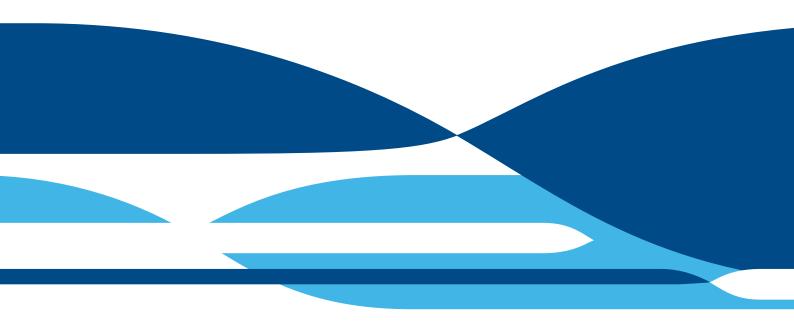


Ecological Risk Assessment for the Effects of Fishing


Report for the Northern Prawn Fishery: Tiger Prawn sub-fishery 2013-2017

Authors

M. Sporcic, A. Donovan, T. Van Der Velde, M. Fuller, G. Fry

August 2021

Report for the Australian Fisheries Management Authority

CSIRO Oceans and Atmosphere

Castray Esplanade Hobart 7001

Citation

Sporcic, M., Donovan, A., Van Der Velde, T., Fuller, M., Fry, G. (2021). Ecological Risk Assessment for the Effects of Fishing. Report for Northern Prawn Fishery: Tiger Prawn sub-fishery 2013- 2017. Report for the Australian Fisheries Management Authority. 282 p.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2018. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact csiroenquiries@csiro.au.

This work is copyright. Except as permitted under the *Copyright Act 1968 (Commonwealth)*, no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or AFMA. Neither may information be stored electronically in any form whatsoever without such permission.

Notes to this document:

This fishery ERA Report document contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:

Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker. (2007). Ecological Risk Assessment for the Effects of Fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra

Thus, table and figure numbers within the fishery ERA Report document are not sequential as not all are relevant to the fishery ERA Report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker. (2007). Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

This document also reflects some changes in methods that are detailed in AFMA's ERA guide (2017).

Australian Fisheries Management Authority (2017). Guide to AFMA's Ecological Risk Management. 130 pp. (Commonwealth of Australia, Canberra).

Contents

Conten	ts		iii
Figures		v	,
Tables		v	,
Acknow	vledgment		vii
ACKNOW	neagment	15	VII
Executi	ve summa	iry	viii
1	Overviev	N	1
1.1	Ecologic	al Risk Assessment for the Effects of Fishing (ERAEF) Framework1	
	1.1.1	The Hierarchical Approach1	
	1.1.2	ERAEF stakeholder engagement process4	
	1.1.3	Scoping4	
	1.1.4	Level 1. SICA (Scale, Intensity, Consequence Analysis)5	1
	1.1.5	Level 2. PSA and SAFE (semi-quantitative and quantitative methods)5	l.
	1.1.6	Level 310	I
	1.1.7	Conclusion and final risk assessment report10	1
	1.1.8	Subsequent risk assessment iterations for a fishery10	l.
2	Results		13
2.1	Stakehol	lder Engagement	
2.2	Scoping		
	2.2.1	General Fishery Characteristics (Step 1)	
	2.2.2	Unit of Analysis Lists (Step 2)	
	2.2.3	Identification of objectives for components and sub-components (Step 3)	j
	2.2.4	Hazard Identification (Step 4)73	j
	2.2.5	Bibliography (Step 5)	
	2.2.6	Decision rules to move to Level 1 (Step 6)79	I
2.3	Level 1 S	cale, Intensity and Consequence Analysis (SICA)	1
	2.3.1 at step 3	Record the hazard identification score (absence (0) presence (1) scores) identified in the scoping level onto the SICA Document (Step 1)81	
	2.3.2	Score spatial scale of activity (Step 2)81	
	2.3.3	Score temporal scale of activity (Step 3)81	
	2.3.4	Choose the sub-component most likely to be affected by activity (Step 4)	
		Ecological Pick Association for the Effects of Eiching	1

Ecological Risk Assessment for the Effects of Fishing $\ \mid \ iii$

Level 2 3.2.1 Sp	262
Level 2	
Level 1	
General	l discussion and research implications 2
Extreme	e and high risk categorisation (Step 8) Update with Residual Risk information 260
Decisior	n rules to move from Level 2 to Level 3 (Step 7)258
Commu	nity Component
Habitat	Component
2.5.5	bSAFE - Protected species256
2.5.4	bSAFE - Bycatch species
2.5.3	bSAFE - Byproduct species235
2.5.2	bSAFE - Commercial bait species235
2.5.1	bSAFE – Key/secondary commercial species235
bSAFE r	esults and discussion234
2.4.5	Uncertainty analysis ranking of overall risk (Step 5)234
2.4.4	PSA results and discussion158
2.4.3	PSA results for individual units of analysis (Step 4-6)157
2.4.2	Level 2 PSA (Steps 2 and 3)156
2.4.1	Units excluded from analysis (Step 1)139
Level 2	Productivity and Susceptibility Analysis (PSA)136
2.3.13	Components to be examined at Level 2
2.3.12	Evaluation/discussion of Level 1134
2.3.11	Summary of SICA results
2.3.10	Document rationale for each of the above steps (Step 10)84
2.3.9	Record confidence/uncertainty for the consequence scores (Step 9)84
2.3.8	Score the consequence of intensity for that component (Step 8)83
2.3.7	Score the intensity of the activity for the component (Step 7)82
2.3.6	Select the most appropriate operational objective (Step 6)82
2.3.5 highest	Choose the unit of analysis most likely to be affected by activity and to have consequence score (Step 5)
	highest 2.3.6 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11 2.3.12 2.3.13 Level 2 2.4.1 2.4.2 2.4.3 2.4.4 2.5.1 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 Habitat Commu Decision Extremed

References	204
Glossary of Terms	268

Figures

Figure 1.1. Structure of the 3 level hierarchical ERAEF methodology
Figure 1.2. Generic conceptual model used in ERAEF3
Figure 2.1. Map of the NPF otter trawl region showing the 22 assemblages derived by Pitcher et al. 2016 57
Figure 2.2. Map of the Arafura Sea / Timor Sea region 1 showing the 19 assemblages (within the NPF) derived by Pitcher et al. 2018
Figure 2.3. Map of the Gulf of Carpentaria region 2 showing the 15 assemblages derived by Pitcher et al. 2018. 58
Figure 2.4 (a) Demersal communities around mainland Australia based on bioregionalisation schema65
Figure 2.5. Key/secondary commercial species: Frequency of consequence score by high and low confidence. 132
Figure 2.6. Byproduct and bycatch species: Frequency of consequence score by high and low confidence 132
Figure 2.7. Protected species: Frequency of consequence score by high and low confidence
Figure 2.8. Habitat: Frequency of consequence score by high and low confidence
Figure 2.9. Communities: Frequency of consequence score by high and low confidence
Figure 2.10. PSA plot for bycatch species in the NPF Tiger Prawn sub-fishery for a) robust [left] and (b) data deficient [right] species
Figure 2.11. PSA plot for bycatch species in the NPF Tiger Prawn sub-fishery for a) robust [left] and (b) data deficient [right] species
Figure 2.12. PSA plot for protected species in the NPF Tiger Prawn sub-fishery for (a) robust [left] and (b) data deficient [right] species
Figure 2.13. SAFE plot for Bycatch species in the NPF Tiger Prawn sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right]
Figure 2.14 SAFE plot for protected species in the NPF Tiger Prawn sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right]
Figure 2.15. Schematic of the Ecological risk management cycle. TSG – Technical Support Group

Tables

Table ES1.1. Ecological units assessed in 2019 and 2006ix
Table ES1.2. Outcomes of assessments for ecological components conducted in 2019 and 2006x
Table ES1.3. Key and secondary commercial species stock status, assessment and tier status, and ERA classification for NPF Tiger prawn sub-fisheryxi
Table ES1.4. Extreme or high risk PSA or bSAFE species following a preliminary residual risk (RR) analysis in the NPF Tiger Prawn sub-fisheryxii
Table 2.1. Summary Document SD1. Summary of stakeholder involvement for sub-fishery: Northern Prawn Tiger Prawn sub-fishery. 13
Table 2.2. General fishery characteristics. 14

Table 2.3. Key commercial (C1) and secondary commercial (C2) species list for the NPF Tiger Prawn sub-fisher	
Table 2.4. Byproduct (BP) species list for the NPF Tiger Prawn sub-fishery.	
Table 2.5. Bycatch (BC) species list for the NPF Tiger Prawn sub-fishery.	31
Table 2.6. Protected species (PS) list for the NPF Tiger Prawn sub-fishery.	51
Table 2.7. Benthic habitats that occur within the jurisdictional boundary of the NPF Tiger Prawn sub-fishery	57
Table 2.8. Benthic habitats in region 1 that occur within the jurisdictional boundary of the NPF Tiger Prawn su fishery (from Pitcher et. al. 2018)	
Table 2.9. Benthic habitats in region 2 that occur within the jurisdictional boundary of the NPF Tiger Prawn su fishery (from Pitcher et. al. 2018)	
Table 2.8. Pelagic habitats for the NPF Tiger Prawn sub-fishery.	60
Table 2.9. Demersal communities in which fishing activity occurred in the NPF Tiger Prawn sub-fishery.	62
Table 2.10. Pelagic communities in which fishing activity occurs in the NPF Tiger Prawn sub-fishery	64
Table 2.11. Components and sub-components identification of operational objectives and rationale.	67
Table 2.12. Hazard identification, score and rationale(s) for the NPF Tiger Prawn sub-fishery.	73
Table 2.13. Examples of fishing activities (Modified from Fletcher et al. 2002)	76
Table 2.14. Spatial scale score of activity.	81
Table 2.15. Temporal scale score of activity.	81
Table 2.16. Intensity score of activity	83
Table 2.17. Consequence score for ERAEF activity	83
Table 2.18. Description of Confidence scores for Consequences.	84
Table 2.19. Level 1 (SICA) Document L1.6.	131
Table 2.20. Attributes that measure productivity and suscepability	136
Table 2.21. Description of susceptibility attributes for habitats.	138
Table 2.22. Species/species groups/taxa excluded from the PSA and SAFE because they were either not identified at the species level, not interacted in the fishery or outside the fishery's jurisdictional boundary	139
Table 2.23. Summary of the PSA scores on the set of productivity and susceptibility attributes for byproduct species and residual risk (RR) for high risk species	159
Table 2.23. Summary of the PSA scores on the set of productivity and susceptibility attributes for bycatch species and residual risk (RR) for high risk species	162
Table 2.24. Summary of the PSA scores on the set of productivity and susceptibility attributes for protected species and residual risk (RR) for high risk species	216
Table 2.25. Productivity attribute names and cutoff scores for the ERAF L2 PSA method.	232
Table 2.26. Susceptibility attribute names and cutoff scores for the ERAF L2 PSA method	232
Table 2.27. Post capture mortality attribute risk score for the Tiger Prawn sub-fishery for the ERAEF L2 PSA ar bSAFE methods	
Table 2.28 Overall risk summary against each of the three reference point measures.	234
Table 2.30. bSAFE risk categories for bycatch species ecological component for F_MSM, F_Lim and F_crash	237
Table 2.31. bSAFE risk categories for protected species ecological component for F_MSM, F_Lim and F_crash	

Acknowledgments

The authors wish to thank Stephen Eves (AFMA) and David Powers (AFMA) for providing initial species lists and providing information on Tiger Prawn management and fishery operations in the scoping section of this report. Thanks also to the following contributors for their individual inputs in validating species lists and various aspects of Level 1 analyses: Steve Blaber (CSIRO), Trevor Hutton (CSIRO), John Keesing (CSIRO), Rob Kenyon (CSIRO), Colin Limpus (Queensland's Department of Environment and Heritage Protection), Richard Pillans (CSIRO), Roland Pitcher (CSIRO), Tim Skewes (Tim Skewes Consulting) and Mark Tonks (CSIRO). We also wish to thank Dave Brewer (Dave Brewer Consulting) for his valuable input on various aspects of Level 1 and 2 results. Stephen Eves (AFMA), Darci Wallis (AFMA) and Adrianne Laird (NPFI) provided valuable comments on an earlier version of this report. Thanks also to Malcolm Dunning (Queensland Museum) and Peter Davie (Queensland Museum) who reviewed an earlier version of this report.

Executive summary

The "Ecological Risk Assessment for Effect of Fishing" ERAEF was developed jointly by CSIRO Marine and Atmospheric Research and the Australian Fisheries Management Authority (Hobday et al. 2007, 2011b). This assessment of the ecological impacts of the Northern Prawn Tiger Prawn sub-fishery was undertaken using the ERAEF method version 9.2, with some additional modifications currently in final stages of development with AFMA (Australian Fisheries Management Authority 2017). This revised ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five new ecological components –key commercial and secondary commercial species; byproduct and bycatch species; protected species; habitats; and (ecological) communities (ERM Guide; AFMA, 2017).

ERAEF proceeds through four stages of analysis: scoping; an expert judgement-based Level 1 analysis (SICA – Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA – Productivity Susceptibility Analysis); and a model-based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery represents a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the specific fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out components with all low impact scores. Level 2 is a screening or prioritization process for individual species, habitats, and communities at risk from direct impacts of fishing, using either PSA or SAFE. The Level 2 methods do not provide absolute measures of risk. Instead, they combine information on productivity and exposure to fishing to assess potential risk - the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high-risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

This 2013-2017 assessment of the Northern Prawn Fishery: Tiger Prawn sub-fishery consists of the following:

- Scoping
- Level 1 results for all components
- Level 2 results for two components
- Residual risk analysis

Fishery Description

Gear:	Otter board trawl
Area:	The management area of the NPF covers over 771000 square kilometres off Australia's northern coast, from Cape Londonderry in Western Australia to Cape York in Queensland.
Depth range:	1 - 315 m (mean: 27.8 m; median: 27 m; 99 th percentile: 60 m)
Fleet size:	52 vessels
Effort:	4716-6036 boat days p.a.
Landings:	~ 2071 t p.a. (1087-2186 t)
Discard rate:	fishery wide discard rate not available
Commercial species (ERA classification):	Brown tiger prawn (<i>Penaeus esculentus</i>), Grooved tiger prawn (<i>Penaeus semisulcatus</i>)
Management:	Quota management system across species/stocks.
Observer program (2013-2017):	AFMA Observer program. Coverage: 1.04-2.12% [average: 1.69%]. Crew Member Observer program. Coverage: 11.08-15.76% [average: 12.9%].

Ecological Units Assessed

Table ES1.1. Ecological units assessed in 2019 and 2006.

ECOLOGICAL COMPONENT	201 9 [#]	2006+
Key/secondary commercial species	2 key	9^
Byproduct and bycatch species	11 byproduct; 520 bycatch	135 byproduct; 516 bycatch
Protected species	50	128
Habitats	demersal: 19' (region 1); 15' (region 2) 22 demersal**, 1 pelagic	156 demersal*, 1 pelagic
Communities	6 demersal, 1 pelagic	6 demersal, 1 pelagic

based on assessment period: 2013-2017; + combined list of Banana and Tiger Prawn sub-fisheries

^ corresponds to target species; * these habitats are not comparable with current assessment

' based on Pitcher et al. (2018); **based on Pitcher et al. (2016)

A total of 583 species across the three ecological components were assessed in this ERAEF (Table ES1.1). By contrast, the greater number of species assessed in 2006 (i.e. 788) can be partly attributed to the fact that there were two sub-fisheries combined (i.e. Tiger Prawn and Banana Prawn). Also, the difference in the number of protected species between assessments is mainly due to the inclusion of species that interacted in this sub-fishery (apart from any expansion of species groups identified from AFMA logbook and/or Observer data).

Level 1 Results and Summary

One ecological component was eliminated at Level 1 (i.e. no components with risk scores of 3 – moderate – or above).

Most hazards (fishing activities) were eliminated at Level 1 (i.e. no components with risk scores of 3 – moderate – or above). Those that remained were:

- Fishing (capture impacts on 3 ecological components)
- Fishing (non-capture impacts on 2 ecological components)
- Discarding catch (addition/movement of biological material on 1 ecological component)
- Fishing (disturb physical processes on 1 ecological component)
- External hazards from other fisheries (on all 5 components)

As a result of direct capture by fishing, the most vulnerable bycatch species Australian blacktip shark (*Carcharhinus tilstoni*) was assessed at moderate risk largely since they make up most of shark species caught in the NPF and sharks typically have low fecundity, slow growth rate and low trawl survivability.

As a result of direct capture by fishing, the most vulnerable protected species, are the green and freshwater sawfish (*Pristis zijsron* and *Pristis pristis*) as they appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown.

The impact of fishing represented a major risk to habitats (assemblage 6) largely due to the concentration of effort at depths where highly vulnerable fauna occur i.e., encounter with heavier demersal trawl gears will result in removal and damage of erect, rugose and inflexible octocorals associated with soft, muddy substrata.

Significant external hazards included other fisheries in the region on all components. Only external fisheries were rated at major or above risk (scores 4) on protected species.

Level 2 analysis for habitats and communities was not possible at this time (Table ES1.2).

Table ES1.2. Outcomes of assessments for ecol	ogical components conducted in 2019	and 2006.
ECOLOGICAL COMPONENT	2019 (CURRENT)	2006 (PREVIOUS)
Key/secondary commercial species	Level 1	Level 2
Byproduct and bycatch species	Level 2	Level 2 [^]
Protected species	Level 2	Level 2 [^]
Habitats	Level 2 ⁻	Level 2
Communities	Level 2 ⁻	Level 2*

Table ES1.2. Outcomes of assessments for ecological components conducted in 2019 and 2006.

- no Level 2 assessment was conducted in 2019

*triggered but due to lack of methodology available in 2006 and ecosystem modelling projects underway in 2016 this component was not assessed at L2 in the ERA process.

^SAFE analysis was also performed on species 2007-2009 (Zhou 2011).

Table ES1.3. Key and secondary commercial species stock status, assessment and tier status, and ERA classification for NPF Tiger Prawn sub-fishery. NSTOF: Not subject to overfishing; NOF: Not overfished; OF: Overfished; UNC: uncertain. Primary: C1; Secondary: C2. ^: based on ABARES classification. ^^ based on stock assessment.

COMMON NAME		CLASSI	FISHING MOR- TALITY^	BIO- MASS^	STATUS^^	REFERENCE^^	YEAR LAST ASSESSED	TIER	COMMENTS
Brown tiger prawn	Penaeus esculentus	C1	NSTOF	NOF	NOTOF; NOF	Hutton et al. (2018)	2018	1	Data to end 2017
Grooved tiger prawn	Penaeus semisulcatus	C1	NSTOF	NOF	NOTOF; NOF	Hutton et al. (2018)	2018	1	Data to end 2017

Level 2 Results and Summary

PSA

<u>Byproduct species</u>: There were 11 byproduct invertebrate species considered. Of these 11 species, none were high risk, three were medium risk and eight were low risk.

<u>Bycatch species</u>: Of 109 invertebrate BC species, 16 were low risk, 14 were medium risk and 79 were high risk. All 79 of these 109 high risk species were reduced to medium risk following a residual risk analysis.

Of the 68 un-assessable SAFE species, 53 were high risk and 15 were medium risk. A residual risk analysis was performed on these 53 high risk species, resulting in all 53 species reduced to medium risk due to the small number of interactions/capture within the assessment period.

<u>Protected species:</u> Of the 41 protected species assessed in this PSA, seven were high risk (one marine bird, four marine reptiles, two chondrichthyans), 32 medium risk (12 marine birds, 17 marine reptiles, one marine mammal, two chondrichthyans) and two species low risk (two marine birds). Two of the seven high risk species remained high risk and one species was reduced to low risk (Crested tern *Thalasseus bergii*), following a residual risk analysis. The two remaining high-risk species were narrow sawfish (*Anoxypristis cuspidata*) and dwarf sawfish (*Pristis clavata*) (Table ES1.4). In addition, the two medium risk sawfish species increased their risk score to a precautionary high following a residual risk analysis: green sawfish (*Pristis zijsron*) and freshwater sawfish (*Pristis pristis*) (Table ES1.4).

bSAFE

<u>Byproduct species</u>: No bSAFE was performed for these species. Instead as a PSA was conducted.

<u>Bycatch species</u>: Of the 343 assessable species, 342 were low risk and one species was medium risk. Therefore, no residual risk analysis was required. The 68 non-assessable SAFE species were examined in a PSA.

Protected species: All nine species were low risk, so no residual risk analysis was required.

Summary

A total of four chondricthyan species were evaluated at high risk following a residual risk analysis (Table ES1.4). These four protected species of sawfishes, i.e., green, narrow, freshwater and dwarf sawfishes, were classified at high risk, following a residual risk analysis partly due to life history and vulnerability parameters, and uncertainty in stock status. It should be noted that most interactions were reported under the family taxonomic classification, i.e., Pristidae – unidentified (595 alive plus 219 dead).

The six protected species of sea snakes were medium risk following a residual risk analysis partly due to (i) these being reported under the family taxonomic classification, i.e., Hydrophiidae – unidentified (24,149 alive plus 8132 dead), (ii) relatively high post capture survival rates at the individual species level, (iii) low overlap with fishery operations, (iv) breeding occurring in shallower waters than trawl grounds and (v) flat standardized trends within the assessment period.

Table ES1.4. Extreme or high-risk PSA or bSAFE species following a preliminary residual risk (RR) analysis in the NPF Tiger Prawn sub-fishery. x: preliminary risk score following RR analysis. CH: chondrichthyan; INV: invertebrate; MM: marine mammal; MB: marine bird. No. Missing: Number of missing attributes in PSA analysis. Grey shading: expanded species from group code. BC: bycatch; BP: byproduct; PS: Protected.

LEVEL 2 ANALYSIS	ERA CLASSIFICATION	ΤΑΧΑ	No. MISSING	SCIENTIFIC NAME	COMMON NAME	HIGH RISK
PSA	PS	СН	0	Anoxypristis cuspidata	Narrow sawfish	x
		СН	0	Pristis clavata	Dwarf sawfish	x
		СН	0	Pristis zijsron	Green sawfish	x
		СН	0	Pristis pristis	Freshwater sawfish	х

1 **Overview**

1.1 Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

1.1.1 The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative "model-based" approach at Level 3 (Figure 1.1). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

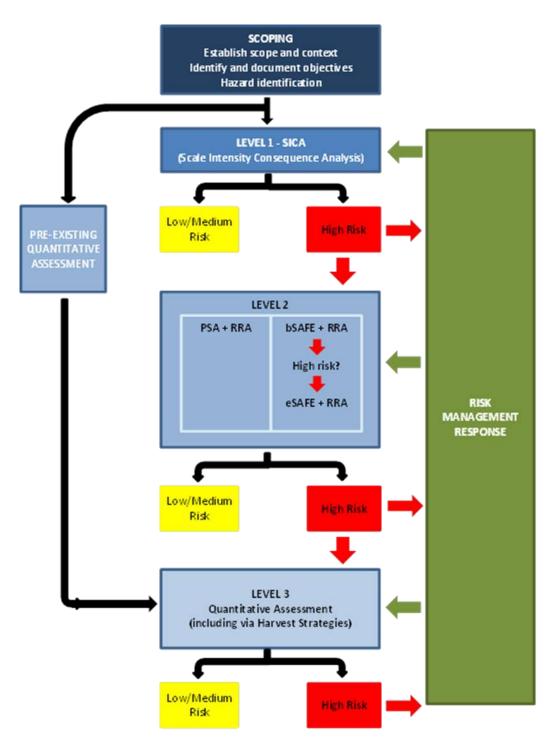
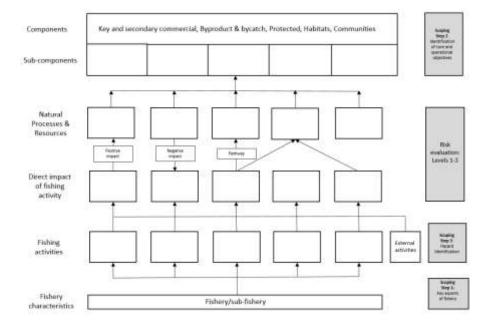


Figure 1.1. Structure of the 3 level hierarchical ERAEF methodology. SICA – Scale Intensity Consequence Analysis; PSA – Productivity Susceptibility Analysis; SAFE – Sustainability Assessment for Fishing Effects; RRA – Residual Risk Analysis. T1 – Tier 1. eSAFE may be used for species classified as high risk by bSAFE.


Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological components are evaluated,

corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under EPBC legislation. The five revised *components* are:

- Key commercial species and secondary commercial species
- Byproduct and bycatch species
- protected¹ species (formerly referred to as threatened, endangered and Protected² species or TEPs)
- Habitats
- Ecological communities

This conceptual model (Figure 1.2) progresses from *fishery characteristics* of the fishery or subfishery, \rightarrow *fishing activities* associated with fishing and *external activities*, which may impact the five ecological components (target, byproduct and bycatch species, protected species, habitats, and communities); \rightarrow *effects of fishing and external activities* which are the <u>direct</u> impacts of fishing and external activities; \rightarrow *natural processes and resources* that are affected by the impacts of fishing and external activities; \rightarrow *sub-components* which are affected by impacts to natural processes and resources; \rightarrow *components*, which are affected by impacts to the sub-components. Impacts to the sub-components and components in turn affect achievement of management objectives.

¹The term "protected species" refers to species listed under [Part 13] of the EPBC Act (1999) and replaces the term "Threatened, endangered and protected species (TEPs)" commonly used in past Commonwealth (including AFMA) documents.

² Note "protected" (with small "p") refers to all species covered by the EPBC Act (1999) while "Protected" (capital P) refers only to those protected species that are threatened (vulnerable, endangered or critically endangered).

The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

1.1.2 ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

1.1.3 Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

- 1. <u>Identification of units of analysis</u> (species, habitats, and communities) potentially impacted by fishery activities (Section 2.2.2; Scoping Documents S2A, S2B1, S2B2 and S2C1, S2C2).
- 2. <u>Selection of objectives</u> (Section 2.2.3; Scoping Document S3). The primary objective to be pursued for species assessed under ERAEF is that of ensuring populations are maintained at biomass levels above which recruitment failure is likely, as stated in Chapter 2 (ERM Guide; AFMA 2017). This is consistent with current legislation and fisheries policies and represents a change from when the ERAEF was first developed and there was less policy or legislation based guidance on sustainability objectives, with stakeholders able to choose from a range of "sustainability" objectives (e.g. tables 5A-C in Hobday et al. 2007).
- 3. <u>Selection of activities</u> (hazards) (Section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was

developed following extensive review and allows repeatability between fisheries. Additional activities raised by the stakeholders can be included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalize the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

1.1.4 Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholderagreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) should be prepared by the draft fishery ERAEF report author and reviewed at an appropriate stakeholder meeting (e.g. Resource Assessment Group meeting). Due to the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high-risk elements. Documenting the rationale for each SICA element ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details; Smith et al. (2007)). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

1.1.5 Level 2. PSA and SAFE (semi-quantitative and quantitative methods)

When the risk of an activity at Level 1 (SICA) on a species component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2 (to determine if the risk is real and provide further information on the risk). The tools used to assess risk at Level 2 allow units (e.g. all individual species) within any of the ecological species components (e.g. key/secondary commercial, byproduct/bycatch, and protected species) to be effectively and comprehensively screened for risk. The analysis units are identified at the scoping stage. To date, Level 2 tools have been designed to measure risk from direct impacts of fishing only (i.e. risk of overfishing, leading to an overfished fishery), which in all assessments to date has been the hazard with the greatest risks identified at Level 1³.

In the period since the first ERAEF was implemented across Commonwealth fisheries, much of the management focus has been on the assessment results associated with Level 2 and Level 2.5 or 3 risk assessment methods, which comprise semi-quantitative or rapid simple

³ Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

quantitative methods (e.g. PSA and SAFE). This level has been subject to the greatest level of change and improvement which are discussed in the following sections. Additional improvements are being developed for implementation in the near future (see Chapter 4.13 of AFMA ERM Guide, AFMA 2017).

Level 2 was originally designed to rely on a single risk assessment methodology, the Productivity-Susceptibility Analysis (PSA) (see Chapter 4.8.3 of AFMA ERM Guide, AFMA 2017), however a more quantitative method called the Sustainability Assessment for Fishing Effects (SAFE) (see Chapter 4.8.4 of AFMA ERM Guide, AFMA 2017) was developed early in the implementation of the ERAEF and classed as a Level 2.5 or Level 3 tool.

Under the revised ERAEF:

- bSAFE has now been reclassified as the preferred Level 2 method (over PSA) where sufficient spatial and biological data (to support bSAFE) are available. Typically, this has been used for teleost and chondricthyan species.
- Species estimated to be at high risk under bSAFE may then be assessed under eSAFE which may provide reduced estimates of uncertainty pertaining to the actual risk.
- Where either the data or species biological characteristics are insufficient to support bSAFE analyses, it is recommended that PSA be applied instead. This will be the case for many protected species, invertebrate bycatch species and some other species.
- At Level 2, either PSA or SAFE methods should be applied to any given species, not both.
- For high-risk species it is a management choice whether to progress to eSAFE, pursue a Level 3 fully quantitative stock assessment, or to take more immediate management action to reduce the risk. The types of considerations required in making that choice (ie: moving up the ERAEF assessment hierarchy or taking direct management action) are outlined in Chapter 5.5 of the AFMA ERM Guide (AFMA, 2017).

It is also recognised that a number of additional tools, including some of the "data poor" assessment tools that are used to inform harvest strategies, could potentially be included within the Level 2 toolkit. They are distinguished from Level 3 quantitative tools (i.e. stock assessment models) that are more data rich and able to more precisely quantify uncertainty.

PSA (Productivity Susceptibility Analysis)

Details of the PSA method are described in the accompanying ERAEF Methods Document and summarised in Section 4.8.3 of the AFMA ERM Guide (AFMA 2017). Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. Attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without initial stakeholder involvement. Stakeholder input is required after preliminary attribute values are obtained. In particular, where information is missing, expert opinion can be used to derive the most "reasonable" conservative estimate. For example, if species attribute values for annual fecundity have been categorized as low, medium, or high on the set (<5, 5-500, >500), estimates for species with no data can still be made. Also, estimated fecundity of a broadcast-spawning fish species with unknown fecundity is still likely

to be greater than the high fecundity category (>500). Susceptibility attribute estimates, such as "fraction alive when landed", can also be made based on input from experts such as scientific observers. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final PSA is completed by scientists and results are presented to the relevant stakeholder group (e.g. RAG and/or MAC) before decisions regarding Level 3 analysis are considered. The stakeholder group may also decide on priorities for analysis at Level 3.

