

Australian Government

Australian Fisheries Management Authority

Ecological Risk Assessment for Effects of Fishing

REPORT FOR THE DEMERSAL TRAWL SUB-FISHERY OF THE MACQUARIE ISLAND FISHERY

Authors

Ross Daley Catherine Bulman Dave Stevenson Alistair Hobday Miriana Sporcic Mike Fuller

www.afma.gov.au

Protecting our fishing future

R04/1072 | 28/06/2007

AFMA Direct 1300 723 621

This work is copyright. Except as permitted under the *Copyright Act 1968* (*Commonwealth*), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or AFMA. Neither may information be stored electronically in any form whatsoever without such permission.

This fishery Ecological Risk Assessment report should be cited as:

Daley, R., Bulman, C, Stevenson, D., Hobday, A., Sporcic, M., and Fuller, M. (2007). Ecological Risk Assessment for the Effects of Fishing: Report of the Demersal Trawl Sub-fishery for the Macquarie Island Fishery. Report for the Australian Fisheries Management Authority, Canberra.

This work is copyright. Except as permitted under the *Copyright Act 1968* (*Commonwealth*), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or AFMA. Neither may information be stored electronically in any form whatsoever without such permission.

Notes to this document:

This fishery ERA report contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:

Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker (2007). Ecological Risk Assessment for the Effects of Fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

Thus, table and figure numbers within the fishery ERA report are not sequential as not all are relevant to the fishery ERA report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker. (2007). Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

Executive Summary

This assessment of the ecological impacts of the Heard and McDonald Islands Midwater Trawl Fishery was undertaken using the ERAEF method version 9.2. ERAEF stands for "Ecological Risk Assessment for Effect of Fishing", and was developed jointly by CSIRO Marine and Atmospheric Research, and the Australian Fisheries Management Authority. ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five ecological components – target species; by-product and by-catch species; threatened, endangered and protected (TEP) species; habitats; and (ecological) communities.

i

ERAEF proceeds through four stages of analysis: scoping; an expert judgement based Level 1 analysis (SICA – Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA – Productivity Susceptibility Analysis); and a model based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery can be thought of as a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at high risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out whole ecological components as well. Level 2 is a screening or prioritization process for individual species, habitats and communities at risk from direct impacts of fishing. The Level 2 methods do not provide absolute measures of risk. Instead they combine information on productivity and exposure to fishing to assess potential risk - the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

This assessment of the Macquarie Island Demersal Trawl Fishery includes the following:

- Scoping
- Level 1 results for all components
- Level 2 results for the three species components.

Fishery Description

Gear:	Demersal trawl (120 mm)
Area:	Macquarie Island Fishery
Depth range:	400-1000m
Fleet size:	1 vessel
Effort:	variable up to 120 shots per year
Landings:	243 t across both areas (Aurora Trough and Macquarie Ridge) in
	2005/6. Total of 721 t across both areas (1/2001-6/2006) of which
	119 t research quota.
Discard rate:	2 t of bycatch (usually retained, mealed and discarded onshore)
	across both areas in $2005/6$
	Total of 14.1 t (~2%) across both areas $(1/2001-6/2006)$
Main target species:	Patagonian toothfish
Management:	Quota management system for 1 species and bycatch limit 200 tonnes on all other species/groups
Observer program:	observer program operating since beginning of fishery

Ecological Units Assessed

Target species:	1
Byproduct species:	74
Bycatch (Discard) Species:	3
TEP species:	90
Habitats:	-
Communities:	2

Level 1 Results

No ecological components were eliminated at Level 1 (consequence score \geq 3 for at least one activity).

Consequence (risk) scores were between 1-3 across all 32 hazards (fishing activities) and four ecological components assessed.

Those hazards with moderate risk scores of three were:

• Fishing (direct impact with capture on target species, byproduct/bycatch species and community components)

Fishing (direct impact with capture) scored as major risk (=4) to TEP species. No external hazards (consequence score \geq 3) were scored. No other risks rated as major or above (risk scores 4 or 5) were scored.

Habitats for this fishery are not currently assessed using most recent ERAEF methodology due to the quality of available habitat data. Existing Macquarie Island data includes a few CMAR survey images of low quality and restricted distribution, some associated survey descriptions, geomorphic unit mapping, and a few references to

invertebrate taxa from bycatch lists. This data is considered to be of limited value at this stage in characterizing both the range of possible benthic habitats that occur within the jurisdictional boundary of the MIF and the associated risk of those habitats to demersal trawling within this region. Application of the existing habitat data from Australian waters including Tasman Rise is not considered an acceptable alternative.

Impacts from fishing on all species components were assessed in more detail at Level 2.

Level 2 Results

A total of 168 species were subsequently considered at level 2, of which expert over rides were used on 106 species. Of the 42 species assessed to be at high risk, 36 had more than 3 missing attributes.

Target species

The single target species was assessed to be at potentially high risk but this species has had detailed Level 3 assessments and is under comprehensive and precautionary management plans.

Byproduct species

A larger than expected number of byproduct species was evaluated as high risk (40 species). However most of these species are fishes that are caught in only small quantities. These high risk scores are likely to reflect uncertainty – missing information; most importantly the poorly documented taxonomy and distribution of fish species in the region. The species that were most likely to be at genuine high risk within this group were whiptails and southern flounders. However none of these species have particularly low productivity and whiptails are the only byproduct fish species caught in significant quantities.

A significant amount coral and of benthic invertebrates had been recorded in the byproduct/bycatch suggesting that habitats need assessment. These are generally not resolved to species but the families recorded represent tube anemones, black corals, fan corals and thorny corals. The invertebrate fauna of the region is poorly known but is likely to include long-lived corals, similar to those present on seamounts around southern Tasmania. The coral on some of these seamounts has been reduced and has not recovered after 10 years. These corals are difficult to age but some cold water corals are thought to live to 100 years.

Bycatch (discards)

The sleeper shark, a species of deepwater dogfish, is the main bycatch species. Other species of deepwater dogfish have annual fecundity of less than 1. There are broad concerns for deepwater dogfish, both domestically and internationally. The sleeper shark stands out because of its large size. This means that a relatively small number of individuals contribute to the overall biomass. Studies of other deepwater dogfishes, blue sharks and white sharks suggest survival rates of released sharks are around 50%. There have been studies of sleeper sharks in the region but they do not include yield estimates.

TEP Species

Only two TEP species were assessed as high risk. The white chinned petrel is an aggressive bird that dives on baits and has interacted with vessels in the fishery resulting in death. The wandering albatross has not been captured in the sub-fishery, but has a limited population size on Macquarie Island (40 birds). Even if one bird were captured it would comprise 2% of the population. In fact any level of harvest of this population presents significant risk given that it is recovering from depletion from external (to the MIF trawl fishery) influences. Closely related species, including shy albatross, have been killed by warp wires in trawl fisheries around continental Australia as recorded in observer data.

<u>Habitats</u> Not assessed.

Communities

The community component was not assessed at Level 2 for this sub-fishery, but should be considered in future assessments when the methods to do this are fully developed.

Summary

Seabird interactions have to date been considered the principle ecological risk for the Macquarie Island trawl fishery for Patagonian toothfish and this is likely to remain an important ecological issue because of the particularly low number of wandering albatross on Macquarie Island. The level of observer coverage in the fishery is best practice among Australian fisheries for ensuring compliance with mitigation measures to protect seabirds. There are opportunities to improve the collation and availability of observer data so that it can also be used to evaluate and improve the effectiveness of mitigation measures through adaptive management.

Another issue highlighted in this ERAEF assessment is concern for sleeper sharks. This concern will be best addressed across both the line and demersal trawl sub-fisheries.

Another issue is our poor knowledge of the fish taxonomy and biogeography of the area. The fish fauna of the region has been studied but the documentation of these studies is incomplete.

The remaining issue to emerge from the level 2 analysis of bycatch species is the impact of the trawl gear on benthic invertebrates. This suggests that assessment of habitats should be a priority.

Managing identified risks

Using the results of the ecological risk assessment, the next steps for each fishery will be to consider and implement appropriate management responses to address these risks. To ensure a consistent process for responding to the ERA outcomes, AFMA has developed an Ecological Risk Management (ERM) framework.

TABLE OF CONTENTS

Executive Summary	i
1. Overview	1
Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework	1
The Hierarchical Approach	
Conceptual Model	
ERAEF stakeholder engagement process	
Scoping	
Level 1. SICA (Scale, Intensity, Consequence Analysis)	
Level 2. PSA (Productivity Susceptibility Analysis)	
Level 3	
Conclusion and final risk assessment report	
Subsequent risk assessment iterations for a fishery	
2. Results	
2.1 Stakeholder Engagement	
2.1 Stakeholder Engagement	
2.2.1 General Fishery Characteristics (Step 1).	
2.2.2 Unit of Analysis Lists (Step 2)	
2.2.4 Hazard Identification (Step 4)	
2.2.5 Bibliography (Step 5)	
2.2.6 Decision rules to move to Level 1(Step 6)	
2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)	
2.3.1 Record the hazard identification score (absence (0) presence (1) scores)	
identified at step 3 in the scoping level onto the SICA Document (Step 1)	
2.3.2 Score spatial scale of activity (Step 2)	
2.3.3 Score temporal scale of activity (Step 3)	
2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)	
2.3.5 Choose the unit of analysis most likely to be affected by activity and to h	
highest consequence score (Step 5)	
2.3.6 Select the most appropriate operational objective (Step 6)	
2.3.7 Score the intensity of the activity for the component (Step 7)	
2.3.8 Score the consequence of intensity for that component (Step 8)	
2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)	
2.3.10 Document rationale for each of the above steps (Step 10)	52
2.3.11 Summary of SICA results	
2.3.12 Evaluation/discussion of Level 1	
2.3.13 Components to be examined at Level 2	87
2.4 Level 2 Productivity and Susceptibility Analysis (PSA)	88
2.4.1 Units excluded from analysis and document the reason for exclusion (Ste	ep 1)
	92
2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3)	95
2.4.4 PSA Plot for individual units of analysis (Step 4)	118
2.4.5 Uncertainty analysis ranking of overall risk (Step 5)	
2.4.6 Evaluation of the PSA results (Step 6)	125
2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)	
2.4.8 High/Medium risk categorisation (Step 8)	
2.5 Level 3	
3. General discussion and research implications	
3.1 Level 1	
· · · · · · · · · · · · · · · · · · ·	

3.2 Level 2	132
3.2.1 Species at risk	
3.2.2 Habitats at risk	134
3.2.3 Community assemblages at risk	
3.3 Key Uncertainties / Recommendations for Research and Monitoring	
References	
Glossary of Terms	139
Appendix A: General summary of stakeholder feedback	
Appendix B: PSA results - summary of stakeholder discussions	
Appendix C: SICA consequence scores for ecological components	145

Fishery ERA report documents to be completed

List of Summary documents

2.	1 Summary	Document SI	D1. Summary	of stakeholder	involvement for	or fishery	6

List of Scoping documents

Scoping Document S1 General Fishery Characteristics	7
Scoping Document S2A Species	18
Scoping Document S2B1 & 2. Habitats	
Scoping Document S2C1. Demersal Communities	27
Scoping Document S2C2. Pelagic Communities	29
Scoping Document S3 Components and Sub-components Identification of Objectives	
Scoping Document S4. Hazard Identification Scoring Sheet	42

List of Level 1 (SICA) documents

2.3.1 Level 1 (SICA) Documents	53
L1.1 - Target Species Component	
L1.2 - Byproduct and Bycatch Component	60
L1.3 – TEP Species Component	
L1.5 – Community Component	
Level 1 (SICA) Document L1.6. Summary table of consequence scores for all	
activity/component combinations.	83

List of Level 2 (PSA) documents

Level 2 PSA results	
Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion	regarding PSA
results	

List of figures

Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in	
italics	. 1
Figure 2. Generic conceptual model used in ERAEF.	2
Target species: Frequency of consequence score differentiated between high and low	
confidence	84
Byproduct and bycatch species: Frequency of consequence score differentiated betwee	en
high and low confidence.	84
TEP species: Frequency of consequence score differentiated between high and low	
confidence (SICA excel workbook)	85
Communities: Frequency of consequence score differentiated between high and low	
confidence (SICA excel workbook).	85
Figure 13. The axes on which risk to the ecological units is plotted.	91
PSA plot for target species	18
PSA plot for byproduct species	19
PSA plot for discards/bycatch species	19
PSA plot for TEP species	20
Figure 17. Overall risk values in the PSA plot	20

Species: Overall uncertainty distribution - frequency of missing information for the	
combined productivity and susceptibility attributes	122
Frequency distribution of the overall risk values generated for the 165 units in the	
Macquarie Island trawl fishery PSA.	124
PSA plot for all species in the Macquarie Island trawl fishery. Species in the upper ri	ght
of the plot are at highest risk	124

List of tables

Table 4. Examples of fishing activities (Modified from Fletcher et al. 2002)	.44
Summary of the success of obtaining information on the set of productivity and	
susceptibility attributes for the species	122
Correlation matrix for the species productivity attributes	123
Correlation matrix for the four species susceptibility attributes	123
Summary of average productivity, susceptibility and overall risk scores	125
PSA risk categories for each species component	126
PSA risk categories for each taxa.	126
Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding	,
PSA results.	144
Table C1. Target Species. Description of consequences for each component and each	
sub-component1	145
Table C2. Bycatch and Byproduct species. Description of consequences for each	
component and each sub-component	148
Table C3. TEP species. Description of consequences for each component and each	
sub-component1	151
Table C4. Habitats. Description of consequences for each component and each sub-	-
component1	154
Table C5. Communities. Description of consequences for each component and each	1
sub-component1	157

1. Overview

Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative "model-based" approach at Level 3 (**Figure 1**). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in italics.

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological

components are evaluated, corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under EPBC legislation. The five *components* are:

- Target species
- By-product and by-catch species
- Threatened, endangered and protected species (TEP species)
- Habitats
- Ecological communities

This conceptual model (**Figure 2**) progresses from *fishery characteristics* of the fishery or sub-fishery, \rightarrow *fishing activities* associated with fishing and *external activities*, which may impact the five ecological components (target, byproduct and bycatch species, TEP species, habitats, and communities); \rightarrow *effects of fishing and external activities* which are the <u>direct</u> impacts of fishing and external activities; \rightarrow *natural processes and resources* that are affected by the impacts of fishing and external activities; \rightarrow *subcomponents* which are affected by impacts to natural processes and resources; \rightarrow *components*, which are affected by impacts to the sub-components. Impacts to the subcomponents and components in turn affect achievement of management objectives.

Figure 2. Generic conceptual model used in ERAEF.

The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

A full description of the ERAEF method is provided in the methodology document (Hobday et al 2006). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

- 1. <u>Identification of units of analysis</u> (species, habitats and communities) potentially impacted by fishery activities (section 2.2.2; Scoping Documents S2A, S2B and S2C).
- 2. <u>Selection of objectives</u> (section 2.2.3; Scoping Document S3) is a challenging part of the assessment, because these are often poorly defined, particularly with regard to the habitat and communities components. Stakeholder involvement is necessary to agree on the set of objectives that the risks will be evaluated against. A set of preliminary objectives relevant to the sub-components is selected by the drafting authors, and then presented to the stakeholders for modification. An agreed set of objectives is then used in the Level 1 SICA analysis. The agreement of the fishery management advisory body (e.g. the MAC, which contains representatives from industry, management, science, policy and conservation) is considered to represent agreement by the stakeholders at large.
- 3. <u>Selection of activities</u> (hazards) (section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was developed following extensive review, and allows repeatability between fisheries. Additional activities raised by the stakeholders can be

included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalize the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholder-agreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) can be undertaken in a workshop situation, or prepared ahead by the draft fishery ERA report author and debated at the stakeholder meeting. Because of the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high risk elements. The rationale for each SICA element must be documented and this may represent a challenge in the workshop situation. Documenting the rationale ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

Level 2. PSA (Productivity Susceptibility Analysis)

The semi-quantitative nature of this analysis tier should reduce but not eliminate the need for stakeholder involvement. In particular, transparency about the assessment will lead to greater confidence in the results. The components that were identified to be at moderate or greater risk (SICA score > 2) at Level 1 are examined at Level 2. The units of analysis at Level 2 are the agreed set of species, habitat types or communities in each component identified during the scoping stage. A comprehensive set of attributes that are proxies for productivity and susceptibility have been identified during the ERAEF project. Where information is missing, the default assumption is that risk will be set high. Details of the PSA method are described in the accompanying ERAEF Methods Document. Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. The attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without full stakeholder involvement. This is a consultation of the published scientific literature. Further stakeholder input is required when the preliminary gathering of attribute values is completed. In particular, where information is missing, expert opinion can be used to derive the most reasonable conservative estimate. For example, if the species attribute values for annual fecundity have been categorized as low, medium and high on the set [<5, 5-500, >500], estimates for species with no data can still be made. Estimated fecundity of a species such as a broadcast-spawning fish with unknown fecundity, is still likely greater than the cut-off for the high fecundity categorization (>500). Susceptibility attribute estimates, such as "fraction alive when landed", can also be

made based on input from experts such as scientific observers. The final PSA is completed by scientists because access to computing resources, databases, and programming skills is required. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final results are then presented to the stakeholder group before decisions regarding Level 3 are made. The stakeholder group may also decide on priorities for analysis at Level 3.

Level 3

This stage of the risk assessment is fully-quantitative and relies on in-depth scientific studies on the units identified as at medium or greater risk in the Level 2 PSA. It will be both time and data-intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process will result in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including addressing the requirements of the EPBC Act as evaluated by Department of the Environment and Heritage.

Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be re-evaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Each fishery ERA report will be revised at least every four years or as required by Strategic Assessment. However, to ensure that actions in the intervening period do not unduly increase ecological risk, each year certain criteria will be considered. At the end of each year, the following trigger questions should be considered by the MAC for each sub-fishery.

- Has there been a change in the spatial distribution of effort of more than 50% compared to the average distribution over the previous four years?
- Has there been a change in effort in the fishery of more than 50% compared to the four year average (e.g. number of boats in the fishery)?
- Has there been an expansion of a new gear type or configuration such that a new sub-fishery might be defined?

• Responses to these questions should be tabled at the relevant fishery MAC each year and appear on the MAC calendar and work program. If the answer to any of these trigger questions is yes, then the sub-fishery should be re-evaluated.

2. Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the AFZ. The fishery may also be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond, is specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/sub-fishery may include any combination of commercial, recreational, and/or indigenous fishers.

2.1 Stakeholder Engagement

Fishery ERA report stage	Type of stakeholder interaction	Date of stakeholder interaction	Composition of stakeholder group (names	Summary of outcome
Scoping	Phone calls and email	July-October	or roles) Bob Stanley, AFMA logbook	Provided information for scoping stage of fishery ERA report
			manager. Geoff Tuck, CSIRO	
	Meeting. MSC Icefish review committee general meeting at IASOS	October 27, 2003	MSC Committee, various IASOS staff and students	ERA methods discussed. Agreement to provide some information to the MSC group if request received.
	Email and phone calls	April 20-26, 2004	Campbell Davies led a small group reviewing fishery ERA report	Draft reviewed by AAD scientists. Comments on out dated information and suggestions for additional information made. Experts were identified for additional input. Dick Williams (general expertise) Andrew Constable (general expertise) Tim Lamb (observers) Esmee van Wick (fish by-catch) Graham Robertson and Barbara Wieneke (Sea bird bycatch mitigation) Nick Gales (Marine mammal ecology and fishery interactions)
	Meeting, SAFAG	April 28, 2004	See minutes of meeting	e.g. April 24, feedback on preferred objectives was provided Hazards agreed on.
Level 2 (PSA)	Email and face-to- face	April 2004	Bruce Deagle and AWRU at UTas	Provided some taxa data for diving depths for birds and seals for use in PSA
Scoping	Meeting with AAD	May 2006	Tim Lamb, Dirk Welsford (AAD)	Discussions regarding re-scoping of species and review of original comments of early draft.
Level 2 (PSA)	Email	June 2006	Tim Lamb	Provided information on coral types and information on benthic invertebrate samples
Scoping	Emails and meeting	June 2006	AAD	Feedback on scoping for subfisheries.
Level 1 and 2	Stakeholder meeting	June 2006	AAD, Industry reps, AFMA	ERA methods and results presented. New composition of group and assessment team and methodology, resulted in necessity to revisit initial steps in process-AFMA to clarify. Level 2 not discussed. CSIRO to amend Level 1 and Level 2 where appropriate.

Demersal trawl sub-fishery of the Macquarie Island Fishery

2.1 Summary Document SD1. Summary of stakeholder involvement for fishery

2.2 Scoping

The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed to complete Levels 1 and 2 and at stakeholder meetings. The focus of analysis is the fishery, which may be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. Scoping involves six steps:

Step 1 Documenting the general fishery characteristics
Step 2 Generating "unit of analysis" lists (species, habitat types, communities)
Step 3 Selection of objectives
Step 4 Hazard identification
Step 5 Bibliography
Step 6 Decision rules to move to Level 1

2.2.1 General Fishery Characteristics (Step 1).

The information used to complete this step may come from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents. The level and range of information available will vary. Some fisheries/sub-fisheries will have a range of reliable information, whereas others may have limited information.

Scoping Document S1 General Fishery Characteristics

<u>Sub-fishery Name</u>: Demersal trawl <u>Fishery Name</u>: Macquarie Island Fishery (MIF) <u>Date of assessment</u>: April 2004 (updated June 2006)

	General Fishery Characteristics						
Fishery	Macquarie Island Fishery (MIF)						
Name							
Sub-fisheries	-fisheriesDemersal trawl, midwater trawl						
Sub-fisheries	This report assesses the demersal trawl subfishery.						
assessed							
	The demersal trawl fishery for Patagonian toothfish commenced in November 1994.						
	Prior to this, there are no records of trawl fishing in the area. Fishing generally takes						
	place in spring and summer. The Aurora Trough grounds were established during the						
	first two years. A second set of grounds in the Northern Valleys was established in						
	1996/7 with high catches initially. No other grounds have been established despite						
	extensive prospecting over the Macquarie Ridge. Following the 1998/9 season, the						
	Aurora Trough was closed until 2003/4 season.						
	http://www.afma.gov.au/fisheries/antarctic/default.php						
	The Antarctic Fisheries at Macquarie extend to the limit of the 200 nautical mile AFZ						
	for all species. Macquarie Island is part of the State of Tasmania and is located in the						
·	Southern Ocean about 1,500 kilometres south-east of Hobart. As such, waters						
	surrounding the islands out to a distance of 3 nautical miles are Tasmanian State waters						
	and the Tasmanian Department of Primary Industries, Water and Environment controls						
	fishing in these waters. The Macquarie Island Fishery covers all fishing in						
	Commonwealth waters of the AFZ around the Island, with additional provisions						
	governing activities in the MPA.						

	Area of the Macquarie Island Fishery					
	Maggare Mang					
	SOUTHERN OCEAN					
	Man courses http://www.ofme.cou.ou/fickoriec/mans/default.nhn					
	Map source: http://www.afma.gov.au/fisheries/maps/default.php					
Regions or	Macquarie Island is part of the State of Tasmania and is located in the Southern Ocean					
	about 1,500 kilometres south-east of Hobart. Waters surrounding the islands out to a					
	distance of 3 nautical miles are Tasmanian State waters and the Tasmanian Department					
	of Primary Industries, Water and Environment controls fishing in these waters. The					
	Macquarie Island Fishery covers all fishing in Commonwealth waters of the AFZ around					
	the Island. The Island lies outside the Antarctic convergence.					
	The exact location of the fishing grounds at Macquarie will remain confidential. This is a desirion made by AEMA to protect the interests of the licensed operators in the					
	a decision made by AFMA to protect the interests of the licensed operators in the fishery. There are, however, two main fishing grounds:					
	 Aurora Trough – west of Macquarie Island. Closed in 1998/9 until 2003. 					
	2) Northern Valleys – north of Macquarie Island comprising Colgate Valley,					
	Grand Canyon and the Beer Garden grounds (Williams and Lamb 2001)					
Fishing	Fishing can occur at any time of year – actual fishing time determined by operational					
season	considerations. It is common in spring and summer between the months of October and					
	March, except during 2000, when a fishing voyage was undertaken in July.					
Target	Patagonian toothfish (Dissostichus eleginoides)					
species and	The Patagonian toothfish (<i>Dissostichus eleginoides</i>) is widely distributed throughout					
	large areas of the Antarctic oceans. It is the largest Notothenid with a maximum size					
	greater than 2m. It is a demersal (found at or near the sea bottom) species found at					
	depths up to 2,500 metres, although it is reported to be pelagic (living at or near the					
	ocean surface) throughout some periods of its life (eggs to young juveniles). The fishery					
	is dominated by immature fish < 1100 mm, between 500 and 900 mm.					
	Evidence from tagging and genetic studies suggest that there is very low exchange between the two major stocks despite the highly mobile and predatory nature of the fish					
	and a partially pelagic life history (Reilly <i>et al.</i> 1998 cited in Tuck <i>et al.</i> 2001,					
	Appleyard <i>et al.</i> 2002).					
	Major uncertainties concerning Patagonian toothfish (Dissostichus eleginoides)					
	a) biological aspects including reproductive biology, growth, natural mortality, lifespan,					
	age at maturity, location of spawning grounds					
	b) Distribution of stocks					
	c) Stock size and proportion of fishable abundance					
	d) Genetic transfer between stocks, emigration/immigration rates between stocks					
	e) Spatial and temporal dynamics at Macquarie Island (Tuck <i>et al.</i> 2003)g) Dependence of other predators on Patagonian toothfish as prey items					
	B) Dependence of other predators on ratagonian toothrish as prey items					
L	1					

Bait Collection								
	n/a							
and usage								
Current	Only 1 you	and parmitt	ad to operate in the figh	0774				
entitlements	Only 1 vessel permitted to operate in the fishery.							
	Aurora Trough grounds were closed from 1999 to enable the fishery to recover. A TAC							
	of 40 tonnes to enable the continuation of tagging and monitoring programs was fully							
					lully			
· •			e that the stocks are reco	overing in uns area.				
rends by nethod		outside Auro		d be found on the grounds. If the tran	acient			
		0		s exceeding a threshold of 10 tonnes/				
				C increases to an upper limit. If catc				
				ts to the lower limit or if this TAC has				
			will be closed by AFMA					
	CALLULU	the fishery	Annual TAC in tonr					
		Season	Aurora Trough	Macquarie Ridge				
		Season	Autora Hough	(Northern Valleys)				
		1004 6		(Northern Valleys)				
		1994-6	- 750	-				
		1996/7	750	1000				
		1997/8	200	1500				
		1999	40 (research)	600*				
		2000	40 (research)	510*				
		2001	40 (research)	420*				
		2002	40 (research)	242*				
		2003	40 (research)	205*				
		2003/4	354	174*				
	1			1/4				
		2004/5	60 (research)	148*				
			60 (research) 255					
	* Increase	2004/5 2005/6	255	148* 125*	er thre			
		2004/5 2005/6 es to a highe	255 r limit if catch rates exc	148*	er thre			
		2004/5 2005/6	255 r limit if catch rates exc	148* 125*				
		2004/5 2005/6 es to a highe	255 r limit if catch rates exc	148* 125* ceed a threshold of 10 tonnes/km² over				
	consecutiv	2004/5 2005/6 es to a highe ve fishing da	255 r limit if catch rates exc ays.	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A	AFMA			
Current and	consecutiv From 1-3	2004/5 2005/6 so to a highe ve fishing da	255 r limit if catch rates exc ays. ear since the first seaso	148* 125* reed a threshold of 10 tonnes/km ² over (Source: A n (1994/1995). CPUE in kg/km ² has	AFMA varied			
Current and recent	consecutiv From 1-3 from over	2004/5 2005/6 ss to a highe ve fishing da voyages a y 422,000 to	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st	AFMA varied			
Current and recent ishery effort	consecutiv From 1-3 from over exploitatio	2004/5 2005/6 s to a highe we fishing da voyages a y 422,000 to on in 1996.	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has be	148* 125* seed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on	AFMA varied art of most			
Current and ecent ishery effort rends by	consecutiv From 1-3 from over exploitatio grounds (V	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	consecutiv From 1-3 from over exploitatio grounds (V	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6	148* 125* seed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	consecutiv From 1-3 from over exploitatio grounds (V	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lot of the comparison of the st end of the comparison of the comparison of the st end of the comparison of the compa	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an rough is risin	255 r limit if catch rates exc ays. ear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds Annual effort in ho	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loce urs in each ground	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained locentee the st of the	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds <u>Annual effort in ho</u> Aurora Trough	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lot urs in each ground Macquarie Ridge (Northern Valleys)	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe we fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6	255 r limit if catch rates exc ays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds Annual effort in how Aurora Trough 1662	148* 125* reed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lot urs in each ground Macquarie Ridge (Northern Valleys) 0	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatio grounds (V Aurora Tr	2004/5 2005/6 s to a highe we fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219	148* 125* reed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lotent in each ground urs in each ground Macquarie Ridge (Northern Valleys) 0 84	AFMA varied art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatio grounds (V Aurora Tr	2004/52005/6s to a higheve fishing dave fishing davoyages a y422,000 toon in 1996. 'Williams anough is risinSeason1994-61996/71997/8	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224	148* 125* reed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loten to the comparison of the st end of the comparison of the st end of the comparison of the st end of the comparison of the compari	AFMA varied art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatio grounds (V Aurora Tr	2004/52005/6so a higherve fishing datave fishing datavoyages a y422,000 toon in 1996. 'Williams anvough is risinSeason1994-61996/71997/81999	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loce the st een for each ground urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loce urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82 71	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000 2001	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has b d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59 27	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loc urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82 71 20	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatic grounds (V Aurora Tr	2004/5 2005/6 ss to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000 2001 2002	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59 27 24	148* 125* ceed a threshold of 10 tonnes/km² over (Source: n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loce urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82 71 20 39	AFMA variec art of most PUE in			
Current and ecent ishery effort rends by	From 1-3 from over exploitatio grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000 2001 2002 2003	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59 27 24 0	148* 125* reed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lot urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82 71 20 39	AFMA varied art of most PUE in			
Current and recent ïshery effort rends by	From 1-3 from over exploitatio grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000 2001 2002 2003 2003/4	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59 27 24 0 117	148* 125* ceed a threshold of 10 tonnes/km² over (Source: A (Source: A)) n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained loce the context of	AFMA varied art of most PUE in			
Current and ecent ïshery effort	consecutiv From 1-3 from over exploitatio grounds (V Aurora Tr	2004/5 2005/6 s to a highe ve fishing da voyages a y 422,000 to on in 1996. ' Williams an ough is risin Season 1994-6 1996/7 1997/8 1999 2000 2001 2002 2003	255 r limit if catch rates excays. rear since the first seaso less than 1 on the same The general trend has be d Lamb 2001, Tables 6 ng but on other grounds Annual effort in hor Aurora Trough 1662 219 224 45 59 27 24 0	148* 125* reed a threshold of 10 tonnes/km² over (Source: A n (1994/1995). CPUE in kg/km² has ground (Grand Canyon) since the st een for decreasing CPUE figures on .3 & 6.4) however since 2001 the CF CPUE has declined and remained lot urs in each ground Macquarie Ridge (Northern Valleys) 0 84 448 82 71 20 39	AFMA varied art of most PUE in			

