSF that need to be addressed.
	A more rigorous format for Observer Reporting, with specific presence/absence reporting of issues, would be recommended to address the issues of a lack of data to refute or confirm many risk assessment issues.
Other data	Studies, surveys No other data is available.

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components (target, byproduct/discards and TEP components). [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B Habitats]
- Community Component: community types. [Scoping document S2C Communities]

Total Ecological Units Assessed for Coral Sea Autolongline sub-fishery

Target species: 9
By-product species: 62
Discard Species: 14
TEP species: 109

Habitats: 266 (262 benthic, 4 overlying pelagic) Communities: 15 (11 demersal, 4 overlying pelagic)

Scoping Document S2A Species

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.marine.csiro.au/caab/

Target species [CSF Auto longline]

This list was obtained by reviewing Commonwealth CSO1 Logbook data, Catch Disposal Records, and Observer Reports, and through discussions with stakeholders. Discrepancies between species roles within the sub-fishery (e.g. target or byproduct) between logbook and Observer Reports have been noted.

Because of this confusion, Target, Byproduct and Discard species are listed in the one table to show the species with discrepancies, whilst avoiding duplication in multiple tables.

Sps						
code	CAAB	Family	Species name	Common name	Role	Reference
BUS	37326901	Priacanthidae	Priacanthus spp	Red bullseye	Target	Lbk/CDR
GRC	37311151	Seranidae	Epinephelus morrhua	Comet Grouper	Target	Lbk/CDR
CRO	37311901	Seranidae	Aethaloperca, Anyperodon, Epinephelus spp.	Rock cods	Target	Lbk/CDR
TCG	37311905	Seranidae	Plectropomus & Variola spp.	Coral trout	Target	Lbk/CDR
TBE	37445001	Centrolophidae	Hyperoglyphe antarctica	Blue Eye Trevalla	Target	Lbk/CDR/OR
JOR	37346032	Lutjanidae	Pristipomoides filamentosus	Rosy Jobfish / King Snapper	Target	Lbk/CDR
SNB	37351901	Lutjanidae	Gymnocranius spp	Sea Bream Snapper	Target	Lbk/CDR
SNR	37346014	Lutjanidae	Etelis carbunculus	Northwest Ruby Fish	Target	Lbk/CDR/OR
SNF	37346038	Lutjanidae	Etelis coruscans	Flame Snapper	Target/discard	Lbk/CDR/OR
TSR	37012001	Alopiidae	Alopias vulpinus	Thresher Shark	Byproduct	Lbk
LTH	37465000	Balistidae/	Balistidae and Monacanthidae	Triggerfish/leatherjackets	Byproduct	CDR
		Monacanthidae				
RED	37258003	Berycidae	Centroberyx affinis	Redfish	Byproduct(Target OR)	CDR/OR
	37258001	Berycidae	Beryx decadactylus	Imperador	Byproduct(Target OR)	OR
ALF	37258002	Berycidae	Beryx splendens	Alfonsino	Byproduct	Lbk/CDR/OR
SWA	37258005	Berycidae	Centroberyx lineatus	Swallow-Tail	Byproduct	Lbk
TLY	37337000	Carangidae	Carangidae	Trevally	Byproduct	Lbk/CDR
	37337006	Carangidae	Seriola lalandi	Yellowtail kingfish	Byproduct	CDR
	37337062	Carangidae	Pseudocaranx dentex	Silver trevally	Byproduct	CDR
SAM	37337007	Carangidae	Seriola hippos	Samsonfish	Byproduct	Lbk
AJK	37337025	Carangidae	Seriola dumerili	Eye Streak Kingfish/ Amberjack	Byproduct	Lbk/CDR/OR
TRV	37337039	Carangidae	Caranx sexfasciatus	Great Trevally	Byproduct	Lbk
ALJ	37337052	Carangidae	Seriola rivoliana	Almaco jack	Byproduct	Lbk
TSH	37018022	Carcharhinidae	Galeocerdo cuvier	Tiger Shark	Byproduct	Lbk
SWT	37018038	Carcharhinidae	Triaenodon obesus	Whitetip Reef Shark	Byproduct(Target OR)	Lbk/CDR/OR
		Centrolophidae	Seriolella labyrinthica		Byproduct(Target OR)	OR
DGE	37020001	Centrophoridae	Centrophorus moluccensis	Endeavour Dogfish	Byproduct	Lbk /OR
	37377014	Cheilodactylidae	Nemadactylus sp	morwong	Byproduct	CDR
	37439001	Gempylidae	Thyrsites atun	Barracouta	Byproduct	CDR

	374390??	Gempylidae	Gempylidae – species ID undetermined	Gemfish	Byproduct	Lbk/CDR/OR
SWL	37350903	Haemulidae	Plectorhinchus spp	Painted Sweetlips	Byproduct	Lbk
	37005004	Hexacanthidae	Hexanchus nakamurai	Bigeye sixgill shark	Byproduct	OR
	37005005	Hexacanthidae	Hexanchus griseus	Bluntnose sixgill shark	Byproduct	OR
	37384001	Labridae	Bodianus vulpinus	Western pigfish	Byproduct	CDR
GSW	37384007	Labridae	Bodianus perditio	Gold Spot Wrasse - Orange	Byproduct	Lbk
			_	Threadfin		
GBL	37384043	Labridae	Achoerodus viridis	Eastern Blue Groper	Byproduct	Lbk
MOZ	37351027	Lethrinidae	Wattsia mossambica	Mozambique bream	Byproduct	Lbk/CDR
RTE	37351009	Lethrinidae	Lethrinus miniatus	Redthroat Emperor	Byproduct	Lbk/CDR
SEB	37351005	Lethrinidae	Gymnocranius grandoculis	Blue-Lined Large Eye Sea	Byproduct	Lbk
				bream		
	37346000	Lutjanidae	Lutjanidae	tropical snapper/slopefish	Byproduct	CDR
HUS	37346033	Lutjanidae	Lutjanus adetii	Hussar	Byproduct	CDR
	37346055	Lutjanidae	Pristipomoides flavipinnis	Goldeneye snapper	Byproduct	OR
SNO	37346056	Lutjanidae	Pristipomoides zonatus	Oblique-banded Snapper	Byproduct(Target OR)	Lbk/CDR/OR
	37346064	Lutjanidae	Pristipomoides sieboldi	Lavender snapper	Byproduct	OR
SNG	37346901	Lutjanidae	Pristipomoides multidens & P. typus	Goldband snappers	Byproduct	Lbk/CDR
JOB	37346001	Lutjanidae	Aphareus rutilans	Jobfish	Byproduct	Lbk/CDR
RDE	37346004	Lutjanidae	Lutjanus sebae	Red Emperor	Byproduct	Lbk
JOG	37346027	Lutjanidae	Aprion virescens	Green Jobfish	Byproduct	Lbk/CDR
SLT	37346914	Lutjanidae	Etelis spp.	Long Tail Rubies/Snapper	Byproduct	Lbk/CDR
	37355000	Mullidae	Mullidae	Goatfishes	Byproduct	CDR
	37228002	Ophidiidae	Genypterus blacodes	Pink ling	Byproduct	CDR
	37367000	Pentacerotidae	Pentacerotidae	Boarfishes	Byproduct(Target OR)	CDR/OR
BOB	37367012	Pentacerotidae	Pentaceros decacanthus	Bigspine boarfish	Byproduct	OR
	37253002	Polymixiidae	Polymixia busakhini	Busakhins beardfish	Byproduct	OR
	37311170	Polyprionidae	Polyprion americanus	Bass grouper	Byproduct(Target OR)	OR
GRB		Polyprionidae	Polyprion spp		Byproduct	CDR
	37023000	Pristiophoridae	Pristiophoridae	Sawsharks	Byproduct	CDR
	37361002	Scorpididae	Neatypus obliquus	Footballer sweep	Byproduct	CDR
	37311021	Seranidae	Epinephelus fiscoguttatus	Flowery rockcod	Byproduct(Target OR)	OR
HCC	37311040	Seranidae	Epineplelus quoyanus	Honeycomb Cod / Longfin	Byproduct	Lbk/CDR
				Grouper		
	37311042	Seranidae	Epinephelus radiatus	Radiant rockcod	Byproduct(Target OR)	OR

	37311152	Seranidae	Epinephelus octofasciatus	Eightbar grouper	Byproduct(Target OR)	OR
COT	37311136	Seranidae	Cephalopholis cyanostigma	Tomato Cod / Bluespotted Hind	Byproduct	Lbk/CDR
BAC	37311910	Seranidae	Epinephelus ergastularius & septemfasciatus	Bar Rockcod	Byproduct	Lbk/CDR
	37311078	Serranidae	Plectropomus leopardus	Common coral trout	Byproduct	CDR
	37311103	Serranidae	Lepidoperca magna	Sharphead perch	Byproduct	OR
	37311165	Serranidae	Triso dermopterus	Oval rockcod	Byproduct(Target OR)	OR
	37017001	Triakidae	Mustelus antarcticus	Gummy shark	Byproduct	CDR
	37017003	Triakidae	Furgaleus macki	Whiskery shark	Byproduct	CDR
	37990003		Sharks - other	Sharks - other	Byproduct	CDR/OR
POM	37342001	Bramidae	Brama brama	Ray's Bream	Byproduct/discard	Lbk/CDR/OR
TIP	37018901	Carcharhinidae	Carcharhinus species	Blacktip sharks	Byproduct/discard	Lbk/CDR/OR
	37012002	Alopiidae	Alopias superciliosus	Bigeye thresher	Discard	OR
	37018012	Carcharhinidae	Carcharhinus altimus	Bignose shark	Discard	OR
EEL	37067000	Congridae	Congridae	Eel	Discard	Lbk /OR
RSS	37346007	Lutjanidae	"Lutjanus malabaricus – unvalidated"	Large Mouth Nannygai/	Discard	Lbk
				saddletail snapper		
	37060900	Muraenidae	Gymnothorax sp	moray eel	Discard	OR
		Muraenidae	Gymnothorax sp 1	moray eel	Discard	OR
		Muraenidae	Gymnothorax sp 2	moray eel	Discard	OR
	37120014	Paraulopidae	Paraulopus okamurai	Piedtip cucumberfish	Discard	OR
SDF	37020006	Squalidae	Squalus megalops	Spurdog	Discard	Lbk
	37020007	Squalidae	Squalus mitsukurii	Greeneye dogfish	Discard	OR
	37020026	Squalidae	Cirrhigaleus barbifer	Mandarin shark	Discard	OR
	37020038	Squalidae	Squalus sp B	Dogfish	Discard	OR
	37020041	Squalidae	Squalus sp F	dogfish	Discard	OR
		_	Erthrocles schlegeli	_	Discard	OR

Byproduct species [CSF Auto longline]
Byproduct refers to any part of the catch which is kept or sold by the fisher but which is not a target species.

Discard species [CSF Auto longline]

Bycatch as defined in the Commonwealth Policy on Fisheries Bycatch 2000 refers to:

- that part of a fisher's catch which is returned to the sea either because it has no commercial value or because regulations preclude it being retained; and
- that part of the 'catch' that does not reach the deck but is affected by interaction with the fishing gear

However, in the ERAEF method, the part of the target or byproduct catch that is discarded is included in the assessment of the target or byproduct species.

TEP species [CSF Auto longline]

TEP species are those species listed as Threatened, Endangered or Protected under the EPBC Act.

TEP species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of TEP species has been generated for each fishery and is included in the PSA workbook species list. This list has been generated using the DEH Search Tool from DEH home page http://www.deh.gov.au/

For each fishery, the list of TEP species is compiled by reviewing all available fishery literature. Species considered to have potential to interact with fishery (based on geographic range & proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) should also be included.

Taxa name	Common name	Scientific name	CAAB	Fishery
Chondrichthyan	Whale Shark	Rhincodon typus	37014001	CSF
Marine Bird	Streaked Shearwater	Calonectris leucomelas	40041002	CSF
Marine Bird	Lesser Frigatebird, Least Frigatebird	Fregata ariel	40050002	CSF
Marine Bird	Great Frigatebird, Greater Frigatebird	Fregata minor	40050003	CSF
Marine Bird	White-bellied Storm-Petrel (Australasian)	Fregetta grallaria	40042001	CSF
Marine Bird	Southern Giant-Petrel	Macronectes giganteus	40041007	CSF

Marine Bird	Red-tailed Tropicbird	Phaethon rubricauda	40045002	CSF
Marine Bird	Herald Petrel	Pterodroma heraldica	99999999	CSF
Marine Bird	Kermadec Petrel (western)	Pterodroma neglecta	40041033	CSF
Marine Bird	Wedge-tailed Shearwater	Puffinus pacificus	40041045	CSF
Marine Bird	Crested Tern	Sterna bergii	40128025	CSF
Marine Bird	Sooty Tern	Sterna fuscata	40128028	CSF
Marine Bird	Black-naped Tern	Sterna sumatrana	40128034	CSF
Marine Bird	Masked Booby	Sula dactylatra	40047004	CSF
Marine Bird	Brown Booby	Sula leucogaster	40047005	CSF
Marine Bird	Red-footed Booby	Sula sula	40047006	CSF
Marine Bird	Black Noddy	Anous minutus	40128001	CSF
Marine Bird	Common Noddy	Anous stolidus	40128002	CSF
Marine mammal	Common Dolphin	Delphinus delphis	41116001	CSF
Marine mammal	Pygmy Killer Whale	Feresa attenuata	41116002	CSF
Marine mammal	Short-finned Pilot Whale	Globicephala macrorhynchus	41116003	CSF
Marine mammal	Risso's Dolphin, Grampus	Grampus griseus	41116005	CSF
Marine mammal	Longman's Beaked Whale	Indopacetus pacificus	41120003	CSF
Marine mammal	Pygmy Sperm Whale	Kogia breviceps	41119001	CSF
Marine mammal	Dwarf Sperm Whale	Kogia simus	41119002	CSF
Marine mammal	Fraser's Dolphin, Sarawak Dolphin	Lagenodelphis hosei	41116006	CSF
Marine mammal	Humpback Whale	Megaptera novaeangliae	41112006	CSF
Marine mammal	Blainville's Beaked/Dense-beaked Whale	Mesoplodon densirostris	41120005	CSF
Marine mammal	Gingko-toothed/Ginko Beaked Whale	Mesoplodon gingkodens	41120006	CSF
Marine mammal	Strap-toothed/ Layard's Beaked Whale	Mesoplodon layardii	41120009	CSF
Marine mammal	Killer Whale, Orca	Orcinus orca	41116011	CSF
Marine mammal	Melon-headed Whale	Peponocephala electra	41116012	CSF
Marine mammal	Sperm Whale	Physeter catodon	41119003	CSF
Marine mammal	False Killer Whale	Pseudorca crassidens	41116013	CSF
iviaille mamma	i also ixilici vvilalo	1 sendored crassidens	T1110013	CDI

Marine mammal	Spotted/Pantropical Spotted Dolphin	Stenella attenuata	41116015	CSF
Marine mammal	Striped Dolphin, Euphrosyne Dolphin	Stenella coeruleoalba	41116016	CSF
Marine mammal	Long-snouted Spinner Dolphin	Stenella longirostris	41116017	CSF
Marine mammal	Rough-toothed Dolphin	Steno bredanensis	41116018	CSF
Marine mammal	Bottlenose Dolphin	Tursiops truncatus	41116019	CSF
Marine mammal	Cuvier's Beaked/ Goose-beaked Whale	Ziphius cavirostris	41120012	CSF
Marine mammal	Sei Whale	Balaenoptera borealis	41112002	CSF
Marine mammal	Bryde's Whale	Balaenoptera edeni	41112003	CSF
Marine mammal	Blue Whale	Balaenoptera musculus	41112004	CSF
Marine reptile	Green Turtle	Chelonia mydas	39020002	CSF
Marine reptile	Estuarine/Salt-water Crocodile	Crocodylus porosus	39140002	CSF
Marine reptile	Leathery Turtle, Leatherback Turtle	Dermochelys coriacea	39021001	CSF
Marine reptile	Spectacled Seasnake	Disteira kingii	39125010	CSF
Marine reptile	Olive-headed Seasnake	Disteira major	39125011	CSF
Marine reptile	Turtle-headed Seasnake	Emydocephalus annulatus	39125012	CSF
Marine reptile	Beaked Seasnake	Enhydrina schistosa	39125013	CSF
Marine reptile	Elegant Seasnake	Hydrophis elegans	39125021	CSF
Marine reptile	Slender Seasnake	Hydrophis gracilis	39125023	CSF
Marine reptile	small-headed seasnake	Hydrophis mcdowelli	39125025	CSF
Marine reptile	Black-banded Robust Seasnake	Hydrophis melanosoma	39125027	CSF
Marine reptile	a seasnake	Hydrophis ornatus	39125028	CSF
Marine reptile	Spine-bellied Seasnake	Lapemis hardwickii	39125031	CSF
Marine reptile	a sea krait	Laticauda colubrina	39124001	CSF
Marine reptile	a sea krait	Laticauda laticaudata	39124002	CSF
Marine reptile	Flatback Turtle	Natator depressus	39020005	CSF
Marine reptile	Yellow-bellied Seasnake	Pelamis platurus	39125033	CSF
Marine reptile	Horned Seasnake	Acalyptophis peronii	39125001	CSF
Marine reptile	Dubois' Seasnake	Aipysurus duboisii	39125003	CSF

Marine reptile	Spine-tailed Seasnake	Aipysurus eydouxii	39125004	CSF
Marine reptile	Olive Seasnake	Aipysurus laevis	39125007	CSF
Marine reptile	Stokes' Seasnake	Astrotia stokesii	39125009	CSF
Teleost	Davao Pughead Pipefish	Bulbonaricus davaoensis	37282038	CSF
Teleost	Short-bodied Pipefish	Choeroichthys brachysoma	37282042	CSF
Teleost	Sculptured Pipefish	Choeroichthys sculptus	37282045	CSF
Teleost	Pig-snouted Pipefish	Choeroichthys suillus	37282046	CSF
Teleost	Fijian Banded/Brown-banded Pipefish	Corythoichthys amplexus	37282047	CSF
Teleost	Yellow-banded/Network Pipefish	Corythoichthys conspicillatus	37282032	CSF
Teleost	Australian Messmate/Banded Pipefish	Corythoichthys intestinalis	37282049	CSF
Teleost	Orange-spotted/Ocellated Pipefish	Corythoichthys ocellatus	37282050	CSF
Teleost	Schultz's Pipefish	Corythoichthys schultzi	37282052	CSF
Teleost	Maxweber's Pipefish	Cosmocampus maxweberi	37282056	CSF
Teleost	Cleaner/Janss' Pipefish	Doryrhamphus janssi	37282059	CSF
Teleost	Flagtail/Negros Pipefish	Doryrhamphus malus	37282060	CSF
Teleost	Indian/ Blue-stripe Pipefish	Doryrhamphus melanopleura	37282058	CSF
Teleost	Ringed Pipefish	Dunckerocampus dactyliophorus	37282057	CSF
Teleost	Girdled Pipefish	Festucalex cinctus	37282061	CSF
Teleost	Brock's Pipefish	Halicampus brocki	37282065	CSF
Teleost	Red-hair/Duncker's Pipefish	Halicampus dunckeri	37282066	CSF
Teleost	Mud/Gray's Pipefish	Halicampus grayi	37282030	CSF
Teleost	Whiskered/Ornate Pipefish	Halicampus macrorhynchus	37282067	CSF
Teleost	Spiny-snout Pipefish	Halicampus spinirostris	37282070	CSF
Teleost	Ribboned Seadragon/ Pipefish	Haliichthys taeniophorus	37282007	CSF
Teleost	Blue-speckled/Blue-spotted Pipefish	Hippichthys cyanospilos	37282072	CSF
Teleost	Madura/Reticulated Freshwater Pipefish	Hippichthys heptagonus	37282073	CSF
Teleost	Beady/Steep-nosed Pipefish	Hippichthys penicillus	37282075	CSF
Teleost	Spiny Seahorse	Hippocampus jugumus	9999999	CSF
		,		_

Teleost	Flat-face Seahorse	Hippocampus planifrons	37282078	CSF
Teleost	Hedgehog Seahorse	Hippocampus spinosissimus	99999999	CSF
Teleost	Spotted/Yellow Seahorse	Hippocampus taeniopterus	99999999	CSF
Teleost	Zebra Seahorse	Hippocampus zebra	37282080	CSF
Teleost	Anderson's/Shortnose Pipefish	Micrognathus andersonii	37282086	CSF
Teleost	Thorn-tailed Pipefish	Micrognathus pygmaeus	37282087	CSF
Teleost	Short-tailed/ River Pipefish	Microphis brachyurus	37282090	CSF
Teleost	Pale-blotched/Spined Pipefish	Phoxocampus diacanthus	37282096	CSF
Teleost	Soft-coral Pipefish	Siokunichthys breviceps	37282097	CSF
Teleost	Duncker's Pipehorse	Solegnathus dunckeri	37282098	CSF
Teleost	Pipehorse	Solegnathus sp. 1 [in Kuiter, 2000]	37282099	CSF
Teleost	Spiny/Australian Spiny Pipehorse	Solegnathus spinosissimus	37282029	CSF
Teleost	Blue-finned/Robust Ghost Pipefish	Solenostomus cyanopterus	37281001	CSF
Teleost	Harlequin Ghost/Ornate Ghost Pipefish	Solenostomus paradoxus	37281002	CSF
Teleost	Double-ended/Alligator Pipefish	Syngnathoides biaculeatus	37282100	CSF
Teleost	Bend Stick/Short-tailed Pipefish	Trachyrhamphus bicoarctatus	37282006	CSF
Teleost	Long-nosed/Straight Stick Pipefish	Trachyrhamphus longirostris	37282101	CSF
Teleost	Hairy Pygmy Pipehorse	Acentronura breviperula	37282035	CSF

Scoping Document S2B1. Benthic Habitats

Risk assessment for benthic habitats considers both the seafloor structure and its attached invertebrate fauna. Because data on the types and distributions of benthic habitat in Australia's Commonwealth fisheries are generally sparse, and because there is no universally accepted benthic classification scheme, the ERAEF methodology has used the most widely available type of data – seabed imagery – classified in a similar manner to that used in bioregionalisation and deep seabed mapping in Australian Commonwealth waters. Using this imagery, benthic habitats are classified based on an SGF score, using sediment, geomorphology, and fauna. Where seabed imagery is not available, a second method (Method 2) is used to develop an inferred list of potential habitat types for the fishery. For details of both methods, see Hobday *et al* (2007).

Habitat data used for assessment of the Coral Sea sub-fisheries were largely derived from geophysical and fishery data using Scoping method 2, as few seabed image data were available. Data were available only for the NE seamount chain from a deep sea biodiversity survey undertaken in 2003 (NORFANZ: Williams *et al.*, 2006).

A list of derived Benthic habitats using Scoping method 2, for the Auto longline sub-fishery of the Coral Sea Line Fishery. This scoping method provides an overly inclusive list as a precautionary measure in the absence of habitat image data. All habitats in this list have been identified from video, and applied to this region based on depth zone and geomorphic feature. Norfanz data considered representative of the NE seamount chain. An obvious anomaly is the inclusion of sponges as the dominant faunal taxa in tropical waters, but this term is likely to be interchangeable with 'corals' in warmer waters. Effort in this fishery: Logbook data- 30-900m recorded (most about 600m). Not shallower than 200m without observer on 50% of shots. Very small focus on Northern Plateau edges, most on Southern Seamounts.