Residual Risk Analysis

There were several limitations due to the semi-quantitative nature of a Level 2 PSA assessment. For example, certain management arrangements which mitigate the risks posed by a fishery, as well as additional information concerning levels of direct mortality, may not be easily considered in assessments. To overcome this, Residual risk analyses (RRA) are used to consider additional information, particularly mitigating effects of management arrangements that were not explicitly included in the ERAs or introduced after the ERA process commenced. Priority for this process has typically been focused on those species attributed a high-risk rating (those likely to be most at risk from fishing activities). It could in theory be used to also determine if some species have been incorrectly classified as low risk.

Recently revised Residual risk guidelines have been developed (see below) to assist in making accurate judgments of residual risk consistently across all fisheries. At the moment, they are applied to species and not applicable to habitats or communities.

These guidelines are not seen as a definitive guide on the determination of residual risk, and it is expected they may not apply in a small number of cases. Care must also be taken when applying them to ensure residual risk results are appropriate in a practical sense. There are several conditions which underpin the residual risk guidelines and should be understood before the guidelines are applied:

- All assessments and management measures used within the residual risk assessment must be implemented prior to the assessment with sufficient data to demonstrate the effect. Any planned or proposed measures can be referred to in the assessment but cannot be used to revise the risk score.
- When applied, the guidelines generally result in changes to particular "attribute" scores for a particular species. Only after all the guidelines have been applied to a particular species, should the overall risk category be re-calculated. This will ensure consistency, as well as facilitating the application of multiple guidelines.
- Unless there is clear and substantiated information to support applying an individual guideline, then the attribute and residual risk score should remain unchanged. All supporting information considered in applying these Guidelines must be clearly documented and referenced where applicable. This is consistent with the precautionary approach applied in ERAs, with residual risk remaining high unless there is evidence to the contrary ensuring a transparent process is applied.

The results (including supporting information and justifications) from residual risk analyses must be documented in "Residual Risk Reports" for each fishery (or can be integrated into the Level 2 risk assessment report). These will be publically available documents.

SAFE (Sustainability Assessment for Fishing Effects)

The SAFE method developed is split into two categories: base SAFE (bSAFE) and an enhanced SAFE (eSAFE). eSAFE has greater data processing requirements and is recommended to only be used to assess species estimated to be at high risk via the bSAFE. It is also able to more appropriately model spatial availability aspects when sufficient data are available.

bSAFE

Relative to the PSA approach, the bSAFE approach (Zhou and Griffiths, 2008; Zhou et al. 2011):

- is a more quantitative approach (analogous to stock assessment) that can provide absolute measures of risk by estimating fishing mortality rates relative to fishing mortality rate reference points (based on life history parameters),
- requires less productivity data than the PSA,
- can account for cumulative risk and
- potentially outperforms PSA in several areas, including strength of relationship to Tier 1 assessment classifications (Zhou et al. 2016).

Like PSA, the bSAFE method is a transparent, relatively rapid and cost-effective process for screening large numbers of species for risk, and is far less demanding of data and much simpler to apply than a typical quantitative stock assessment.

As such it is recommended that bSAFE be used as the preferred Level 2 assessment tool for all fish species and some invertebrates and reptiles (eg: some sea snakes) with sufficient data.

In estimating fishing mortality, bSAFE utilises much of the same information as the PSA, to estimate:

- Spatial overlap between species distribution and fishing effort distribution,
- Catchability resulting from the probability of encountering the gear and sizedependent selectivity and
- Post-capture mortality.

The fishing mortality is essentially the fraction of overlap between fished area and the species distribution area within the jurisdiction, adjusted by catchability and post-capture mortality. Uncertainty around the estimated fishing mortality is estimated by including variances in encounterability, selectivity, survival rate and fishing effort between years.

The three biological reference points are based on a simple surplus production model:

- F_{MSY} instantaneous fishing mortality rate that corresponds to the maximum number of fish in the population that can be killed by fishing in the long-term. The latter is the maximum sustainable fishing mortality (MSM) at B_{MSM}, similar to target species MSY.
- F_{LIM} instantaneous fishing mortality rate that corresponds to the limit biomass B_{LIM} where B_{LIM} is a assumed to be half of the biomass that supports a maximum sustainable fishing mortality (0.5B_{MSM})
- **F**_{CRASH} minimum unsustainable instantaneous fishing mortality rate that, in theory, will lead to population extinction in the long-term.

This methodology produces quantified indicators of performance against fishing mortalitybased reference points and as such does allow calibration with other stock assessment and risk assessment tools that measure fishing mortality. It allows the risk of overfishing to be determined, via the score relative to the reference line. Uncertainty (error bars) are related to the variation in the estimation of the scores for each axis.

It is recommended that species assessed as being potentially at high risk under bSAFE are then progressed to analysis by eSAFE which can narrow uncertainties around the risk (but is more time and resource intensive than bSAFE).

Assumptions and issues to be aware of:

- Comparisons of PSA and SAFE analyses for the same fisheries and species support the claim that the PSA method generally avoids false negatives but can result in many false positives. Limited testing of SAFE results against full quantitative stock assessments suggest that there is less "bias" in the method, but that both false negatives and false positives can arise.
- SAFE analyses retain some of the key precautionary elements of the PSA method, including assumptions that fisheries are impacting local stocks (within the jurisdictional area of the fishery).
- Although the bSAFE analyses provide direct estimates of uncertainty in both the exploitation rate and associated reference points, they are less explicit about uncertainties arising from key assumptions in the method, including spatial distribution and movement of stocks.
- The method assumes there would be no local depletion effects from repeat trawls at the same location (ie: populations rapidly mix between fished and unfished areas). The fishing mortality will likely be overestimated if this assumption is not satisfied (ERA TWG 2015)⁴.
- The method also assumes that the mean fish density does not vary between fished area and non-fished area within their distributional range. Hence, the level of risk would be over-estimated for species found primarily in non-fished habitat, while risk would be under-estimated for species that prefer fished habitat (ERA TWG 2015).
- The SAFE methodology makes greater assumptions than Tier 1 stock assessments in coming to its F estimates (due to a lack of the data relative to that used in a Tier 1 assessment) and it is not capable of measuring risk of a stock being already overfished (so the type of risk it measures relates only to overfishing, which may then lead to future overfished state). The limitations of SAFE with respect to measuring overfished risks are the same essentially as for PSA.

eSAFE

Enhanced SAFE (eSAFE) appears, based on calibration with Level 3 assessments, to provide improved estimates of fishing mortality relative to the base SAFE (bSAFE) method. The eSAFE

⁴ ERA Technical Working Group, September 2015

requires more spatially explicit data and takes more analysis time than bSAFE, and so might only be used to further assess species that were identified as at high risk using bSAFE (and which have not had further direct management action taken). The eSAFE enhances the bSAFE method by estimating varying fish density across their distribution range as well as speciesand gear-specific catch efficiency for each species.

1.1.6 Level 3

This stage of the risk assessment is fully quantitative and relies on in-depth scientific studies on the units identified as at medium or greater risk in the Level 2. It will be both time and data intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

1.1.7 Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process has resulted in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including to address the requirements of the EPBC Act as evaluated by Department of Agriculture, Water and the Environment.

1.1.8 Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be re-evaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Fishery re-assessments for byproduct and bycatch species under the ERAEF will be undertaken every five years⁵ or sooner if triggered by re-assessment triggers. The five-year timeframe is based on a number of factors including:

- The time it takes to implement risk management measures; for populations to respond to those measures to a degree detectable by monitoring processes; and to collect sufficient data to determine the effectiveness of those measures.
- Alignment with other management and accreditation processes.
- The cost of re-assessments.

⁵ Based on a recommendation by the ERA Technical Working Group, September 2015.

• The review period for Fisheries Management Strategy (FMS).

For byproduct and bycatch species, in the periods between scheduled five year ERA reviews⁶, AFMA will develop and monitor a set of fishery indicators and triggers, on an annual basis, so as to detect any changes (increase or decrease) in the level of risk posed by the fishery to any species. Where indicators exceed specified trigger levels, AFMA will investigate the causes and provide opportunity for RAG comment/advice during that process. Pending outcomes of that review, and RAG advice, AFMA can if necessary, request a species specific or full fishery reassessment (i.e. prior to the scheduled re-assessment dates).

The ERA TWG (September 2015) identified five key indicators upon which such triggers could be based, these being changes in:

- Gear type/use
- Mitigation measures (use or type)
- Area fished
- Catch or interaction rate
- Fishing effort

Where possible, the triggers should look to consider additional sources of risk from interacting non-Commonwealth fisheries. In addition, if a major management change is planned for a fishery, such as a move from input to output controls, the fishery will need to be reassessed prior to that management change coming into effect. In considering each indicator and trigger level, the RAG should consider the following:

- The data upon which the indicator is based must be sufficiently representative of actual changes in catch, effort, area, gear, or mitigation methods. Consideration should be given to the level of uncertainty associated with the data underpinning any prospective indicator.
- The trigger level chosen should not be overly sensitive to the normal inter-annual variance that is typical of the indicator and independent of fishing pressure, assuming such variance is unlikely to relate to a significant change in the risk posed by the fishery to any or all species.
- The trigger level should equate to the minimum level of change that the RAG (by its expert opinion) considers might potentially represent a significant change in the risk posed by the fishery.
- The trigger level could represent an absolute change (number/level) in an indicator or a percentage change in an indicator.

⁶ In contrast to key and secondary commercial species managed via catch/effort limits under Harvest Strategies, which depending on species and Harvest Strategy, can be re-assessed any time between 1 and 5 years.

• The RAG should consider whether a "temporal" condition should be placed on the trigger (i.e. the trigger is breached 2 years in a row) to further reduce the likelihood of natural population variance or data errors triggering a re-assessment unnecessarily.

The final set of indicators and triggers will be developed for each fishery by AFMA in consultation with its fishery RAG (or for fisheries lacking a RAG, the ERA TWG), in association with the next planned re-assessment (see Table 8 in AFMA ERM Guide, AFMA 2017). A RAG may choose a subset of these indicators and triggers, or include an additional indicator/trigger(s), based on consideration of the availability and reliability of data upon which to base any of the above indicators/triggers, however justification of this must be provided.

Research is currently underway to develop specific guidance for RAG to aid in the selection of appropriate triggers, which will in the meantime be determined using RAG expert opinion. In the longer term it may be possible to refine indicators and triggers using the existing PSA and SAFE methods to test which attributes the end risk scores are most sensitive to (ERA TWG 2015)⁷. The RAG will record both the final set of indicators and triggers chosen, and a justification for those, in the RAG minutes. Once the final set of indicators and triggers is determined for a fishery, they will require implementation within the FMS and a monitoring and review process.

⁷ ERA TWG recommendation, September 2015

2 Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the Australian Fisheries Zone (AFZ). The fishery may also be divided into sub-fisheries based on fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond are specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/sub-fishery may include any combination of commercial, recreational, and/or indigenous fishers.

The results presented below are for the Northern Prawn Tiger Prawn sub-fishery. A full description of the ERAEF method is provided in the methodology document (Hobday et al. 2007, 2011b). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

2.1 Stakeholder Engagement

FISHERY ERA TYPE OF DATE OF COMPOSITION OF SUMMARY OF OUTCOME **REPORT STAGE** STAKEHOLDER STAKEHOLDER STAKEHOLDER GROUP (NAMES INTERACTION INTERACTION OR ROLES) Stephen Eves and David Power Scoping Phone calls and emails April 2019 Scoping doc (AFMA) NPF RAG June 2019 Species list and AFMA, Industry, scientific Species list and Level 1 results Level 1 results members and participants presented Draft report NPF RAG November 2019 Submitted to NPF RAG NPF RAG November 2019 Draft report AFMA, Industry, scientific Presented results members and participants September-AFMA, NPFI, scientists Draft report Feedback on draft report Meetings November 2020 Draft final NPF RAG December 2020 AFMA, Industry, scientific Presented overview of final report members and participants draft report Submitted NPF RAG 12 May 2021 AFMA, Industry, scientific Presented updated results updated risk members and participants following reviews scores following review 29 June 2021 Final report NPF RAG AFMA Submitted final report Final report Meeting 20 August 2021 AFMA Updated report following AFMA's review. Submitted final report

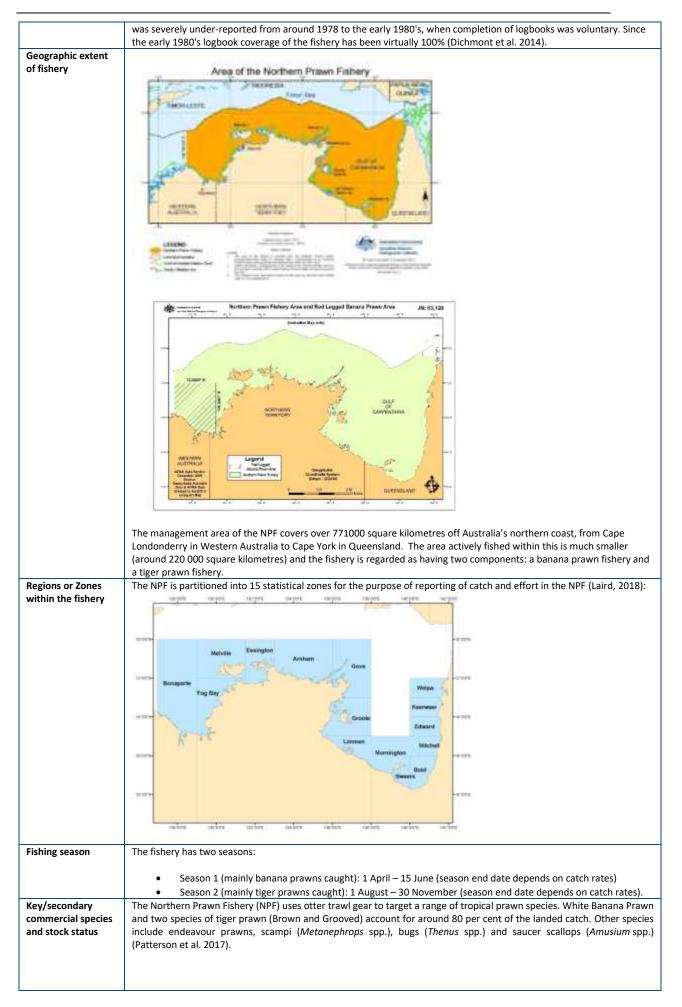
Table 2.1. Summary Document SD1. Summary of stakeholder involvement for sub-fishery: NPF TigerPrawn sub-fishery.

2.2 Scoping

The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed at stakeholder meetings and to complete Levels 1 and 2. The focus of analysis is the fishery, which may be divided into sub-fisheries based on fishing method and/or spatial coverage. Scoping involves six steps:

Step 1. Document the general fishery characteristics
Step 2. Generating "unit of analysis" lists (species, habitat types, communities)
Step 3. Selection of objectives
Step 4. Hazard identification
Step 5. Bibliography
Step 6. Decision rules to move to Level 1

2.2.1 General Fishery Characteristics (Step 1).


The information used to complete this step came from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents.

Scoping Document S1 General Fishery Characteristics

Fishery Name: Northern Prawn Fishery: Tiger Prawn sub-fishery Assessment date: April 2019 Assessor: AFMA and authors of this report (CSIRO)

Table 2.2. General fishery characteristics. Note: information in this scoping document is identical to the Banana Prawn sub-fishery ERA assessment (Sporcic et al. 2019). Relevant information is separated by sub-fishery where applicable (e.g. catch and effort statistics, protected species interactions).

GENERAL FISHERY CH	IARACTERISTICS
Fishery Name	Northern Prawn Fishery (NPF)
Sub-fisheries	 Three spatially and temporally distinct demersal trawl fisheries exist: the White Banana Prawn, Redleg Banana Prawn and the Tiger Prawn sub-fisheries. The gear and fishing technique employed by each fishery is similar, with the exception that the headrope height of White Banana Prawn sub-fishery nets is generally higher than in Redleg Banana Prawn/tiger prawn nets. The split into banana and tiger prawn fishery components is based on the composition of the catch in logbook records. If half or more of a vessel's daily catch was banana prawns or there was no prawn catch and the vessel was fishing, the vessel was defined as operating in the banana prawn fishery on that day; otherwise, it was defined as operating in the tiger prawn fishery. Banana prawn fishery catch is the catch of all prawn species (banana, tiger, endeavour, and king prawns) when a vessel is defined as fishing in the banana prawn sub-fishery. Tiger prawn fishery catch is the catch of all species when a vessel is defined as operating in the tiger prawn fishery. The banana prawn sub-fishery is further split into the White Banana Prawn and Redleg Banana Prawn sub-fisheries based on the spatial extent of each species. Redleg Banana Prawns are caught almost exclusively in deep water (>45 metres) in the Joseph Bonaparte Gulf (JBG) and White Banana Prawn sub-fishery from the White Banana Prawn sub-fishery (see map below).
Sub-fisheries assessed	Tiger Prawn sub-fishery
Start date/ history	The fishery was discovered (principally for banana prawns) in 1964, logbooks were introduced in 1969 and the fishery since managed as a Commonwealth fishery. Catch and effort data and all interactions with protected species are recorded on a shot-by-shot basis reported daily by lat/long. Fishing effort peaked in 1981 at a level that exceeded the long-term sustainable yield of the resource with 286 vessels in the fishery reporting a total of 43419 fishing days. Effort has decreased to be reported from 52 vessels and 7418 fishing days in 2017. It is generally accepted that fishing effort

Status	2	015		2016			
Biological status	Fishing mortality	Biomass	Fishing mortality	Biomass			
Redleg Banana Prawn							
(Penaeus indicus)							
White Banana Prawn							
(Penaeus merguiensis)							
Brown Tiger Prawn							
(Penaeus esculentus)							
Grooved Tiger Prawn							
(Penaeus semisulcatus)							
Blue Endeavour Prawn							
(Metapenaeus							
endeavouri)							
Red Endeavour Prawn							
(Metapenaeus ensis)							
Fishing 📕 Not s	ubject to overfishi	ng 📒 Subje	ect to overfishing	Uncertai			
mortality							
Biomass 📃 Not o	verfished	Overf	fished	Uncertai			

Banana Prawn sub-fishery

There is currently no formal stock assessment for White Banana Prawns. As recruitment varies markedly with environmental conditions no clear stock-recruitment relationship has been determined (Buckworth et al. 2013). Analyses are complicated by the highly variable CPUE data which result from the schooling behaviour of the species. The fishery is presently managed by a combination of spatial and temporal closures and a fixed season length with in-season management aimed at potentially closing the season earlier to increase the economic return to the fishery in less productive years. Historical records indicate that the Banana Prawn sub-fishery is sustainable with an annual six-week fishing season. The high variability and environmental dependency of this species results in significant variations in catch from year to year, and even in the years where there have been very poor catches in some areas, the rebound in the stocks would indicate that the White Banana Prawn sub-fishery is resilient.

Management of the White Banana Prawn sub-fishery has in recent years included a catch rate trigger. The MEY trigger is variable and calculated in-season, based on information provided by industry on prawn prices and fuel costs.

Tiger Prawn sub-fishery

Table 2: Northern Prawn Fishery stock assessment indices

Year	2012	2013	2014	2015	2016	2017
	Statu	is S(moving a	overage over 5 y	rears)/S _{MSY}		
Tiger Prawns (Grooved)	116%	123%	Not assessed	114%	Not assessed	135%
Tiger Prawns (Brown)	116%	118%	Not assessed	122%	Not assessed	131%
Blue Endeavour	91%	94%	Not assessed	76%	Not assessed	67%
		Effor	t (boat days)	1		
TAE Total Tiger prawns	5948	6661	6645	6041	8305	8300
TAE Tiger Prawns (Grooved)	2777	3781	3868	4840	3024	4042
% Grooved Tiger Prawns TAE/TAE total	46.69	56.76	58.21	80.12	36.41	48.70
TAE Tiger Prawns (Brown)	3171	2880	2777	1201	5281	4258
% Brown Tiger Prawns TAE/TAE total	53.31	43.24	41.79	19.88	63.59	51.30
NOMINAL effort (estimated) Tiger Prawns (Grooved)	4072	4176	3733	4840	3868	3494

	NOMINAL effor	t 1324	1789	1395	1201	2092	1397	
	(estimated) Tiger Prawns (Brown)							
	Total NOMINAI Effort (estimate Tiger prawns		5965	5128	6041	5960	4891	
	Grooved Tiger Pr	awns						
	In all scenarios te of 2017. Furthern SMSY, and thus w overfished, and o Brown Tiger Prav The Brown Tiger I abundances were is considered not Blue Endeavour I Blue Endeavour P reference point o was under SMSY of SMSY.	nore, effort in 20 vell above the re verfishing is not vns Prawn stock in 2 e all above 100% overfished. Effo Prawns trawns are consi f 0.5 SMSY (base	017 was below th ference point, 0. occurring. 017 ranged from of SMSY, and thu rt in 2017 was w dered a byproduced on a 5-year mode	at at EMSY. The 5 SMSY. Grooved 69% to 79% of S us well above the ell below that at ct and are not co oving average). In	five-year avera d Tiger Prawns a SMSY in all scen e reference poi EMSY. Overfish msidered to be n all the sensitiv	ge abundances are therefore co arios tested. Th nt, 0.5 SMSY. Th ing is therefore over-fished rel vity tests tested	were all ab onsidered r he five-year herefore, th e not occur ative to the d, the stock	oove 100% not average ne resource ring. e target abundance
	Red Endeavour P Red Endeavour F reference point c	Prawns are cons of 0.5 SMSY (bas	ed on a 5-year m	oving average).	In the 4 specie	s test, the stoc	k abundan	ce was und
	SMSY at the end result.						1SY. This is	a prelimin
Bait collection and Isage	No bait is used as	the Northern Pi	rawn Fishery (NP	F) uses otter trav	wl gear to targe	t prawns.		
ntitlements	them to use a cer In the fishery the			n the fishery. Th	ese fishing righ	ts are transfera	ble to othe	rs.
			maximum numb hts.	er of vessels acti	ve at one time)			
		ear fishing rig	hts.				gear right :	for operate
	 35 479 Gear fishing right using: two no 	ets are currently	hts.	vith a certain hea eadrope length			gear right	for operat
	 35 479 Gear fishing right using: two no three 	ets are currently	hts. der to use a net v worth 9 cm of h	vith a certain hea eadrope length		trope length. A e No. inac	tive	for operat
	 35 479 Gear fishing right using: two no three 	e) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence	hts. der to use a net v worth 9 cm of he a value of 8.1 cm No. Boat	vith a certain hea eadrope length per gear right. No. Gear	adrope and foo No. activ	trope length. A e No. inac	tive	for operat
	 35 475 Gear fishing right using: two no three Quota Year	e gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders	hts. der to use a net v worth 9 cm of h a value of 8.1 cm No. Boat SFRs	vith a certain hea eadrope length per gear right. No. Gear SFRs	adrope and foo No. activ operator	trope length. A re No. inac s operator	tive	for operat
	 35 475 Gear fishing right using: two no three Quota Year 2012	e) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23	hts. der to use a net v worth 9 cm of he a value of 8.1 cm No. Boat SFRs 52	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479	adrope and foo No. activ operator 52	trope length. A re No. inac rs operator 0	tive	for operat
	 35 475 Gear fishing right using: two ne three Quota Year 2012 2013	e gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22	hts. der to use a net v worth 9 cm of h a value of 8.1 cm No. Boat SFRs 52 52	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479	No. activ operator 52 52	trope length. A re No. inact s operator 0 0	tive	for operat
	 35 475 Gear fishing right using: two no three Quota Year 2012 2013 2014	e) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22 22 22	hts. der to use a net v worth 9 cm of h a value of 8.1 cm No. Boat SFRs 52 52 52 52	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479 35 479	No. activ operator 52 52 52 52	trope length. A re No. inac s operator 0 0 0	tive	for operati
	 35 475 Gear fishing right using: two ne three Quota Year 2012 2013 2014 2015	e gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22 22 22 22	hts. der to use a net v worth 9 cm of he a value of 8.1 cm No. Boat SFRs 52 52 52 52 52	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479 35 479 35 479	No. activ operator 52 52 52 52 52	trope length. A	tive	for operat
TACs, quota trends	 35 475 Gear fishing right using: two no three Quota Year 2012 2013 2014 2015 2016	e) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22 22 22 22 22 22 22 22 22 22 22 22	hts. der to use a net v worth 9 cm of he a value of 8.1 cm No. Boat SFRs 52 52 52 52 52 52 52 52 52 52 6 NPF is managed fort units, gear re yproduct restricti	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479 35 479 35 479 35 479 35 479 35 479 35 479 35 479	No. active operator 52 52 52 52 52 52 52 52 52 52 52 52 52	trope length. A	tive rs mited entry e) (NPF Fish id crabs, roo	/ to the hing Capac ck lobsters
Current and recent TACs, quota trends by method Current and recent fishery effort trends	 35 475 Gear fishing right using: two ne three Quota Year 2012 2013 2014 2015 2016 2017 There are no TAC fishery, individua Determination No and tuna) (NPF D No. 169). Year 	a) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22 22 22 22 22 22 22 22 22 22 22 22	hts. der to use a net v worth 9 cm of he a value of 8.1 cm No. Boat SFRs 52 52 52 52 52 52 52 52 52 52 6 NPF is managed fort units, gear re yproduct restricti	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479 35 479 35 479 35 479 35 479 35 479 1 through a series estrictions (limit of ons (catch limits f seasonal (NPF [No. active operator 52 52 52 52 52 52 52 52 52 52 52 52 52	trope length. A re No. inacc s operator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive rs mited entry e) (NPF Fish id crabs, roo	/ to the hing Capac ck lobsters
TACs, quota trends by method Current and recent	 35 475 Gear fishing right using: two ne three Quota Year 2012 2013 2014 2015 2016 2017 There are no TAC fishery, individua Determination No and tuna) (NPF D No. 169). Year 	a) gear fishing rig s entitle the hold ets are currently or four nets has No. Licence holders 23 22 22 22 22 22 22 22 22 22 22 22 22	hts. der to use a net v worth 9 cm of hr a value of 8.1 cm No. Boat SFRs 52 52 52 52 52 52 52 52 52 52 52 52 52	vith a certain hea eadrope length per gear right. No. Gear SFRs 35 479 35 479 35 479 35 479 35 479 35 479 35 479 1 through a series estrictions (limit of ons (catch limits f seasonal (NPF [No. activ operator 52 52 52 52 52 52 52 52 52 52 52 52 52	trope length. A re No. inacc s operator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive rs mited entry e) (NPF Fish id crabs, roo	/ to the hing Capac ck lobsters

	2010		98	3146	
	2011		.43	3440	
	2012		21	2526	
	2013	52 59	08	2005	
	2014	52 50	45	3100	
	2015	52 60	36	2197	
	2016	52 59	00	1980	
	2017	52 47	16	2702	
rent and recent					
ery catch trends nethod	Year	Tiger prawn (t) Wł	nite Banana Prawn (t)		
	2008	1021	5816		
	2009	1250	5881	-	
	2010	1628	5642	-	
	2011	749	7141	1	
	2012	1203	4901	1	
	2013	2215	3050	1	
	2014	1708	6330	1	
	2015	3186	3852	-	
				-	
	2016	2158	2904		
	2017 The most rec White Banar	2158 1087 ent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban	5069 of the NPF was estima ually increased in rece	nt years from a low at \$37.9	9 million in 2013. Gro
	2017 The most rec White Banar	1087 ent gross value of production a Prawn sub-fishery has grad	5069 of the NPF was estima ually increased in rece	nt years from a low at \$37.9	9 million in 2013. Gro
	2017 The most red White Banar trends over r	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery	5069 of the NPF was estima ually increased in rece ana Prawn sub-fishery	nt years from a low at \$37.9 are shown in the following Banana Prawn sub-	9 million in 2013. Gro Table.
	2017 The most rec White Banar trends over n Year	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days)	5069 of the NPF was estima ually increased in recei ana Prawn sub-fishery GVP (million \$)	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days)	9 million in 2013. Gro Table. GVP (million \$)
	2017 The most red White Banar trends over r Year 2012	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521	5069 of the NPF was estima ually increased in rece ana Prawn sub-fishery GVP (million \$) 26.0	nt years from a low at \$37.5 are shown in the following Banana Prawn sub- fishery effort (days) 2526	9 million in 2013. Gro Table. GVP (million \$) 42.9
	2017 The most red White Banar trends over r Year 2012 2013	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908	5069 of the NPF was estimated ually increased in receip ana Prawn sub-fishery GVP (million \$) 26.0 40.6	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9
	2017 The most red White Banar trends over r Year 2012 2013 2014	1087 tent gross value of production a Prawn sub-fishery has grad tecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045	5069 of the NPF was estimated ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8	nt years from a low at \$37.5 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1
	2017The most red White Banar trends over rYear2012201320142015	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036	5069 of the NPF was estimated ually increased in recent ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9
lue of fishery (\$)	2017 The most red White Banari trends over r 2012 2013 2014 2015 2016 2017	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716	5069 of the NPF was estimated ually increased in recent ana Prawn sub-fishery GVP (million \$) 26.0 26.0 40.6 34.8 74.9 46.1 Not available	nt years from a low at \$37.5 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1
lue of fishery (\$)	2017The most red White Banar trends over rYear201220132014201520162017The NPF bord	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716	5069 of the NPF was estimated ually increased in receip ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9 46.1 Not available s with international, C	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702 ommonwealth, State and re	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1 ecreational fisheries.
ue of fishery (\$) lationship with	2017The most reeWhite Banartrends over rYear201220132014201520162017The NPF bordCommonwed	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716	5069 of the NPF was estimated ually increased in receip ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9 46.1 Not available s with international, C awn Fishery, Eastern T	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702 ommonwealth, State and re	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1 ecreational fisheries.
lue of fishery (\$)	2017The most red White Banari trends over rYear201220132014201520162017The NPF bord Commonwed Fishery, North	1087 Sent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716 ders or shares common water of th fisheries - Torres Strait Pra hwest Slope Trawl, Western I - Kimberley Prawn Fishery, Ki	5069 of the NPF was estimated ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9 46.1 Not available s with international, C awn Fishery, Eastern Tr Deepwater Trawl.	nt years from a low at \$37.5 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702 commonwealth, State and re- una and Billfish Fishery, We	9 million in 2013. Gros Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1 ecreational fisheries.
alue of fishery (\$)	2017The most ree White Banar trends over rYear201220132014201520162017The NPF bord Commonwed Fishery, North WA fisheries Mackerel Fis Barramundi	1087 Sent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716 ders or shares common water of th fisheries - Torres Strait Pra hwest Slope Trawl, Western I - Kimberley Prawn Fishery, Ki	5069 of the NPF was estima ually increased in recent ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9 46.1 Not available s with international, C awn Fishery, Eastern Tr Deepwater Trawl. mberley Gillnet and Ba	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702 commonwealth, State and re una and Billfish Fishery, We arramundi Fishery, Northern Fishery, Demersal Fishery,	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1 ecreational fisheries. estern Tuna and Billfis n Demersal Scalefish I Spanish Mackerel Fisl
Current and recent value of fishery (\$)	2017The most red White Banar trends over rYear201220132014201520162017The NPF bord Commonwedd Fishery, North WA fisheries - Barramundi Fishery, Pear Qld fisheries East Coast In Fishery, Gulf Carpentaria	1087 eent gross value of production a Prawn sub-fishery has grad ecent years in the White Ban Tiger Prawn sub-fishery effort (days) 5521 5908 5045 6036 5900 4716 ders or shares common water of th fisheries - Torres Strait Pra hwest Slope Trawl, Western I - Kimberley Prawn Fishery, Ki hery.	5069 of the NPF was estima ually increased in recer ana Prawn sub-fishery GVP (million \$) 26.0 40.6 34.8 74.9 46.1 Not available s with international, C awn Fishery, Eastern Tr Deepwater Trawl. mberley Gillnet and Ba the Fishery, Timor Reef stal Net Fishery, Bait N coral Fishery, Coral R bast Otter Trawl Fisher al Fin Fish Trawl Fisher in Fish Fishery, Mud Cra	nt years from a low at \$37.9 are shown in the following Banana Prawn sub- fishery effort (days) 2526 2005 3100 2197 1980 2702 ommonwealth, State and re una and Billfish Fishery, We arramundi Fishery, Northern Fishery, Demersal Fishery, et Fishery, Mollusc Fishery, eef Fin Fish Fishery, Crayfis y, East Coast Pearl Fishery, y, Gulf of Carpentaria Insho	9 million in 2013. Gro Table. GVP (million \$) 42.9 37.9 69.1 62.9 41.0 62.1 ecreational fisheries. estern Tuna and Billfis n Demersal Scalefish I Spanish Mackerel Fisi Offshore Net and Lin h and Rocklobster Fis East Coast Spanish M re Fin Fish Fishery, Gu