	Aurora Trough:							
recent		rinciple was applied and the g	ground closed in 1999 due to a declin	ne				
fishery catch			ently in 2000 and 2001 a TAC of 40					
trends by	tonnes was allocated to allow scientific monitoring and tagging programs to continue.							
method	The grounds were re	-opened in 2003/4 season.						
	0	Annual catch in tonnes fr						
	Season	Aurora Trough	Macquarie Ridge (Northern Valleys)					
	1994-6	1351	0					
	1996/7	489	4.4					
	1997/8	200	55.1					
	1999	36	7.5					
	2000	11	4.2					
	2001	23	1					
	2002	36	7					
	2003	0	1.2					
	2003/4	352	0.3					
	2004/5	57	0.5					
	2005/6	241	1.6					
G	¢0.5	n antimoto - COAO /T	(Source: AFM	(A)				
			C at \$10-11/kg. (Estimated values					
	based on yearly TAC		llion, 2000 \$5 million, Note: value					
of fishery (\$)	assumed to be ex-ves		mon, 2000 \$5 mmon, Note. value					
	assumed to be ex-ve.	5501.						
Relationshin	The Antarctic Fisher	ies are both managed within	the context of the Australian					
with other			Accordingly both fisheries are					
fisheries								
	managed in a manner that is consistent with, or more stringent than, CCAMLR							
	regulations, despite t	he Macquarie fishery being o	outside CCAMLR's jurisdiction.					
			outside CCAMLR's jurisdiction. Conservation of Antarctic Marine					
	CCAMLR is the Inte	ernational Convention for the						
	CCAMLR is the Inte Living Resources of charged with ensurin	ernational Convention for the which Australia is one of the og the conservation and sustai	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine					
	CCAMLR is the Inte Living Resources of charged with ensurin	ernational Convention for the which Australia is one of the	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
	CCAMLR is the Inte Living Resources of charged with ensurin	ernational Convention for the which Australia is one of the og the conservation and sustai	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine					
9	CCAMLR is the Inte Living Resources of charged with ensurin	ernational Convention for the which Australia is one of the og the conservation and sustai	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Gear	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e	ernational Convention for the which Australia is one of the orgen the conservation and sustain exception of whales (ICRW) a	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e	ernational Convention for the which Australia is one of the orgen the conservation and sustain exception of whales (ICRW) a	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear and methods	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the en- Demersal otter board	ernational Convention for the which Australia is one of the og the conservation and susta xception of whales (ICRW) a trawling is used.	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear and methods Fishing gear	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) a l trawling is used.	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear and methods	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum	ernational Convention for the which Australia is one of the orgen the conservation and sustain exception of whales (ICRW) a d trawling is used.	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear and methods Fishing gear	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) a trawling is used.	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u>					
Fishing gear and methods Fishing gear	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net moniton • Minimum b	ernational Convention for the which Australia is one of the og the conservation and sustain xception of whales (ICRW) a l trawling is used. lude: n mesh size of 120mm r cables are prohibited pobbin size of 520mm and wh	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS).					
Fishing gear and methods Fishing gear restrictions	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir	ernational Convention for the which Australia is one of the og the conservation and sustain xception of whales (ICRW) a d trawling is used. dude: a mesh size of 120mm r cables are prohibited bobbin size of 520mm and wh aimum size of 40cm.	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u>	org)				
Fishing gear and methods Fishing gear restrictions Selectivity of	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not consid	ernational Convention for the which Australia is one of the og the conservation and sustain acception of whales (ICRW) a d trawling is used. dude: n mesh size of 120mm r cables are prohibited pobbin size of 520mm and wh nimum size of 40cm. dered a major issue in Antarc	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> erer rockhopper gear is used, rubber tic fisheries, as there is close to 100%	org)				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net moniton • Minimum b discs of mir Bycatch is not conside observer coverage of	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) a l trawling is used. In mesh size of 120mm r cables are prohibited pobbin size of 520mm and whe mimum size of 40cm. dered a major issue in Antarco n all trips to the regions, which	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> erer rockhopper gear is used, rubber tic fisheries, as there is close to 100% th has resulted in accurate catch and	org)				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net moniton • Minimum b discs of mir Bycatch is not conside observer coverage of bycatch reporting. The	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) a d trawling is used. d trawling is used. dude: a mesh size of 120mm r cables are prohibited bobbin size of 520mm and what mimum size of 40cm. dered a major issue in Antarco a all trips to the regions, which his allows for most hauls to b	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> erer rockhopper gear is used, rubber tic fisheries, as there is close to 100% th has resulted in accurate catch and we observed, and the monitoring of	<u>%</u>				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of min Bycatch is not conside observer coverage of bycatch reporting. The bycatch taken. The d	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) and trawling is used. It rawling is used. In mesh size of 120mm r cables are prohibited probbin size of 520mm and what imum size of 40cm. dered a major issue in Antarco n all trips to the regions, which his allows for most hauls to be lata collection to date indicated	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> enere rockhopper gear is used, rubber tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher	or <u>g)</u> 6				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not conside observer coverage of bycatch reporting. The bycatch taken. The d the total bycatch record	ernational Convention for the which Australia is one of the ag the conservation and sustai exception of whales (ICRW) a d trawling is used. d trawling is used. dude: a mesh size of 120mm r cables are prohibited bobbin size of 520mm and wh <u>himum size of 40cm</u> . dered a major issue in Antarco all trips to the regions, which his allows for most hauls to b lata collection to date indicate proded, which includes all gro	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> enere rockhopper gear is used, rubber tic fisheries, as there is close to 100% the has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting	org) 6				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not conside observer coverage of bycatch reporting. The bycatch taken. The d the total bycatch recor-	ernational Convention for the which Australia is one of the org the conservation and sustain exception of whales (ICRW) and trawling is used. It rawling is used. It r	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> enere rockhopper gear is used, rubber tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher	org) 6				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not conside observer coverage of bycatch reporting. The bycatch taken. The d the total bycatch recor- shots represents 8.15 rocks, corals and oth	ernational Convention for the which Australia is one of the org the conservation and sustain acception of whales (ICRW) and trawling is used. It rawling is used. It arawling is	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> (Source: <u>http://ccamlr.o</u> tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as	org) 6 ry				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not conside observer coverage of bycatch reporting. The bycatch taken. The d the total bycatch recor- shots represents 8.15 rocks, corals and oth accounts for about 29	ernational Convention for the which Australia is one of the ag the conservation and sustai xception of whales (ICRW) a trawling is used. ude: a mesh size of 120mm r cables are prohibited bobbin size of 520mm and wh aimum size of 40cm. dered a major issue in Antarco all trips to the regions, which his allows for most hauls to b lata collection to date indicate orded, which includes all gro % of the total catch. This fig er benthic organisms. Howev % of the total catch, so perha	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> enere rockhopper gear is used, rubber tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as yer, bycatch in the preceding tables	org) 6 ry				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing methods Spatial gear zone set	CCAMLR is the Inte Living Resources of charged with ensuring resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of min Bycatch is not conside observer coverage of bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch taken. The d the total bycatch records shots represents 8.15 rocks, corals and oth accounts for about 24 Gear is set in valleys 3	ernational Convention for the which Australia is one of the ag the conservation and sustain acception of whales (ICRW) a distribution of the distribution obbin size of 120mm r cables are prohibited bobbin size of 520mm and what distribution	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> (Source: <u>http://ccamlr.o</u> tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as ver, bycatch in the preceding tables ps does not account for invertebrates. continental slope of the island and it ds being on the Macquarie Ridge.	org) 6 ry				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing methods Spatial gear zone set Depth range	CCAMLR is the Inte Living Resources of charged with ensuring resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of min Bycatch is not conside observer coverage of bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch reporting. The bycatch taken. The d the total bycatch records shots represents 8.15 rocks, corals and oth accounts for about 24 Gear is set in valleys 3	ernational Convention for the which Australia is one of the ag the conservation and sustain acception of whales (ICRW) a distribution of the second distribution of the second distribution all trips to the regions, which his allows for most hauls to b distribution to date indicate orded, which includes all gro of the total catch. This fig er benthic organisms. Howeve <u>% of the total catch, so perha</u> 3nm west of the island on the	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> (Source: <u>http://ccamlr.o</u> tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as ver, bycatch in the preceding tables ps does not account for invertebrates. continental slope of the island and it ds being on the Macquarie Ridge.	<u>org)</u>				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing methods Spatial gear zone set Depth range gear set	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not consid observer coverage of bycatch reporting. Th bycatch taken. The d the total bycatch reco shots represents 8.15 rocks, corals and oth accounts for about 2 th Gear is set in valley 3 Gear is set >400m us	ernational Convention for the which Australia is one of the ag the conservation and sustai xception of whales (ICRW) a l trawling is used. It rawling is used. It rawl	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> (Source: <u>http://ccamlr.o</u> enter rockhopper gear is used, rubber tic fisheries, as there is close to 100% the has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as yer, bycatch in the preceding tables <u>ps does not account for invertebrates.</u> e continental slope of the island and in ds being on the Macquarie Ridge. n.	ry 				
Fishing gear and methods Fishing gear restrictions Selectivity of gear and fishing methods Spatial gear zone set Depth range gear set	CCAMLR is the Inte Living Resources of charged with ensurin resources, with the e Demersal otter board Gear restrictions incl • A minimum • Net monitor • Minimum b discs of mir Bycatch is not consid observer coverage of bycatch reporting. Th bycatch taken. The d the total bycatch reco shots represents 8.15 rocks, corals and oth accounts for about 2 th Gear is set in valley 3 Gear is set >400m us Demersal trawlers to	ernational Convention for the which Australia is one of the ag the conservation and sustai xception of whales (ICRW) a d trawling is used. d trawling is used. dude: a mesh size of 120mm r cables are prohibited bobbin size of 520mm and wh thimum size of 40cm. dered a major issue in Antarco a all trips to the regions, which his allows for most hauls to b data collection to date indicate orded, which includes all gro % of the total catch. This fig er benthic organisms. Howev % of the total catch, so perha 3nm west of the island on the 0nm to the north, both groun sually between 600and 1200r	Conservation of Antarctic Marine 24 member nations. CCAMLR is inable use of Antarctic living marine and seals (CCS). (Source: <u>http://ccamlr.o</u> (Source: <u>http://ccamlr.o</u> tic fisheries, as there is close to 100% th has resulted in accurate catch and be observed, and the monitoring of es that in the Macquarie Island Fisher unds all years, including prospecting ure includes fish bycatch as well as ver, bycatch in the preceding tables ps does not account for invertebrates. continental slope of the island and it ds being on the Macquarie Ridge.	org) 6 ry . n a				

Area of gear impact per set or shot Capacity of	spread horizontally be the water. The botton normally in contact we across the substrate we by a number of float path of the oncoming and fall back toward vessel and the fish and a rope, which released	by the outward force acting or m of the net opening, the 'foot with the bottom, rigged up wi without any 'hook-ups'. The to s. Trawling relies on the princ g net mouth. As fish swim aw s the tapered body of the net.		nove s lifted ard the losed e		
gear Effort per						
annum all		Annual effort in hou	urs fished			
boats	Season	Aurora Trough	Macquarie Ridge			
		-	(Northern Valleys)			
	1994-6	1662	0			
	1996/7	219	84			
	1997/8	224	448			
	1999 2000	<u>45</u> 59	82			
	2000	27	20			
	2001	24	39			
	2003	0	4			
	2003/4	117	7			
	2004/5	13	12			
	2005/6	118	42			
			(Source: A	AFMA)		
Lost gear and ghost fishing		ergency Position Indicating F	gear: 4 net buoys, a high density Radio Beacon), a single high den (Source: AFMA	sity		
Issues	1					
Target			ish (Dissostichus eleginoides)			
species			turity, location of spawning grou	unds		
issues	 b) Distribution of stocks c) Stock size d) Genetic transfer between stocks, emigration/immigration rates between stocks e) Spatial and temporal dynamics at Macquarie Island (Tuck <i>et al.</i> 2003) 					
	g) Dependence of ot	her predators on Patagonian to	oothfish as prey items			
and bycatch	During 1997-2000, bycatch of fish and invertebrates averaged about 8.5%, and was relatively low in the established grounds at Aurora Trough 2.3% compared to new					
	grounds where bycatch could be over 50%. Bycatch has risen since catches of toothfish					
	have fallen. Between 1996/7 to 1999/2000, macrourids in particular <i>Macrourus carinatus</i> , constituted the largest proportion of the fish bycatch while corals and sponges dominated the invertebrates. The fishes are mostly common and widespread locally or globally and are relatively productive therefore are not likely to be threatened. However chondrichthyans are more vulnerable due to their low productivity although they are often released. Post-capture mortality is likely to be high based on studies of other deepwater dogfish and skate species. Some invertebrates are vulnerable to fishing					
	impacts but these we low effort (Williams		side the fishing grounds where t	here 1s		

<u>Current TEP Interactions</u> Interactions causing injury or death to seabirds and marine mammals have been extremely low to date in Antarctic trawl operations, and SAFAG's assessment is that the
extremely low to date in Antarctic trawl operations, and SAFAG's assessment is that the
current fishing operations do not pose a significant threat to seabird or marine mammal populations. If the number of reported incidents of seabird or marine mammals increases substantially, AFMA will review mechanisms to reduce the level of interactions. AFMA is continuing to investigate appropriate assessment methods for these species.
 Marine mammals Currently the low number of reported incidents involving death or serious injury to marine mammals is a positive factor in the fishery. For example: in the Antarctic fisheries only two seal fatalities were recorded in a 3 year period (Wienecke and Robertson 2002). However, if the number of reported incidents of marine mammal interactions increases substantially, AFMA will review mechanisms to reduce the level of interactions. AFMA is continuing to investigate appropriate assessment methods for these species. Observers will continue to monitor seal activities from the vessel, through their environmental observations. A review of management arrangements may be undertaken if such interactions were to substantially increase. In the HIMI fishery the current operators have adopted a code of conduct for minimisation of seal interactions, the code includes the following measures: winch must not be stopped when shooting net and bridles. If the winch is stopped the net must be checked for gilled fish and all fish removed prior to the shot net deployment not to occur from one hour before civil twilight until one hour after civil twilight
Seabirds-general Currently, the low number of reported incidents involving death or serious injury to seabirds is a positive factor favouring the fishery. During 6 voyages from 1997 to 2000, over 47,000 sighting of seabirds were made with Giant petrels and Black-browed albatrosses being the most numerous. Of the 631 trawls observed interactions were seen on 58 (22%) of them and no fatalities were observed. The birds interacting with the gear were generally the more abundant species and there are unlikely to be population effects. However fatality of a rare species such as the Wandering albatross could severely impact the very small population at Macquarie Island (Williams <i>et al.</i> 2001). However, if the number of reported incidents of seabird interactions increases substantially, AFMA will review mechanisms to reduce the level of interactions. AFMA is continuing to investigate appropriate assessment methods for these species. To reduce the incentive for seabirds to congregate around vessels, AFMA will maintain the minimisation of lighting on the vessel and the prohibition on discharge of waste products, including offal (waste products from fish processing) or unwanted dead fish.
The impacts caused by increasing rabbit and rodent populations on Macquarie Island Nature Reserve and World Heritage Area are very serious and there are currently no viable population control options for any of these three species of rabbits and rodents. These impacts include devastating effects upon native fauna, flora, geomorphology, natural landscape values and nutrient recycling systems. Rabbits favour the large leafy megaherbs and grasses, which have no adaptations to cope with grazing. These vegetation types provide critical breeding habitat for a range of burrowing petrel and albatross species. Rabbit grazing is changing areas of tall tussock grassland to modified forms of herbfield, thereby affecting the breeding success of all burrowing seabird colonies on Macquarie Island. The loss of vegetation also causes destabilisation and erosion of steep peat-covered slopes, which also impacts on albatross, penguin and petrel nesting sites. Black rats prey on seabird chicks and eggs, invertebrates and also impede plant seedling recruitment. Black rats are identified as an ongoing threat to at least nine bird species that currently breed on Macquarie Island. House mice feed primarily on vegetation matter and inhibit plant regeneration through

	species and may have had a significant impact on invertebrate populations on Macquarie Island. They may also predate burrowing seabird eggs and chicks. On other subantarctic islands they have been shown to feed on chicks of large albatross species. Up to 24 bird species are expected to benefit from a pest eradication operation on Macquarie Island. Twelve of these bird species are listed as threatened under Tasmanian and/or Commonwealth threatened species legislation. It can be expected that many seabird species would rapidly re-colonise the island given habitat restoration and removal of predatory rodents." (Source: Summary of Plan for the Eradication of Rabbits and Rodents on Subantarctic Macquarie Island 2007 http://www.parks.tas.gov.au/publications/tech/mi_pest_eradication/summary.html) Penguins
	Interactions between penguins and the trawl gear are not seen as serious concerns (Wienecke and Robertson 2002). Rockhopper penguins were the most frequently recorded species on a survey in 1999 (Eades 2001) however no interactions with gear have been recorded.
	<u>Chondrichthyans</u> Sleeper sharks <i>Somniosus antarcticus</i> are thought to be abundant in the Aurora Trough and therefore more susceptible. They are usually tagged and released unless obviously dead.
Habitat issues and interactions	Benthic damage by trawl gear The impacts of demersal and mid-water trawl fishing on habitats have to date not been assessed in detail for the Antarctic fisheries. However, in the established fishing grounds invertebrate bycatch has declined to less than 5%, while in new grounds or other grounds the catch is 30%, suggesting disturbance from trawling. Since coral/sponges are susceptible to trawling and have very specific habitat requirements and slow growth, the impact of trawling in new areas should be considered carefully and monitored. Butler <i>et</i> <i>al.</i> (2000) found that the fishery targets only sediment –filled troughs and canyons and therefore impacts only a small area of the seabed. However the impact on the infauna of these sediments is unknown.
	 <u>Habitat Protection</u> A Commonwealth Marine Protected Area has been established in the Macquarie Island region. This and State Waters protect about 40% of the seabed area in the central section of the Macquarie Ridge where the known fishing grounds occur. The Macquarie Island Marine Park comprises almost one-third of the Australian Fishing Zone around Macquarie Island and contains the world's largest 'no take' area. Around two-thirds of the area of the park is zoned as IUCN category IV - habitat/species management area. Under the management plan currently being developed for the Marine Park, fishing in accordance with a concession granted by AFMA will be allowed in this zone, subject to any determinations or permits made by the Director of National Parks.
Community issues and interactions	No specific issues identified. However, the importance of the Antarctic community is recognised by the CCAMLR approach to ecosystem-based management. AFMA has recognised and incorporated this approach in their management strategies for both the HIMI fishery that lies within CCAMLR's jurisdiction and the Macquarie Island fishery that lies outside CCAMLR's authority. In addition, the establishment of an MPA at Macquarie Island in 1999 and the continued monitoring of top predators both in terms of diet, reproductive rates and overall abundance are seen as key actions in the preservation of community ecosystems. The information available on each species will be reviewed annually by the Sub-Antarctic Fishery Assessment Group (SAFAG) and CCAMLR with the aim of continuing to develop specific bycatch limits based on population assessments. This review will incorporate data from the monitoring program including observer data and

	(Source:					
	http://www.afma.gov.au/corporate%20publications/plans/bycatch%20action%20plans/s					
	ubantarctic%20-%20bycatch%20action%20plan%20-%20background%20paper.php)					
Discarding	Discarding regulations:					
	There is no restriction on the return of live un-wanted by-catch in a manner so as to					
	maximise survival. Operators must ensure that there is no offal (waste products from fish processing) or					
	unwanted dead fish discharged from the fishing boat. These are generally converted to					
	fishmeal and stored on-board. However, in the event of fishmeal becoming hot, having a					
	high moisture content or otherwise becoming dangerous, it may be disposed of under					
	strict contingency arrangements. There is also a prohibition on the disposal of poultry					
	(including eggshells) and brassica (broccoli cabbage, cauliflower, brussel sprouts, kale					
	etc) products					
Management	planned and those implemented					
	The management objectives from Macquarie Island Toothfish Fishery Management Plan					
t Objectives						
	a) To manage the fishery efficiently and cost-effectively for the Commonwealth;					
	b) To ensure exploitation of the resources of the fishery and carrying on of any					
	related activities are conducted in a manner consistent with the principles of					
	ecologically sustainable development and the exercise of precautionary principle, and in particular the need to have regard to the impact of fishing					
	activities on non-target species and the long-term sustainability of the marine					
	environment					
	c) To maximise economic efficiency in the exploitation of the resources of the					
	fishery;					
	d) To ensure AFMA's accountability to the fishing industry and to the Australian					
	community in management of the resources of the fishery;e) to reach Government targets for the recovery of the costs of AFMA in relation					
	to the fishery;					
	f) To ensure through proper conservation and management that the living					
	resources of the AFZ are not endangered by over-exploitation;					
	g) To achieve the best use of the living resources of the AFZ;					
	h) To ensure that conservation and management measures in the fishery					
	implement Australia's obligations under international agreements that deal with fish stocks, and other relevant international agreements.					
	(Source: AFMA 2006)					
Fishery	The Macquarie Island Toothfish Fishery Management Plan 2006 is not in force at this					
	stage as the process for granting Statutory Fishing Rights needs to be completed.					
plan	The Plan makes provision to grant half of the Statutory Fishing Rights in the two sectors					
	of the Fishery (Aurora Trough and Macquarie Ridge) by a tender process expected in					
	mid-June.					
Input	(Source: AFMA 2006) The Macquarie Island Fishery is subject to the following standards with regard to target					
controls	species:					
	Entry is limited to 3 boats under the 2006 management Plan					
	Entry is only granted to persons holding 25.5% of statutory fishing rights issued for the					
	fishery					
	CCAMUD standards include:					
	 CCAMLR standards include: carriage of one full-time observer 					
	 carriage of one full-time observer vessel monitoring systems 					
	 vesser monitoring systems target species catch limits 					
	Additionally, AFMA, with the support of industry, has implemented a number of					
	requirements that exceed those of CCAMLR, including:					
	• carriage of two full-time observers					
	• one boat for the Macquarie Island Fishery (until the implementation of the new					
	Management Plan 2006)					

Output	Annual TACs for Patagonian toothfish for each of the two grounds are set each year.
controls	Carryover provision for Patagonian toothfish – each operator may inadvertently exceed
controis	their catch by no more than 20 tonnes. This over-catch is carried into the following year
	and deducted from that operator's quota, prior to the allocation of quota for the new
	fishing season. The disincentive to over-catch in one year is that for every 1 kg (between
	10 and the 20 tonne maximum) taken as over-catch, 2 kg will be deducted from the
	operator's quota allocation the next year
	Bycatch limit of 200 tonnes for all finfish excluding Patagonian toothfish.
	(Source: AFMA 2006)
Technical	No other regulations apart from 3 nm (MIF) around all islands and the closed areas MPA
measures	at Macquarie Island (see Initiatives and Strategies). These areas protect species, habitats
measures	and communities.
Regulations	Regulations regarding incidental mortality of seabirds
Guidelons	All practical measures must be made to mitigate the incidence of seabird and marine
	mammal mortality.
	By-Catch Action Plan
	to ensure catch of non-target fish including elasmobranch does not deplete populations
	to unacceptable levels, mitigate seabird and marine mammal mortality, minimise benthic
	impacts
	MARPOL regulations
	Operators must conform to marine pollution regulations
	Discarding regulations
	Operators must ensure that there is no offal (waste products from fish processing) or
	unwanted dead fish discharged from the fishing boat. These are generally converted to
	fishmeal and stored on-board. However, in the event of fishmeal becoming hot, having a
	high moisture content or otherwise becoming dangerous, it may be disposed of under
	strict contingency arrangements. There is also a prohibition on the disposal of poultry
	(including eggshells) and brassica (broccoli cabbage, cauliflower, brussel sprouts, kale
	etc) products
	Code Of Conduct to ensure compliance with permit conditions particularly
	environmental issues.
Initiatives	Macquarie Island Marine Protected Area
and	The south-east section of the AFZ has been designated as a marine park. The Macquarie
strategies	Island Marine Park was proclaimed under the National Parks and Wildlife Conservation
	<i>Act 1975</i> (NPWC Act) on 27 October 1999 to protect the unique and vulnerable marine
	ecosystems of the south-eastern portion of the Macquarie Island Region. The NPWC Act
	was replaced by the <i>Environment Protection and Biodiversity Conservation Act 1999</i>
	(EPBC Act) on 16 July 2000. The proclamation of the Marine Park is continued in force
	by the Environmental Reform (Consequential Provisions) Act 1999 as if it had been
	made under the EPBC Act.
l	

the likelihood of refuge areas and to provide an assessment of the size of population
affected by the fishery.
Collections of biological data were undertaken during fishing voyages by AFMA
observers, co-ordinated by AAD.
A pilot genetic study of toothfish stock structure developed micro satellite techniques to
differentiate two stocks. A larger project using larger sample sizes was initiated
following the pilot study.
A research voyage on FRV Southern Surveyor was conducted in 1999 to investigate the
biological oceanography around the island. An extensive acoustic and trawl survey was
also conducted.

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components (target, byproduct/discards and TEP components). [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B Habitats]
- Community Component: community types. [Scoping document S2C Communities]

Scoping Document S2A Species

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.marine.csiro.au/caab/

Target species Macquarie Island Demersal Trawl Fishery

This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders. Target species are as agreed by the fishery.