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	lmage available	Reference image location
2197	012	inner shelf	shelf	fine sediments, unrippled, large sponges	101	25- 100	Υ	SE Image Collection
2198	094	inner shelf	shelf	Fine sediments, unrippled, small sponges	102	25- 100	Υ	Norfanz Image Collection
2199	016	inner shelf	shelf	fine sediments, unrippled, mixed faunal community	103	25- 100	Υ	SE Image Collection
2200	093	inner shelf	shelf	fine sediments, unrippled, bioturbators	109	25- 100	N	SE Image Collection
2201	229	inner shelf	Canyon	Fine sediments, current rippled, no fauna	110	25-100	Υ	WA Image Collection
2202	014	inner shelf	shelf	fine sediments, wave rippled, large sponges	111	25- 100	Υ	SE Image Collection
2203	095	inner shelf	shelf	fine sediments, wave rippled, no fauna	120	25- 100	N	SE Image Collection
2204	096	inner shelf	shelf	fine sediments, wave rippled, small sponges	122	25- 100	N	SE Image Collection

2205	201	inner shelf	shelf	fine sediments, wave rippled, encrustors	126	25- 100	N	SE Image Collection
2206	091	inner shelf	shelf	fine sediments, irregular, large sponges	131	25- 100	Ν	SE Image Collection
2207	092	inner shelf	shelf	fine sediments, irregular, small sponges	132	25- 100	N	SE Image Collection
2208	013	inner shelf	shelf	coarse sediments, unrippled, large sponges	201	25- 100	Υ	SE Image Collection
2209	205	inner shelf	Shelf	Coarse sediments, current swept, mixed low epifauna	206	25-100	Υ	WA Image Collection
2210	234	inner shelf	Shelf	Coarse sediments, unrippled, solitary epifauna	207	25-100	Υ	WA Image Collection
2211	010	inner shelf	shelf	coarse sediments, current rippled, no fauna	210	25- 100	Υ	SE Image Collection
2212	090	inner shelf	shelf	coarse sediments, current rippled, bioturbators	219	25- 100	N	SE Image Collection
2213	011	inner shelf	shelf	coarse sediments, wave rippled, large sponges	221	25- 100	Υ	SE Image Collection
2214	191	inner shelf	shelf	coarse sediments, wave rippled, small sponges	222	25- 100	N	SE Image Collection
2215	200	inner shelf	shelf	coarse sediments, wave rippled, encrustors	226	25- 100	N	SE Image Collection
2216	009	inner shelf	shelf	coarse sediments, wave rippled, sedentary	227	25- 100	Υ	SE Image Collection
2217	089	inner shelf	shelf	coarse sediments, irregular, encrustors	236	25- 100	N	SE Image Collection
2218	006	inner shelf	shelf	coarse sediments, subcrop, large sponges	251	25- 100	Υ	SE Image Collection
2219	282	inner shelf	shelf	Coarse sediments, subcrop, mixed faunal community	253	25- 100	Υ	Norfanz Image Collection
2220	001	inner shelf	shelf	gravel, current rippled, mixed faunal community	313	25- 100	Υ	SE Image Collection
2221	098	inner shelf	shelf	gravel, wave rippled, no fauna	320	25- 100	Υ	SE Image Collection
2222	097	inner shelf	shelf	gravel, wave rippled, bioturbators	329	25- 100	Υ	SE Image Collection
2223	242	inner shelf	Shelf	Gravel, irregular, no fauna	330	25-100	Υ	WA Image Collection
2224	007	inner shelf	shelf	gravel, debris flow, mixed faunal community	343	25- 100	Υ	SE Image Collection
2225	199	inner shelf	shelf	cobble, wave rippled, low/ encrusting mixed fauna	426	25- 100	N	SE Image Collection
2226	005	inner shelf	shelf	cobble, debris flow, large sponges	441	25- 100	Υ	SE Image Collection
2227	099	inner shelf	shelf	Igneous rock, high outcrop, large sponges	591	25- 100	Ν	SE Image Collection
2228	004	inner shelf	shelf	Sedimentary rock, outcrop, large sponges	671	25- 100	Υ	SE Image Collection
2229	002	inner shelf	shelf	Sedimentary rock, outcrop, large sponges	691	25- 100	Υ	SE Image Collection
2230	003	inner shelf	shelf	Sedimentary rock, outcrop, mixed faunal community	693	25- 100	Υ	SE Image Collection
2231	271	inner shelf	Shelf	Rock/ biogenic matrix, high outcrop, large sponges	719	25-100	Υ	WA Image Collection
2232	272	inner shelf	Shelf	Rock/ biogenic matrix, Wave rippled, No fauna	720	25-100	Υ	WA Image Collection
2233	273	inner shelf	Shelf	Rock/ biogenic matrix, subcrop, large sponges	751	25-100	3	WA Image Collection
2234	274	inner shelf	Shelf	Rock/ biogenic matrix, subcrop, small encrustors	756	25-100	Υ	WA Image Collection
2235	275	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	25-100	Υ	WA Image Collection
2236	276	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop, octocorals	765	25-100	Υ	WA Image Collection
2237	277	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop (with holes/cracks), mixed	773	25-100	Υ	WA Image Collection

				faunal community				
2238	278	inner shelf	Shelf	Rock/ biogenic matrix, high outcrop, mixed faunal community	793	25-100	Υ	WA Image Collection
2239	283	inner shelf	shelf	Bryozoan communities	XX6	25- 100 100- 200,	Υ	Norfanz Image Collection
2240	173	outer shelf	shelf-break	mud, unrippled, no fauna	000	200- 700	N	SE Image Collection
2241	219	outer shelf	Shelf	mud, unrippled, small or large sponges	001	100- 200	Υ	WA Image Collection
2242	177	outer shelf	shelf	mud, unrippled, low encrusting sponges	002	100- 200	N	SE Image Collection
2243	220	outer shelf	Shelf	Mud, flat, octocorals	005	100- 200	Υ	WA Image Collection
2244	100	outer shelf	shelf	mud, unrippled, sedentary	007	100- 200 100- 200,	Υ	SE Image Collection
2245	174	outer shelf	shelf-break	mud, unrippled, sedentary	007	200- 700	N	SE Image Collection
2246	178	outer shelf	shelf	mud, unrippled, bioturbators	009	100- 200	N	SE Image Collection
2247	279	outer shelf	Shelf	mud, current rippled, no fauna	010	100- 200	Υ	WA Image Collection
2248	223	outer shelf	Shelf	mud, current rippled, bioturbators	019	100- 200	Υ	WA Image Collection
2249	224	outer shelf	Shelf	mud, wave rippled, no fauna	020	100- 200	Υ	WA Image Collection
2250	225	outer shelf	Shelf	Mud, irregular, bioturbators	039	100- 200	Υ	WA Image Collection
2251	179	outer shelf	shelf	mud, subcrop, erect sponges	051	100- 200	N	SE Image Collection
2252	125	outer shelf	shelf	mud, subcrop, small sponges	052	100- 200	Υ	SE Image Collection
2253	226	outer shelf	Shelf	Mud, subcrop, mixed faunal community	053	100- 200	Υ	WA Image Collection
2254	180	outer shelf	shelf	mud, subcrop, low encrusting mixed fauna	056	100- 200	Ν	SE Image Collection
2255	112	outer shelf	shelf	fine sediments, unrippled, no fauna	100	100- 200 100- 200,	Υ	SE Image Collection
2256	170	outer shelf	shelf-break	fine sediments, unrippled, no fauna	100	200- 700	N	SE Image Collection
2257	111	outer shelf	shelf	fine sediments, unrippled, large sponges	101	100- 200	Υ	SE Image Collection
2258	113	outer shelf	shelf	Fine sediments, unrippled, small sponges	102	100- 200 100- 200,	Υ	Norfanz Image Collection
2259	171	outer shelf	shelf-break	fine sediments, unrippled, octocorals	105	200- 700	N	SE Image Collection
2260	181	outer shelf	shelf	fine sediments, unrippled, encrustors	106	100- 200	N	SE Image Collection
2261	110	outer shelf	shelf	fine sediments, unrippled, bioturbators	109	100- 200 100- 200,	Υ	SE Image Collection
2262	169	outer shelf	shelf-break	fine sediments, unrippled, bioturbators	109	200- 700	N	SE Image Collection
2263	183	outer shelf	shelf	fine sediments, current rippled, no fauna	110	100- 200	N	SE Image Collection
2264	184	outer shelf	shelf	fine sediments, current rippled, low/ encrusting sponges	112	100- 200	N	SE Image Collection
2265	104	outer shelf	shelf	fine sediments, current rippled, bioturbators	119	100- 200	Υ	SE Image Collection
2266	117	outer shelf	shelf	fine sediments, wave rippled, no fauna	120	100- 200	N	SE Image Collection
2267	116	outer shelf	shelf	fine sediments, wave rippled, large sponges	121	100- 200	N	SE Image Collection

2268	119	outer shelf	shelf	fine sediments, wave rippled, small sponges	122	100- 200	Ν	SE Image Collection
2269	115	outer shelf	shelf	fine sediments, wave rippled, encrustors	126	100- 200	Ν	SE Image Collection
2270	118	outer shelf	shelf	fine sediments, wave rippled, sedentary	127	100- 200	Ν	SE Image Collection
2271	114	outer shelf	shelf	fine sediments, wave rippled, bioturbators	129	100- 200	Υ	SE Image Collection
2272	106	outer shelf	shelf	fine sediments, irregular, no fauna	130	100- 200	Ν	SE Image Collection
2273	105	outer shelf	shelf	fine sediments, irregular, large sponges	131	100- 200	Ν	SE Image Collection
2274	107	outer shelf	shelf	fine sediments, irregular, small sponges	132	100- 200 100- 200,	N	SE Image Collection
2275	168	outer shelf	shelf-break	fine sediments, irregular, small sponges	132	200- 700	Ν	SE Image Collection
2276	185	outer shelf	shelf	fine sediments, irregular, low encrusting mixed fauna	136	100- 200 100- 200,	N	SE Image Collection
2277	167	outer shelf	shelf-break	fine sediments, irregular, bioturbators	139	200- 700	Ν	SE Image Collection
2278	187	outer shelf	shelf	fine sediments, irregular, bioturbators	139	100- 200	Ν	SE Image Collection
2279	188	outer shelf	shelf	fine sediments, rubble banks, low encrusting sponges	142	100- 200	Ν	SE Image Collection
2280	017	outer shelf	shelf	fine sediments, subcrop, large sponges	151	100- 200	Υ	SE Image Collection
2281	109	outer shelf	shelf	fine sediments, subcrop, small sponges	152	100- 200	Υ	SE Image Collection
2282	108	outer shelf	shelf	fine sediments, subcrop, mixed faunal community	153	100- 200	Ν	SE Image Collection
2283	189	outer shelf	shelf	fine sediments, subcrop, mixed low fauna	156	100- 200	Ν	SE Image Collection
2284	190	outer shelf	shelf	coarse sediments, unrippled, no fauna	200	100- 200	Ν	SE Image Collection
2285	030	outer shelf	shelf	coarse sediments, unrippled, mixed faunal community	203	100- 200	Υ	SE Image Collection
2286	233	outer shelf	Shelf	Coarse sediments, unrippled, octocoral/ and bryozoans??	205	100- 200	Υ	WA Image Collection
2287	026	outer shelf	shelf	coarse sediments, unrippled, encrustors	206	100- 200	Υ	SE Image Collection
2288	027	outer shelf	shelf	coarse sediments, current rippled, no fauna	210	100- 200	Υ	SE Image Collection
2289	025	outer shelf	shelf	coarse sediments, wave rippled, no fauna	220	100- 200	Υ	SE Image Collection
2290	103	outer shelf	shelf	coarse sediments, wave rippled, small sponges	222	100- 200	Ν	SE Image Collection
2291	102	outer shelf	shelf	coarse sediments, wave rippled, encrustors	226	100- 200	Ν	SE Image Collection
2292	029	outer shelf	shelf	coarse sediments, irregular, large sponges	231	100- 200	Υ	SE Image Collection
2293	019	outer shelf	shelf	coarse sediments, subcrop, large sponges	251	100- 200	Υ	SE Image Collection
2294	101	outer shelf	shelf	coarse sediments, subcrop, small sponges	252	100- 200	Ν	SE Image Collection
2295	192	outer shelf	shelf	gravel/ pebble, current rippled, large sponges	311	100- 200	Ν	SE Image Collection
2296	193	outer shelf	shelf	gravel/ pebble, current rippled, mixed low fauna	316	100- 200	Ν	SE Image Collection
2297	120	outer shelf	shelf	gravel, current rippled, bioturbators	319	100- 200	Ν	SE Image Collection
2298	124	outer shelf	shelf	gravel, wave rippled, no fauna	320	100- 200	N	SE Image Collection
2299	123	outer shelf	shelf	gravel, wave rippled, large sponges	321	100- 200	N	SE Image Collection

2300 2301	194 122 195	outer shelf outer shelf outer shelf	shelf shelf	gravel/ pebble, wave rippled, low encrusting sponges gravel, wave rippled, encrustors	322	100- 200	N	SE Image Collection
	195		shelf	gravel wave rippled encrustors				
2202		outer shelf		graver, wave rippied, enclusions	326	100- 200	N	SE Image Collection
2302	404	outer silen	shelf	gravel, wave rippled, encrustors	326	100- 200	N	SE Image Collection
2303	121	outer shelf	shelf	gravel, wave rippled, bioturbators	329	100- 200	Υ	SE Image Collection
2304	024	outer shelf	shelf	gravel, irregular, encrustors	336	100- 200	Υ	SE Image Collection
2305	196	outer shelf	shelf	gravel, wave rippled, encrustors	346	100- 200	N	SE Image Collection
2306	028	outer shelf	shelf	cobble, unrippled, large sponges	401	100- 200	Υ	SE Image Collection
2307	197	outer shelf	shelf	cobble, unrippled, low/ encrusting mixed fauna	406	100- 200	N	SE Image Collection
2308	198	outer shelf	shelf	cobble, current rippled, low/ encrusting mixed fauna	416	100- 200	N	SE Image Collection
2309	032	outer shelf	shelf	cobble, subcrop, crinoids	454	100- 200	Υ	SE Image Collection
2310	020	outer shelf	shelf	cobble, outcrop, crinoids	464	100- 200	Υ	SE Image Collection
2311	246	outer shelf	Shelf	cobble/boulder (slab), outcrop, mixed low encrustors	466	100- 200 100- 200,	Υ	WA Image Collection
2312	172	outer shelf	shelf-break	Igneous rock, high outcrop, no fauna	590	200- 700	N	SE Image Collection
2313	126	outer shelf	shelf	Sedimentary rock, subcrop, large sponges	651	100- 200	Υ	SE Image Collection
2314	127	outer shelf	shelf	Sedimentary rock, subcrop, small sponges	652	100- 200 100- 200,	Υ	SE Image Collection
2315	176	outer shelf	shelf-break	Sedimentary rock, subcrop, small sponges	652	200- 700	N	SE Image Collection
2316	022	outer shelf	shelf	Sedimentary rock, subcrop, mixed faunal community	653	100- 200 100- 200,	Υ	SE Image Collection
2317	175	outer shelf	shelf-break	Sedimentary rock, subcrop, crinoids	654	200- 700	N	SE Image Collection
2318	254	outer shelf	Shelf	Sedimentary rock (?), low outcrop, large erect sponges	661	100- 201	Υ	WA Image Collection
2319	255	outer shelf	Shelf	Sedimentary rock (?) low outcrop, mixed faunal community	663	100- 200	Υ	WA Image Collection
2320	023	outer shelf	shelf	Sedimentary rock, outcrop, large sponges	671	100- 200	Υ	SE Image Collection
2321	065	outer shelf	canyon	Sedimentary rock, outcrop, small sponges	672	100- 200	Υ	SE Image Collection
2322	258	outer shelf	Shelf	Sedimentary rock (?), low outcrop, mixed faunal community Rock (sedimentary?), outcrop (low, holes and cracks etc),	673	100- 200	Υ	WA Image Collection
2323	259	outer shelf	Shelf	encrustors	676	100- 200	Υ	WA Image Collection
2324	260	outer shelf	Shelf	Rock (sedimentary?), outcrop, solitary	677	100- 200	Υ	WA Image Collection
2325	280	outer shelf	Shelf	Rock (sedimentary?), high outcrop, solitary	681	100- 201	Υ	WA Image Collection
2326	263	outer shelf	Shelf	Rock (sedimentary?), high outcrop, ?small sponges	682	100- 200	Υ	WA Image Collection
2327	266	outer shelf	Shelf	Rock (sedimentary?),, high outcrop, large sponges	691	100- 200	Υ	WA Image Collection
2328	268	outer shelf	Shelf	Sedimentary rock (?), high outcrop, mixed faunal community	693	100- 200	Υ	WA Image Collection
2329	018	outer shelf	shelf	Sedimentary rock, outcrop, encrustors	696	100- 200	Υ	SE Image Collection
2330	281	outer shelf	Shelf	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	100-200	Υ	WA Image Collection

2331	166	outer shelf	shelf-break	Bryozoan based communities	XX6	100- 200	Υ	Norfanz Image Collection
2332	202	upper slope	Slope	mud, unrippled, no fauna	000	200- 700	Υ	WA Image Collection
2333	143	upper slope	slope	mud, unrippled, large sponges	001	200-700	N	SE Image Collection
2334	142	upper slope	slope	mud, unrippled, encrustors	006	200-700	Υ	SE Image Collection
2335	144	upper slope	slope	mud, unrippled, sedentary	007	200-700	Υ	SE Image Collection
2336	141	upper slope	slope	mud, unrippled, bioturbators	009	200-700	Υ	SE Image Collection
2337	140	upper slope	slope	mud, irregular, bioturbators	039	200-700	Υ	SE Image Collection
2338	046	upper slope	slope	fine sediments, unrippled, no fauna	100	200-700	Υ	SE Image Collection
2339	227	upper slope	Slope	Fine sediments, unrippled, sponges	101	200-700	Υ	WA Image Collection
2340	137	upper slope	slope	Fine sediments, unrippled, small sponges	102	200-700	Υ	Norfanz Image Collection
2341	136	upper slope	slope	fine sediments, unrippled, encrustors	106	200-700	Υ	SE Image Collection
2342	078	upper slope	slope, canyon	fine sediments, unrippled, sedentary	107	200-700	Υ	SE Image Collection
2343	044	upper slope	slope, canyon	fine sediments, unrippled, bioturbators	109	200-700	Υ	SE Image Collection
2344	133	upper slope	slope	fine sediments, current rippled, no fauna	110	200-700	Ν	SE Image Collection
2345	073	upper slope	canyon	fine sediments, irregular, encrustors	136	200- 700	Υ	SE Image Collection
2346	231	upper slope	Slope	Fine sediments, irregular, glass sponge (stalked)	137	200-700	Υ	WA Image Collection
2347	041	upper slope	slope	fine sediments, irregular, bioturbators	139	200-700	Υ	SE Image Collection
2348	134	upper slope	slope	fine sediments, subcrop, large sponges	151	200-700	N	SE Image Collection
2349	077	upper slope	canyon, slope	fine sediments, subcrop, small sponges	152	200-700	Υ	SE Image Collection
2350	040	upper slope	slope	fine sediments, subcrop, sedentary	157	200-700	Υ	SE Image Collection
2351	284	upper slope	slope	Coarse sediments, unrippled, large sponges	201	200-700	Υ	Norfanz Image Collection
2352	285	upper slope	slope	Coarse sediments, unrippled, octocorals	205	200-700	Υ	Norfanz Image Collection
2353	043	upper slope	slope	coarse sediments, unrippled, low mixed encrustors	206	200-700	Υ	SE Image Collection
2354	045	upper slope	slope	coarse sediments, unrippled, sedentary	207	200- 700	Υ	SE Image Collection
2355	235	upper slope	Slope	Coarse sediments, rippled, no fauna	210	200-700	Υ	WA Image Collection
2356	236	upper slope	Slope	Coarse sand, rippled, solitary epifauna	217	200-700	Υ	WA Image Collection
2357	237	upper slope	Slope	Coarse sand, wave rippled, bryozoan turf	226	200-700	Υ	WA Image Collection
2358	238	upper slope	Slope	Coarse sediments, irregular, octocorals	235	200-700	Υ	WA Image Collection
2359	076	upper slope	canyon, slope	coarse sediments, irregular, low mixed encrustors	236	200-700	Υ	SE Image Collection
2360	072	upper slope	canyon, slope	coarse sediments, irregular, bioturbators	239	200-700	Υ	SE Image Collection
2361	239	upper slope	Slope	Coarse sediments, subcrop, large (?) sponges	251	200-700	Υ	WA Image Collection
2362	240	upper slope	Slope	Sedimentary, subcrop, octocorals	255	200-700	Υ	WA Image Collection
2363	241	upper slope	Slope	Coarse sediments, subcrop, low encrusting community	256	200-700	Υ	WA Image Collection

2364	139	upper slope	slope	gravel, debris flow, no fauna	340	200- 700	N	SE Image Collection
2365	138	upper slope	slope	gravel, debris flow, encrustors	346	200- 700	Υ	SE Image Collection
2366	130	upper slope	slope	cobble, debris flow, no fauna	440	200- 700	Υ	SE Image Collection
2367	132	upper slope	slope	cobble, debris flow, small sponges	442	200- 700	Υ	SE Image Collection
2368	131	upper slope	slope	cobble, debris flow, octocorals	445	200- 700	N	SE Image Collection
2369	129	upper slope	slope	cobble, debris flow, encrustors	446	200- 700	Υ	SE Image Collection
2370	286	upper slope	slope	Cobble/ boulder, debris, sedentary	447	200- 700	Υ	Norfanz Image Collection
2371	069	upper slope	canyon	cobble, outcrop, crinoids	464	200- 700	Υ	SE Image Collection
2372	247	upper slope	slope	Boulders, low outcrop, no fauna	470	200- 700	Υ	Norfanz Image Collection
2373	287	upper slope	slope	slabs and boulders, low outcrop, octocorals	475	200- 700	Υ	Norfanz Image Collection
2374	288	upper slope	slope	Igneous Rock (?), low outcrop, octocorals	565	200- 700	Υ	Norfanz Image Collection
2375	289	upper slope	slope	Igneous Rock (?), low outcrop, mixed faunal community	573	200- 700	Υ	Norfanz Image Collection
2376	290	upper slope	slope	Igneous Rock (?), high outcrop, no fauna	590	200- 700	Υ	Norfanz Image Collection
2377	291	upper slope	slope	Igneous Rock (?), high outcrop, mixed faunal community	593	200- 700	Υ	Norfanz Image Collection
2378	251	upper slope	Slope	Sedimentary rock, subcrop, no fauna	650	200- 700	Υ	WA Image Collection
2379	067	upper slope	canyon, slope	Sedimentary rock, subcrop, large sponges	651	200- 700	Υ	SE Image Collection
2380	070	upper slope	canyon	Sedimentary rock, subcrop, small sponges	652	200- 700	Υ	SE Image Collection
2381	033	upper slope	slope	Sedimentary rock, subcrop, mixed faunal community	653	200-700	Υ	SE Image Collection
2382	148	upper slope	slope	Sedimentary rock, subcrop, octocorals	655	200- 700	N	SE Image Collection
2383	036	upper slope	slope	Sedimentary rock, subcrop, encrustors	656	200-700	Υ	SE Image Collection
2384	292	upper slope	slope	Sedimentary Rock (?), subcrop, sedentary (with trawl marks)	657	200- 700	Υ	Norfanz Image Collection
2385	256	upper slope	Slope	Sedimentary rock, outcrop, octocorals	665	200- 700	Υ	WA Image Collection
2386	035	upper slope	slope	Sedimentary rock, outcrop, encrustors	666	200-700	Υ	SE Image Collection
2387	257	upper slope	Shelf break	Sedimentary rock, low outcrop, no fauna	670	200- 700	3	WA Image Collection
2388	145	upper slope	canyon, slope	Sedimentary rock, low outcrop, large sponges	671	200- 700	N	SE Image Collection
2389	146	upper slope	slope	Sedimentary rock, low outcrop, small sponges	672	200- 700	Υ	SE Image Collection
2390	071	upper slope	Shelf break	Sedimentary, low outcrop, small encrustors	676	200- 700	3	WA Image Collection
2391	261	upper slope	Slope	Sedimentary, outcrop, sedentary (anemones)	677	200- 700	Υ	WA Image Collection
2392	264	upper slope	Slope	Sedimentary, high outcrop, octocoral	683	200- 700	Υ	WA Image Collection
2393	039	upper slope	slope	Sedimentary rock, outcrop, crinoids	684	200-700	Υ	SE Image Collection
2394	265	upper slope	Slope	Sedimentary rock (mudstone?), high outcrop, no fauna	690	200- 700	3	WA Image Collection
2395	267	upper slope	Slope	Sedimentary rock (mudstone?), high outcrop, small sponges	692	200- 700	Υ	WA Image Collection
2396	066	upper slope	canyon	Sedimentary rock, outcrop, crinoids	694	200- 700	Υ	SE Image Collection

2397	269	upper slope	Slope	Sedimentary, outcrop, octocorals	695	200-700	Υ	WA Image Collection
2398	034	upper slope	slope	Sedimentary rock, outcrop, encrustors	696	200- 700	Υ	SE Image Collection
2399	270	upper slope	Slope	Sedimentary, high outcrop, solitary epifauna	697	200-700	Υ	WA Image Collection
2400	293	upper slope	slope	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	200- 700	Υ	Norfanz Image Collection
2401	128	upper slope	slope	Bryozoan based communities	XX6	200-700	Υ	Norfanz Image Collection
2402	161	mid-slope	slope	mud, unrippled, small sponges	002	700- 1500	N	SE Image Collection
2403	221	mid-slope	Slope	Mud, irregular (bioturbators), crinoids/ featherstars on whip	005	700-1500	Υ	WA Image Collection
2404	222	mid-slope	Slope	Mud, flat, solitary	007	700-1500	Υ	WA Image Collection
2405	158	mid-slope	slope	mud, current rippled, bioturbators	019	700- 1500	N	SE Image Collection
2406	160	mid-slope	slope	mud, irregular, sedentary	037	700- 1500	Ν	SE Image Collection
2407	159	mid-slope	slope	mud, irregular, bioturbators	039	700- 1500	Ν	SE Image Collection
2408	156	mid-slope	slope	Fine sediments, unrippled, no fauna	100	700- 1500	Υ	Norfanz Image Collection
2409	063	mid-slope	slope	fine sediments, unrippled, octocorals	105	700- 1500	Υ	SE Image Collection
2410	228	mid-slope	Slope	Fine, unrippled, solitary	107	700-1500	Υ	WA Image Collection
2411	294	mid-slope	slope	Fine sediments, unrippled, bioturbators	109	700- 1500	Υ	Norfanz Image Collection
2412	230	mid-slope	Slope	fine sediments, irregular, no fauna	130	700-1500	Υ	WA Image Collection
2413	061	mid-slope	slope	fine sediments, irregular, bioturbators	139	700- 1500	Υ	SE Image Collection
2414	057	mid-slope	slope	fine sediments, subcrop, bioturbators	150	700- 1500	Υ	SE Image Collection
2415	232	mid-slope	Slope	Fine sediments, subcrop, octocorals	155	700-1500	Υ	WA Image Collection
2416	295	mid-slope	slope	Fine sediments, subcrop, encrustors	156	700- 1500	Υ	Norfanz Image Collection
2417	153	mid-slope	slope	coarse sediments, unrippled, no fauna	200	700- 1500	N	SE Image Collection
2418	062	mid-slope	slope	coarse sediments, unrippled, octocorals	205	700- 1500	Υ	SE Image Collection
2419	150	mid-slope	slope	coarse sediments, current rippled, no fauna	210	700- 1500	N	SE Image Collection
2420	151	mid-slope	slope	coarse sediments, current rippled, octocorals	215	700- 1500	N	SE Image Collection
2421	152	mid-slope	slope	Coarse sediments, current rippled, sedentary	217	700- 1500	Υ	Norfanz Image Collection
2422	296	mid-slope	slope	Coarse sediments, irregular, no fauna	230	700- 1500	Υ	Norfanz Image Collection
2423	059	mid-slope	slope	coarse sediments, irregular, low encrusting	236	700- 1500	Υ	SE Image Collection
2424	297	mid-slope	slope	Coarse sediments, subcrop, no fauna	250	700- 1500	Υ	Norfanz Image Collection
2425	298	mid-slope	slope	Coarse sediments, low outcrop, no fauna	260	700- 1500	Υ	Norfanz Image Collection
2426	243	mid-slope	Slope	Gravel, irregular, low encrustings	336	700-1500	2	WA Image Collection
2427	058	mid-slope	slope	cobble, unrippled, small sponges	402	700- 1500	Υ	SE Image Collection
2428	244	mid-slope	Slope	Igneous rock/boulder, rubble bank, none	440	700-1500	Υ	WA Image Collection
2429	154	mid-slope	slope	cobble, debris flow, crinoids	444	700- 1500	N	SE Image Collection