	-
	Aquaculture - Licensed aquaculturalists contract vessels operating within the NPF managed region, but not exclusively NPF operators, to trawl for gravid prawns for use in the aquaculture industry. This is permitted under an OCS agreement between the Commonwealth, Northern Territory and Queensland governments.
GEAR	
Fishing methods and gear	Prawn trawling is an active fishing method which involves towing a conical-shaped net spread open by two or four steel or timber otter boards over the seabed, commonly called otter trawling. Ground chains are also used on the nets to stimulate prawns into the trawl mouth. Vessels in the NPF may tow a range of nets in a variety of configurations. These are regulated by the Northern Prawn Fishery Management Plan 1995 (the Management Plan) and relevant Determinations and Directions. In recent years, many vessels have transitioned from using twin gear to mostly using a quad rig comprising four trawl nets—a configuration that is more efficient. In addition to the main nets, a small 'try-net' is also used to test the potential catches for a given area.
	Most of the vessels in the NPF are purpose built from steel and range in length from 17 m to 30 m. All NPF boats have modern and sophisticated catch handling, packing and freezing capabilities as well as wet (brine) holding facilities. All vessels use electronic aids such as colour echo sounders, Global Positioning Systems (GPS) and plotters. Satellite phones and fax equipment are used by most vessels and most have introduced on-board computing facilities, electronic logbooks and Wi-Fi. All vessels are required to have a Vessel Monitoring System (VMS) installed. The most common NPF vessel length in 2017 was between 22.0-22.9 m.
	Total tiger prawn headrope increased slightly from 1524.17 fathoms (2.79 km) in 2016 to 1542.36 fathoms (2.82 km) in 2017 (Figure 9). The mean headrope length in 2017 was 29.66 fathoms (54.2 m) compared with 29.31 fathoms (53.6 m) in 2016 and 31 fathoms (56.7 m) the most common headrope length in 2017 (Laird 2018).
Fishing gear restrictions	Fishers must hold a valid boat fishing right to fish in this fishery. Fishers also need to have gear fishing rights that allow them to use a certain amount of net to catch fish in the fishery. These fishing rights are transferable to others (the Management Plan).
	In the fishery there are currently:
	• 52 boat fishing rights (maximum number of vessels active at one time)
	• 35 479 gear fishing rights.
	Gear fishing rights entitle the holder to use a net with a certain headrope and footrope length. A gear right for operators using:
	• two nets is currently worth 9 cm of headrope length
	• three or four nets has a value of 8.1 cm per gear right
	Since 2000 each net on a vessel is required to have an approved Turtle Excluder Device (TED) and a Bycatch Reduction Device (BRD) installed. In 2016 NPF fishers commenced trial of new BRD designs with the goal of further reducing bycatch by an additional 30%. There was progress over 2016-17 and by 2018 fishers had successfully trialled BRD designs that reduced bycatch by over 30%.
Selectivity of fishing methods	Although the trawl net mesh size is designed to be selective for prawns, trawling is an indiscriminate fishing method, which can capture organisms of various sizes, motile or sessile, which are in the path of the net.
	Tiger prawn trawling generally occurs close to the substratum and as a result selectivity of prawns is low and bycatch is high.
	Selectivity in the White Banana Prawn sub-fishery is much higher than the Redleg Banana and Tiger Prawn sub-fisheries due to fishers targeting prawn aggregations.
Spatial gear zone set	About 75% of the NPF fishing effort occurs within the neritic zone in the Gulf of Carpentaria between about 5-50 nm from shore. Along the Arnhem coast and Joseph Bonaparte Gulf trawling takes place in deeper water and the gear is deployed about 10- 50 nm from the coast.
Depth range gear set	In the Gulf of Carpentaria trawling takes place between 17-47 m, while along the Arnhem coast and the Joseph Bonaparte Gulf trawling takes place in 47-70 m.
How gear set	The trawl gear in the Tiger Prawn sub-fishery is generally lowered over suitable prawn habitat to fish as close as possible to the seabed. The gear is towed at an average of 3.2 knots for periods of 3-4 hours. Trawling only takes place at night.
	In the White Banana Prawn sub-fishery, the trawl gear is generally only deployed once a prawn aggregation or 'mark' is located on the echo sounder. The gear is fished within about 5 m from the seabed, towed at an average of 3.2 knots and the trawl duration is less than 1 hour. It is believed that prawn aggregations are caught or dissipate within the first 2-3 weeks of the season and some operators change gear to then target tiger prawns. Trawling in this fishery is permitted during day and night.
Area of gear impact per set or shot	Fleet-wide, the average swept area performance in 2017 was estimated to be 28 hectares per hour (increased by 3% compared to 2016), the largest in the history of the fishery. Greater average swept area performance in the last seven years may be explained, in part, by more boats towing quad rig (most using bison boards), as well as the uptake by some fishers of a greater headline length allowance (approximately 8%) for the second season of 2011.

 book entries are only required daily, where 3-4 shots are usually made. before, the total number of trawls made in 2017 combined for all boats in the Tiger Prawn sub-fishery is about 14148 ming an average of 3 shots per day of effort; and, the total number of trawls made in 2017 combined for all boats in White Banana Prawn sub-fishery is about 10,808 assuming an average of 4 shots per day effort. al gear loss occurs mainly by the gear becoming bogged in soft sediments or excessively large catch weights. These irrences are generally rare, less than about 5 occurrences per year. Lost gear is usually attempted to be retrieved. Il patches of net are sometimes lost, but again this is minimal. A recent survey showed that ghost nets washed are in the NPF originated from Indonesian and Taiwanese fishers, while 7% could be identified as material used by ralian prawn operators. te banana prawn uitment for all species is variable, particularly for White Banana Prawn, in which recruitment is closely associated rainfall. Therefore, no Bwer target is defined for White Banana Prawn. Instead, an MEY-based catch-rate trigger, mechanisms in place to adjust total annual effort levels to ensure that the fishery remains sustainable and ttable, was implemented for the 2014 banana prawn season and continued to be in place during 2018. environmentally driven variability of the White Banana Prawn means that a robust stock-recruitment relationship to be determined. Because annual yields are largely dependent on annual erroutiment, it has not been possible to elop a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches he fishery. CSIRO modelled the relationship between historical catch and rainfall. Unfortunately, large retraintics remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013). leg banana prawn Pow levels of ef
In patches are generally rare, less than about 5 occurrences per year. Lost gear is usually attempted to be retrieved. Il patches of net are sometimes lost, but again this is minimal. A recent survey showed that ghost nets washed ore in the NPF originated from Indonesian and Taiwanese fishers, while 7% could be identified as material used by ralian prawn operators. Ite banana prawn uitment for all species is variable, particularly for White Banana Prawn, in which recruitment is closely associated rainfall. Therefore, no BMEY target is defined for White Banana Prawn. Instead, an MEY-based catch-rate trigger, mechanisms in place to adjust total annual effort levels to ensure that the fishery remains sustainable and itable, was implemented for the 2014 banana prawn season and continued to be in place during 2018. environmentally driven variability of the White Banana Prawn means that a robust stockrecruitment relationship to be determined. Because annual yields are largely dependent on annual recruitment, it has not been possible to elop a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches he fishery, CSIRO modelled the relationship between historical catch and rainfall, to investigate whether it is ible to predict the next year's catch based on the most recent wet-season rainfall. Unfortunately, large ertainties remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013). leg banana prawn Plow levels of effort occurred for Redleg Banana Prawns in the 2015 and 2016 seasons in Joseph Bonaparte Gulf, levels of catch were consequently very low. Catch rates were also low but were poorly sampled because of the low r. The stock assessment relies heavily on fishery-dependent catch and catch rates; for both 2015 and 2016, the levels was not able to provide reliable estimates of stock status.
uitment for all species is variable, particularly for White Banana Prawn, in which recruitment is closely associated rainfall. Therefore, no B _{MEY} target is defined for White Banana Prawn. Instead, an MEY-based catch-rate trigger, mechanisms in place to adjust total annual effort levels to ensure that the fishery remains sustainable and itable, was implemented for the 2014 banana prawn season and continued to be in place during 2018. environmentally driven variability of the White Banana Prawn means that a robust stock-recruitment relationship to be determined. Because annual yields are largely dependent on annual recruitment, it has not been possible to elop a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches he fishery, CSIRO modelled the relationship between historical catch and rainfall, to investigate whether it is ible to predict the next year's catch based on the most recent wet-season rainfall. Unfortunately, large ertainties remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013).
uitment for all species is variable, particularly for White Banana Prawn, in which recruitment is closely associated rainfall. Therefore, no B _{MEY} target is defined for White Banana Prawn. Instead, an MEY-based catch-rate trigger, mechanisms in place to adjust total annual effort levels to ensure that the fishery remains sustainable and itable, was implemented for the 2014 banana prawn season and continued to be in place during 2018. environmentally driven variability of the White Banana Prawn means that a robust stock-recruitment relationship to be determined. Because annual yields are largely dependent on annual recruitment, it has not been possible to elop a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches he fishery, CSIRO modelled the relationship between historical catch and rainfall, to investigate whether it is ible to predict the next year's catch based on the most recent wet-season rainfall. Unfortunately, large ertainties remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013).
rainfall. Therefore, no B _{MEY} target is defined for White Banana Prawn. Instead, an MEY-based catch-rate trigger, mechanisms in place to adjust total annual effort levels to ensure that the fishery remains sustainable and itable, was implemented for the 2014 banana prawn season and continued to be in place during 2018. environmentally driven variability of the White Banana Prawn means that a robust stock-recruitment relationship not be determined. Because annual yields are largely dependent on annual recruitment, it has not been possible to elop a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches he fishery, CSIRO modelled the relationship between historical catch and rainfall, to investigate whether it is ible to predict the next year's catch based on the most recent wet-season rainfall. Unfortunately, large ertainties remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013). leg banana prawn I low levels of effort occurred for Redleg Banana Prawns in the 2015 and 2016 seasons in Joseph Bonaparte Gulf, levels of catch were consequently very low. Catch rates were also low but were poorly sampled because of the low rt. The stock assessment relies heavily on fishery-dependent catch and catch rates; for both 2015 and 2016, the lei was not able to provide reliable estimates of stock status.
not be determined. Because annual yields are largely dependent on annual recruitment, it has not been possible to be a stock assessment for White Banana Prawn. To explore the possibility of implementing total allowable catches the fishery, CSIRO modelled the relationship between historical catch and rainfall, to investigate whether it is bible to predict the next year's catch based on the most recent wet-season rainfall. Unfortunately, large ertainties remain because in some years the model cannot accurately predict catch levels, particularly in recent s (Buckworth et al. 2013). Leg banana prawn I low levels of effort occurred for Redleg Banana Prawns in the 2015 and 2016 seasons in Joseph Bonaparte Gulf, levels of catch were consequently very low. Catch rates were also low but were poorly sampled because of the low rt. The stock assessment relies heavily on fishery-dependent catch and catch rates; for both 2015 and 2016, the lel was not able to provide reliable estimates of stock status.
I low levels of effort occurred for Redleg Banana Prawns in the 2015 and 2016 seasons in Joseph Bonaparte Gulf, levels of catch were consequently very low. Catch rates were also low but were poorly sampled because of the low rt. The stock assessment relies heavily on fishery-dependent catch and catch rates; for both 2015 and 2016, the lel was not able to provide reliable estimates of stock status.
levels of catch were consequently very low. Catch rates were also low but were poorly sampled because of the low rt. The stock assessment relies heavily on fishery-dependent catch and catch rates; for both 2015 and 2016, the lel was not able to provide reliable estimates of stock status.
endeavour prawn
I recently attempts had been made to assess red endeavour prawn with no reliable assessment available to rmine stock status. Catches during recent years have been quite low compared with historical highs. This is most y related to the overall decline in fishing effort directed at tiger prawn rather than any indication of a fall in red eavour prawn biomass.
018, red endeavour prawns were included in the tiger prawn assessment model as a sensitivity test. Red Endeavour vns are considered a byproduct and are not considered to be overfished relative to the limit reference point of 0.5 (based on a 5-year moving average). In the 2018 assessment model, the stock abundance was under S _{MSY} at the end 017 (84%). The five-year average abundance is estimated to be 101% of S _{MSY} . This is a preliminary result.
main byproduct species in the NPF are squid (a mixture of mitre squid, north-west pink squid and northern calamari oteuthis lessoniana), slipper lobster (bugs), scallops (<i>Amusium pleuronectes</i>), cuttlefishes, Scampi (<i>Metanephrops</i>) and some larger fish species.
e 1993, a small number of vessels in the NPF have been opportunistically targeting squid. There is a 500 tonne catch er limit for squid. In 2017 the squid catch was 11 t. Currently there is little understanding of the species position of the squid catch and their basic biology and distribution. A similar problem exists with bugs where roximately 110 t were taken by the NPF in 2016, exceeding the 100-t limit, triggering a review of survey and logbook . The NPF Resource Assessment Group reviewed the data and advised that the data indicates that bugs are not g targeted and are an incidental byproduct and there doesn't appear to be a downward trend in abundance.
to the indiscriminate nature of trawling, particularly the Redleg Banana Prawn and Tiger Prawn sub-fisheries, and small net mesh size used, the NPF interacts with a diversity of organisms including teleosts (>411 species), rtebrates, elasmobranchs (~56 species), sea snakes (15 species), and turtles (6 species). Since 2000, TEDs have been pulsory in the fishery which has excluded 99% of turtles and large (>1 m) elasmobranchs and sponges. The Fishery achieved significant milestones in the management of bycatch, including more than a 50% reduction of bycatch e its first Bycatch Action Plan (NORMAC 1998) was implemented in 1998 and through the introduction of Turtle uder Devices (TEDs), BRDs, reduced effort and implementation of spatial and temporal closures.
ye ov(oro) eefro.e tsirfae

Name	Family and/or	20)13	20	014		2015		2016	21	017
Name	Scientific	A	D	A	D	Α	D	А	D	A	D
Sawfish (unidentified)	Pristidae	124	15	120	25	126	62	118	94	107*	23
Green Sawfish	Pristis zijsron	47	20	9	14	3	1			12	1
Narrow Sawfish	Anoxypristis cuspidata	41	28	22	1	8	3	11	5	83	15
Freshwater Sawfish	Pristis pristis	4				3				5	
Dwarf Sawfish	Pristis clavata	2	1	20	4	2	4		1	1	
Seahorses and pipefishes (unidentified)	Syngnathidae	67	73	7	21	45	91	16	69	24	21
Turtles (unidentified)	Cheloniidae	18	1	31		42		40		26	1
Loggerhead Turtle	Caretta caretta	9				1				2	
Green Turtle	Chelonia mydas	16		11		6		5		6	
Hawksbill Turtle	Eretmochelys imbricata	1	1	1		1				1	
Pacific (Olive) Ridely Turtle	Lepidochelys olivacea	8	1	1		2		4		6	
Flatback Turtle	Natator depressus	5		5		5		1		2	2
Leatherback Turtle	Dermochelys coriacea					1				1	
Sea snakes (unidentified)	Hydrophiidae	4689	1545	4049	967	4316	2135	5 5602	2 1751	5493	174
Birds	Avians					2		_			
Terns	Terns							-	_	1	
Dolphins (unidentified)	Delphinidae	1									
*Species recorde	ed as common saw	shark red	classified	as unide	ntified s	sawfish	(total of	2 individ	uals)		
Protected specie	s interactions for	the NPF	White Ba	anana pr	awn sul	o-fisher	/ (NPF lo	gbook d	ata). Alive	(A); Dea	d (D).
Common	Family	20)13	20	14	20	15	2016		2017	
Name	and/or Scientific name	A	D	A	D	A	D	A D	A	D	
Sawfish (unidentified)	Pristidae	89	11	49	31	48	21	46 3	5 76	86	
Green Sawfish	Pristis zijsron	28	3	37	24	1	1		7		
Narrow Sawfish	Anoxypristis cuspidata	22	15	10	33	5	3	6	16	14	
Freshwater Sawfish	Pristis pristis	5		1					24		
	Distanta atau ata	1	1			8	6				-
Dwarf Sawfish	Pristis clavata	1	-			0	0				

Seahorses and

pipefishes (unidentified) Syngnathidae

1

1

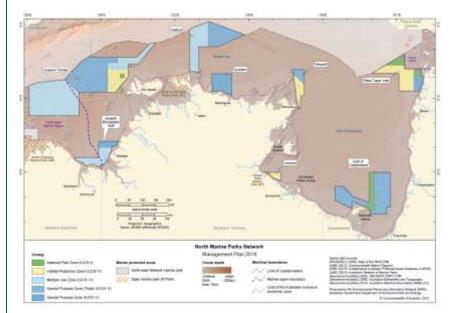
3

4

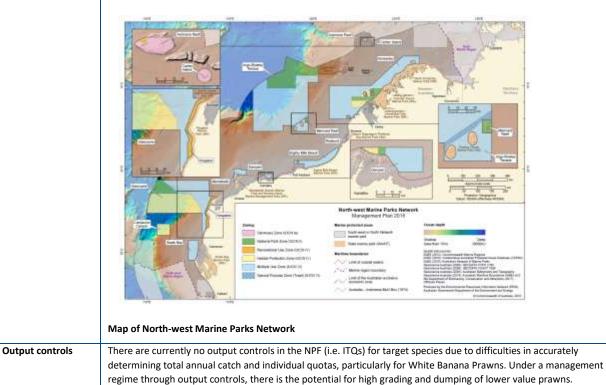
4

1

3


	Turtles (unidentified)	Cheloniidae	2				4		3		11		
	Green Turtle	Chelonia mydas	2		2				1		3		
	Pacific (Olive) Ridely Turtle	Lepidochelys olivacea	5	1			1						
	Flatback Turtle	Natator depressus	3	1					1				
	Sea snakes (unidentified)	Hydrophiidae	1454	244	1173	223	644	397	878	187	1121	383	
	The fishery intera sawfish (4spp.) an overlap with key l and 14 in the whii In the same year, and 223 sawfish v abundant in the N recorded) was rec cetaceans were ca 7238 being caugh 2017 in the White seven sea snake s locations are large	d cetaceans (18 s preeding or aggre te banana prawn a total of 247 saw vere caught in the IPF and feed on d corded in 2013 in aught between 20 t in 2017 in the T Banana Prawn si pecies showed no ely unknown and	spp.). Tur gation au sub-fishe wfish wer e White E liscards fi the Tiger D14 and 2 iger Praw ub-fisher o detecta there is i	tles are reas. In 2 ery. Of the caugh Banana F rom trav Prawn 2017 in e vn sub-fi y with a ble decl no evide	rarely cap 2017, a to hese, 44 a t in the Ti Prawn sub vlers; how sub-fisher either sub shery with t least 255 ines due t nce of agg	tured b tal of 47 nd 14 w ger Prav -fishery vever, th y and n -fishery n at leas % morta o trawlig gregatio	y the fi 7 turtles vere relevent of which one in fi . Sea short st 24% r ality (AF ality (AF on sites	shery si s were c eased a fishery ch 123 v rarely c the whit akes ar nortalit MA log 03-2016 occurrit	nce 200 aught i live in t of whic were re aught. te bana e frequ y. 1504 book da ; Fry et ng with	00 and n the T he sub- th 208 v leased One do na prav ently ca sea sn ata). Ca al. 201 in the N	the NPF of iger Praw fishery's vere relealive. Cet lphin (sp vn sub-fin aught by akes wer tch trence 8). The b IPF (Pers	does not vn sub-fis respectiv ased alive caceans a ecies not shery. No trawlers e caught analysis reeding . Comm.	shery vely. e, are t o with in s for
Habitat issues and	David Milton, CSII There are risks to		-										
interactions	occur on or near t and is limited to t closures and there impacts on the ec recently in the NP	he seabed. Remo he accessible area e are other perma osystem have be	oval, moc as of the anent fisl en studie	lification fishery nery closed ed exten	and distu A network sures that sively on t	irbance of mar limit th he Grea	of the ine par e trawl at Barri	seabed ks is nov footpri er Reef	biota b w in pla nt. The (Poiner	y trawli ice that extent	ing is wel includes and effe	ll docume trawl cts of the	ented
Community issues and interactions	There is a risk tha be due to an incre removed by trawl which may have t	ase in prey speci ing. There is also	es or con the pote	npetitive ntial tha	e species, It discards	and pos provide	ssible d e additi	eclines onal foo	of pred od reso	ators th urces fo	at rely o or sharks	n the spe and bird	ecies s,
Discarding	In all the sub-fishe Discard biomass is aggregations. The generally large. The majority of by Previous assessma alone will cause rite	s generally lower re tends to be mi vcatch in the NPF ents have shown	in the W inimal hig are telec that it is	hite Ban gh gradii osts with unlikely	ana Praw ng in all su small boo that curre	n sub-fishe Ib-fishe dy sizes ent fishi	shery d ries sind and sh	ue to op ce the fi ort life s nsity in	perator reezer o spans (S the NP	s target capacity Stobutz F Tiger	ting praw v on NPF ki et al. 2	n vessels is 001).	5
MANAGEMENT: PLAN	NED AND THOSE IN	IPLEMENTED											
Management objectives	The objectives of	-											
		objectives pursue in the performan								-			y
Fishery manage- ment plan	that the inci A management pl introductory prov attained, and per	isions, statutory f	nted in th	e NPF ir	1995 and	d was la	st revis	ed in 20)11. The	e key fe	atures of	f the plan	
Input controls	The NPF is manag restrictions and a						ted ent	ry to th	e fisher	y, gear	restrictio	ons, bycai	tch
	To fish in the NPF the numbers of tr	operators must h	nold Stati	utory Fis	hing Righ	ts (SFRs						icing limi	ts on

There are currently 35,479 gear SFRs issued for the fishery. The total number of Class B SFRs in the fishery is 52.


A gear SFR currently represents 9 cm of operational headrope for operators towing twin gear and 8.1 cm of headrope for operators towing quad gear or tongue nets.

Input controls also exist on fishing effort in the form of temporal and spatial closures (Northern Prawn Fishery (Closures) Direction No. 171) within the fishery; both to protect spawning stocks, and juvenile populations (and their habitats) before they reach a size whereby they contribute substantially to the economic and biological performance of the NPF (Kenyon et al. 2005).

There are also two marine park networks (the North Network and the North-west Network) covering the area of the fishery that protects examples of the region's marine ecosystems and biodiversity. The Networks are in Commonwealth waters, between three nautical miles (approximately 5.5 km) and 200 nautical miles (approximately 370 km) offshore (below two Figures). There are eight marine parks off the coast of the Northern Territory, Queensland and Western Australia that make up the North Network. The marine parks include habitats such as coral reefs, soft sediments, shelf, canyons, and limestone pinnacles. They have high species diversity and globally significant populations of internationally threatened species.

Map of North Marine Parks Network

	NPF byproduct catch limits.	
	COMMON NAME AND/OR SPECIES	CATCH LIMIT
	Shark, Skates and Rays (all species)	NIL. No part of these species to be retained, including fins, teeth, skin or sawshark beaks.
	Narrow barred Spanish mackerel (Scomberomorus commerson)	10 whole fish per trip
	Broad barred Spanish mackerel (Scomberomorus semifasciatus)	
	Longtail tuna (Thunnus tonggol)	
	Gold band snapper (Pritipomoides multidens)	
	Coral Trouts, Rock Cods, Sea Breams etc (Serranidae)	
	Sweet Lips (Lethrinidae).	
	Mud crabs (<i>Scylla</i> species)	10 per trip
	Tropical rock lobster (<i>Panulirus ornatus</i>); also known as Painted crayfish	6 lobsters or lobster tails per trip in total
	Saddle tail snapper (<i>Lutjanus malabaricus</i>), Red snapper (<i>Lutjanus erythropterus</i>), Red emperor (<i>Lutjanus sebae</i>)	 a) a total of 550 kg whole weight, 211 kg fillet weight, 500 kg gilled and gutted weight and 393 kg headed and gutted weight during the period beginning on 1 March in any year and ending 30 June the same year. b) a total of 55 kg whole weight, 22 kg fillet weight 50 kg gilled and gutted weight and 40 kg headed and gutted weight during the period beginning on 1 July in any year and ending on 28 February in the same year.
	Barramundi (Lates calcarifer), Threadfin Salmon (Polydactylus sheridani), Blue Salmon (Eleutheronema tetradactylum), Black Jewfish (Protonibea diacanthus), Jewelfish or Yellow Jew (Nibea squammosa), Spotted Grunter-bream (Pomadasys kaakan), Queenfish (Scomberoides Iysan; S. commersonianus), Pearl Shell (Pinctada spp.), Trochus (Class Trochidae), Trepang (Class Holothuridae), Coral Bugs (Thenus indicus, Thenus orientalis)	NIL
		 60 mm minimum carapace length. no berried female bugs. all bugs retained whole. no removal by any method (including chemical) of eggs from egg-bearing females; and 100 t trigger limit to review survey and logbook data.
	Squid	 500 t catch trigger limit. Review event at 300 t. Appropriate management measures to be developed and implemented if catch trigger is reached.
al measures	There are no size limits or restrictions on the sex or repro	l ductive state of target prawn species.

	There are no specific regulations on gear or mesh size in the NPF. Permitted gear size is determined by the number of						
	SFRs held by the operator. A try net can be used with otter boards or a beam and have up to 3.66 m and 5.49 m of operational headrope and footrope, respectively.						
	All nets used in the sub-fisheries (except for try nets) must be fitted with an approved TED and a BRD listed under NPF (Gear Requirements) Direction No. 174 and in section 17(5A) and 17(5B) of the Fisheries Management Act.						
	*if MEY decision rule triggered due to low banana prawn catches.						
Regulations	There are numerous restrictions on byproduct species detailed under NPF (Closures) Direction No. 172 and in section 17(5A) and 17(5B) of the Fisheries Management Act. These restrictions apply to elasmobranchs, lobsters, mud crabs, and several fish species.						
	NPF vessels are required to conform to regulations of MARPOL 73/78 and section 8.7 of the Code of Conduct for Responsible Fisheries administered by FAO, which details responsible practices for managing pollution and discarding at sea.						
Initiatives, strategies and incentives	The NPF Bycatch Strategy 2015-2018 was developed and implemented by NPF Industry Pty Ltd (NPFI) in 2015. The NPF Bycatch Strategy is a voluntary industry initiative that aims to reduce the capture of small fish and other bycatch in the NPF by 30% within three years.						
	AFMA has implemented a co-management policy in the NPF that provides for the cooperative management of the fishery with the NPFI. The co-management policy details the agreed basis for NPFI to advise AFMA directly on a range of operational and management issues in the NPF including season start and end dates, spatial and temporal closures, gear trial areas, in-season management arrangement and NPF fishery budgets. Other components which NPFI has delivered/is delivering as part of co-management are responsibility for the reconciliation of catch and effort data for stock assessment; undertaking NPF pre-season briefings; development and implementation of the NPF Bycatch Strategy 2015-2018; representation on Indigenous Protected Area management advisory committees; participation in tender processes for the NPF at-sea monitoring projects; management of broodstock collection and recommending research direction and strategies for the NPF.						
	An Industry Code of Practice for Responsible Fishing was developed in 2004 to define principles and standards of behaviour for responsible fishing practices and continuous improvement in the sustainable management, conservation and utilisation of fishery resources within the NPF.						
Enabling processes	The NPF currently have several monitoring methods in place including logbooks and scientific surveys. Paper logbooks have been in place since 1970 and are designed to provide a continuous record of fishing operations. The majority of NPF fishers now use electronic logbooks (e-logs) to enter and submit daily fishing logs. E-logs have been compulsory since 1 January 2019. Since 2002, the fishery has funded a scientific recruitment survey undertaken annually in January/February and a biennial spawning survey undertaken in June/July prior to the start of the fishing season in each sub-fishery.						
	Stock assessments have mainly been undertaken on the tiger prawn stocks. The most recent assessment was undertaken in 2018. In the past, the management objective for the NPF tiger prawn fishery was Maximum Sustainable Yields (MSY). In 2003 NORMAC agreed to adopt MEY as the target reference point for the tiger prawn fishery. Spawner level target (S _{MSY}) was set as the point at which overfishing occurs and treated as the overfishing limit reference point once recovery has been achieved. MEY has subsequently been adopted as the aspirational target reference point in the Harvest Strategy Policy.						
Other initiatives or agreements	The NPF adheres to the Offshore Constitutional Settlement agreement between the Commonwealth and Queensland, Northern Territory and Western Australia, which primarily relates to the take of byproduct species by the NPF.						
	The NPF was reaccredited by the Department of Agriculture, Water and the Environment under the EPBC Act in 2018 to allow export of product from the fishery for a period of five years. The fishery will be reassessed again in 2023.						
DATA							
Logbook data	Logbook data is verified in several ways:						
	 by comparing trawler owner seasonal landing returns for each major species group with the logbook records for the boat 						
	AFMA at-sea logbook monitoring and enforcement program.						
	Data summaries of NPF catch and effort by species and region within the fishery are produced annually by NPFI and available on the AFMA website.						
Observer data	Observer programs have been undertaken to monitor target prawn species, byproduct, bycatch, Threatened, Endangered and Protected (TEP) species and potentially at-risk species in the NPF. These include:						
	 Crew-member Observer Program (2003 – 2018): long-term bycatch monitoring program in the NPF where trained crew members collect fishery-dependent catch data on TEP species and potentially at-risk species during the banana and tiger prawn seasons. 						
	 AFMA Scientific Observer Program (2005 – 2018): fishery independent data collection by AFMA scientific observers on-board NPF commercial vessels during the tiger and banana prawn seasons. Data collected includes operational information and catch data on target, byproduct, bycatch, TEP species and potentially at-risk species. 						