Species Number	Таха	Family name	Scientific name	Common Name	CAAB code
765	Teleost	Nototheniidae	Dissostichus eleginoides	Patagonian toothfish	37404792

Byproduct species Macquarie Island Demersal Trawl Fishery

List the byproduct species of the sub- fishery. Byproduct refers to any part of the catch which is kept or sold by the fisher but which is not a target species. This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

Species					
Number	Таха	Family name	Scientific name	Common name	CAAB code
826	Chondrichthyan	Squalidae	Etmopterus granulosus	Southern lantern shark	37020021
2773	Invertebrate		Actinaria - undifferentiated	Anthozoan sea anemone	14410000
1284	Invertebrate	Ommastrephidae	Martialia hyadesi	Flying squid	23636003
45	Invertebrate	Ommastrephidae	Nototodarus sloanii	Flying squid	23636006
46	Invertebrate	Ommastrephidae	Todarodes filippovae	Southern Ocean arrow squid	23636011
2787	Invertebrate	Asteroidea	Asteroidea	Sea star	26200000
2788	Invertebrate	Echinoidea	Echinoidea	Sea urchin	26300000
1328	Invertebrate	Pasiphaeidae	Pasiphaea sp.	Carid shrimp	28745901
80	Invertebrate	Lithodidae	Lithodes murrayi	Subantarctic king crab	28836005
2967	Invertebrate	Octocorallia	Gorgonaceae	Gorgonian sea fan	
2789	Invertebrate	Salpidae	Salpidae	Salp	
2948	Invertebrate		Pennatulacea	Sea pen	
2951	Invertebrate	Gorgonocephalidae	Gorgonocephalidae	Gorgans head sea star	
2938	Invertebrate		Holothurian	Sea cucumber	
2784	Invertebrate	Ocythoe tuberculata	Octopus (pelagic)	Pelagic octopus	
2940	Invertebrate		Histioteuthis sp.	Squid	
2781	Invertebrate		Loligo sp.	Squid	
2953	Invertebrate	Cirroteuthidae	Cirroteuthis sp.	Squid	
1981	Teleost	NA	Porifera - undifferentiated	Sponges	10000000
489	Teleost	Squalidae	Centroscymnus crepidater	Deepwater dogfish	37020012
626	Teleost	Synaphobranchidae	Diastobranchus capensis	Basket-work eel	37070001
35	Teleost	Nemichthyidae	Labichthys yanoi	Snipe eel	37076004
37	Teleost	Bathylagidae	Bathylagus antarcticus	Deep sea smelt	37098002
2881	Teleost	Gonostomatidae	Photichthys sp.	Bristlemouth	37106801
2902	Teleost	Stomiidae	Stomias sp.	Scaleless dragonfish	37112800

Species	_				~
Number	Taxa	Family name	Scientific name	Common name	CAAB code
273	Teleost	Anotopteridae	Anotopterus pharao	Daggerfish	37129001
2934	Teleost	Gigantactis	Gigantactinidae	Whipnose angler fish	37217000
274	Teleost	Ceratiidae	Ceratias tentaculatus	Seadevil	37220003
997	Teleost	Moridae	Mora moro	Ribaldo	37224002
275	Teleost	Moridae	Antimora rostrata	Morid cod	37224008
276	Teleost	Moridae	Halargyreus johnsonii	Morid cod	37224009
277	Teleost	Moridae	Lepidion microcephalus	Ribaldo (market name -morid cod) : smallhead cod	37224010
2822	Teleost	Carapidae	Echiodon cryomargarites	Pearlfish	37229000
280	Teleost	Zoarcidae	Melanostigma gelatinosum	Eelpout	37231001
281	Teleost	Macrouridae	Coryphaenoides serrulatus	Whiptail	37232015
284	Teleost	Macrouridae	Coryphaenoides subserrulatus	Whiptail	37232016
323	Teleost	Macrouridae	Caelorinchus matamua	Whiptail	37232017
334	Teleost	Macrouridae	Caelorinchus kaiyomaru	Whiptail	37232031
342	Teleost	Macrouridae	Idiolophorhynchus andriashevi	Rattail/whiptail/grenadier	37232037
343	Teleost	Macrouridae	Caelorinchus kermadecus	Whiptail	37232040
374	Teleost	Macrouridae	Coryphaenoides murrayi	Whiptail	37232052
536	Teleost	Macrouridae	Cynomacrurus piriei	Rattail/whiptail/grenadier	37232054
1479	Teleost	Macrouridae	Macrourus whitsoni	[A whiptail]	37232753
537	Teleost	Melamphaidae	Poromitra crassiceps	Bigscale	37251004
631	Teleost	Oreosomatidae	Pseudocyttus maculatus	Smooth oreo	37266003
644	Teleost	Lampridae	Lampris immaculatus	Southern moonfish	37268002
773	Teleost	Gempylidae	Paradiplospinus gracilis	Snake mackerel/gemfish	37439005
2845	Teleost	Macrouridae	Macrourus holotrachys	[A whiptail]	
1464	Teleost	Zoarcidae	Melanostigma sp.	An eelpout (undifferentiated)	
333	Teleost	Nototheniidae	Pagothenia sp.	An icefish/notothen	
573	Teleost	Macrouridae	Nezumia pudens	Atacam grenadier	
788	Teleost	Paralepididae	Magnisudis prionosa	Barracudina	
2946	Teleost	Apogonidae	Epigonus sp.	Cardinal fish	
2977	Teleost	Nemichthyidae	Nemichthyidae	Eel	
575	Teleost	Psychrolutidae	Neophrynichthys magnicirrus	Fathead	

Species					
Number	Таха	Family name	Scientific name	Common name	CAAB code
2936	Teleost	Bothidae	Pseudoachiropsetta milfordi	Flounder	
1461	Teleost	Muraenolepididae	Muraenolepis sp.	Morid cod (undifferentiated)	
2927	Teleost	Oreosomatidae	Neocyttus sp.	Oreo dory	
2922	Teleost	Alepocephalidae	Alepocephalus spp.	Slickhead	
576	Teleost	Cyclopteridae	Paraliparis gracilis	Snailfish/lumpfish	
1472	Teleost	Achiropsettidae	Achiropsetta sp. (grey)	Southern flounder	
1473	Teleost	Achiropsettidae	Mancopsetta sp.	Southern flounder	
2933	Teleost	Astronesthidae	Astronesthes sp.	Spangled trouble- shouter	
574	Teleost	Congiopodidae	Zanclorhynchus spinifer	Spiny horsefish	
2945	Teleost	Chauliodontidae	Chauliodus sloani	Viper fish	
2928	Teleost	Psychrolutidae	Ebinania sp.	Blobfish	
2833	Teleost	Myctophidae	Gymnoscopelus opisthopterus	Lantern fish	
2923	Teleost	Himantolophidae	Himantolophus sp.	Football fish	
2924	Teleost	Oneroididae	Oneirodes sp.	Dreamer fish	
2925	Teleost	Moridae	Paralaemonema sp.	Morid cod	
36	Teleost	Notacanthidae	Notacanthus chemnitzii	Spiny eel	37083002
1457	Teleost	Melanostomiidae	Melanostomias sp.	Scaleless dragonfish	

Discard species Macquarie Island Demersal Trawl Fishery

Bycatch as defined in the Commonwealth Policy on Fisheries Bycatch 2000 refers to:

- that part of a fisher's catch which is returned to the sea either because it has no commercial value or because regulations preclude it being retained; and
- that part of the 'catch' that does not reach the deck but is affected by interaction with the fishing gear

However, in the ERAEF method, the part of the target or byproduct catch that is discarded is included in the assessment of the target or byproduct species. The list of bycatch species is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

Species Number	Taxa	Family name	Scientific name	Common name	CAAB code
257	Chondrichthyan	Squalidae	Somniosus antarcticus	Sleeper shark; Southern Sleeper Shark	37020036
2709	Invertebrate	Subclass Zoantharia (Hexacorallia)	Hexacorallia	Tube anemone, black and thorny corals	11228000
298	Invertebrate	Periphyllidae	Periphylla periphylla	Jellyfish	

TEP species Macquarie Island Demersal Trawl Fishery

Highlight species that are known to interact directly with the fishery. TEP species are those species listed as Threatened, Endangered or Protected under the EPBC Act.

TEP species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of TEP species has been generated for each fishery and is included in the PSA workbook species list. This list has been generated using the DEH Search Tool from DEH home page <u>http://www.deh.gov.au/</u>

For each fishery, the list of TEP species is compiled by reviewing all available fishery literature. Species considered to have potential to interact with fishery (based on geographic range & proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) should also be included.

Species					
Number	Таха	Family name	Scientific name	Common Name	CAAB code
785	Marine bird	Spheniscidae	Aptenodytes patagonicus	King penguin	40001002
787	Marine bird	Spheniscidae	Eudyptes chrysocome	Rockhopper penguin	40001003
1426	Marine bird	Spheniscidae	Eudyptes chrysolophus	Macaroni penguin	40001004
817	Marine bird	Spheniscidae	Eudyptes robustus	Snares penguin	40001006
818	Marine bird	Spheniscidae	Eudyptes sclateri	Erect-crested penguin	40001007
1513	Marine bird	Spheniscidae	Pygoscelis adeliae	Adelie penguin	40001009
1511	Marine bird	Spheniscidae	Pygoscelis antarctica	chinstrap penguin	40001010
819	Marine bird	Spheniscidae	Pygoscelis papua	Gentoo penguin	40001011
1032	Marine bird	Diomedeidae	Thalassarche bulleri	Buller's Albatross	40040001
1033	Marine bird	Diomedeidae	Thalassarche cauta	Shy Albatross	40040002
1035	Marine bird	Diomedeidae	Thalassarche chrysostoma	Grey-headed Albatross	40040004
753	Marine bird	Diomedeidae	Diomedea epomophora	Southern Royal Albatross	40040005
451	Marine bird	Diomedeidae	Diomedea exulans	Wandering Albatross	40040006
1085	Marine bird	Diomedeidae	Thalassarche melanophrys	Black-browed Albatross	40040007
1008	Marine bird	Diomedeidae	Phoebetria fusca	Sooty Albatross	40040008
1009	Marine bird	Diomedeidae	Phoebetria palpebrata	Light-mantled Albatross	40040009

a .					
Species Number	Таха	Family name	Scientific name	Common Name	CAAB code
799	Marine bird	Diomedeidae	Diomedea sanfordi	Northern Royal Albatross	40040012
1084	Marine bird	Diomedeidae	Thalassarche impavida	Campbell Albatross	40040013
894	Marine bird	Diomedeidae	Thalassarche salvini	Salvin's albatross	40040016
889	Marine bird	Diomedeidae	Thalassarche eremita	Chatham albatross	40040017
1428	Marine bird	Diomedeidae	Diomedea amsterdamensis	Amsterdam Albatross	40040018
595	Marine bird	Procellariidae	Daption capense	Cape Petrel	40041003
314	Marine bird	Procellariidae	Fulmarus glacialoides	Southern fulmar	40041004
939	Marine bird	Procellariidae	Halobaena caerulea	Blue Petrel	40041005
1052	Marine bird	Procellariidae	Lugensa brevirostris	Kerguelen Petrel	40041006
73	Marine bird	Procellariidae	Macronectes giganteus	Southern Giant-Petrel	40041007
981	Marine bird	Procellariidae	Macronectes halli	Northern Giant-Petrel	40041008
487	Marine bird	Procellariidae	Pachyptila belcheri	Thin billed prion	40041009
1532	Marine bird	Procellariidae	Pachyptila crassirostris	Fulmar prion	40041010
488	Marine bird	Procellariidae	Pachyptila desolata	Antarctic prion	40041011
1003	Marine bird	Procellariidae	Pachyptila turtur	Fairy Prion	40041013
492	Marine bird	Procellariidae	Pelecanoides georgicus	South Georgian diving petrel	40041016
1006	Marine bird	Procellariidae	Pelecanoides urinatrix	Common Diving-Petrel	40041017
1041	Marine bird	Procellariidae	Procellaria aequinoctialis	White-chinned Petrel	40041018
494	Marine bird	Procellariidae	Procellaria cinerea	Grey petrel	40041019
503	Marine bird	Procellariidae	Pterodroma inexpectata	Mottled petrel	40041028
504	Marine bird	Procellariidae	Pterodroma lessoni	White-headed petrel	40041029
1047	Marine bird	Procellariidae	Pterodroma macroptera	Great-winged Petrel	40041031
1048	Marine bird	Procellariidae	Pterodroma mollis	Soft-plumaged Petrel	40041032
1049	Marine bird	Procellariidae	Pterodroma neglecta	Kermadec Petrel (western)	40041033
1053	Marine bird	Procellariidae	Puffinus assimilis	Little Shearwater (Tasman Sea)	40041036
1056	Marine bird	Procellariidae	Puffinus gavia	Fluttering Shearwater	40041040
1057	Marine bird	Procellariidae	Puffinus griseus	Sooty Shearwater	40041042
1060	Marine bird	Procellariidae	Puffinus tenuirostris	Short-tailed Shearwater	40041047
553	Marine bird	Procellariidae	Thalassoica antarctica	Antarctic petrel	40041048
917	Marine bird	Hydrobatidae	Fregetta tropica	Black-bellied Storm-Petrel	40042002

Species					
Number	Taxa	Family name	Scientific name	Common Name	CAAB code
555	Marine bird	Hydrobatidae	Garrodia nereis	Grey-backed storm petrel	40042003
556	Marine bird	Hydrobatidae	Oceanites oceanicus	Wilson's storm petrel (subantarctic)	40042004
290	Marine bird	Phalacrocoracidae	Leucocarbo atriceps	Imperial shag (Macquarie Island)	40048001
291	Marine bird	Phalacrocoracidae	Phalacrocorax carbo	Black cormorant	40048002
325	Marine bird	Laridae	Catharacta skua	Great Skua	40128005
973	Marine bird	Laridae	Larus dominicanus	Kelp Gull	40128012
1023	Marine bird	Laridae	Sterna paradisaea	Arctic tern	40128032
1024	Marine bird	Laridae	Sterna striata	White-fronted Tern	40128033
292	Marine bird	Laridae	Sterna vittata	Antarctic tern (NZ)	40128035
589	Marine bird	Laridae	Catharacta lonnbergi lonnbergi	Subantarctic skua (southern)	
588	Marine bird	Phalacrocoracidae	Phalacrocorax albiventer purpurascens	King cormorant	
586	Marine bird	Spheniscidae	Eudyptes schlegeli	Royal penguin	
896	Marine mammal	Balaenidae	Eubalaena australis	Southern right whale	41110001
256	Marine mammal	Balaenopteridae	Balaenoptera acutorostrata	Minke whale	41112001
261	Marine mammal	Balaenopteridae	Balaenoptera borealis	Sei whale	41112002
265	Marine mammal	Balaenopteridae	Balaenoptera musculus	Blue whale	41112004
268	Marine mammal	Balaenopteridae	Balaenoptera physalus	Fin whale	41112005
984	Marine mammal	Balaenopteridae	Megaptera novaeangliae	Humpback whale	41112006
1439	Marine mammal	Balaenidae	Balaenoptera bonaerensis	Antarctic minke whale	41112007
935	Marine mammal	Delphinidae	Globicephala melas	Long-finned Pilot Whale	41116004
937	Marine mammal	Delphinidae	Grampus griseus	Risso's dolphin	41116005
832	Marine mammal	Delphinidae	Lagenorhynchus cruciger	Hourglass dolphin	41116007
971	Marine mammal	Delphinidae	Lagenorhynchus obscurus	Dusky dolphin	41116008
61	Marine mammal	Delphinidae	Lissodelphis peronii	Southern right whale dolphin	41116009
1002	Marine mammal	Delphinidae	Orcinus orca	Killer whale	41116011
1091	Marine mammal	Delphinidae	Tursiops truncatus	Bottlenose dolphin	41116019
833	Marine mammal	Phocoenidae	Australophocoena dioptrica	Spectacled porpoise	41117001
1036	Marine mammal	Physeteridae	Physeter catodon	Sperm whale	41119003
269	Marine mammal	Ziphiidae	Berardius arnuxii	Arnoux's beaked whale	41120001
959	Marine mammal	Ziphiidae	Hyperoodon planifrons	Southern bottlenose whale	41120002

Species					
Number	Taxa	Family name	Scientific name	Common Name	CAAB code
985	Marine mammal	Ziphiidae	Mesoplodon bowdoini	Andrew's beaked whale	41120004
986	Marine mammal	Ziphiidae	Mesoplodon densirostris	Blainville's beaked whale	41120005
988	Marine mammal	Ziphiidae	Mesoplodon grayi	Gray's beaked whale	41120007
989	Marine mammal	Ziphiidae	Mesoplodon hectori	Hector's beaked whale	41120008
990	Marine mammal	Ziphiidae	Mesoplodon layardii	Strap-toothed Beaked Whale	41120009
1098	Marine mammal	Ziphiidae	Ziphius cavirostris	Cuvier's beaked whale	41120012
216	Marine mammal	Otariidae	Arctocephalus forsteri	New Zealand Fur-seal	41131001
293	Marine mammal	Otariidae	Arctocephalus gazella	Antarctic fur seal	41131002
263	Marine mammal	Otariidae	Arctocephalus tropicalis	Subantarctic fur seal	41131004
294	Marine mammal	Otariidae	Phocarctos hookeri	Hooker's sea lion	41131006
295	Marine mammal	Phocidae	Hydrurga leptonyx	Leopard seal	41136001
296	Marine mammal	Phocidae	Leptonychotes weddelli	Weddell seal	41136002
297	Marine mammal	Phocidae	Lobodon carcinophagus	Crabeater seal	41136003
993	Marine mammal	Phocidae	Mirounga leonina	Elephant seal	41136004

Scoping Document S2B1 & 2. Habitats

Not assessed

Scoping Document S2C1. Demersal Communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisation for the slope (IMCRA 1998; Last *et al.* 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisation and on oceanography (Condie *et al.* 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday *et al.* (2007) and briefly outlined in the footnotes to the community Tables below.

Demersal community	Cape	North Eastern Transition	North Eastern	Central Eastern Transition	Central Eastern	South Eastern Transition	Central Bass	Tasmanian	Western Tas Transition	Southern	South Western Transition	Central Western	Central Western Transition	North Western	North Western Transition	Timor	Timor Transition	Heard & McDonald Is	Macquarie Is
Inner Shelf $0 - 110m^{1,2}$																			
Outer Shelf 110 – 250m ^{1,2,}																			
Upper Slope 250 – 565m ³																			
Mid–Upper Slope 565 – 820m ³																			x
Mid Slope 820 – 1100m ³																			
Lower slope/ Abyssal > 1100m ⁶																			
Reef 0 -110m ^{7, 8}																			
Reef 110-250m ⁸																			
Seamount 0 – 110m																			
Seamount 110- 250m																			
Seamount 250 – 565m																			
Seamount 565 – 820m																			
Seamount 820 – 1100m																			
Seamount 1100 – 3000m																			

Demersal communities in which fishing activity occurs the MIF Demersal trawl fishery (x). Shaded cells indicate all communities within the provi
--

Demersal community	Cape	North Eastern Transition	North Eastern	Central Eastern Transition	Central Eastern	South Eastern Transition	Central Bass	Tasmanian	Western Tas Transition	Southern	South Western Transition	Central Western	Central Western Transition	North Western	North Western Transition	Timor	Timor Transition	Heard & McDonald Is	Macquarie Is
Plateau 0-110m																			
Plateau 110- 250m ⁴																			
Plateau 250 – 565m ⁴																			
Plateau 565 – 820m ⁵																			
Plateau 820 – 1100m ⁵																			

¹ Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: ²inner & outer shelves (0-250m), and ³upper and midslope communities combined (250-1100m). At Heard/McDonald Is: ⁴outer and upper slope plateau communities combined to form four communities: Shell Bank, inner and outer Heard Plateau (100-500m) and Western Banks (200-500m), ⁵mid and upper plateau communities combined into 3 trough (Western, North Eastern and South Eastern), southern slope and North Eastern plateau communities (500-1000m), and ⁶ 3 groups at Heard Is: Deep Shell Bank (>1000m), Southern and North East Lower slope/abyssal, ⁷Great Barrier Reef in the North Eastern Province and Transition and ⁸ Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic Communities

Pelagic communities that overlie the demersal communities in which fishing activity occurs in the MIF Demersal trawl fishery (x). Shaded cells indicate all communities that exist in the province.

communities that exist in the province.								
Pelagic community	Northeastern	Eastern	Southern	Western	Northern	Northwestern	Heard and McDonald Is ²	Macquarie Is
Coastal pelagic 0-200m ^{1,2}								
Oceanic (1) 0 – 600m								
Oceanic (2) >600m								
Seamount oceanic (1) 0 – 600m								
Seamount oceanic (2) 600-3000m								
Oceanic (1) 0 – 200m								
Oceanic (2) 200-600m								
Oceanic (3) >600m								
Seamount oceanic (1) 0 – 200m								
Seamount oceanic (2) 200 - 600m								
Seamount oceanic (3) 600-3000m								
Oceanic (1) 0-400m								
Oceanic (2) >400m								
Oceanic (1) 0-800m								
Oceanic (2) >800m								
Plateau (1) 0-600m								
Plateau (2) >600m								
Heard Plateau 0-1000m ³								
Oceanic (1) 0-1000m								
Oceanic (2) >1000m								
Oceanic (1) 0-1600m								х
Oceanic (2) >1600m								

¹ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York) and Southern Province has two zones (Tas, GAB). ² At Macquarie Is: coastal pelagic zone to 250m. ³ At Heard and McDonald Is: coastal pelagic zone broadened to cover entire plateau to maximum of 1000m.

Fig S1. (a) Demersal and (b) pelagic communities in the Macquarie Island Fishery.

2.2.3 Identification of Objectives for Components and Sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, TEP, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed ESD reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. **Scoping Document S3** provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, with regard to numbers or fractions of removal/impact, but should indicate that an impact in the sub-component is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub) fishery are used for Level 1 analysis (Level 1 SICA Document L1.1).

Scoping Document S3 Components and Sub-components Identification of Objectives

Component	Core Objective	Sub-component	Example Operational	Example	Rationale
			Objectives	Indicators	
	"What is the	As shown in sub-	"What you are specifically	"What you are going	Rationale flagged as
	general goal?"	component model	trying to achieve"	to use to measure	'EMO' where Existing
		diagrams at the		performance"	Management Objective
		beginning of this			in place, or 'AMO'
		section.			where there is an
					existing AFMA
					Management Objective
					in place for other
					Commonwealth
					fisheries (assumed that
					squid fishery will fall
					into line).

Table (Note: Operational objectives that are eliminated should be shaded out and a rationale provided as for the retained operational objectives)

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
Target	Avoid	1. Population		Biomass,	1.1 Target species
Species	recruitment	size		· ·	managed to
•	failure of the			CPUE, yield	maintain biomass
	target species		above a specified	-	above set levels
			level		1.2 EMO and
	Avoid negative		1.3 Maintain catch at		AMO – maintain
	consequences		specified level		ecologically viable
	for species or		1.4 Species do not		stock levels
	population sub-		approach extinction or		1.3 TACs for each
	components		become extinct		species set by
					biological
					reference points
					based on EMO.
					Catch levels vary
					yearly as
					determined by the
					TACs.
					1.4 Covered by 1.2
		2. Geographic		Presence of	2.1 Individual
		range		1 1	stocks assumed to
				the Southern	be isolated and
				Ocean	therefore
			change outside		independent. The stocks at HIMI,
			acceptable bounds		Kerguelen and in
					the High seas
					(CCAMLR
					Statistical Division
					58.5.2) are
					interdependent
					from Macquarie.
		3. Genetic	3.1 Genetic diversity	Frequency of	3.1 Not currently
		structure		genotypes in the	monitored. No
				population,	reference levels
				effective	established.
				population size	Mitochondrial
				(N_e) , number of	DNA work has
				spawning units	shown that
					separate stocks are
					found in the
					Macquarie, Heard,
					and South Georgia
					region
		4. Age/size/sex	4.1 Age/size/sex	Biomass, numbers	4.1 Covered in
		structure		or relative	general by 1.2
				proportion in	EMO and AMO.
				age/size/sex	The size range of
				classes	Patagonian
			from reference		toothfish suggests
			structure)	Biomass of	that the fishery is
				spawners	not targeting
					recruitment or
				Mean size, sex	spawning grounds.
				ratio	

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity) 2 Recruitment to the	Abundance of recruits	5.1 Covered by 1.2 EMO and AMO. Reproductive capacity in terms of egg production may be easier to monitor via changes in Age/size/sex structure. 5.2 Covered by 1.2 EMO and AMO. May be easier to monitor via changes in Age/size/sex structure in the fishery.
Byproduct and Bycatch	Avoid recruitment	/Movement 1. Population	movement patterns of the population do not change outside acceptable bounds 1.1 No trend in	space, movement patterns within the population (e.g. attraction to bait, lights) Biomass,	6.1 Covered by 1.2 EMO and AMO.1.1 Objective too general and
	failure of the byproduct and bycatch species Avoid negative consequences for species or population sub- components		 1.2 Species do not approach extinction or become extinct 1.3 Maintain biomass above a specified level 1.4 Maintain catch at specified level 	CPUE, yield	covered by 1.2 and 1.3 1.2 Covered by EMO and AMO that ensures the fishery does not threaten bycatch species. 1.3 EMO/AMO – Annual reviews of all information on bycatch species with the aim of developing species specific bycatch limits. 1.4Maintaining bycatch/byproduct levels not a specific objective. The protection of bycatch by TACs based on precautionary principles is the preferred method.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space	2.1 Not currently monitored. No specific management objective based on the geographic range of bycatch/byproduct species.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1 Not currently monitored. No reference levels established. No specific management objective based on the genetic structure of bycatch species.
		4. Age/size/sex structure	4.1 Age/size/sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	
		5 Reproductive Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity) Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1 Beyond the generality of the EMO "Fishing is conducted in a manner that does not threaten stocks of byproduct / bycatch species", reproductive capacity is not currently measured for bycatch/byproduct species and is largely covered by other objectives.
		6. Behaviour /Movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Trawling does not appear to attract bycatch species or alter their behaviour and movement patterns, resulting in the attraction of species to fishing grounds.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale	
TEP species	Avoid	1. Population	1.1 Species do not	Biomass,	1.1 EMO - The	
	recruitment	size	further approach	numbers, density,		
	failure of TEP	5120	extinction or become	CPUE, yield	conducted in a	
	species		extinct	, , ,	manner that avoids	
	species		1.2 No trend in		mortality of, or	
	Avoid negative			biomass		injuries to,
	consequences		1.3 Maintain biomass		endangered,	
	for TEP species		above a specified		threatened or	
	or population		level		protected species	
	sub-components		1.4 Maintain catch at		(EA Assessment	
	suo componento		specified level		2002).	
	Avoid negative		speemed lever		1.2 A positive	
	impacts on the				trend in biomass is	
	population from				desirable for TEP	
	fishing				species.	
	IISIIIIg				1.3 Maintenance	
					of TEP biomass	
					above specified	
					levels not currently	
					a fishery	
					operational	
					objective.	
					1.4 The above	
					EMO states '.must	
					avoid	
					mortality/injury to TEPs'.	
		Coorentia		Durana of		
		2. Geographic	2.1 Geographic range of the population, in	Presence of	2.1 Change in	
		range	terms of size and		geographic range	
				space, i.e. the Southern Ocean.	of TEP species	
			continuity does not	Southern Ocean.	may have serious	
			change outside		consequences e.g.	
			acceptable bounds		population	
					fragmentation	
					and/or forcing	
					species into sub-	
		2 Carradia	2.1 Constinution	E	optimal areas.	
		3. Genetic		Frequency of	3.1 Because	
		structure	does not change		population size of	
			outside acceptable	population,	TEP species is	
			bounds	effective	often small, TEPs	
				population size	are sensitive to	
					loss of genetic	
				spawning units	diversity. Genetic	
					monitoring may be	
					an effective	
					approach to	
					measure possible	
					fishery impacts.	

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		4. Age/size/sex	4.1 Age/size/sex	Biomass, numbers	4.1 Monitoring the
		structure	structure does not	or relative	age/size/sex
			change outside	proportion in	structure of TEP
			acceptable bounds	age/size/sex	populations may
			(e.g. more than X%	classes	be a useful
			from reference	Biomass of	management tool
			structure)	spawners	allowing the
				Mean size, sex	identification of
				ratio	possible fishery
					impacts and that
					cross-section of
					the population
					most at risk.
		5. Reproductive	5.1 Fecundity of the	Egg production of	5.1 The
		Capacity	population does not	population	reproductive
			change outside	Abundance of	capacity of TEP
			1	recruits	species is of
			(e.g. more than X% of		concern to the
			reference population		HIMI Fishery
			fecundity)		because potential
			Recruitment to the		fishery induced
			population does not		changes in
			change outside		reproductive
			acceptable bounds		ability (e.g.
					reduction in prey
					items may
					critically affect
					seabird brooding
					success) may have
					immediate impact
					on the population
					size of TEP
					species.

Component	Core Objective	Sub-component	Example Operational	Example	Rationale
		(D.1	Objectives	Indicators	(1 T 1'
		6. Behaviour	6.1 Behaviour and	Presence of	6.1 Trawling
		/Movement		population across	operations may
				space, movement patterns within	attract TEP species and alter behaviour
			change outside	1	
			acceptable bounds	the population	and movement
				(e.g. attraction to	patterns, resulting
				bait, lights)	in the habituation
					of TEP species to fishing vessels.
					The overall effect
					may be to prevent
					juveniles from
					learning to fend
					for themselves
					therefore
					increasing the
					animals' reliance
					on fishing vessels.
					Subsequently this
					could substantially
					increase the risk of
					injury/mortality by
					collision,
					entrapment or
					entanglement with
					a vessel or fishing
					gear.
		7. Interactions	7.1 Survival after	Survival rate of	7.1, 7.2, EMO –
		with fishery	interactions is	species after	The fishery is
			maximised	interactions	conducted in a
					manner that avoids
			7.2 Interactions do not		mortality of, or
			•	interactions,	injuries to,
			1 1	biomass or	endangered,
				numbers in	threatened or
				population	protected species. Includes the
					prohibition on
					discarding offal
					(bycatch, fish
					processing waste,
					unwanted dead
					fish), gear
					restrictions and
					reduced lighting
					levels to minimise
					interactions and
					attraction of the
					vessel to TEP
					species.
					(EA Assessment
					2002)

Component	Core Objective	Sub-component		Example	Rationale
-			Objectives	Indicators	
Habitats	Avoid negative impacts on the quality of the environment Avoid reduction in the amount and quality of habitat		1.1 Water quality does not change outside acceptable bounds	Water chemistry, noise levels, debris levels, turbidity levels, pollutant concentrations, light pollution from artificial light	1.1 EMO control the discharge or discarding of waste (fish offal and poultry products and brassicas) and limit lighting on the vessels. MARPOL regulations prohibit discharge of oils, discarding of plastics.
		2. Air quality	2.1 Air quality does not change outside acceptable bounds	Air chemistry, noise levels, visual pollution, pollutant concentrations, light pollution from artificial light	2.1 Not currently perceived as an important habitat sub-component, trawling operations not believed to strongly influence air quality.
		quality	3.1 Sediment quality does not change outside acceptable bounds	Sediment chemistry, stability, particle size, debris, pollutant concentrations	3.1 EMO – The fishery is conducted, in a manner that minimises the impact of fishing operations on benthic habitat Controls on bobbin and disc size requirements to minimise benthic impacts (EA Assessment 2002). The current MPA and conservation areas reserve large areas of the known habitat types from fishing disturbance.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		4. Habitat types	4.1 Relative abundance of habitat types does not vary	Extent and area of habitat types, % cover, spatial pattern, landscape scale	4.1 Trawling activities may result in changes to the local habitat types in the fishing grounds. The current MPA and conservation areas reserve large areas of the known habitat types from fishing disturbance.
		5. Habitat structure and function	condition of habitat types does not vary outside acceptable	Size structure, species composition and morphology of biotic habitats	5.1 Trawling activities may result in local disruption to pelagic and benthic processes.
Communities	Avoid negative impacts on the composition/fun ction/distributio n/structure of the community	1. Species composition	composition of communities does not vary outside acceptable bounds	or biomass (relative or absolute) Richness Diversity indices	1.1 EMO – The