2430	155	mid-slope	slope	slabs/ boulders, debris flow, octocorals	445	700- 1500	Υ	SE Image Collection
2431	050	mid-slope	slope	cobble, debris flow, encrustors	446	700- 1500	Υ	SE Image Collection
2432	245	mid-slope	Slope	boulders and slabs, subcropping, octocorals	455	700-1500	Υ	WA Image Collection
2433	051	mid-slope	slope	cobble, outcrop, no fauna	460	700- 1500	Υ	SE Image Collection
2434	060	mid-slope	slope	cobble, outcrop, crinoids	464	700- 1500	Υ	SE Image Collection
2435	064	mid-slope	slope	Sedimentary slab and mud boulders, outcrop, crinoids	464	700- 1500	Υ	SE Image Collection
2436	248	mid-slope	Slope	Igneous rock, rubble bank, no fauna	540	700-1500	Υ	WA Image Collection
2437	249	mid-slope	Seamount	Igneous rock, rubble bank, octocorals	545	700-1500	Υ	WA Image Collection
2438	053	mid-slope	slope	Igneous rock, low outcrop, sedentary	567	700- 1500	Υ	SE Image Collection
2439	250	mid-slope	Seamount	Igneous rock, low outcrop, no fauna	570	700-1500	Υ	WA Image Collection
2440	213	mid-slope	Seamount	Igneous rock (?), outcrop, octocoral	575	700-1500	Υ	WA Image Collection
2441	049	mid-slope	slope	Igneous rock, high outcrop, crinoids	594	700- 1500	Υ	SE Image Collection
2442	157	mid-slope	slope	Igneous rock, high outcrop, octocorals	595	700- 1500	N	SE Image Collection
2443	081	mid-slope	seamount	Sedimentary rock, unrippled, no fauna	600	700- 1500	Υ	SE Image Collection
2444	085	mid-slope	seamount	Sedimentary rock, unrippled, encrustors	606	700- 1500	Υ	SE Image Collection
2445	055	mid-slope	slope	Sedimentary rock, unrippled, sedentary	607	700- 1500	Υ	SE Image Collection
2446	162	mid-slope	slope	Sedimentary rock, debris flow, crinoids	644	700- 1500	N	SE Image Collection
2447	164	mid-slope	slope	Sedimentary rock, subcrop, crinoids	654	700- 1500	Υ	SE Image Collection
2448	165	mid-slope	slope	Sedimentary rock, subcrop, octocorals	655	700- 1500	Υ	SE Image Collection
2449	252	mid-slope	Slope	Sedimentary, subcrop, small encrustors	656	700-1500	2	WA Image Collection
2450	253	mid-slope	Slope	rock (conglomerate/sedimentary), subcrop, bioturbators	659	700-1500	Υ	WA Image Collection
			slope,					
2451	056	mid-slope	canyons, seamounts	Sedimentary rock, outcrop, mixed faunal community	673	700- 1500	Υ	SE Image Collection
2452	052	mid-slope	slope	Sedimentary rock, outcrop, octocorals	675	700- 1500	Υ	SE Image Collection
2453	071	mid-slope	canyon	Sedimentary rock, outcrop, encrustors	676	700- 1500	Υ	SE Image Collection
2454	080	mid-slope	seamount	Sedimentary rock, outcrop, encrustors	676	700- 1500	Υ	SE Image Collection
2455	084	mid-slope	seamount	Sedimentary rock, outcrop, sedentary	677	700- 1500	Υ	SE Image Collection
2456	262	mid-slope	Slope	sedimentary/mudstone, high outcrop, no fauna	680	700-1500	Υ	WA Image Collection
2457	054	mid-slope	slope	Sedimentary rock, outcrop, crinoids	694	700- 1500	Υ	SE Image Collection
2458	163	mid-slope	slope	Sedimentary rock, high outcrop, octocorals	695	700- 1500	Υ	SE Image Collection
			•					5

Scoping Document S2B2. Pelagic Habitats

A list of the pelagic habitats for the Coral Sea Auto longline sub-fishery. All pelagic habitats within the jurisdictional boundary of the fishery are subject to

effort from Auto longlining.

ERAEF Habitat Number	Pelagic Habitat type	Depth (m)	Comments	Reference
P4	North Eastern Pelagic Province - Oceanic	0 -> 600	this is a compilation of the range covered by Oceanic Community (1) and (2)	dow167A1, A2, A4
P5	Northern Pelagic Province - Coastal	0 - 200		dow167A1, A2, A4
P15	North Eastern Pelagic Province - Plateau North Eastern Pelagic Province - Seamount	0 -> 600	this is a compilation of the range covered by the Northeastern Plateau Community (1) and (2)	dow167A1, A2, A4
P16	Oceanic	0 -> 600	this is a compilation of the range covered by Seamount Oceanic Communities (1) and (2)	dow167A1, A2, A4

Scoping Document S2C1. Demersal Communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisations for the slope (IMCRA 1998; Last *et al.* 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisations and on oceanography (Condie *et al.* 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday *et al.* (2007) and briefly outlined in the footnotes to the community Tables below.

Demersal communities in which fishing activity occurs in Coral Sea Auto longline sub-fishery (x). Shaded cells indicate all communities within the province.

Demersal community	Cape	North Eastern Transition	North Eastern	Central Eastern Transition	Central Eastern	South Eastern Transition	Central Bass	Tasmanian	Western Tas Transition	Southern	South Western Transition	Central Western	Central Western Transition	North Western	North Western Transition	Timor	Timor Transition	Heard & McDonald Is	Macquarie Is
Inner Shelf 0 – 110m ^{1,2}																			
Outer Shelf 110 – 250m ^{1,2,}																			
Upper Slope 250 – 565m ³																			
Mid-Upper Slope 565 - 820m ³																			
Mid Slope 820 – 1100m ³																			
Lower slope/ abyssal > 1100m ⁶																			
Reef 0 -110m ^{7, 8}																			
Reef 110-250m ⁸																			
Seamount 0 – 110m																			
Seamount 110- 250m			Х	Х															
Seamount 250 - 565m			Х	х															
Seamount 565 – 820m			Х	х															
Seamount 820 – 1100m			Х	х															
Seamount 1100 – 3000m																			

Plateau 0 – 110m		х							
Plateau 110- 250m ⁴		х							
Plateau 250 – 565m ⁴		х							
Plateau 565 – 820m ⁵									
Plateau 820 – 1100m ⁵									

Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: ²inner & outer shelves (0-250m), and ³upper and midslope communities combined (250-1000m). At Heard/McDonald Is: ⁴outer and upper slope plateau communities combined to form four communities: Shell Bank, inner and outer Heard Plateau (100-500m) and Western Banks (200-500m), ⁵mid and upper plateau communities combined into 3 trough, southern slope and North Eastern plateau communities (500-1000m), and ⁶ 3 groups at Heard Is: Deep Shell Bank (>1000m), Southern and North East Lower slope/abyssal, ⁷Great Barrier Reef in the North Eastern Province and Transition and ⁸ Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic Communities

Pelagic communities that overlie the demersal communities in which fishing activity occurs in the Coral Sea Auto longline sub-fishery (x). Shaded cells indicate all communities that exist in the province.

an communities that exist in ti	ic province.							
Pelagic community	North Eastern	Eastern	Southern	Western	Northern	North Western	Heard and McDonald Is ²	Macquarie Is
Coastal pelagic 0-200m ^{1,2}								
Oceanic (1) 0 – 600m								
Oceanic (2) >600m								
Seamount oceanic (1) 0 - 600m	х							
Seamount oceanic (2) 600-3000m	х							
Oceanic (1) 0 – 200m								
Oceanic (2) 200-600m								
Oceanic (3) >600m								
Seamount oceanic (1) 0 – 200m								
Seamount oceanic (2) 200 – 600m								
Seamount oceanic (3) 600-3000m								
Oceanic (1) 0-400m								
Oceanic (2) >400m								
Oceanic (1) 0-800m								
Oceanic (2) >800m								
Plateau (1) 0-600m	х							
Plateau (2) >600m	х							
Heard Plateau 0-1000m ³								
Oceanic (1) 0-1000m								
Oceanic (2) >1000m								
Oceanic (1) 0-1600m								
Oceanic (2) >1600m								
-								

¹ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York) and Southern Province has two zones (Tas, GAB). ² At Macquarie Is: coastal pelagic zone to 250m. ³ At Heard and McDonald Is: coastal pelagic zone broadened to cover entire plateau to maximum of 1000m.

2.2.3 Identification of Objectives for Components and Sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, TEP, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed ESD reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. **Scoping Document S3** provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, with regard to numbers or fractions of removal/impact, but should indicate that an impact in the sub-component is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub)fishery are used for Level 1 analysis (**Level 1 SICA Document L1.1**).

Scoping Document S3 Components and Sub-components Identification of Objectives

Component	Core Objective	Sub-component		Example Indicators	Rationale
	"What is the general goal?"	As shown in sub- component model diagrams at the beginning of this section.	"What you are specifically trying to	going to use to measure performance"	Rationale flagged as 'EMO' where Existing Management Objective in place, or 'AMO' where there is an existing AFMA Management Objective in place for other Commonwealth fisheries (assumed that squid fishery will fall into line).
Target Species	Avoid recruitment failure of the target species Avoid negative consequences for species or population subcomponents		biomass 1.2 Maintain	Biomass, numbers, density, CPUE, yield	1.1 add in rationale for each objective 1.2 1.3
		2. Geographic range	range of the	population across the GAB	2.1
		3. Genetic structure		Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1

Component	Core Objective	Sub-component		Example Indicators	Rationale
		4. Age/size/sex structure		numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex	4.1
		5. Reproductive Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity) 2 Recruitment to the population does not change outside acceptable bounds	of population Abundance of recruits	5.1 5.2
		6. Behaviour /Movement		Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	
Byproduct and Bycatch	Avoid recruitment failure of the byproduct and bycatch species Avoid negative consequences for species or population subcomponents	-	1.1 No trend in biomass	numbers, density, CPUE, yield	1.1 1.2 1.3 1.4
		2. Geographic range		population across space	2.1

Component	Core Objective	Sub-component	Operational	Example Indicators	Rationale
		3. Genetic structure	Objectives 3.1 Genetic diversity does	Frequency of genotypes in the	3.1
		Structure		population, effective	
			acceptable bounds	population size (N _e), number of	
		4. Age/size/sex	4.1 Age/size/sex	spawning units Biomass,	4.1
		structure	structure does	numbers or relative	1. 1
				proportion in	
			acceptable bounds (e.g.	age/size/sex classes	
			more than X%	Biomass of	
			from reference structure)	spawners Mean size, sex ratio	
		5 Reproductive Capacity		Egg production of population Abundance of	5.1
			outside acceptable	recruits	
			bounds (e.g. more than X% of		
			reference population		
			fecundity) Recruitment to		
			the population does not change		
			outside		
			acceptable bounds		
		6. Behaviour /Movement	6.1 Behaviour and movement	Presence of population across	6.1
		/ Wio vernent	patterns of the	space, movement	
			population do not change	patterns within the population	
			outside	(e.g. attraction to bait, lights)	
TED species	Avoid recruitment failure of TEP	1 Population size	bounds 1.1 Species do	Biomass,	1.1
TEI species	species species	1. I opulation size	not further		1.2
	Avoid negative consequences for		extinction or		1.3 1.4
	TEP species or population sub- components		become extinct 1.2 No trend in biomass		
	Avoid negative impacts on the		1.3 Maintain		
	population from fishing		biomass above a specified level 1.4 Maintain		
			catch at specified level		

Component	Core Objective	Sub-component	Example	Example	Rationale
			Operational	Indicators	
		2 Gaographia	Objectives 2.1 Geographic	Presence of	2.1
		Geographic range	range of the	population across	
		range	population, in	space, i.e. the	
			terms of size and		
			continuity does		
			not change		
			outside		
			acceptable		
			bounds	F	2.1
			3.1 Genetic		3.1
		structure	diversity does not change	genotypes in the population,	
			outside	effective	
			acceptable	population size	
			bounds	(N _e), number of	
				spawning units	
		4. Age/size/sex	0	,	4.1
		structure	structure does	numbers or	
			not change	relative	
			outside	proportion in	
			acceptable bounds (e.g.	age/size/sex classes	
			more than X%	Biomass of	
			from reference	spawners	
			structure)	Mean size, sex	
				ratio	
			5.1 Fecundity of	001	5.1
		Capacity	the population	of population	
			does not change	Abundance of	
			outside	recruits	
			acceptable bounds (e.g.		
			more than X% of		
			reference		
			population		
			fecundity)		
			Recruitment to		
			the population		
			does not change		
			outside		
			acceptable bounds		
		6. Behaviour	6.1 Behaviour	Presence of	6.1
		/Movement	and movement	population across	~
			patterns of the	space, movement	
			population do	patterns within	
			not change	the population	
			outside	(e.g. attraction to	
			acceptable	bait, lights)	
			bounds	C	7.1
		Interactions with fishery	7.1 Survival after interactions is		7.1 7.2
		11511C1 y	maximised	interactions	1.4
			maammseu	incractions	
			7.2 Interactions	Number of	
				interactions,	
			viability of the	biomass or	
			population or its	numbers in	
			ability to recover	population	

Component	Core Objective	Sub-component	•	1	Rationale
			Operational Objectives	Indicators	
Habitats	Avoid negative impacts on the	1. Water quality	1.1 Water quality	Water chemistry	1 1
Habitats	quality of the environment	1. Water quanty		noise levels,	1.1
	T			debris levels,	
	Avoid reduction in the amount			turbidity levels,	
	and quality of habitat			pollutant	
				concentrations,	
				light pollution	
				from artificial	
				light	
		Air quality			2.1
			•	noise levels,	
				visual pollution,	
			1	pollutant	
				concentrations,	
				light pollution	
				from artificial	
		3. Substrate quality		light Sediment	3.1
		5. Substrate quanty		chemistry,	5.1
				stability, particle	
			•	size, debris,	
				pollutant	
			odinas	concentrations	
		4. Habitat types	4.1 Relative		4.1
				of habitat types,	
				% cover, spatial	
				pattern,	
			outside	landscape scale	
			acceptable		
			bounds		
		Habitat structure		· · · · · · · · · · · · · · · · · · ·	5.1
		and function		species	
				composition and	
				morphology of	
				biotic habitats	
			acceptable		
Communities	A void magative immedts on the	1 Cmaning	bounds	Chasina	1.1
Communities	Avoid negative impacts on the	1. Species		Species	
	composition/ function/ distribution/ structure of the	composition	composition of communities	presence/absence , species	
	community			numbers or	
				biomass (relative	
				or absolute)	
				Richness	
				Diversity indices	
				Evenness indices	
		2. Functional			2.1
		group composition		functional	
			composition does		
				per functional	
				group	
			acceptable	(e.g. autotrophs,	
				filter feeders,	
				herbivores,	
				omnivores,	
		2 Diatrillanti C		carnivores)	2.1
		3. Distribution of		- · · · · · · · · · · · · · · · · · · ·	3.1
		the community		range of the community,	
				community,	
				range, patchiness	
	L	1	oounus	range, patenniess	l

Component	Core Objective	Sub-component		Example Indicators	Rationale
			Objectives		
		4. Trophic/size	4.1 Community	Size spectra of	4.1
		structure	size	the community	
			spectra/trophic	Number of	
			structure does	octaves,	
			not vary outside	Biomass/number	
			acceptable	in each size class	
			bounds	Mean trophic	
				level	
				Number of	
				trophic levels	
		5. Bio- and geo-	5.1 Cycles do not	Indicators of	5.1
		chemical cycles	vary outside	cycles, salinity,	
			acceptable	carbon, nitrogen,	
			bounds	phosphorus flux	

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Scoping

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. **Table 4** provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

Fishery Name: Coral Sea Fishery (CSF) –Line sector

Sub-fishery Name: Auto longline sub-fishery

<u>Date</u>: May 2006

Direct impact of Fishing	Fishing Activity	Score (0/1)	Documentation of Rationale
Capture	Bait collection	0	No bait collection occurs. All bait used is purchased.
	Fishing	1	Capture of organisms due to gear deployment,
			retrieval and actual fishing. Auto-longline catch
			(Kgs/yr) is less than in the otherline sub-fishery, but
			greater than in demersal line sub-fishery.
	Incidental behaviour	1	Recreational fishing may occur occasionally when off watch
Direct impact	Bait collection	0	No bait collection occurs in the CSF area
without capture	Fishing	1	There is a lack of data and information in regards to
			the impacts of line operations in the CSF, but "the
			impact of line fishing is considered to be less than
			trawl operations" (AFMA Environmental Assessment
			Report July 2003). Of the 3 line sub-fisheries, effort
			(Hks/yr) is greatest in 'otherline', and least in
			'demersal line'.
	Incidental behaviour	1	Recreational fishing may occur occasionally when
			off watch
	Gear loss	1	Loss of ~1-2% of deployed hooks and sinkers noted
			in FAR records; noted as regular occurrence in
			Observer Reports
	Anchoring/ mooring	1	Permit boats anchors in rough weather only
	Navigation/steamin	1	
	g		
Addition/	Translocation of	1	Could occur incidentally via boat hulls or through
movement of	species		bilge water, involving introduction or movement of
biological	(boat launching,		species between shallow coastal areas and similarly
material	reballasting)		shallow fishing area. Use of bait may also allow
			introduction of pathogens (bait sourced from NSW
			deepsea fisheries, squid from prawn trawlers, or
			GAB arrow squid). Ports predominantly used are
			Townsville, Cairns, Bundaberg, Mooloolaba, and
			Brisbane.
	On board	1	Some processing of fish noted in FAR report. One
	processing		operator with historical exemption which allows
			shark processing – all others head and gut only.
			Shark processing done after catch is sorted – boat
			generally steaming by this point (operator comment, <i>CSF Workshop Nov 2005</i>).
	Discarding catch	1	Discarding at time of retrieval is common (operator
	2 iscarding cuton	•	comment, CSF Workshop Nov 2005). Observer data
			collected. Generally involves small or shark
			damaged fish.
	Stock enhancement	0	Does not occur.

Direct impact of	Fishing Activity	Score	Documentation of Rationale
Fishing	Donation of	(0/1)	Delta Handra and Delta and LC NOW I
	Provisioning	1	Baited hooks used. Bait sourced from NSW deepsea fisheries, squid from prawn trawlers, or GAB arrow squid.
	Organic waste disposal	1	Disposal of organic wastes (food scraps, sewage) from the boats. MARPOL guidelines apply but food scraps regularly discarded at sea (Observer reports).
Addition of non-biological	Debris	0	Rubbish not thrown overboard. MARPOL guidelines apply.
material	Chemical pollution	1	Oil spills, anti-fouling chemicals, detergents, shampoo. MARPOL guidelines apply.
	Exhaust	1	Exhaust as a result of diesel and other engines during fishing operations.
	Gear loss	1	Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports.
	Navigation/ steaming	1	The navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the environment.
	Activity/ presence on water	1	The activity of vessels will introduce noise and visual stimuli into the environment. May interact with wildlife – e.g. Dolphin riding bow wave, bird settling on boat
Disturb physical	Bait collection	0	
processes	Fishing	1	Impact of line fishing is considered to be less than trawl operations (<i>AFMA Environmental Assessment Report July 2003</i>). In comparison to the other two line subfishing methods, autolongline effort is many times greater than demersal longline and as such its impact would be much greater. Autolongline expends much less effort than "Other line" but uses a method that would impact the demersal environment more while "Other line" would impact the pelagic processes more than autolongline.
	Boat launching	0	No ports or harbors within the Coral Sea. Vessels in fishery come from designated ports outside of the CSF.
	Anchoring/ mooring	1	Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor. Permit boats anchors in rough weather only
	Navigation/ steaming	1	
External Hazards (specify the particular example within each activity area)	Other capture fishery methods	1	Alternate line sub-fisheries (Demersal longline, Other line), Hand collection sector, Trawl sector and Trap trials, state fisheries, international jurisdiction fisheries and recreational. Many of the same species are targeted or impacted in each of these separate fisheries.
	Aquaculture	0	offshore
	Coastal development	0	offshore
	Other extractive activities	0	At present, no current petroleum permits exist and no new releases have been granted for the CSF area (Department of Industry Tourism and Resources 2005 CD-ROM)

Direct impact of	Fishing Activity	Score	Documentation of Rationale
Fishing		(0/1)	
	Other non-	1	Shipping lanes
	extractive activities		
	Other anthropogenic	1	Recreational fishing and diving/tourism (CSF
	activities		Stakeholders Meeting 2005)

Table 4. Examples of fishing activities.

(Modified from Fletcher et al. 2002)

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. They are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without capture		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crews use to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to
	mooring	physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes
	steaming	collisions with marine organisms or birds.
Addition/ movement of biological material		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
	Translocation of	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport
	species (boat	can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into

Direct Impact of	Fishing Activity	Examples of Activities Include
Fishing		
	movements,	the fishery.
	reballasting)	
	On board	The discarding of unwanted sections of target after on board processing introduces or moves biological material, e.g. heading
	processing	and gutting, retaining fins but discarding trunks.
	Discarding catch	The discarding of unwanted organisms from the catch can introduce or move biological material. This includes individuals of
		target and byproduct species due to damage (e.g. shark or marine mammal predation), size, high grading and catch limits.
		Also includes discarding of all non-retained bycatch species. This also includes discarding of catch resulting from incidental
		fishing by the crew. The discards could be alive or dead.
	Stock	The addition of larvae, juveniles or adults to the fishery or ecosystem to increase the stock or catches.
	enhancement	
	Provisioning	The use of bait or berley in the fishery.
	Organic waste	The disposal of organic wastes (e.g. food scraps, sewage) from the boats.
	disposal	
Addition of non-		Any activities that result in non-biological material being added to the ecosystem of the fishery, this includes physical debris,
biological material		chemicals (in the air and water), lost gear, noise and visual stimuli.
	Debris	Non-biological material may be introduced in the form of debris from fishing vessels or mother ships. This includes debris
		from the fishing process: e.g. cardboard thrown over from bait boxes, straps and netting bags lost.
		Debris from non-fishing activities can also contribute to this e.g. Crew rubbish – discarding or food scraps, plastics or other
		rubbish. Discarding at sea is regulated by MARPOL, which forbids the discarding of plastics.
	Chemical	Chemicals can be introduced to water, sediment and atmosphere through: oil spills, detergents other cleaning agents, any
	pollution	chemicals used during processing or fishing activities.
	Exhaust	Exhaust can be introduced to the atmosphere and water through operation of fishing vessels
	Gear loss	The loss of gear will result in the addition of non-biological material, this includes hooks, line, sinkers, nets, otter boards, light
		sticks, buoys etc.
	Navigation	The navigation and steaming of vessels will introduce noise and visual stimuli into the environment.
	/steaming	Boat collisions and/or sinking of vessels.
		Echo-sounding may introduce noise that may disrupt some species (e.g. whales, orange roughy)
	Activity	The activity or presence of fishing vessels on the water will noise and visual stimuli into the environment.
	/presence on	
	water	
Disturb physical		Any activities that will disturb physical processes, particularly processes related to water movement or sediment and hard
processes		substrate (e.g. boulders, rocky reef) processes.
	Bait collection	Bait collection may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
		flow patterns.
	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.
	Anchoring /mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.
	Navigation /steaming	Navigation /steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.
External hazards		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous or recreational fisheries operating in the same region as the fishery under examination
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity
	Other non- extractive activities	Defense, shipping lanes, dumping of munitions, submarine cables
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills

60 Level 1

2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.

Key documents can be found on the AFMA web page at www.afma.gov.au and include the following:

- Environmental Assessment Report 2003
- Statement of Management Arrangements 2004
- AFMA At a glance web page http://www.afma.gov.au/fisheries/etbf/at_a_glance.php

Other publications that may provided information include

• Bureau of Rural Sciences, Fishery Status Reports

The detailed bibliography for the Auto longline sub-fishery of the Coral Sea Fishery is included in the reference section.

2.2.6 Decision rules to move to Level 1(Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 20 out of 26 possible internal activities were identified as occurring in this fishery. Three out of 6 external activities were identified. No Bycatch component exists for the Coral Sea Aquarium sub-fishery. Thus, a total of 23 activity-component scenarios will be considered at Level 1. This results in 115 total scenarios (of 160 possible) to be developed and evaluated using the unit lists (species, habitats, communities).

Level 1 61

2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat or community. Analysis at Level 1 is for whole components (target; bycatch and byproduct; TEP species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity and consequence analysis (SICA). SICA is applied to the component as a whole by choosing the most vulnerable sub-component (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component, and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

- Step1: Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 at the scoping level (Scoping Document S3) onto the SICA table
- Step 2: Score spatial scale of the activity
- Step 3: Score temporal scale of the activity
- Step 4: Choose the sub-component most likely to be affected by activity
- Step 5: Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage
- Step 6: Select the most appropriate operational objective
- Step 7: Score the intensity of the activity for that sub-component
- Step 8: Score the consequence resulting from the intensity for that subcomponent
- Step 9: Record confidence/uncertainty for the consequence scores
- Step 10: Document rationale for each of the above steps
- Step 11: Summary of SICA results
- Step 12: Evaluation/discussion of Level 1
- Step 13: Components to be examined at Level 2

62 Level 1

2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each component (target, bycatch and byproduct, and TEP species, habitat, and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1

2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm, then the spatial scale is scored as 4. The score is then recorded onto the SICA Document and the rationale documented.

Spatial scale score of activity

<1 nm:	1-10 nm:	10-100 nm:	100-500 nm:	500-1000 nm:	>1000 nm:
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6. If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document and the rationale documented.

Temporal scale score of activity

Decadal	Every several years (1 day every several years)	Annual	Quarterly	Weekly	Daily
(1 day every		(1-100 days	(100-200 days	(200-300 days	(300-365 days
10 years or so)		per year)	per year)	per year)	per year)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the same 150 days of the year, the score is 3. If the same 10 boats each spend 30 non-overlapping days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'sub-component' column of the SICA Document. The justification is recorded in the rationale column.