	 NPF Prawn Population Monitoring Surve fishery-independent monitoring surveys spawning indices and catch data on TEP CSIRO Scientific Research and Observer and CSIRO scientific observers on-board potentially at-risk species. Crew Member Observer (CMO) coverage of fishing 	carried ou species ar Surveys (1 NPF comr	ut in the N nd potentia 975 – 200 nercial ves	PF by CSIR ally at-risk 5): fishery-	O to provio species. independe	de prawn re ent researc	ecruitment and				
	EFFORT	2012	2013	2014	2015	2016	2017				
	Total effort days	8047	7913	8145	8233	7880	7418				
	Total days monitored by CMOs	962	1040	949	1058	873	1169				
	Percentage of fishery effort monitored by CMOs	11.95	13.14	11.65	12.85	11.08	15.76				
	AFMA Scientific Observer (SO) coverage of fishing EFFORT	effort by y 2012	year 2013	2014	2015	2016	2017				
	Total effort days	8047	7913	8145	8233	7880	7418				
	Total days monitored by SOs	167	168	114	159	103	152				
other data	Percentage of fishery effort monitored by SOs Target species projects	2.08	2.12	1.04	1.93	1.31	2.05				
	Deng, R.A., Punt, A.E., Dichmont, C.M., Buckworth, prawns in the Australian northern prawn fishery, <i>IC</i> Dichmont, C.M., Deng, R.A., Punt, A.E., Venables, W species: the case of Australia's Northern Prawn Fish Dichmont, C.M., Die, D., Punt, A.E., Venables, W., B Indicators for Prawn Stocks in the Northern Prawn Dichmont, C.M, Jarrett, A., Hill, F., Brown, M. (2014 Controls. AFMA.	 Marine and Atmospheric Research, Brisbane, Australia. 115 p. Deng, R.A., Punt, A.E., Dichmont, C.M., Buckworth, R.C., Burridge, C.Y. (2014). Improving catch prediction for tiger prawns in the Australian northern prawn fishery, <i>ICES Journal of Marine Science</i>, 72(1): 117-129. Dichmont, C.M., Deng, R.A., Punt, A.E., Venables, W.N., Hutton, T. (2012). From input to output controls in a short-lived species: the case of Australia's Northern Prawn Fishery, <i>Marine and Freshwater Research</i>, 63(8): 727-739. Dichmont, C.M., Die, D., Punt, A.E., Venables, W., Bishop, J., Deng, A., Dell, Q. (2001). Risk Analysis and Sustainability Indicators for Prawn Stocks in the Northern Prawn Fishery. FRDC 98/109. Dichmont, C.M, Jarrett, A., Hill, F., Brown, M. (2014). Harvest Strategy for the Northern Prawn Fishery under Input Controls. AFMA. 									
	co-viability in the Australian northern prawn fisher Kenyon, R.A., Jarrett, A.E., Bishop, J.F.B., Taranto, T providing protocols and criteria for changing existir	 Gourguet, S., Thébaud, O., Jennings, S., Little, L.R., Dichmont, C.M., Pascoe, S., Deng, R.A., Doyen, L. (2016). The cost of co-viability in the Australian northern prawn fishery. <i>Environmental Modelling and Assessment</i>, 21(3): 371-389. Kenyon, R.A., Jarrett, A.E., Bishop, J.F.B., Taranto, T.J., Dichmont, C.M., Zhou, S. (2005). Documenting the history of and providing protocols and criteria for changing existing and establishing new closures in the NPF: Final Report to AFMA (AFMA Project R02/0881). AFMA Final Research Report. Australian Fisheries Management Authority. PO Box 7051 Canberra Business Centre, ACT, 2610. 									
	Kompas, T. and Chu, L. (2018). MEY for a short-lived 146.	Kompas, T. and Chu, L. (2018). MEY for a short-lived species: A neural network approach, <i>Fisheries Research</i> , 201: 138-146.									
	Canberra, 10 p. Pascoe, S., Coglan, L., Punt, A.E., Dichmont, C.M. (2	Pascoe, S., Coglan, L., Punt, A.E., Dichmont, C.M. (2012). Impacts of Vessel Capacity Reduction Programmes on Efficiency in Fisheries: the Case of Australia's Multispecies Northern Prawn Fishery, <i>Journal of Agricultural Economics</i> , 63(2): 425-									
	Pascoe, S., Dichmont, C.M., Vieira, S., Kompas, T., B	443. Pascoe, S., Dichmont, C.M., Vieira, S., Kompas, T., Buckworth, R.C., Carter, D. (2013). A Retrospective Evaluation of Sustainable Yields for Australia's Northern Prawn Fishery: An Alternative View, <i>Fisheries</i> , 38 (11): 502-508.									
	Pascoe, S., Hutton, T., Coglan, L., Nguyen, V.Q. (201 season for setting MEY-based trigger targets, <i>Austr</i>										

	Patterson, H., Noriega, R., Georgeson, L., Larcombe, J., Curtotti, R. (2017). <i>Fishery status reports 2017</i> , Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra. CC BY 4.0.
	Wang, Y.G. and Wang, N. (2012). A retrospective evaluation of sustainable yields for Australia's Northern Prawn Fishery, <i>Fisheries</i> , 37(9): 410-416.
	Bycatch projects
	Brewer, D., Heales, D., Milton, D., Dell, Q., Fry, G., Venables, B, Jones, P. (2006). The impact of turtle excluder devices and bycatch reduction devices on diverse tropical marine communities in Australia's northern prawn fishery. <i>Fisheries Research</i> , 81: 176-188.
	Buckworth, R.C., Deng, R.A., Plagányi, E.E., Punt, A., Upston, J., Pascoe, S., Miller, M. (2015). Northern Prawn Fishery RAG Assessments 2013–15. Final Report to the Australian Fisheries Management Authority, Research Project 2013/0005, June 2015.
	Burke, A., Barwick, M., Jarrett, A. (2012). Northern Prawn Fishery Bycatch Reduction Device Assessment. NPF Industry Pty Ltd.
	Dambacher, J.M., Rothlisberg, P.C., Loneragan, N.R. (2015). Qualitative mathematical models to support ecosystem- based management of Australia's Northern Prawn Fishery, <i>Ecological Applications</i> , 25(1): 278-298.
	Farmery, A., Garner, C., Green, B.S., Jennings, S., Watson, R. (2015). Life cycle assessment of wild capture prawns: expanding sustainability considerations in the Australian Northern Prawn Fishery, <i>Journal of Cleaner Production</i> , 87: 96-104.
	Fry, G., Laird, A., Lawrence, E., Miller, M., Tonks, M. (2018). Monitoring interactions with bycatch species using crew- member observer data collected in the Northern Prawn Fishery: 2014 – 2016. Final Report to AFMA; R2015/0812. CSIRO, Australia. 236 p.
	Laird, A. (2018). Northern Prawn Fishery Data Summary 2017. NPF Industry Pty Ltd, Australia.
	NORMAC (1998). Northern Prawn Fishery Bycatch Action Plan, Australian Fisheries Management Authority, Canberra, 21 p.
	NPF Industry Pty Ltd (2015). NPF Bycatch Strategy 2015 -2018.
	Stobutzki, I.C., Miller, M.J., Jones, P., Salini, J.P. (2001). Bycatch diversity and variation in a tropical Australian penaeid fishery: the implications for monitoring. <i>Fisheries Research</i> , 53: 283–301.
	Zhou, S. (2011). Sustainability assessment of fish species potentially impacted in the Northern Prawn Fishery: 2007- 2009. Report to the Australia Fisheries Management Authority, Canberra, Australia. February 2011.
	Habitat projects
	Haywood M., Hill B., Donovan A., Rochester W., Ellis N., Welna A., Gordon S., Cheers S., Forcey K., Mcleod I., Moeseneder C., Smith G., Manson F., Wassenberg T., Thomas S., Kuhnert P., Laslett G., Burridge C., Thomas S. (2005). Quantifying the effects of trawling on seabed fauna in the Northern Prawn Fishery. Final Report on FRDC Project 2002/102. CSIRO, Cleveland. 462 p.
	Bustamante, R.H., Dichmont, C.M., Ellis, N., Griffiths, S., Rochester, W.A., Burford, M.A., Rothlisberg, P.C., Dell, Q., Tonks, M., Lozano-Montes, H., Deng, R., Wassenberg, T., Okey, T.A., Revill, A., van der Velde, T., Moeseneder, C., Cheers, S., Donovan, A., Taranto, T., Salini, J., Fry, G., Tickell, S., Pascual, R., Smith, F., Morello, E. (2011). Effects of trawling on the benthos and biodiversity: Development and delivery of a Spatially-explicit Management Framework for the Northern Prawn Fishery. Final report to the project FRDC 2005/050. CSIRO Marine and Atmospheric Research, Cleveland. 382 p.
	Pitcher, C.R., Ellis, N., Althaus, F., Williams, A., McLeod, I., Bustamante, R., Kenyon, R., Fuller, M. (2016). Implications of current spatial management measures for AFMA ERAs for habitats — FRDC Project No 2014/204. CSIRO Oceans and Atmosphere, Published Brisbane. 50 p.
	Poiner I., Glaister J., Pitcher R., Burridge C., Wassenberg T., Gribble N., Hill B., Blaber S., Milton D., Brewer D., Ellis N. (1998). Environmental effects of prawn trawling in the Far Northern Section of the Great Barrier Reef: 1991-1996. Final Report to the Great Barrier Reef Marine Park Authority and the Fisheries Research and Development Corporation. 745p.
Legislative instruments and directions	Environment Protection and Biodiversity Conservation Act 1999. https://www.legislation.gov.au/Series/C2004A00485. FAO Code of Conduct for Responsible Fisheries. http://www.fao.org/docrep/005/v9878e/v9878e00.htm.
	United Nations Convention Law of the Sea. http://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf. United Nations Fish Stocks Agreement. http://www.un.org/Consts/log/convention_agreements/texts/fish_stocks_agreement/CONE164_37.htm
	http://www.un.org/Depts/los/convention_agreements/texts/fish_stocks_agreement/CONF164_37.htm

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components: key commercial and secondary commercial; byproduct/bycatch and protected species components. [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B1 and S2B2 Habitats]
- Community Component: community types. [Scoping document S2C1 and S2C2 Communities]

Ecological Units Assessed

Key commercial and secondary species:	2 (C1); 0 (C2)
Byproduct and bycatch species:	11 (BP); 520 (BC)
Protected species:	50
Habitats:	22 demersal, 1 pelagic
Communities:	11 (10 demersal, 1 pelagic)

Scoping Document S2A. Species

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.cmar.csiro.au/caab/

Key commercial/secondary commercial species

- *Key commercial species* defined in the Harvest Strategy Policy (HSP) Guidelines as a species that is, or has been, specifically targeted and is, or has been, a significant component of a fishery.
- Secondary commercial species commercial species that, while not specifically targeted, are commonly caught and generally retained, and comprise a significant component of a fishery's catch and economic return. These can include quota species in some fisheries.

Table 2.3. Key commercial (C1) and secondary commercial (C2) species list for the NPF Tiger Prawn sub-fishery. AFMA: refers to AFMA Logbook and/or Observer data.

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
C1	Invertebrate	Penaeidae	28711053	Penaeus semisulcatus	Grooved tiger prawn	AFMA
C1	Invertebrate	Penaeidae	28711044	Penaeus esculentus	Brown tiger prawn	AFMA

Byproduct species

List the byproduct species of the sub-fishery. Byproduct species refers to any species that are retained for sale but comprise a minor component of the fishery catch and economic return. Byproduct are considered to be commercial species under the CPFB 2000. This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

Table 2.4. Byproduct (BP) species list for the NPF Tiger Prawn sub-fishery. AFMA: refers to AFMA Logbook and/or Observer data.

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BP	Invertebrate	Penaeidae	28711026	Metapenaeus endeavouri	Blue endeavour prawn	AFMA
BP	Invertebrate	Penaeidae	28711027	Metapenaeus ensis	Red endeavour prawn	AFMA
ВР	Invertebrate	Scyllaridae	28821007	Thenus parindicus	Mud bug	AFMA
ВР	Invertebrate	Penaeidae	28711050	Penaeus merguiensis	White banana prawn	AFMA
ВР	Invertebrate	Loliginidae	No CAAB	Uroteuthis etheridgei	A squid	M. Dunning
ВР	Invertebrate	Loliginidae	No CAAB	Uroteuthis sp. 4 of Yeatman 1993	A squid	M. Dunning
ВР	Invertebrate	Penaeidae	28711045	Penaeus indicus	Redleg banana prawn	AFMA
ВР	Invertebrate	Penaeidae	28711047	Melicertus latisulcatus	Western king prawn	AFMA
BP	Invertebrate	Penaeidae	28711048	Melicertus longistylus	Redspot king prawn	AFMA; NPF RAG July 2019
BP	Invertebrate	Pectinidae	23270003	Amusium pleuronectes	Saucer scallop; mud scallop	AFMA
ВР	Invertebrate	Sepiidae	23607003	Sepia elliptica	Ovalbone cuttlefish	AFMA

Bycatch (discard) species

Bycatch species are species that are not retained (i.e. are discarded and includes catch that does not reach the deck of the vessel but which nonetheless is killed (or effected) as a result of the interaction with the fishing gear) and as such make no contribution to the value of the fishery. The term bycatch does *not* include discards of commercial species. Bycatch species are divided, for management purposes, into:

• *General bycatch species* (i.e. species of fish, sharks, invertebrates, etc. that are never retained for sale).

Table 2.5. Bycatch (BC) species list for the NPF Tiger Prawn sub-fishery. AFMA: refers to AFMA Logbook and/or Observer data.

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Invertebrate	Pteriidae	23236001	Pinctada albina	Pale pearl oyster	AFMA
BC	Invertebrate	Pteriidae	23236002	Pinctada margaritifera	Blacklip pearl oyster	AFMA
BC	Invertebrate	Pteriidae	23236003	Pinctada maxima	Silverlip pearl oyster	AFMA
BC	Invertebrate	Pteriidae	23236012	Pinctada imbricata fucata	A pearl oyster	AFMA
BC	Invertebrate	Pteriidae	23236029	Pinctada chemnitzi	A pearl oyster	AFMA
BC	Invertebrate	Ostreidae	23257001	Crassostrea gigas	Pacific oyster	AFMA
BC	Invertebrate	Pectinidae	23270004	Annachlamys flabellata	Fan scallop	AFMA
BC	Invertebrate	Sepiidae	23607007	Sepia papuensis	Papuan cuttlefish	AFMA
BC	Invertebrate	Sepiidae	23607008	Sepia pharaonis	Pharaoh cuttlefish	AFMA
BC	Invertebrate	Sepiidae	23607011	Sepia whitleyana	Whitley's cuttlefish	AFMA
BC	Invertebrate	Sepiidae	23607013	Sepia smithi	A cuttlefish	AFMA
BC	Invertebrate	Loliginidae	23617006	Sepioteuthis lessoniana	Northern calamari	AFMA
BC	Invertebrate	Loliginidae	23617010	Uroteuthis noctiluca	Luminous bay squid	AFMA
BC	Invertebrate	Loliginidae	No CAAB	Uroteuthis sp. 1	A squid	M. Dunning (Queensland Museum)
BC	Invertebrate	Loliginidae	No CAAB	Uroteuthis sp. 2	A squid	M. Dunning (Queensland Museum)
BC	Invertebrate	Octopodidae	23659021	Octopus cyanea	Day octopus	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Invertebrate	Octopodidae	23659039	Octopus sp. A (other names: O. membranaceus which is a misidentification)	An octopus	AFMA
BC	Invertebrate	Volutidae	24207003	Cymbiola cymbiola	A volute	AFMA
BC	Invertebrate	Volutidae	24207004	Cymbiola sophia	A volute	AFMA
BC	Invertebrate	Volutidae	24207015	Volutoconus bednalli	A volute	AFMA
BC	Invertebrate	Volutidae	24207016	Volutoconus grossi	A volute	AFMA
BC	Invertebrate	Volutidae	24207030	Amoria maculata	A volute	AFMA
BC	Invertebrate	Volutidae	24207036	Amoria turneri	A volute	AFMA
BC	Invertebrate	Volutidae	24207059	Cymbiola flavicans	A volute	AFMA
ВС	Invertebrate	Volutidae	24207067	Cymbiola rutila	A volute	AFMA
BC	Invertebrate	Volutidae	24207108	Cymbiola pulchra cracenta	A volute	AFMA
BC	Invertebrate	Volutidae	24207118	Amoria damoni ludbrookae	A volute	AFMA
BC	Invertebrate	Luidiidae	25105003	Luidia hardwicki	Seastar	AFMA
BC	Invertebrate	Luidiidae	25105005	Luidia maculata	Seastar	AFMA
BC	Invertebrate	Goniasteridae	25122010	Iconaster longimanus	Seastar	AFMA
BC	Invertebrate	Goniasteridae	25122026	Stellaster childreni	Seastar	AFMA
BC	Invertebrate	Archasteridae	25124002	Archaster typicus	Seastar	AFMA
BC	Invertebrate	Oreasteridae	25127018	Anthenea tuberculosa	Seastar	AFMA
ВС	Invertebrate	Pterasteridae	25139001	Euretaster insignis	Seastar	AFMA
BC	Invertebrate	Echinasteridae	25143013	Metrodira subulata	Seastar	AFMA
BC	Invertebrate	Diadematidae	25211004	Chaetodiadema granulatum	Sea urchin	AFMA
BC	Invertebrate	Laganidae	25266005	Peronella lesueuri	Sand dollar	AFMA
BC	Invertebrate	Cucumariidae	25408007	Cercodemas anceps	Sea cucumber	AFMA
BC	Invertebrate	Cucumariidae	25408031	Psuedocolochirus axiologus	Selenka's sea cucumber	AFMA
BC	Invertebrate	Holothuriidae	25416003	Holothuria atra	Lolly fish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Invertebrate	Holothuriidae	25416004	Holothuria scabra	Sand fish	AFMA
BC	Invertebrate	Holothuriidae	25416029	Holothuria martensi	Sea cucumber	AFMA
ВС	Invertebrate	Holothuriidae	25416030	Holothuria ocellata	Sea cucumber	AFMA
BC	Invertebrate	Holothuriidae	25416031	Holothuria lessoni	Golden sandfish	AFMA
BC	Invertebrate	Holothuriidae	25416032	Holothuria fuscopunctata	Elephant's trunk fish	AFMA
BC	Invertebrate	Holothuriidae	25416033	Holothuria whitmaei	Black teatfish	AFMA
BC	Invertebrate	Holothuriidae	25416039	Holothuria flavomaculata	Sea cucumber	AFMA
BC	Invertebrate	Holothuriidae	25416050	Holothuria arenicola	Sea cucumber	AFMA
ВС	Invertebrate	Holothuriidae	25416064	Actinopyga spinea	Burrowing blackfish	AFMA
BC	Invertebrate	Stichopodidae	25417004	Thelenota anax	Amberfish	AFMA
BC	Invertebrate	Stichopodidae	25417006	Stichopus herrmanni	Curryfish	AFMA
BC	Invertebrate	Stichopodidae	25417007	Stichupus horrens	A curryfish	AFMA
BC	Invertebrate	Stichopodidae	25417011	Stichopus naso	Seacumber	AFMA
ВС	Invertebrate	Eurysquillidae	28035004	Manningia notialis	A mantis shrimp	AFMA
BC	Invertebrate	Eurysquillidae	28035005	Manningia raymondi		AFMA
BC	Invertebrate	Odontodactylidae	28038001	Odontodactylus cultrifer		AFMA
BC	Invertebrate	Lysiosquillidae	28046004	Lysiosquilla tredecimdentata		AFMA
BC	Invertebrate	Nannosquillidae	28047002	Acanthosquilla multifasciata		AFMA
BC	Invertebrate	Squillidae	28051013	Carinosquilla carita		AFMA
BC	Invertebrate	Squillidae	28051016	Clorida albolitura	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051017	Clorida bombayensis	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051018	Clorida depressa	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051019	Clorida granti	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051023	Cloridina chlorida		AFMA
BC	Invertebrate	Squillidae	28051025	Cloridina moluccensis		AFMA
BC	Invertebrate	Squillidae	28051030	Dictyosquilla tuberculata	Warty Mantis Shrimp	AFMA
BC	Invertebrate	Squillidae	28051033	Erugosquilla woodmasoni	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051035	Harpiosquilla annandalei		AFMA

BC BC	Invertebrate	Squillidae				
BC		•	28051036	Harpiosquilla harpax	A mantis shrimp	AFMA
	Invertebrate	Squillidae	28051037	Harpiosquilla melanoura		AFMA
BC	Invertebrate	Squillidae	28051039	Harpiosquilla stephensoni	Stephenson's mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051041	Lenisquilla lata		AFMA
BC	Invertebrate	Squillidae	28051042	Levisquilla inermis		AFMA
BC	Invertebrate	Squillidae	28051046	Miyakea nepa	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051050	Oratosquillina gravieri	A mantis shrimp	AFMA
BC	Invertebrate	Squillidae	28051051	Oratosquillina inornata		AFMA
BC	Invertebrate	Squillidae	28051052	Oratosquillina interrupta		AFMA
BC	Invertebrate	Squillidae	28051054	Oratosquillina quinquedentata	A mantis shrimp	AFMA
BC	Invertebrate	Penaeidae	28711003	Atypopenaeus formosus	Orange prawn	AFMA
BC	Invertebrate	Penaeidae	28711004	Atypopenaeus stenodactylus	Periscope prawn	AFMA
BC	Invertebrate	Penaeidae	28711016	Metapenaeopsis novaeguineae	Northern velvet prawn	AFMA
BC	Invertebrate	Penaeidae	28711017	Metapenaeopsis palmensis	Southern velvet prawn	AFMA
BC	Invertebrate	Penaeidae	28711029	Metapenaeus macleayi	School prawn	AFMA
BC	Invertebrate	Penaeidae	28711031	Kishinouyepenaeopsis cornuta	Coral prawn	AFMA
BC	Invertebrate	Penaeidae	28711051	Penaeus monodon	Black tiger prawn - Leader prawn	AFMA
BC	Invertebrate	Penaeidae	28711054	Trachypenaeus anchoralis	Northern rough prawn	AFMA
BC	Invertebrate	Penaeidae	28711055	Trachysalambria crosnieri	Southern rough prawn	AFMA
BC	Invertebrate	Penaeidae	28711057	Megokris gonospinifer	Rough prawn	AFMA
BC	Invertebrate	Penaeidae	28714011	Solenocera australiana	Coral prawn	AFMA
BC	Invertebrate	Nephropidae	28786001	Metanephrops australiensis	Australian scampi	AFMA
BC	Invertebrate	Nephropidae	28786002	Metanephrops boschmai	Boschma's scampi	AFMA
BC	Invertebrate	Nephropidae	28786004	Metanephrops sibogae	Siboga scampi	AFMA
BC	Invertebrate	Palinuridae	28820006	Panulirus ornatus	Ornate rocklobster	AFMA
BC	Invertebrate	Palinuridae	28820013	Panulirus versicolor	Painted rocklobster - Green cray	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Invertebrate	Scyllaridae	28821005	Scyllarides haanii	Aesop slipper lobster	AFMA
BC	Invertebrate	Scyllaridae	28821008	Thenus australiensis	Sandbug	AFMA
BC	Invertebrate	Scyllaridae	28821013	Petrarctus rugosus	Slipper lobster	AFMA
BC	Invertebrate	Scyllaridae	28821015	Petrarctus demani	Shovel-nosed lobster; slipper lobster	AFMA
BC	Invertebrate	Portunidae	28911001	Charybdis feriata	Crucifix crab	AFMA
BC	Invertebrate	Portunidae	28911005	Portunus armatus	Blue swimmer crab	AFMA
BC	Invertebrate	Portunidae	28911006	Portunus sanguinolentus	three-spotted crab	AFMA
BC	Invertebrate	Portunidae	28911014	Podophthalmus vigil	Sentinel crab	AFMA
BC	Chondrichthyan	Alopiidae	37012001	Alopias vulpinus	Thresher shark	AFMA
BC	Chondrichthyan	Stegostomatidae	37013006	Stegostoma fasciatum	Zebra shark	AFMA
BC	Chondrichthyan	Hemiscylliidae	37013008	Chiloscyllium punctatum	Brownbanded bambooshark	AFMA
BC	Chondrichthyan	Ginglymostomatidae	37013010	Nebrius ferrugineus	Tawny shark	AFMA
BC	Chondrichthyan	Ginglymostomatidae	37013012	Sutorectus tentaculatus	Cobbler wobbegong	AFMA
BC	Chondrichthyan	Scyliorhinidae	37015007	Cephaloscyllium fasciatum	Reticulated swellshark	AFMA
BC	Chondrichthyan	Scyliorhinidae	37015027	Asymbolus analis	Australian spotted catshark	AFMA
BC	Chondrichthyan	Scyliorhinidae	37015028	Atelomycterus macleayi	Australian marbled catshark	AFMA
BC	Chondrichthyan	Scyliorhinidae	37015029	Aulohalaelurus labiosus	Australian blackspot catshark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018005	Loxodon macrorhinus	Sliteye shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018006	Rhizoprionodon acutus	Milk shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018007	Carcharhinus plumbeus	Sandbar shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018009	Carcharhinus coatesi	Whitecheek shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018013	Carcharhinus sorrah	Spot-tail shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018014	Carcharhinus tilstoni	Australian blacktip shark	AFMA
BC	Chondrichthyan	Hemigaleidae	37018020	Hemigaleus australiensis	Sicklefin weasel shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018022	Galeocerdo cuvier	Tiger shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018023	Carcharhinus brevipinna	Spinner shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018024	Rhizoprionodon taylori	Australian sharpnose shark	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Chondrichthyan	Carcharhinidae	37018025	Carcharhinus macloti	Hardnose shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018030	Carcharhinus amblyrhynchos	Grey reef shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018034	Carcharhinus cautus	Nervous shark	AFMA
BC	Chondrichthyan	Carcharhinidae	37018035	Carcharhinus fitzroyensis	Creek whaler	AFMA
BC	Chondrichthyan	Carcharhinidae	37018039	Carcharhinus limbatus	Blacktip shark	AFMA
BC	Chondrichthyan	Sphyrnidae	37019001	Sphyrna lewini	Scalloped hammerhead	AFMA
BC	Chondrichthyan	Sphyrnidae	37019002	Sphyrna mokarran	Great hammerhead	AFMA
BC	Chondrichthyan	Sphyrnidae	37019003	Eusphyra blochii	Winghead shark	AFMA
BC	Chondrichthyan	Centrophoridae	37020001	Centrophorus moluccensis	Endeavour dogfish	AFMA
BC	Chondrichthyan	Dalatiidae	37020002	Dalatias licha	Black shark	AFMA
BC	Chondrichthyan	Squalidae	37020008	Squalus acanthias	Whitespotted spurdog	AFMA
BC	Chondrichthyan	Rhinidae	37026002	Rhina ancylostoma	Shark ray	AFMA
BC	Chondrichthyan	Rhinobatidae	37026005	Rhynchobatus australiae	Whitespotted guitarfish	AFMA
BC	Chondrichthyan	Glaucostegidae	37027010	Glaucostegus typus	Giant Shovelnose ray	AFMA
BC	Chondrichthyan	Dasyatidae	37035004	Neotrygon australiae	Bluespotted maskray	AFMA
BC	Chondrichthyan	Dasyatidae	37035011	Pastinachus ater	Cowtail stingray	AFMA
BC	Chondrichthyan	Dasyatidae	37035012	Neotrygon annotata	Plain maskray	AFMA
BC	Chondrichthyan	Dasyatidae	37035013	Neotrygon leylandi	Painted maskray	AFMA
BC	Chondrichthyan	Dasyatidae	37035020	Maculabatis astra [synomym: Himantura astra or H. toshi]	Black-spotted whipray	AFMA
BC	Chondrichthyan	Dasyatidae	37035022	Maculabatis toshi [synonym: Himantura toshi or H. sp A.]	Brown whipray	AFMA
BC	Chondrichthyan	Dasyatidae	37035023	Urogymnus dalyensis	Freshwater whipray	AFMA
BC	Chondrichthyan	Dasyatidae	37035025	Pateobatis jenkinsii	Jenkins' whipray	AFMA
BC	Chondrichthyan	Dasyatidae	37035026	Himantura leoparda	Leopard whipray	AFMA
BC	Chondrichthyan	Dasyatidae	37035027	Urogymnus asperrimus	Porcupine ray	AFMA
BC	Chondrichthyan	Dasyatidae	37035028	Megatrygon microps	Smalleye stingray	AFMA
BC	Chondrichthyan	Dasyatidae	37035030	Neotrygon ningalooensis	Ningaloo maskray	AFMA