3. Distribution of the community 3.1 Community range does not vary outside community, trawl acceptable bounds Geographic range 3.1 I does not vary outside of the community, trawl acceptable bounds 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	sence/abundanc f functional up' members y fluctuate ely, however in ns of ntenance of system cesses it is portant that the regate effect of inctional group naintained. Demersal vling rations have nown impacts
group compositioncomposition does not change outside acceptable boundsfunctional groups, prese functional group (e.g. autotrophs, may filter feeders, may filter feeders, minor aggra a fun is may3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of oper- range, patchiness unkn on the the functional group species per4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	sence/abundanc f functional up' members y fluctuate ely, however in ns of ntenance of system cesses it is portant that the regate effect of inctional group naintained. Demersal vling rations have nown impacts
compositionchange outside acceptable boundsspecies per functional group group (e.g. autotrophs, may filter feeders, herbivores, carnivores)e of group (e.g. autotrophs, may filter feeders, herbivores, carnivores)3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl oon the the herbivores4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	f 'functional up' members y fluctuate ely, however in ns of ntenance of system cesses it is portant that the regate effect of inctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl oon the the filter feeders, main carnivores)3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl oon the the filter feeders, main carnivores)4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	up' members y fluctuate ely, however in ns of ntenance of system cesses it is portant that the regate effect of nctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range 3.1 I of the community, trawl oor the fill which impa distribution acceptable bounds4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	y fluctuate ely, however in ns of ntenance of system cesses it is portant that the regate effect of nctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl oor the the filter feeders, wide herbivores, main carnivores)4. Trophic/size4.1 Community sizeSize spectra of the 4.1 Trophic/size	ely, however in ns of ntenance of system cesses it is portant that the regate effect of inctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl of the continuity of range, patchiness3.1 of the fi which impo acceptable bounds4. Trophic/size4.1 Community sizeSize spectra of the 4.1 Tommunity size	ns of ntenance of system cesses it is portant that the regate effect of inctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of range, patchiness3.1 L of the community, trawl opera unkn on th the fill which impa distribution4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	system cesses it is portant that the regate effect of inctional group <u>naintained.</u> Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of range, patchiness unkn on th the fi whic impa distribution4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	cesses it is portant that the regate effect of inctional group maintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of range, patchiness unkn on th the fill whic impa distribution4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	bortant that the regate effect of inctional group maintained. Demersal vling rations have nown impacts
3. Distribution 3.1 Community range Geographic range 3.1 I of the does not vary outside of the community, trawl community acceptable bounds of the continuity of operation range, patchiness unkn on th which impation distribution 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	regate effect of inctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of opera range, patchiness unkn on th the fi whic impa distribution4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	nctional group naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of range, patchiness whic impa distri habit speci4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	naintained. Demersal vling rations have nown impacts
3. Distribution of the community3.1 Community range does not vary outside acceptable boundsGeographic range of the community, trawl continuity of range, patchiness whic impa distri habit speci4. Trophic/size4.1 Community sizeSize spectra of the 4.1 T	naintained. Demersal vling rations have nown impacts
of the does not vary outside of the community, trawl community acceptable bounds continuity of oper- range, patchiness unkn on th the fi whic impa distri habit speci 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	vling rations have nown impacts
of the does not vary outside of the community, trawl community acceptable bounds continuity of oper- range, patchiness unkn on th the fi whic impa distri habit speci 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	vling rations have nown impacts
range, patchiness unkn on th the fi whic impa distri habit speci 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	nown impacts
4. Trophic/size 4.1 Community size Size spectra of the 4.1 The spectra of the spectra of the 4.1 The spectra of the spectra of the 4.1 The spectra of the spectra of the spectra of the 4.1 The spectra of the spectra of the 4.1 The spectra of the spectra of the spectra of the spectra of the 4.1 The spectra of the spectra	
4. Trophic/size 4.1 Community size Size spectra of the 4.1 The spectra of the sp	
4. Trophic/size 4.1 Community size Size spectra of the 4.1 The spectra of the spectra of the 4.1 The spectra of the spectra of the 4.1 The s	the benthos in
impa impa distribution habit speci 4. Trophic/size 4.1 Community size Size spectra of the 4.1 Trophic/size	fishing grounds
4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	ch might
habit 4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	act the
4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	ribution of
4. Trophic/size 4.1 Community size Size spectra of the 4.1 T	itat-dependent
structure spectra/trophic community activ	
	vities for target
· · · · · · · · · · · · · · · · · · ·	cies have the
	ential to
1	iove a
	nificant
	nponent of the
	dator functional
	up. Increased
1	ndance of the
	y groups may
	n allow shifts in tive abundance
	higher trophic
	el organisms.
	Trawling
	rations not
	ceived to have
	etectable effect
cycle	

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. **Table 4** provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

<u>Sub-fishery Name</u>: Demersal trawl <u>Fishery Name</u>: Macquarie Island Fishery <u>Date completed</u>: June 2006

Direct impact of Fishing	Fishing Activity	Score (0/1)	Documentation of Rationale
Capture	Bait collection	0	Trawl fishery no baits used.
_	Fishing	1	
	Incidental	0	No ports, no landings, no recreational fishing
	behaviour		recorded.
Direct impact	Bait collection	0	Trawl fishery no baits used.
without capture	Fishing	1	Damage to benthos, fish escaping net.
	Incidental	0	
	behaviour		
	Gear loss	1	Nets are towed on bottom and there have been
			several instances of major gear loss
	Anchoring/	0	Not recorded.
	mooring		
	Navigation/stea	1	Direct interaction while vessel is steaming.
	ming		
Addition/	Translocation of	1	No bait fishing but translocation of species via
movement of	species		ballast water or as hull or organisms fouling sea
biological material	(boat launching,		water piping systems is a potential risk.
	reballasting)		
	On board	0	Fish processed on board but all unwanted
	processing		by catch is ground and stored as fishmeal
	D'	0	onboard vessel.
	Discarding catch	0	Ground and stored as fishmeal. May only be
			discharged in emergency and then under strict conditions.
	Stock	0	
	enhancement	0	
	Provisioning	0	No bait or berley used in fishery
	Organic waste	1	Sewage disposal not covered by regulations?
	disposal	1	Disposal of certain food scraps, brassicas and
	uisposui		poultry products prohibited, other food scraps
			disposed of according to MARPOL regulations.
Addition of non-	Debris	1	MARPOL regulations enforced. Vessel
biological material			operators have installed signs to remind/educate
U			crew members with regard to proper processes.
	Chemical	1	Regulated by MARPOL
	pollution		
	Exhaust	1	Types of fuels being burnt eg: MDO (marine
			diesel oils) vs HFO (heavy fuel oil)
	Gear loss	1	Several instances of major gear loss and
			numerous minor ones.
	Navigation/	1	Navigation/steaming introduce noise to
	steaming		environment. Depth sounders/ acoustic net
			positioning systems have potential to disturb
			marine species.

Direct impact of	Fishing Activity	Score	Documentation of Rationale
Fishing		(0/1)	
	Activity/	1	Presence of vessel introduces noise/stimuli to
	presence on		environment. Birds attracted to presence of
	water		vessel.
Disturb physical	Bait collection	0	Trawl fishery no baits used.
processes	Fishing	1	Benthos disturbed by nets
	Boat launching	0	Vessels operate from established ports.
	Anchoring/	0	No records of vessels anchoring in sub-Antarctic
	mooring		AFZ.
	Navigation/	1	Due to depth benthos unlikely to be affected.
	steaming		Wake mixing of surface waters does occur.
External Hazards	Other capture	1	IUU fishing vessels targeting toothfish using
(specify the particular	fishery methods		longlines. Area too remote for indigenous or
example within each activity area)			recreational fishers.
activity area)	Aquaculture	0	None
	Coastal	0	None
	development		
	Other extractive	0	None known.
	activities		
	Other non-	0	None known.
	extractive		
	activities		
	Other	1	Tourist shipping and landings by tourists
	anthropogenic		
	activities		

Table 4. Examples of fishing activities (Modified from Fletcher et al. 2002).

Direct Impact of Fishing	Fishing Activity	Examples of activities include
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. They are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without capture		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crew use to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/ mooring	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/ steaming	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes collisions with marine organisms or birds.
Addition/ movement of biological material		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
	Translocation of species (boat	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into the fishery.

Direct Impact of Fishing	Fishing Activity	Examples of activities include
	movements,	
	reballasting)	
	On board	The discarding of unwanted sections of target after on board processing introduces or moves biological material, e.g. heading
	processing	and gutting, retaining fins but discarding trunks.
	Discarding catch	The discarding of unwanted organisms from the catch can introduce or move biological material. This includes individuals of target and byproduct species due to damage (e.g. shark or marine mammal predation), size, high grading and catch limits. Also includes discarding of all non-retained bycatch species. This also includes discarding of catch resulting from incidental fishing by the crew. The discards could be alive or dead.
	Stock enhancement	The addition of larvae, juveniles or adults to the fishery or ecosystem to increase the stock or catches.
	Provisioning	The use of bait or berley in the fishery.
	Organic waste disposal	The disposal of organic wastes (e.g. food scraps, sewage) from the boats.
Addition of non- biological material		Any activities that result in non-biological material being added to the ecosystem of the fishery, this includes physical debris, chemicals (in the air and water), lost gear, noise and visual stimuli.
	Debris	Non-biological material may be introduced in the form of debris from fishing vessels or mother ships. This includes debris from the fishing process: e.g. cardboard thrown over from bait boxes, straps and netting bags lost. Debris from non-fishing activities can also contribute to this e.g. Crew rubbish – discarding or food scraps, plastics or other rubbish. Discarding at sea is regulated by MARPOL, which forbids the discarding of plastics.
	Chemical	Chemicals can be introduced to water, sediment and atmosphere through: oil spills, detergents other cleaning agents, any
	pollution	chemicals used during processing or fishing activities.
	Exhaust	Exhaust can be introduced to the atmosphere and water through operation of fishing vessels
	Gear loss	The loss of gear will result in the addition of non-biological material, this includes hooks, line, sinkers, nets, otter boards, light sticks, buoys etc.
	Navigation	The navigation and steaming of vessels will introduce noise and visual stimuli into the environment.
	/steaming	Boat collisions and/or sinking of vessels.
	C C	Echo-sounding may introduce noise that may disrupt some species (e.g. whales, orange roughy)
	Activity /presence on water	The activity or presence of fishing vessels on the water will noise and visual stimuli into the environment.
Disturb physical processes		Any activities that will disturb physical processes, particularly processes related to water movement or sediment and hard substrate (e.g. boulders, rocky reef) processes.
1	Bait collection	Bait collection may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.

Direct Impact of Fishing Activity Fishing		Examples of activities include				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.				
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.				
	Anchoring /mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.				
	Navigation /steaming	Navigation /steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.				
External hazards		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.				
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous or recreational fisheries operating in the same region as the fishery under examination				
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region				
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff				
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity				
	Other non- extractive activities	Defence, shipping lanes, dumping of munitions, submarine cables				
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills				

## 2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.

Key documents can be found on the AFMA web page at <u>www.afma.gov.au</u> and include the following:

- Assessment Report
- Management Plan
- Management Regulations
- Management Plan and Regulation Guidelines
- AFMA At a glance web page <u>http://www.afma.gov.au/fisheries/etbf/at_a_glance.php</u>
- Bycatch Action Plans
- Data Summary Reports (logbook and observer)

Other publications that may provided information include

- BRS Fishery Status Reports
- Strategic Plans

## 2.2.6 Decision rules to move to Level 1(Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 14 out of 26 possible internal activities were identified as occurring in this fishery. Two out of 6 external activities were identified. Thus, a total of 16 activity-component scenarios will be considered at Level 1. This results in 80 total scenarios (of 160 possible) to be developed and evaluated using the unit lists (species, habitats, communities).

#### 2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat or community. Analysis at Level 1 is for whole components (target; bycatch and byproduct; TEP species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity and consequence analysis (SICA). SICA is applied to the component as a whole by choosing the most vulnerable sub-component (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component, and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

- Step1: Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 at the scoping level (Scoping Document S3) onto the SICA table
- Step 2: Score spatial scale of the activity
- Step 3: Score temporal scale of the activity
- Step 4: Choose the sub-component most likely to be affected by activity
- Step 5: Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage
- Step 6: Select the most appropriate operational objective
- Step 7: Score the intensity of the activity for that sub-component
- Step 8: Score the consequence resulting from the intensity for that sub component
- Step 9: Record confidence/uncertainty for the consequence scores
- Step 10. Document rationale for each of the above steps
- Step 11. Summary of SICA results
- Step 12. Evaluation/discussion of Level 1
- Step 13. Components to be examined at Level 2

## 2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each

component (target, bycatch and byproduct, and TEP species, habitat, and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1

## 2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm, then the spatial scale is scored as 4. The score is then recorded onto the SICA Document and the rationale documented.

Spatial scale score of activity

<1 nm:	1-10 nm:	10-100 nm:	100-500 nm:	500-1000 nm:	>1000 nm:
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

## 2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6. If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document and the rationale documented.

Temporal scale score of activity

Decadal (1 day every 10 years or so)	Every several years (1 day every several years)	Annual (1-100 days per year)	Quarterly (100-200 days per year)	Weekly (200-300 days per year)	Daily (300-365 days per year)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the same 150 days of the year, the score is 3. If the same 10 boats each spend 30 non-overlapping days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

#### 2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'sub-component' column of the SICA Document. The justification is recorded in the rationale column.

## 2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from **Scoping Document S2** (A - C). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

## 2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from **Scoping Document S3** is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in **Scoping Document S3**. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated then these sub-components or operational objectives must be re-instated.

## 2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (**Figure 2**) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

Level	Score	Description
Negligible	1	remote likelihood of detection at any spatial or
		temporal scale
Minor	2	occurs rarely or in few restricted locations and
		detectability even at these scales is rare
Moderate	3	moderate at broader spatial scale, or severe but
		local
Major	4	severe and occurs reasonably often at broad
		spatial scale
Severe	5	occasional but very severe and localized or less
		severe but widespread and frequent
Catastrophic	6	local to regional severity or continual and
_		widespread

**Intensity score of activity** (Modified from Fletcher et al. 2002)

This score is then recorded on the Level 1 (SICA) Document and the rationale documented.

## 2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores below. A more detailed description of the consequences at each level for each component (target, bycatch and byproduct, TEP species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table ((see table 5, Appendix B).

Level	Score	Description
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics
Moderate	3	Maximum impact that still meets an objective (e.g. sustainable level of
		impact such as full exploitation rate for a target species).
Major	4	Wider and longer term impacts (e.g. long-term decline in CPUE)
Severe	5	Very serious impacts now occurring, with relatively long time period likely
		to be needed to restore to an acceptable level (e.g. serious decline in
		spawning biomass limiting population increase).
Intolerable	6	Widespread and permanent/irreversible damage or loss will occur-unlikely
		to ever be fixed (e.g. extinction)

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

## 2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale

documented. The confidence will reflect the levels of uncertainty for each score at steps 2, 3, 7 and 8.

Description of Confidence scores for Consequences. The confidence score appropriate to the rationale is used, and documented on the SICA Document.

Confidence	Score	Rationale for the confidence score
Low	1	Data exists, but is considered poor or conflicting
		No data exists
		Disagreement between experts
High	2	Data exists and is considered sound
		Consensus between experts
		Consequence is constrained by logical consideration

#### 2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis.

Level 1

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub component provide a guide for scoring the level of consequence (see Table 5, Appendix B).

#### 2.3.1 Level 1 (SICA) Documents

#### L1.1 - Target Species Component

Direct impact of fishing Capture	Fishing activity Bait collection	<ul><li>Presence (1)</li><li>Absence (0)</li></ul>	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Fishing	1	3	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	3	3	2	The Aurora Trough and the Northern Valleys fishing grounds are less than 100 nm wide. Fishing occurs from October to March but about 30 days per year. Population size most likely to be affected by capture fishing. Patagonian toothfish only target species. Catches restricted to research TACs for majority of seasons at Aurora Trough 1999 since to allow stock recovery but TAC has not been reached on the Northern Valley grounds. Commercial TACs set for past 2 seasons indicating apparent recovery of stock. =>intensity moderate =>Consequence moderate as TACs fully caught in Aurora Trough when set and indicates stock is fully exploited although stock declined on Northern Valleys ground. TAC levels being annually reviewed and adjusted to maintain fishery =>Confidence high 100% observer coverage, and research conducted in the
	Incidental behaviour	0									fishery to date

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Direct	Bait collection	0									
impact without capture	Fishing	1	3	3	Age/Size/Sex structure	Patagonian toothfish Dissostichus eleginoides	4.1	3	2	2	Mesh sizes prescribed to ensure maximum escapement of specific size classes. Post- capture survival might be at risk if fish pass through meshes. While successes of tagging studies indicate good survival, different capture methods and subsequent escape will influence survival. Biology of toothfish e.g. no air filled swim bladder suggests relatively high likelihood of post-capture survival. Catches restricted to research TACs for majority of seasons at Aurora Trough 1999 since to allow stock recovery but TAC has not been reached on the Northern Valley grounds. Commercial TACs set for past 2 seasons indicating apparent recovery of stock. =>intensity moderate =>Consequence scored as minor assuming good survival rate =>Confidence high as tagging surveys successful.
	Incidental behaviour	0									
	Gear loss	1	3	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	2	2	2	Annual gear loss small. Only one vessel in the fishery =>intensity minor =>consequence minor =>Confidence high, due to records from the Macquarie fishery regarding gear loss.
	Anchoring/ mooring	0									
	Navigation/ steaming	1	3	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	1	1	2	Navigation/steaming occur on about 30 days per year. Population size most likely to be affected by collision of fish with vessel =>intensity negligible =>consequence negligible unlikely for deepwater demersal species to collide with vessel =>Confidence

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale high, 100% observer coverage and logic
Addition/ movement	Translocation of species	1	6	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	1	2	1	would indicate minimal impact. Translocation of species via ballast or hull- fouling could occur while vessel on the
of biological material											grounds about 30 days per year. Population size most likely to be affected =>intensity negligible as remote likelihood of detection because the likelihood of temperate water species surviving and establishing as a threat to Patagonian toothfish in sub- Antarctic waters is considered negligible. =>consequence minor to recognize the potential for the spread of fish borne disease =>Confidence low, no data on susceptibility of Patagonian toothfish to fish borne diseases or evidence that translocation has occurred.
	On board	0									
	processing Discarding catch	0									
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	6	3	Behaviour/movement	Patagonian toothfish <i>Dissostichus eleginoides</i>	6.1	1	1	2	Vessels do not dispose of any plastic rubbish, or poultry products and comply strictly with MARPOL regulations therefore organic waste discharge could only be accidental; target species depths>400m therefore cannot alter behaviour of fish =>intensity negligible =>consequence negligible =>confidence high, 100% observer coverage, compliance to regulations

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)		
Addition of non- biological material	Debris	1	3	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	1	1	2	One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of debris but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of debris. =>Intensity negligible. =>consequence negligible as even accidental loss unlikely to affect deepwater species =>Confidence high, 100% observer coverage, as the regulations limit debris being deliberately thrown overboard.
	Chemical pollution	1	3	2	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	2	2	2	Chemical pollution might only occur accidentally and rarely. One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of chemical pollution but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of chemicals. =>Intensity minor =>consequence of accidental disposal to target species minor. =>Confidence high100% observer coverage and regulations limit chemicals being deliberately dumped at sea.
	Exhaust	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	1	1	2	Exhaust emissions occur daily over 30 days. =>intensity and consequence both scored as negligible. The limited number of vessels in the fishery coupled with the depth at which target species are found makes it highly unlikely that exhaust gas emissions will have an affect on the target species. Further weather conditions in the region are frequently extreme, rapidly dispersing exhaust emissions. =>Confidence is high

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	<b>Rationale</b> due to depth of water column separating
											target species from emissions.
	Gear loss	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	2	2	1	Annual gear loss small and the impact on habitat of the target species small and therefore unlikely to impact behaviour/movement of target species =>The limited number of vessels in the fishery coupled with the type of gear in use indicates a minor intensity =>consequence minor =>Confidence low, 100% observer coverage but no data on effect of alteration of habitat on toothfish.
	Navigation/ steaming	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	1	1	2	Navigation/steaming occurs daily over 30 days =>intensity negligible due to the limited number of vessels in the fishery. =>Consequence negligible, target species likely too deep and mobile to be impacted by noise or echo sounding from vessel =>Confidence high, logic.
	Activity/ presence on water Bait collection	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	1	1	2	Only one vessel present and active daily over about 30 days. =>Intensity negligible =>Consequence negligible target species too deep and mobile to be impacted by surface activity =>Confidence high, logic

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	–			
Disturb physical	Fishing	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	3	2	1	Fishing occurs daily over about 30 days =>intensity moderate as localized grounds are repeatedly targeted =>Consequence minor, only a small area is affected and gear designed to minimize impact on seabed. Local changes in habitat could affect distribution of habitat-dependent species but unlikely to detect change in distribution of toothfish =>Confidence low due to lack of data from the Macquarie fishery regarding effects of benthos disturbance.
processes	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/ steaming	1	3	3	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	2	1	2	Navigation/steaming occurs daily over about 30 days =>Intensity minor due to the limited number of vessels in the fishery. =>Consequence negligible as target species too deep for vessel to alter relevant physical processes to be detectable beyond natural variation =>Confidence high, logic.
External Impacts (specify the particular example within each activity area)	Other fisheries	1	6	3	Population size	Patagonian toothfish Dissostichus eleginoides	1.1	2	1	2	No other fisheries operate in the AFZ. Only one alleged case of IUU fishing to have occurred in the AFZ. Fishing outside AFZ (e.g. in adjacent New Zealand AFZ) not likely to affect this species =>Intensity minor =>Consequence negligible =>Confidence high -AFMA reports no activity
,	Aquaculture	0									
	Coastal development	0									
	Other extractive activities	0									

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Other non extractive activities	0									
	Other anthropogenic activities	1	4	4	Behaviour/movement	Patagonian toothfish Dissostichus eleginoides	6.1	1	1	2	Research and tourism and the passage of research/tourist vessels. =>Intensity negligible due to the limited number of vessels/visits/groups per year. =>Consequence is seen as negligible, as target species too deep and mobile to be impacted =>Confidence was recorded as high due to data regarding numbers and activities indicates target species not at risk.

#### L1.2 - Byproduct and Bycatch Component

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Capture	Bait collection	0	0	0	Demulation size	C anothe a nor	1 1	2	2	2	The Assure Tressel and the Nexthern Valles (* 1.)
	Fishing	1	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	3	3	2	The Aurora Trough and the Northern Valleys fishing grounds are less than 100 nm wide. Fishing occurs from October to March but about 30 days per year. Population size of Southern sleeper shark most likely to be affected before other sub-components as its productivity considered much lower than bycatch species. Fishing has been restricted to research TACs for majority of seasons at Aurora Trough since 1999 to allow stock recovery but commercial TACs have been set for past 2 seasons and have been caught suggesting full exploitation of toothfish. TACs have not been caught on the Northern Valley grounds suggesting reduction in biomass. =>Intensity moderate =>Consequence rated as moderate although there are concerns that various deepwater dogfishes have been overfished =>Confidence high due data collection by observers and research conducted in the fishery to date.
	Incidental behaviour	0	0	0							
Direct impact without capture	Bait collection	0	0	0							
without capture	Fishing Incidental behaviour	0	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	2	2	2	Population size most likely to be affected before other sub-components as productivity of Southern sleeper shark considered much lower than bycatch species and post-capture mortality for many sharks is high =>Intensity minor =>Consequence rated as minor as detection of change due to escapement by sleeper sharks low =>Confidence high due data collection by observers and research conducted in the fishery to date.

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Gear loss	1	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	2	2	2	Annual gear loss small =>intensity minor; only one vessel in the fishery =>consequence minor =>Confidence high, 100% observer coverage records al gear loss from Macquarie fishery.
	Anchoring/ mooring	0	0	0		unurciicus					gear 1055 from Wacquarte fishery.
	Navigation/ steaming	1	3	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	1	1	2	Navigation/steaming occurs on about 30 days per year. Population size most likely to be affected by collision of fish with vessel =>intensity negligible =>consequence negligible unlikely for deepwater demersal species to collide with vessel =>Confidence high, 100% observer coverage and logic would indicate minimal impact.
Addition/ movement of biological material	Translocation of species	1	6	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	1	2	1	Translocation of species via ballast or hull-fouling could occur while vessel on the grounds about 30 days per year. Population size most likely to be affected =>intensity negligible as remote likelihood of detection because the likelihood of temperate water species surviving and establishing as a threat to Sleeper shark in sub-Antarctic waters is considered negligible. =>consequence minor to recognize the potential for the spread of fishborne disease =>Confidence low, no data on susceptibility of Sleeper sharks to fishborne diseases or evidence that translocation has occurred.
	On board processing	0	0	0							
	Discarding catch	0	0	0							
	Stock enhancement	0	0	0							
	Provisioning	0	0	0							

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Organic waste disposal	1	6	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	1.1	1	1	2	Vessels do not dispose of any plastic rubbish, or poultry products and comply strictly with MARPOL regulations therefore organic waste discharge could only be accidental; target species depths>400m therefore cannot alter behaviour of fish =>intensity negligible =>consequence negligible =>confidence high, 100% observer coverage, compliance to regulations
Addition of non- biological material	Debris	1	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	1	1	2	One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of debris but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of debris. =>Intensity negligible. =>consequence negligible as even accidental loss unlikely to affect deepwater species =>Confidence high, 100% observer coverage, as the regulations limit debris being deliberately thrown overboard.
	Chemical pollution	1	3	2	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	2	2	2	Chemical pollution, accidental, might only occur rarely. One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of chemical pollution but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of chemicals. =>Intensity minor =>consequence of accidental disposal to target species minor. =>Confidence high100% observer coverage and regulations limit chemicals being deliberately dumped at sea.

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Exhaust	1	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	1	1	2	The Aurora Trough and the Northern Valleys fishing grounds are less than 100 nm wide. Exhaust emissions occurs daily during the season. =>intensity and consequence both scored as negligible. The limited number of vessels in the fishery coupled with the depth at which target species are found makes it highly unlikely that exhaust gas emissions will have an affect on the target species. Weather conditions in the region are frequently extreme, rapidly dispersing exhaust emissions. =>Confidence is high due to depth of water column separating target species from emissions.
	Gear loss	1	3	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	2	2	1	Annual gear loss small and the impact on habitat of the target species small and therefore unlikely to impact behaviour/movement =>intensity minor; only one vessel in the fishery coupled with the type of gear in use =>minor consequence =>Confidence low, 100% observer coverage but no data on effect of alteration of habitat on toothfish.
	Navigation/ steaming	1	3	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	1	1	2	Navigation/steaming occurs daily over 30 days =>Intensity negligible due to the limited number of vessels in the fishery. =>Consequence negligible, sleeper sharks species likely too deep and mobile to be impacted by noise or echo sounding from vessel =>Confidence high, logic.
	Activity/ presence on water Bait collection	0	3	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	1	1	2	Only one vessel present and active daily over about 30 days =>Intensity negligible =>Consequence negligible; Sleeper sharks too deep and mobile to be impacted by surface activity =>Confidence high, logic

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Disturb physical	Fishing	1	3	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	3	2	1	Fishing occurs daily over about 30 days =>intensity moderate as localized grounds are repeatedly targeted =>Consequence minor, only a small area is affected and gear designed to minimize impact on seabed. However local changes in habitat could affect distribution of habitat-dependent species =>Confidence low due to lack of data from the Macquarie fishery regarding effects of benthos disturbance.
processes	Boat launching	0	0	0							
	Anchoring/ mooring	0	0	0							
	Navigation/ steaming	1	3	3	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	2	1	2	Navigation/steaming occurs daily over about 30 days =>Intensity minor due to the limited number of vessels in the fishery. =>Consequence negligible as sharks too deep for vessel to alter relevant physical processes to be detectable beyond natural variation =>Confidence high, logic.
External Impacts (specify the particular example within each activity area)	Other fisheries	1	6	3	Population size	Southern Sleeper shark Somniosus antarcticus	1.1	2	1	2	No other fisheries operate in the AFZ. Only one alleged case of IUU fishing to have occurred in the AFZ. Fishing outside AFZ (e.g. in adjacent New Zealand AFZ) not likely to affect this species =>Intensity minor =>Consequence negligible =>Confidence high -AFMA reports no activity
	Aquaculture	0	0	0							i i i i i i i i i i i i i i i i i i i
	Coastal development	0	0	0							
	Other extractive activities	0	0	0							
	Other non extractive activities	0	0	0							

Direct impact of fishing	Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard	Temporal scale of	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
	Other anthropogenic activities	1	4	4	Behaviour/movement	Southern Sleeper shark Somniosus antarcticus	6.1	1	1	2	Research and tourism and the passage of research/tourist vessels. =>Intensity negligible due to the limited number of vessels/visits/groups per year. =>consequence negligible =>Confidence was recorded as high due to data regarding numbers and activities in the region.