2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from **Scoping Document S2** (A - C). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from **Scoping Document S3** is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in **Scoping Document S3**. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated then these sub-components or operational objectives must be re-instated.

2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (**Figure 2**) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

Intensity score of activity	(Modified f	from Fletcher	et al.	2002)
-----------------------------	-------------	---------------	--------	-------

Level	Score	Description
Negligible	1	remote likelihood of detection at any spatial or temporal scale
Minor	2	occurs rarely or in few restricted locations and detectability even at these
		scales is rare
Moderate	3	moderate at broader spatial scale, or severe but local
Major	4	severe and occurs reasonably often at broad spatial scale
Severe	5	occasional but very severe and localized or less severe but widespread and
		frequent
Catastrophic	6	local to regional severity or continual and widespread

This score is then recorded on the **Level 1 (SICA) Document** and the rationale documented.

2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores below. A more detailed description of the consequences at each level for each component (target, bycatch and byproduct, TEP species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table (see **Table 5, Appendix C**).

Consequence score for ERAEF activities (Modified from Fletcher et al. 2002).

Level	Score	Description
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics
Moderate	3	Maximum impact that still meets an objective (e.g. sustainable level of
		impact such as full exploitation rate for a target species).
Major	4	Wider and longer term impacts (e.g. long-term decline in CPUE)
Severe	5	Very serious impacts now occurring, with relatively long time period likely
		to be needed to restore to an acceptable level (e.g. serious decline in
		spawning biomass limiting population increase).
Intolerable	6	Widespread and permanent/irreversible damage or loss will occur-unlikely
		to ever be fixed (e.g. extinction)

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale

Level 1 65

documented. The confidence will reflect the levels of uncertainty for each score at steps 2, 3, 7 and 8.

Description of Confidence scores for Consequences. The confidence score appropriate to the rationale is used, and documented on the SICA Document.

Confidence	Score	Rationale for the confidence score
Low	1	Data exists, but is considered poor or conflicting
		No data exists
		Disagreement between experts
High	2	Data exists and is considered sound
		Consensus between experts
		Consequence is constrained by logical consideration

2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis.

2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component; L1.2 - Byproduct and Bycatch Component; L1.3 - TEP Species Component; L1.4 - Habitat Component; L1.5 - Community Component

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub component provide a guide for scoring the level of consequence (see Table5, Appendix C)

L1.1 - Target Species Component

L1.1 - 1 alg	et Species Comp	OHE	Ιι									
Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale	Internal / External
Capture	Bait collection	0									does not occur	I
	Fishing	1	5	3	population size	Etelis spp NW ruby fish/flame snapper	1.1	3	3	2	largest catches are <i>Etelis carbunculus</i> and <i>E. coruscans</i> . <i>E. carbunculus</i> catches increased from 2001 to 2003 but where not recorded in 2004, while <i>E. coruscans</i> catches did not occur before 2003 then increased 8 fold; =>intensity of fishing localised moderate; =>consequence may be moderate; =>confidence high-based on logbook catch data/CDR/Observer reports	I
	Incidental behaviour	1	4	3	population size	Pristipomoides filamentosus rosy jobfish	1.1	1	1	2	Recreational fishing when off watch. Handline-fishing by crew during downtime; Rosy jobfish catches rose steadily between 2001 and 2003 then fell by 80% in 2004. =>Incidental activity intensity negligible, occurs in restricted locations and infrequently; =>consequence negligible- impact undetectable; =>confidence high -operator comments	I
Direct impact	Bait collection	0									does not occur, bait must be purchased	I
without capture	Fishing	1	5	3	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	3	2	2	high order predators increase in numbers as attracted to baits and may take fish on or near hooks; =>intensity localised moderate; =>consequence minor; =>confidence high-FAR reports indicate increased observations of sharks. No underwater camera data available to refute this.	I
	Incidental behaviour	1	4	3	population size	Pristipomoides filamentosus rosy jobfish	1.1	1	1	2	Recreational fishing when off watch, handline-fishing by crew during downtime, fish attracted to baits may be taken by sharks; =>intensity negligible occurs in restricted locations	I

Level 1 67

											and infrequently; =>consequence: negligible- impact undetectable; =>confidence high - operator comments	
	Gear loss	1	5	3	population size	Etelis spp NW ruby fish/flame snapper	1.1.	3	3	2	Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports with up to 1000 hook noted in one shot, fish may take hooks from lost gear which will interfere with future feeding; =>intensity locally severe; =>consequence moderate; =>confidence high-FAR reports	I
	Anchoring/ mooring	1	4	3	behaviour/movement	rock cods Aethaloperca, Anyperodon, Epinephelus spp.	6.1	1	1	1	Permit boats anchors in rough weather only, fish may be hit by anchor or anchor-chain, only locations shallow enough for anchoring, probably doesn't occur; =>intensity negligible anchoring uncommon; =>consequence negligible - unlikely to detect any changes; =>confidence low with no information to refute or confirm	I
	Navigation/ steaming	1	5	3	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	3	2	1	interaction with pelagic species may occur; =>intensity localised moderate; =>consequence minor- unlikely to detect any changes to distribution; =>confidence low -no data to refute or confirm	I
Addition/ movement of biological material	Translocation of species	1	5	3	population size	Serranidae	1.1	3	3	1	translocation possible by hull or line fouling or bilge water involving introduced species or movement of species between shallow coastal port areas and similarly shallow fishing area. Bait use may also introduce pathogens -bait used includes fish from NSW deepsea fisheries, squid from prawn trawlers, and GAB arrow squid; =>intensity moderate but may be locally severe; =>consequence moderate - potential for wider long term impact effecting whole of community eg crown of thorns starfish, pilchard deaths in South Australian waters; =>confidence low; no information collected or mitigation measures communicated-no data to refute or confirm for CSF area	I
	On board processing	1	5	3	population size	Serranidae, Lutjanidae	1.1	2	2	2	Some processing of fish noted in FAR report. Shark processing done after catch is sorted – boat generally steaming by this point (operator comment, CSF Workshop Nov 2005).higher predators attracted to area by waste from onboard filleting of shark species which occurs - all other fish unloaded whole (FAR report), increase in shark numbers through introduction of additional material may impact on number of fish taken by sharks; =>intensity minor; =>consequence minor; =>confidence logic -can be evaluated without data	I
	Discarding catch	1	5	3	population size	Serranidae, Lutjanidae	1.1	3	2	2	Discarding at time of retrieval is common (operator comment, CSF Workshop Nov 2005). Higher predator numbers increase through introduction of additional material may impact on number of fish injured/taken by sharks. Observer information	I

											of presence/absence of shark activity while dicarding would be valuable; =>intensity locally moderate; =>consequence minor; =>confidence logic-can be evaluated without data. Operator comments that discard occurs as a result of fish damaged by sharks bite while on hooks	
	Stock enhancement	0									does not occur	I
	Provisioning	1	5	3	population size	Serranidae, Lutjanidae	1.1	3	2	2	higher predators numbers increase through introduction of additional material may impact on fish numbers injured/taken by sharks; =>intensity locally moderate; =>consequence minor; =>confidence logic-can be evaluated without data. Operator comment also that some discard is due to shark damage to fish while on hooks- may also occur in vicinity of hooks. Observer/video information in the form of presence/absence of shark activity would be valuable.	I
	Organic waste disposal	1	5	3	population size	Serranidae, Lutjanidae	1.1	2	2	2	organic waste discarded may attract higher predators but most boats operating under MARPOL regulations and macerators now compulsory in Qld for all food scraps; =>intensity minor; =>consequence minor; =>confidence high (observer reports from other CSF line fisheries)	I
Addition of	Debris	0									Rubbish not thrown overboard. MARPOL guidelines apply.	I
non-biological material	Chemical pollution	1	5	3	population size	Etelis spp NW ruby fish/flame snapper	1.1	2	1	1	chemical polution may be detrimental to fish health, most boats operating under MARPOL regulations; =>Intensity minor; =>consequence negligible - unlikely to detect any changes; =>confidence logic can be evaluated without data	I
	Exhaust	1	5	3	population size	Etelis spp NW ruby fish/flame snapper	1.1	3	1	2	exhaust may be detrimental to fish health, most boats operating under MARPOL regulations; =>Intensity localised moderate; =>consequence negligible - unlikely to detect any changes; =>confidence logic - can be evaluated without data	I
	Gear loss	1	5	3	population size	Etelis spp NW ruby fish/flame snapper	1.1	3	3	2	fish may take hooks from lost gear which will interfere with future feeding; =>intensity locally severe; =>consequence moderate; =>confidence high-FAR reports, Observer reports show up to 1000 hooks lost in one shot	I
	Navigation/ steaming	1	5	3	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	3	2	2	interaction with pelagic species may occur; =>Intensity localised moderate; =>consequence minor- unlikely to detect any changes to distribution; =>confidence logic - can be evaluated without data	I
	Activity/ presence on water	1	5	3	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	3	2	2	=>Intensity localised moderate; =>consequence minor- unlikely to detect any changes to distribution; =>confidence logic - can be evaluated without data	I
Disturb	Bait collection	0										I
physical processes	Fishing	1	5	3	behaviour/movement	Hyperoglyphe antarctica Blue eye trevalla	6.1	3	2	1	Gear may disturb sediment on the seafloor and affect habitat for species and distribution. Blue-eye catches in 2003-2004 fell by 80%; =>intensity localised moderate; =>consequence	I

											minor unlikely to detect any changes; =>confidence low -no data to refute or confirm	
	Boat launching	0									does not occur	I
	Anchoring/ mooring	1	4	3	behaviour/movement	rock cods Aethaloperca, Anyperodon, Epinephelus spp.	6.1	2	1	1	Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor, or may impact on demersal habitat for juveniles; Permit boats anchors in rough weather only, =>Intensity minor; =>Consequence negligible unlikely to detect any changes; =>confidence low -no data to refute or confirm for CSF area	I
	Navigation/steaming	1	5	3	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	3	2	1	navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the environment; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low -no data to refute or confirm	I
External Impacts (specify the particular example within each activity	Other fisheries	1	5	6	population size	Etelis spp NW ruby fish/flame snapper	1.1	3	2	2	7 fisheries occurring over most of year; Similar species assemblages are captured within each of these fisheries; =>combined intensity localised moderate, effort low and decreasing and some fisheries negligible impacts; =>consequence minor - unlikely to detect any changes;=>confidence high logbook data	Е
area)	Aquaculture	0									does not occur	Е
	Coastal development	0									does not occur	Е
	Other extractive activities	0										Е
	Other non-extractive activities	1	5	5	behaviour/movement	Etelis spp NW ruby fish/flame snapper	6.1	2	2	1	Shipping probably occurs comonly across the Coral Sea but unlikely to impact on species. =>Intensity minor; =>consequence minor; =>confidence low -no data to refute or confirm	Е
	Other anthropogenic activities	1	5	5	population size	rock cods Aethaloperca, Anyperodon, Epinephelus spp.	1.1	1	1	1	Shipping, recreational diving/tourism occurs in area presumably near/on the reef communities (CSF Stakeholders Meeting 2005). Interaction with autolongline fishery minimal. =>Intensity negligible; =>consequence negligible; =>confidence low -no data to refute or confirm	Е

L1.2 - Byproduct and Bycatch Component;

Direct impact of fishing Capture	Fishing Activity Bait collection	O Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale does not occur	- Internal / External
Сарше	Fishing	1	5	3	population size	Epinephelus ergastularius & septemfasciatus Bar rockcod	1.1	3	3	2	largest bycatch species are bar rockcod. Catches tripled over 2001 to 2003 then fell in 2004 to below the 2001 levels although effort is double 2001 level; =>intensity of fishing localised moderate; =>consequence may be moderate; =>confidence high-logbook catches and CDR; no data available to consider exploitation or recruitment dynamics	I
	Incidental behaviour	1	4	3	population size	Lutjanidae, snapper	1.1	1	1	2	Recreational fishing when off watch, handline-fishing by crew during downtime; =>intensity negligible- occurs in restricted locations and infrequently; =>consequence negligible- impact undetectable; =>confidence high -operator comments	I
Direct impact	Bait collection	0									does not occur, bait must be purchased	I
without capture	Fishing	1	5	3	behaviour/movement	shark species	6.1	3	2	2	high order predators increase in numbers as attracted to baits and may take fish on or near hooks; =>Intensity localised moderate; =>consequence minor; =>confidence high-FAR reports indicate increased observations of sharks. No underwater camera data available to refute or confirm.	I
	Incidental behaviour	1	4	3	behaviour/movement	Lutjanidae, snapper	6.1	1	1	2	Recreational fishing when off watch, handline-fishing by crew during downtime, fish attracted to baits may be taken by sharks; =>intensity negligible occurs in restricted locations and infrequently; =>consequence: negligible-impact undetectable; =>confidence high - operator comments	I
	Gear loss	1	5	3	population size	shark species	1.1.	3	3	2	Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports with up to 1000 hook noted in one shot, fish may take hooks from lost gear which will interfere with future feeding; =>intensity locally severe; =>consequence moderate; =>confidence high-FAR reports note boats move on to avaoid repeat tangle and break of lines due to shark interactions	I

Level 1 71

	Anchoring/ mooring	1	4	3	behaviour/movement	Squalus megalops, spurdog	6.1	1	1	1	Permit boats anchors in rough weather only, fish may be hit by anchor or anchor-chain, only locations shallow enough for anchoring, probably doesn't occur; =>intensity negligible anchoring uncommon; =>consequence negligible - unlikely to detect any changes; =>confidence low with no information to refute or confirm	I
	Navigation/ steaming	1	5	3	behaviour/movement	shark species	6.1	3	2	1	interaction with pelagic species may occur; =>Intensity localised moderate; =>consequence minor- unlikely to detect any changes to distribution; =>confidence low-no information to refute or confirm	I
Addition/ movement of biological material	Translocation of species	1	5	3	population size	Epinephelus ergastularius & septemfasciatus Bar rockcod	1.1	3	3	1	translocation possible by hull or line fouling or bilge water involving introduced species or movement of species between shallow coastal port areas and similarly shallow fishing area. Bait use may also introduce pathogens -bait used includes fish from NSW deepsea fisheries, suid from prawn trawlers, and GAB arrow squid; =>intensity moderate but may be locally severe; =>consequence moderate - potential for wider long term impact effecting whole of community eg crown of thorns starfish, pilchard deaths in South Australian waters; =>confidence low; no information collected or mitigation measures communicated-no data to refute or confirm from within CSF area	I
	On board processing	1	5	3	behaviour/movement	shark species	6.1	2	2	2	Some processing of fish noted in FAR report. Shark processing done after catch is sorted – boat generally steaming by this point (operator comment, CSF Workshop Nov 2005). higher predators attracted to area by waste from onboard filleting of shark species which occurs - all other fish unloaded whole (FAR report), increase in shark numbers through introduction of additional material may impact on number of fish taken by sharks; =>intensity minor; =>consequence minor; =>confidence logic-can be evaluated without data	I
	Discarding catch	1	5	3	behaviour/movement	Squalus megalops, spurdog	6.1	3	2	2	Discarding at time of retrieval is common (operator comment, CSF Workshop Nov 2005). Higher predators numbers increase through introduction of additional material may impact on number of fish injured/taken by sharks. Observer information in the form of presence/absence of shark activity while dicarding would be valuable; =>intensity locally moderate; =>consequence minor; =>confidence logic-can be evaluated without data. Operator comments that discard occurs as a result of fish damaged by sharks bite while on hooks	I
	Stock enhancement	0									does not occur	I
	Provisioning	1	5	3	behaviour/movement	shark species	6.1	3	2	2	higher predators numbers increase through introduction of additional material; may impact on fish numbers injured/taken by sharks; =>intensity locally moderate; =>consequence	I

	Organic waste disposal	1	5	3	behaviour/movement	shark species	6.1	2	2	2	minor; =>confidence logic-can be evaluated without data. Operator comment also that some discard is due to shark damage to fish while on hooks- may also occur in vicinity of hooks. Observer/video information in the form of presence/absence of shark activity would be valuable. organic waste discarded may attract higher predators but most boats operating under MARPOL regulations and macerators now compulsory in Qld for all food scraps; =>intensity minor;	I
											=>consequence minor; =>confidence high (observer reports from other CSF line fisheries)	
Addition of	Debris	0									Rubbish not thrown overboard. MARPOL guidelines apply.	I
non-biological material	Chemical pollution	1	5	3	population size	Epinephelus ergastularius & septemfasciatus Bar rockcod	1.1	2	1	1	chemical polution may be detrimental to fish health, most boats operating under MARPOL regulations; =>Intensity minor; =>consequence negligible - unlikely to detect any changes; =>confidence low-no data to refute or confirm	I
	Exhaust	1	5	3	population size	Epinephelus ergastularius & septemfasciatus Bar rockcod	1.1	3	1	1	exhaust may be detrimental to fish health, most boats operating under MARPOL regulations; =>Intensity localised moderate, =>consequence negligible - unlikely to detect any changes; =>confidence low-no information to refute or confirm	I
	Gear loss	1	5	3	behaviour/movement	shark species	6.1	3	3	2	sharks may take hooks from lost gear which will interfere with future feeding; =>intensity locally severe; =>consequence moderate; =>confidence high-FAR reports	I
	Navigation/ steaming	1	5	3	behaviour/movement	Lutjanidae, snapper	6.1	3	2	1	interaction with pelagic species may occur; =>Intensity localised moderate; =>consequence minor- unlikely to detect any changes to distribution; =>confidence low-no information to refute or confirm	I
	Activity/ presence on water	1	5	3	behaviour/movement	shark species	6.1	3	2	1	activity will introduce noise (engine noise and echo-sounders); organic and visual stimuli into the environment. May interact with wildlife – eg Dolphin riding bow wave, bird settling on boat; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low-no information to refute or confirm	I
Disturb	Bait collection	0									does not occur	I
physical processes	Fishing	1	5	3	behaviour/movement	Epinephelus ergastularius & septemfasciatus Bar rockcod	6.1	3	2	1	Gear may disturb sediment on the seafloor and affect habitat for species and distribution, especially juveniles; =>Intensity localised moderate; =>consequence minor- unlikely to detect any changes; =>confidence low-no information to refute or confirm	I
	Boat launching	0									does not occur	I

	Anchoring/ mooring	1	4	3	behaviour/movement	Squalus megalops, spurdog	6.1	2	1	1	Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor, or may impact on demersal habitat for juveniles; Permit boats anchors in rough weather only, =>Intensity minor; =>Consequence negligible unlikely to detect any changes; =>confidence low-no information to refute or confirm	I
	Navigation/steaming	1	5	3	behaviour/movement	Lutjanidae, snapper	6.1	3	2	1	navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the environment; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low-no information to refute or confirm	I
External Impacts (specify the particular example within	Other fisheries	1	5	6	population size	Epinephelus ergastularius & septemfasciatus Bar rockcod	1.1	3	2	2	7 fisheries occurring over most of year. Similar species assemblages are captured within each of these fisheries; =>combined intensity localised moderate, effort low, some fisheries negligible impacts; =>consequence minor - unlikely to detect any changes; =>confidence high logbook data	Е
each activity	Aquaculture	0									does not occur	Е
area)	Coastal development	0									does not occur	Е
	Other extractive activities	0										Е
	Other non-extractive activities	1	5	5	behaviour/movement	shark species	6.1	2	2	1	Shipping probably occurs comonly across the Coral Sea but unlikely to impact on species. =>Intensity minor; =>consequence minor; =>confidence low-no information to refute or confirm	Е
	Other anthropogenic activities	1	5	5	population size	Lutjanidae, snapper	1.1	1	1	1	Shipping, recreational diving/tourism occurs in area presumably near/on the reef communities (CSF Stakeholders Meeting 2005). Interaction with autolongline fishery minimal. =>Intensity negligible; =>consequence negligible; =>confidence low-no information to refute or confirm	Е

L1.3 - TEP Species Component;

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale	Internal / External
Capture	Bait collection	0									does not occur	I
	Fishing	1	5	3	population size	Sula leucogaster, brown booby	1.1	3	2	1	brown boobys feed on bait so may be implicated in gear deployment; =>intensity localised moderate; =>consequence may be moderate, but occurrence of birds low within CSF; =>confidence low - no direct observer observations noted - presence/absence of this actrivity would be useful to include in observer reports. Tori lines are required on Auto longliners.	I
	Incidental behaviour	1	4	3	behaviour/movement	Tursiops truncatus, bottlenosed dolphin	6.1	1	1	2	Recreational fishing when off watch, handline-fishing by crew during downtime; =>intensity negligible, occurs in restricted locations and infrequently; =>consequence negligible- impact undetectable; =>confidence high- operator comment and consensus	I
Direct impact without capture	Bait collection	0									does not occur, bait must be purchased	I
	Fishing	1	5	3	population size	Natator depressus, flatback turtle	1.1	3	2	2	turtles may take baited hooks but then escape with hook in tow or may become entangled in lines during deployment but pull free- this will cause damage to the turtle which may or may not become fatal; =>Intensity localised moderate; =>consequence minor; =>confidence based on logic. No underwater camera data available to refute or confirm.	Ι
	Incidental behaviour	1	4	3	behaviour/movement	Tursiops truncatus, bottlenosed dolphin	6.1	1	1	2	Recreational fishing when off watch, handline-fishing by crew during downtime, dolphins may be attracted to baits; =>intensity negligible, occurs in restricted locations and infrequently; =>consequence negligible- impact of disturbance to dolphins undetectable; =>confidence high - operator comment and consensus	I
	Gear loss	1	5	3	population size	Tursiops truncatus,	1.1	3	3	1	Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports with	I

						bottlenosed dolphin					up to 1000 hook noted in one shot, dolphins may get entangled in lost gear floating midwater; =>intensity locally severe; =>consequence moderate; =>confidence low, but gear loss noted in FAR reports	
	Anchoring/ mooring	1	4	3	behaviour/movement	Natator depressus, flatback turtle	6.1	1	2	1	Permit boats anchors in rough weather only, turtles may be hit by anchor or anchor-chain, only locations shallow enough for anchoring, limited occurrence; =>intensity negligible anchoring uncommon; =>consequence minor; =>confidence low with no information to refute or confirm	I
	Navigation/ steaming	1	5	3	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	2	2	2	streaked shearwater may be effected as it regularly sits on the surface of the water; =>intensity minor - few interactions with birds noted in CSF area; =>consequence minor; =>confidence logic -can evaluate without data	I
Addition/ movement of biological material	Translocation of species	1	5	3	population size	Tursiops truncatus, bottlenosed dolphin	1.1	3	3	1	translocation possible by hull or line fouling or bilge water involving introduced species or movement of species between shallow coastal port areas and similarly shallow fishing area. Bait use may also introduce pathogens which may pass up the foodchain untimately effecting dolphins -bait used includes fish from NSW deepsea fisheries, squid from prawn trawlers, and GAB arrow squid; =>intensity moderate but may be locally severe; =>consequence moderate - potential for wider long term impact effecting whole community composition eg crown of thorns starfish, or mass pilchard deaths noted elsewhere; =>confidence low; no information collected or mitigation measures communicated-no data to refute or confirm from within CSF area	I
	On board processing	1	5	3	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	2	2	2	Some processing of fish noted in FAR report. Shark processing done after catch is sorted – boat generally steaming by this point (operator comment, CSF Workshop Nov 2005). Both higher predators and birds may be attracted to area by waste from onboard shark filleting - all other fish unloaded whole (FAR report), increase in shark numbers through introduction of additional material may impact on bird behaviour; =>intensity minor; =>consequence minor; =>confidence logic -can be evaluated without data	I
	Discarding catch	1	5	3	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	3	1	2	Discarding at time of retrieval is common (operator comment, CSF Workshop Nov 2005). Both birds and higher predators numbers increase through introduction of additional material and may alter birds normal activities. Observer information in the form of presence/absence of birds and shark activity while dicarding would be valuable; =>intensity locally moderate; =>consequence negligible; =>confidence logic-can be evaluated without data.	I
	Stock enhancement	0									does not occur	I

	Provisioning	1	5	3	population size	Sula leucogaster, brown booby	1.1	2	3	2	birds have been caught on baited hooks during deployment of auto-line gear in other fisheries, bird numbers in CSF area are low; =>intensity minor; =>consequence moderate; =>confidence high- known occurence in autolongline fishing. Tori lines are used in CSF on all autolongline operations	I
	Organic waste disposal	1	5	3	population size	Calonectris leucomelas, streaked shearwater	1.1	2	2	2	organic waste discarded may attract higher predators but most boats operating under MARPOL regulations and macerators now compulsory in Qld for all food scraps; =>intensity minor; =>consequence minor; =>confidence high (observer reports from other CSF line fisheries)	I
Addition of	Debris	0									Rubbish not thrown overboard. MARPOL guidelines apply.	I
non-biological material	Chemical pollution	1	5	3	population size	Calonectris leucomelas, streaked shearwater	1.1	2	2	2	chemical polution may be detrimental to animal health, most boats operating under MARPOL regulations; streaked shearwater may be effected as it regularly sits on the surface of the water; =>intensity minor; =>consequence minor; =>confidence high -logic -can evaluate without data	I
	Exhaust	1	5	3	population size	Calonectris leucomelas, streaked shearwater	1.1	2	2	2	exhaust may be detrimental to animal health, most boats operating under MARPOL regulations; streaked shearwater may be effected as it regularly sits on the surface of the water; =>intensity minor; =>consequence minor; =>confidence highlogic -can evaluate without data	I
	Gear loss	1	5	3	population size	Tursiops truncatus, bottlenosed dolphin	1.1	3	3	2	Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports with up to 1000 hook noted in one shot, dolphins may get entangled in lost gear floating midwater; =>intensity locally severe; =>consequence moderate; =>confidence low- FAR reports note gear loss but no data to refute or confirm dolphin implication	I
	Navigation/ steaming	1	5	3	behaviour/movement	Tursiops truncatus, bottlenosed dolphin; Calonectris leucomelas, streaked shearwater	6.1	3	2	1	activity will introduce noise (engine noise and echo-sounders); organic and visual stimuli into the environment. May interact with wildlife – eg Dolphin riding bow wave, bird settling on boat; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low -no data to refute or confirm	I
	Activity/ presence on water	1	5	3	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	3	2	2	streaked shearwater may be effected as it regularly sits on the surface of the water; =>Intensity localised moderate; =>consequence minor; =>confidence logic-can be avaluated without data	I
Disturb	Bait collection	0									does not occur	I
physical processes	Fishing	1	5	3	behaviour/movement	Natator depressus, flatback turtle	6.1	3	2	1	turtles may be disturbed by gear and sediment disturbance during gear deployment; Activity covers several km's, which could effect turtle behaviour and movement; =>intensity over	I