ROLE IN FISHERY						
BC	TAXA NAME Chondrichthyan	FAMILY NAME Gymnuridae	CAAB CODE 37037001	SCIENTIFIC NAME Gymnura australis	COMMON NAME Australian butterfly ray	SOURCE AFMA
BC	Chondrichthyan	Myliobatididae	37039002	Aetomylaeus caeruleofasciatus	Banded eagle ray	AFMA
		•		, ,		
ВС	Chondrichthyan	Myliobatididae	37039003	Aetobatus ocellatus	Spotted eagle ray	AFMA
BC	Chondrichthyan	Myliobatididae	37039005	Aetomylaeus vespertilio	Ornate eagle ray	AFMA
BC	Teleost	Megalopidae	37054001	Megalops cyprinoides	Indo-Pacific tarpon	AFMA
BC	Teleost	Muraenesocidae	37063002	Muraenesox cinereus	Daggertooth pike conger	AFMA
BC	Teleost	Congridae	37067015	Conger cinereus	Blacklip conger	AFMA
BC	Teleost	Ophichthidae	37068017	Ichthyapus vulturis	Vulture eel	AFMA
BC	Teleost	Ophichthidae	37068033	Phyllopichthus xenodontus	Flappy snake eel	AFMA
BC	Teleost	Clupeidae	37085006	Amblygaster sirm	Spotted sardinella	AFMA
BC	Teleost	Clupeidae	37085007	Herklotsichthys koningsbergeri	Largespotted herring	AFMA
BC	Teleost	Pristgasteridae	37085009	Pellona ditchela	Indian pellona	AFMA
BC	Teleost	Clupeidae	37085010	Dussumieria elopsoides	Slender rainbow sardine	AFMA
BC	Teleost	Pristgasteridae	37085012	Ilisha lunula	Longtail Ilisha	AFMA
BC	Teleost	Clupeidae	37085013	Sardinella gibbosa	Goldstripe sardinella	AFMA
BC	Teleost	Clupeidae	37085014	Sardinella albella	White sardinella	AFMA
BC	Teleost	Clupeidae	37085015	Anodontostoma chacunda	Chacunda gizzard shad	AFMA
BC	Teleost	Clupeidae	37085016	Nematalosa come	Western Pacific gizzard shad	AFMA
ВС	Teleost	Clupeidae	37085025	Herklotsichthys quadrimaculatus	Goldspot herring	AFMA
BC	Teleost	Clupeidae	37085028	Sardinella brachysoma	Deepbody sardinella	AFMA
BC	Teleost	Clupeidae	37085030	Spratelloides gracilis	Silver-stripe round herring	AFMA
BC	Teleost	Engraulidae	37086002	Encrasicholina punctifer	Buccaneer anchovy	AFMA
BC	Teleost	Engraulidae	37086004	Thryssa setirostris	Longjaw thryssa	AFMA
BC	Teleost	Engraulidae	37086005	Thryssa hamiltonii	Hamilton's thryssa	AFMA
BC	Teleost	Engraulidae	37086006	Stolephorus indicus	Indian anchovy	AFMA
BC	Teleost	Engraulidae	37086008	Setipinna tenuifilis	Common hairfin anchovy	AFMA
BC	Teleost	Chirocentridae	37087001	Chirocentrus dorab	Dorab wolf herring	AFMA
BC	Teleost	Synodontidae	37118001	Saurida undosquamis	Brushtooth lizardfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Synodontidae	37118002	Trachinocephalus trachinus	Snakefish	AFMA
BC	Teleost	Synodontidae	37118005	Saurida argentea	Shortfin saury	AFMA
BC	Teleost	Synodontidae	37118023	Synodus variegatus	Variegated lizardfish	AFMA
BC	Teleost	Synodontidae	37118028	Saurida tumbil	Common saury	AFMA
BC	Teleost	Synodontidae	37119001	Harpadon translucens	Glassy Bombay duck	AFMA
BC	Teleost	Synodontidae	37119750	Harpadon nehereus	Bombay duck	AFMA
BC	Teleost	Myctophidae	37122079	Benthosema pterotum	Opaline lanternfish	AFMA
BC	Teleost	Ariidae	37188001	Netuma thalassina	Giant sea catfish	AFMA
BC	Teleost	Ariidae	37188006	Arius leptaspis	Salmon catfish	AFMA
BC	Teleost	Ariidae	37188013	Plicofollis nella	Shieldhead catfish	AFMA
BC	Teleost	Plotosidae	37192002	Plotosus lineatus	Striped catfish	AFMA
BC	Teleost	Plotosidae	37192003	Euristhmus nudiceps	Nakedhead catfish	AFMA
BC	Teleost	Plotosidae	37192004	Euristhmus lepturus	Longtail catfish	AFMA
BC	Teleost	Batrachoididae	37205002	Halophryne diemensis	Banded frogfish	AFMA
BC	Teleost	Batrachoididae	37205003	Batrachomoeus trispinosus	Threespine frogfish	AFMA
BC	Teleost	Batrachoididae	37205004	Batrachomoeus sp. [in Sainsbury et al, 1985]	A frogfish	AFMA
BC	Teleost	Lophiidae	37208001	Lophiomus setigerus	Broadhead goosefish	AFMA
BC	Teleost	Antennariidae	37210003	Tathicarpus butleri	Butler's frogfish	AFMA
BC	Teleost	Tetrabrachidae	37210010	Tetrabrachium ocellatum	Humpback anglerfish	AFMA
BC	Teleost	Antennariidae	37210011	Antennarius nummifer	Spotfin frogfish	AFMA
BC	Teleost	Bregmacerotidae	37225002	Bregmaceros mcclellandi	Unicorn codlet	AFMA
BC	Teleost	Bregmacerotidae	37225003	Bregmaceros atlanticus	Antenna codlet	AFMA
BC	Teleost	Ophidiidae	37228005	Sirembo imberbis	Golden cusk	AFMA
BC	Teleost	Exocoetidae	37233004	Cheilopogon arcticeps	Bearhead flyingfish	AFMA
BC	Teleost	Exocoetidae	37233005	Cheilopogon cyanopterus	Margined flyingfish	AFMA
BC	Teleost	Exocoetidae	37233006	Cheilopogon heterurus	Piebald flyingfish	AFMA
BC	Teleost	Exocoetidae	37233007	Cheilopogon abei	Abe's flyingfish	AFMA
BC	Teleost	Exocoetidae	37233009	Cheilopogon spilopterus	Manyspot flyingfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Exocoetidae	37233010	Cypselurus poecilopterus	Yellow-wing flyingfish	AFMA
BC	Teleost	Exocoetidae	37233011	Exocoetus monocirrhus	Barbel flyingfish	AFMA
BC	Teleost	Exocoetidae	37233014	Hirundichthys oxycephalus	Bony flyingfish	AFMA
BC	Teleost	Exocoetidae	37233016	Parexocoetus brachypterus	Sailfin flyingfish	AFMA
BC	Teleost	Exocoetidae	37233017	Cheilopogon suttoni	Sutton's flyingfish	AFMA
BC	Teleost	Exocoetidae	37233020	Cheilopogon intermedius	Intermediate flyingfish	AFMA
BC	Teleost	Exocoetidae	37233021	Cheilopogon katoptron	Indonesian flyingfish	AFMA
BC	Teleost	Exocoetidae	37233022	Cheilopogon spilonotopterus	Stained flyingfish	AFMA
BC	Teleost	Exocoetidae	37233025	Cypselurus hexazona	Darkbar flyingfish	AFMA
BC	Teleost	Exocoetidae	37233026	Cypselurus naresii	Pharao flyingfish	AFMA
BC	Teleost	Exocoetidae	37233027	Cypselurus oligolepis	Largescale flyingfish	AFMA
BC	Teleost	Exocoetidae	37233028	Cheilopogon olgae	A flyingfish	AFMA
BC	Teleost	Hemiramphidae	37234016	Hyporhamphus affinis	Tropical garfish	AFMA
BC	Teleost	Atherinidae	37246009	Atherinomorus lacunosus	Slender hardyhead	AFMA
BC	Teleost	Holocentridae	37261002	Myripristis murdjan	Pinecone soldierfish	AFMA
BC	Teleost	Veliferidae	37269002	Velifer hypselopterus	Sailfin velifer	AFMA
BC	Teleost	Trachipteridae	37271002	Desmodema polystictum	Spotted ribbonfish	AFMA
BC	Teleost	Fistularidae	37278001	Fistularia commersonii	Smooth flutemouth	AFMA
BC	Teleost	Fistularidae	37278002	Fistularia petimba	Red cornetfish	AFMA
BC	Teleost	Centriscidae	37280001	Centriscus scutatus	Grooved razorfish	AFMA
BC	Teleost	Centriscidae	37280002	Centriscus cristatus	Smooth razorfish	AFMA
BC	Teleost	Synbranchidae	37285001	Monopterus albus	Lai	AFMA
BC	Teleost	Scorpaenidae	37287010	Dendrochirus brachypterus	Shortfin turkeyfish	AFMA
BC	Teleost	Apistidae	37287011	Apistus carinatus	Longfin waspfish	AFMA
BC	Teleost	Tetraarogidae	37287014	Cottapistus cottoides	Marbled stingfish	AFMA
BC	Teleost	Synanceiidae	37287021	Minous versicolor	Plumbstriped stingfish	AFMA
BC	Teleost	Synanceiidae	37287022	Erosa erosa	Pacific monkeyfish	AFMA
BC	Teleost	Apistidae	37287033	Apistops caloundra	Shortfin waspfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Scorpaenidae	37287040	Pterois volitans	Red lionfish	AFMA
BC	Teleost	Synanceiidae	37287055	Inimicus caledonicus	Demon stingerfish	AFMA
BC	Teleost	Tetrarogidae	37287060	Paracentropogon vespa	Wasp roguefish	AFMA
BC	Teleost	Scorpaenidae	37287101	Brachypterois serrulifer	Sawcheek scorpionfish	AFMA
BC	Teleost	triglidae	37288016	Lepidotrigla russelli	Smooth gurnard	AFMA
BC	Teleost	Aploactinidae	37290004	Adventor elongatus	Sandpaper velvetfish	AFMA
BC	Teleost	Aploactinidae	37290012	Peristrominous dolosus	Deceitful velvetfish	AFMA
BC	Teleost	Aploactinidae	37290017	Acanthosphex leurynnis	Wasp-spine velvetfish	AFMA
BC	Teleost	Platycephalidae	37296010	Inegocia harrisii	Harris' flathead	AFMA
BC	Teleost	Platycephalidae	37296011	Ratabulus diversidens	Orange-freckled flathead	AFMA
BC	Teleost	Platycephalidae	37296013	Elates ransonnettii	Dwarf flathead	AFMA
BC	Teleost	Platycephalidae	37296018	Cociella hutchinsi	Brownmargin flathead	AFMA
BC	Teleost	Platycephalidae	37296020	Platycephalus westraliae	Yellowtail flathead	AFMA
BC	Teleost	Platycephalidae	37296023	Cymbacephalus nematophthalmus	Fringe-eye flathead	AFMA
BC	Teleost	Platycephalidae	37296024	Rogadius asper	Olive-tail flathead	AFMA
BC	Teleost	Platycephalidae	37296029	Inegocia japonica	Japanese flathead	AFMA
BC	Teleost	Platycephalidae	37296033	Platycephalus australis	Bartail flathead	AFMA
BC	Teleost	Dactylopteridae	37308004	Dactyloptena orientalis	Purple flying gurnard	AFMA
BC	Teleost	Pegasidae	37309002	Pegasus volitans	Longtail seamouth	AFMA
BC	Teleost	Serranidae	37311007	Epinephelus coioides	Orange-spotted grouper	AFMA
BC	Teleost	Serranidae	37311008	Cephalopholis boenak	Brown banded rock-cod	AFMA
BC	Teleost	Serranidae	37311009	Epinephelus areolatus	Areolate grouper	AFMA
BC	Teleost	Serranidae	37311012	Plectropomus maculatus	Barcheek coral trout	AFMA
BC	Teleost	Serranidae	37311015	Epinephelus amblycephalus	Banded grouper	AFMA
BC	Teleost	Serranidae	37311017	Epinephelus sexfasciatus	Sixbar grouper	AFMA
BC	Teleost	Serranidae	37311021	Epinephelus fuscoguttatus	Flowery rockcod	AFMA
BC	Teleost	Acropomatidae	37311028	Parascombrops philippinensis was: Synagrops philippinensis	Sharptooth seabass	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Centrogeniidae	37311030	Centrogenys vaigiensis	False scorpionfish	AFMA
BC	Teleost	Serranidae	37311041	Epinephelus bleekeri	Duskytail grouper	AFMA
BC	Teleost	Serranidae	37311057	Epinephelus tauvina	Greasy grouper	AFMA
BC	Teleost	Serranidae	37311061	Epinephelus lanceolatus	Giant grouper	AFMA
BC	Teleost	Serranidae	37311078	Plectropomus leopardus	Common coral trout	AFMA
BC	Teleost	Serranidae	37311079	Plectropomus laevis	Bluespotted coral trout	AFMA
BC	Teleost	Glaucosomatidae	37320002	Glaucosoma magnificum	Threadfin pearl perch	AFMA
BC	Teleost	Terapontidae	37321001	Pelates quadrilineatus	Fourlined terapon	AFMA
BC	Teleost	Terapontidae	37321002	Terapon jarbua	Jarbua terapon	AFMA
BC	Teleost	Terapontidae	37321003	Terapon theraps	Largescaled terapon	AFMA
BC	Teleost	Terapontidae	37321006	Terapon puta	Spinycheek grunter	AFMA
BC	Teleost	Terapontidae	37321019	Mesopristes argenteus	Silver grunter	AFMA
BC	Teleost	Priacanthidae	37326001	Priacanthus macracanthus	Red bigeye	AFMA
BC	Teleost	Priacanthidae	37326003	Priacanthus tayenus	Purple-spotted bigeye	AFMA
BC	Teleost	Priacanthidae	37326005	Priacanthus hamrur	Lunartail bigeye	AFMA
BC	Teleost	Priacanthidae	37326008	Heteropriacanthus cruentatus	Blotched bigeye	AFMA
BC	Teleost	Apogonidae	37327013	Jaydia truncata	Flagfin cardinalfish	AFMA
BC	Teleost	Apogonidae	37327014	Ozichthys albimaculosus	Creamspotted cardinalfish	AFMA
BC	Teleost	Apogonidae	37327016	Jaydia melanopus	Monster cardinalfish	AFMA
BC	Teleost	Apogonidae	37327026	Jaydia poecilopterus	Pearlyfin cardinalfish	AFMA
BC	Teleost	Apogonidae	37327028	Ostorhinchus cavitiensis	Yellow cardinalfish	AFMA
BC	Teleost	Sillaginidae	37330005	Sillago robusta	Stout whiting	AFMA
BC	Teleost	Sillaginidae	37330006	Sillago sihama	Northern whiting	AFMA
BC	Teleost	Sillaginidae	37330015	Sillago maculata	Trumpeter whiting	AFMA
BC	Teleost	Lactariidae	37333001	Lactarius lactarius	False trevally	AFMA
BC	Teleost	Rachycentridae	37335001	Rachycentron canadum	Cobia	AFMA
BC	Teleost	Echeneidae	37336001	Echeneis naucrates	Live sharksucker	AFMA
BC	Teleost	Carangidae	37337005	Carangoides malabaricus	Malabar trevally	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Carangidae	37337008	Selar boops	Oxeye scad	AFMA
BC	Teleost	Carangidae	37337009	Selar crumenophthalmus	Bigeye Scad	AFMA
BC	Teleost	Carangidae	37337010	Alepes apercna	Smallmouth scad	AFMA
BC	Teleost	Carangidae	37337011	Carangoides chrysophrys	Longnose trevally	AFMA
BC	Teleost	Carangidae	37337012	Gnathanodon speciosus	Golden trevally	AFMA
BC	Teleost	Carangidae	37337014	Seriolina nigrofasciata	Blackbanded trevally	AFMA
BC	Teleost	Carangidae	37337015	Selaroides leptolepis	Yellowstripe scad	AFMA
BC	Teleost	Carangidae	37337016	Caranx bucculentus	Bluespotted trevally	AFMA
BC	Teleost	Carangidae	37337017	Decapterus macrosoma	Shortfin scad	AFMA
BC	Teleost	Carangidae	37337018	Alectis ciliaris	African pompano	AFMA
BC	Teleost	Carangidae	37337020	Uraspis uraspis	Whitemouth jack	AFMA
BC	Teleost	Carangidae	37337021	Carangoides caeruleopinnatus	Coastal trevally	AFMA
BC	Teleost	Carangidae	37337022	Carangoides gymnostethus	Bludger	AFMA
BC	Teleost	Carangidae	37337024	Atule mate	Barred yellowtail scad	AFMA
BC	Teleost	Carangidae	37337027	Caranx ignobilis	Giant trevally	AFMA
BC	Teleost	Carangidae	37337028	Megalaspis cordyla	Torpedo scad	AFMA
BC	Teleost	Carangidae	37337031	Carangoides humerosus	Duskyshoulder trevally	AFMA
BC	Teleost	Carangidae	37337032	Scomberoides commersonnianus	Talang queenfish	AFMA
BC	Teleost	Carangidae	37337036	Alepes kleinii	Razorbelly trevally	AFMA
BC	Teleost	Carangidae	37337037	Carangoides fulvoguttatus	Yellowspotted trevally	AFMA
BC	Teleost	Carangidae	37337038	Alectis indica	Indian threadfish	AFMA
BC	Teleost	Carangidae	37337039	Caranx sexfasciatus	Bigeye trevally	AFMA
BC	Teleost	Carangidae	37337041	Ulua aurochs	Silvermouth trevally	AFMA
BC	Teleost	Carangidae	37337042	Carangoides hedlandensis	Bumpnose trevally	AFMA
BC	Teleost	Carangidae	37337043	Carangoides talamparoides	Whitetongue trevally; Imposter trevally	AFMA
BC	Teleost	Carangidae	37337044	Scomberoides tol	Needlescaled queenfish	AFMA
BC	Teleost	Carangidae	37337045	Scomberoides tala	Barred queenfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Carangidae	37337047	Pantolabus radiatus	Fringefin trevally	AFMA
BC	Teleost	Carangidae	37337048	Ulua mentalis	Longrakered trevally	AFMA
BC	Teleost	Carangidae	37337055	Decapterus macarellus	Mackerel scad	AFMA
BC	Teleost	Carangidae	37337064	Caranx papuensis	Brassy trevally	AFMA
BC	Teleost	Carangidae	37337067	Alepes vari	Herring scad	AFMA
BC	Teleost	Carangidae	37337068	Carangoides ferdau	Blue trevally	AFMA
BC	Teleost	Carangidae	37337072	Parastromateus niger	Black pomfret	AFMA
BC	Teleost	Coryphaenidae	37338002	Coryphaena equiselis	Pompano mahi mahi	AFMA
BC	Teleost	Menidae	37340001	Mene maculata	Moonfish	AFMA
BC	Teleost	Leiognathidae	37341002	Photopectoralis bindus	Orangefin ponyfish	AFMA
BC	Teleost	Leiognathidae	37341004	Aurigequula longispins	Longspine ponyfish	AFMA
BC	Teleost	Leiognathidae	37341005	Equulites leuciscus	Whipfin ponyfish	AFMA
BC	Teleost	Leiognathidae	37341006	Secutor insidiator	Pugnose ponyfish	AFMA
BC	Teleost	Leiognathidae	37341007	Gazza minuta	Toothpony	AFMA
BC	Teleost	Leiognathidae	37341009	Aurigequula fasciata	Striped ponyfish	AFMA
BC	Teleost	Leiognathidae	37341010	Eubleekeria splendens	Splendid ponyfish	AFMA
BC	Teleost	Leiognathidae	37341013	Nuchequula glenysae	Twoblotch ponyfish	AFMA
BC	Teleost	Leiognathidae	37341014	Leiognathus equulus	Common ponyfish	AFMA
BC	Teleost	Leiognathidae	37341015	Leiognathus ruconius	Deep pugnosed ponyfish	AFMA
BC	Teleost	Bramidae	37342001	Brama brama	Ray's bream	AFMA
BC	Teleost	Lutjanidae	37346002	Pristipomoides multidens	Goldbanded Jobfish	AFMA
BC	Teleost	Lutjanidae	37346003	Lutjanus vitta	Brownstripe red snapper	AFMA
BC	Teleost	Lutjanidae	37346004	Lutjanus sebae	Red emperor	AFMA
BC	Teleost	Lutjanidae	37346005	Lutjanus erythropterus	Crimson snapper	AFMA
BC	Teleost	Lutjanidae	37346007	Lutjanus malabaricus	Saddletail snapper	AFMA
BC	Teleost	Lutjanidae	37346008	Lutjanus lutjanus	Bigeye snapper	AFMA
BC	Teleost	Lutjanidae	37346015	Lutjanus argentimaculatus	Mangrove Jack	AFMA
BC	Teleost	Lutjanidae	37346019	Pristipomoides typus	Sharptooth jobfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Lutjanidae	37346030	Lutjanus johnii	Golden snapper	AFMA
BC	Teleost	Lutjanidae	37346032	Pristipomoides filamentosus	Rosy snapper	AFMA
BC	Teleost	Lutjanidae	37346034	Lutjanus fulviflamma	Blackspot snapper	AFMA
BC	Teleost	Lutjanidae	37346043	Lutjanus fulvus	Blacktail snapper	AFMA
BC	Teleost	Lutjanidae	37346045	Lutjanus monostigma	Onespot snapper	AFMA
BC	Teleost	Nemipteridae	37347003	Nemipterus peronii	Notchedfin threadfin bream	AFMA
BC	Teleost	Nemipteridae	37347006	Scolopsis monogramma	Monogrammed monocle bream	AFMA
BC	Teleost	Nemipteridae	37347008	Scolopsis taenioptera	Lattice monocle bream	AFMA
BC	Teleost	Nemipteridae	37347014	Nemipterus hexodon	Ornate threadfin bream	AFMA
BC	Teleost	Nemipteridae	37347018	Scolopsis vosmeri	White-cheeked monocle bream	AFMA
BC	Teleost	Nemipteridae	37347020	Scaevius milii	Green-striped coral bream	AFMA
BC	Teleost	Nemipteridae	37347028	Pentapodus paradiseus	Paradise whiptail	AFMA
BC	Teleost	Gerreidae	37349002	Pentaprion longimanus	Longfin mojarra	AFMA
BC	Teleost	Gerreidae	37349003	Gerres filamentosus	Whipfin silver-biddy	AFMA
BC	Teleost	Gerreidae	37349004	Gerres oyena	Blacktip silverbiddy	AFMA
BC	Teleost	Gerreidae	37349005	Gerres subfasciatus	Common silverbiddy	AFMA
BC	Teleost	Gerreidae	37349022	Gerres oblongus	Slender silverbiddy	AFMA
BC	Teleost	Haemulidae	37350002	Pomadasys maculatus	Blotched javelin	AFMA
BC	Teleost	Haemulidae	37350003	Diagramma pictum	Painted sweetlip	AFMA
BC	Teleost	Haemulidae	37350008	Pomadasys trifasciatus	Black-ear javelin	AFMA
BC	Teleost	Haemulidae	37350011	Pomadasys kaakan	Javelin grunter	AFMA
BC	Teleost	Haemulidae	37350014	Plectorhinchus chaetodonoides	Spotted sweetlips	AFMA
BC	Teleost	Lethrinidae	37351006	Lethrinus laticaudis	Grass emperor	AFMA
BC	Teleost	Lethrinidae	37351007	Lethrinus lentjan	Red spot emperor	AFMA
BC	Teleost	Lethrinidae	37351012	Lethrinus rubrioperculatus	Spotcheek emperor	AFMA
BC	Teleost	Sparidae	37353006	Argyrops spinifer	Frypan bream	AFMA
BC	Teleost	Sciaenidae	37354001	Argyrosomus japonicus synonym: Argyrosomus hololepidotus	Mulloway	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Sciaenidae	37354003	Protonibea diacanthus	Black Jewfish	AFMA
BC	Teleost	Sciaenidae	37354004	Johnius laevis	Smooth jewfish	AFMA
BC	Teleost	Sciaenidae	37354006	Otolithes ruber	Silver teraglin	AFMA
BC	Teleost	Sciaenidae	37354007	Johnius borneensis	Riverjewfish	AFMA
BC	Teleost	Sciaenidae	37354009	Johnius amblycephalus	Bearded jewfish	AFMA
BC	Teleost	Sciaenidae	37354012	Atrobucca brevis	Orange jewfish	AFMA
BC	Teleost	Sciaenidae	37354026	Larimichthys pamoides	Southern yellow jewfish	AFMA
BC	Teleost	Mullidae	37355003	Upeneus moluccensis	Goldband goatfish	AFMA
BC	Teleost	Mullidae	37355007	Upeneus sulphureus	Sulphur goatfish	AFMA
BC	Teleost	Mullidae	37355010	Upeneus asymmetricus	Asymmetric goatfish	AFMA
BC	Teleost	Mullidae	37355013	Upeneus sundaicus	Ochrebanded goatfish	AFMA
BC	Teleost	Mullidae	37355031	Upeneus vittatus	Striped goatfish	AFMA
BC	Teleost	Pempheridae	37357007	Pempheris ypsilychnus	Ypsilon bullseye	AFMA
BC	Teleost	Ephippidae	37362003	Zabidius novemaculeatus	Shortfin batfish	AFMA
BC	Teleost	Ephippidae	37362004	Platax teira	Longfin batfish	AFMA
BC	Teleost	Ephippidae	37362005	Drepane punctata	Spotted sicklefish	AFMA
BC	Teleost	Ephippidae	37362007	Platax orbicularis	Orbicular batfish	AFMA
BC	Teleost	Ephippidae	37364001	Rhinoprenes pentanemus	Threadfin scat	AFMA
BC	Teleost	Chaetodontidae	37365003	Parachaetodon ocellatus	Sixspine butterflyfish	AFMA
BC	Teleost	Chaetodontidae	37365015	Chelmon muelleri	Blackfin coralfish	AFMA
BC	Teleost	Chaetodontidae	37365017	Chelmon rostratus	Copperband butterflyfish	AFMA
BC	Teleost	Chaetodontidae	37365018	Coradion altivelis	Highfin coralfish	AFMA
BC	Teleost	Cichlidae	37371002	Tilapia mariae	Spotted tilapia	AFMA
BC	Teleost	Pomacentridae	37372001	Pristotis obtusirostris	Gulf damselfish	AFMA
BC	Teleost	Pomacentridae	37372089	Neopomacentrus cyanomos	Regal demoiselle	AFMA
BC	Teleost	Cepolidae	37380002	Acanthocepola abbreviata	Yellowspotted bandfish	AFMA
BC	Teleost	Mugilidae	37381002	Mugil cephalus	Sea mullet	AFMA
BC	Teleost	Sphyraenidae	37382001	Sphyraena pinguis	Striped barracuda	AFMA

ROLE IN FISHERY	ΤΑΧΑ ΝΑΜΕ	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Sphyraenidae	37382004	Sphyraena jello	Pickhandle barracuda	AFMA
BC	Teleost	Sphyraenidae	37382007	Sphyraena obtusata	Yellowtail barracuda	AFMA
BC	Teleost	Sphyraenidae	37382008	Sphyraena barracuda	Great barracuda	AFMA
BC	Teleost	Polynemidae	37383001	Polydactylus nigripinnis	Blackfin threadfin	AFMA
ВС	Teleost	Polynemidae	37383002	Polydactylus multiradiatus	Australian threadfin	AFMA
ВС	Teleost	Polynemidae	37383004	Eleutheronema tetradactylum	Blue threadfin	AFMA
ВС	Teleost	Polynemidae	37383009	Polydactylus plebius	Striped threadfin	AFMA
ВС	Teleost	Labridae	37384004	Choerodon cephalotes	Purple tuskfish	AFMA
BC	Teleost	Labridae	37384007	Bodianus perditio	Goldspot pigfish	AFMA
ВС	Teleost	Labridae	37384008	Choerodon monostigma	Darkspot tuskfish	AFMA
ВС	Teleost	Labridae	37384009	Choerodon sugillatum	Wedgetail tuskfish	AFMA
BC	Teleost	Labridae	37384010	Choerodon schoenleinii	Blackspot tuskfish	AFMA
BC	Teleost	Labridae	37384014	Xiphocheilus typus	Bluetooth tuskfish	AFMA
BC	Teleost	Opistognathidae	37388001	Opistognathus latitabundus	Blotched jawfish	AFMA
BC	Teleost	Pinguipedidae	37390005	Parapercis nebulosa	Pinkbanded grubfish	AFMA
BC	Teleost	Pinguipedidae	37390006	Parapercis alboguttata	Bluenose grubfish	AFMA
BC	Teleost	Pinguipedidae	37390016	Parapercis multiplicata	Doublestitch grubfish	AFMA
BC	Teleost	Uranoscopidae	37400005	Pleuroscopus pseudodorsalis	Scaled stargazer	AFMA
BC	Teleost	Uranoscopidae	37400008	Uranoscopus cognatus	Yellowtail stargazer	AFMA
BC	Teleost	Uranoscopidae	37400012	Ichthyscopus insperatus	Doubleband stargazer	AFMA
BC	Teleost	Uranoscopidae	37400024	Uranoscopus kaianus	Kai stargazer	AFMA
BC	Teleost	Blenniidae	37408057	Nannosalarias nativitatus	Pygmy blenny	AFMA
BC	Teleost	Callionymidae	37427005	Dactylopus dactylopus	Fingered dragonet	AFMA
BC	Teleost	Callionymidae	37427008	Calliurichthys afilum	Lowfin stinkfish	AFMA
BC	Teleost	Callionymidae	37427024	Repomucenus sphinx	Sphinx dragonet	AFMA
ВС	Teleost	Gobiidae	37428001	Yongeichthys nebulosus	Hairfin goby	AFMA
BC	Teleost	Gobiidae	37428028	Pandaka rouxi	Roux's dwarfgoby	AFMA
BC	Teleost	Gobiidae	37428051	Amblyotrypauchen arctocephalus	Armour eelgoby	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Gobiidae	37428072	Boleophthalmus birdsongi	Birdsong's mudskipper	AFMA
BC	Teleost	Gobiidae	37428074	Caragobius rubristriatus	Red eelgoby	AFMA
BC	Teleost	Gobiidae	37428094	Cryptocentroides argulus	Insignia goby	AFMA
BC	Teleost	Gobiidae	37428100	Cryptocentrus inexplicatus	Inexplicable shrimpgoby	AFMA
BC	Teleost	Gobiidae	37428101	Cryptocentrus insignitus	Signal goby	AFMA
BC	Teleost	Gobiidae	37428129	Eviota prasina	Rubble eviota	AFMA
BC	Teleost	Gobiidae	37428168	Gobiopterus mindanensis	Mindanao glassgoby	AFMA
BC	Teleost	Gobiidae	37428181	Lobulogobius morrigu	Eyebar coralgoby	AFMA
BC	Teleost	Gobiidae	37428190	Mugilogobius platynotus	Flatback mangrovegoby	AFMA
BC	Teleost	Gobiidae	37428205	Apocryptodon wirzi	Peacock mudskipper	AFMA
BC	Teleost	Gobiidae	37428208	Oxyurichthys auchenolepis	Scaly-nape tentacle goby	AFMA
BC	Teleost	Gobiidae	37428220	Periophthalmus gracilis	Slender mudskipper	AFMA
BC	Teleost	Gobiidae	37428221	Periophthalmus minutus	Minute mudskipper	AFMA
BC	Teleost	Gobiidae	37428239	Priolepis profunda	Orange convict reefgoby	AFMA
BC	Teleost	Gobiidae	37428250	Silhouettea evanida	Vanishing silhouette goby	AFMA
BC	Teleost	Gobiidae	37428251	Silhouettea hoesei	Hoese's silhouette goby	AFMA
BC	Teleost	Gobiidae	37428256	Sueviota larsonae	Larson's sueviota	AFMA
BC	Teleost	Gobiidae	37428257	Taenioides anguillaris	Bearded wormgoby	AFMA
BC	Teleost	Gobiidae	37428282	Valenciennea longipinnis	Ocellate glidergoby	AFMA
BC	Teleost	Gobiidae	37428292	Yoga pyrops	Fire-eye goby	AFMA
BC	Teleost	Gobiidae	37428312	Eviota storthynx	Rosy eviota	AFMA
BC	Teleost	Gobiidae	37428330	Egglestonichthys bombylios	Egglestone's bumblebee goby	AFMA
BC	Teleost	Gobiidae	37428341	Myersina macrostoma	Flagfin goby	AFMA
BC	Teleost	Gobiidae	37428344	Gnatholepis argus	A goby	AFMA
BC	Teleost	Gobiidae	37428348	Eugnathogobius polylepis	A goby	AFMA
BC	Teleost	Gobiidae	37428351	Mugilogobius littoralis	Beachrock mangrovegoby	AFMA
BC	Teleost	Gobiidae	37428353	Mugilogobius rivulus	Drain mangrovegoby	AFMA
BC	Teleost	Gobiidae	37428357	Periophthalmus weberi	Weber's mudskipper	AFMA