### L1.3 – TEP Species Component

Fishing activity Bait collection	<ul> <li>□ Presence (1) Absence (0)</li> </ul>	<ul> <li>Spatial scale of Hazard (1-6)</li> </ul>	• Temporal scale of Hazard	Sub-component	Unit of analysis	<b>Operational objective (S2.1)</b>	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Fishing	1	3	3	Population size	Wandering albatross	1.1	2	4	2	The Aurora Trough and the Northern Valleys fishing grounds are
					Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys					less than 100 nm wide. Fishing occurs from October to March but about 30 days per year. Population size most likely to be affected before other sub-components as albatross breeding populations are critically low (Robertson <i>et al.</i> 2005). About 10-20 pairs of Wandering albatross breed on the island =>Intensity minor as no birds have been killed in the fishery although 2 birds were killed at HIMI =>consequence scored as major because of the potential of an isolated/rare TEP interaction resulting in injury/mortality which could be critical to the reproductive success of species such as Wandering Albatross =>Confidence high 100% observer coverage and research conducted in the fishery to date.
Incidental behaviour	0	0	0							
Bait collection Fishing	0	0 3	0 3	Population size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	3	2	2	Population size most likely to be affected before other sub- components as albatross breeding populations are critically low (Robertson <i>et al.</i> 2005) and interactions resulting in injury might impact survival. => Intensity moderate as 13 great albatrosses have been recorded interacting with gear with no injury up to 2001 (Williams et al. 2001) =>Consequence minor even though no fatalities recorded, the potential for injury to rare species could have serious impact on species survival =>Confidence high, due to data collection by observers and research conducted in the fishery to date.
Incidental behaviour	0	0	0							

Fishing activity Gear loss	Presence (1) Absence (0)	© Spatial scale of Hazard (1-6)	© Temporal scale of Hazard	Sub-component Population size	<b>Unit of analysis</b> Wandering albatross <i>Diomedea exulans;</i> Grey-headed albatross <i>Thalassarche</i> <i>chrysostoma;</i> Black- browed Albatross <i>Thalassarche</i> <i>melanophrys</i>	<b>C</b> Operational objective (S2.1)	¹⁰ Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale         Annual gear loss small =>intensity minor; only one vessel in the fishery =>consequence minor =>Confidence high, 100% observer coverage records al gear loss from Macquarie fishery.
Anchoring/ mooring	0	0	0							
Navigation/steaming	1	3	3	Population size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	2	2	2	Navigation/steaming occurs daily over 30days. Population size most likely to be affected before other sub-components as albatross breeding populations are critically low (Robertson <i>et al.</i> 2005). =>Intensity minor, due to presence of vessel and observer data on seabirds around vessels. Seabirds have flown into vessels or fishing gear by accident. =>Despite mitigating factors including reduced lighting, bans on net-sonde cables, removal of protruding wires etc., and the low population levels of some albatross species result in a minor consequence score. =>Confidence high, due to data collection by observers and research conducted in the fishery to date.
Translocation of species	1	6	3	Population size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	1	2	2	Translocation could occur daily over 30 days vessel is present. Population size most likely to be affected before major changes in geographic range or genetic structure. Behaviour/movement unlikely to be immediately affected. =>Intensity rated as negligible due small number of vessels in fishery. =>Consequences minor, as the likelihood of temperate water species surviving and establishing as a threat to species in sub-Antarctic waters is remote. The potential for the spread of disease deserves future consideration. The ban on discharge of poultry products is a mitigating factor. =>Confidence

Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale high, due to data collection by observers and research conducted in the fishery to date.
On board processing	0	0	0							
Discarding catch	0	0	0							
Stock enhancement	0	0	0							
Provisioning	0	0	0							
Organic waste disposal	1	6	3	Behaviour/movement	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	6.1	2	2	1	Vessels do not dispose of any plastic rubbish, or poultry products and comply strictly with MARPOL regulations therefore organic waste discharge could only be accidental; target species depths>400m therefore cannot alter behaviour of fish =>intensity negligible =>consequence negligible =>confidence high, 100% observer coverage, compliance to regulations

Fishing activity Debris	Presence (1) Absence (0)	© Spatial scale of Hazard (1-6)	© Temporal scale of Hazard	Sub-component Population Size	<b>Unit of analysis</b> Wandering albatross Diomedea esulans:	Coperational objective (S2.1)	- Intensity Score (1-6)	- Consequence Score (1-6)	Confidence Score (1-2)	Rationale One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of debris but also has
					Grey-headed albatross <i>Thalassarche</i> <i>chrysostoma</i> ; Black- browed Albatross <i>Thalassarche</i> <i>melanophrys</i>					installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of debris. Intensity negligible. => consequence negligible as even accidental loss unlikely to affect birds => Confidence high, 100% observer coverage, as the regulations limit debris being deliberately thrown overboard.
Chemical pollution	1	3	2	Population Size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	2	2	2	Chemical pollution, accidental, might only occur rarely. One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of chemical pollution but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of chemicals. =>Intensity minor => consequence of accidental disposal to birds minor. =>Confidence high 100% observer coverage and regulations limit chemicals being deliberately dumped at sea.
Exhaust	1	3	3	Behaviour/movement	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	6.1	1	1	2	Exhaust emissions occurs daily during the season. =>intensity and consequence both scored as negligible. Only one vessel in the fishery and bird's mobility unlikely that exhaust gas emissions will have an affect on the birds species. Weather conditions in the region are frequently extreme, rapidly dispersing exhaust emissions. =>Confidence is high, 100% observer coverage, logic.

<b>Fishing activity</b> Gear loss	Presence (1) Absence (0)	© Spatial scale of Hazard (1-6)	E Temporal scale of Hazard	Sub-component Behaviour/movement	<b>Unit of analysis</b> Wandering albatross <i>Diomedea exulans;</i> Grey-headed albatross <i>Thalassarche</i> <i>chrysostoma;</i> Black- browed Albatross <i>Thalassarche</i> <i>melanophrys</i>	⁹ Operational objective (S2.1)	¹⁰ Intensity Score (1-6)	- Consequence Score (1-6)	Confidence Score (1-2)	<b>Rationale</b> Annual gear loss small and the impact on habitat of the birds small and therefore unlikely to impact behaviour/movement =>intensity minor; only one vessel in the fishery coupled with the type of gear in use. =>consequence negligible =>Confidence high, 100% observer coverage.
Navigation/ steaming	1	3	3	Behaviour/movement	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	6.1	1	1	2	Navigation/steaming occurs daily over 30 days =>Intensity negligible due to the limited number of vessels in the fishery. =>Consequence negligible, any changes in distribution would be temporary due to mobility of birds =>Confidence high, logic.
Activity/ presence on water Bait collection	0	3	3	Behaviour/movement	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	6.1	1	1	2	Only one vessel present and active daily over about 30 days. =>Intensity negligible =>Consequence negligible change in distribution of birds only temporary =>Confidence high, logic

Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Fishing	1	3	3	Behaviour/movement	Elephant Seal Mirounga leonina,	6.1	2	2	1	Elephant seals chosen as most likely TEP species most susceptible to disturbance by demersal trawling =>Intensity minor due to small area affected and low numbers of vessels in fishery. =>Consequence minor as not resident =>Confidence low, due to lack of data.
Boat launching	0	0	0							
Anchoring/ mooring	0	0	0							
Navigation/steaming	1	3	3	Behaviour/movement	Minke whale Balaenoptera bonaerensis	6.1	1	1	2	Navigation/steaming occurs daily during season. Minke whales chosen as TEP species most susceptible to disturbance by navigation/steaming. =>intensity and consequence both rated as negligible, only one vessel involved and changes in whale distribution only temporary =>Confidence high , 100% observer coverage and data on whale interactions suggests impact minimal.
Other fisheries	1	6	3	Population size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	1	1	2	No other fisheries operate in the AFZ. Only one alleged case of IUU fishing to have occurred in the AFZ. Fishing outside AFZ (e.g. in adjacent New Zealand AFZ) possibly could cause impact on locally breeding birds =>Intensity negligible =>Consequence negligible =>confidence high -AFMA reports no activity
Aquaculture	0	0	0							
Coastal development	0	0	0							
Other extractive activities	0	0	0							
Other non-extractive activities	0	0	0							

Fishing activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard	Sub-component	Unit of analysis	<b>Operational objective (S2.1)</b>	Intensity Score (1-6)	Consequence Score (1-6)	Confidence Score (1-2)	Rationale
Other anthropogenic activities	1	4	4	Population size	Wandering albatross Diomedea exulans; Grey-headed albatross Thalassarche chrysostoma; Black- browed Albatross Thalassarche melanophrys	1.1	2	2	2	Research and tourism and the passage of research/tourist vessels. =>Intensity minor due to the limited number of vessels/visits/groups per year. =>consequence minor =>Confidence was recorded as high due to data regarding numbers and activities in the region.

### L1.5 – Community Component

Direct impact of fishing Capture	Fishing Activity Bait collection	• Presence (1) Absence (0)	Spatial scale of Hazard o (1-6)	• Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
	Fishing	1	3	3	Species composition	Mid-upper Slope	1.1	3	3	1	The Aurora Trough and the Northern Valleys fishing grounds are less than 100 nm wide. Fishing occurs from October to March but about 30 days per year. Fishing can alter community species composition. Catches restricted to research TACs for majority of seasons at Aurora Trough 1999 since to allow stock recovery but TAC has not been reached on the Northern Valley grounds =>intensity moderate; Commercial TACs set for past 2 seasons in Aurora Trough indicating apparent recovery of stock =>Consequence moderate as TACs fully caught in Aurora Trough when set and indicates stock is fully exploited but probably has declined on Northern Valleys ground. TAC levels being annually reviewed and adjusted to maintain fishery =>Confidence low, as no current data available.
	behaviour Bait collection	0	0	0							
		3	,	,							

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
	Fishing	1	3	3	Species composition	Mid-upper Slope	3.1	3	2	1	Post-capture mortality resulting from escapement of species from net could affect species composition of community without capture on fishing grounds. =>Intensity rated as moderate only one vessel in fishery =>Consequence minor as bycatch is low and relatively small area is affected. Whether trawl damage may in time alter distribution of community significantly has not been determined. =>Confidence low as no current data available.
Direct impact	Incidental behaviour	0	0	0							
without capture	Gear loss	1	3	3	Species composition	Mid-upper Slope	1.1	1	2	2	Annual gear loss is small. Gear loss has potential to alter species composition by direct interactions with species particularly benthic species =>Intensity negligible, due to limited numbers of vessels in fishery, and management controls designed to reduce/monitor interactions with these species. =>Consequence minor, as the types of gear recorded as lost are either small or have a minimal risk of entangling rare/endangered species. =>Confidence high, as observers present on all trips and report all gear lost.
	Anchoring/ mooring	0	0	0							

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
	Navigation/ steaming	1	3	3	Species composition	Oceanic (1)	1.1	1	2	2	Navigation/ steaming has potential to alter species composition by direct impact with rare/endangered species. =>Intensity rated as negligible due to limited numbers of vessels in fishery, and management controls designed to reduce/monitor interactions with these species. =>Consequence minor as unlikely to detect against natural mortality. However the population sizes of some species are small enough that individual mortality/injury may be sufficient to compromise species survival. =>Confidence was recorded as high as the data on population sizes and incidents is well documented.
Addition/ movement of biological material	Translocation of species	1	6	3	Species composition	Mid-upper Slope	1.1	1	2	2	Translocation of species via ballast or hull-fouling could occur while vessel on the grounds about 30 days per year => species composition most likely to be affected =>intensity negligible as remote likelihood of detection because the likelihood of temperate water species surviving and establishing in sub- Antarctic waters is considered negligible. Circumpolar currents facilitate wide distribution of Antarctic and sub- Antarctic species through region. =>Consequence minor, due to wide distribution of Antarctic and sub- Antarctic species through region. =>Confidence high, as successful translocations involve species already

Direct impact of fishing	<b>Fishing</b> Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
											adapted to particular environments and climatic regimes.
	On board processing	0	0	0							
	Discarding catch	0	0	0							
	Stock enhancement	0	0	0							
	Provisioning	0	0	0							

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
	Organic waste disposal	1	6	3	Distribution of community	Oceanic (1)	3.1	1	1	2	Vessels do not dispose of any plastic rubbish or poultry products and comply strictly with MARPOL regulations therefore organic waste discharge could only be accidental =>Intensity negligible. =>Consequence negligible =>Confidence high, 100% observer coverage and compliance with regulations
Addition of non- biological material	Debris	1	3	3	Distribution of community	Oceanic (1)	3.1	1	1	2	One vessel in the fishery complies not only with MARPOL regulations restricting the deliberate disposal of debris but also has installed signs/notices in the accommodation to remind/educate the crew as to their legal obligations for disposal of debris. =>Intensity negligible. =>consequence negligible as even accidental loss unlikely to impact pelagic species =>Confidence high, 100% observer coverage, as the regulations limit debris being deliberately thrown overboard.

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
	Chemical pollution	1	3	2	Functional group composition	Oceanic (1)	2.1	1	2	2	The Aurora Trough and the Northern Valleys fishing grounds are less than 100 nm wide. Chemical (particularly oil) pollution is considered to have a potential frequency of once every few years. Chemical (particularly oil) pollution has the potential to alter functional group composition by impacting severely on animals that cross the air/water interface, particularly avian and mammalian predators/scavengers. =>Intensity negligible, as while spread over a large area, pollution events are infrequent and discontinuous. Bans on disposal of pollutants are also part of management plans. =>Consequence minor as these events are expected to be rare from these vessels. However the potential impact of a large oil spill would be severe and deserves further investigation. =>Confidence high. No spills have been reported to date and all vessels should be operating under MARPOL regulations including Oil Record books and surveys of oily water separator monitoring equipment.
	Exhaust	1	3	3	Distribution of community	Oceanic (1)	3.1	1	1	2	Exhaust emissions occurs daily during the season. =>intensity and consequence both scored as negligible. Only one vessel in the fishery and birds most likely species to interact but their mobility renders them unlikely to be affected by exhaust gas emissions. Weather conditions in the region are

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
											frequently extreme, rapidly dispersing exhaust emissions. =>Confidence is high, 100% observer coverage, logic.
	Gear loss	1	3	3	Species composition	Mid-upper Slope	1.1	1	1	2	Annual gear loss small. Gear loss has potential to alter species composition by direct impact with rare/endangered species. =>Intensity rated as negligible due to limited numbers of vessels in fishery. =>Consequence negligible The types of gear recorded as lost are either small or have a minimal risk of entangling species or altering habitat of habitat-dependent species =>Confidence was recorded as high due records of amount and type of gear lost.
	Navigation/ steaming	1	3	3	Distribution of community	Oceanic (1)	3.1	1	1	2	Navigation/steaming has the potential to alter community distributions by attracting species to the vessel and alter foraging patterns. =>Intensity negligible, due to small number of vessels involved. =>Consequence negligible, due to the small number of vessels involved. =>Confidence high, due to observer data on interactions with vessels navigating/steaming in the fishery.

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
Disturb	Activity/ presence on water Bait collection	0	3	3	Distribution of community	Oceanic (1)	3.1	1	1	2	Activity/presence has the potential to alter community distributions by attracting species to the vessel and alter foraging patterns. =>Intensity negligible, due to small number of vessels involved. =>Consequence negligible, due to the small number of vessels involved. =>Confidence high, due to observer data on interactions with vessels steaming in the fishery.
physical processes	Fishing	1	3	3	Distribution of community	Mid-upper slope	3.1	3	2	1	Fishing has the potential to alter distribution of community by disturbing seafloor and benthos and thus affect habitat-dependent species =>Intensity moderate, as grounds are continuously targeted once identified as productive =>Consequence minor as area relatively small and likelihood of detection small =>Confidence low, due to insufficient data. Research into the benthic impacts of the fishery is recognised as a current priority.
	Boat launching	0	0	0							
	Anchoring/ mooring	0	0	0			2.1	1	1	2	
	Navigation/steamin g	1	3	3	Distribution of community	Oceanic (1)	3.1	1	1	2	Navigation/steaming has the potential to alter community distributions by wake mixing of the pelagic community. =>Intensity negligible, due to small number of vessels involved and known wind mixing depths exceeding wake mixing. =>Consequence negligible, due to the small number of vessels involved.

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
											=>Confidence high, due to consideration of logical constraints
External Impacts (specify the particular example within each activity area)	Other fisheries: IUU fishing	1	6	3	Species composition	Mid-upper slope	1.1	1	1	2	No other fisheries operate in the AFZ. Only one alleged case of IUU fishing to have occurred in the AFZ. Fishing outside AFZ (e.g. in adjacent New Zealand AFZ) possibly could cause impact on locally breeding birds but unlikely to affect other community members =>Intensity negligible =>Consequence negligible unable to detect variations =>Confidence high - AFMA reports no activity
	Aquaculture	0	0	0							
	Coastal development	0	0	0							
	Other extractive activities	0	0	0							
	Other non extractive activities	0	0	0							
	Other anthropogenic activities	1	4	4	Distribution of community	Coastal pelagic	3.1	1	1	1	Tourism and research vessel voyages occur over this spatial scale within the AFZ. Tourism/research vessels visit the area several times a year. Distribution of the coastal pelagic community thought to be most likely impacted. =>Intensity negligible due to small number of trips/vessels involved. =>Consequence

Direct impact of fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (S2.1)	Intensity Score (1-6)	Consequence Score (1- 6)	Confidence Score (1-2)	Rationale
											also negligible. =>Confidence low, as specific operations conducted by each vessel may vary.

### 2.3.11 Summary of SICA results

The report provides a summary table (Level 1 (SICA) Document L1.6) of consequence scores for all activity/component combinations and a table showing those that scored 3 or above for consequence, and differentiating those that did so with high confidence (in bold).

Direct	Activity	Target	Byproduct	TEP species	Communities
impact		species	and bycatch species		
Capture	Bait collection	0	0	0	0
	Fishing	3	3	4	3
	Incidental behaviour	0	0	0	0
Direct	Bait collection	0	0	0	0
impact	Fishing	2	2	2	2
without	Incidental behaviour	0	0	0	0
capture	Gear loss	2	2	2	2
	Anchoring/ mooring	0	0	0	0
	Navigation/ steaming	1	1	2	2
Addition/ movement	Translocation of species	2	2	2	2
of	On board processing	0	0	0	0
biological	Discarding catch	0	0	0	0
material	Stock enhancement	0	0	0	0
	Provisioning	0	0	0	0
	Organic waste disposal	1	1	2	1
Addition	Debris	1	1	1	1
of non-	Chemical pollution	2	2	2	2
biological	Exhaust	1	1	1	1
material	Gear loss	2	2	1	1
	Navigation/ steaming	1	1	1	1
	Activity/ presence on water	1	1	1	1
Disturb	Bait collection	0	0	0	0
physical	Fishing	2	2	2	2
processes	Boat launching	0	0	0	0
	Anchoring/ mooring	0	0	0	0
	Navigation/steaming	1	1	1	1
External	Other fisheries	1	1	1	1
hazards	Aquaculture	0	0	0	0
(specify	Coastal development	0	0	0	0
the particular	Other extractive activities	0	0	0	0
example within	Other non extractive activities	0	0	0	0
each activity area)	Other anthropogenic activities	1	1	2	1

Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations.



Target species: Frequency of consequence score differentiated between high and low confidence.



Byproduct and bycatch species: Frequency of consequence score differentiated between high and low confidence.



TEP species: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook)



Communities: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook).

### 2.3.12 Evaluation/discussion of Level 1

No ecological components were eliminated at Level 1. All of the components examined had consequence score  $\geq 3$  for one activity.

Consequence (risk) scores ranged from 1-4 across all 32 hazards (fishing activities) and four ecological components assessed.

Those hazards with risk scores of three or more were:

• Fishing (direct impact with capture on target species, byproduct/bycatch species, TEP species and community components)

Fishing (direct impact with capture) was scored as a major risk (=4) to TEP species. No significant external hazards (consequence score  $\geq$ 3) were scored and no other risks rated as major or above (risk scores 4 or 5) were scored.

The Patagonian toothfish (*Dissostichus eleginoides*) was the most vulnerable target species and is currently the only target species in this sub-fishery. The direct impact of fishing was identified to most likely impact the population size of the Patagonian toothfish. The consequence of the intensity was scored as moderate, as only a small area was likely to be affected. Also, annual TACs may be adjusted and recent declines in CPUE (e.g. Macquarie Ridge compared to the Aurora Trough) are also reviewed to maintain the fishery.

The Southern Sleeper shark *Somniosus antarcticus* was the most vulnerable discard species and was impacted directly by capture by fishing. The consequence was moderate and probably reflects either the abundance or susceptibility to capture in the Aurora Trough where most of the fishing effort is targetted.

The albatrosses, Wandering albatross *Diomedea exulans*; Grey-headed albatross *Thalassarche chrysostoma* and Black-browed Albatross Thalassarche *melanophrys* were considered the most vulnerable TEP species particularly since only 10-20 pairs of Wandering Albatross breed on Macquarie Island. While no deaths have occurred attributable to the fishery, the potential risk of a serious impact on the Wandering Albatross population from a fatal interaction with fishing gear was considered to be sufficient for further evaluation at Level 2

The mid-upper slope community was considered the most vulnerable, based on the direct impact of capture on fishing, as demersal trawl gear may alter this community on fishing grounds (i.e. Macquarie Ridge or Aurora Trough). The consequence score was moderate, since any impact would be over a small area. Also, the confidence score was low, since it is not known whether trawl damage can alter the species composition of this mid-upper slope community.

# 2.3.13 Components to be examined at Level 2

As a result of the preliminary SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- target species,
- byproduct/bycatch species,
- TEP species.

# 2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk from direct impacts of fishing only which, in all assessments to date, has been the hazard with the greatest risks identified at Level 1. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk hereafter noted as 'risk'. A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday et al. (2007).

### **Species**

The following Table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

	Attribute								
Productivity	Average age at maturity								
	Average size at maturity								
	Average maximum age								
	Average maximum size								
	Fecundity								
	Reproductive strategy								
	Trophic level								
Susceptibility	Availability considers overlap of fishing effort with a species distribution								
	Encounterability considers the likelihood that a species will encounter fishing gear that is deployed within the geographic range of that species (based on two attributes: adult habitat and bathymetry)								
	Selectivity considers the potential of the gear to capture or retain species								
	Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)								

The productivity attributes for each species are based on data from the literature or fromdata sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

**Availability** considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

**Encounterability** is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, **selectivity** is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, **post capture mortality** measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

## <u>Habitats</u>

Similarly to species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

Aspect	Attribute	Concept	Rationale
Susceptionity			
Availability	General depth range (Biome)	Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area
Encounterability	Depth zone and feature type	Habitat encountered at the depth and location at which fishing activity occurs	Fishing takes place where habitat occurs

Aspect	Attribute	Concept	Rationale
	Ruggedness (fractal dimension of substratum and seabed slope)	Relief, rugosity, hardness and seabed slope influence accessibility to different sub-fisheries	Rugged substratum is less accessible to mobile gears. Steeply sloping seabed is less accessible to mobile gears
	Level of disturbance	Gear footprint and intensity of encounters	Degree of impact is determined by the frequency and intensity of encounters (inc. size, weight and mobility of individual gears)
Selectivity	Removability/ mortality of fauna/ flora	Removal/ mortality of structure forming epifauna/ flora (inc. bioturbating infauna)	Erect, large, rugose, inflexible, delicate epifauna and flora, and large or delicate and shallow burrowing infauna (at depths impacted by mobile gears) are preferentially removed or damaged.
	Areal extent	How much of each habitat is present	Effective degree of impact greater in rarer habitats: rarer habitats may maintain rarer species.
	Removability of substratum	Certain size classes can be removed	Intermediate sized clasts (~6 cm to 3 m) that form attachment sites for sessile fauna can be permanently removed
	Substratum hardness	Composition of substrata	Harder substratum is intrinsically more resistant
	Seabed slope	Mobility of substrata once dislodged; generally higher levels of structural fauna	Gravity or latent energy transfer assists movement of habitat structures, e.g. turbidity flows, larger clasts. Greater density of filter feeding animals found where currents move up and down slopes.
Productivity			
Productivity	Regeneration of fauna	Accumulation/ recovery of fauna	Fauna have different intrinsic growth and reproductive rates which are also variable in different conditions of temperature, nutrients, productivity.
	Natural disturbance	Level of natural disturbance affects intrinsic ability to recover	Frequently disturbed communities adapted to recover from disturbance

### **Communities**

PSA methods for communities are still under development. Consequently, it has not yet been possible to undertake level 2 risk analyses for communities.

During the Level 2 assessment, each unit of analysis within each ecological component (species or habitat) is scored for risk based on attributes for productivity and susceptibility, and the results are plotted as shown in Figure 13.



**Figure 13. The axes on which risk to the ecological units is plotted.** The x-axis includes attributes that influence the productivity of a unit, or its ability to recover after impact from fishing. The y-axis includes attributes that influence the susceptibility of the unit to impacts from fishing. The combination of susceptibility and productivity determines the relative risk to a unit, i.e. units with high susceptibility and low productivity are at highest risk, while units with low susceptibility and high productivity are at lowest risk. The contour lines divide regions of equal risk and group units of similar risk levels.

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis.

- Step 1 Identify the units excluded from analysis and document the reason for exclusion
- Step 2 Score units for productivity
- Step 3 Score units for susceptibility
- Step 4 Plot individual units of analysis onto a PSA Plot
- Step 5 Ranking of overall risk to each unit
- Step 6 Evaluation of the PSA analysis
- Step 7 Decision rules to move from Level 2 to Level 3

### 2.4.1 Units excluded from analysis and document the reason for exclusion (Step 1)

Species lists for PSA analysis are derived from recent observer data where possible or, for fisheries with no observer programs, from logbook and scientific data. In some logbook data, there may only be family level identifications. Where possible these are resolved to species level by cross-checking with alternative data sources and discussion with experts. In cases where this is not possible (mainly invertebrates) the analysis may be based on family average data.

ERA specie			СААВ			Code role in		
specie	Taxa name	Scientific name	CAAB	Family name	Common name	fishery	Source	Reason for removal
1366	Teleost	Ophidiidae	37228901	Ophidiidae	Cusk eel	NA	AAD Database	Insufficient taxonomic resolution
2786	Invertebrate	Echinodermata	26000000			NA	AAD Database	Insufficient taxonomic resolution
2949	Invertebrate	Ophiuroidae	NA			NA	AAD Database	Insufficient taxonomic resolution
2959 2964	Not Allocated	Durvillaeaceae	NA	Durvilleaceae		NA	AAD Database	Insufficient taxonomic resolution Temperate pelagic fish. Misidentification, probably <u>I</u> cicthys australis (R. Williams AAD)
2989	Not Allocated	Nomendae	NA	Nomendae	Nil commercial catch	NA	AAD Database	Insufficient taxonomic resolution
2989	Not Allocated		NA		Unknown (from aad -	INA	AAD Database	insufficient taxonomic resolution
3223	Not Allocated		NA	Unknown	himi, mif) Whiptail ; bigeye	NA	AAD Database	Insufficient taxonomic resolution
1479	Teleost	Macrourus whitsoni	37232753	Macrouridae	grenadier Rudderfish,	NA	AAD Database	Possible misid for M. carinatus Misidentification, probably Icicthys
776	Teleost	Tubbia tasmanica	37445002	Centrolophidae	tasmanian rudderfish	NA	AAD Database Sample from	australis (R. Williams AAD)
302	Chondrichthyan	Bathyraja irrasa	NA	Rajidae	Skate	NA	HIMI Sample from	Mislabeled: Sample from HIMI
304	Chondrichthyan	Bathyraja murrayi	NA	Rajidae	Skate	NA	HIMI	Mislabeled: Sample from HIMI
1281	Invertebrate	Kondakovia longimana	23623004	Onychoteuthidae	Hooked squid	NA	AAD Database Sample from	Deleted Taxa, 20060616; Hobday
1480	Chondrichthyan	Bathyraja eatonii	37031750	Rajidae	[A skate]	NA	HIMI Sample from	Mislabeled: Sample from HIMI
1481	Chondrichthyan	Bathyraja maccaini	37031751	Rajidae	[A skate]	NA	HIMI	Mislabeled: Sample from HIMI
2990	Not Allocated		NA		Marine pollution	NA	AAD Database	Not a biological unit
2991	Not Allocated		NA		Rocks Unlisted non-fish	NA	AAD Database	Not a biological unit
2992	Not Allocated		NA		species	NA	AAD Database	Insufficient taxonomic resolution

ERA						Code		
specie			CAAB			role in		
s	Taxa name	Scientific name	Code	Family name	Common name	fishery	Source	Reason for removal
2993	Not Allocated		NA		Unlisted fish species	NA	AAD Database	Insufficient taxonomic resolution
2772	Algae	Algae	NA			NA	AAD Database	Insufficient taxonomic resolution
2770	Not Allocated		NA		Bycatch	NA	AAD Database	Synonym
2913	Not Allocated		99800800	Unidentified	Unidentified	NA	AAD Database	Synonym
2918	Not Allocated	Elasmobranchii sp. Loliginidae,	NA			NA	AAD Database	Synonym
2780	Invertebrate	Ommastrephidae	NA			NA	AAD Database	Synonym
2783	Invertebrate	Octopodidae Penaeoidea & Caridea -	22630000	Octopodidae		NA	AAD Database	Synonym
2942	Invertebrate	undifferentiated	NA			NA	AAD Database	Insufficient taxonomic resolution
1459	Teleost	Myctophidae indet Congridae,	NA	Myctophidae	Lanternfish	NA	AAD Database	Synonym
2055	Teleost	Colocongridae - undifferentiated Nototheniidae -	37067000	Congridae, Colocongridae	Conger & short-tail conger eels	NA	AAD Database	Synonym
2111	Teleost	undifferentiated Bothidae, Achiropsettidae, Paralichthyidae -	37404000	Nototheniidae Bothidae, Achiropsettidae,	Icefishes	NA	AAD Database	Synonym
2122	Teleost	undifferentiated	37460000	Paralich	Left eye flounders	NA	AAD Database	Synonym Synonym – probably Icicthys australis
2932	Teleost	Centrolophidae	NA	Centrolophidae		NA	AAD Database	(R. Williams AAD)
2937	Teleost	Anglerfish Indet	NA	Lophiformes		NA	AAD Database	Synonym
2805	Teleost	Bathylagus sp.	37098800	Bathylagidae		NA	AAD Database	Synonym for B. antarcticus
2965	Teleost	Caelorinchus sp.	NA	Macrouridae		NA	AAD Database	Synonym
2809	Teleost	Ceratiidae	37220800	Ceratiidae		NA	AAD Database	Synonym
2777	Invertebrate	Gastropoda	22200000			NA	AAD Database	Insufficient taxonomic resolution
1458	Teleost	Gymnoscopelus sp.	NA	Myctophidae	Lanternfish	NA	AAD Database	Synonym
2280	Invertebrate	Invertebrata	910360000			NA	AAD Database	Synonym
1447	Invertebrate	Lithodes sp.	NA	Lithodidae	King crab (undifferentiated)	NA	AAD Database	Synonym: Considered as Lithodes murrayi (R. Williams AAD) Synonym: Considered as Lithodes
2776	Invertebrate	Lithodidae	NA	Lithodidae		NA	AAD Database	murrayi (R. Williams AAD)
1467	Teleost	Macrouridae	NA	Macrouridae	Whiptail	NA	AAD Database	Synonym
1466	Teleost	Macrourus sp.	NA	Macrouridae	Whiptail	NA	AAD Database	Synonym

ERA						Code		
specie			CAAB			role in		
s	Taxa name	Scientific name	Code	Family name	Common name	fishery	Source	Reason for removal
		Melamphaidae -						
2080	Invertebrate	undifferentiated	37251000	Melamphaidae	Big scales	NA	AAD Database	Synonym for P. crassiceps
1462	Teleost	Lepidion sp.	NA	Moridae	Morid cod	NA	AAD Database	Synonym
2281	Invertebrate		923600000		Squid indet	NA	AAD Database	Synonym
		Stomiidae -						
2062	Teleost	undifferentiated	37112000	Stomiidae	Scaly dragonfishes Pearlfishes	NA	AAD Database	Synonym
1463	Teleost	Echiodon sp. Carapidae -	NA	Carapidae	(undifferentiated)	NA	AAD Database	Synonym
2074	Teleost	undifferentiated	37229000	Carapidae	Pearlfishes	NA	AAD Database	Synonym for Echiodon
				Carapidae	i carinistics			5 5
2779	Invertebrate	Cephalopoda	22600000			NA	AAD Database	Synonym
2775	Invertebrate		20000000		Crustaceans	NA	AAD Database	Synonym
2968	Teleost	Oreosomatidae	NA	Oreosomatidae		NA	AAD Database	Synonym
2963	Invertebrate	Ascidiacea	NA	Ascidiidae		NA	AAD Database	synonym for salp
561	Teleost	Hoplostethus atlanticus	37255009	Trachichthyidae	Orange roughy	NA	AAD Database	Out of range

### 2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3)

#### Summary of Species PSA results

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium or low) reflect potential rather than actual risk using the Level 2 (PSA) method. No account is taken of the level of catch, the size of the population, or the likely exploitation rate for species assessed at Level 2. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However the spatial overlap of the fishery with a species range considers recent effort distributions at Level 2, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data, or taking account of specific management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday et al (2007).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this reason. For some species, attributes may be scored on information from related species

or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for TEP species and the other species components. In particular, target, by-product and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However TEP species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason there may be a higher proportion of false positives for high vulnerability for TEP species, unless there is a robust observer program that can verify that species do not interact with the gear.

Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and TEP components. The level of observer data for this fishery is regarded as high. There has been 100% observer coverage since the beginning of the fishery. Observer data are maintained by AAD and a copy held by AFMA (see Scoping Document S1 General Fishery Characteristics). Level 2 PSA results. A summary of the species considered at Level 2 is presented below, and is sorted by role in the fishery, by taxa, and by the overall risk score (high(>3.18), medium(2.64-3.18), low(<2.64)), together with categorisation of risk (refer to section 2.4.8).

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
Telec													
765	Dissostichus eleginoides	Patagonian toothfish	408264	Ν	0	0	1.86	3.00	3.53	Ν	High	Spatial uncertainty	

Target species Macquarie Island Demersal Trawl Fishery

# Byproduct species Macquarie Island Demersal Trawl Fishery

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
Chond	richthyan			1			1	1	1				
826	Etmopterus granulosus	southern lantern shark	0	N	0	0	2.43	1.67	2.95	Y	Med	Low attribute score	Expert override: override applied to availability - reduced from 3 to 1 because mainly off continental Australia (Daley, Stevens & Graham 1997).
	ebrate												
277 3	Actinaria - undifferentiated	anthozoan sea anemone	4	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
278 7	Asteroidea	sea star	8	Y	7	3	3.00	3.00	4.24	N	High	Missing data	
278												Missing	
8 132	Echinoidea	sea urchin	1	Y	7	3	3.00	3.00	4.24	Ν	High	data Missing	
8 296	Pasiphaea sp.	carid shrimp	0	Y	7	2	3.00	3.00	4.24	Ν	High	data Missing	
7	Gorgonaceae	gorgonian sea fan	6,502	Y	7	3	3.00	3.00	4.24	Ν	High	data	
278 9	Salpidae	salp	0	Y	7	3	3.00	3.00	4.24	N	High	Missing data	
294		•									Ŭ	Missing	
8 295	Pennatulacea	Sea pen gorgans head	0	Y	7	3	3.00	3.00	4.24	Ν	High	data Missing	
1	Gorgonocephalidae	seastar	315	Y	7	3	3.00	3.00	4.24	Ν	High	data	

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
293 8 278	Holothurian	sea cucumber	2	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data Missing	
4	Octopus (pelagic)	pelagic octopus	2	Y	7	3	3.00	3.00	4.24	Ν	High	data	
294 0	Histioteuthis sp.	squid	1	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
278 1	Loligo sp.	squid	0	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
295 3	Cirroteuthis sp.	squid	0	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
80 198	Lithodes murrayi Porifera -	Subantarctic king crab	4,977	Y	6	1	2.71	3.00	4.05	Ν	High	Missing data	
198	undifferentiated	sponges	48	Y	7	0	3.00	2.33	3.80	Ν	High	Missing data	
40	Onykia ingens	squid	444	Y	6	0	2.86	1.67	3.31	Ν	High	Missing data	
128 4	Martialia hyadesi	flying squid	4	Y	6	2	2.86	1.22	3.11	Y	Med	Missing data	Expert override: rare in observer data therefore encounterability reduced to 1. Widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA) availability reduced to 1. Expert override: rare in observer data therefore encounterability reduced to 1. Widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock
45	Nototodarus sloanii	flying squid	0	Y	6	1	2.86	1.22	3.11	Y	Med	Missing data	Likelihood table in PSA) availability reduced to 1.

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
46	Todarodes filippovae	Southern Ocean arrow squid	0	Ν	2	0	1.86	1.22	2.22	Y	Low		Expert override: rare in observer data therefore encounterability reduced to 1. Widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA) availability reduced to 1.
Teleo		•											
288 1	Photichthys sp.	bristlemouth	0	Y	7	3	3.00	3.00	4.24	N	High	Missing data	
290											Ŭ	Missing	
2 293	Stomias sp.	scaleless dragonfish whipnose angler	0	Y	7	3	3.00	3.00	4.24	N	High	data Missing	
4	Gigantactinidae	fish	0	Y	7	3	3.00	3.00	4.24	Ν	High	data	
294 6	Epigonus sp.	cardinal fish	0	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
297		I	0	V	7	0	2.00	2.00	4.04	NI	Link	Missing	
7 292	Nemichthyidae	eel	0	Y	1	3	3.00	3.00	4.24	Ν	High	data Missing	
7	Neocyttus sp.	oreo dory	0	Y	7	3	3.00	3.00	4.24	Ν	High	data	
292 2	Alepocephalus spp.	slickhead	2	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
293		spangled trouble-	0	V	7	0	2.00	2.00	4.04	NI	Liberte	Missing	
3 292	Astronesthes sp.	shouter	0	Y	7	3	3.00	3.00	4.24	Ν	High	data Missing	
8	Ebinania sp.	blobfish	10	Y	7	3	3.00	3.00	4.24	Ν	High	data	
292 3	Himantolophus sp.	football fish	0	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data	
292						-					Ŭ	Missing	
4	Oneirodes sp.	dreamer fish	0	Y	7	3	3.00	3.00	4.24	Ν	High	data	

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
292 5 147	Paralaemonema sp.	morid cod	6	Y	7	3	3.00	3.00	4.24	Ν	High	Missing data Missing	
3	Mancopsetta sp. Neophrynichthys	Southern flounder	0	Y	6	1	2.86	3.00	4.14	Ν	High	data Missing	
575 147	magnicirrus Achiropsetta sp.	fathead	2	Y	5	1	2.57	3.00	3.95	Ν	High	data Missing	
2 145	(grey)	Southern flounder	0	Y	4	0	2.43	3.00	3.86	Ν	High	data Missing	
7 282	Melanostomias sp. Echiodon	scaleless dragonfish	0	Y	4	0	2.43	3.00	3.86	Ν	High	data Missing	
2	cryomargarites	pearlfish	1	Y	4	2	2.29	3.00	3.77	Ν	High	data	Expert override: widely distributed outside the fishing grounds therefore based on stock likelihood rationale
294 5	Chauliodus sloani	viper fish	0	Y	7	3	3.00	1.67	3.43	Y	High	Missing data	(see Stock Likelihood table in PSA) availability reduced to 1.
	Lepidonotothen squamifrons	Grey rockcod ; an icefish	2,724	Ν	0	0	1.43	3.00	3.32	Ν	High	Widely distributed	
274	Ceratias tentaculatus	seadevil	0	Ν	2	0	2.29	2.33	3.27	Ν	High	Spatial uncertainty	
284 5	Macrourus holotrachys Zanclorhynchus	[a whiptail]	575	Ν	1	0	2.14	2.33	3.17	Ν	Med	Spatial uncertainty Spatial	
574	spinifer Caelorinchus	Spiny horsefish	6	Ν	3	0	2.14	2.33	3.17	Ν	Med	uncertainty Spatial	
323	matamua Centroscymnus	whiptail	0	Ν	0	0	2.00	2.33	3.07	Ν	Med	uncertainty Spatial	
489	crepidater Coryphaenoides	deepwater dogfish	0	Ν	0	0	2.57	1.67	3.06	Ν	Med	uncertainty Spatial	
281	serrulatus	whiptail	0	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty	

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	Comments High/Med risk category (Refer 2.4.8)
284	Coryphaenoides subserrulatus	whiptail	38	N	0	0	1.86	2.33	2.98	N	Med	Spatial uncertainty
334	Caelorinchus kaiyomaru	whiptail	0	N	0	0	1.86	2.33	2.98	N	Med	Spatial uncertainty
334	Idiolophorhynchus	rattail/whiptail/grenadi	0	IN	0	0	1.00	2.33	2.90	IN	weu	Spatial
342	andriashevi Caelorinchus	er	0	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Spatial
343	kermadecus Coryphaenoides	whiptail	1	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Spatial
374	murrayi	whiptail rattail/whiptail/grenadi	24	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Spatial
536	Cynomacrurus piriei	er whiptail ; Bigeye	3	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Spatial
336	Macrourus carinatus	grenadier an eelpout	54	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Spatial
1464	Melanostigma sp. Pseudoachiropsetta	(undiferentiated)	0	Ν	0	0	1.86	2.33	2.98	Ν	Med	uncertainty Missing
2936	milfordi	flounder	3	Y	2	2	1.71	2.33	2.90	Ν	Med	data <u>Expert override</u> : widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Spatial Stock Likelihood table in PSA )
273	Anotopterus pharao	daggerfish	0	Ν	3	0	2.29	1.67	2.83	Y	Med	uncertainty availability reduced to 1.
644	Lampris immaculatus	Southern moonfish	0	Ν	3	0	2.43	1.44	2.83	Ν	Med	uncertainty Spatial
576	Paraliparis gracilis Diastobranchus	snailfish/lumpfish	0	Ν	1	0	1.57	2.33	2.81	Ν	Med	uncertainty Spatial
626	capensis	basket-work eel snake	9	Ν	2	0	2.00	1.89	2.75	Ν	Med	uncertainty Spatial
773	Paradiplospinus gracilis	mackerel/gemfish	1	Ν	0	0	1.43	2.33	2.74	Ν	Med	uncertainty

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
333	Pagothenia sp.	an icefish/notothen	0	Ν	0	1	1.43	2.33	2.74	Ν	Med	Spatial uncertainty	
35	Labichthys yanoi	snipe eel	0	Ν	3	0	2.29	1.44	2.70	Ν	Med	Spatial uncertainty Spatial	
36	Notacanthus chemnitzii Pseudocyttus	spiny eel	0	Ν	3	0	2.29	1.44	2.70	Ν	Med	uncertainty	
631	maculatus	Smooth oreo	0	Ν	0	0	1.86	1.67	2.50	N	Low		Expert override: widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA)
573	Nezumia pudens Melanostigma	Atacamgrenadier	0	Ν	0	0	1.86	1.67	2.50	Y	Low		availability reduced to 1.
280	gelatinosum	eelpout	0	Ν	0	0	1.57	1.89	2.46	Ν	Low		
997	Mora moro	Ribaldo	0	Ν	2	0	1.71	1.67	2.39	Ν	Low		
275	Antimora rostrata	morid cod	328	Ν	1	0	1.71	1.67	2.39	Ν	Low		
276	Halargyreus johnsonii	Morid cod	154	Ν	2	0	1.71	1.67	2.39	Ν	Low		Expert override: widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA)
788	Magnisudis prionosa	barracudina morid cod	0	Ν	1	0	1.71	1.67	2.39	Y	Low		availability reduced to 1.
1461	Muraenolepis sp.	(undifferentiated)	4	Ν	2	0	1.71	1.67	2.39	N	Low		Expert override: widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA)
37	Bathylagus antarcticus	deep sea smelt	0	Ν	3	0	2.00	1.22	2.34	Y	Low		availability reduced to 1.

ERA species ID	Scientific Name	Common name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
537	Poromitra crassiceps Gymnoscopelus	bigscale	0	Ν	3	0	2.00	1.22	2.34	Ν	Low		
2833	opisthopterus	lantern fish	0	Ν	1	2	1.57	1.67	2.29	Ν	Low		
277	Lepidion microcephalus	Ribaldo (market name -morid cod) : smallhead cod	2	N	2	0	1.71	1.22	2.11	Y	Low		Expert override: widely distributed outside the fishing grounds therefore based on stock likelihood rationale (see Stock Likelihood table in PSA) availability reduced to 1.

# Bycatch species Macquarie Island Demersal Trawl Fishery

ERA species ID	Scientific Name	Common Name	Total logboo k catch (kg) 2000- 05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
Chondri 257	chthyan Somniosus antarcticus	Sleeper shark; Southern Sleeper Shark	9,189	N	0	0	2.57	3.00	3.95	Y	High	Spatial uncertainty	Expert override: override applied to availability - increased from 1 to 3 because restricted to Southern Ocean (Scott 1976;Yano, Stevens and Compagno 2004).
Inverteb	rate												
2709	Hexacorallia	tube anenome, black and thorny corals	1,381	Y	7	3	3.00	3.00	4.24	N	High	Missing data Missing	
298	Periphylla periphylla	jellyfish	34	Y	6	2	2.86	1.67	3.31	Ν	High	data	

# TEP species Macquarie Island Demersal Trawl Fishery

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- Iow risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
Marine	Birds												
451	Diomedea exulans Procellaria aequinoctialis	Wandering Albatross White-chinned Petrel	O	N	1	0	2.57	3.00	3.95	Y	High	Spatial uncertainty Spatial uncertainty	Expert override: Never recorded in catch by observers although non- injurious interactions have been observed ocassionally (13 great albatrosses/637 bird interactions: Williams et al 2001) therefore encounterability reduced from 3 to 1 Expert override: an aggressive bird that dives on baits() only one possible death recorded in catch by observers ( "petrel spp":Bycatch Action Plan 2003) therefore encounterability reduced from 3 to 1
000	Thalassarche		0	V	2	4	0.00	4.00	0.44	V	Mad	Missing	Expert override: Never recorded in catch by observers and breeds in NZ therefore encounterability reduced
889	eremita Diomedea	Chatham albatross Southern Royal	0	Y	3	1	2.86	1.22	3.11	Y	Med	data Spatial	from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although non- injurious interactions have been observed ocassionally (13 great albatrosses/637 bird interactions:Williams et al 2001) therefore encounterability reduced
753	epomophora	Albatross	0	Ν	1	0	2.57	1.67	3.06	Y	Med	uncertainty	from 3 to 1

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- Iow risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													Expert override: Never recorded in catch by observers although non- injurious interactions have been observed ocassionally (13 great albatrosses/637 bird interactions:Williams et al 2001)
799	Diomedea sanfordi	Northern Royal Albatross	0	Ν	1	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
1084	Thalassarche impavida	Campbell Albatross	0	Ν	1	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although seen in
894	Thalassarche salvini	Salvin's albatross	0	Ν	3	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	area (Eades 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although non- injurious interactions have been observed ocassionally (13 great albatrosses/637 bird interactions:Williams et al 2001)
1428	Diomedea amsterdamensis	Amsterdam Albatross	0	Ν	1	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only one possible death recorded in catch by observers ( "petrel spp":Bycatch Action Plan
553	Thalassoica antarctica	Antarctic petrel	present	Ν	3	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	2003) therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
589	Catharacta lonnbergi Ionnbergi	Subantarctic skua (southern)	0	N	2	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													Expert override: Never recorded in catch by observers but have been
1426	Eudyptes chrysolophus	Macaroni penguin	0	Ν	2	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	observed (Eades 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in
817	Eudyptes robustus	Snares penguin	0	Ν	2	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in
818	Eudyptes sclateri	Erect-crested penguin	0	N	2	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	catch by observers but have been observed (Eades 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although have
1032	Thalassarche bulleri	Buller's Albatross	0	N	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	been observed in the area (Williams et al 2001) therefore encounterability reduced from 3 to 1
1033	Thalassarche cauta	Shy Albatross	0	Ν	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	<u>Expert override</u> : a/a
1035	Thalassarche chrysostoma	Grey-headed Albatross	0	Ν	1	0	2.43	1.67	2.95	Υ	Med	Spatial uncertainty	Expert override: a/a Expert override: Never recorded in catch by observers although often observed interacting with vessel without injury (473/637 bird interactions: Williams et al 2001) and very abundant therefore encounterability reduced from 3 to 1. Additional information: there are two species, melanophrys & impavada,
1085	Thalassarche melanophrys	Black-browed Albatross	present	N	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	both of which have been observed in the area (Eades 2001)

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- Iow risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													Expert override: Never recorded in catch by observers although have
	Dha ah atria	l inht mentled										Creatial	been observed in the area (Williams
1009	Phoebetria palpebrata Fulmarus	Light-mantled Albatross	0	Ν	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty Spatial	et al 2001) therefore encounterability reduced from 3 to 1
314	glacialoides	Southern fulmar	0	Ν	1	0	2.43	1.67	2.95	Y	Med	uncertainty	Expert override: a/a Expert override:only one possible death recorded in catch by observers
												Spatial	( "petrel spp":Bycatch Action Plan 2003) representing a very small proportion of the population therefore
939	Halobaena caerulea	Blue Petrel	present	Ν	3	0	2.43	1.67	2.95	Y	Med	uncertainty Spatial	encounterability reduced from 3 to 1 Expert override: Never recorded in catch by observers therefore
1052	Lugensa brevirostris	Kerguelen Petrel	0	Ν	3	0	2.43	1.67	2.95	Y	Med	uncertainty	encounterability reduced from 3 to 1
	Ū	C C											Expert override:only two possible deaths recorded in catch by observers ( "prion spp":Bycatch
													Action Plan 2003) representing a very small proportion of the
1532	Pachyptila crassirostris	fulmar prion	present ?	N	3	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	population therefore encounterability reduced from 3 to 1
			present		-	-	-	-		-		Spatial	
1003	Pachyptila turtur	Fairy Prion	?	Ν	3	0	2.43	1.67	2.95	Y	Med	uncertainty	Expert override: a/a Expert override: Never recorded in
1047	Pterodroma macroptera	Great-winged Petrel	0	N	2	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1
		0.01	Ť		-	÷			2.00				Expert override: Never recorded in catch by observers although seen in
		Soft-plumaged										Spatial	area (Eades 2001) therefore
1048	Pterodroma mollis	Petrel	0	Ν	3	0	2.43	1.67	2.95	Y	Med	uncertainty	encounterability reduced from 3 to 1

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
1053	Puffinus assimilis	Little Shearwater (Tasman Sea)	0	N	3	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	Expert override: Never recorded in catch by observers therefore encounterability reduced from 3 to 1 Expert override: Never recorded in catch by observers although
1060	Puffinus tenuirostris	Short-tailed Shearwater	0	Ν	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	observed in the area (Eades 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only one possible death recorded in catch by observers
917	Fregetta tropica	Black-bellied Storm- Petrel	0	Ν	3	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	( "petrel spp":Bycatch Action Plan 2003) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although have
325	Catharacta skua	Great Skua	0	Ν	1	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	been observed in the area (Williams et al 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although have been observed in the area (Eades
586	Eudyptes schlegeli	Royal penguin	0	Ν	2	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty	2001) therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
1513	Pygoscelis adeliae	Adelie penguin	0	Ν	2	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although have been observed in the area (Williams
1008	Phoebetria fusca	Sooty Albatross	0	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	et al 2001) therefore encounterability reduced from 3 to 1

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- Iow risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
595	Daption capense	Cape Petrel	present	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	Expert override:only one possible death recorded in catch by observers ("petrel spp":Bycatch Action Plan 2003) representing a very small proportion of the population therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although non- injurious interactions have been observed (149 giant albatrosses/637
73	Macronectes giganteus	Southern Giant- Petrel	present	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	bird interactions:Williams et al 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although non-
981	Macronectes halli	Northern Giant- Petrel	present	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	injurious interactions have been observed (149 giant albatrosses/637 bird interactions:Williams et al 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only two possible deaths recorded in catch by observers ( "prion spp":Bycatch Action Plan 2003) representing a
487	Pachyptila belcheri	Thin billed prion	present?	N	2	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	very small proportion of the population therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only one possible death recorded in catch by observers
494	Procellaria cinerea	Grey petrel	0	Ν	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	( "petrel spp":Bycatch Action Plan 2003) and one seen in area (Eades

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													2001) therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
	Pterodroma											Spatial	catch by observers although seen in area (Eades 2001) therefore
503	inexpectata	Mottled petrel	0	Ν	2	0	2.29	1.67	2.83	Y	Med	uncertainty Spatial	encounterability reduced from 3 to 1
504	Pterodroma lessoni	White-headed petrel	0	Ν	1	0	2.29	1.67	2.83	Y	Med	uncertainty	Expert override: a/a
1049	Pterodroma neglecta	Kermadec Petrel (western)	0	N	2	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	Expert override: Never recorded in catch by observers therefore encounterability reduced from 3 to 1 Expert override: Never recorded in catch by observers although have
1057	Puffinus griseus	Sooty Shearwater	0	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	been observed in the area (Williams et al 2001) therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
290	Leucocarbo atriceps	Imperial shag (Macquarie Island)	0	Ν	2	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 Expert override: Never recorded in
291	Phalacrocorax carbo	Black cormorant	0	N	1	0	2.29	1.67	2.83	Y	Med	Spatial uncertainty	catch by observers although have been observed in the area (Williams et al 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers although have been observed in the area (Eades
555	Garrodia nereis	Grey-backed storm petrel	0	N	3	0	2.43	1.44	2.83	Y	Med	Spatial uncertainty	2001) therefore encounterability reduced from 3 to 1
785	Aptenodytes patagonicus	King penguin	0	Ν	1	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty	Expert override: a/a

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- Iow risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
787	Eudyptes chrysocome Pygoscelis	Rockhopper penguin	0	Ν	1	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty Spatial	Expert override: a/a
1511	antarctica	chinstrap penguin	0	Ν	1	0	2.14	1.67	2.71	Y	Med	uncertainty	Expert override: a/a Expert override: Never recorded in
819	Pygoscelis papua	Gentoo penguin	0	Ν	1	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only two possible deaths recorded in catch by observers ( "prion spp":Bycatch Action Plan 2003) but is frequently seen and breeds on the island
488	Pachyptila desolata	Antarctic prion	present	Ν	2	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty	(Eades 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> :only one possible death recorded in catch by observers ( "petrel spp":Bycatch Action Plan
492	Pelecanoides georgicus	South Georgian diving petrel	0	Ν	2	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty	2003) therefore encounterability reduced from 3 to 1
1056	Puffinus gavia	Fluttering Shearwater	0	N	2	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty	Expert override: Never recorded in catch by observers therefore encounterability reduced from 3 to 1 Expert override: Never recorded in catch by observers although one non-injurious interaction observed
973	Larus dominicanus	Kelp Gull	0	N	1	0	2.14	1.67	2.71	Y	Med	Spatial uncertainty Spatial	(Williams et al 2001) therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers therefore
1023	Sterna paradisaea	Arctic tern	0	Ν	1	0	2.14	1.67	2.71	Y	Med	uncertainty Spatial	encounterability reduced from 3 to 1 Expert override: Never recorded in
292	Sterna vittata	Antarctic tern (NZ)	0	Ν	1	0	2.14	1.67	2.71	Y	Med	uncertainty	catch by observers although one

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													may have been in the area (Eades 2001) therefore encounterability reduced from 3 to 1
1024	Sterna striata	White-fronted Tern	0	Ν	1	0	2.00	1.67	2.60	Y	Low		Expert override: a/a Expert override: Never recorded in catch by observers although have
	Phalacrocorax albiventer												been observed in the area (Williams et al 2001) therefore encounterability
588	purpurascens	King cormorant	0	N	1	0	2.14	1.44	2.58	Y	Low		reduced from 3 to 1 Expert override only one possible death recorded in catch by observers ( "petrel spp":Bycatch Action Plan
1006	Pelecanoides urinatrix	Common Diving- Petrel	present	N	1	0	1.86	1.67	2.50	Y	Low		2003) therefore encounterability reduced from 3 to 1
		Wilson's storm petrel	•			-		-					
556	Oceanites oceanicus	(subantarctic)	0	Ν	1	0	2.00	1.44	2.47	Y	Low		Expert override: a/a
Marine	Mammal												Expert override: Never recorded in
	Balaenoptera	••••										Spatial	catch by observers therefore
256	acutorostrata Hyperoodon	Minke Whale Southern Bottlenose	0	Ν	0	0	2.86	1.30	3.14	Y	Med	uncertainty Spatial	encounterability reduced from 3 to 1
959	planifrons	Whale Gray's Beaked	0	Ν	1	0	2.86	1.30	3.14	Y	Med	uncertainty Spatial	Expert override: a/a
988	Mesoplodon grayi	Whale	0	N	1	0	2.86	1.30	3.14	Y	Med	uncertainty	Expert override: a/a Expert override: only one found on shore. Distibution poorly known but circumpolar s. Hemisphere
000	Maganladan laverdii	Strap-toothed	0	NI	4	0	2.96	1 20	2.14	V	Mod	Spatial	therefored encounterability reduced
990	Mesoplodon layardii	Beaked Whale	0	Ν	1	0	2.86	1.30	3.14	Y	Med	uncertainty	to 1

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
		Cuvier's Beaked										Spatial	Expert override: Never recorded in catch by observers therefore
1098	Ziphius cavirostris	Whale Long-finned Pilot	0	Ν	0	0	2.86	1.30	3.14	Y	Med	uncertainty Spatial	encounterability reduced from 3 to 1
935	Globicephala melas	Whale	0	Ν	0	0	2.86	1.22	3.11	Y	Med	uncertainty	Expert override: a/a Expert override: Never recorded in catch by observers although observed in the area but usually lives
937	Grampus griseus	Risso's Dolphin	0	Ν	0	0	2.86	1.22	3.11	Y	Med	Spatial uncertainty	in warmer waters therefore encounterability reduced from 3 to 1 <u>Expert override</u> : widely distributed outside the fishing grounds therefore based on stock likelihood rationale
1002	Orcinus orca	Killer Whale	0	Ν	0	0	2.86	1.22	3.11	Y	Med	Spatial uncertainty Spatial	(see Stock Likelihood table in PSA ) availability reduced to 1.
1091	Tursiops truncatus Australophocoena	Bottlenose Dolphin	0	Ν	0	0	2.86	1.22	3.11	Y	Med	uncertainty	<u>Expert override</u> : a/a
833	dioptrica	Spectacled porpoise	0	Y	4	1	2.86	1.22	3.11	Y	Med	data	Expert override: a/a Expert override: widely distributed outside the fishing grounds (South Pacifc and Indian Oceans) therefore based on stock likelihood rationale
985	Mesoplodon bowdoini	Andrew's Beaked Whale	0	N	1	0	2.86	1.22	3.11	Y	Med	Spatial uncertainty	(see Stock Likelihood table in PSA ) availability reduced to 1. <u>Expert override</u> : widely distributed outside the fishing grounds in temperate and tropical regions therefore based on stock likelihood
986	Mesoplodon densirostris	Blainville's Beaked Whale	0	N	0	0	2.86	1.22	3.11	Y	Med	Spatial uncertainty	rationale (see Stock Likelihood table in PSA ) availability reduced to 1.

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes	Number of missing attributes (out of 7)	Number of missing susceptibility attribu 5)	Productivity (additive) 1- I risk, 3 - high risk	Susceptibility (mult) 1- 3 - high risk	2D risk value (P&S) 1.41- Iow risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
				•s (Y/N)	productivity	utes (out of	e) 1- Iow	1- Iow risk,	1.41- Iow	de used?		-	
989	Mesoplodon hectori Balaenoptera	Hector's Beaked Whale	0	N	0	0	2.86	1.22	3.11	Y	Med	Spatial uncertainty Spatial	<u>Expert override</u> : a/a
261	borealis Balaenoptera	Sei Whale	0	Ν	0	0	2.86	1.15	3.08	Y	Med	uncertainty Spatial	<u>Expert override</u> : a/a
268	physalus Balaenoptera	Fin Whale Antarctic Minke	0	Ν	0	0	2.86	1.15	3.08	Y	Med	uncertainty Spatial	Expert override: a/a
1439	bonaerensis	Whale	0	Ν	1	0	2.86	1.15	3.08	Y	Med	uncertainty Spatial	<u>Expert override</u> : a/a
1036	Physeter catodon	Sperm Whale	0	Ν	0	0	2.86	1.15	3.08	Y	Med	uncertainty	Expert override: a/a Expert override: Never recorded in catch by observers although sighted
269	Berardius arnuxii Megaptera	Arnoux's Beaked Whale	0	Ν	0	0	2.86	1.15	3.08	Y	Med	Spatial uncertainty Spatial	in area therefore encounterability reduced from 3 to 1
984	novaeangliae Lagenorhynchus	Humpback Whale	0	Ν	0	0	2.71	1.44	3.07	Y	Med	uncertainty Spatial	Expert override: a/a
832	cruciger	Hourglass dolphin Southern Right	0	Ν	1	1	2.71	1.44	3.07	Y	Med	uncertainty Spatial	<u>Expert override</u> : a/a
61	Lissodelphis peronii	Whale Dolphin	0	N	1	0	2.71	1.44	3.07	Y	Med	uncertainty Spatial	Expert override: a/a Expert override: Have been captured but abundant: 100,000 live outside fishing grounds therefore availability reduced to 1 and encounterability
993	Mirounga leonina	Elephant seal	present	Ν	0	0	2.71	1.44	3.07	Y	Med	uncertainty	reduced to 1. Expert override: Never recorded in
297	Lobodon carcinophagus	Crabeater seal	0	N	2	0	2.57	1.67	3.06	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1 <u>Expert override</u> : Never recorded in catch by observers therefore encounterability reduced from 2 to 1
295	Hydrurga leptonyx	Leopard seal	0	Ν	0	0	2.71	1.22	2.98	Y	Med	Spatial uncertainty	encounterability reduced from 3 to 1. Distributed main on ice on Antarctic

ERA species ID	Scientific Name	Common Name	Total logbook catch (kg) 2000-05	Missing > 3 attributes (Y/N)	Number of missing productivity attributes (out of 7)	Number of missing susceptibility attributes (out of 5)	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
													continent therefore availability redued to 1
296	Leptonychotes weddelli	Weddell seal	0	Ν	2	0	2.71	1.22	2.98	Y	Med	Spatial uncertainty	Expert override: a/a Expert override: Never recorded in
896	Eubalaena australis	Southern Right Whale	0	N	0	0	2.71	1.15	2.95	Y	Med	Spatial uncertainty	catch by observers therefore encounterability reduced from 3 to 1
216	Arctocephalus forsteri Lagenorhynchus	New Zealand Fur- seal	0	Ν	0	0	2.43	1.67	2.95	Y	Med	Spatial uncertainty Spatial	Expert override: a/a
971	obscurus Arctocephalus	Dusky Dolphin	0	Ν	0	0	2.29	1.67	2.83	Ν	Med	uncertainty Spatial	Expert override:a/a
263	tropicalis	Subantarctic fur seal	0	Ν	0	0	2.29	1.67	2.83	Y	Med	uncertainty Spatial	Expert override: a/a
294	Phocarctos hookeri Balaenoptera	Hooker's sea lion	0	Ν	2	0	2.29	1.67	2.83	Y	Med	uncertainty Spatial	Expert override: a/a
265	musculus	Blue Whale	0	Ν	0	0	2.57	1.15	2.82	Y	Med	uncertainty	Expert override:a/a Expert override: Never recorded in catch by observers therefore encounterability reduced from 3 to 1. 95% of population breeds on Sth Gerogia therefore availability
293	gazella	Antarctic fur seal	0	Ν	2	0	2.29	1.22	2.59	Y	Low		reduced to 1

#### 2.4.4 PSA Plot for individual units of analysis (Step 4)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then 1/3rd of the Euclidean overall risk values will be greater than 3.18 (high risk), 1/3rd will be between 3.18 and 2.64 (medium risk), and 1/3rd will be lower than 2.64 (low risk).