	Boat launching	0									localised areas moderate; =>consequence minor; =>confidence low -no data to refute or confirm	ī
	Anchoring/ mooring	1	4	3	behaviour/movement	Natator depressus, flatback turtle	6.1	1	2	1	Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor particularly through disturbed sediment moved by currents; Permit boats anchors in rough weather only. =>intensity negligible; =>consequence minor; =>confidence low- no data to refute or confirm	I
	Navigation/steaming	1	5	3	behaviour/movement	Tursiops truncatus, bottlenosed dolphin; Calonectris leucomelas, streaked shearwater	6.1	3	2	1	activity will introduce noise (engine noise and echo-sounders), organic and visual stimuli into the environment. May interact with wildlife – eg Dolphin riding bow wave, bird settling on boat; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low -no data to refute or confirm	I
External Impacts (specify the particular example within each activity area)	Other fisheries	1	5	6	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	3	2	1	7 fisheries occurring over most of year; combined intensity localised moderate, effort low and some fisheries negligible impacts; streaked shearwater may have behaviour modified by the presence of boats and fishing activities as it regularly sits on the surface of the water; =>intensity moderate localised; =>consequence minor; =>confidence low -no data to refute or confirm	Е
·	Aquaculture	0									does not occur	Е
	Coastal development	0									does not occur	Е
	Other extractive activities	0										Е
	Other non-extractive activities	1	5	5	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	2	2	1	Shipping occurs comonly across the Coral Sea but unlikely to impact on species. =>Intensity minor; =>consequence minor; =>confidence low -no data to refute or confirm	Е
	Other anthropogenic activities	1	5	5	behaviour/movement	Calonectris leucomelas, streaked shearwater	6.1	3	2	1	Shipping, recreational diving/tourism occurs in area presumably near/on the reef communities (CSF Stakeholders Meeting 2005). Interaction with autolongline fishery minimal. But streaked shearwater may have behaviour modified by these boats and fishing activities as it regularly sits on the surface of the water; =>intensity moderate localised; =>consequence minor; =>confidence low -no data to refute or confirm	Е

L1.4 - Habitat Component;

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale	Internal / External
Capture	Bait collection	0		_	TT 1 '	11 11 11	- 1	2	_	1		I
	Fishing Incidental behaviour	1	5	3	Habitat structure and Function Habitat structure and	slabs and boulders, low outcrop, octocorals, upper slope depths	5.1	1	3	2	Fishing for target species in upper-slope depths, mainly about 600m, and over seamounts. Longlines may be set along bathylines, or down slope, and may encounter patches of hard ground supporting tall vulnerable fauna amongst largely sediment plains. Tall erect, inflexible and fragile fauna may be removed by line under tension, softer structures offering little resistance to cutting effect of gear. Floats are used to avoid entanglement but enables gear to be set over hard grounds of some vertical height. Fauna attached to theses types of grounds may be at risk of removal or damege during setting and during set if currents strong. =>Intensity moderate, may be localised and severe. =>Consequence Moderate: deeper water habitats are less productive and may be subject to regeneration times greater than years - decades. =>Confidence age, growth and regen. times unknown for deep water tropical habitats Recreational fishing when off watch, handline-fishing by crew	I
					Function	Pelagic Province - Plateau					during downtime; =>intensity negligible occurs in restricted locations and infrequently; =>consequence negligible- impact	
Direct impact	Bait collection	0									undetectable; =>confidence high- consensus	I
without	Fishing	1	5	3	Habitat structure and	slabs and boulders.	5.1	3	3	1	Whether capture or not the effect of line setting is the same.	ī
capture					Function	low outcrop, octocorals, upper slope depths			J		Fishing for target species between 30~600m, over upper- slope depths. Longlines may be set along bathylines, or down slope, and may encounter patches of hard ground amongst large areas of sediment. Tall erect, inflexible and fragile fauna may be removed by line under tension, softer structures offering little resistance to cutting effect of gear. Floats are used to avoid entanglement but enables gear to be set over hard	

	Incidental behaviour	1	4	3	Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	1	1	2	grounds of some vertical height. Fauna attached to theses types of grounds may be at risk of removal or damege during setting and during set if currents strong. =>Intensity moderate, may be localised and severe. =>Consequence Moderate: deeper water habitats are less productive and may be subject to regeneration times greater than years - decades. =>Confidence unknown for deep water tropical habitats Recreational fishing when off watch, handline-fishing by crew during downtime; =>intensity negligible occurs in restricted locations and infrequently; =>consequence negligible- impact	I
	Gear loss	1	5	3	Habitat structure and Function	Igneous Rock (?), high outcrop, mixed faunal community, upper slope	5.1	3	2	2	undetectable; =>confidence high- consensus About 10-60 hooks per trip are lost, and may be retained by fish. Longlines may snag and on occasions are retrievable, otherwise remain ensnared by hard rugose outcrops. Attempted retrieval may lead to breakage of coral forms as line breaking strain is high. Volume of loss difficult to measure, but is small area in total but a relatively frequent occurance. Loss of ~1-2% of deployed hooks and sinkers noted in FAR records; noted as regular occurrence in Observer Reports with up to 1000 hook noted in one shot. =>Intensity minor although effort is high in localised areas, occurs only in a brief period per year but effect may persist for > year depending on depth. =>Consequence minor however requires data. =>Confidence high (FAR report)	I
	Anchoring/ mooring	1	4	3	Habitat structure and Function	fine sediments, unrippled, mixed faunal community, inner shelf depths	5.1	1	1	1	Permit boats anchors in rough weather only. Anchoring on coral bommies offshore could pose a threat to fragile corals. =>Intensity and =>consequence: negligible given frequency of anchoring and spread of activity. =>Confidence low little data available	I
	Navigation/ steaming	1	5	3	Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	3	1	2	Navigation/ steaming occurs daily during fishing trips, however is scored against a higher spatial scale than actual fishing activity given travelling time to offshore reefs. The pelagic water quality may change with increased turbulence and changes in water mixing that could occur from movement of vessels through water. =>Intensity moderate =>Consequence negligible due to remote likelihood of detection at any spatial or temporal scale, and interactions that may be occurring are not detectable against natural variation. =>Confidence scored high because of logical constraints.	I
Addition/ movement of biological material	Translocation of species	1	5	3	Habitat structure and Function	Rock/ biogenic matrix, low outcrop, mixed faunal community, inner shelf	5.1	3	4	1	Translocation of species may occur on vessel hulls, gear or by manual removal and relocation elsewhere of species during capture and travel. =>Intensity moderate over area of fishery. =>Consequence minor unless eg crown of thorns which may then be catastrophic. Fishers could be expected to be aware of these issues and avoid areas with known outbreaks.	I

											=>Confidence low, issues need clarification for this fishery	
	On board processing	1	5	3	Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	2	1	1	Shark filleting at sea. Some processing of fish noted in FAR report. Shark processing done after catch is sorted – boat generally steaming by this point (operator comment, CSF Workshop Nov 2005). Discarding may attract top predators to a localized area. Waste expected to be taken up quickly by opportunistic scavengers or sink to benthos and scavenged by benthic species. =>Intensity minor. =>Consequence negligible unlikely to detect persistent changes to habitat composition and biological material will breakdown over time. =>Confidence low no data	I
	Discarding catch	1	5	3	Water quality	North Eastern Pelagic Province - Plateau	1.1	3	2	2	Discarding at time of retrieval is common (operator comment, CSF Workshop Nov 2005). Bycatch discarding may alter pelagic water quality for period of passage through water. Benthic habitats unlikely to be affected unless great volumes of non readily digestible discards. =>Intensity moderate, autolongling known to discard frequently. =>Consequence minor for pelagos, discards rapidly taken up by predators. =>Confidence high (CSF Workshop Nov 2005).	I
	Stock enhancement	0										I
	Provisioning	1	5	3	Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	3	2	1	Short term increases in nutrient may occur with addition of provisioning supplies. =>Intensity moderate. =>Consequence considered negligible in terms of habitat function. =>Confidence low but logic suggests scenario not likely to adversely affect pelagic habitat for longer than hours.	Ι
	Organic waste disposal	1	5	3	Water quality	North Eastern Pelagic Province - Plateau	1.1	3	2	2	Organic waste disposal possible on a daily basis over the entire scale of fishing effort. Water quality of pelagic habitats is considered to experience greatest impact of organic waste disposal. Overall volume of waste likely to be too small to reach benthos, or accumulate even if it does. =>Intensity moderate. =>Consequence Minor, addition of high nutrient material is realistically expected to cause short term peaks in productivity or scavenging species interactions, with minimal detectibility within minutes to hours.=>Confidence high logical constraints.	I
Addition of	Debris	0										I
non- biological material	Chemical pollution	1	5	3	Water quality	North Eastern Pelagic Province - Plateau	1.1	1	2	1	Chemical losses considered to happen infrequently. Boats not likely to be scrubbed or antifouled out at sea. =>Intensity negligible, considered an uncommon event. =>Consequence minor for pelagic habitats unless major spill, small losses likely to be dispersed rapidly in winds. =>Confidence low, there is a lack of verified data on rates and types of chemical pollution.	Ι

	Exhaust	1	5	3	Air quality	North Eastern Pelagic Province - Plateau	2.1	3	1	1	Emmisions are created during vessel operations within sub- fishery, likely to impact bird species attracted, temporarily altering air quality while they remain in contact with the exhaust. Amounts of exhaust fumes released will vary between vessels. =>Intensity moderate. =>Consequence Overall likely to be negligible and losses rapidly dispersed in breezes. =>Confidence low, little data.	I
	Gear loss	1	5	3	Habitat structure and Function	Igneous Rock (?), high outcrop, mixed faunal community, upper slope	5.1	2	2	1	Longlines may snag and remain ensnared by hard rugose outcrops. Volume of loss difficult to measure, but is small area in total but a relatively frequent occurance. =>Intensity minor although effort is high in localised areas, occurs only in a brief period per year but may persist in habitat. =>Consequence minor however requires data. =>Confidence high	I
	Navigation/ steaming	1	5	3	Water quality	North Eastern Pelagic Province - Plateau	1.1	3	1	2	Navigation/ steaming occurs daily during fishing trips. Navigation and steaming adds non biological stimulus to the water column for as long as it takes the vessel to pass through a province. =>Intensity moderate. =>Consequence negligible due to remote likelihood of detection at any spatial or temporal scale, and interactions that may be occurring are not detectable against natural variation. =>Confidence scored high because of logical constraints.	I
	Activity/ presence on water	1	5	3	Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	3	1	2	Activity/presence on water occurs over the entire spatial scale of the fishery, daily during fishing trips, and may disrupt normal habitat function as species alter behavior accordingly. =>Intensity moderate. =>Consequence negligible, remote likelihood of impact at any spatial or temporal scale. =>Confidence high, considered to occur only for length of time disturbance is present.	I
Disturb	Bait collection	0										I
physical processes	Fishing	1	5	3	Substrate quality	fine sediments, unrippled, bioturbators	3.1	2	2	1	Autoline may disturb fine sediments during fishing, although lines tend to be taught in currents may move across benthos. =>Intensity minor as not all sediments will be disturbed as easily.=>Consequence minor, suspension of fine layers which may temporarily create turbid feeding conditions for filter feeding organisms. =>Confidence low, require data on sediment types.	I
	Boat launching	0										I
	Anchoring/ mooring	1	4	3	Substrate quality	fine sediments, unrippled, mixed faunal community, inner shelf depths	3.1	1	1	2	Trips several days and potentially use anchors to moor on shallow reef areas in bad weather only. =>Intensity negligible interactions infrequent. =>Consequence negligible over area of fishery. =>Confidence high unlikely occurrence	I
	Navigation/steaming	1	5	3	Water quality	North Eastern Pelagic Province -	1.1	3	2	1	navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the	Ι

						Plateau					environment; =>Intensity localised moderate; =>consequence minor unlikely to detect any changes; =>confidence low -no data to refute or confirm	
External Impacts (specify the particular example within each activity area)	Other fisheries	1	5	6	Habitat structure and Function	Rock/ biogenic matrix, low outcrop, mixed faunal community, upper shelf depths	5.1	3	4	1	7 fisheries occurring over most of year; =>combined intensity localised moderate, effort low and decreasing and some fisheries negligible impacts =>Consequence major -habitat damage possible in Isome locations Recovery in upper slope depths may takes greater than years for more complex communities and species. Cumulative effects likley to be localised. =>Confidence low data required	Е
	Aquaculture	0										Е
	Coastal development	0										Е
	Other extractive activities	0										Е
	Other non-extractive activities	1			Habitat structure and Function	North Eastern Pelagic Province - Plateau	5.1	3	2	1	Shipping occurs commonly across the Coral Sea and around this reef system but does not occur over it. =>Intensity moderate. =>Consequence minor unless run aground on fragile reef system. =>Confidence high due to logic. Shipping avoids reef systems	Е
	Other anthropogenic activities	1	5	3	Habitat structure and Function	Rock/ biogenic matrix, low outcrop, mixed faunal community, inner shelf	5.1	2	2	2	Influence of tourism presence increases the temporal scale of the hazard, spatial scale increased to accommodate trips into and out of distant ports. Must include recreational dive and fishing activity. Increasing tourism activity noted in reports, =>data is considered sound so confidence high.	Е

Level 1 83

L1.5 - Community Component

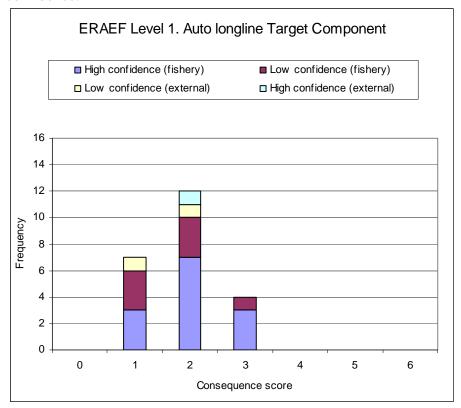
L1.5 - Com	munity Compon	ent										
Direct impact of fishing Capture	Fishing Activity Bait collection	O Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale	- Internal / External
Сарине	Fishing	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	3	3	2	activity in 2 areas of fishery but most effort in seamount communities >200m, effort increased in most recent year =>intensity moderate - effort occurring in localised areas could be severe for such relatively small community types; =>consequence moderate - in localised areas but need to establish this level of catch is ecologically sustainable so that communities are not affected over time; =>confidence high data logbook	I
	Incidental behaviour	1	4	3	Species composition	North Eastern Plateau 0-110, North Eastern Plateau (1) 0- 600m	1.1	1	1	1	assumed handline fishing during crew downtime might occur over the reef on the plateau; reef and overlying pelagic communities chosen where anchoring might occur and likely to be attractive to recreational fishing =>Intensity negligible; =>consequence negligble; =>confidence low no data	I
Direct impact	Bait collection	0										I
without capture	Fishing	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	2	2	1	activity in 2 areas of fishery but most effort in seamount communities; effort expanding in most recent year =>intensity minor - effort occurring in localised areas but numbers of escaping fish likely to be small; =>consequence minor - in localised areas and unable to detect changes in species composition; =>confidence low no data	I
	Incidental behaviour	1	4	3	Species composition	North East Plateau 0-110m	1.1	1	1	1	escaping fish from handline fishing during crew downtime assumed; reef community chosen because likely to be attractive to recreational fishing =>Intensity negligible; =>consequence negligble; =>confidence low no data	I
	Gear loss	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	2	2	1	Gear loss assumed to be rare. Gear can often be retrieved if lines break. Lost gear tends to ball up reducing likelihood of entanglement. The total area affected compared with the range of the fishery would be small (<1nm²). =>intensity minor - effort occurring in localised areas as target and non target species may be caught as gear drifts. =>consequence minor - in localised areas;	I

]	=>confidence low no data	
	Anchoring/ mooring	1	4	3	Species composition	North Eastern Plateau 0-110m	1.1	1	1	1	shallow community chosen where anchoring may occur =>Anchoring/mooring may disturb the physical habitat where anchors and anchor chains contact the seafloor and threfore the species inhabiting it =>intensity negligble =>Consequence negligible unlikely to detect any changes =>confidence low	I
	Navigation/ steaming	1	5	4	Distribution of the community	North Eastern Seamount oceanic (1) 0-600m	4.1	1	1	1	pelagic community chosen where most effort is located =>intensity negligible - effort low and decreasing=>navigation/steaming to port as wellas on fishing grounds where pealgic species may interact with vessels =>consequence negligible - unlikely to detect any changes =>confidence low	I
Addition/ movement of biological material	Translocation of species	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	2	4	1	Translocation possible by hull or line fouling or by bilge water by introducing species from shallow coastal port areas or similarly shallow fishing areas. Bait use may also introduce pathogens -bait used includes fish from NSW deepsea fisheries, squid from prawn trawlers, and GAB arrow squid =>could affect species composition of the reef community =>intensity minor -activity only in restricted areas =>consequence major -eg crown of thorns =>confidence low- there is no data to refute or confirm from within the CSF area	I
	On board processing	1	5	4	Species composition	North Eastern Oceanic (1) 0- 600m	1.1	2	1	1	Some processing of fish noted in FAR report. Shark processing done after catch is sorted – boat generally steaming by this point (operator comment, CSF Workshop Nov 2005) therefore assume Nort East Oceanic (1) community. Discarding may attract top predators to a localized area expected. Waste expected to be taken up quickly by opportunistic scavengers or sink to benthos and scavenged by benthic species. =>intensity minor =>consequence negligible unlikely to detect persistent changes to species composition and no biological material added to community; =>confidence low no data	I
	Discarding catch	1	5	4	Species composition	North Eastern Seamount oceanic (1) 0-600m	1.1	2	2	1	Discarding at time of retrieval is common (operator comment, CSF Workshop Nov 2005). Discarding may attract top predators to a localized area. Waste expected to be taken up quickly by opportunistic scavengers or sink to benthos and scavenged by benthic species. =>intensity minor =>consequence: minor unlikely to detect persistent changes to species composition and no biological material added to community; =>confidence low no data	I
	Stock enhancement	0		0								I
	Provisioning	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	3	1	1	Seamount communities chosen where provisioning occurs through use of bait and discarding. Intensity: moderate, occurs for every shot. Consequence: negligible, waste expected to be taken up quickly by opportunistic scavengers or sink to benthos and scavenged by benthic species. Confidence: low due to lack of information	I

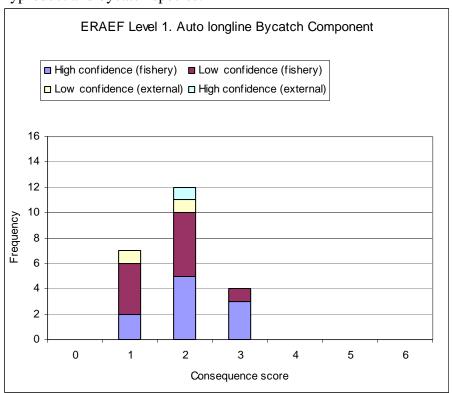
	Organic waste disposal	1	5	4	Species composition	North Eastern Seamount oceanic (1) 0-600m	1.1	1	1	1	pelagic seamount community chosen where most effort is located; Organic waste may be discarded however vessels are subject to MARPOL regulations. =>Intensity negligible if MARPOL rules followed. =>consequence negligible - unlikely to detect any changes =>confidence low	I
Addition of	Debris	0										I
non-biological material	Chemical pollution	1	5	4	Species composition	North Eastern Seamount oceanic (1) 0-600m	4.1	1	1	1	pelagic seamount community chosen where most effort is located. Communities unlikely to be affected unless a major spill, but localized impact as boats operating under MARPOL regulations. =>intensity negligible - effort low and decreasing =>consequence negligible - unlikely to detect any changes =>confidence low	I
	Exhaust	1	5	4	Species composition	North Eastern Seamount oceanic (1) 0-600m	1.1	1	1	1	seamount pelagic community chosen where most effort is located Exhaust from running engine hazard occurs over a large range/scale =>intensity minor - effort low and decreasing; exhaust unlikely to affect marine pelagic communities, effects more likely to be short term and effect air quality therefore birds =>consequence negligible - unlikely to detect any changes =>confidence low	I
	Gear loss	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	2	1	1	Gear loss assumed to be rare. Gear can often be retrieved if lines break. Lost gear tends to ball up reducing likelihood of entanglement. The total area affected compared with the range of the fishery would be small (<1nm²).=>intensity minor; gear loss uncommon but could alter physical habitat and species inhabiting =>consequence negligible - unlikely to detect any changes =>confidence low	I
	Navigation/ steaming	1	5	4	Distribution of the community	North Eastern Seamount oceanic (1) 0-600m	3.1	2	2	1	pelagic seamount community chosen where most effort is located & interaction with pelagic species most likely to occur =>intensity minor -effort low and decreasing; navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the environment. =>consequence minor unlikely to detect any changes =>confidence low	I
	Activity/ presence on water	1	5	4	Distribution of the community	North Eastern Seamount oceanic (1) 0-600m	3.1	2	2	1	pelagic seamount community chosen where most effort is located & interaction with pelagic species most likely to occur =>intensity minor -effort low and decreasing; navigation and steaming of vessels will introduce noise (engine noise and echo-sounders) and visual stimuli into the environment. =>consequence minor unlikely to detect any changes =>confidence low	I
Disturb	Bait collection	0										I
physical processes	Fishing	1	5	4	Species composition	North Eastern Seamount 250- 565; Central Eastern Transition Seamount 250- 565m	1.1	3	1	1	community chosen where most effort is located =>intensity moderate effort low and decreasing gear may disturb habitat =>consequence negligible unlikely to detect any changes but benthic species distribution may be disturbed =>confidence low	I

	Boat launching	0		4							No ports or harbors within the Coral Sea. Vessels in fishery come from designated ports.	I
	Anchoring/ mooring	1	5	4	Species composition	North Eastern Plateau 0-110m	1.1	1	1	1	shallow community chosen where anchoring may occur; Permit boats anchors in rough weather only =>intensity negligble effort low and decreasing; Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor. =>Consequence negligible unlikely to detect any changes =>confidence low	I
	Navigation/steaming	1	5	4	Distribution of the community	North Eastern Seamount oceanic (1) 0-600m	1.1	3	1	1	pelagic community chosen where most effort is located & interaction with pelagic species most likely to occur =>Intensity moderate - effort low; navigation and steaming of vessels will change flow characteristics of water but unlikely to affect species =>Consequence negligible - unlikely to detect any changes =>confidence low	I
External Impacts (specify the particular example within each activity area)	Other fisheries	1	5	6	Species composition	North-Eastern Seamounts & Central Eastern Transition Seamounts 250- 565m	community - the trawl, autolongline and demersal line fisher target similar species; (the SESS trawl fishery operates adjacent case) and targets some similar species, Qld state fisheries adjacent CSF areas target same species) =>intensity moderate total el localised and targetted at all trophic levels of the community =>consequence moderate - possible changes in species composition <10% but need to establish that this total level catch is ecologically sustainable so that communities are not	7 other CSF sub-fisheries occur over most of year in the seamount community - the trawl, autolongline and demersal line fisheries target similar species;(the SESS trawl fishery operates adjacent and targets some similar species, Qld state fisheries adjacent to CSF areas target same species) =>intensity moderate total effort localised and targetted at all trophic levels of the community =>consequence moderate - possible changes in species composition <10% but need to establish that this total level of catch is ecologically sustainable so that communities are not affected over time =>confidence high logbook data	Е			
	Aquaculture	0										Е
	Coastal development	0										Е
	Other extractive activities	0										Е
	Other non-extractive activities	1	5	5	Species composition	North Eastern Oceanic (1) 0- 600m	1.1	1	1	1	Shipping occurs commonly across the Coral Sea but unlikely to impact on species composition; =>Intensity minor =>consequence minor =>confidence low	Е
	Other anthropogenic activities	1	5	5	Species composition	North Eastern Plateau 0-110m	1.1	3	2	1	Recreational diving/tourism occurs in area presumably near/on the reef communities (<i>CSF Stakeholders Meeting 2005</i>). Interaction with fishery minimal =>Intensity moderate =>consequence minor =>confidence low	Е

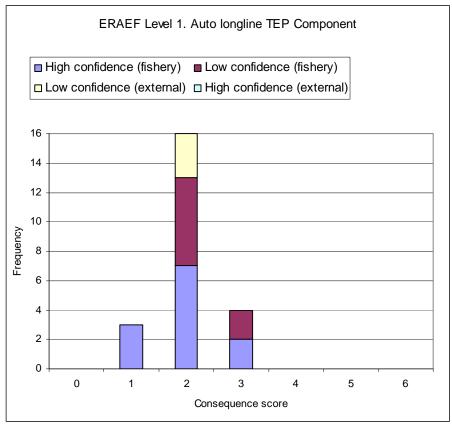
2.3.11 Summary of SICA results

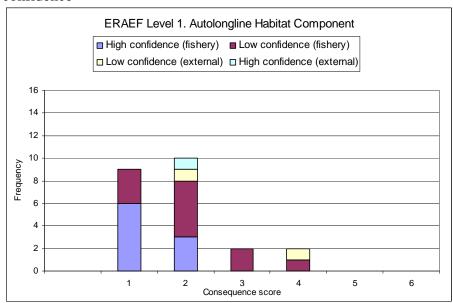

The report provides a summary table (**Level 1 (SICA) Document L1.6**) of consequence scores for all activity/component combinations and a table showing those that scored 3 or above for consequence, and differentiating those that did so with high confidence (in bold).