ROLE IN FISHERY	ΤΑΧΑ ΝΑΜΕ	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Gobiidae	37428367	Drombus dentifer	Yellow drombus	AFMA
BC	Teleost	Gobiidae	37428374	Oxyurichthys uronema	Longtail tentacle goby	AFMA
BC	Teleost	Gobiidae	37428379	Taenioides gracilis	Slender eelgoby	AFMA
BC	Teleost	Gobiidae	37428384	Arcygobius baliurus	Isthmus goby	AFMA
BC	Teleost	Acanthuridae	37437020	Acanthurus xanthopterus	Yellowmask surgeonfish	AFMA
BC	Teleost	Siganidae	37438001	Siganus fuscescens	Mottled spinefoot	AFMA
BC	Teleost	Siganidae	37438004	Siganus canaliculatus	White-spotted spinefoot	AFMA
BC	Teleost	Siganidae	37438007	Siganus argenteus	Streamlined spinefoot	AFMA
BC	Teleost	Siganidae	37438008	Siganus corallinus	Blue-spotted spinefoot	AFMA
BC	Teleost	Siganidae	37438011	Siganus puellus	Masked spinefoot	AFMA
BC	Teleost	Trichiuridae	37440004	Trichiurus lepturus	Largehead hairtail	AFMA
BC	Teleost	Scombridae	37441007	Scomberomorus commerson	Spanish mackerel	AFMA
BC	Teleost	Scombridae	37441012	Rastrelliger kanagurta	Mouth mackerel	AFMA
BC	Teleost	Scombridae	37441014	Scomberomorus queenslandicus	School mackerel	AFMA
BC	Teleost	Scombridae	37441015	Scomberomorus munroi	Spotted mackerel	AFMA
BC	Teleost	Scombridae	37441018	Scomberomorus semifasciatus	Grey mackerel	AFMA
BC	Teleost	Scombridae	37441025	Grammatorcynus bicarinatus	Shark mackerel	AFMA
BC	Teleost	Centrolophidae	37445007	Psenopsis humerosa	Blackspot butterfish	AFMA
BC	Teleost	Psettodidae	37457001	Psettodes erumei	Australian halibut	AFMA
BC	Teleost	Paralichthyidae	37460002	Pseudorhombus jenynsii	Smalltooth flounder	AFMA
BC	Teleost	Paralichthyidae	37460009	Pseudorhombus arsius	Largetooth flounder	AFMA
BC	Teleost	Bothidae	37460010	Grammatobothus polyophthalmus	Threespot flounder	AFMA
BC	Teleost	Paralichthyidae	37460015	Pseudorhombus diplospilus	Bigtooth twinspot flounder	AFMA
BC	Teleost	Bothidae	37460045	Arnoglossus waitei	Waite's flounder	AFMA
BC	Teleost	Soleidae	37462001	Aesopia cornuta	Unicorn sole	AFMA
BC	Teleost	Soleidae	37462003	Zebrias craticulus	Wicker-work sole	AFMA
BC	Teleost	Soleidae	37462007	Brachirus muelleri	Tufted sole	AFMA
BC	Teleost	Soleidae	37462009	Pardachirus pavoninus	Peacock sole	AFMA

ROLE IN FISHERY	ΤΑΧΑ ΝΑΜΕ	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Cynoglossidae	37463001	Paraplagusia bilineata	Lemon tongue sole	AFMA
BC	Teleost	Cynoglossidae	37463002	Paraplagusia longirostris	Pinocchio tongue sole	AFMA
BC	Teleost	Cynoglossidae	37463017	Cynoglossus ogilbyi	Ogilby's tongue sole	AFMA
BC	Teleost	Triacanthidae	37464001	Trixiphichthys weberi	Blacktip tripodfish	AFMA
BC	Teleost	Triacanthidae	37464002	Triacanthus biaculeatus	Short-nosed tripodfish	AFMA
BC	Teleost	Triacanthidae	37464007	Tripodichthys angustifrons	Yellowfin tripodfish	AFMA
BC	Teleost	Triacanthidae	37464008	Pseudotriacanthus strigilifer	Blotched tripodfish	AFMA
ВС	Teleost	Triacanthidae	37464009	Triacanthus nieuhofi	Silver tripodfish	AFMA
ВС	Teleost	Monacanthidae	37465009	Monacanthus chinensis	Fan-bellied leatherjacket	AFMA
BC	Teleost	Monacanthidae	37465010	Anacanthus barbatus	Bearded leatherjacket	AFMA
BC	Teleost	Balistidae	37465011	Abalistes stellatus	Starry triggerfish	AFMA
BC	Teleost	Monacanthidae	37465022	Aluterus monoceros	Grey leatherjacket	AFMA
ВС	Teleost	Monacanthidae	37465024	Paramonacanthus filicauda	Threadfin leatherjacket	AFMA
ВС	Teleost	Balistidae	37465027	Pseudobalistes fuscus	Yellowspotted triggerfish	AFMA
BC	Teleost	Monacanthidae	37465029	Pseudomonacanthus elongatus	Fourband leatherjacket	AFMA
BC	Teleost	Balistidae	37465031	Balistoides conspicillum	Clown triggerfish	AFMA
BC	Teleost	Balistidae	37465047	Balistapus undulatus	Orangestripe triggerfish	AFMA
ВС	Teleost	Monacanthidae	37465064	Paramonacanthus choirocephalus	Pigface leatherjacket	AFMA
BC	Teleost	Ostraciidae	37466005	Rhynchostracion nasus	Shortnose boxfish	AFMA
BC	Teleost	Ostraciidae	37466015	Anoplocapros amygdaloides	Western smooth boxfish	AFMA
BC	Teleost	Tetraodontidae	37467007	Lagocephalus sceleratus	Silver toadfish	AFMA
BC	Teleost	Tetraodontidae	37467008	Lagocephalus inermis	Smooth golden toadfish	AFMA
BC	Teleost	Tetraodontidae	37467009	Torquigener pallimaculatus	Rusty-spotted toadfish	AFMA
BC	Teleost	Tetraodontidae	37467010	Feroxodon multistriatus	Ferocious puffer	AFMA
BC	Teleost	Tetraodontidae	37467012	Lagocephalus lunaris	Rough golden toadfish	AFMA
BC	Teleost	Tetraodontidae	37467015	Chelonodon patoca	Milkspotted puffer	AFMA
BC	Teleost	Tetraodontidae	37467017	Lagocephalus spadiceus	Brownback toadfish	AFMA
BC	Teleost	Tetraodontidae	37467022	Tylerius spinosissimus	Finespine pufferfish	AFMA

					COURCE
	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME		SOURCE
Teleost	Triodontidae	37468001	Triodon macropterus	Threetooth puffer	AFMA
Teleost	Diodontidae	37469004	Tragulichthys jaculiferus	Longspine burrfish	AFMA
Teleost	Diodontidae	37469007	Cyclichthys orbicularis	Shortspine porcupinefish	AFMA
Teleost	Diodontidae	37469008	Cyclichthys hardenbergi	Plain porcupinefish	AFMA
Teleost	Diodontidae	37469010	Lophodiodon calori	Four-bar porcupinefish	AFMA
Invertebrate	Comatulidae	25030002	Capillaster multiradiatus	An invertebrate	AFMA
Invertebrate	Comatulidae	25030030	Comatula pectinata	An invertebrate	AFMA
Invertebrate	Comatulidae	25030031	Comatula rotalaria	An invertebrate	AFMA
Invertebrate	Comatulidae	25030032	Comatula solaris	An invertebrate	AFMA
Invertebrate	Comatulidae	25030037	Clarkcomanthus comanthipinna	An invertebrate	AFMA
Invertebrate	Himerometridae	25038002	Amphimetra tessellata	An invertebrate	AFMA
Invertebrate	Ptilometridae	25047001	Ptilometra macronema	An invertebrate	AFMA
	Teleost Teleost Teleost Invertebrate Invertebrate Invertebrate Invertebrate Invertebrate	TeleostTriodontidaeTeleostDiodontidaeTeleostDiodontidaeTeleostDiodontidaeTeleostDiodontidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateComatulidaeInvertebrateHimerometridae	TeleostTriodontidae37468001TeleostDiodontidae37469004TeleostDiodontidae37469007TeleostDiodontidae37469008TeleostDiodontidae37469010InvertebrateComatulidae25030002InvertebrateComatulidae25030030InvertebrateComatulidae25030031InvertebrateComatulidae25030032InvertebrateComatulidae25030037InvertebrateHimerometridae25038002	TeleostTriodontidae37468001Triodon macropterusTeleostDiodontidae37469004Tragulichthys jaculiferusTeleostDiodontidae37469007Cyclichthys orbicularisTeleostDiodontidae37469008Cyclichthys hardenbergiTeleostDiodontidae37469008Cyclichthys hardenbergiTeleostDiodontidae37469010Lophodiodon caloriInvertebrateComatulidae25030002Capillaster multiradiatusInvertebrateComatulidae25030031Comatula pectinataInvertebrateComatulidae25030032Comatula solarisInvertebrateComatulidae25030037Clarkcomanthus comanthipinnaInvertebrateHimerometridae25038002Amphimetra tessellata	TeleostTriodontidae37468001Triodon macropterusThreetooth pufferTeleostDiodontidae37469004Tragulichthys jaculiferusLongspine burrfishTeleostDiodontidae37469007Cyclichthys orbicularisShortspine porcupinefishTeleostDiodontidae37469008Cyclichthys hardenbergiPlain porcupinefishTeleostDiodontidae37469010Lophodiodon caloriFour-bar porcupinefishTeleostDiodontidae37469010Lophodiodon caloriFour-bar porcupinefishInvertebrateComatulidae25030002Capillaster multiradiatusAn invertebrateInvertebrateComatulidae25030030Comatula pectinataAn invertebrateInvertebrateComatulidae25030032Comatula solarisAn invertebrateInvertebrateComatulidae25030037Clarkcomanthus comanthipinnaAn invertebrateInvertebrateHimerometridae25038002Amphimetra tessellataAn invertebrate

Protected species

A protected species^[2] refers to all species listed/covered under the EPBC Act 1999, which include Protected^[3] species (listed threatened species i.e. vulnerable, endangered or critically endangered), cetaceans, listed migratory species and listed marine species.

Protected species that occur in the area of the sub-fishery. Protected species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of protected species has been generated for this sub-fishery and included in the PSA and SAFE (chondrichthyans) species list. This list was initially provided by AFMA which was further validated and reviewed using information on EPBC Act List of Threatened Fauna website; http://www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl and available literature on protected species occurrence, e.g., marine birds: Menkhorst et al. (2017), Reid et al. (2002); marine mammals: Woinarski et al.(2014), Jefferson et al. (2015); teleosts: Atlas of Living Australia Fishmap http://fish.ala.org.au/, CAAB http://www.cmar.csiro.au/caab/index.html , Fishes of Australia http://fishesofaustralia.net.au/). Species from higher order family categories that were considered to have potential to interact with fishery (based on geographic range and proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) were also included.

ROLE IN FISHERY	ТАХА	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
PS	Chondrichthyan	Pristidae	37025001	Pristis zijsron	Green sawfish	AFMA Log, Obs
PS	Chondrichthyan	Pristidae	37025002	Anoxypristis cuspidata	Narrow sawfish	AFMA Log, Obs
PS	Chondrichthyan	Pristidae	37025003	Pristis pristis	Freshwater sawfish	AFMA Log, Obs
PS	Chondrichthyan	Pristidae	37025004	Pristis clavata	Dwarf sawfish	AFMA Log, Obs
PS	Teleost	Syngnathidae	37282006	Trachyrhamphus bicoarctatus	Bentstick pipefish	AFMA Obs. Also 37282000: Syngnathidae

Table 2.6. Protected species (PS) list for the NPF Tiger Prawn sub-fishery. AFMA: refers to AFMA Logbook (Log) and/or Observer data (Obs).

^[2] The term "protected" species refers to species listed under [Part 13] the EPBC Act 1999 and replaces the term "Threatened, endangered and protected species (PS)" commonly used in past Commonwealth Government (including AFMA) documents.

^[3] Note "protected" (with small "p") refers to all species covered by the EPBC Act 1999 while "Protected" (capital P) refers only to those protected species that are threatened (vulnerable, endangered or critically endangered).

P5TeleostSyngnathidae3722007Hulichtys teeniophousLeafy pipefishAFMA Obs. Also 37220000. SyngnathidaeP5TeleostSyngnathidae37282008Filicampus tigrisMud pipefishAFMA Obs. Also 37220000. SyngnathidaeP5TeleostSyngnathidae37282008Filicampus tigrisZebra senorseAFMA Obs. Also 3722000. SyngnathidaeP5TeleostSyngnathidae3728101Tochyrhamphus longirostrisStraightstick pipefishAFMA Obs. Also 3722000. SyngnathidaeP5TeleostSyngnathidae3728110Hippocampus zebraHalfspine seahorseAdded from 3728200. Hippocampus spp. (AFMA Obs.P5TeleostSyngnathidae3728124Hippocampus zebraHulichty seahorseAdded from 3728200. Hippocampus spp. (AFMA Obs.P5TeleostSyngnathidae3728124Hippocampus zebraHulichty seahorseAdded from 3728200. Hippocampus spp. (AFMA Obs.P5Marine reptileChelidae3920001Caretta carettoLoggerhead turlteAdded from 3728200. Hippocampus spp. (AFMA Obs.P5Marine reptileChelidae3920002Caretta carettoLoggerhead turlteAdded from 3728200. Hippocampus spp. (AFMA Obs.P5Marine reptileChelidae3920002Caretta carettoLoggerhead turlteAdded from 3728200. Hippocampus spp. (AFMA Obs.P5Marine reptileChelidae3920002Caretta carettoLoggerhead turlteAdded from 3728200. Hippocampus spp. (AFMA Obs.P5Marine reptileChelidae3920002C	ROLE IN FISHERY	ТАХА	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
P5 Teleost Syngnathidae 37282064 Filicampus tigris Tiger pipefish AFMA Obs. Also 37282000. Syngnathidae P5 Teleost Syngnathidae 37282101 Trachythomphus longirostris Straightsick ippefish AFMA Obs. Also 37282000. Syngnathidae P5 Teleost Syngnathidae 37282110 Trachythomphus longirostris Straightsick ippefish AFMA Obs. Also 37282000. Syngnathidae P5 Teleost Syngnathidae 37282119 Hippocompus semispinosus Halfspine seahorse Added from 37282900. Hippocompus spp. (AFMA Obs.) P5 Teleost Syngnathidae 37282126 Hippocompus grandiceps Bighead seahorse Added from 37282900. Hippocompus spp. (AFMA Obs.) P5 Teleost Syngnathidae 37282126 Hippocompus grandiceps Bighead seahorse Added from 37282900. Hippocompus spp. (AFMA Obs.) P5 Marine reptile Chelidae 39020001 Caretto caretta Loggerhead turtle using CAMO-datalune15.pdf P5 Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using CAMO-datalune15.pdf P5 Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using CAMO-datalune15.pdf P5 Marine reptile Chelidae 39020002	PS	Teleost	Syngnathidae	37282007	Haliichthys taeniophorus	Leafy pipefish	AFMA Obs. Also 37282000: Syngnathidae
PS Teleost Syngnathidae 37282080 Hippocampus zebra Zebra seahorse AFMA Obs. Also 37282000: Syngnathidae PS Teleost Syngnathidae 37282101 Trachyrhamphus longirostris Straightstick pipefish AFMA Obs. Also 37282000: Syngnathidae PS Teleost Syngnathidae 37282110 Hippocampus semisfinosus Halfspine seahorse Added from 37282900: Hippocampus sp. (AFMA Obs.) PS Teleost Syngnathidae 37282124 Hippocampus grandiceps Bighead seahorse Added from 37282900: Hippocampus sp. (AFMA Obs.) PS Teleost Syngnathidae 37282126 Hippocampus grandiceps Bighead seahorse Added from 37282900: Hippocampus sp. (AFMA Obs.) PS Marine reptile Chelidae 39020001 Caretto caretta Loggerhead turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle AFMA Log.Ako 39001001 and 3902000. PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle AFMA Log.Ako 39001001 and 39020000. PS Marine reptile Chelidae 390200	PS	Teleost	Syngnathidae	37282030	Halicampus grayi	Mud pipefish	AFMA Obs. Also 37282000: Syngnathidae
PS Teleost Syngnathidae 37282101 Trachyrhamphus longirostris Straightstick pipelish APMA Obs. Also 37282000: Syngnathidae PS Teleost Syngnathidae 37282119 Hippocampus semispinosus Halfspine seahorse Added from 37282900: Hippocampus spp. (AFMA Obs) PS Teleost Syngnathidae 37282126 Hippocampus gap. (AFMA Obs) PS Teleost Syngnathidae 37282126 Hippocampus gap. (AFMA Obs) PS Teleost Syngnathidae 37282126 Hippocampus gap. (AFMA Obs) PS Marine reptile Chelidae 39020001 Caretta caretta Loggerhead utrile Added from 37282900: Hippocampus spp. (AFMA Obs) PS Marine reptile Chelidae 39020001 Caretta caretta Loggerhead utrile using-CMO-datalure15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydos Green turtle using-CMO-datalure15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydos Green turtle using-CMO-datalure15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using-CMO-datalure15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea	PS	Teleost	Syngnathidae	37282064	Filicampus tigris	Tiger pipefish	AFMA Obs. Also 37282000: Syngnathidae
PS Teleost Syngnathidae 37282119 Hippocampus semispinosus Halfspine seahorse Added from 37282900: Hippocampus spp. (AFMA Obs) PS Teleost Syngnathidae 37282124 Hippocampus grandiceps Bighead seahorse Added from 37282900: Hippocampus spp. (AFMA Obs) PS Teleost Syngnathidae 37282126 Hippocampus grandiceps Bighead seahorse Added from 37282900: Hippocampus spp. (AFMA Obs) PS Marine reptile Chelidae 39020001 Caretta caretta Loggerhead turtle using CMO-datume15, pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using CMO-datume15, pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using CMO-datume15, pdf PS Marine reptile Chelidae 39020002 Eretmochelys imbricata Hawksbill turtle using CMO-datume15, pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using CMO-datume15, pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using CMO-datalume15, pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback tur	PS	Teleost	Syngnathidae	37282080	Hippocampus zebra	Zebra seahorse	AFMA Obs. Also 37282000: Syngnathidae
PS Teleost Syngnathidae 37282124 Hippocampus multispinus Northern spiny seahorse Added from 37282900; Hippocampus spp. (AFMA Obs) PS Teleost Syngnathidae 37282126 Hippocampus grandiceps Bighead seahorse Added from 37282900; Hippocampus spp. (AFMA Obs) AFMA Log, Also 39001001 and 39002000. Intrgs://www afma gov.au/stes/default/files/uploads/20 14/02/CSIR0-Monitoring-interactions-with-bycatch-using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using:CMO-datalune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacca Olive Ridley turtle usi	PS	Teleost	Syngnathidae	37282101	Trachyrhamphus longirostris	Straightstick pipefish	AFMA Obs. Also 37282000: Syngnathidae
PS Teleost Syngnathidae 37282126 Hippocampus grandiceps Bighead seahorse Added from 37282900: Hippocampus spp. (AFMA Obs) PS Marine reptile Chelidae 39020001 Caretta caretta Loggerhead turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Green turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawkshill turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawkshill turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawkshill turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-datalune15.pdf <t< td=""><td>PS</td><td>Teleost</td><td>Syngnathidae</td><td>37282119</td><td>Hippocampus semispinosus</td><td>Halfspine seahorse</td><td>Added from 37282900: Hippocampus spp. (AFMA Obs)</td></t<>	PS	Teleost	Syngnathidae	37282119	Hippocampus semispinosus	Halfspine seahorse	Added from 37282900: Hippocampus spp. (AFMA Obs)
PS Marine reptile Chelidae 39020001 Caretta caretta Loggerhead turtle AFMA Log. Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/20 PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle Sing_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle Using_CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle Using_CMO-data	PS	Teleost	Syngnathidae	37282124	Hippocampus multispinus	Northern spiny seahorse	Added from 37282900: Hippocampus spp. (AFMA Obs)
PS Marine reptile Chelidae 3902000 Caretta caretta Loggerhead turtle https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle afrMA Log. Also 33001001 and 39020000. 14/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- ut/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae <	PS	Teleost	Syngnathidae	37282126	Hippocampus grandiceps	Bighead seahorse	Added from 37282900: Hippocampus spp. (AFMA Obs)
PS Marine reptile Chelidae 39020002 Chelonia mydas Green turtle Lig. (Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle Using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle Using-CMO-dataJune15.pdf PS Marine reptile Dermochelyidae 39021001							https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch-
P5Marine reptileChelidae3902002Chelonia mydasGreen turtlehttps://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-datalune15.pdfP5Marine reptileChelidae3902003Eretmochelys imbricataHawksbill turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020003Eretmochelys imbricataHawksbill turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020004Lepidochelys olivaceaOlive Ridley turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020005Lepidochelys olivaceaOlive Ridley turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020005Natator depressusHatback turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020005Natator depressusFlatback turtleusing-CMO-datalune15.pdfP5Marine reptileChelidae39020005Natator depressusFlatback turtleusing-CMO-datalune15.pdfP5Marine reptileDermochelyidae39021001Dermochelys coriaceaLeatherback turtleAFMA Log. Also 39001001 and 3902000. https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-datalune15.pdfP5Marine reptileDermochelyidae39021001Dermochelys coriaceaLeatherback turtlehttps://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- 14/02/CSIRO-Monitoring-Interactions-with-bycatch-	PS	Marine reptile	Chelidae	39020001	Caretta caretta	Loggerhead turtle	
PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle https://www.afma.gov.au/sites/default/files/uploads/20 PS Marine reptile Chelidae 39020003 Eretmochelys imbricata Hawksbill turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-datalune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle Nttps://www.afma.gov.au/sites/default/files/uploads/20 PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle https://www.afma.gov.au/sites/default/files/uploads/20 PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea							https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PSMarine reptileChelidae3902003Eretmochelys imbricataHawksbill turtlehttps://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- 	PS	Marine reptile	Chelidae	39020002	Chelonia mydas	Green turtle	
PS Marine reptile Chelidae 39020004 Lepidochelys olivacea Olive Ridley turtle AFMA Log. Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-dataJune15.pdf PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle using-CMO-dataJune15.pdf PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle AFMA Log. Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/200 PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle AFMA Log. Also 3901001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/200 PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle https://www.afma.gov.au/sites/default/files/uploads/200 PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle https://www.afma.gov.au/sites/default/files/uploads/200 PS Marine reptile Elapidae 39125001 <td>DC .</td> <td>Marino roptilo</td> <td>Cholidao</td> <td>20020002</td> <td>Fratmachalus imbricata</td> <td>Hawkchill turtla</td> <td>https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch-</td>	DC .	Marino roptilo	Cholidao	20020002	Fratmachalus imbricata	Hawkchill turtla	https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS Marine reptile Chelidae 39020005 Natator depressus Flatback turtle AFMA Log. Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle http://seamap.env.duke.edu/swot PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle http://seamap.env.duke.edu/swot PS Marine reptile Dermochelyidae 39021001 Acalyptophis peronii Horned sea snake using-CMO-dataJune15.pdf PS Marine reptile Elapidae 39125001 Acalyptophis peronii Horned sea snake AFMA Obs. Also 39125000.		Warme reptile	Chendae	33020003	Liethochelys monculu		AFMA Log. Also 39001001 and 39020000. https://www.afma.gov.au/sites/default/files/uploads/20
PSMarine reptileChelidae3902005Natator depressusFlatback turtlehttps://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdfPSMarine reptileDermochelyidae39021001Dermochelys coriaceaLeatherback turtleAFMA Log. Also 39001001 and 39020000.PSMarine reptileDermochelyidae39021001Dermochelys coriaceaLeatherback turtlehttp://seamap.env.duke.edu/swotPSMarine reptileElapidae39125001Acalyptophis peroniiHorned sea snakeusing-CMO-dataJune15.pdfPSMarine reptileElapidae39125001Acalyptophis peroniiHorned sea snakeusing-CMO-dataJune15.pdf	PS	Marine reptile	Chelidae	39020004	Lepidochelys olivacea	Olive Ridley turtle	
PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle http://seamap.env.duke.edu/swot PS Marine reptile Bermochelyidae 39021001 Dermochelys coriacea Leatherback turtle http://seamap.env.duke.edu/swot PS Marine reptile Elapidae 39125001 Acalyptophis peronii Horned sea snake using-CMO-dataJune15.pdf PS Marine reptile Elapidae 39125001 Acalyptophis peronii Horned sea snake using-CMO-dataJune15.pdf							https://www.afma.gov.au/sites/default/files/uploads/20
PS Marine reptile Dermochelyidae 39021001 Dermochelys coriacea Leatherback turtle http://seamap.env.duke.edu/swot AFMA Obs. Also 39125000. https://www.afma.gov.au/sites/default/files/uploads/20 PS Marine reptile Elapidae 39125001 Acalyptophis peronii Horned sea snake using-CMO-dataJune15.pdf AFMA Obs. Also 39125000. AFMA Obs. Also 39125000. AFMA Obs. Also 39125000. AFMA Obs. Also 39125000.	PS	Marine reptile	Chelidae	39020005	Natator depressus	Flatback turtle	
PS Marine reptile Elapidae 39125001 Acalyptophis peronii Horned sea snake 14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf AFMA Obs. Also 39125000. AFMA Obs. Also 39125000.	PS	Marine reptile	Dermochelyidae	39021001	Dermochelys coriacea	Leatherback turtle	http://seamap.env.duke.edu/swot AFMA Obs. Also 39125000.
	PS	Marine reptile	Elapidae	39125001	Acalyptophis peronii	Horned sea snake	14/02/CSIRO-Monitoring-Interactions-with-bycatch- using-CMO-dataJune15.pdf
	PS	Marine reptile	Elapidae	39125003	Aipysurus duboisii	Reef shallows sea snake	

ROLE IN FISHERY	ТАХА	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
						using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125004	Aipysurus mosaicus	Stagger-Banded sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125007	Aipysurus laevis	Golden sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125009	Astrotia stokesii	Stokes' sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125010	Disteira kingii	Spectacled sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125011	Disteira major	Olive-Headed sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
		- 1 · 1	20125012			14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125013	Enhydrina schistosa	Beaked sea snake	using-CMO-dataJune15.pdf
PS	Marine reptile	Elapidae	39125016	Hydrophis atriceps	Black-headed sea snake	AFMA Obs. Also 39125000.
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125021	Hydrophis elegans	Elegant sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125025	Hydrophis mcdowelli	Small-headed sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125028	Hydrophis ornatus	Spotted sea snake	using-CMO-dataJune15.pdf

ROLE IN FISHERY	ТАХА	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125029	Hydrophis pacificus	Large-Headed sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125031	Lapemis curtis	Spine-Bellied sea snake	using-CMO-dataJune15.pdf
						AFMA Obs. Also 39125000.
						https://www.afma.gov.au/sites/default/files/uploads/20
						14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine reptile	Elapidae	39125033	Pelamis platurus	Yellow-Bellied sea snake	using-CMO-dataJune15.pdf
						Added from 40050000: Fregatidae - undifferentiated
PS	Marine bird	Fregatidae	40050002	Fregata ariel	Lesser frigatebird	(AFMA Obs). Blaber and Milton 1994
						Added from 40050000: Fregatidae - undifferentiated
PS	Marine bird	Fregatidae	40050003	Fregata minor	Great frigatebird	(AFMA Obs). Blaber and Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber and
PS	Marine bird	Laridae	40128002	Anous stolidus	Common noddy	Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128006	Chlidonias hybridus	Whiskered tern	comm.
						Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128007	Chlidonias leucopterus	White-winged black tern	comm.
				Larus novaehollandiae /		
				Chroicocephalus		Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128013	novaehollandiae	Silver gull	comm.
						Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128023	Sterna anaethetus	Bridled tern	comm.
						Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128024	Sterna bengalensis	Lesser crested tern	comm.
						Added from 4012899: Terns (AFMA Obs). Blaber and
PS	Marine bird	Laridae	40128025	Sterna bergii	Crested tern	Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber
PS	Marine bird	Laridae	40128026	Sterna caspia	Caspian tern	pers.comm.
						Added from 4012899: Terns (AFMA Obs). Blaber and
PS	Marine bird	Laridae	40128027	Sterna dougallii	Roseate tern	Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber and
PS	Marine bird	Laridae	40128028	Sterna fuscata	Sooty tern	Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber and
PS	Marine bird	Laridae	40128029	Sterna hirundo	Common tern	Milton 1994
						Added from 4012899: Terns (AFMA Obs). Blaber pers.
PS	Marine bird	Laridae	40128031	Sterna nilotica	Gull-billed tern	comm.

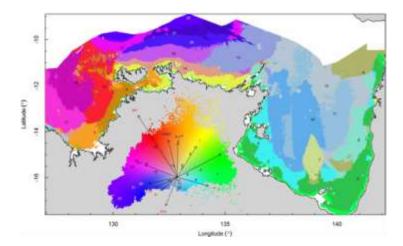
ROLE IN FISHERY	ТАХА	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
PS	Marine bird	Laridae	40128034	Sterna sumatrana	Black-naped tern	Added from 4012899: Terns (AFMA Obs). Blaber and Milton 1994
						Added from 41116000: Delphinidae - undifferentiated (AFMA Obs). https://www.afma.gov.au/sites/default/files/uploads/20 14/02/CSIRO-Monitoring-Interactions-with-bycatch-
PS	Marine mammal	Delphinidae	41116019	Tursiops truncatus	Bottlenose dolphin	using-CMO-dataJune15.pdf

Scoping Document S2B1. Benthic Habitats

Since the previous assessments over a decade ago, there has been considerable research and habitat identification and modelling of demersal habitats around Australia (Williams et al. 2009, 2010a, b, 2011; Hobday et al. 2011; Pitcher et al. 2015, 2016, 2018). This has culminated in Pitcher et al. (2016, 2018), redefining much of the Australian seafloor based on meso-scale surrogates collated from data from biological surveys, environmental data, and protected area/fishery closure data. The temporal range of the fishery effort data of Pitcher et al. (2016; 2018) was from 1985 -2012 which is immediately prior to this current assessment period and was considered relevant. The new data and methodology are not directly mappable to the original analyses, but these assessments are more comprehensive than the previous one, and will therefore be used in preference to the original scoping of habitats.

In the NPF region, 12 survey datasets (five fish trawl, two prawn trawl, four epibenthic sled, and one grab) contributed to mapping the NPF regional environment resulting in 22 assemblages (Pitcher et al. 2016). Also, 20.5% of the area is closed (~19.6% within CMRs, ~0.2% in MPAs and 0.7% by fishery regulation). The footprint of the NPF was 1.6% or about 2% over multiple years.

The most vulnerable habitat type identified in Pitcher et al. 2016 were:


• Habitat–forming benthos (NPF assemblages 2 and 9).

The corresponding most vulnerable habitat type identified in Pitcher et al. 2018 were:

• Habitat–forming benthos (NPF region 1: assemblage 11; region 2: assemblage 6).