Results of the PSA plot from PSA workbook ranking worksheet



**PSA** plot for target species



PSA plot for byproduct species



PSA plot for bycatch species



**PSA plot for TEP species** 

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium and low, according to the risk values (**Figure 17**). The cutoffs for each category are thirds of the total distribution of all possible risk values (**Figure 17**).



Figure 17. Overall risk values in the PSA plot. Left panel. Colour map of the distribution of the euclidean overall risk values. Right panel. The PSA plot contoured to show the low risk (blue), medium risk (orange) and high risk (red) values.

The PSA output allows identification and prioritization (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritization means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk to an individual unit will depend on the level of impact as well its productivity and susceptibility.

#### 2.4.5 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently with regard to risk, it should be the subject of more study.

The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and TEP) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.

#### Availability of information

The ability to score each species based on information on each attribute varied between the attributes (as per summary below). With regard to the productivity attributes, trophic level was missing in 61% of species, and so the most conservative score was used, while information on maximum size, size at maturity and reproductive strategy could be found or calculated for 78-79 % of units. For the susceptibility attributes, bathymetry overlap was missing in 21% of species, and so the most conservative score was used. The current method of scoring the availability and post-capture mortality attributes provides a value for each attribute for each species – some of these are based on good information, whereas others are merely sensible default values.

# Summary of the success of obtaining information on the set of productivity and susceptibility attributes for the species. Where information on an attribute was missing the highest score was used in the PSA.

Productivity Attributes	Average age at maturity	Average max age	Fecundity	Average max size	Average size at Maturity	Reproductive strategy	Trophic level (FishBase)
Total species scores for attribute	111	92	107	131	132	133	65
n species scores with attribute unknown, (conservative score used)	57	76	61	36	36	35	103
% unknown information	34	45	36	21	21	21	61
		Encount	erability				
Susceptibility Attributes	Availability	Bathymetry overlap	Habitat	Selectivity	РСМ		
Total species scores for attribute	168	133	137	133	168		
n species scores with attribute unknown, (conservative score used)		35	31	35			
% unknown information	0	21	18	21	0		

Each species considered in the analysis had information for an average of 4.60 (66%) productivity attributes and 4.4 (88%) susceptibility attributes. This meant that, on average, conservative scores were used for less than 25% of the attributes for a single species. Species had missing information for between 0 and 10 of the combined 12 productivity and susceptibility attributes.



# Species: Overall uncertainty distribution - frequency of missing information for the combined productivity and susceptibility attributes

#### Correlation between attributes

#### Species component:

The attributes selected for productivity were often strongly correlated (as per correlation matrix below for productivity). The strongest productivity attribute correlation was between maximum size and size at maturity. This is why the attributes for productivity are averaged, as they are all in turn correlated with the intrinsic rate of increase (see

*ERAEF: Methodology* document for more details). In contrast the susceptibility attributes were less correlated, which is to be expected as they measure independent aspects of this dimension, and are multiplied to obtain the overall susceptibility score.

	Age at maturity	•	Fecundity	Max size	Min size at	Reproductive strategy	Trophic level
					maturity		
Average age at maturity	Х						
Average max age	0.52	Х					
Fecundity	0.10	0.04	Х				
Average max size	0.41	0.27	0.23	Х			
Average size at Maturity	0.32	0.25	0.25	0.84	Х		
Reproductive strategy	0.03	0.03	0.54	0.28	0.29	Х	
Trophic level (fishbase)	0.12	0.06	0.53	0.27	0.35	0.69	Х

**Correlation matrix for the species productivity attributes.** The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

<b>Correlation matrix for the four species susceptibility attributes.</b> The correlation (r) is based on the
scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

	Availability	Encounterability	Selectivity	<b>Post-capture mortality</b>
Availability	X			
Encounterability	-0.08	Х		
Selectivity	0.15	0.06	Х	
Post-capture mortality	-	-	-	Х

#### Productivity and susceptibility values for Species

The average productivity score for all species was  $2.44 \pm 0.1$  (mean  $\pm$  SD of scores calculated using n-1 attributes) and the mean susceptibility score was 1.93 (as per summary of average productivity and susceptibility scores as below). Individual scores are shown above in: *Summary of PSA results*. The small variation in the average of the boot-strapped values (using n-1 attributes), indicates the productivity and susceptibility scores are robust to elimination of a single attribute. Information for a single attribute does not have a disproportionately large effect on the productivity and susceptibility scores. Information was missing for an average of 3 attributes out of 12 possible for each species unit.

#### **Overall Risk Values for Species**

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of 1&1 and 3&3 for both productivity and susceptibility respectively). The mean observed overall risk score was 3.15, with a range of 2.11 - 4.24. The actual values for each species are shown in *Summary of PSA results* (above). A total of 42 units (26%) were classed as high risk, 104 (62%) were in the medium risk category, and 18 (11%) were classed as low risk.



Frequency distribution of the overall risk values generated for the 168 units in the Macquarie Island trawl fishery PSA.

The distribution of the overall risk values of all species is shown on the PSA plot below. The species are distributed in all parts of the plot, indicating that both high and low risk units are potentially impacted in the fishery.



PSA plot for all species in the Macquarie Island trawl fishery. Species in the upper right of the plot are at highest risk.

The number of attributes with missing information is of particular interest, because the conservative scoring means these units may be scored at higher risk than if all the information was known. This relationship between the overall risk score and the number of missing attributes shows that an increase in the number of missing attributes (and hence conservative scores used) results in a skew to higher risk values. This suggests that as information becomes available on those attributes, the risk values may decline for some units.

### 2.4.6 Evaluation of the PSA results (Step 6)

#### **Species Components:**

Overall

A total of 251 species were considered. Of these, 83 species were eliminated from the species list. Forty-nine of the species eliminated had insufficient taxonomic resolution or were synonyms of other species that have been considered. A further 34 species were eliminated by the AAD. A total of 168 species were subsequently considered at level 2, of which expert over rides were used on 100 species. Of the 42 species assessed to be at high risk, 36 had more than 3 missing attributes.

The average number of missing attributes was high: 3 out of a possible 12. This largely reflects the remoteness of the Antarctic region, where there have been fewer studies of the bio-geography, taxonomy and biology of demersal fishes and invertebrates, compared to the Australian continental EEZ.

Component	Measure	
All species	Number of species	168
	Average of productivity total	2.45
	Average of susceptibility total	1.93
	Average of overall risk value (2D)	3.14
	Average number of missing attributes	4.4
Target species	Number of species	1
	Average of productivity total	1.86
	Average of susceptibility total	3.00
	Average of overall risk value (2D)	3.53
	Average number of missing attributes	0
Byproduct species	Number of species	74
	Average of productivity total	2.39
	Average of susceptibility total	2.35
	Average of overall risk value (2D)	3.38
	Average number of missing attributes	4.97
Bycatch species	Number of species	3
	Average of productivity total	2.81
	Average of susceptibility total	2.56
	Average of overall risk value (2D)	3.83
	Average number of missing attributes	6
TEP species	Number of species	90
	Average of productivity total	2.48

Summary of average productivity, susceptibility and overall risk scores.

Component	Measure	
	Average of susceptibility total	1.55
	Average of overall risk value (2D)	2.94
	Average number of missing attributes	1.29

#### PSA risk categories for each species component.

Risk Category	High	Medium	Low	Total
Target species	1			1
Byproduct species	36	25	13	74
Bycatch species	3			3
TEP species	2	83	5	90
Total	42	108	18	168

#### PSA risk categories for each taxa.

Risk Category	High	Medium	Low	Total
Chondrichthyan	1	1		2
Invertebrate	18	2	1	21
Marine bird	2	52	4	58
Marine mammal	0	31	1	32
Teleost	21	22	12	55
Total	42	108	18	168

#### Discussion

#### Target species

The single target species was classified as high risk. The species is managed and has detailed assessments.

#### **Byproduct species**

Of the 74 byproduct species, 36 are classified as high risk, 25 as medium risk and 13 as low risk. The large number of high risk scores was influenced by missing information. The average number of missing attributes was high: 5.1 out of a possible 11. However some species need further consideration. These species include whiptails, southern flounders and benthic invertebrates.

Among the whiptails, several species have restricted Southern Ocean distributions but only *Macrourus holotrachys* is caught in significant numbers (0.5 t per year). This is a relatively long-lived species, living to 52 years but matures early (12 years) and has high fecundity (15,000) and was assessed as mediumk risk.

The southern flounders have restricted distributions but are not caught in significant numbers. The age structure and fecundity of these species are unknown.

The main benthic invertebrates reported in observer data are 'gorgonians' presumably sea-fan corals -6.5 t per over the last five years. The species composition of this part of the bycatch is not clear.

#### Bycatch species

There were only three bycatch species from observer data that were considered. These are jellyfish, sleeper shark, and 'Subclass Zoantharia'. Of these, only the latter two are reported in significant quantities annually: 9.2 t and 1.4 t over the last five years respectively.

#### TEP species

Of the 90 TEP species, only two birds were considered high risk: the white-chinned petrel and the wandering albatross.

#### 2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)

For the PSA overall risk values, units that fall in the upper third (risk value > 3.18) and middle third (2.64 < risk value < 3.18) of the PSA plots are deemed to be at high and medium risk respectively. These need to be the focus of further work, either through implementing a management response to address the risk to the vulnerable species or by further examination for risk within the particular ecological component at Level 3. Units at low risk, in the lower third (risk value <2.64), will be deemed not at risk from the sub-fishery and the assessment is concluded for these units.

For example, if in a Level 2 analysis of habitat types, two of seven habitat types were determined to have risk from the sub-fishery, only those two habitat types would be considered at Level 3.

The output from the Level 2 analysis will result in four options:

- The risk of fishing on a unit of analysis within a component (e.g. single species or habitat type) is not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of fishing on a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of fishing on a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken
- The risk of fishing on a unit is high and there are no planned management interventions that would remove this risk, therefore the reasons are documented and the assessment moves to Level 3.

At level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The framework (see Figure x below) makes use of the existing AFMA management structures to enable the ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document,



the ERM report, will be developed that outlines the reasons why species are at high risk and what actions the fishery will implement to respond to the risks.

*TSG – Technical Support Group - currently provided by CSIRO.

#### 2.4.8 High/Medium risk categorisation (Step 8)

Following the <u>Level 2 PSA</u> scoring of target, bycatch and byproduct, and TEP species, the high and medium risk species have been divided into five categories that highlight potential reasons for the higher risk scores. These categories should also help identify areas of uncertainty and assist decisions regarding possible management responses for these species. The categories are independent and species are allocated to each category in the order the categories are presented below. Thus, while in principle a species could qualify for both Category 1 and 2, it will only appear in Category 1 because that was scored first. The five categories are programmed into the PSA excel spreadsheets for each fishery according to the following algorithms:

- Category 1: Missing data (>3 missing attributes in either Productivity or Susceptibility estimation). <u>Rationale:</u> A total of more than 3 missing attributes (out of 12 possible) could lead to a change in risk score if the information became known. This is because where information is missing for an attribute, that attribute is automatically scored as high risk. The choice of 3 attributes was identified using sensitivity analysis.
- Category 2: Spatial overlap

- 2A. Widely distributed (More than 80% of the full range of a species is outside the jurisdictional boundary of the fishery). <u>Rationale:</u> These species may have refuge outside the fishery.
- **2B. Low overlap** (<20% overlap between effort and the species distribution inside the fishery). Refers to the preferred Availability attribute used to calculate Susceptibility. <u>Rationale:</u> This cutoff (20%) has no strong rationale, other than being a low percentage overlap. Additional work to determine what threshold might be applicable is required. However, the categories are to be used as a guide for management, and additional effort to decide on cutoffs may be misplaced if the categories are just used as a guide. A similar analysis could be undertaken for the encounterability and selectivity attributes, but there is more information available for availability (overlap) for most species and overlap may be more informative about risk. A subtle change in fishing practice could modify encounterability or selectivity, while to change availability requires a major change in fleet location, which will be easier to detect.
- Category 3: Low (susceptibility) attribute score (*One of the susceptibility attribute scores* = 1). <u>Rationale:</u> These species may be scored high risk based on productivity risk alone, even if their susceptibility is very low.
- **Category 4**: **Spatial uncertainty** (*No detailed distributional data available*) Availability was calculated using less reliable mapping data or distributional categories: Global/Southern Hemisphere/Australia, with stock likelihood overrides where necessary. <u>Rationale</u>: the absence of fine scale catch and species distribution data (e.g. TEP species) means that the substitute attribute (precautionary) was used. Spatial data should be sought.
- **Category 5 Other**: *risk score not affected by 1-4 considered above*

Categorisation results - High risk species

Detailed species by species results of the categorisation are presented for medium and high risk species in the Tables in section 2.4.2 of this report. The following is a brief summary of the results for species classified as high risk from the PSA analyses.

Of the 42 species classified as high risk in this fishery, 36 had missing data (Category 1), 1 was widely distributed outside the fishery (Category 2A) and 5 had spatial data missing (Category 4).

Risk Category	Description	Total
Category 1	High risk - Missing data	36
	High risk - Widely distributed outside	
Category 2A	fishery	1
Category 2B	High risk - Low overlap inside fishery	0
Category 3	High risk – One susceptibility attribute scored low	
Category 4	High risk - Spatial uncertainty	5
Category 5	High risk - Other	0

Risk Category	Description	Total
	Total High risk	42

It is important to stress that this categorization does not imply a down-grading of risk. It is intended as a tool to focus subsequent discussions on risk treatment and identify needs for further data. Sensitivity analysis to the particular cutoffs has not been undertaken in a formal sense, and may not be required, as these categories are intended as guides to focus further consideration of the high risk species. These categories may also indicate the presence of false positives in the high risk species category, but only further analysis or data can determine this.

#### 2.5 Level 3

Elements of Level 3 assessment have already occurred for the target species Patagonian toothfish at Macquarie Island. Annual stock assessments are carried out for the target species (e.g. Tuck 2006), as well as ongoing monitoring of bycatch/byproduct species via the observer program.

# 3. General discussion and research implications

The Macquarie Island Fishery targets Patagonian toothfish using demersal trawl gear in 600 - 1,200 m on two fishing grounds – the Aurora Trough and the Northern Valleys.

Overall there were proportionally more high risk scores for byproduct/discard teleosts and invertebrates in the MIF fishery than other fisheries evaluated by ERAEF. 40 out of 77 byprodcut and bycatch species were high risk at MIF. These high risk scores largely reflect uncertainty – missing attributes and poorly known distributions. However a few species of sharks and fish may be genuine high risk species. Conversely the TEP scores reflect greater certainty than for other fisheries. This has been aided by 100% observer coverage. This level of coverage is best practice in Australian fisheries but there are opportunities to improve the way this data is collated and summarised. These opportunities are currently being pursued by AFMA working with AAD. This will ensure that effectiveness of mitigation measures can be evaluated, as well as compliance. Only two of the TEP species considered were high risk. Both of these were birds.

In the past, the principal ecological concern for the MIF has been incidental capture of birds and this is likely to remain the case. Continued monitoring of seabird interactions to ensure mitigation measures remain effective is a priority for this fishery.

Habitats were not examined in detail but the byproduct/discard species examined at level 2 included large amounts of coral. There are concerns relating to the benthic impacts of trawling across a range of fisheries. Deepsea impacts are of greatest concern because corals are often long lived, slow to recover and provide a range of habitats for invertebrates and demersal fishes.

#### 3.1 Level 1

The fishery is likely to have moderate impacts on the single target species but this species is already under comprehensive management plans.

The sleeper shark was considered the most vulnerable discard species which is caught in significant numbers in the Aurora trough. It is not clear whether these catches reflect abundance or susceptibility to capture.

A number of albatross species were considered vulnerable to the fishery, particularly the wandering albatross which has a reduced population size on the Island -40 birds.

Habitats were not examined.

In the level one community analysis, the mid-upper slope community was considered most vulnerable. Demersal trawl gear may alter this community on the fishing grounds.

## 3.2 Level 2

Level 1 analyses suggested target, byproduct/bycatch species and TEP species components were at moderate risk from capture fishing. These risks were further analysed at level two. The level 2 assessments found 42 species at high risk, 108 at medium risk and 18 at low risk. Each of the species components included one or more high risk species

#### 3.2.1 Species at risk

**Target** 

The target species was assessed to be at potentially high risk with one low susceptibility attribute. However, this species has had detailed Level 3 assessments and is under comprehensive and precautionary management plans.

Overall, of the list of 42 species rated as high from the PSA analyses, the authors consider that 8 non-target species, three of which are invertebrates, need further evaluation or management response. This expert judgment is based on taxonomy/identification, distribution, stock structure, and movements, and overlap with the demersal trawl fishery.

Species	Risk Category
Lithodes murrayi	Missing data
• Gorgonaceae (gorgonian sea fans)	Missing data
• Hexacorrallia (tube anenome,	
black and thorny corals)	Missing data
Lepidonotothen squamifrons	Widely distributed
• Macrourus holotrachys (med risk)	Spatial uncertainty
• Mancopsetta sp.	Missing data
• Achiropsetta sp.	Missing data
Somniosus antarcticus	Spatial uncertainty
• Diomedea exulans	Spatial uncertainty
• Procellaria aequinoctialis	Spatial uncertainty

#### **Byproduct**

Within the byproduct species, 36 were classified as high risk 20 teleosts species were at high risk, of which the scores of 19 were influenced by missing information or spatial uncertainty in one case, mostly due to lack of precise taxonomic resolution and therefore corresponding data. The catches of these species were either insignificant or not reported during the assessment period. The species that were considered most likely to be at risk within this group was the the grey rockcod *Lepidonotothen squamifrons* which is caught in significant quantities. At a lesser risk level, the whiptail *Macrourus holotrachys* is the only whiptail caught in quantity during the assessment period but might also be of concern along with other whiptails and the southern flounders. However none of these species

have particularly low productivity and whiptails are the only byproduct fish species caught in significant quantities.

The remaining 16 species were invertebrates for which there was also missing information. The Subantarctic king crab *Lithodes murrayi* was caught in significant quantities and represents high risk Gorgonian sea fans have also been caught in significant amounts of benthic invertebrates suggesting that habitats need assessment.

#### **Bycatch**

The sleeper shark is a poorly known deepwater dogfish. Other species of deepwater dogfish have annual fecundity of less than 1. Studies of other deepwater dogfishes, blue sharks and white sharks suggest survival rates of released sharks are around 50%. There are no yield estimates for sleeper sharks.

The 'subclass zooantharia' recorded in observer data could include tube anemones, black corals or thorny corals. The invertebrate fauna of the region is poorly known but is likely to include long-lived corals, similar to those present on seamounts around southern Tasmania. The coral on some of these seamounts has been reduced and has not recovered after 10 years. These corals are difficult to age but some cold water corals are thought to live to 100 years.

#### **TEP Species**

Only two TEP species were assessed as high risk due to spatial uncertainty of the core range of the species and overlap with the fishery. An over-ride was applied to *Procellaria aequinoctialis* White-chinned petrel to reduce its encounterability although the White chinned petrel is an aggressive bird that dives on baits and has interacted with the fishery resulting in death. *Diomedea exulans* the wandering albatross has not been captured in the sub-fishery, but has a limited population size on Macquarie Island (40 birds), therefore the over-ride was not applied to this species. Even if one bird were captured it would comprise 2% of the population. In fact any level of harvest of this population presents significant risk given that it is recovering from depletion from external (to the MIF trawl fishery) influences. Closely related species, including shy albatross, have been killed by warp wires in trawl fisheries around the Australian continent as recorded in observer data.

#### **Residual risk**

As discussed elsewhere in this report (Section 1), the ERAEF methods are both hierarchically structured and precautionary. The Level 1 (SICA) analyses are used to identify potential hazards associated with fishing and which broad components of the ecological system they apply to. The Level 2 (PSA) analyses consider the direct impacts of fishing on individual species and habitats (rather than whole components), but the large numbers of species that need to be assessed and the nature of the information available for most species in the PSA analyses limits these analyses in several important respects. These include that some existing management measures are not directly accounted for, and that no direct account is taken of the level of mortality associated with fishing. Both these factors are taken into account in the ERAEF framework at Level 3, but the analyses reported here stop at Level 2. This means that the risk levels for species must be regarded as identifying potential rather than actual risk, and due to

the precautionary assumptions made in the PSA analyses, there will be a tendency to overestimate absolute levels of risk from fishing.

In moving from ERA to ERM, AFMA will focus scarce resources on the highest priority species and habitats (those likely to be most at risk from fishing). To that end, and because Level 3 analyses are not yet available for most species, AFMA (with input from CSIRO and other stakeholders) has developed guidelines to assess "residual risk" for those species identified as being at high potential risk based on the PSA analyses. The residual risk guidelines will be applied on a species by species basis, and include consideration of existing management measures not currently accounted for in the PSA analyses, as well as additional information about the levels of direct mortality. These guidelines will also provide a transparent process for including more precise or missing information into the PSA analysis as it becomes available.

CSIRO and AFMA will continue to work together to include the broad set of management arrangements in Level 2 analyses, and these methods will be incorporated in future developments of the ERAEF framework. CSIRO has also undertaken some preliminary Level 3 analyses for bycatch species for several fisheries, and these or similar methods will also form part of the overall ERAEF framework into the future.

#### 3.2.2 Habitats at risk

Not assessed

#### 3.2.3 Community assemblages at risk

The community component was not assessed at Level 2 for this sub-fishery, but should be considered in future assessments when the methods to do this are fully developed.

#### 3.3 Key Uncertainties / Recommendations for Research and Monitoring

Specific recommendations arising from this assessment include:

- Maintain and monitor mitigation measures for seabird mitigation and continue to ensure compliance
- Continue to standardise the way observer data is compiled. Increase the frequency and availability of data summaries. Develop the application observer data to evaluate the effectiveness of mitigation measures and assist with adaptive management.
- Complete the guide to Fishes of Macquarie Island
- Examine the risk to habitats posed by demersal trawling at Macquarie Island
- Collect data on mortality rates of sleeper sharks caught in trawl nets and consider methods to evaluate mortality of sleeper sharks released after capture

#### References

Ecological Risk Assessment References (specific for each Sub fishery)

- AFMA (1999). Macquarie Island Fishery Interim Management Policy 1st October 1999 30th June 2001.
- AFMA (2003). Antarctic Fisheries Bycatch Action Plan 2003.
- AFMA (2006). Macquarie Island Toothfish Fishery Management Plan 2006. Australian Fisheries Management Authority, Canberra. <u>http://www.afma.gov.au/fisheries/antarctic/macquarie/management/man_plan.pdf</u>
- Appleyard, S. A., Ward, R. D., and Williams, R. (2002). Population structure of the Patagonian toothfish around Heard, McDonald and Macquarie Islands. Antarctic Science14: 364-373.
- Butler, A., Williams, A., Koslow, K., Gowlett-Holmes, K., Barker, B., Lewis, M. and Reid, R. (2000). A study of the conservation significance of the benthic fauna around Macquarie Island and the potential impact of the Patagonian toothfish trawl fishery. Report for Environment Australia. (CSIRO, Hobart.)
- Eades, D. (2001). Observations of seabirds in Macquarie Island waters. In Ecologically sustainable development of the fishery for Patagonian toothfish (Dissostichus eleginoides) around Macquarie Island: Population parameters, population assessment and ecological interactions. (Eds He, X. and Furlani, D.M.) (CSIRO Marine Research, Australian Antarctic Division, and Austral Fisheries Pty Ltd. Hobart.)
- Reilly, A. Ward, B., and Williams, R. (1998). Preliminary results of investigations into the stock structure of Patagonian toothfish around Macquarie Island. Sub-Antarctic Fisheries Assessment group document. SAFAG-98/4/4. AFMA, Canberra.
- Tuck, G.N., de la Mare, W.K., Hearn, W.S., Williams, R., Smith, A.D.M., He, X. and Constable, A. (2003). An exact time of release and recapture stock assessment model with an application to Macquarie Island Patagonian toothfish (*Dissostichus eleginoides*). *Fisheries Research* 1521: 1-13.
- Tuck, G. N. (2006). Stock assessment and management strategy evaluation for sub-Antarctic fisheries: 2004-2006. Australian Fisheries Management Authority and CSIRO Marine Research, Hobart.
- Wienecke, B. and Robertson, G. (2002). Seabird and seal fisheries interaction in the Australian Patagonian toothfish *Dissostichus eleginoides* trawl fishery. *Fisheries Research* **24**: 253-265.
- Williams, D., Wienecke, B., lamb, T., van Wijk, E., and Robertson, G. (2001). Bycatch and fishery interactions. In Ecologically sustainable development of the fishery for Patagonian toothfish (*Dissostichus eleginoides*) around Macquarie Island:

Population parameters, population assessment and ecological interactions. (Eds He, X. and Furlani, D.M.) (CSIRO Marine Research, Australian Antarctic Division, and Austral Fisheries Pty Ltd. Hobart.)

Williams, D. and Lamb, T. (2001). *History of the toothfish fishery* Chapter 6: In Ecologically sustainable development of the fishery for Patagonian toothfish (*Dissostichus eleginoides*) around Macquarie Island: Population parameters, population assessment and ecological interactions. (Eds He, X. and Furlani, D.M.) (CSIRO Marine Research, Australian Antarctic Division, and Austral Fisheries Pty Ltd. Hobart.)

#### General Methodology References

- Fletcher, W. J. (2005). The application of qualitative risk assessment methodology to prioritize issues for fisheries management. *ICES Journal of Marine Science* **62**:1576-1587.
- Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A.D.M. and Whitworth, B. (2002). National ESD reporting framework for Australian Fisheries: The how to guide for wild capture fisheries. FRDC Report 2000/145. (FRDC, Canberra, Australia.)
- Hobday, A. J., A. Smith and I. Stobutzki (2004). Ecological risk Assessment for Australian Commonwealth Fisheries. Final Report Stage 1. Hazard identification and preliminary risk assessment. Report Number R01/0934. (CSIRO Marine Research, Hobart.)
- Stobutzki, I., Miller, M., Brewer, D., (2001). Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch. *Environmental Conservation* 28 (2), 167-181.
- Walker, T. (2004). Elasmobranch fisheries management techniques. Chapter 13.Management measures. *Technical manual for the management of elasmobranchs*. J. A. Musick and R. Bonfil, Asia Pacific Economic Cooperation: (in press).

#### Species Methodology References

- Bax, N. J. and Knuckey, I. (1996). Evaluation of selectivity in the South-East fishery to determine its sustainable yield. Final Report to the Fisheries Development Corporation. Project 1996/40.
- Daley, R. K., last, P. R., Yearsley, G. K. and Ward, R. D. (1997). South East Fishery Quota Species – an Identification Guide. (CSIRO Division of Marine Research, Hobart. 91 pp.)
- Gomon, M. F., Glover, J. C. M. and Kuiter, R. H. (Eds.) (1994). The Fishes of Australia's South Coast. State Print, Adelaide. 992 pp.

- Last, P., V. Lyne, G. Yearsley, D. Gledhill, M. Gomon, T. Rees and W. White. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40 m depth). Final Report to the National Oceans Office. (National Oceans Office, Hobart.) 99pp.
- Milton, D. A. (2000). Assessing the susceptibility to fishing of rare trawl bycatch: sea snakes caught by Australia's Northern Prawn Fishery. *Biological Conservation* 101: 281 – 290.
- Walker, T. I., Hudson, R. J. and Gason, A. S. (2005). Catch evaluation of target, byproduct and bycatch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. *Journal of Northwest Atlantic Fisheries Science* 35: 505 – 530.
- Yearsley, G. K., Last, P. R. and Ward, R. D. (1999). Australian Seafood Handbook Domestic species. (CSIRO Marine Research, Hobart.) 461 pp.

Habitat Methodology References

Althaus F.A. and Barker B. (2005). Lab Guide to Habitat scoring (unpublished).