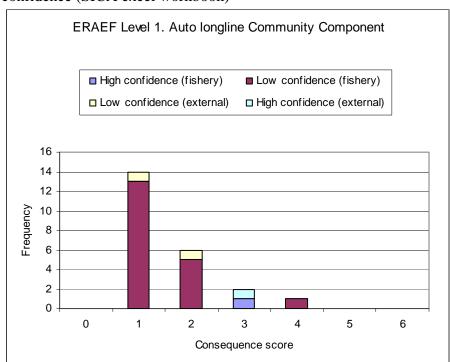
87


Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations.

Direct impact	Activity	Target species	Byproduct and bycatch species	TEP species	Habitats	Communities
Capture	Bait collection					
	Fishing	3	3	3	3	3
	Incidental behaviour	1	1	1	1	1
Direct impact without capture	Bait collection					
•	Fishing	2	2	2	3	2
	Incidental behaviour	1	1	1	1	1
	Gear loss	3	3	3	2	2
	Anchoring/ mooring	1	1	2	1	1
	Navigation/ steaming	2	2	2	1	1
Addition/ movement of biological material	Translocation of species	3	3	3	4	4
	On board processing	2	2	2	1	1
	Discarding catch	2	2	1	2	2
	Stock enhancement					
	Provisioning	2	2	3	2	1
	Organic waste disposal	2	2	2	2	1
Addition of non-biological material	Debris					
	Chemical pollution	1	1	2	2	1
	Exhaust	1	1	2	1	1
	Gear loss	3	3	3	2	1
	Navigation/ steaming	2	2	2	1	2
	Activity/ presence on water	2	2	2	1	2
Disturb physical processes	Bait collection					
	Fishing	2	2	2	2	1
	Boat launching					
	Anchoring/ mooring	1	1	2	1	1
	Navigation/steaming	2	2	2	2	1
	azards are not considered at Lev	vel 2 in the PSA ar				
External hazards	Other fisheries	2	2	2	4	3
	Aquaculture					
	Coastal development					
	Other extractive activities				1	
	Other non extractive activities	2	2	2	2	1
	Other anthropogenic activities	1	1	2	2	2


Target species: Frequency of consequence score differentiated between high and low confidence.


Byproduct and bycatch species:



TEP species: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook)

Habitats: Frequency of consequence score differentiated between high and low confidence

Communities: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook)

2.3.12 Evaluation/discussion of Level 1

All five components assessed in the level 1 analysis contained consequence scores three or above. The hazards (fishing activities) involved are:

- Fishing capture (Target, Byproduct, Habitat and Communities components);
- Fishing without capture (Habitat component);
- Gear loss without capture (Target, Byproduct and TEP components);
- Translocation of species (all 5 components);
- Provisioning (TEP component);
- Gear loss impact through the addition of non-biological material (Target, Byproduct and TEP components);

and one external hazard:

• Other fisheries (Communities component).

All hazards assessed to be significant were assessed at risk score 3 (moderate), with the exception of Translocation of species for the Habitat and Communities components – both of these components were assessed at risk score 4 (major). Confidence scores for Translocation of species are low across all components, as a result of a lack of specific data on which to assess this hazard. For all remaining hazards, the confidence score for assessment is high.

Level 1 91

Six key fishing activity issues emerged from the ERAEF Level 1 analysis of the Coral Sea Fishery Auto longline sub-fishery.

- Fishing capture was identified as a hazard to Target, Byproduct, Habitat and Communities components, largely as a result of repeated fishing effort on a small number of grounds within the CSF area, producing a more severe localised affects. Little information is available on stocks of target and byproduct species from within the CSF area. As much of the catch is recorded in logbook records as a genus or Family grouping only, and as voucher specimens have not been collected, the actual species fished is often unknown. Effort has greatly increased in recent years and catches, which initially also increased, have now fallen dramatically for individual bycatch species, or been replaced by a changing array of target species. The Auto longline operations repeatedly fish a relatively small number of community types, and information on which to base sustainability is not available.
- Fishing activity, with or without capture, was identified as a Habitat hazard. Longline gear is anchored to the seafloor and will physically impact the benthos. Floats are used to avoid entanglement but enables gear to be set over hard grounds of some vertical height, supporting tall vulnerable fauna amongst largely sediment plains. The erect, inflexible and fragile fauna attached to theses types of grounds may be at risk of removal or damage during setting and by lines under tension during set if currents are strong. The softer structures offer little resistance to the cutting effect of line gear. Regeneration times for deepwater habitat structures are thought to be relatively long, and specific information for tropical waters is not available.
- Gear loss without capture was identified as a hazard to Target, Byproduct and TEP components. Fishing Activity Reports (FAR) note that both gear loss and shark entanglement is a regular occurrence, with boats changing fishing ground to avoid line breakages due to shark activity. It is reasonable to assume that other species are also attracted to the baited hooks that remain, and may become entangled or hooked in this lost gear. This would impact movement, future feeding and ultimately survival. Line-lengths used in the Auto longline fishing method are large and the hazard presented is likely to be moderate. The absence of data, or mitigating measures, has produced a low confidence score in the assessment of this moderate hazard.
- Translocation of species was identified as a moderate risk to Target, Byproduct and TEP components, and a major risk to Habitat and Community components. For the Auto longline fishery, translocation hazards are presented through hull and line fouling and through bilge water. The use of imported baits in the CSF auto longline sub-fishery (including fish from NSW deepsea fisheries, squid from prawn trawlers, and GAB arrow squid) also presents the risk of translocation of pathogens. The lack of baseline data at a species, habitat or community level, and the absence of mitigating measures within this fishery, has resulted in low confidence levels in the assessment of this risk.

A recent Bureau of Rural Sciences (BRS) final report (Summerson and Curran 2005) also noted the high risk associated with line methods through entrainment of organisms and entanglement of vegetation, and recommends close inspection of all lines, anchor chains and anchors, to reduce translocation of motile organisms, particularly small crustacean, and plant fragments. They also strongly suggested the use of the observer program to provide empirical data on which to assess this risk with greater confidence.

- Provisioning was identified as a hazard to the TEP component. Birds are known to be attracted to baited hooks, and the hazard presented by auto longline fishing has been well documented in other fisheries. For the CSF, the use of Tori lines is a permit condition as a means of mitigating this risk.
- Gear loss impact, through the addition of non-biological material, was identified
 as a hazard to Target, Byproduct and TEP components. As noted in the situation
 of gear loss without capture, the remaining lines and hooks continue to present
 an entanglement hazard. The lack of data to assess this risk has resulted in a low
 confidence score.

2.3.13 Components to be examined at Level 2

No Level 2 analysis has been conducted for the Coral Sea Autolongline sub-fishery. Level 1 assessment for the sub-fishery has been completed as required for the ERAEF Stage 2 process. As such, further documentation in this report is included only as a means of understanding the ERAEF process in full.

Generally, as a result of the preliminary SICA analysis, the components to be examined at Level 2 are those with any consequence scores of 3 or above.

2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

NB. No PSA has been conducted for the Coral Sea Autolongline sub-fishery.

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is generally required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk from direct impacts of fishing only, which in all assessments to date has been the hazard with the greatest risks identified at Level 1. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk, hereafter noted as 'risk'. A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday *et al.* (2007).

Species

The following Table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

	Attribute					
Productivity	Average age at maturity					
	Average size at maturity					
	Average maximum age					
	Average maximum size					
	Fecundity					
	Reproductive strategy					
	Trophic level					
Susceptibility	Availability considers overlap of fishing effort with a species distribution					

Encounterability considers the likelihood that a species will encounter fishing gear that is deployed within the geographic range of that species (based on two attributes: adult habitat and bathymetry)

Selectivity considers the potential of the gear to capture or retain species

Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)

The productivity attributes for each species are based on data from the literature or from data sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

Availability considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

Encounterability is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, **selectivity** is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, **post capture mortality** measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

Habitats

Similar to species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

Aspect	Attribute	Concept	Rationale			
Susceptibility						
Availability	General depth range (Biome)	Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area			
Encounterability	Depth zone and feature type	Habitat encountered at the depth and location at which fishing activity occurs	Fishing takes place where habitat occurs			
	Ruggedness (fractal dimension of substratum and seabed slope)	Relief, rugosity, hardness and seabed slope influence accessibility to different sub-fisheries	Rugged substratum is less accessible to mobile gears. Steeply sloping seabed is less accessible to mobile gears			
	Level of disturbance	Gear footprint and intensity of encounters	Degree of impact is determined by the frequency and intensity of encounters (inc. size, weight and mobility of individual gears)			
Selectivity	Removability/ mortality of fauna/ flora	Removal/ mortality of structure forming epifauna/ flora (inc. bioturbating infauna)	Erect, large, rugose, inflexible, delicate epifauna and flora, and large or delicate and shallow burrowing infauna (at depths impacted by mobile gears) are preferentially removed or damaged.			
	Areal extent	How much of each habitat is present	Effective degree of impact greater in rarer habitats: rarer habitats may maintain rarer species.			
	Removability of substratum	Certain size classes can be removed	Intermediate sized clasts (~6 cm to 3 m) that form attachment sites for sessile fauna can be permanently removed			
	Substratum hardness	Composition of substrata	Harder substratum is intrinsically more resistant			
	Seabed slope	Mobility of substrata once dislodged; generally higher levels of structural fauna	Gravity or latent energy transfer assists movement of habitat structures, eg turbidity flows, larger clasts. Greater density of filter feeding animals found where currents move up and down slopes.			
Productivity						
Productivity	Regeneration of fauna	Accumulation/ recovery of fauna	Fauna have different intrinsic growth and reproductive rates which are also variable in different conditions of temperature, nutrients, productivity.			
	Natural disturbance	Level of natural disturbance affects intrinsic ability to recover	Frequently disturbed communities adapted to recover from disturbance			

Communities

PSA methods for communities are still under development. Consequently, it has not yet been possible to undertake level 2 risk analyses for communities.

During the Level 2 assessment, each unit of analysis within each ecological component (species or habitat) is scored for risk based on attributes for productivity and susceptibility, and the results are plotted as shown in Figure 13.

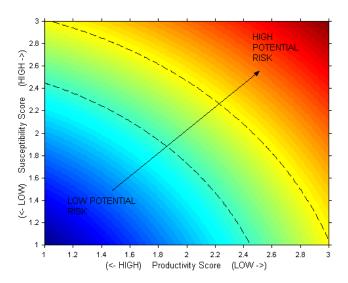


Figure 13. The axes on which risk to the ecological units is plotted. The x-axis includes attributes that influence the productivity of a unit, or its ability to recover after impact from fishing. The y-axis includes attributes that influence the susceptibility of the unit to impacts from fishing. The combination of susceptibility and productivity determines the relative risk to a unit, i.e. units with high susceptibility and low productivity are at highest risk, while units with low susceptibility and high productivity are at lowest risk. The contour lines divide regions of equal risk and group units of similar risk levels.

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis.

- Step 1 Identify the units excluded from analysis and document the reason for exclusion
- Step 2 Score units for productivity
- Step 3 Score units for susceptibility
- Step 4 Plot individual units of analysis onto a PSA Plot
- Step 5 Ranking of overall risk to each unit
- Step 6 Evaluation of the PSA analysis
- Step 7 Decision rules to move from Level 2 to Level 3

2.4.1 Units excluded from analysis and document reasons for exclusion (Step 1)

Species lists for PSA analysis are derived from recent observer data where possible or, for fisheries with no observer programs, from logbook and scientific data. In some logbook data, there may only be family level identifications. Where possible these are resolved to species level by cross-checking with alternative data sources and discussion with experts. In cases where this is not possible (mainly invertebrates) the analysis may be based on family average data.

ERA Species	Taxa Name	Scientific Name	CAAB Code	Family Name	Common Name	Role In Fishery	Source	Reason for
ID								removal

Level 2 97

2.4.2 and 2.4.3 Level 2 PSA (Steps 2 and 3)

Summary of Species PSA results

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium or low) reflect potential rather than actual risk using the Level 2 (PSA) method. For species assessed at Level 2, no account is taken of the level of catch, the size of the population, or the likely exploitation rate. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However, recent fishing effort distributions are considered when calculating the availability attribute for the Level 2 analysis, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data, or taking account of specific management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday et al (2007).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this

reason. For some species, attributes may be scored on information from related species or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for TEP species and the other species components. In particular, target, by-product and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However TEP species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason there may be a higher proportion of false positives for high vulnerability for TEP species, unless there is a robust observer program that can verify that species do not interact with the gear.

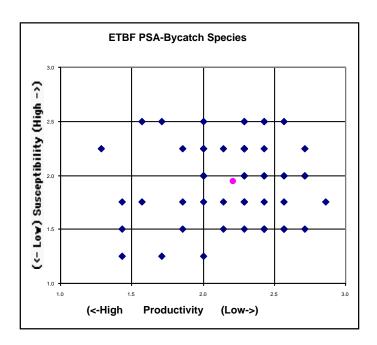
Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and TEP components. The level of observer data for this sub-fishery is regarded as low. As part of the autolongline permit condition, Observers must be used on autolongline vessels on every 4th trip only, with the aim to cover 25% of all shots. If autolonglines are to be set in less than 200m an observer must be on board for coverage on 50% of deployments (no such trips have been noted). Data collection, collation and checking do not appear to be monitored for the CSF, and the species validation issues that need to be addressed for the CSF suggest that Experience, Education, Training and Resources are limited. No previous species data is available for the CSF.

A summary of the species considered at Level 2 is presented below, sorted by component, by taxa within components, and then by the overall risk score [high (>3.18), medium (2.64-3.18), low<2.64)]

ERA specie s ID	Scientific name	Common name	average logbook catch (kg) 2001-04	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 4)	Productivity (additive) 1- low , 3 - high	Susceptibility (multiplicative) 1- low , 3 - high	Overall risk score 1.41- low , 4.24 - high	Override used?	PSA risk category	Comments
-----------------------	-----------------	-------------	--	------------------------------	--	--	---	---	---	----------------	-------------------	----------

Summary of Habitat PSA results

A summary of the habitats considered at Level 2 is presented below, and is sorted by the overall risk score (high, medium, low), by subbiome, and by SGF score (Habitat type).


Record	ERA	Sub-		Habitat	SGF	n missing	Productivity score	Susceptability score	Overall Risk	Overall Risk Ranking (2D	Risk ranking	Rational
#	habitat #	biome	Feature	Name	Score	attributes	(Average)	(Multiplicative)	Score (P&Sm)	multiplicative)	over-ride	е

100 Level 2

2.4.4 PSA Plot for individual units of analysis (Step 4)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then $1/3^{rd}$ of the Euclidean overall risk values will be greater than 3.18 (high risk), $1/3^{rd}$ will be between 3.18 and 2.64 (medium risk), and $1/3^{rd}$ will be lower than 2.64 (low risk).

Results of the PSA plot from PSA workbook ranking worksheet would follow the format of the example below:

PSA plot for target species PSA plot for byproduct species PSA plot for discards/bycatch species PSA plot for TEP species PSA plot for habitats PSA plot for communities

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium and low, according to the risk values (**Figure 17**). The cutoffs for each category are thirds of the total distribution of all possible risk values (**Figure 17**).

Level 2 101

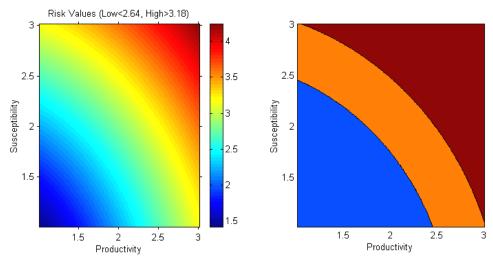


Figure 17. Overall risk values in the PSA plot. Left panel. Colour map of the distribution of the euclidean overall risk values. Right panel. The PSA plot contoured to show the low risk (blue), medium risk (orange) and high risk (red) values.

The PSA output allows identification and prioritisation (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritisation means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk to an individual unit will depend on the level of impact as well its productivity and susceptibility.

2.4.5 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently with regard to risk, it should be the subject of more study.

102 Level 2

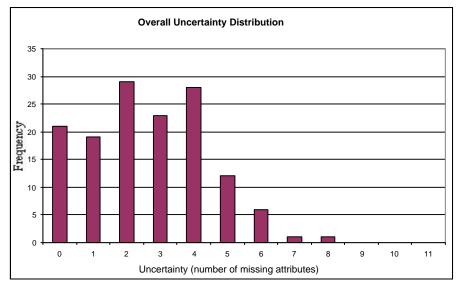
The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and TEP) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.

Availability of information

The ability to score each species based on information on each attribute [varied/did not vary] between the attributes (as per summary below). With regard to the productivity attributes, [least known productivity attribute] was missing in [X]% of [units], and so the most conservative score was used, while information on [best known productivity attribute] could be found or calculated for [Y% of units]. The current method of scoring the susceptibility attributes provides a value for each attribute for each species – some of these are based on good information, whereas others are merely sensible default values.

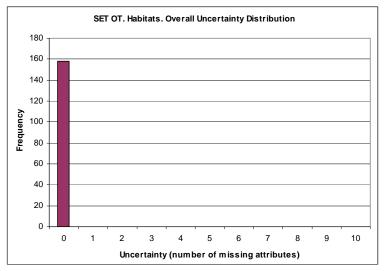
Summary of the success of obtaining information on the set of productivity and susceptibility attributes for the species. Where information on an attribute was missing the highest score was used in the PSA.

Results from PSA workbook ranking worksheet (species only).


suits from PSA wor	IKDOOK IZ	mking we	orksneet (species o	шу).		
Productivity Attributes	Average age at	Average		Average	Average size at	Reproducti	Trophic level
	maturity	max age	Fecundity	max size	Maturity	ve strategy	(fishbase)
Total species scores for							
attribute							
n species scores with							
attribute unknown,							
(conservative score							
used)							
% unknown information							
Susceptibility Attributes		Encounter					
	Availability	,		Selectivity	PCM		
		Bathymetry					
		overlap	Habitat				
Total species scores for							
attribute							
n species scores with							
attribute unknown,							
(conservative score							
used)							
% unknown information							

Each species considered in the analysis had information for an average of [A, (B%)] productivity attributes and [C (D%)] susceptibility attributes. This meant that, on average, conservative scores were used for less than [E%] of the attributes for a single species. [Units] had missing information for between [F and G] of the combined [H] productivity and susceptibility attributes.

Level 2 103


Results Overall uncertainty distribution in PSA workbook ranking graphs worksheet

Species uncertainty distribution histogram would follow the format of the example below:

Species: Overall uncertainty distribution - frequency of missing information for the combined productivity and susceptibility attributes

Habitats: Twenty-one attributes are used in the habitat PSA. All attributes are scored according to Habitat attribute tables 9-27. Only attributes that could be ranked are utilised and therefore there are no missing attributes [example below].

Habitats: Overall uncertainty distribution- frequency of missing information for the combined productivity and susceptibility attributes

Correlation between attributes

In situations where attributes are strongly correlated only one of them should be included in the final PSA (Stobutzki *et al.*, 2001).

Species component: The attributes selected for productivity and susceptibility [were/were not] strongly correlated (as per correlation matrix below for Productivity

and susceptibility). The strongest productivity attribute correlation was between [attribute J and attribute K], while the strongest susceptibility correlation was between [attribute L and attribute M]. This correlation analysis suggests that each attribute [was/was not] "measuring" a different aspect of the [unit] characteristics and [all/not all] attributes were suitable for inclusion in the PSA.

	Age at	Max age	Fecundit	Max size	Min size	Reproduc	Trophic
	maturity		у		at	tive	level
					maturity	strategy	
Age at maturity	X						
Max age		X					
Fecundity			X				
Max size				X			
Min size at maturity					X		
Reproductive strategy						X	
Trophic level							X

Correlation matrix for the species productivity attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

	Availability	Encounterability	Selectivity	Post-capture mortality
Availability	X			
Encounterability		X		
Selectivity			X	
Post-capture mortality				X

Correlation matrix for the four species susceptibility attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

Habitat Component: The attributes selected for productivity and susceptibility [were/not] strongly correlated (as per correlation matrix below for productivity and susceptibility). There was [X] correlation between the productivity attributes Regeneration of Fauna and Natural disturbance (r = [x]). The susceptibility correlation could not be calculated between the Availability and any other aspect, because there was no variation in the Availability score. There [was/X] correlation between the attributes used to calculate Encounterability and Selectivity. All attributes were suitable for inclusion in the PSA.

Productivity Correlation Matrix	Regeneration of fauna	Natural disturbance
Regeneration of fauna	X	
Natural disturbance	X	X

Correlation matrix for the habitat productivity attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

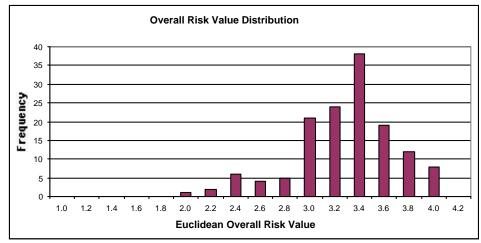
		Encounterability	Selectivity score
Susceptibility Correlation Matrix	Availability score	score (average)	(average)
Availability score	X		
Encounterability score (average)	X	X	
Selectivity score (average)	X	X	X

Correlation matrix for the three habitat susceptibility attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

Productivity and Susceptibility Values for Species

The average productivity score for all [units] was $[X \pm Y]$ (mean \pm SD of scores calculated using n-1 attributes) and the mean susceptibility score was $[X \pm Y]$ (as per summary of average productivity and susceptibility scores as below). Individual scores are shown in Appendix B: Summary of PSA results. The [small/large] variation in the average of the boot-strapped values (using n-1 attributes), indicates the productivity and susceptibility scores [are/are not] robust to elimination of a single attribute. Information for a single attribute [does not/does] have a disproportionately large effect on the productivity and susceptibility scores. Information was missing for an average of [Z] attributes out of [Y] possible for each [unit].

Productivity and Susceptibility Values for Habitat units.

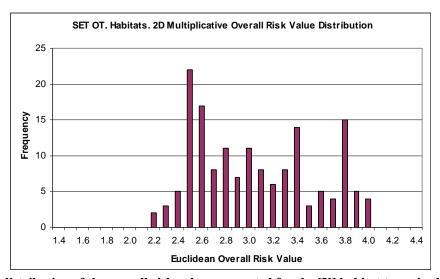

The average productivity score for all habitats was $[X \pm Y]$ (mean \pm SD of scores calculated using n-1 attributes) and the mean susceptibility score was $[X \pm Y]$ (as per summary of average productivity and susceptibility scores as below). Individual scores are shown in Appendix B: Summary of PSA results. The small/large variation in the average of the boot-strapped values (using n-1 attributes), indicates the productivity and susceptibility scores are robust to elimination of a single attribute. Information for a single attribute [does not/does] have a disproportionately large effect on the productivity and susceptibility scores. Information was missing for an average of [Z] attributes out of [Y] possible for each [unit].

Overall Risk Values for Species

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of 1&1 and 3&3 for both productivity and susceptibility respectively). The mean observed overall risk score was [X], with a range of [Y - Z].

The actual values for each species are shown in Appendix B: Summary of PSA results. A total of [A units, (B%)] were classed as high risk, [B (C%)] were in the moderate risk category, and [D (E%)] as low risk.

<u>Results</u>: Frequency distribution of the overall PSA risk values. *Evaluation example only*

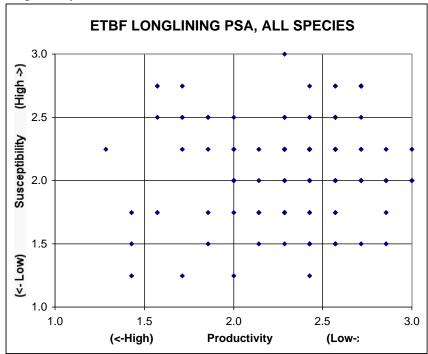

Frequency distribution of the overall risk values generated for the [X units] in the [fishery subfishery] PSA.

106 Level 2

Overall Risk Values for Habitats

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of 1&1 and 3&3 for both productivity and susceptibility respectively). The mean observed overall risk score was 3.01, with a range of 2.18-3.97.

The actual values for each species are shown in Appendix B: Summary of PSA results. A total of 46 units, (29%) were classed as high risk, 58units, (37%) were in the medium risk category, and 54 (34%) as low risk.


Frequency distribution of the overall risk values generated for the [X] habitat types in the [fishery sub-fishery] PSA.

The distribution of the overall risk values of all species is shown on the PSA plot below. The species are distributed in the [all/lower left/upper right] parts of the plot, indicating that [both high and low risk units] are potentially impacted in the [fishery sub-fishery].

Level 2 107

Results Plot for all species in the sub-fishery PSA risk values.

Evaluation example only

PSA plot for all [units] in the [fishery sub-fishery]. Species in the upper right of the plot are at highest risk.

The number of attributes with missing information is of particular interest, because the conservative scoring means these units may be scored at higher risk than if all the information was known. This relationship between the overall risk score and the number of missing attributes shows that an increase in the number of missing attributes (and hence conservative scores used) results in a skew to higher risk values. This suggests that as information becomes available on those attributes, the risk values may decline for some units.

All attributes are treated equally in the PSA, however, information on some attributes may be of low quality.

2.4.6 Evaluation of the PSA results (Step 6)

No PSA assessment was carried out for the Coral Sea Autolongline Sub-fishery during Stage 2 of the ERAEF process. As such, information regarding PSA analysis is included to provide a full understanding of the ERAEF process.

Species components:

Overall

Results

Discussion

108 Level 2

Habitat components:

Overall

Results:

Discussion

Summary of the average productivity, susceptibility and overall risk scores.

Component	Measure	
All habitats	Number of habitats	X
	Average of productivity total	X
	Average of susceptibility total	X
	Average of overall risk value (2D)	X
	Average number of missing attributes	0

PSA (productivity and susceptibility) risk categories for the habitat component.

Risk category	High	Medium	Low	Total
Total Habitats	X	X	X	X

PSA (productivity and susceptibility) risk categories for sub-biome (depth zone) fished (before override adjustment).