The most vulnerable habitat-forming benthos included bryozoans, corals sponges, gorgonians, anemones, and ascidians and are present in the more exposed assemblages and were abundant in assemblage 2 (largest area but lower intensity) but relatively less, but patchily high in assemblage 9 (largest swept area, highest intensity, low protection). These habitats were the most exposed types to trawling with footprints of 5.7% and 13% respectively, and total swept areas of 7.9% and 24.7% respectively (Table 6 in Pitcher et al. (2016)).

The lack of evidence to prove direct impact from trawling impedes further analysis. Some of the benthos may be more widely distributed in areas where prawn trawling does not occur thus lower their overall risk, but corals and anemones and most bryozoans appear to be restricted to assemblage 2. Furthermore, using these assessments by Pitcher et al. 2016 (and Pitcher et al. 2018) ideally need to be incorporated into the ERAEF protocol. Consequently, the SICA is preliminary and further assessment at Level 2 is currently not possible.

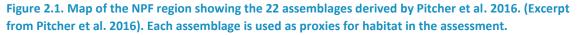


Table 2.7. Benthic habitats that occur within the jurisdictional boundary of the NPF Tiger Prawn subfishery (from Pitcher et. al. 2016). The details of these assemblages were not available at the time of assessment. While records suggest trawl operations occurred across some of these assemblages (shaded) it was not possible to determine exactly the overlap with these assemblages.

BIOME	ASSEMBLAGE	ΗΑΒΙΤΑΤ ΤΥΡΕ
NPF	1	
	2	Habitat-forming benthos- bryozoans, corals sponges, gorgonians, anemones and ascidians
	3	
	4	
	5	
	6	
	7	
	8	
	9	Habitat-forming benthos-particularly gorgonians and bryozoans
	10	
	11	
	12	
	13	
	14	
	15	
	16	
	17	
	18	
	19	
	20	
	21	
	22	

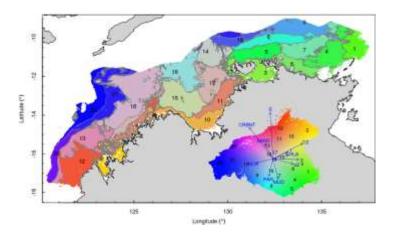


Figure 2.2. Map of the Arafura Sea / Timor Sea region 1 showing the 19 assemblages (within the NPF) derived by Pitcher et al. 2018. (Excerpt from Pitcher et al. 2018). Each assemblage is used as proxies for habitat in the assessment.

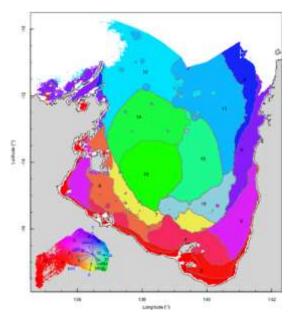


Figure 2.3. Map of the Gulf of Carpentaria region 2 showing the 15 assemblages derived by Pitcher et al. 2018. (Excerpt from Pitcher et al. 2018). Each assemblage is now as proxies for habitat in the assessment.

Table 2.8. Benthic habitats in region 1 that occur within the jurisdictional boundary of the NPF Tiger Prawn sub-fishery (from Pitcher et. al. 2018). The details of these assemblages were not available at the time of assessment. While records suggest trawl operations occurred across some of these assemblages (shaded) it was not possible to determine exactly the overlap with these assemblages.

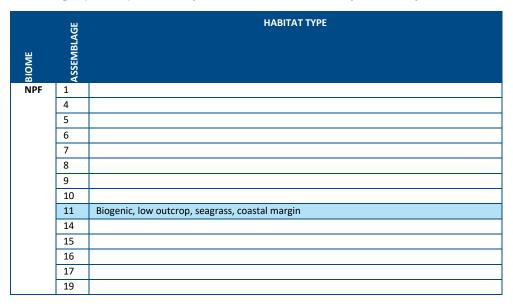


Table 2.9. Benthic habitats in region 2 that occur within the jurisdictional boundary of the NPF Tiger Prawn sub-fishery (from Pitcher et. al. 2018). The details of these assemblages were not available at the time of assessment. While records suggest trawl operations occurred across some of these assemblages (shaded) it was not possible to determine exactly the overlap with these assemblages.

BIOME	ASSEMBLAGE	ΗΑΒΙΤΑΤ ΤΥΡΕ
NPF	1	
	2	
	3	
	4	Habitat-forming benthos- bryozoans, corals sponges, gorgonians, anemones and ascidians
	5	Habitat-forming benthos- bryozoans, corals sponges, gorgonians, anemones and ascidians
	6	Habitat-forming benthos-particularly gorgonians and bryozoans
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	

The previous ERAEF assessment of the NPF trawl (Griffiths et al. 2007) determined that habitats encountered by the Banana Prawn sector were restricted to coastal margin depths while those of Tiger Prawn encompassed both coastal margin and (shallow) inner shelf depths. They concluded that habitats and attached communities could be expected to sustain damage, mortality and habitat modification from trawling and the rate of recovery while unknown, is likely to be variable depending on taxa and frequency of targeting. The medium risk habitats comprised inner shelf habitats that were mostly "flat to highly irregular unconsolidated sediment habitats of mud to coarse grained biogenic gravels, with large erect sponges, hard and soft corals (of variable flexibility), complex communities of mixed fauna, and individual animals" (Griffiths et al. 2007); and coastal habitats that were sediment habitats supporting seagrasses, and vulnerable bivalve-dominated habitats. Low risk shelf habitats were sediment-based with low and encrusting epifauna of corals, sponges, ascidians, bryozoans), bioturbating infauna or no fauna at all; and coastal margin habitats considered either unlikely to be trawled or were rock or sediment-based with tall, erect fauna.

Scoping Document S2B2. Pelagic Habitats

Table 2.10. Pelagic habitats for the NPF Tiger Prawn sub-fishery. Shading denotes habitats occurring within the jurisdictional boundary of the fishery. Bolded text refers to pelagic habitats where fishing effort has occurred.

ERAEF PELAGIC HABITAT NO.	PELAGIC HABITAT TYPE	DEPTH (M)	COMMENTS	SOURCE
P1	Eastern Pelagic Province - Coastal	0 – 200		ERA pelagic habitat database based on pelagic communities definitions
P2	Eastern Pelagic Province - Oceanic	0 - > 600	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
Р3	Heard/ McDonald Islands Pelagic Provinces - Oceanic	0 - >1000	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P4	North Eastern Pelagic Province - Oceanic	0 – > 600	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P5	Northern Pelagic Province - Coastal	0 – 200		ERA pelagic habitat database based on pelagic communities definitions
P6	North Western Pelagic Province - Oceanic	0 - > 800	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P7	Southern Pelagic Province - Coastal	0 – 200	this is a compilation of the range covered by Coastal pelagic Tas and GAB	ERA pelagic habitat database based on pelagic communities definitions
P8	Southern Pelagic Province - Oceanic	0 – > 600	this is a compilation of the range covered by Oceanic Communities (1, 2 and 3)	ERA pelagic habitat database based on pelagic communities definitions
P9	Southern Pelagic Province - Seamount Oceanic	0 – > 600	this is a compilation of the range covered by Seamount Oceanic Communities (1), (2), and (3)	ERA pelagic habitat database based on pelagic communities definitions

ERAEF PELAGIC HABITAT NO.	PELAGIC HABITAT TYPE	DEPTH (M)	COMMENTS	SOURCE
P10	Western Pelagic Province - Coastal	0 – 200		ERA pelagic habitat database based on pelagic communities definitions
P11	Western Pelagic Province - Oceanic	0 - > 400	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P12	Eastern Pelagic Province - Seamount Oceanic	0 - > 600	this is a compilation of the range covered by Seamount Oceanic Communities (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P13	Heard/McDonald Islands Pelagic Provinces - Plateau	0 -1000	this is a the same as community Heard Plateau 0- 1000m	ERA pelagic habitat database based on pelagic communities definitions
P14	North Eastern Pelagic Province - Coastal	0-200		ERA pelagic habitat database based on pelagic communities definitions
P15	North Eastern Pelagic Province - Plateau	0 - > 600	this is a compilation of the range covered by the Northeastern Seamount Oceanic (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions
P16	North Eastern Pelagic Province - Seamount Oceanic	0 – > 600		ERA pelagic habitat database based on pelagic communities definitions
P17	Macquarie Island Pelagic Province - Oceanic	0 – 250		ERA pelagic habitat database based on pelagic communities definitions
P18	Macquarie Island Pelagic Province - Coastal	0 - > 1500	this is a compilation of the range covered by Oceanic Community (1) and (2)	ERA pelagic habitat database based on pelagic communities definitions

Scoping Document S2C1. Demersal Communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisations for the slope (IMCRA 1998; Last et al. 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisations and on oceanography (Condie et al. 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday et al. (2007) and briefly outlined in the footnotes to the community Tables below.

Table 2.11. Demersal communities in which fishing activity occurred in the NPF Tiger Prawn sub-fishery (black; x). Shaded cells indicate all communities within the province.

DEMERSAL COMMUNITY	CAPE	NORTH EASTERN TRANSITION	NORTH EASTERN	CENTRAL EASTERN TRANSITION	CENTRAL EASTERN	SOUTH EASTERN TRANSITION	CENTRAL BASS	TASMANIAN	WESTERN TAS TRANSITION	SOUTHERN	SOUTH WESTERN TRANSITION	CENTRAL WESTERN	CENTRAL WESTERN TRANSITION	NORTH WESTERN	NORTH WESTERN TRANSITION	TIMOR	TIMOR TRANSITION	HEARD AND MCDONALD IS	MACQUARIE IS
Inner Shelf 0 – 110m ^{1,2}																х	x		
Outer Shelf 110 – 250m ^{1,2,}																x			
Upper Slope 250 – 565m ³																			
Mid–Upper Slope 565 – 820m ³																			
Mid Slope 820 – 1100m ³																			
Lower slope/ Abyssal > 1100m ⁶																			
Reef 0-110m ^{7, 8}																			
Reef 110-250m ⁸																			
Seamount 0 – 110m																			
Seamount 110- 250m																			
Seamount 250 – 565m																			
Seamount 565 – 820m																			

DEMERSAL COMMUNITY	CAPE	NORTH EASTERN TRANSITION	NORTH EASTERN	CENTRAL EASTERN TRANSITION	CENTRAL EASTERN	SOUTH EASTERN TRANSITION	CENTRAL BASS	TASMANIAN	WESTERN TAS TRANSITION	SOUTHERN	SOUTH WESTERN TRANSITION	CENTRAL WESTERN	CENTRAL WESTERN TRANSITION	NORTH WESTERN	NORTH WESTERN TRANSITION	TIMOR	TIMOR TRANSITION	HEARD AND MCDONALD IS	MACQUARIE IS
Seamount 820 – 1100m																			
Seamount 1100 – 3000m																			
Plateau 0 – 110m																			
Plateau 110- 250m ⁴																			
Plateau 250 – 565m ⁴																			
Plateau 565 – 820m⁵																			
Plateau 820 – 1100m⁵																			

¹ Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: ²inner and outer shelves (0-250m), and ³upper and midslope communities combined (250-1100m). At Heard/McDonald Is: ⁴outer and upper slope plateau communities combined to form four communities: Shell Bank, inner and outer Heard Plateau (100-500m) and Western Banks (200-500m), ⁵mid and upper plateau communities combined into 3 trough (Western, North Eastern and South Eastern), southern slope and North Eastern plateau communities (500-1000m), and ⁶ 3 groups at Heard Is: Deep Shell Bank (>1000m), Southern and North East Lower slope/abyssal, ⁷Great Barrier Reef in the North Eastern Province and Transition and ⁸ Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic Communities

Table 2.12. Pelagic communities in which fishing activity occurs in the NPF Tiger Prawn sub-fishery (black; x). Shaded cells indicate all communities that exist in the province.

PELAGIC COMMUNITY	NORTHEASTERN	EASTERN	SOUTHERN	WESTERN	NORTHERN	NORTHWESTERN	HEARD AND MCDONALD IS2	MACQUARIE IS	
Coastal pelagic 0-200m ^{1,2}					x				
Oceanic (1) 0 – 600m									
Oceanic (2) >600m									
Seamount oceanic (1) 0 – 600m									
Seamount oceanic (2) 600–3000m									
Oceanic (1) 0 – 200m									
Oceanic (2) 200-600m									
Oceanic (3) >600m									
Seamount oceanic (1) 0 – 200m									
Seamount oceanic (2) 200 – 600m									
Seamount oceanic (3) 600–3000m									
Oceanic (1) 0-400m									
Oceanic (2) >400m									
Oceanic (1) 0-800m									
Oceanic (2) >800m									
Plateau (1) 0-600m									
Plateau (2) >600m									
Heard Plateau 0-1000m ³									
Oceanic (1) 0-1000m									
Oceanic (2) >1000m									
Oceanic (1) 0-1600m									
Oceanic (2) >1600m									

¹ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York) and Southern Province has two zones (Tas, GAB). ² At Macquarie Is: coastal pelagic zone to 250m. ³ At Heard and McDonald Is: coastal pelagic zone broadened to cover entire plateau to maximum of 1000 m.

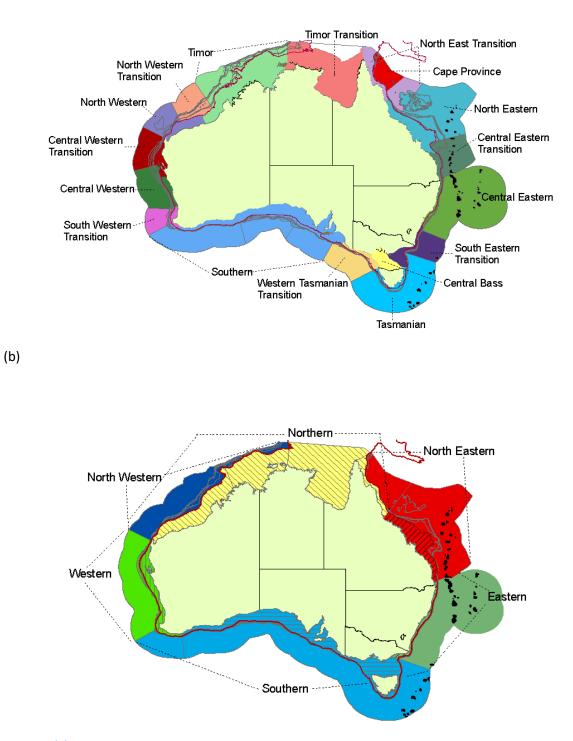


Figure 2.4 (a) Demersal communities around mainland Australia based on bioregionalisation schema (Last et al. 2005). Some inshore (0-110 m) communities comprise more than one community e.g. Timor Transition comprises 4 distinct communities. (b) Australian pelagic provinces. Hatched areas indicate coastal epipelagic zones overlying the shelf. Offshore (oceanic) provinces comprise two or more overlaying pelagic zones as indicated in Table 2.10. Seamounts (black) and plateaux (light green) are illustrated in their demersal or pelagic provinces.

(a)

2.2.3 Identification of objectives for components and sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, protected species, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed Ecological Sustainable Development (ESD) reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. **Scoping Document S3** provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives; EMOs), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, with regard to numbers or fractions of removal/impact, but should indicate that an impact in the subcomponent is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub) fishery are used for Level 1 analysis (Level 1 SICA Document L1.1).

Scoping Document S3. Components and sub-components identification of objectives

Table 2.13. Components and sub-components identification of operational objectives and rationale.Operational objectives that are eliminated are shaded out. EMO: Existing Management Objective;AMO: Existing AFMA Objective.

Component	Core Objective	Sub- component	Example Operational	Example Indicators	Rationale
			Objectives		
Key commercial and secondary commercial species	Avoid recruitment failure of the key/secondary commercial species Avoid negative consequences for species or population sub- components	1. Population size	 1.1 No trend in biomass 1.2 Maintain biomass above a specified level 1.3 Maintain catch at specified level 1.4 Species do not approach extinction or become extinct 	Biomass, numbers, density, CPUE, yield	 1.1 Increases in biomass of the key/secondary commercial species would be acceptable. 1.2. To ensure that population at acceptable level by the assessment. 1.3. TAE levels are specified. 1.4. This is a general objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective (b): ensuring that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of ecologically sustainable development).
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across the known distribution range	2.1 Not currently monitored. No specific management objective based on the geographic range of key/secondary commercial species.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1 Genetic studies may identify multiple stocks of key commercial species, but not currently monitored.
		4. Age/size/sex structure	4.1 Age/size/sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Covered in general by 1.2 EMO and AMO. Monitoring Survey/recruitment (annual) provides indication of size/sex/species split deviations and spawner survey every second year – but no levels set for unacceptable bounds. Large deviations of the size range of key commercial species have not been observed.

Component	Core Objective	Sub- component	Example Operational Objectives	Example Indicators	Rationale
		5. Reproductive capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity) 2 Recruitment to the population does not change outside acceptable bounds	Recruitment survey (annual) of population Recruitment indices	 5.1 Covered by 1.2 EMO and AMO. Reproductive capacity in terms of annual recruitment survey may be easier to monitor via changes in age/size/sex structure. 5.2 Covered by 1.2 EMO and AMO. May be easier to monitor via changes in age/size/sex structure in the fishery. Large deviations of recruitment indices of key commercial species have not been observed.
		6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1. Changes to behaviour that are deleterious to the species and populations are to be avoided.
Byproduct and Bycatch	Avoid recruitment failure of the byproduct and bycatch species Avoid negative consequences for species or population sub- components	1. Population size	 1.1 No trend in biomass 1.2 Species do not approach extinction or become extinct 1.3 Maintain biomass above a specified level 1.4 Maintain catch at specified level 	Biomass, numbers, density, CPUE, yield	 1.1 Increases in biomass of the byproduct/bycatch species would be acceptable. 1.2. To ensure that population at acceptable level by the assessment. Covered by EMO and AMO that ensures the fishery does not threaten bycatch species. 1.3. TAE levels are specified. EMO/AMO - annual reviews of all information on bycatch species with the aim of developing species specific bycatch (trigger, trip) limits. These exist for bycatch species. 1.4. This is a general objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective (b): and mentions specifically non-target species and the long-term sustainability of the marine environment).
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change	Presence of population across space	2.1 Not currently monitored. No specific management objective based on the geographic range of byproduct/bycatch species.

	3. Genetic structure 4. Age/size /sex structure 5. Reproductive capacity	outside acceptable bounds 3.1 Genetic diversity does not change outside acceptable bounds 4.1 Age/size /sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure). 5.1 Fecundity of the population does not change outside acceptable	Frequency of genotypes in the population, effective population size (N _e), number of spawning units Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio Egg production of population Abundance of recruits	 3.1 Not currently monitored. No reference levels established. No specific management objective based on the genetic structure of bycatch species. 4.1 Not currently monitored. However, size/sex data is collected for some byproduct/bycatch species during monitoring surveys, e.g., bugs and scallops. Monitoring the age/size/sex structure of byproduct/bycatch species populations is a useful management tool allowing the identification of possible fishery impacts and that cross-section of the population most at risk. 5.1 Beyond the generality of the EMO "Fishing is conducted in a manner that does not threaten stocks of byproduct/bycatch species". Reproductive capacity is not currently measured for bycatch/byproduct
	structure 4. Age/size /sex structure 5. Reproductive	diversity does not change outside acceptable bounds 4.1 Age/size /sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure). 5.1 Fecundity of the population does not change outside	genotypes in the population, effective population size (Ne), number of spawning units Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio Egg production of population Abundance of	 reference levels established. No specific management objective based on the genetic structure of bycatch species. 4.1 Not currently monitored. However, size/sex data is collected for some byproduct/bycatch species during monitoring surveys, e.g., bugs and scallops. Monitoring the age/size/sex structure of byproduct/bycatch species populations is a useful management tool allowing the identification of possible fishery impacts and that cross-section of the population most at risk. 5.1 Beyond the generality of the EMO "Fishing is conducted in a manner that does not threaten stocks of byproduct/bycatch species". Reproductive capacity is not currently
	/sex structure 5. Reproductive	/sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure). 5.1 Fecundity of the population does not change outside	or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio Egg production of population Abundance of	size/sex data is collected for some byproduct/bycatch species during monitoring surveys, e.g., bugs and scallops. Monitoring the age/size/sex structure of byproduct/bycatch species populations is a useful management tool allowing the identification of possible fishery impacts and that cross- section of the population most at risk. 5.1 Beyond the generality of the EMO "Fishing is conducted in a manner that does not threaten stocks of byproduct/bycatch species". Reproductive capacity is not currently
	Reproductive	of the population does not change outside	population Abundance of	"Fishing is conducted in a manner that does not threaten stocks of byproduct/bycatch species". Reproductive capacity is not currently
		bounds (e.g. more than X% of reference population fecundity)		species (except for bugs) and is largely covered by other objectives.
		Recruitment to the population does not change outside acceptable bounds		
	6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Trawling does not appear to attract bycatch species or alter their behaviour and movement patterns, resulting in the attraction of species to fishing grounds.
Avoid recruitment failure of protected species	1. Population size	1.1 Species do not further approach extinction or become extinct 1.2 No trend in biomac	Biomass, numbers, density, CPUE, yield	1.1 EMO – This is a general objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective 1b): ensuring that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of ecologically
	recruitment failure of protected species Avoid negative consequences	Avoid Avoid Tecruitment failure of protected species Avoid negative	Image: speciesImage: speciesbounds6. Behaviour /movement6.1 Behaviour and movement patterns of the population do not change outside acceptable boundsAvoid recruitment failure of protected species1. Population size1.1 Species do not further approach extinction or become extinctAvoid negative consequences1.2 No trend in biomass	Avoid recruitment failure of protected species1. Population population size1.1 Species do not further approach extinctBiomass, numbers, density, CPUE, yieldAvoid negative consequences1.2 No trend in biomass1.2 No trend in biomass1.2 No trend in biomass

Component	Core Objective	Sub-	Example	Example Indicators	Rationale
		component	Operational Objectives		
	species or population sub- components Avoid negative		1.3 Maintain biomass above a specified level		objective (2) ensuring, through proper conservation and management measures, that the living resources of the AFZ are not endangered by over-exploitation; therefore the fishers is conducted
	impacts on the population from fishing		1.4 Maintain catch at specified level		 therefore the fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species. 1.2 A positive trend in biomass is desirable for protected species.
					1.3 Maintenance of protected species biomass above specified levels not currently a fishery operational objective.
					1.4 The above EMO states 'must avoid mortality/injury to protected species'.
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space	2.1 Change in geographic range of protected species may have serious consequences e.g. population fragmentation and/or forcing species into sub-optimal areas.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1 Because population size of protected species is often small, protected species are sensitive to loss of genetic diversity. Genetic monitoring may be an effective approach to measure possible fishery impacts and is currently being studied in the NPF.
		4. Age/size /sex structure	4.1 Age/size /sex structure does not change outside acceptable bounds (e.g. more than X% from reference structure)	Biomass, numbers, or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Not currently monitored. However, data is being collected on size and/or sex for some TEP species. Monitoring the age/size/sex structure of protected species populations is a useful management tool allowing the identification of possible fishery impacts and that cross-section of the population most at risk.
		5. Reproductive capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity)	Egg production of population Abundance of recruits	5.1 The reproductive capacity of protected species is of concern because potential fishery induced changes in reproductive ability may have immediate impact on the population size of protected species. This is currently not being done, apart from size data being collected annually.

Component	Core Objective	Sub-	Example	Example Indicators	Rationale
		component	Operational Objectives		
			Recruitment to the population does not change outside acceptable bounds		
		6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Trawling operations may attract protected species and alter behaviour and movement patterns, resulting in the habituation of protected species to fishing vessels. The overall effect may be to prevent juveniles from learning to fend for themselves therefore increasing the animals' reliance on fishing vessels. Subsequently this could substantially increase the risk of injury/mortality by collision, entrapment or entanglement with a vessel or fishing gear.
		7. Interactions with fishery	7.1 Survival after interactions is maximised 7.2 Interactions do not affect the viability of the population or its ability to recover	Survival rate of species after interactions Number of interactions, biomass, or numbers in population	7.1, 7.2, EMO – The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened, or protected species. This includes temporal and spatial closures, gear restrictions (including compulsory use of bycatch reduction and turtle excluder devices).
Habitats	Avoid negative impacts on quality of environment Avoid reduction	1. Water quality	1.1 Water quality does not change outside acceptable bounds	Water chemistry, noise levels, debris levels, turbidity levels, pollutant concentrations, light pollution from artificial light	1.1 EMO control the discharge or discarding of waste (fish offal) and limit lighting on the vessels. MARPOL regulations prohibit discharge of oils, discarding of plastics.
	in the amount and quality of habitat	2. Air quality	2.1 Air quality does not change outside acceptable bounds	Air chemistry, noise levels, visual pollution, pollutant concentrations, light pollution from artificial light	2.1 Not currently perceived as an important habitat sub-component, trawling operations not believed to strongly influence air quality.
		3. Substrate quality	3.1 Sediment quality does not change outside acceptable bounds	Sediment chemistry, stability, particle size, debris, pollutant concentrations	3.1 EMO – General objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective 1b): ensuring that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of ecologically sustainable development. The fishery is conducted, in a manner that minimises the impact of fishing operations on benthic habitat.
		4. Habitat types	4.1 Relative abundance of habitat types	Extent and area of habitat types, % cover, spatial	4.1 Trawling activities may result in changes to the local habitat types on fishing grounds.

Component	Core Objective	Sub- component	Example Operational Objectives	Example Indicators	Rationale
			does not vary outside acceptable bounds	pattern, landscape scale	
		5. Habitat structure and function	5.1 Size, shape and condition of habitat types does not vary outside acceptable bounds	Size structure, species composition and morphology of biotic habitats	5.1 Trawling activities may result in local disruption to pelagic and benthic processes.
Communities	Avoid negative impacts on the composition/ function/ distribution/ structure of the community	1. Species composition	1.1 Species composition of communities does not vary outside acceptable bounds	Species presence/absence, species numbers or biomass (relative or absolute) Richness Diversity indices Evenness indices	1.1 EMO – General objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective 1b): ensuring that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of ecologically sustainable development), in particular the need to have regard to the impact of fishing activities on non-target species and the long-term sustainability of the marine environment.
		2. Functional group composition	2.1 Functional group composition does not change outside acceptable bounds	Number of functional groups, species per functional group (e.g. autotrophs, filter feeders, herbivores, omnivores, carnivores)	2.1 The presence/abundance of 'functional group' members may fluctuate widely, however in terms of maintenance of ecosystem processes it is important that the aggregate effect of a functional group is maintained.
		3. Distribution of the community	3.1 Community range does not vary outside acceptable bounds	Geographic range of the community, continuity of range, patchiness	3.1 Demersal trawling operations have unknown impacts on the benthos in the fishing grounds. The current MPA and conservation areas reserve large areas of the known habitat types from fishing disturbance.
		4. Trophic/size structure	4.1 Community size spectra/troph ic structure does not vary outside acceptable bounds	Size spectra of the community Number of octaves, Biomass/number in each size class Mean trophic level Number of trophic levels	4.1 Trawling activities for key/secondary commercial species have the potential to remove a significant component of the predator functional group. Increased abundance of the prey groups may then allow shifts in relative abundance of higher trophic level organisms.
		5. Bio- and geo-chemical cycles	5.1 Cycles do not vary outside acceptable bounds	Indicators of cycles, salinity, carbon, nitrogen, phosphorus flux	5.1 Trawling operations not perceived to have a detectable effect on bio and geochemical cycles, but other activities might e.g. aquaculture.

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. See Table 2.15 provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

Fishery name: Northern Prawn Fishery

Sub-fishery name: Tiger Prawn

Date completed: April 2019

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	SCORE (0/1)	DOCUMENTATION OF RATIONALE
Capture	Bait collection	0	Not required by this fishery method.
	Fishing	1	Actual fishing, i.e. capture of species resulting from deployment and retrieval of gillnet including key commercial, bycatch, byproduct and protected species caught but not landed.
	Incidental behaviour	1	Line fishing by crew in down time.
Direct impact without	Bait collection	0	Not required for this fishery method.
capture	Fishing	1	Fishing is most likely to impact benthic habitats and animals as the gear contacts seafloor. Unknown mortality on fish arising from net escapement. Organisms may come into contact with TEDS, BRD's or fishing net.
	Incidental behaviour	1	Activities such as recreational fishing are not permitted or occur rarely. Possible hooking of sharks and hooks remaining in them.
	Gear loss	1	Major gear loss reported rarely and no information on minor components but likely to occur.

Table 2.14. Hazard identification, score and rationale(s) for the NPF Tiger Prawn sub-fishery.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	SCORE (0/1)	DOCUMENTATION OF RATIONALE
	Anchoring/mooring	1	Vessels might anchor inshore when not fishing. Occurs during daylight hours.
	Navigation/steaming	1	Continuous searching and trawling during the night, some steaming between locations during the day. Steaming/navigation to fishing grounds may result in collisions.
Addition/ movement of biological material	Translocation of species	1	Vessel travel relatively constrained, however, known reports of incursion of introduced species: black-striped mussel (<i>Mytilopsis sallei</i>).
	On board processing	0	No onboard processing occurs
	Discarding catch	1	Discarding is common.
	Stock enhancement	0	None occurs
	Provisioning	0	None occurs
	Organic waste disposal	1	Disposal of organic wastes should not occur under MARPOL regulations, but do occur (e.g., food scraps and sewage).
Addition of non- biological material	Debris	0	Rubbish generated during general fishing vessel operations usually disposed of ashore.
	Chemical pollution	0	Waste discharge from vessels should not occur under MARPOL regulations. Leakage of substances such as fuel, oil, bilge discharges, natural decay of antifouling agents may occur in normal course of operations
	Exhaust	1	Vessel introduces exhaust into the environment.
	Gear loss	1	Major gear losses of whole nets rare and usually retrieved. No information on minor components loss
	Navigation/steaming	1	Vessels navigate to and from fishing grounds introduces noise and visual stimuli into the environment. Depth sounders/acoustic net positioning systems have potential to disturb marine species.
	Activity/ presence on water	1	Vessel introduces noise and visual stimuli into the environment.
Disturb physical	Bait collection	0	Bait not required by fishery.
processes	Fishing	1	Fishing may disturb seabed sediments and structure.
	Boat launching	0	Not applicable. Vessels in fishery come from designated ports.
	Anchoring/mooring	1	Anchoring/mooring may affect the physical processes in the area where anchors and anchor chains contact the seafloor.
	Navigation/steaming	1	Fishing operations involve navigating to and from fishing grounds. Navigation/steaming introduces noise, water turbulence to environment. Depth sounders/ acoustic net positioning systems have potential to disturb marine species.
External Hazards (specify the particular example within each activity area)	Other capture fishery methods	1	Other fisheries which occur in the same area which include gillnetting, fish trawling, longlining, recreational and indigenous fishing: e.g. C1 - Crab fishery (other than spanner crab); C3 - Crab fishery (spanner crab - managed area B); L4 - Line fishery (Queensland Fisheries Joint Authority no. 1); N3 - Net fishery (Gulf of Carpentaria - no. 1); N11 - Net fishery (Gulf of Carpentaria - no. 11); N12 – Net fishery (Gulf of Carpentaria - offshore); N13 – Net fishery (Gulf of Carpentaria - offshore)).
	Aquaculture	1	Special permit for P. monodon for aquaculture industry
	Coastal development	1	Sewage discharge, agricultural runoff, pollution from ports and coastal towns could impact shelf fisheries and may affect breeding grounds and nursery areas for some of the species in the fishery.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	SCORE (0/1)	DOCUMENTATION OF RATIONALE
	Other extractive activities	1	Oil, gas and mining minerals on shore may require the development of port facilities which directly impact the nursery habitat of target species.
	Other non-extractive activities	1	Shipping and sub-marine (telecommunication) cables.
	Other anthropogenic activities	1	Recreational boating and fishing leading to coral damage when anchoring possible collisions with turtles and dugongs, Shipping and possible oil spills. Loading and spillage of mine concentrate at sea and in rivers. Catchment issues including alter water flows and hence target species emigration cues; as well as long-term effects on water quality and habitat productivity. Tourist activities and charter fishing occurs in the fishery.