- Bax N., Kloser R., Williams A., Gowlett-Holmes K., Ryan T. (1999). Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. *Oceanologica Acta* **22**: 705-719.
- Bax N. and Williams A. (2001). Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. *Marine and Freshwater Research* **52**: 491-512.
- Bulman C., Sporcic M., Dambacher J. (2005) (in prep). Ecological Risk Assessment for Communities Methodology Report.
- Commonwealth of Australia (2005). National Marine Bioregionalisation of Australia. Summary. (Department of Environment and Heritage, Canberra, Australia.)
- Greene H.G., Yoklavich M.M., Starr R.M., O'Connell V.E., Wakefield W.W., Sullivan D.E., McRea J.E. Jr., Cailliet G.M. (1999). A classification scheme for deep seafloor habitats. *Oceanologica Acta* 22: 663-678.
- Heap A.D., Harris P.T., Last P., Lyne V., Hinde A., Woods M. (2005). Draft Benthic Marine Bioregionalisation of Australia's Exclusive Economic Zone. Geoscience Australia Report to the National Oceans Office. (Geoscience Australia, Canberra.)
- Harris P., Heap A.D., Passlow V., Sbaffi L., Fellows M., Porter-Smith R., Buchanan C., Daniell, J .(2003). Geomorphic Features of the Continental Margin of Australia. (Geoscience Australia, Canberra.)

- Kloser R., Williams A., Butler A. (2000). Assessment of Acoustic Mapping of Seabed Habitats: Phase 1 Surveys April-June 2000, Progress Report 1. Marine Biological and Resource Surveys South-East Region.
- Kostylev V.E., Todd B.J., Fader G.B.J., Courtney R.C., Cameron G.D.M., Pickrill R.A. (2001). Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. *Marine Ecology Progress Series* 219: 121-137.
- Roff J.C., and Taylor M.E. (2000). National Frameworks for marine conservation a hierarchical geophysical approach. *Aquatic Conservation: Marine and Freshwater Ecosystems* **10**: 209- 223.

Community Methodology References

- Condie, S., Ridgway, K., Griffiths, B., Rintoul, S. and Dunn, J. (2003). National Oceanographic Description and Information Review for National Bioregionalisation. Report for National Oceans Office. (CSIRO Marine Research: Hobart, Tasmania, Australia.)
- Interim Marine and Coastal Regionalisation for Australia Technical Group (1998). Interim Marine and Coastal Regionalisation for Australia: an ecosystem-based classification for marine and coastal environments. Version 3.3 (Environment Australia, Commonwealth Department of the Environment: Canberra, Australia.)
- Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., and White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40m depth). (National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.)
- Lyne, V. and Hayes, D. (2004). Pelagic Regionalisation. National Marine Bioregionalisation Integration Project. 137 pp. (CSIRO Marine Research and NOO: Hobart, Australia.)
- Meyer, L., Constable, A. and Williams, R. (2000). Conservation of marine habitats in the region of Heard Island and McDonald Islands. Final Report to Environment Australia. (Australian Antarctic Division, Kingston, Tasmania.)
- Rees, A.J.J., Yearsley, G.K., and Gowlett-Holmes, K. (2005). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine Research, World Wide Web electronic publication, 1999 onwards. Available at: http://www.marine.csiro.au/caab/.

### **Glossary of Terms**

Assemblage	A subset of the species in the community that can be easily recognized and studied. For example, the set of sharks and rays in a community is the Chondrichthyan assemblage.
Attribute	A general term for a set of properties relating to the productivity or susceptibility of a particular unit of
	analysis.
Bycatch species	A non-target species captured in a fishery, usually of low value and often discarded (see also Byproduct).
Byproduct species	A non-target species captured in a fishery, but it may have value to the fisher and be retained for sale.
Community	A complete set of interacting species.
Component	A major area of relevance to fisheries with regard to ecological risk assessment (e.g. target species, bycatch and byproduct species, threatened and endangered species, habitats, and communities).
Component model	A conceptual description of the impacts of fishing activities (hazards) on components and sub-components, linked through the processes and resources that determine the level of a component.
Consequence	The effect of an activity on achieving the operational objective for a sub-component.
Core objective	The overall aim of management for a component.
End point	A term used in risk assessment to denote the object of the
Lind point	assessment; equivalent to component or sub-component in ERAEF
Ecosystem	The spatially explicit association of abiotic and biotic elements within which there is a flow of resources, such as nutrients, biomass or energy (Crooks, 2002).
External factor	Factors other than fishing that affect achievement of operational objectives for components and sub-components.
Fishery method	A technique or set of equipment used to harvest fish in a fishery (e.g. long-lining, purse-seining, trawling).
Fishery	A related set of fish harvesting activities regulated by an authority (e.g. South-East Trawl Fishery).
Habitat	The place where fauna or flora complete all or a portion of their life cycle.
Hazard identification	The identification of activities (hazards) that may impact the components of interest.
Indicator	Used to monitor the effect of an activity on a sub- component. An indicator is something that can be
Likelihood	measured, such as biomass or abundance. The chance that a sub-component will be affected by an activity.

Operational objective	A measurable objective for a component or sub- component (typically expressed as "the level of X does not fall outside acceptable bounds")
Precautionary approach	The approach whereby, if there is uncertainty about the outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or community).
PSA	Productivity-Susceptibility Analysis. Used at Level 2 in the ERAEF methodology.
Scoping	A general step in an ERA or the first step in the ERAEF involving the identification of the fishery history, management, methods, scope and activities.
SICA	Scale, Impact, Consequence Analysis. Used at Level 1 in the ERAEF methodology.
Sub-component	A more detailed aspect of a component. For example, within the target species component, the sub-components include the population size, geographic range, and the age/size/sex structure.
Sub-fishery	A subdivision of the fishery on the basis of the gear or areal extent of the fishery. Ecological risk is assessed separately for each sub-fishery within a fishery.
Sustainability	Ability to be maintained indefinitely
Target species	A species or group of species whose capture is the goal of a fishery, sub-fishery, or fishing operation.
Trophic position	Location of an individual organism or species within a food web.
Unit of analysis	The entities for which attributes are scored in the Level 2 analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the units are "assemblages".

## Appendix A: General summary of stakeholder feedback

Date	Format received	Comment from stakeholder	Action/explanation
28/9/2006	Written comment from AFMA	Update the executive summary: Discard: quoted incorrectly, figures given for catch rates of quota species.	Discard figures corrected.

Appendix B

### Appendix B: PSA results - summary of stakeholder discussions

Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding PSA results. No species were discussed at the Sub-Antarctic Fisheries meeting on 27June 2006 at AFMA, Canberra.

Taxa name	Scientific name	Common name	Role in fishery	PSA risk ranking (H/M/L)	Comments from meeting, and follow-up	Action	Outcome	Possible management response
					e.g. Distribution queried- core depth is mostly shallower than fishery	Changed depth dsn	Reduced risk from high to medium	
					e.g. extra size information provided by fishers	Max size added	Reduced risk from high to medium	
					e.g. Confusion re species identification	none	none	Improve species identification
					e.g. more common on outer shelf. Does occur in range of fishery according to literature.	none	none	Check depths at which caught in adjacent fishery

### Appendix C: SICA consequence scores for ecological components

Table C1. Target Species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for target species (Modified from Fletcher et al. 2002).

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	<b>1. Population size</b> Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size Full exploitation rate but long-term recruitment dynamics not adversely damaged.	<b>1. Population size</b> Affecting recruitment state of stocks and/or their capacity to increase	<b>1. Population size</b> Likely to cause local extinctions if continued in longer term	<b>1. Population size</b> Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background variability for this population.	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics, change in geographic range up to 5 % of original.	2. Geographic range Change in geographic range up to 10 % of original.	2. Geographic range Change in geographic range up to 25 % of original.	2. Geographic range Change in geographic range up to 50 % of original.	<b>2. Geographic range</b> Change in geographic range > 50 % of original.
Genetic structure	3. Genetic structure No detectable change in genetic structure. Unlikely to be detectable against background variability for this population.	<b>3. Genetic structure</b> Possible detectable change in genetic structure. Any change in frequency of genotypes, effective population size or number of	<b>3. Genetic structure</b> Change in frequency of genotypes, effective population size or number of spawning units up to 10%.	<b>3. Genetic structure</b> Change in frequency of genotypes, effective population size or number of spawning units up to 25%.	<b>3. Genetic structure</b> Change in frequency of genotypes, effective population size or number of spawning units, change up to 50%.	<b>3. Genetic structure</b> Change in frequency of genotypes, effective population size or number of spawning units > 50%.

	Score/level	Score/level						
Sub-component	1	2	3	4	5	6		
-	Negligible	Minor	Moderate	Major	Severe	Intolerable		
		spawning units up to						
		5%.						
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex		
	structure No	structure	structure	structure	structure	structure Long-term		
	detectable change in	Possible detectable	Impact on population	Long-term	Long-term	recruitment dynamics		
	age/size/sex	change in	dynamics at	recruitment	recruitment	adversely affected.		
	structure. Unlikely to	age/size/sex structure	maximum	dynamics adversely	dynamics adversely	Time to recover to		
	be detectable against	but minimal impact	sustainable level,	affected. Time to	affected. Time to	original structure >		
	background	on population	long-term	recover to original	recover to original	100 generations free		
	variability for this	dynamics.	recruitment	structure up to 5	structure up to 10	from impact.		
	population.		dynamics not	generations free	generations free			
			adversely affected.	from impact.	from impact.			
Reproductive capacity	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive		
	capacity	capacity	capacity	capacity	capacity	capacity Change in		
	No detectable	Possible detectable	Impact on population	Change in	Change in	reproductive capacity		
	change in	change in	dynamics at	reproductive	reproductive	adversely affecting		
	reproductive	reproductive	maximum	capacity adversely	capacity adversely	long-term recruitment		
	capacity. Unlikely to	capacity but minimal	sustainable level,	affecting long-term	affecting long-term	dynamics. Time to		
	be detectable against	impact on population	long-term	recruitment	recruitment	recovery > 100		
	background	dynamics.	recruitment	dynamics. Time to	dynamics. Time to	generations free from		
	variability for this		dynamics not	recovery up to 5	recovery up to 10	impact.		
	population.		adversely affected.	generations free	generations free			
				from impact.	from impact.			
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/		
	movement	movement	movement	movement Change	movement	movement		
	No detectable	Possible detectable	Detectable change in	in behaviour/	Change in	Change to behaviour/		
	change in behaviour/	change in behaviour/	behaviour/	movement with	behaviour/	movement.		
	movement. Unlikely	movement but	movement with the	impacts on	movement with	Population does not		
	to be detectable	minimal impact on	potential for some	population	impacts on	return to original		
	against background	population	impact on population	dynamics. Time to	population	behaviour/		
	variability for this	dynamics. Time to	dynamics. Time to	return to original	dynamics. Time to	movement.		
	population. Time	return to original	return to original	behaviour/	return to original			
	taken to recover to	behaviour/	behaviour/	movement on the	behaviour/			

	Score/level					
Sub-component	1	2	3	4	5	6
_	Negligible	Minor	Moderate	Major	Severe	Intolerable
	pre-disturbed state	movement on the	movement on the	scale of months to	movement on the	
	on the scale of hours.	scale of days to	scale of weeks to	years.	scale of years to	
		weeks.	months.		decades.	

	Score/level					
Sub-component	1 Negligible	2 Minor	3 Moderate	4 Major	5 Severe	6 Intolerable
Population size	<b>1. Population size</b> Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	<b>1. Population size</b> Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size No information is available on the relative area or susceptibility to capture/ impact or on the risk of life history traits of this type of species Susceptibility to capture is suspected to be less than 50% and species do not have vulnerable life history traits. For species with vulnerable life history traits to stay in this category susceptibility to capture must be less than 25%.	<b>1. Population size</b> Relative state of capture/susceptibility suspected/known to be greater than 50% and species should be examined explicitly.	<b>1. Population size</b> Likely to cause local extinctions if continued in longer term	<b>1. Population size</b> Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics, change in	2. Geographic range Change in geographic range up to 10 % of original.	<b>2. Geographic range</b> Change in geographic range up to 25 % of original.	2. Geographic range Change in geographic range up to 50 % of original.	<b>2. Geographic range</b> Change in geographic range > 50 % of original.

Table C2. Bycatch and Byproduct species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for bycatch/byproduct species (Modified from Fletcher et al. 2002).

	Score/level					
Sub-component	1	2	3	4	5	6
-	Negligible	Minor	Moderate	Major	Severe	Intolerable
	variability for this	geographic range up				
	population.	to 5 % of original.				
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No detectable	Possible detectable	Detectable change in	Change in frequency	Change in frequency	Change in frequency
	change in genetic	change in genetic	genetic structure.	of genotypes,	of genotypes,	of genotypes,
	structure. Unlikely	structure. Any	Change in frequency	effective population	effective population	effective population
	to be detectable	change in frequency	of genotypes,	size or number of	size or number of	size or number of
	against background	of genotypes,	effective population	spawning units up to	spawning units up to	spawning units >
	variability for this	effective population	size or number of	25%.	50%.	50%.
	population.	size or number of	spawning units up to			
		spawning units up to	10%.			
		5%.				
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
	structure	structure	structure	structure	structure	structure
	No detectable	Possible detectable	Detectable change in	Long-term	Long-term	Long-term
	change in	change in	age/size/sex	recruitment dynamics	recruitment	recruitment dynamics
	age/size/sex	age/size/sex	structure. Impact on	adversely affected.	dynamics adversely	adversely affected.
	structure. Unlikely	structure but	population dynamics	Time to recover to	affected. Time to	Time to recover to
	to be detectable	minimal impact on	at maximum	original structure up	recover to original	original structure >
	against background	population	sustainable level,	to 5 generations free	structure up to 10	100 generations free
	variability for this	dynamics.	long-term	from impact.	generations free	from impact.
	population.		recruitment		from impact.	
			dynamics not			
			adversely damaged.			
Reproductive capacity	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
	capacity	capacity Possible	capacity Detectable	capacity	capacity	capacity Change in
	No detectable	detectable change in	change in	Change in	Change in	reproductive capacity
	change in	reproductive	reproductive	reproductive capacity	reproductive	adversely affecting
	reproductive	capacity but minimal	capacity, impact on	adversely affecting	capacity adversely	long-term recruitment
	capacity. Unlikely to	impact on population	population dynamics	long-term recruitment	affecting long-term	dynamics. Time to
	be detectable against	dynamics.	at maximum	dynamics. Time to	recruitment	recovery > 100
	background		sustainable level,	recovery up to 5	dynamics. Time to	generations free from
			long-term		recovery up to 10	impact.

	Score/level					
Sub-component	1	2	3	4	5	6
_	Negligible	Minor	Moderate	Major	Severe	Intolerable
	variability for this		recruitment	generations free from	generations free	
	population.		dynamics not	impact.	from impact.	
			adversely damaged.	-	_	
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/
	movement	movement	movement	movement	movement	movement
	No detectable	Possible detectable	Detectable change in	Change in behaviour/	Change in	Change to behaviour/
	change in behaviour/	change in behaviour/	behaviour/	movement with	behaviour/	movement.
	movement. Unlikely	movement but	movement with the	impacts on population	movement with	Population does not
	to be detectable	minimal impact on	potential for some	dynamics. Time to	impacts on	return to original
	against background	population	impact on population	return to original	population	behaviour/
	variability for this	dynamics. Time to	dynamics. Time to	behaviour/ movement	dynamics. Time to	movement.
	population. Time	return to original	return to original	on the scale of	return to original	
	taken to recover to	behaviour/	behaviour/	months to years	behaviour/	
	pre-disturbed state	movement on the	movement on the		movement on the	
	on the scale of	scale of days to	scale of weeks to		scale of years to	
	hours.	weeks.	months.		decades.	

# **Table C3. TEP species. Description of consequences for each component and each sub-component**. Use table as a guide for scoring the level of consequence for TEP species (Modified from Fletcher et al. 2002).

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size	1. Population size	1. Population size.	1. Population size	1. Population size	1. Population size
	Almost none are	Insignificant change	State of reduction on	Affecting	Local extinctions are	Global extinctions are
	killed.	to population	the rate of increase is	recruitment state of	imminent/immediate	imminent/immediate
		size/growth rate (r).	at the maximum	stocks or their		
		Unlikely to be	acceptable level.	capacity to increase.		
		detectable against	Possible detectable			
		background	change in size/			
		variability for this	growth rate (r) but			
		population.	minimal impact on			
			population size and			
			none on dynamics of			
			TEP species.			
Geographic range	2. Geographic	2. Geographic	2. Geographic	2. Geographic	2. Geographic range	2. Geographic range
	range	range	range	range	Change in geographic	Change in geographic
	No interactions	No detectable	Possible detectable	Change in	range up to 25% of	range up to 25% of
	leading to impact on	change in	change in	geographic range up	original.	original.
	geographic range.	geographic range.	geographic range but	to 10% of original.		
		Unlikely to be	minimal impact on			
		detectable against	population range and			
		background	none on dynamics.			
		variability for this	Change in			
		population.	geographic range up			
			to 5 % of original.			
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No interactions	No detectable	Possible detectable	Moderate change in	Change in frequency	Change in frequency
	leading to impact on	change in genetic	change in genetic	genetic structure.	of genotypes,	of genotypes,
	genetic structure.	structure. Unlikely	structure but	Change in frequency	effective population	effective population
		to be detectable	minimal impact at	of genotypes,	size or number of	size or number of
		against background	population level.	effective population	spawning units up to	spawning units up to
		variability for this	Any change in	size or number of	25%.	25%.
		population.	frequency of			

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
			genotypes, effective	spawning units up to		
			population size or	10%.		
			number of spawning			
			units up to 5%.			
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
	structure	structure	structure	structure	structure	structure
	No interactions	No detectable	Possible detectable	Detectable change in	Severe change in	Impact adversely
	leading to change in	change in	change in	age/size/sex	age/size/sex structure.	affecting population
	age/size/sex	age/size/sex	age/size/sex	structure. Impact on	Impact adversely	dynamics. Time to
	structure.	structure. Unlikely	structure but	population dynamics	affecting population	recover to original
		to be detectable	minimal impact on	at maximum	dynamics. Time to	structure > 10
		against background	population	sustainable level,	recover to original	generations free from
		variability for this	dynamics.	long-term	structure up to 5	impact
		population.		recruitment	generations free from	
				dynamics not	impact	
				adversely damaged.		
Reproductive capacity	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
	capacity	capacity	capacity	capacity	capacity	capacity
	No interactions	No detectable	Possible detectable	Detectable change in	Change in	Change in
	resulting in change	change in	change in	reproductive	reproductive capacity,	reproductive capacity,
	to reproductive	reproductive	reproductive	capacity, impact on	impact adversely	impact adversely
	capacity.	capacity. Unlikely to	capacity but minimal	population dynamics	affecting recruitment	affecting recruitment
		be detectable against background	impact on population	at maximum sustainable level,	dynamics. Time to	dynamics. Time to recover to original
		ę	dynamics.	,	recover to original structure up to 5	structure > 10
		variability for this		long-term recruitment		
		population.		dynamics not	generations free from	generations free from
				adversely damaged.	impact	impact
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/
Denaviour/movement		6. Benaviour/ movement	o. Benaviour/ movement	o. Benaviour/ movement	o. Benaviour/ movement	o. Benaviour/ movement
	<b>movement</b> No interactions	No detectable	Possible detectable	Detectable change in	Change in behaviour/	Change in behaviour/
	resulting in change	change in behaviour/	change in behaviour/	behaviour/	movement, impact	movement. Impact
	resulting in change	movement. Time to	movement but	movement with the	adversely affecting	adversely affecting
		movement. Time to	movement out	movement with the	auversely affecting	auversely affecting

	Score/level	Score/level						
Sub-component	1	2	3	4	5	6		
_	Negligible	Minor	Moderate	Major	Severe	Intolerable		
	to behaviour/	return to original	minimal impact on	potential for some	population dynamics.	population dynamics.		
	movement.	behaviour/	population	impact on population	Time to return to	Time to return to		
		movement on the	dynamics. Time to	dynamics. Time to	original behaviour/	original behaviour/		
		scale of hours.	return to original	return to original	movement on the	movement on the		
			behaviour/	behaviour/	scale of months to	scale of years to		
			movement on the	movement on the	years.	decades.		
			scale of days to	scale of weeks to				
			weeks	months				
Interaction with	7. Interactions with	7. Interactions with						
fishery	fishery	fishery	fishery	fishery	fishery	fishery		
	No interactions with	Few interactions and	Moderate level of	Major interactions	Frequent interactions	Frequent interactions		
	fishery.	involving up to 5%	interactions with	with fishery,	involving ~ 50% of	involving the entire		
		of population.	fishery involving up	interactions and	population.	known population		
			to10 % of	involving up to 25%		negatively affecting		
			population.	of population.		the viability of the		
						population.		

**Table C4. Habitats. Description of consequences for each component and each sub-component**. Use table as a guide for scoring the level of consequence for habitats. Note that for sub-components Habitat types and Habitat structure and function, time to recover from impact scales differ from substrate, water and air. Rationale: structural elements operate on greater timeframes to return to pre-disturbance states (Modified from Fletcher et al. 2002).

			Score/level			
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality
	Reduction in the	Detectable impact on	More widespread	The level of	Severe impact on	The dynamics of the
	productivity (similar	substrate quality. At	effects on the	reduction of internal	substrate quality with	entire habitat is in
	to the intrinsic rate of	small spatial scale	dynamics of	dynamics of habitats	50 - 90% of the	danger of being
	increase for species)	time taken to recover	substrate quality but	may be larger than is	habitat affected or	changed in a major
	on the substrate from	to pre-disturbed state	the state are still	sensible to ensure	removed by the	way, or > 90% of
	the activity is	on the scale of days	considered	that the habitat will	activity which may	habitat destroyed.
	unlikely to be	to weeks, at larger	acceptable given the	not be able to recover	seriously endanger	
	detectable. Time	spatial scales	percent area affected,	adequately, or it will	its long-term survival	
	taken to recover to	recovery time of	the types of impact	cause strong	and result in changes	
	pre-disturbed state on	hours to days.	occurring and the	downstream effects	to ecosystem	
	the scale of hours.		recovery capacity of	from loss of function.	function. Recovery	
			the substrate. For	Time to recover from	period measured in	
			impacts on non-	local impact on the	years to decades.	
			fragile substrates this	scale of months to		
			may be for up to 50%	years, at larger		
			of habitat affected,	spatial scales		
			but for more fragile	recovery time of		
			habitats, e.g. reef	weeks to months.		
			substrate, to stay in			
			this category the %			
			area affected needs to			
			be smaller up to			
			25%.			
Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality
	No direct impact on	Detectable impact on	Moderate impact on	Time to recover from	Impact on water	The dynamics of the
	water quality. Impact	water quality. Time	water quality. Time	local impact on the	quality with 50 -	entire habitat is in
	unlikely to be	to recover from local	to recover from local	scale of months to	90% of the habitat	danger of being

Sub-component	1	2 3		4 5		6	
	Negligible	Minor	Moderate	Major	Severe	Intolerable	
	detectable. Time taken to recover to pre-disturbed state on the scale of hours.	impact on the scale of days to weeks, at larger spatial scales recovery time of hours to days.	impact on the scale of weeks to months, at larger spatial scales recovery time of days to weeks.	years, at larger spatial scales recovery time of weeks to months.	affected or removed by the activity which may seriously endanger its long- term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	changed in a major way, or > 90% of habitat destroyed.	
Air quality	<b>3. Air quality</b> No direct impact on air quality. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours.	<b>3. Air quality</b> Detectable impact on air quality. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of hours to days.	<b>3. Air quality</b> Detectable impact on air quality. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time of days to weeks.	<b>3. Air quality</b> Time to recover from local impact on the scale of months to years, at larger spatial scales recovery time of weeks to months.	<b>3. Air quality</b> Impact on air quality with 50 - 90% of the habitat affected or removed by the activity .which may seriously endanger its long-term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	<b>3. Air quality</b> The dynamics of the entire habitat is in danger of being changed in a major way, or > 90% of habitat destroyed.	
Habitat types	<b>4. Habitat types</b> No direct impact on habitat types. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours to days.	<b>4. Habitat types</b> Detectable impact on distribution of habitat types. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of days to months.	<b>4. Habitat types</b> Impact reduces distribution of habitat types. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time	<b>4. Habitat types</b> The reduction of habitat type areal extent may threaten ability to recover adequately, or cause strong downstream effects in habitat distribution and extent. Time to	4. Habitat types Impact on relative abundance of habitat types resulting in severe changes to ecosystem function. Recovery period likely to be > decadal	<b>4. Habitat types</b> The dynamics of the entire habitat is in danger of being changed in a catastrophic way. The distribution of habitat types has been shifted away from original spatial	

			Score/level			
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
			of months to < one	recover from impact		pattern. If reversible,
			year.	on the scale of > one		will require a long-
				year to < decadal		term recovery period,
				timeframes.		on the scale of
						decades to centuries.
Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure
and function	and function	and function	and function	and function	and function	and function
	No detectable change	Detectable impact on	Impact reduces	The level of	Impact on habitat	The dynamics of the
	to the internal	habitat structure and	habitat structure and	reduction of internal	function resulting	entire habitat is in
	dynamics of habitat	function. Time to	function. For impacts	dynamics of habitat	from severe changes	danger of being
	or populations of	recover from impact	on non-fragile habitat	may threaten ability	to internal dynamics	changed in a
	species making up	on the scale of days	structure this may be	to recover	of habitats. Time to	catastrophic way
	the habitat. Time	to months, regardless	for up to 50% of	adequately, or it will	recover from impact	which may not be
	taken to recover to	of spatial scale	habitat affected, but	cause strong	likely to be >	reversible. Habitat
	pre-disturbed state on		for more fragile	downstream effects	decadal.	losses occur. Some
	the scale of hours to		habitats, to stay in	from loss of function.		elements may remain
	days.		this category the %	For impacts on non-		but will require a
			area affected needs to	fragile habitats this		long-term recovery
			be smaller up to	may be for up to 50%		period, on the scale
			20%. Time to	of habitat affected,		of decades to
			recover from local	but for more fragile		centuries.
			impact on the scale	habitats, to stay in		
			of months to < one	this category the %		
			year, at larger spatial	area affected up to		
			scales recovery time	25%. Time to recover		
			of months to < one	from impact on the		
			year.	scale of > one year to		
				< decadal		
				timeframes.		

**Table C5. Communities. Description of consequences for each component and each sub-component.** Use table as a guide for scoring the level of consequence for communities (Modified from Fletcher et al. 2002).

•			Score/level			
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Species composition	1. Species composition Interactions may be occurring which affect the internal dynamics of communities leading to change in species composition not detectable against natural variation.	1. Species composition Impacted species do not play a keystone role – only minor changes in relative abundance of other constituents. Changes of species composition up to 5%.	1. Species composition Detectable changes to the community species composition without a major change in function (no loss of function). Changes to species composition up to 10%.	1. Species composition Major changes to the community species composition (~25%) (involving keystone species) with major change in function. Ecosystem function altered measurably and some function or components are locally missing/declining/increasing outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years.	1. Species composition Change to ecosystem structure and function. Ecosystem dynamics currently shifting as different species appear in fishery. Recovery period measured in years to decades.	1. Species composition Total collapse of ecosystem processes. Long- term recovery period required, on the scale of decades to centuries
Functional group composition	2. Functional group composition Interactions which affect the internal dynamics of communities leading to change in functional group composition not detectable against natural variation.	2. Functional group composition Minor changes in relative abundance of community constituents up to 5%.	2. Functional group composition Changes in relative abundance of community constituents, up to 10% chance of flipping to an alternate state/ trophic cascade.	2. Functional group composition Ecosystem function altered measurably and some functional groups are locally missing/declining/increasing outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in months to years.	2. Functional group composition Ecosystem dynamics currently shifting, some functional groups are missing and new species/groups are now appearing in the fishery. Recovery period measured in years to decades.	2. Functional group composition Ecosystem function catastrophically altered with total collapse of ecosystem processes. Recovery period measured in decades to centuries.
Distribution of the community	3. Distribution of the community	3. Distribution of the community	3. Distribution of the community	3. Distribution of the community	3. Distribution of the community	3. Distribution of the community

			Score/level			
Sub-component	1	2	3	4	5	6
-	Negligible	Minor	Moderate	Major	Severe	Intolerable
	Interactions which affect the distribution of communities unlikely to be detectable against natural variation.	Possible detectable change in geographic range of communities but minimal impact on community dynamics change in geographic range up to 5 % of original.	Detectable change in geographic range of communities with some impact on community dynamics Change in geographic range up to 10 % of original.	Geographic range of communities, ecosystem function altered measurably and some functional groups are locally missing/declining/increasing outside of historical range. Change in geographic range for up to 25 % of the species. Recovery period measured in months to years.	Change in geographic range of communities, ecosystem function altered and some functional groups are currently missing and new groups are present. Change in geographic range for up to 50 % of species including keystone species. Recovery period measured in years to decades.	Change in geographic range of communities, ecosystem function collapsed. Change in geographic range for >90% of species including keystone species. Recovery period measured in decades to centuries.
Trophic/size structure	4. Trophic/size structure Interactions which affect the internal dynamics unlikely to be detectable against natural variation.	4. Trophic/size structure Change in mean trophic level, biomass/ number in each size class up to 5%.	4. Trophic/size structure Changes in mean trophic level, biomass/ number in each size class up to 10%.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function altered measurably and some function or components are locally missing/declining/increasing outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years to decades.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function severely altered and some function or components are missing and new groups present. Recovery period measured in years to decades.	4. Trophic/size structure Ecosystem function catastrophically altered as a result of changes in mean trophic level, total collapse of ecosystem processes. Recovery period measured in decades to centuries.
Bio-geochemical cycles	5. Bio- and geochemical cycles	5. Bio- and geochemical cycles	5. Bio- and geochemical cycles	5. Bio- and geochemical cycles	5. Bio- and geochemical cycles	5. Bio- and geochemical cycles

Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
	Interactions which	Only minor changes	Changes in relative	Changes in relative	Changes in relative	Ecosystem function
	affect bio- &	in relative	abundance of other	abundance of constituents	abundance of	catastrophically
	geochemical	abundance of other	constituents leading	leading to major changes to	constituents leading	altered as a result of
	cycling unlikely to	constituents leading	to minimal changes	bio- & geochemical cycling,	to Severe changes to	community changes
	be detectable	to minimal changes	to bio- &	up to 25%.	bio- & geochemical	affecting bio- and
	against natural	to bio- &	geochemical		cycling. Recovery	geo- chemical
	variation.	geochemical	cycling, up to 10%.		period measured in	cycles, total collapse
		cycling up to 5%.			years to decades.	of ecosystem
						processes. Recovery
						period measured in
						decades to centuries.