			Upper-		Total
2D Risk Score	Inner-shelf	Outer-shelf	Upper- slope	Mid-slope	habitats
High	X	X	X	X	X
Medium	X	X	X	X	X
Low	X	X	X	X	X
Total	X	X	X	X	X

PSA (productivity and susceptibility) risk categories for sub-biome fished after Risk Ranking adjustment (stakeholder/expert override).

			Upper-		Total
2D Risk Score	Inner-shelf	Outer-shelf	slope	Mid-slope	habitats
High	X	X	X	X	X
Medium	X	X	X	X	X
Low	X	X	X	X	X
Total	X	X	X	X	X

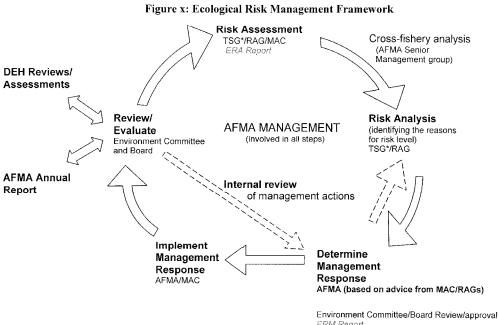
[No] inner shelf habitats are classified as high risk, [X] as medium risk, and [X] as low risk. [X] outer shelf habitats produce high risk scores, [X] medium and [X] are at low risk. Of the upper slope [X] are classified as high risk, [X] at medium and [no] upper slope habitats appear at low risk. Habitats at mid-slope depths are either at high risk (X) or at medium risk (X), none are considered low risk.

2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)

For the PSA overall risk values, units that fall in the upper third (risk value > 3.18) and middle third (2.64 < risk value < 3.18) of the PSA plots are deemed to be at high and

109

medium risk respectively. These need to be the focus of further work, either through implementing a management response to address the risk to the vulnerable species or by further examination for risk within the particular ecological component at Level 3. Units at low risk, in the lower third (risk value <2.64), will be deemed not at risk from the sub-fishery and the assessment is concluded for these units.


For example, if in a Level 2 analysis of habitat types, two of seven habitat types were determined to have risk from the sub-fishery, only those two habitat types would be considered at Level 3.

The output from the Level 2 analysis will result in four options:

- The risk of fishing on a unit of analysis within a component (e.g. single species or habitat type) is not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of fishing on a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of fishing on a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken
- The risk of fishing on a unit is high and there are no planned management interventions that would remove this risk, therefore the reasons are documented and the assessment moves to Level 3.

At level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The framework (see Figure x below) makes use of the existing AFMA management structures to enable the ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document, the ERM report, will be developed that outlines the reasons why species are at high risk and what actions the fishery will implement to respond to the risks.

Level 2 110

*TSG – Technical Support Group - currently provided by CSIRO.

2.5 Level 3

No Level 3 analyses have been undertaken during the Stage 2 ERAEF process for species, habitats or communities associated with the Coral Sea Autolongline Subfishery.

3. General discussion and research implications

The Coral Sea Auto longline operations are one of three Line Sector sub-fisheries in the Coral Sea Fishery zone. Auto longline operates mainly on localised areas of seamounts, in depths of 30-600m, using a horizontally-set mainline anchored on the ocean floor, with hooks attached by short snood lines, and baiting automated prior to deployment. The gear is typically divided into sets of 1,000 hooks, and may be many kilometers in length.

Logbook data are often recorded to genus or family grouping only, for both target and byproduct-bycatch species. Where species identification is uncertain, a system of voucher-specimen collection is recommended, with specimens submitted to a biological laboratory for species validation.

Inconsistencies have been noted in the recording of species function by operators and observers, as the term 'target' may have several interpretations. One consistent definition is required to allow observer data to consistently reflect the fishery. This would ensure that data inconsistencies, occurring between logbook and Observer Reports, can be avoided.

A lack of available data has resulted in moderate risk, low confidence assessments in this sub-fishery. The use of underwater-video data-collection is recommended as a means to address some of these uncertainties.

3.1 Level 1

One of the main issues identified through this assessment was the risks presented by auto longline fishing activities. With regard to the species and communities, effort has greatly increased in recent years and catches, which initially also increased, have now fallen dramatically for individual bycatch species, or been replaced by a changing array of target species. Without a consistently used definition of 'Target', it is difficult to determine the basis of this change, as it may be a result of changing species availability or of changing fishing practice as dictated by market demand.

With regard to habitat, the methods associated with longline fishing activities present hazards both with and without capture. At present, no data are available to provide certainty on the risk levels associated with this hazard. The use of underwater video as a means of data collection has been discussed at stakeholder meetings, and its adoption is to be encouraged.

The impacts of gear loss, without capture and through the addition of non-biological material, is also uncertain due to lack of data. Boats are reported to regularly move on to different ground to avoid areas where gear is lost through a high level of shark entanglement. Although the boats move on, the threat posed by the remaining lost gear will continue to impact on the wildlife in the area, through fish taking baited hooks (without capture) and through entanglement in the remaining lines (addition of non-biological material).

The hazard presented by the addition of biological material - Translocation of species - was assessed at moderate or above for all components of this Level 1 assessment. For the CSF Auto longline sub-fishery, translocation risks are most likely due to hull and line fouling, bilge water and pathogens associated with imported baits. No mitigation measures are presently in place for the auto longline sub-fishery. Food and Agriculture Organisation (1995) suggests the use of a precautionary approach with corrective or mitigating procedures established before any effect occur. Similarly, Department of Agriculture, Fisheries and Forestry (DAFF) are soon to release a Code of Practice ('National system for prevention and management of marine pest incursions', due October 2006) which will also provide risk reduction measures. Consideration of these documents is recommended.

In the absence of data on translocation issues within the CSF, it is recommended that a system be established to provide baseline and continuing data on the incidence of hull and line fouling, and the use and origin of imported baits. It is important to note that the risks from translocation of species presents the classical problem for risk assessment – a low probability event combined with a potentially high impact consequence. This introduces a lot of uncertainty about risk levels associated with such hazards.

External hazards scoring three in the Habitat and Community component would both be initially addressed through the operator-initiated reef exclusion 'Memorandum of Understanding' being considered by stakeholders and the Tourism sector. Similarly, a suggested voluntary 3-year reef-rotational zoning system would also provide a risk reduction measure, and further development leading to its implementation should be actively encouraged.

Discussions at Stakeholder meetings have also recognised the value that could be gained by presence/absence reporting of issues as part of the Observer Programs (eg shark activities and discard survival percentages), and in obtaining underwater video footage as a means of monitoring habitat issues, community assemblages, and providing baseline data on which further risk assessment could be based.

3.2 Level 2

No Level 2 analysis has been conducted for the Coral Sea Autolongline sub-fishery during the ERAEF Stage 2 process.

3.3 Key Uncertainties / Recommendations for Research and Monitoring

In assessing risk to byproduct, bycatch and TEP species, it is not possible to assess absolute risk without supplementary information on either abundance or total mortality rates, and such data are not available for the vast majority of species. However it may be possible to draw inferences from information that may be available for some species, either from catch records of occurrence from other fisheries, from fishery independent survey data, or from examination of trends in Catch per Unit Effort (CPUE) from observer data. Such data should be sought and examined for the high risk species identified in this analysis.

In assessing risk to habitats, similar issues arise. In general we do not have detailed information on the amount of each habitat type present in the area of the fishery, nor of its spatial distribution. However some data and information do exist from which inferences can be drawn, and piecing this together in the form of maps, particularly for those habitats identified as high risk, should be a priority.

Research recommendations, arising from the Coral Sea Fishery: Auto longline subfishery assessment, include:

- the use of underwater video footage as a means of monitoring the impacts of gear on habitat and physical processes;
- consistent, standardised reporting through the Observer Program, including
 issues such as percentage survival of discard species, noted presence/absence of
 associated shark interactions, and bird activities;
- development of a stated definition of "target" and "bycatch" species to be used consistently by operators and observers alike;
- voucher specimens to be sent to biological laboratories for species validation.

Other recommendations include:

- adoption of mitigating measures to address translocation risks, e.g.
 - Department of Agriculture, Fisheries and Forestry "National system for prevention and management of marine pest incursions" document, due for release in October 2006; or
 - Food and Agriculture Organisation (1995) precautionary approach documents; and
 - o Bureau of Rural Sciences recommendations for risk reduction with regard to introduced marine pests (Summerson and Curran 2005); and
- implementation of the Coral Sea Fishery Stakeholders Associations Memorandum of Understanding (MoU) for specific reef fishing-exclusions, and the 3-year reef-rotational system.

References

Ecological Risk Assessment References: Coral Sea Fishery Auto longline sub-fishery

- Allen, G. R. (1988). *The fishes of the Coral Sea*, Australian National Parks and Wildlife Service, Canberra, unpublished.
- Australian Fisheries Management Authority (2003). Environmental Assessment Report, Coral Sea Fishery (July 2003), 65pp.
- Australian Fisheries Management Authority (2004). Coral Sea Fishery, Statement of Management Arrangements, 2004/05, Revised 15 June 2004, 33pp.
- Australian Fisheries Management Authority, *Coral Sea Fishery, At a glance*, http://www.afma.gov.au/fisheries/ext_territories/coral_sea/at_a_glance.htm Last updated 14 September 2005.
- Bureau of Rural Sciences (2004). Fishery status report (2004), Resource Assessment of Australian Commonwealth Fisheries, Agriculture, Fisheries and Forestry Australia, Canberra.
- Caton, A. and McLoughlin, K. (eds) (2004). Fishery Status reports 2004: Status of Fish Stocks Managed by the Australian Government. Australian Government Department of Agriculture, Fisheries and Forestry, Bureau of Rural Sciences, Canberra. 243 pp.
- CSF Stakeholders Meeting (2005), Final Record of Meeting, Canberra, 4th April 2005.
- Department of Agriculture, Fisheries and Forestry (2005). Gross Value Production figures, October 2005.
- Department of the Environment and Heritage (2004). Recommendation to the Australian Fisheries Management Authority (AFMA) on the ecologically sustainable management of the Coral Sea Fishery;
- http://www.deh.gov.au/coasts/fisheries/commonwealth/coral-sea/decision.html Last updated 29 August 2005
- Department of the Environment and Heritage (2004). Assessment of the Coral Sea Fishery October 2004, 28 pp.
- Department of Industry Tourism and Resources (2005) Release of offshore petroleum exploration areas. CD-ROM
- Food and Agriculture Organisation (1995) *FAO Code of Conduct for Responsible Fisheries*. Food and Agriculture Organisation of the United Nations, Rome.

- FAR (2005). Individual Fishing Activity Reports October 2005, AFMA.
- Sant, G. (1995). Marine invertebrates of the South Pacific: an examination of the trade. *TRAFFIC International*, Cambridge, UK. 81 pp.
- Summerson, R. and Curran, D. (2005) *The potential for the commercial fishing industry to spread introduced marine pests*. BRS Final Report, 179pp.
- Williams, A. and Gowlett-Holmes, K. and Althaus, F. (2006). Biodiversity survey of the seamounts and slopes of the Norfolk Ridge and Lord Howe Rise (NORFANZ). Final Report to the National Oceans Office, April 2006.

General Methodology References

- Fletcher, W. (2005) The application of qualitative risk assessment methodology to prioritise issues for fisheries management. *ICES Journal of Marine Science* 62:1576-1587.
- Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A.D.M. and Whitworth, B. (2002). National ESD reporting framework for Australian Fisheries: The how to guide for wild capture fisheries. FRDC Report 2000/145, Canberra, Australia.
- Hobday, A. J., A. Smith and I. Stobutzki (2004). Ecological risk Assessment for Australian Commonwealth Fisheries. Final Report Stage 1. Hazard identification and preliminary risk assessment. <u>Report Number R01/0934</u>, CSIRO Marine Research.
- Stobutzki, I., Miller, M., Brewer, D. (2001). Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch. Environmental Conservation 28 (2), 167-181.
- Walker, T. (2004). Elasmobranch fisheries management techniques. Chapter 13.

 Management measures. *Technical manual for the management of elasmobranchs*.

 J. A. Musick and R. Bonfil, Asia Pacific Economic Cooperation: (in press).

Species Methodology References

- Bax, N. J. and Knuckey, I. (1996). Evaluation of selectivity in the South-East fishery to determine its sustainable yield. Final Report to the Fisheries Development Corporation. Project 1996/40.
- Daley, R. K., last, P. R., Yearsley, G. K. and Ward, R. D. (1997). South East Fishery Quota Species an Identification Guide. CSIRO Division of Marine Research, Hobart. 91 pp.

Gomon, M. F., Glover, J. C. M. and Kuiter, R. H. (Eds.) (1994). The Fishes of Australia's South Coast. State Print, Adelaide. 992 pp.

- Last, P., V. Lyne, G. Yearsley, D. Gledhill, M. Gomon, T. Rees and W. White. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40 m depth). Final Report to the National Oceans Office. National Oceans Office, Hobart. 99pp.
- Milton, D. A. (2000). Assessing the susceptibility to fishing of rare trawl bycatch: sea snakes caught by Australia's Northern Prawn Fishery. *Biological Conservation*. 101: 281 290.
- Walker, T. I., Hudson, R. J. and Gason, A. S. (2005). Catch evaluation of target, byproduct and bycatch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. *Journal of Northwest Atlantic Fisheries Science*. 35: 505 530.
- Yearsley, G. K., Last, P. R. and Ward, R. D. (1999). Australian Seafood Handbook Domestic species. CSIRO Marine Research, Hobart. 461 pp.

Habitat Methodology References

- Althaus F.A. and Barker B. (2005). Lab Guide to Habitat scoring (unpublished).
- Bax N., Kloser R., Williams A., Gowlett-Holmes K., Ryan T. (1999). Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. Oceanologica Acta 22 (6) 705-719
- Bax N. and Williams A. (2001). Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. *Marine and Freshwater Research* 52: 491-512
- Bulman C., Sporcic M., Dambacher J. (2005) (in prep). Ecological Risk Assessment for Communities Methodology Report.
- Commonwealth of Australia (2005). National Marine Bioregionalisation of Australia. Summary. Department of Environment and Heritage, Canberra, Australia.
- Greene H.G., Yoklavich M.M., Starr R.M., O'Connell V.E., Wakefield W.W., Sullivan D.E., McRea J.E. Jr., Cailliet G.M. (1999). A classification scheme for deep seafloor habitats. *Oceanologica Acta* 22: 663-678
- Heap A.D., Harris P.T., Last P., Lyne V., Hinde A., Woods M. (2005). Draft Benthic Marine Bioregionalisation of Australia's Exclusive Economic Zone. Geoscience Australia Report to the National Oceans Office. Geoscience Australia, Canberra.

Harris P., Heap A.D., Passlow V., Sbaffi L., Fellows M., Porter-Smith R., Buchanan C., Daniell J (2003). Geomorphic Features of the Continental Margin of Australia. Geoscience Australia, Canberra.

- Kloser R., Williams A., Butler A. (2000). Assessment of Acoustic Mapping of Seabed Habitats: Phase 1 Surveys April-June 2000, Progress Report 1. Marine Biological and Resource Surveys South-East Region.
- Kostylev V.E., Todd B.J., Fader G.B.J., Courtney R.C., Cameron G.D.M., Pickrill R.A. (2001). Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. *Marine Ecology Progress Series* 219: 121-137
- Roff J.C., and Taylor M.E. (2000). National Frameworks for marine conservation a hierarchical geophysical approach. *Aquatic Conservation: Marine and Freshwater Ecosystems* 10: 209-223

Community Methodology References

- Condie, S., Ridgway, K., Griffiths, B., Rintoul, S. and Dunn, J. (2003). National Oceanographic Description and Information Review for National Bioregionalisation. Report for National Oceans Office.(CSIRO Marine Research: Hobart, Tasmania, Australia.)
- Interim Marine and Coastal Regionalisation for Australia Technical Group (1998).

 Interim Marine and Coastal Regionalisation for Australia: an ecosystem-based classification for marine and coastal environments. Version 3.3 (Environment Australia, Commonwealth Department of the Environment: Canberra, Australia.)
- Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., and White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40m depth). (National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.)
- Lyne, V. and Hayes, D. (2004). Pelagic Regionalisation. National Marine Bioregionalisation Integration Project. 137 pp. (CSIRO Marine Research and NOO: Hobart, Australia.)
- Meyer, L., Constable, A. and Williams, R. (2000). Conservation of marine habitats in the region of Heard Island and McDonald Islands. Final Report to Environment Australia. (Australian Antarctic Division, Kingston, Tasmania.)
- Rees, A.J.J., Yearsley, G.K., and Gowlett-Holmes, K. (2005). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine Research, World Wide Web electronic publication, 1999 onwards. Available at: http://www.marine.csiro.au/caab/.

118 Glossary

Glossary of Terms

Assemblage A subset of the species in the community that can be

easily recognised and studied. For example, the set of sharks and rays in a community is the Chondricythian

assemblage.

Attribute A general term for a set of properties relating to the

productivity or susceptibility of a particular unit of

analysis.

Bycatch species A non-target species captured in a fishery, usually of low

value and often discarded (see also Byproduct).

Byproduct species A non-target species captured in a fishery, but it may have

value to the fisher and be retained for sale.

Community A complete set of interacting species.

Component A major area of relevance to fisheries with regard to

ecological risk assessment (e.g. target species, bycatch and byproduct species, threatened and endangered species,

habitats, and communities).

Component model A conceptual description of the impacts of fishing

activities (hazards) on components and sub-components, linked through the processes and resources that determine

the level of a component.

Consequence The effect of an activity on achieving the operational

objective for a sub-component.

Core objective The overall aim of management for a component.

End point A term used in risk assessment to denote the object of the

assessment; equivalent to component or sub-component in

ERAEF

Ecosystem The spatially explicit association of abiotic and biotic

elements within which there is a flow of resources, such as

nutrients, biomass or energy (Crooks, 2002).

External factor Factors other than fishing that affect achievement of

operational objectives for components and sub-

components.

Fishery method A technique or set of equipment used to harvest fish in a

fishery (e.g. long-lining, purse-seining, trawling).

Fishery A related set of fish harvesting activities regulated by an

authority (e.g. South-East Trawl Fishery).

Habitat The place where fauna or flora complete all or a portion of

their life cycle.

Hazard identification The identification of activities (hazards) that may impact

the components of interest.

Indicator Used to monitor the effect of an activity on a sub-

component. An indicator is something that can be

measured, such as biomass or abundance.

Likelihood The chance that a sub-component will be affected by an

activity.

Glossary 119

Operational objective A measurable objective for a component or sub-

component (typically expressed as "the level of X does not

fall outside acceptable bounds")

Precautionary approach The approach whereby, if there is uncertainty about the

outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or

community).

PSA Productivity-Susceptibility Analysis. Used at Level 2 in

the ERAEF methodology.

Scoping A general step in an ERA or the first step in the ERAEF

involving the identification of the fishery history,

management, methods, scope and activities.

SICA Scale, Impact, Consequence Analysis. Used at Level 1 in

the ERAEF methodology.

Sub-component A more detailed aspect of a component. For example,

within the target species component, the sub-components include the population size, geographic range, and the

age/size/sex structure.

Sub-fishery A subdivision of the fishery on the basis of the gear or

areal extent of the fishery. Ecological risk is assessed

separately for each sub-fishery within a fishery.

Sustainability Ability to be maintained indefinitely

Target species A species or group of species whose capture is the goal of

a fishery, sub-fishery, or fishing operation.

Trophic position Location of an individual organism or species within a

foodweb.

Unit of analysis The entities for which attributes are scored in the Level 2

analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the

units are "assemblages".

Appendix A: General summary of stakeholder feedback

Date	Format received	Comment from stakeholder	Action/explanation
Sept 28 2006	AFMA/Stakeholder provided comments	For all sub-fisheries Under "Input controls" "a specified number of fishing days per permit per season" should read "a specified number of minimum fishing days per permit per season"	Changed – added in scoping document for each of the line subfishery reports. Now reads "a specified minimum of 20 fishing days per permit per season"
Sept 28 2006	AFMA/Stakeholder provided comments	Under "Observer data" the purpose of observer coverage for auto longline method is to verify catch and effort and TEP species interactions (noted in Demersal longline comments).	Changed - Catch and effort, and TEP interactions added to existing information in scoping document.
Sept 28 2006	AFMA/Stakeholder provided comments	What years were the logbook data taken from -this is not clear? (noted in Demersal longline comments).	Changed – clarified in scoping document for each of the line subfishery reports
Sept 28 2006	AFMA/Stakeholder provided comments	In executive summary and scoping document: There is only 1 auto longline permit not 9.	Clarified in each CSF line subfishery report. There are no autolongline permits! No permits are gear-specific in the CSF Line sector. As the Executive Summary states, "9 fishing concessions across the multigear multimethod fishery – permits are not gear-specific within the line sector". This statement is correct. As long as the minimum fishing days are satisfied, any gear could be used on each of the 9 concessions. This has been clarified in all CSF linegear reports, and the number of boats using each gear type also specified for the years of data used.

Appendix B: PSA results - summary of stakeholder discussions

Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding PSA results.

The following species were discussed at the INSERT FISHERY GROUP NAME meeting on INSERT DATE and LOCATION. ALL or SELECTED high risk species were discussed.

Taxa	Scientific	Common	Role in	PSA risk	Comments from meeting, and	Action	Outcome	Possible
name	name	name	fishery	ranking	follow-up			management
				(H/M/L)				response

NB. No Level 2 analysis has been conducted for Coral Sea sub-fisheries.

Appendix C: SICA consequence scores for ecological components

Table 5A. Target Species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for target species.

(Modified from Fletcher et al. 2002)

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	1. Population size Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size Full exploitation rate but long-term recruitment dynamics not adversely damaged.	1. Population size Affecting recruitment state of stocks and/or their capacity to increase	1. Population size Likely to cause local extinctions if continued in longer term	1. Population size Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background variability for this population.	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics, change in geographic range up to 5 % of original.	2. Geographic range Change in geographic range up to 10 % of original.	2. Geographic range Change in geographic range up to 25 % of original.	2. Geographic range Change in geographic range up to 50 % of original.	2. Geographic range Change in geographic range > 50 % of original.
Genetic structure	3. Genetic structure No detectable change in genetic structure. Unlikely to be detectable against background variability for this population.	3. Genetic structure Possible detectable change in genetic structure. Any change in frequency of genotypes, effective population size or number of spawning units up to 5%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 10%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 25%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units, change up to 50%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units > 50%.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
structure	structure No	structure	structure	structure	structure	structure Long-term
	detectable change in	Possible detectable	Impact on population	Long-term	Long-term	recruitment dynamics
	age/size/sex	change in age/size/sex	dynamics at	recruitment	recruitment dynamics	adversely affected.
	structure. Unlikely to	structure but minimal	maximum sustainable	dynamics adversely	adversely affected.	Time to recover to
	be detectable against	impact on population	level, long-term	affected. Time to	Time to recover to	original structure >
	background	dynamics.	recruitment dynamics	recover to original	original structure up	100 generations free
	variability for this		not adversely	structure up to 5	to 10 generations free	from impact.
	population.		affected.	generations free	from impact.	
				from impact.		
Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
capacity	capacity	capacity	capacity	capacity	capacity	capacity Change in
	No detectable change	Possible detectable	Impact on population	Change in	Change in	reproductive capacity
	in reproductive	change in	dynamics at	reproductive	reproductive capacity	adversely affecting
	capacity. Unlikely to	reproductive capacity	maximum sustainable	capacity adversely	adversely affecting	long-term recruitment
	be detectable against	but minimal impact on	level, long-term	affecting long-term	long-term recruitment	dynamics. Time to
	background	population dynamics.	recruitment dynamics	recruitment	dynamics. Time to	recovery > 100
	variability for this		not adversely	dynamics. Time to	recovery up to 10	generations free from
	population.		affected.	recovery up to 5	generations free from	impact.
				generations free	impact.	
				from impact.		
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/
	movement	movement	movement	movement Change	movement	movement
	No detectable change	Possible detectable	Detectable change in	in behaviour/	Change in behaviour/	Change to behaviour/
	in behaviour/	change in behaviour/	behaviour/ movement	movement with	movement with	movement.
	movement. Unlikely	movement but	with the potential for	impacts on	impacts on	Population does not
	to be detectable	minimal impact on	some impact on	population	population dynamics.	return to original
	against background	population dynamics.	population dynamics.	dynamics. Time to	Time to return to	behaviour/
	variability for this	Time to return to	Time to return to	return to original	original behaviour/	movement.
	population. Time	original behaviour/	original behaviour/	behaviour/	movement on the	
	taken to recover to	movement on the	movement on the	movement on the	scale of years to	
	pre-disturbed state on	scale of days to	scale of weeks to	scale of months to	decades.	
	the scale of hours.	weeks.	months.	years.		

Table 5B. Bycatch and Byproduct species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for bycatch/byproduct species.

(Modified from Fletcher et al. 2002)

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size	1. Population size	1. Population size	1. Population size	1. Population size	1. Population size
	Insignificant change	Possible detectable	No information is	Relative state of	Likely to cause local	Local extinctions are
	to population	change in	available on the	capture/susceptibility	extinctions if	imminent/immediate
	size/growth rate (r).	size/growth rate (r)	relative area or	suspected/known to	continued in longer	
	Unlikely to be	but minimal impact	susceptibility to	be greater than 50%	term	
	detectable against	on population size	capture/ impact or on	and species should be		
	background	and none on	the vulnerability of	examined explicitly.		
	variability for this	dynamics.	life history traits of			
	population.		this type of species			
			Susceptibility to			
			capture is suspected			
			to be less than 50%			
			and species do not			
			have vulnerable life			
			history traits. For			
			species with			
			vulnerable life			
			history traits to stay			
			in this category			
			susceptibility to			
			capture must be less			
			than 25%.			
Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range
0 1 0 -	No detectable change	Possible detectable	Change in	Change in geographic	Change in	Change in geographic
	in geographic range.	change in geographic	geographic range up	range up to 25 % of	geographic range up	range > 50 % of
	Unlikely to be	range but minimal	to 10 % of original.	original.	to 50 % of original.	original.
	detectable against	impact on population				
	background	range and none on				

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
	variability for this	dynamics, change in		-		
	population.	geographic range up				
		to 5 % of original.				
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No detectable change	Possible detectable	Detectable change in	Change in frequency	Change in frequency	Change in frequency
	in genetic structure.	change in genetic	genetic structure.	of genotypes,	of genotypes,	of genotypes,
	Unlikely to be	structure. Any	Change in frequency	effective population	effective population	effective population
	detectable against	change in frequency	of genotypes,	size or number of	size or number of	size or number of
	background	of genotypes,	effective population	spawning units up to	spawning units up to	spawning units >
	variability for this	effective population	size or number of	25%.	50%.	50%.
	population.	size or number of	spawning units up to			
		spawning units up to	10%.			
		5%.				
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
	structure	structure	structure	structure	structure	structure
	No detectable change	Possible detectable	Detectable change in	Long-term	Long-term	Long-term
	in age/size/sex	change in	age/size/sex	recruitment dynamics	recruitment dynamics	recruitment dynamics
	structure. Unlikely to	age/size/sex structure	structure. Impact on	adversely affected.	adversely affected.	adversely affected.
	be detectable against	but minimal impact	population dynamics	Time to recover to	Time to recover to	Time to recover to
	background	on population	at maximum	original structure up	original structure up	original structure >
	variability for this	dynamics.	sustainable level,	to 5 generations free	to 10 generations free	100 generations free
	population.		long-term	from impact.	from impact.	from impact.
			recruitment dynamics	•	_	•
			not adversely			
			damaged.			
Reproductive capacity	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
	capacity	capacity Possible	capacity Detectable	capacity	capacity	capacity Change in
	No detectable change	detectable change in	change in	Change in	Change in	reproductive capacity
	in reproductive	reproductive capacity	reproductive	reproductive capacity	reproductive capacity	adversely affecting
	capacity. Unlikely to	but minimal impact	capacity, impact on	adversely affecting	adversely affecting	long-term recruitment
	be detectable against	on population	population dynamics	long-term recruitment	long-term	dynamics. Time to
	background	dynamics.	at maximum	dynamics. Time to	recruitment	recovery > 100
	variability for this		sustainable level,	recovery up to 5	dynamics. Time to	generations free from

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
	population.		long-term	generations free from	recovery up to 10	impact.
			recruitment dynamics	impact.	generations free from	
			not adversely		impact.	
			damaged.			
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/
	movement	movement	movement	movement	movement	movement
	No detectable change	Possible detectable	Detectable change in	Change in behaviour/	Change in behaviour/	Change to behaviour/
	in behaviour/	change in behaviour/	behaviour/ movement	movement with	movement with	movement.
	movement. Unlikely	movement but	with the potential for	impacts on population	impacts on	Population does not
	to be detectable	minimal impact on	some impact on	dynamics. Time to	population dynamics.	return to original
	against background	population dynamics.	population dynamics.	return to original	Time to return to	behaviour/
	variability for this	Time to return to	Time to return to	behaviour/ movement	original behaviour/	movement.
	population. Time	original behaviour/	original behaviour/	on the scale of	movement on the	
	taken to recover to	movement on the	movement on the	months to years	scale of years to	
	pre-disturbed state on	scale of days to	scale of weeks to		decades.	
	the scale of hours.	weeks.	months.			

Table 5C. TEP species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for TEP species.

(Modified from Fletcher et al. 2002)

Almost none are Insignificant change State of reduction on Affecting recruitment Local extinctions are Global extinctions		Score/level					
Population size Almost none are killed. 1. Population size Insignificant change to population size Insignificant change Insignificant change to population size Insignificant change to the rate of increase are at the maximum acceptable level. Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics of TEP species. 2. Geographic range Possible detectable range in geographic range up to 25% of original. 2. Geographic range up to 25% of original. 3. Genetic structure No interactions 3. Genetic structure No detectable change in frequency No detectable change in geographic range up to 25% of original. 3. Genetic structure No detectable change in frequency No detectable change in geographic range up to 25% of original. 3. Genetic structure No detectable change in frequency No detectable change in geographic range up to 25% of original. 3. Genetic structure No detectable change in frequency No detectable change in geographic range up to 25% of original. 3. Genetic structure No detectable change in frequency No detectable change in	Sub-component	1	2	3	4	5	6
Almost none are killed. Almost none are killed. Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population. Geographic range Ceographic range. Ceographic range. Ceographic range. Description of the population size and none on dynamics of geographic range. Ceographic range. Coographic range. Coographic range. Coographic range to myoulation. Coordinate meaximum acceptable level. Possible detectable change in geographic range on dynamics of TEP species. Ceographic range. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Coordinate meaximum acceptable level. Change in size/growth rate (r) but minimal impact on population size and none on dynamics of TEP species. Ceographic range. Change in geographic range up to 10% of original. Coordinate meaximum acceptable level. Change in size/growth rate of increase are at the maximum acceptable level. Possible detectable change in geographic range that minimal impact on population range and none on dynamics. Change in geographic range up to 10% of original. Coordinate meaximum acceptable level. Possible detectable change in geographic range that minimal impact on population range and none on dynamics. Change in geographic range up to 10% of original. Coordinate meaximum acceptable fevel. Change in geographic range up to 10% of original. Coordinate meaximum acceptable fevel. Change in geographic range in geographic range up to 10% of original. Selections of state of stocks or time are the maximum acceptable and none on dynamics of TEP species. Change in geographic range up to 10% of original. Selectic structure No detectabl		Negligible	Minor	Moderate	Major	Severe	Intolerable
killed. to population size/growth rate (r). Unlikely to be detectable against background variability for this population. Geographic range No interactions leading to impact on geographic range. Unlikely to be detectable dagainst background variability for this population. Genetic structure Genetic structure No interactions Size/growth rate (r). Unlikely to be detectable change in geographic range. Unlikely to be detectable dagainst background variability for this population. Genetic structure To population area to the maximum acceptable level. Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics of TEP species. 2. Geographic range Possible detectable change in geographic range up to 25% of original. Genetic structure No interactions Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r). Unlikely to be detectable change in geographic range up to 25% of original. Size/growth rate (r) but minimal impact on population range up to 25% of original. Size/growth rate (r) but minimal impact on population range up to 25% of original. Size/growth rate (r) but minimal impact on population range up to 25% of original. Size/growth rate (r) but minimal impact on population range up to 25% of original. Size/growth rate (r) but minimal impact on population range up to 10% of original. Size/growth rate (r) but minimal impact on population range up to 10% of original. Size/growth rate (r) but minimal impact	Population size	1. Population size	1. Population size	1. Population size.	1. Population size	1. Population size	1. Population size
Size/growth rate (r). Unlikely to be detectable against background variability for this population. Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics of TEP species.		Almost none are	Insignificant change	State of reduction on	Affecting recruitment	Local extinctions are	Global extinctions are
Company continue Company continue c		killed.	to population	the rate of increase	state of stocks or	imminent/immediate	imminent/immediate
detectable against background variability for this population. Geographic range No interactions leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Genetic structure No interactions A. Genetic structure No detectable against background variability for this population. Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics of TEP species. 2. Geographic range No detectable change in geographic range or geographic range up to 25% of original. Possible detectable change in geographic range or geographic range up to 10% of original. Possible detectable change in geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 5 % of original. Possible detectable change in geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 5 % of original. Senetic structure No detectable change or geographic range up to 5 % of original. Senetic structure No detectable change or geographic range up to 5 % of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original. Senetic structure No detectable change or geographic range up to 10% of original				are at the maximum	their capacity to		
background variability for this population. Change in size/ growth rate (r) but minimal impact on population size and none on dynamics of TEP species. Ceographic range No interactions leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Cenetic structure Senetic structure No interactions A Genetic structure No interactions Senetic structure No interactions A Genetic structure No detectable change in geographic range and none on dynamics. Change in geographic range up to 5 % of original. Change in size/ growth rate (r) but minimal impact on population range and none on dynamics of TEP species. Change in geographic range Change in geographic range up to 10% of original. Change in geographic range change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 5 % of original. Senetic structure No detectable change in geographic range up to 5 % of original. Senetic structure No detectable change in geographic range up to 5 % of original. Senetic structure No detectable change in geographic range up to 5 % of original. Senetic structure No detectable change in geographic range up to 5 % of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Sene			_	acceptable level.	increase.		
variability for this population. Geographic range No interactions leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Genetic structure Senetic structure No interactions Variability for this population. Senetic structure Variability for this population. Senetic structure Variability for this population. Senetic structure Variability for this population. Segographic range Variability for this population size and none on dynamics of TEP species. Segographic range Variability for this population size and none on dynamics of TEP species. Segographic range Change in geographic range up to 25% of original. Variability for this population size and none on dynamics of TEP species. Segographic range Change in geographic range up to 10% of original. Variability for this geographic range up to 25% of original. Senetic structure No detectable change Variability for this population size and none on dynamics of TEP species. Segographic range Change in geographic range up to 10% of original. Senetic structure No detectable change No detectable change in geographic range up to 5% of original. Senetic structure No detectable change No detectable change in geographic range up to 5% of original. Senetic structure Moderate change in frequency			<u> </u>				
Population Pop			<u> </u>				
Description of the population size and none on dynamics of TEP species.			•	, ,			
Caraphic range Change in geographic range leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Caraptic structure No interactions Senetic structure No interactions No detectable change in geographic range Change in geographic range Change in geographic range Change in geographic range Change in geographic range up to 10% of original. Change i			population.				
TEP species. Tex species. TEP species. Tex species. Tex species Tex species. Tex species Tex speci							
Caeographic range No interactions leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Canographic structure No interactions Senetic structure No interactions Caeographic range Change in geographic range up to 25% of original. Caeographic range Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in frequency Cha							
No interactions leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Genetic structure No detectable change in geographic range. Unlikely to be detectable against background variability for this population. Genetic structure No interactions No detectable change in geographic range up to 25% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original. Senetic structure No detectable change in geographic range up to 10% of original.							
leading to impact on geographic range. Unlikely to be detectable against background variability for this population. Genetic structure No interactions In geographic range. Unlikely to be detectable against background variability for this population. Senetic structure No detectable change In geographic range. Change in geographic range up to 10% of original. Change in geographic range up to 10% of original. In geographic range up to 25% of original. Senetic structure Possible detectable Change in geographic range up to 10% of original. Senetic structure Possible detectable Change in frequency Trange up to 25% of original. Senetic structure Possible detectable Change in frequency Change in frequency Change in frequency	Geographic range	0 -		0 1			
geographic range. Unlikely to be detectable against background variability for this population. Genetic structure No interactions Unlikely to be detectable against background variability for this population. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range but minimal impact on population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. Change in geographic range up to 5 % of original. The population range and none on dynamics. The populati					C		0 0 1
detectable against background range and none on variability for this population. Genetic structure No interactions detectable against background range and none on dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change 3. Genetic structure No detectable change impact on population range and none on dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change No detectable change impact on population range and none on dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change in frequency No detectable change in frequency						<u> </u>	
background variability for this population. Genetic structure No interactions background variabelity for this population. range and none on dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change Background variability for this geographic range up to 5 % of original. 3. Genetic structure No detectable change Background variability for this geographic range up to 5 % of original. 3. Genetic structure No detectable change Background variability for this geographic range up to 5 % of original. 3. Genetic structure No detectable change Background variability for this geographic range up to 5 % of original. 3. Genetic structure No detectable change No detectable change No detectable change No detectable change in frequency No detectable change in frequency No detectable change in frequency		geographic range.	-		to 10% of original.	original.	original.
variability for this population. Genetic structure No interactions variability for this population. dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change Senetic structure No detectable change Variability for this population. dynamics. Change in geographic range up to 5 % of original. 3. Genetic structure No detectable change No detectable change Variability for this geographic range up to 5 % of original. 3. Genetic structure No detectable change in frequency			\mathcal{C}				
population. geographic range up to 5 % of original. Genetic structure No interactions population. geographic range up to 5 % of original. 3. Genetic structure Possible detectable No detectable change population. geographic range up to 5 % of original. 3. Genetic structure Possible detectable Moderate change in Change in frequency Change in frequency			<u> </u>				
Genetic structure No interactions To 5 % of original. to 5 % of original. 3. Genetic structure No detectable change To 5 % of original. 3. Genetic structure Possible detectable No detectable			•				
Genetic structure No interactions 3. Genetic structure No detectable change Senetic structure No detectable change Senetic structure No detectable change Senetic structure No detectable change in change in frequency Senetic structure No detectable change in frequency			population.				
No interactions No detectable change Possible detectable Moderate change in Change in frequency Change in frequency	Canatia atmustuma	2 Canatia atmustuma	2 Constinutura	U	2 Constinutum	2 Canatia atumatuma	2 Canatia atmustuma
	Geneuc structure						
Caung to impact on in genetic structure. change in genetic genetic structure. or genotypes. or genotypes.			_				
			- C		<u> </u>	0 11	effective population
detectable against impact at population of genotypes, size or number of size or number of		genetic structure.	_		1 0		1 1
			<u> </u>				spawning units up to
variability for this frequency of size or number of 25%.			C				
population. genotypes, effective spawning units up to			•	1 *		2570.	25 /0.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
			population size or	10%.		
			number of spawning			
			units up to 5%.			
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex				
	structure	structure	structure	structure	structure	structure
	No interactions	No detectable change	Possible detectable	Detectable change in	Severe change in	Impact adversely
	leading to change in	in age/size/sex	change in	age/size/sex	age/size/sex structure.	affecting population
	age/size/sex	structure. Unlikely to	age/size/sex structure	structure. Impact on	Impact adversely	dynamics. Time to
	structure.	be detectable against	but minimal impact	population dynamics	affecting population	recover to original
		background	on population	at maximum	dynamics. Time to	structure > 10
		variability for this	dynamics.	sustainable level,	recover to original	generations free from
		population.	•	long-term	structure up to 5	impact
				recruitment dynamics	generations free from	-
				not adversely	impact	
				damaged.	•	
Reproductive capacity	5. Reproductive	5. Reproductive				
	capacity	capacity	capacity	capacity	capacity	capacity
	No interactions	No detectable change	Possible detectable	Detectable change in	Change in	Change in
	resulting in change to	in reproductive	change in	reproductive	reproductive capacity,	reproductive capacity,
	reproductive	capacity. Unlikely to	reproductive capacity	capacity, impact on	impact adversely	impact adversely
	capacity.	be detectable against	but minimal impact	population dynamics	affecting recruitment	affecting recruitment
		background	on population	at maximum	dynamics. Time to	dynamics. Time to
		variability for this	dynamics.	sustainable level,	recover to original	recover to original
		population.		long-term	structure up to 5	structure > 10
				recruitment dynamics	generations free from	generations free from
				not adversely	impact	impact
				damaged.		
Behaviour/movement	6. Behaviour/	6. Behaviour/				
	movement	movement	movement	movement	movement	movement
	No interactions	No detectable change	Possible detectable	Detectable change in	Change in behaviour/	Change in behaviour/
	resulting in change to	in behaviour/	change in behaviour/	behaviour/ movement	movement, impact	movement. Impact
	behaviour/	movement. Time to	movement but	with the potential for	adversely affecting	adversely affecting
	movement.	return to original	minimal impact on	some impact on	population dynamics.	population dynamics.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
		behaviour/ movement	population dynamics.	population dynamics.	Time to return to	Time to return to
		on the scale of hours.	Time to return to	Time to return to	original behaviour/	original behaviour/
			original behaviour/	original behaviour/	movement on the	movement on the
			movement on the	movement on the	scale of months to	scale of years to
			scale of days to	scale of weeks to	years.	decades.
			weeks	months		
Interaction with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with
fishery	fishery	fishery	fishery	fishery	fishery	fishery
	No interactions with	Few interactions and	Moderate level of	Major interactions	Frequent interactions	Frequent interactions
	fishery.	involving up to 5%	interactions with	with fishery,	involving ~ 50% of	involving the entire
		of population.	fishery involving up	interactions and	population.	known population
			to 10 % of population.	involving up to 25%		negatively affecting
				of population.		the viability of the
						population.

Table 5D. Habitats. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for habitats. Note that for sub-components Habitat types and Habitat structure and function, time to recover from impact scales differ from substrate, water and air. Rationale: structural elements operate on greater timeframes to return to pre-disturbance states.

(Modified from Fletcher et al. 2002)

			Score/level			
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality
	Reduction in the	Detectable impact on	More widespread	The level of	Severe impact on	The dynamics of the
	productivity (similar	substrate quality. At	effects on the	reduction of internal	substrate quality with	entire habitat is in
	to the intrinsic rate of	small spatial scale	dynamics of substrate	dynamics of habitats	50 - 90% of the	danger of being
	increase for species)	time taken to recover	quality but the state	may be larger than is	habitat affected or	changed in a major
	on the substrate from	to pre-disturbed state	are still considered	sensible to ensure that	removed by the	way, or $> 90\%$ of
	the activity is	on the scale of days	acceptable given the	the habitat will not be	activity which may	habitat destroyed.
	unlikely to be	to weeks, at larger	percent area affected,	able to recover	seriously endanger its	
	detectable. Time	spatial scales	the types of impact	adequately, or it will	long-term survival	
	taken to recover to	recovery time of	occurring and the	cause strong	and result in changes	
	pre-disturbed state on	hours to days.	recovery capacity of	downstream effects	to ecosystem	
	the scale of hours.		the substrate. For	from loss of function.	function. Recovery	
			impacts on non-	Time to recover from	period measured in	
			fragile substrates this	local impact on the	years to decades.	
			may be for up to 50% of habitat affected,	scale of months to		
			· · · · · · · · · · · · · · · · · · ·	years, at larger spatial scales recovery time		
			but for more fragile habitats, e.g. reef	of weeks to months.		
			substrate, to stay in	of weeks to months.		
			this category the %			
			area affected needs to			
			be smaller up to 25%.			
Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality
• •	No direct impact on	Detectable impact on	Moderate impact on	Time to recover from	Impact on water	The dynamics of the
	water quality. Impact	water quality. Time	water quality. Time	local impact on the	quality with 50 - 90%	entire habitat is in
	unlikely to be	to recover from local	to recover from local	scale of months to	of the habitat affected	danger of being
	detectable. Time	impact on the scale of	impact on the scale of	years, at larger spatial	or removed by the	changed in a major
	taken to recover to	days to weeks, at	weeks to months, at	scales recovery time	activity which may	way, or > 90% of

			Score/level			
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
	pre-disturbed state on	larger spatial scales	larger spatial scales	of weeks to months.	seriously endanger its	habitat destroyed.
	the scale of hours.	recovery time of	recovery time of days		long-term survival	
		hours to days.	to weeks.		and result in changes	
					to ecosystem	
					function. Recovery	
					period measured in	
					years to decades.	
Air quality	3. Air quality No direct impact on air quality. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours.	3. Air quality Detectable impact on air quality. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of hours to days.	3. Air quality Detectable impact on air quality. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time of days to weeks.	3. Air quality Time to recover from local impact on the scale of months to years, at larger spatial scales recovery time of weeks to months.	3. Air quality Impact on air quality with 50 - 90% of the habitat affected or removed by the activity .which may seriously endanger its long-term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	3. Air quality The dynamics of the entire habitat is in danger of being changed in a major way, or > 90% of habitat destroyed.
Habitat types	4. Habitat types No direct impact on habitat types. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours to days.	4. Habitat types Detectable impact on distribution of habitat types. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of days to months.	4. Habitat types Impact reduces distribution of habitat types. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time of months to < one year.	4. Habitat types The reduction of habitat type areal extent may threaten ability to recover adequately, or cause strong downstream effects in habitat distribution and extent. Time to recover from impact on the scale of > one year to < decadal	4. Habitat types Impact on relative abundance of habitat types resulting in severe changes to ecosystem function. Recovery period likely to be > decadal	4. Habitat types The dynamics of the entire habitat is in danger of being changed in a catastrophic way. The distribution of habitat types has been shifted away from original spatial pattern. If reversible, will require a long-term recovery period, on

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
				timeframes.		the scale of decades
						to centuries.
Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure
and function	and function	and function	and function	and function	and function	and function
	No detectable change	Detectable impact on	Impact reduces	The level of	Impact on habitat	The dynamics of the
	to the internal	habitat structure and	habitat structure and	reduction of internal	function resulting	entire habitat is in
	dynamics of habitat	function. Time to	function. For impacts	dynamics of habitat	from severe changes	danger of being
	or populations of	recover from impact	on non-fragile habitat	may threaten ability	to internal dynamics	changed in a
	species making up the	on the scale of days	structure this may be	to recover adequately,	of habitats. Time to	catastrophic way
	habitat. Time taken to	to months, regardless	for up to 50% of	or it will cause strong	recover from impact	which may not be
	recover to pre-	of spatial scale	habitat affected, but	downstream effects	likely to be >	reversible. Habitat
	disturbed state on the		for more fragile	from loss of function.	decadal.	losses occur. Some
	scale of hours to		habitats, to stay in	For impacts on non-		elements may remain
	days.		this category the %	fragile habitats this		but will require a
			area affected needs to	may be for up to 50%		long-term recovery
			be smaller up to 20%.	of habitat affected,		period, on the scale
			Time to recover from	but for more fragile		of decades to
			local impact on the	habitats, to stay in		centuries.
			scale of months to <	this category the %		
			one year, at larger	area affected up to		
			spatial scales	25%. Time to recover		
			recovery time of	from impact on the		
			months to < one year.	scale of > one year to		
				< decadal timeframes.		

Table 5E. Communities. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for communities.

(Modified from Fletcher et al. 2002)

,	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Species	1. Species	1. Species	1. Species	1. Species composition	1. Species	1. Species
composition	composition	composition	composition	Major changes to the	composition	composition
	Interactions may be	Impacted species do	Detectable changes	community species	Change to	Total collapse of
	occurring which	not play a keystone	to the community	composition (~25%)	ecosystem structure	ecosystem processes.
	affect the internal	role – only minor	species composition	(involving keystone species)	and function.	Long-term recovery
	dynamics of	changes in relative	without a major	with major change in	Ecosystem dynamics	period required, on
	communities leading	abundance of other	change in function	function. Ecosystem	currently shifting as	the scale of decades
	to change in species	constituents.	(no loss of	function altered measurably	different species	to centuries
	composition not	Changes of species	function). Changes	and some function or	appear in fishery.	
	detectable against natural variation.	composition up to 5%.	to species composition up to	components are locally missing/declining/increasin	Recovery period measured in years to	
	naturar variation.	370.	10%.	g outside of historical range	decades.	
			1070.	and/or allowed/facilitated	decades.	
				new species to appear.		
				Recovery period measured		
				in years.		
Functional group	2. Functional	2. Functional	2. Functional	2. Functional group	2. Functional group	2. Functional group
composition	group composition	group composition	group composition	composition	composition	composition
	Interactions which	Minor changes in	Changes in relative	Ecosystem function altered	Ecosystem dynamics	Ecosystem function
	affect the internal	relative abundance	abundance of	measurably and some	currently shifting,	catastrophically
	dynamics of	of community	community	functional groups are	some functional	altered with total
	communities leading	constituents up to	constituents, up to	locally	groups are missing	collapse of
	to change in	5%.	10% chance of	missing/declining/increasin	and new	ecosystem processes.
	functional group		flipping to an	g outside of historical range	species/groups are	Recovery period
	composition not		alternate state/	and/or allowed/facilitated	now appearing in the	measured in decades
	detectable against natural variation.		trophic cascade.	new species to appear. Recovery period measured	fishery. Recovery period measured in	to centuries.
	ilaturar variatioil.			in months to years.	years to decades.	
				in months to years.	years to decades.	

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Distribution of the community	3. Distribution of the community Interactions which affect the distribution of communities unlikely to be detectable against natural variation.	3. Distribution of the community Possible detectable change in geographic range of communities but minimal impact on community dynamics change in geographic range up to 5 % of original.	3. Distribution of the community Detectable change in geographic range of communities with some impact on community dynamics Change in geographic range up to 10 % of original.	3. Distribution of the community Geographic range of communities, ecosystem function altered measurably and some functional groups are locally missing/declining/increasin g outside of historical range. Change in geographic range for up to 25 % of the species. Recovery period measured in months to years.	3. Distribution of the community Change in geographic range of communities, ecosystem function altered and some functional groups are currently missing and new groups are present. Change in geographic range for up to 50 % of species including keystone species. Recovery period	3. Distribution of the community Change in geographic range of communities, ecosystem function collapsed. Change in geographic range for >90% of species including keystone species. Recovery period measured in decades to centuries.
Trophic/size structure	4. Trophic/size structure Interactions which affect the internal dynamics unlikely to be detectable against natural variation.	4. Trophic/size structure Change in mean trophic level, biomass/ number in each size class up to 5%.	4. Trophic/size structure Changes in mean trophic level, biomass/ number in each size class up to 10%.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function altered measurably and some function or components are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years to decades.	measured in years to decades. 4. Trophic/size structure Changes in mean trophic level. Ecosystem function severely altered and some function or components are missing and new groups present. Recovery period measured in years to decades.	4. Trophic/size structure Ecosystem function catastrophically altered as a result of changes in mean trophic level, total collapse of ecosystem processes. Recovery period measured in decades to centuries.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Bio-geochemical	5. Bio- and	5. Bio- and	5. Bio- and	5. Bio- and geochemical	5. Bio- and	5. Bio- and
cycles	geochemical cycles	geochemical cycles	geochemical cycles	cycles	geochemical cycles	geochemical cycles
	Interactions which	Only minor changes	Changes in relative	Changes in relative	Changes in relative	Ecosystem function
	affect bio- &	in relative	abundance of other	abundance of constituents	abundance of	catastrophically
	geochemical cycling	abundance of other	constituents leading	leading to major changes to	constituents leading	altered as a result of
	unlikely to be	constituents leading	to minimal changes	bio- & geochemical cycling,	to Severe changes to	community changes
	detectable against	to minimal changes	to bio- &	up to 25%.	bio- & geochemical	affecting bio- and
	natural variation.	to bio- &	geochemical		cycling. Recovery	geo- chemical
		geochemical cycling	cycling, up to 10%.		period measured in	cycles, total collapse
		up to 5%.			years to decades.	of ecosystem
						processes. Recovery
						period measured in
						decades to centuries.