Table 2.15. Examples of fishing activities (Modified from Fletcher et al. 2002).

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	EXAMPLES OF ACTIVITIES INCLUDE
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. They are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
capture	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crew use to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/mooring	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/steaming	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes collisions with marine organisms or birds.
Addition/ movement of		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
biological material	Translocation of species (boat movements, reballasting)	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into the fishery.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	EXAMPLES OF ACTIVITIES INCLUDE
	On board processing	The discarding of unwanted sections of target after on board processing introduces or moves biological material, e.g. heading and gutting, retaining fins but discarding trunks.
	Discarding catch	The discarding of unwanted organisms from the catch can introduce or move biological material. This includes individuals of target and byproduct species due to damage (e.g. shark or marine mammal predation), size, high grading and catch limits. Also includes discarding of all non-retained bycatch species. This also includes discarding of catch resulting from incidental fishing by the crew. The discards could be alive or dead.
	Stock enhancement	The addition of larvae, juveniles or adults to the fishery or ecosystem to increase the stock or catches.
	Provisioning	The use of bait or berley in the fishery.
	Organic waste disposal	The disposal of organic wastes (e.g. food scraps, sewage) from the boats.
Addition of non-biological material		Any activities that result in non-biological material being added to the ecosystem of the fishery, this includes physical debris, chemicals (in the air and water), lost gear, noise and visual stimuli.
	Debris	Non-biological material may be introduced in the form of debris from fishing vessels or mother ships. This includes debris from the fishing process: e.g. cardboard thrown over from bait boxes, straps and netting bags lost.
		Debris from non-fishing activities can also contribute to this e.g. Crew rubbish – discarding plastics or other rubbish. Discarding at sea is regulated by MARPOL, which forbids the discarding of plastics.
	Chemical pollution	Chemicals can be introduced to water, sediment and atmosphere through: oil spills, detergents other cleaning agents, any chemicals used during processing or fishing activities.
	Exhaust	Exhaust can be introduced to the atmosphere and water through operation of fishing vessels
	Gear loss	The loss of gear will result in the addition of non-biological material, this includes hooks, line, sinkers, nets, otter boards, light sticks, buoys etc.
	Navigation/steaming	The navigation and steaming of vessels will introduce noise and visual stimuli into the environment.
		Boat collisions and/or sinking of vessels.
		Echo-sounding may introduce noise that may disrupt some species (e.g. whales, orange roughy)
	Activity/presence on water	The activity or presence of fishing vessels on the water will noise and visual stimuli into the environment.
Disturb physical processes		Any activities that will disturb physical processes, particularly processes related to water movement or sediment and hard substrate (e.g. boulders, rocky reef) processes.
	Bait collection	Bait collection may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	EXAMPLES OF ACTIVITIES INCLUDE
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.
	Anchoring/mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.
	Navigation/steaming	Navigation /steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.
External hazards		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous or recreational fisheries operating in the same region as the fishery under examination
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity
	Other non-extractive activities	Defense, shipping lanes, dumping of munitions, submarine cables
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills

2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.

Key documents can be found on the AFMA web page at www.afma.gov.au and include the following:

- Management Plan and Regulation Guidelines
- Bycatch Action Plans
- Data Summary Reports (logbook and observer)

Other publications that provided information include:

- ABARES Fishery Status Reports
- Strategic Plans

2.2.6 Decision rules to move to Level 1 (Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 23 out of 32 possible activities were identified as occurring in this sub-fishery, including the six external scenarios. Thus, a total of 23 activity-component scenarios were considered at Level 1. This resulted in 114 (excluding the key commercial x direct impact by capture activity) scenarios (of 160 possible) to be developed and evaluated using the unit lists (Key commercial/secondary, byproduct/bycatch, protected species, habitats, communities).

2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat or community. Analysis at Level 1 is for whole components (key/secondary commercial; bycatch and byproduct; protected species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity, and consequence analysis (SICA). SICA is applied to the component by choosing the most vulnerable subcomponent (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

- Step1. Record the hazard identification score (absence (0) presence (1) scores) identified at Step 3 at the scoping level (Scoping Document S3) onto the SICA table
- Step 2. Score spatial scale of the activity
- Step 3. Score temporal scale of the activity
- Step 4. Choose the sub-component most likely to be affected by activity
- Step 5. Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage
- Step 6. Select the most appropriate operational objective
- Step 7. Score the intensity of the activity for that sub-component
- Step 8. Score the consequence resulting from the intensity for that sub component
- Step 9. Record confidence/uncertainty for the consequence scores
- Step 10. Document rationale for each of the above steps
- Step 11. Summary of SICA results
- Step 12. Evaluation/discussion of Level 1
- Step 13. Components to be examined at Level 2

2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each component (key/secondary commercial, bycatch and byproduct, and protected species, habitat, and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1.

2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm, then the spatial scale is scored as 4. The score is then recorded onto the SICA Document, and the rationale documented.

Table 2.16. Spatial scale score of activity.

<1 NM	1-10 NM	10-100 NM	100-500 NM	500-1000 NM	>1000 NM
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6. If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document, and the rationale documented.

DECADAL (1 DAY EVERY 10 YEARS OR SO)	EVERY SEVERAL YEARS (1 DAY EVERY SEVERAL YEARS)	ANNUAL (1-100 DAYS PER YEAR)	QUARTERLY (100-200 DAYS PER YEAR)	WEEKLY (200-300 DAYS PER YEAR)	DAILY (300-365 DAYS PER YEAR)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the same 150 days of the year, the score is 4. If the same 10 boats each spend 30 non-overlapping

days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same regarding temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination and recorded in the 'sub-component' column of the SICA Document. The justification is recorded in the rationale column.

2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from **Scoping Document S2 (A** – **C**). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from **Scoping Document S3** is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in **Scoping Document S3**. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated, then these sub-components or operational objectives must be re-instated.

2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (Figure 1.2) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to

physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

SCORE	DESCRIPTION
1	remote likelihood of detection at any spatial or temporal scale
2	occurs rarely or in few restricted locations and detectability even at these scales is rare
3	moderate at broader spatial scale, or severe but local
4	severe and occurs reasonably often at broad spatial scale
5	occasional but very severe and localized or less severe but widespread and frequent
6	local to regional severity or continual and widespread
	1 2 3 4 5

Table 2.18. Intensity score of activity (Modified from Fletcher et al. 2002).

This score is then recorded on the Level 1 (SICA) Document and the rationale documented.

2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores defined below. A more detailed description of the consequences at each level for each component (key/secondary commercial, bycatch and byproduct, protected species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table (Table 2.19).

LEVEL	SCORE	DESCRIPTION
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics
Moderate	3	Maximum impact that still meets an objective (e.g. sustainable level of impact such as full exploitation rate for a target species).
Major	4	Wider and longer term impacts (e.g. long-term decline in CPUE)
Severe	5	Very serious impacts now occurring, with relatively long time period likely to be needed to restore to an acceptable level (e.g. serious decline in spawning biomass limiting population increase).
Intolerable	6	Widespread and permanent/irreversible damage or loss will occur-unlikely to ever be fixed (e.g. extinction)

Table 2.19. Consequence score	for ERAEF activities	(Modified from Fletcher et al. 2002).
Tuble Liff consequence score		(modified from frecence et all 2002).

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale documented. The confidence will reflect the levels of uncertainty for each score at steps 2, 3, 7 and 8 (see description; Table 2.20).

 Table 2.20. Description of Confidence scores for Consequences. The confidence score appropriate to the rationale is used, and documented on the SICA Document.

CONFIDENCE	SCORE	RATIONALE FOR THE CONFIDENCE SCORE
Low	1	Data exists, but is considered poor or conflicting
		No data exists
		Disagreement between experts
High	2	Data exists and is considered sound
		Consensus between experts
		Consequence is constrained by logical consideration

2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis.

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub-component provide a guide for scoring the level of consequence (see Table above)

Level 1 (SICA) Document L1.1 Key commercial/secondary commercial species.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (52.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Capture	Bait collection	0									
	Fishing	1									There are no key commercial species that are not assessed. No further action required for this activity.
	Incidental behaviour	1	3	3	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	1	1	2	Fishing crew often line fish for reef fish during their downtime when the vessel is anchored. Population size likely to be affected before major changes in other sub-components due to the removal of individuals. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: negligible as hand-lining occurs in only a limited number of anchoring locations. Consequence: negligible as hand-lining by crew is expected to have a little impact on prawns as they are not known to be caught by line fishing. Confidence: high as general consensus amongst experts is that it is extremely unlikely that incidental fishing by crew will affect brown tiger prawn population size.
Direct impact	Bait collection	0									
without capture	Fishing	1	5	4	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	1	1	1	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components due to damaging/injuring the prawns leading to death. Brown tiger prawns are the most likely

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											species to be affected by this activity. Intensity: negligible as fishing often localized due to suitable habitat and most animals are caught with few escaping. Consequence: negligible as fishing does not impact an additional component of the population that is not caught. Confidence: low as data unavailable for direct impacts without capture.
	Incidental behaviour	1	3	3	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	1	1	2	Fishing crew often line fish for reef fish during their downtime when the vessel is anchored. Population size likely to be affected before major changes in other sub-components due to the impact on animals. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: negligible as it is unlikely that prawns get hooked and then release. Consequence: negligible as hand-lining by crew is expected to have a negligible impact on prawns as they are not known to be impacted by the line or hook. Confidence: high as expert consensus is that it is extremely unlikely that line fishing will affect Brown tiger prawn population size.
	Gear loss	1	1	1	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	2	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), yet these days gear loss rarely occurs (e.g. one large commercial company stated only 1 gear loss in the last 10 years). Population size likely to be affected before major changes in other sub-components due to entrapment of individuals. Brown tiger prawns are the most likely species to be affected. Intensity: minor as gear loss is rare and interaction of Brown tiger prawn with gear remote. Consequence: negligible as impact unlikely to be measurable. Confidence: high as it is known that very little gear is lost, and interaction with brown tiger prawn is considered unlikely.
	Anchoring/ mooring	1	2	3	Population size	Brown tiger prawn	1.2	2	1	2	Anchoring occurs daily throughout the fishery. Population size likely to be affected before major changes in other sub-components due to impact with the anchor. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: minor as vessels only anchor during

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	DPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
						(Penaeus esculentus)					the day when they are not fishing and anchoring has a very small footprint. Consequence: negligible as impact unlikely to be measurable. Confidence: high as expert consensus is that interaction with brown tiger prawn is considered unlikely.
	Navigation/ steaming	1	2	4	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	1	1	2	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and has the potential to cause collision with animals. Population size likely to be affected before major changes in other sub-components due to injury/death from collision. Brown tiger prawn are the most likely species to be affected by this activity. Intensity: negligible as Brown tiger prawns are demersal species and will not collide with a vessel. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as it is known that prawns and vessels do not collide.
Addition/ movement of biological material	Translocation of species	1	5	6	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	1	2	1	Translocation may occur throughout the NPF, through ballast water or hull fouling, gear or anchor entanglement, and has the potential to establish as most fishing areas and ports used are of similar depths. The black-striped mussel (<i>Mytilopsis sallei</i>) is now eradicated (Summerson et al. 2013) but establishes precedence for translocation to occur in the NPF area. Population size likely to be affected before major changes in other sub-components, by introducing a foreign competitor or through transmission of disease, but also directly or indirectly through changing trophic linkages. No mitigating measures are currently in place. Brown tiger prawn are the most likely species to be at risk. Intensity: negligible at present as Brown tiger prawns are currently not affected by introduced organisms. Consequence: minor as although there is the potential for impacts to significantly alter population size, the previously introduced pest was quickly eradicated. Confidence: low as it not known

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											to what extent trawling in the NPF contributes to the spread of the species. No data exists to refute this risk.
	On board processing	0									
	Discarding catch	1	5	4	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	4	1	2	Discarding of bycatch occurs extensively throughout the fished region. Population size likely to be affected before major changes in other sub- components if scavengers and predators (e.g. sharks and trevally) are attracted to prawn habitat due to the addition of discards, and in turn prey upon prawns. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: major as this occurs daily throughout the fishery. Consequence: negligible as discarded catch wouldn't have a detectable change on the prawns. Confidence: high as the effects of discarding of bycatch is well documented in the NPF.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	1	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), for ~4 months each year, so organic waste disposal is possible over this scale. Behaviour/movement likely to be affected before major changes in other sub-components as a result of the attraction (e.g. food scraps) or repulsion (e.g. raw sewage) of the organic waste. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: negligible as each disposal event wouldn't have a detectable change on behaviour/movement. Consequence: negligible as impact is unlikely to be detectable. Confidence: high because expert consensus is that general fishing waste disposal is unlikely to impact the behaviour/movement of demersal prawns.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Addition of non- biological	Debris	0									
material	Chemical pollution	0									
	Exhaust	1	5	4	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	1	1	2	Fishing vessels travel throughout the NPF for about 4 months each year so exhaust emissions possible over this scale. Behaviour/movement likely to be affected before major changes in other sub-components due to the introduction of the exhaust emissions. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: negligible because although the hazard could occur over a large range/scale, exhaust wouldn't have a detectable change on behaviour/movement. Consequence: negligible as the impact of exhaust emissions is unlikely to be detectable. Confidence: high because expert consensus is that exhaust is unlikely to impact the behaviour/movement of demersal prawns.
	Gear loss	1	1	1	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	2	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), yet these days gear loss rarely occurs (e.g. one large commercial company stated only 1 gear loss in the last 10 years). Population size likely to be affected before major changes in other sub-components due to entrapment of individuals. Brown tiger prawsn are the most likely species to be affected by this activity. Intensity: minor as lost gear would rarely interact with prawns. Consequence: negligible as the impact is unlikely to be detectable. Confidence: high because it is known that very little gear is lost, and interaction with prawns is considered unlikely.
	Navigation/ steaming	1	5	4	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	1	1	2	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of the noise and visual stimuli. Brown tiger prawns are

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											the most likely species to be at risk. Intensity: negligible as Brown tiger prawns are demersal species and unlikely to be affected. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as no research has shown prawns are affected by noise and visual stimuli introduced into the environment by vessels.
	Activity/ presence on water	1	5	4	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	1	1	2	Fishing throughout the NPF managed area introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of the noise and visual stimuli. Brown tiger prawns are the most likely species to affected by this activity. Intensity: negligible as brown tiger prawn are demersal species and unlikely to be affected. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as no research has shown prawns are affected by noise and visual stimuli introduced into the environment by vessels.
Disturb physical	Bait collection	0									
processes	Fishing	1	5	4	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	3	2	1	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km2 managed area (Pitcher et al. 2016), for ~4 months each year, with the action of direct disturbance to the seafloor. Population size likely to be affected before major changes in other sub-components due to trawl gear disturbing the seafloor habitat of benthic organisms. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: moderate as although fishing has a severe impact, it is localized due to suitable habitat for trawling. Consequence: minor as disturbance of sediment will have a minimal impact on stocks. Confidence: low as no data are available.
	Boat launching	0									

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Anchoring/ mooring	1	3	4	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	2	1	2	Anchoring occurs daily throughout the Tiger Prawn sub-fishery when the vessel is not fishing during daylight hours. Population size likely to be affected before major changes in other sub-components due to the anchor disturbing the seafloor. Brown tiger prawns are the most likely species to affected by anchoring. Intensity: negligible as vessels only anchor during the day when they are not fishing and anchoring has a very small footprint. Consequence: negligible as impact unlikely to be measurable. Confidence: high because expert consensus is that interaction with brown tiger prawn is considered unlikely.
	Navigation/steaming	1	5	4	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	1	1	2	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and creates turbulent action from the propellers. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of this turbulence. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: negligible as detectability of turbulence at the seafloor would be unlikely. Consequence: negligible as impact unlikely to be measurable. Confidence: high because expert consensus is that interaction with brown tiger prawn is considered unlikely.
External Impacts (specify the particular example within each activity area)	Other fisheries: crab fishery, spanner crab fishery, line fishery, net fisheries	1	6	6	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	2	2	2	Fishing occurs throughout the year by other fisheries including the <i>P. monodon</i> broodstock special permit in the NPF managed region. Population size likely to be affected before major changes in other sub- components due to the removal of individuals. Brown tiger prawns are the most likely species to be affected. Intensity: minor as <i>P. monodon</i> broodstock collection is the only "fishery" likely to capture many commercial prawns due to gear type used. Other trawl and non-trawl fisheries targeting other species in other habitats e.g. fish trawling over

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											reefs. Consequence: minor as minimal impact on stocks. Confidence: high as catch data available from other fisheries.
	Aquaculture	1	3	3	Population size	Brown tiger prawn (Penaeus esculentus)	1.2	2	2	2	Three boat licenses exist for capturing <i>P. monodon</i> broodstock for aquaculture. Population size likely to be affected before major changes in other sub-components due to the removal of individuals. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: minor as fishing for this broodstock only occurs at a few resticted locations. Consequence: minor as minimal impact on brown tiger prawn stocks. Confidence: high as catch data exists from <i>P. monodon</i> broodstock collection.
	Coastal development	1	6	6	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	2	3	1	Coastal development occurs in small pockets surrounding the NPF. Behaviour and movement likely to be affected before major changes in other sub-components due to altered water/habitat quality. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: minor as coastal development occurs in the vicinity of large estuaries (e.g. Darwin, Weipa, Karumba) which is not the main habitat for Brown tiger prawns. Consequence: moderate as coastal development may have a detectable impact on tiger prawn behaviour/movement as a result of altered flow regimes. Confidence: low as there is little data available to demonstrate the effects of coastal development on prawn behaviour/movement.
	Other extractive activities	1	3	6	Behaviour /movement	Brown tiger prawn (Penaeus esculentus)	6.1	2	2	1	Exploration for oil, gas and petroleum is underway or proposed throughout NPF, particularly in the Arafura Sea. Behaviour and movement likely to be affected before major changes in other sub- components due to movement away from the exploratory activity e.g. drilling. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: minor as these activities occur in restricted locations. Consequence: minor as effect on prawn expected to be minimal as these activities don't occur in areas where brown tiger

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											prawns are found. Confidence: low as data unavailable for effects of extractive activities on prawns.
	Other non extractive activities	1	6	6	Behaviour /movement	Brown tiger prawn (<i>Penaeus</i> <i>esculentus</i>)	6.1	3	1	2	Shipping occurs throughout the year throughout the NPF. Behaviour and movement likely to be affected before major changes in other sub- components due an avoidance reaction. Brown tiger prawns are the most likely target species to be affected by this activity. Intensity: moderate as shipping occurs throughout the NPF and is concentrated in various ports e.g. Darwin, Groote, Weipa, Karumba. Consequence: negligible as impact unlikely to be measurable. Confidence: high because expert consensus is that interaction with brown tiger prawn is considered unlikely.
	Other anthropogenic activities	1	6	6	Behaviour /movement	Brown tiger prawn (<i>Penaeus</i> <i>esculentus</i>)	6.1	2	2	1	Recreational boating/fishing and tourism occurs throughout the year in the NPF area, but particularly inshore and near major towns/cities. Behaviour and movement likely to be affected before major changes in other sub-components due an avoidance reaction. Brown tiger prawns are the most likely species to be affected by this activity. Intensity: minor as recreational activities occurs primarily in inshore areas and near major towns/cities. Consequence: minor as impact of recreational fishing probably minimal on target species populations. Confidence: low as data unavailable for effects of recreational fishing on brown tiger prawns.

Incidental behaviour133Population sizeCommon coral trout (Pectropomus leopardus)1.221Fishing crew often line fish or reef fish during their downtime) are line fish or most or a hand-lining by the crew has on commonIncidental behaviour133Population size1.221Fishing crew often line fish or reef fish during their downtime) are line fish or reef fish during their downtime) are line fish or reef fish during their downtime whe the versel is anchored. Population size likely to be affected before major changes in other sub-components due to the removal of individuals. Common coral line fish or reef fish during their downtime whe the versel is anchored. Population size likely to be affected before major changes in other sub-components due to the removal of individuals. Common coral lindividuals. Intensity: minor as hand-lin occurs in a limited number of anchoring locations where fish are lik to be caught. Consequence: minor as hand-lining by crew is expect to deplet resources by only at a local level. Confidence: low as it is unknown the effect creational fishing by the crew has on common	DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
behaviour behaviour	Capture		-	5	4		blacktip shark (Carcharhinus	1.2	3	3	2	managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components due to removal of individuals. Australian blacktip sharks are the most likely species to be affected as they make up most of shark species caught in the NPF and sharks typically have low fecundity, slow growth rate and low trawl survivability. Intensity: moderate as although fishing has a severe impact, it is localized due to suitable habitat for trawling. Consequence: moderate as this can potentially impact the stock. Confidence: high as
Bait collection 0		behaviour		3	3		trout (Plectropomus	1.2	2	2	1	

Level 1 (SICA) Document L1.2 - Byproduct and Bycatch Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Direct impact without capture	Fishing	1	5	4	Population size	Black Jewfish (Protonibea diacanthus)	1.2	2	2	1	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components due to removal of individuals. Black jewfish are the most likely species to be affected as they are large. Intensity: minor as it is expected that these interactions would occur only occasionally. Consequence: minor as is likely to have minimal impact on the stock. Confidence: low as it is unknown what their survivability is after escapement from the TED.
	Incidental behaviour	1	3	3	Population size	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	1.2	1	2	1	Fishing crew often line fish for reef fish during their downtime when the vessel is anchored. Population size likely to be affected before major changes in other sub-components due to the impact on individuals. Australian blacktip sharks are the most likely species to be affected by this activity. Intensity: negligible as it is unlikely that prawns get hooked and then release. Consequence: minor as hand-lining by crew is expected to have an impact on these sharks, only at a local scale. Confidence: low as it is unknown the effect recreational fishing by the crew has on Australian blacktip sharks stocks.
	Gear loss	1	1	1	Population size	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	1.2	2	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), yet these days gear loss rarely occurs (e.g. one large commercial company stated only 1 gear loss in the last 10 years). Population size likely to be affected before major changes in other sub-components due to entrapment of individuals. Australian blacktip sharks are the most likely species to be affected as they make up the largest biomass of shark species caught in the NPF and would be expected to be in the net if gear loss occurred. Intensity: minor as gear loss is rare and interaction of shark with gear remote.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	
											Consequence: negligible as impact unlikely to be measurable. Confidence: high as it is known that very little gear is lost.
	Anchoring/ mooring	1	2	3	Population size	Mud bug (Thenus parindicus)	1.2	2	2	1	Anchoring occurs daily throughout the Tiger Prawn sub-fishery when the vessel is not fishing during daylight hours. Population size likely to be affected before major changes in other sub-components due to impact with the anchor. Mud bug (which are a byproduct of the Tiger Prawn sub-fishery) are the most likely species to be affected due to injury/death from impact with the anchor. Intensity: minor as vessels only anchor during the day when they are not fishing and anchoring has a very small footprint. Consequence: minor as this would have a minimal impact on the stock. Confidence: low as it is unknown how often anchors come in contact with bugs.
	Navigation/ steaming	1	2	4	Population size	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	1.2	1	1	2	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and has the potential to cause collision with animals. Population size likely to be affected before major changes in other sub-components due to injury/death from collision. Australian blacktip sharks are the most likely species to be affected as they swim at the water surface. Intensity: negligible as Australian blacktip sharks are highly mobile and able to move out of a vessel's path. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as expert consensus is that Australian blacktip sharks and vessels rarely collide.
Addition/ movement of biological material	Translocation of species	1	5	6	Population size	Saucer scallop (Amusium pleuronectes)	1.2	1	2	1	Translocation may occur throughout the NPF, through ballast water or hull fouling, gear or anchor entanglement, and has the potential to establish as most of fishing areas and ports used are of similar depths. The black-striped mussel (<i>Mytilopsis sallei</i>) is now eradicated (Summerson et al. 2013) but establishes precedence for translocation to occur in the NPF area. Population size likely to be affected before

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											major changes in other sub-components, by introducing a foreign competitor or through transmission of disease, but also directly or indirectly through changing trophic linkages. No mitigating measures are currently in place. Saucer scallop (a byproduct of the Tiger Prawn sub-fishery) are the most likely species to be affected as they could easily be outcompeted by other introduced bivalves for food and habitat. Intensity: negligible at present as saucer scallop are currently not affected by introduced organisms. Consequence: minor as although there is the potential for impacts to significantly alter population size, the previously introduced pest was quickly eradicated. Confidence: low as it not known to what extent trawling in the NPF contributes to the spread of the species. No data exists to refute this risk.
	On board processing	0									
	Discarding catch	1	5	4	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	4	2	2	Discarding of bycatch occurs extensively throughout the fished region. Behaviour and movement likely to be affected before major changes in other sub-components if scavengers and predators (e.g. sharks and trevally) are attracted due to the addition of discards. Discarding catch is considered most likely to affect the behaviour/movement of Australian blacktip sharks, as they are in the area (regularly caught in NPF nets) through the attraction of discards. Intensity: major as this occurs daily throughout the fishery with a substantial amount of bycatch being discarded due to the "line trawling" that occurs during the Tiger Prawn sub-fishery. Consequence: minor as these changes are likely to be short-lived. Confidence: high as the effects of discarding of bycatch is well documented in the NPF.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	1	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), for ~4 months each year, so organic waste disposal is possible over this scale. Behaviour/movement likely to be affected before major changes in other sub-components as a result of the attraction (e.g. food scraps) or repulsion (e.g. raw sewage) of the organic waste. Australian blacktip shark are the most likely species to be affected as they make up most of shark species caught in the NPF and sharks typically have low fecundity, slow growth rate and low trawl survivability. Intensity: negligible as each disposal event wouldn't have a detectable change on behaviour/movement. Consequence: negligible as impact is unlikely to be detectable. Confidence: high because expert consensus is that general fishing waste disposal is unlikely to impact the behaviour/movement of sharks.
Addition of	Debris	0									
non-biological material	Chemical pollution	0									
	Exhaust	1	5	4	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	1	1	2	Fishing vessels travel throughout the NPF for ~4 months each year so exhaust emissions possible over this scale. Behaviour/movement likely to be affected before major changes in other sub-components due to the deterrent nature of the exhaust emissions. Australian blacktip shark are the most likely species to be affected as they are closest to the water surface where pollutants will first affect. Intensity: negligible because although the hazard could occur over a large range/scale, exhaust wouldn't have a detectable change on behaviour/movement. Consequence: negligible as the impact of exhaust emissions is unlikely

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											to be detectable. Confidence: high because expert consensus is that exhaust was considered unlikely to impact the behaviour/movement of highly mobile species.
	Gear loss	1	1	1	Population size	Blue Swimmer Crab (Portunus armatus)	1.2	2	1	2	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), yet these days gear loss rarely occurs (e.g. one large commercial company stated only 1 gear loss in the last 10 years). Population size likely to be affected before major changes in other sub-components due to entrapment of individuals. Blue swimmer crabs (most commonly caught portunid crab) are the most likely species to be affected as their body structure causes them to become easily trapped in ghost nets. Intensity: minor as lost gear would rarely interact with crabs. Consequence: negligible as the impact is unlikely to be detectable. Confidence: high because it is known that very little gear is lost, so interaction with crabs is considered unlikely.
	Navigation/ steaming	1	5	4	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	1	1	1	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of the noise and visual stimuli. Australian blacktip shark are the most likely species to affected as they swim at the water surface. Intensity: negligible as sharks are highly mobile and easily move away from vessels. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as it not known to what extent navigation/steaming in the NPF has on sharks.
	Activity/ presence on water	1	5	4	Behaviour /movement	Australian blacktip shark	6.1	1	1	1	Fishing throughout the NPF managed area introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
						(Carcharhinus tilstoni)					repellent nature of the noise and visual stimuli. Australian blacktip shark are the most likely species to be affected as they swim at the water surface. Intensity: negligible as sharks are highly mobile and easily move away from vessels. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as it not known to what extent noise and visual stimuli from fishing has on sharks.
Disturb physical	Bait collection	0									
processes	Fishing	1	5	4	Population size	Rapacious mantis shrimp (Harpiosquilla harpax)	1.2	3	2	1	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016), for ~4 months each year, with the action of direct disturbance to the seafloor. Population size likely to be affected before major changes in other sub-components due to trawl gear disturbing the seafloor habitat of benthic organisms. Rapacious mantis shrimp (most commonly caught mantis shrimp in the NPF's Tiger Prawn sub-fishery) are the most likely species to be affected as the ground-chain would disturb their burrows and remove their food (small fish/crustaceans) from the benthos. Intensity: moderate as although fishing has a severe impact, it is localized due to suitable habitat for trawling. Consequence: minor as disturbance of sediment will have a minimal impact on stocks. Confidence: low as no data are available.
	Boat launching	0									
	Anchoring/ mooring	1	3	4	Population size	Rapacious mantis shrimp (Harpiosquilla harpax)	1.2	2	1	2	Anchoring occurs daily throughout the Tiger Prawn sub-fishery when the vessel is not fishing during daylight hours. Population size likely to be affected before major changes in other sub-components due to the anchor disturbing the seafloor. Anchoring most likely to affect he population size of the Rapacious mantis shrimp (most commonly caught mantis shrimp in the NPF's Tiger Prawn sub-fishery) on a local scale as the anchor would disturb their burrows. Intensity: minor as

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											vessels only anchor during the day when they are not fishing and anchoring has a very small footprint. Consequence: negligible as impact unlikely to be measurable. Confidence: high because expert consensus is that interaction with rapacious mantis shrimp is considered unlikely.
	Navigation/steami ng	1	5	4	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	1	1	1	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and creates turbulent action from the propellers. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of this turbulence. Australian blacktip shark are the most likely species to be affected as they swim at the water surface. Intensity: negligible as sharks are highly mobile and easily move away from vessels. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as it not known to what extent navigation/steaming in the NPF has on sharks.
External Impacts (specify the particular example within each activity area)	Other fisheries: crab fishery, spanner crab fishery, line fishery, net fisheries	1	6	6	Population size	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	1.2	3	3	2	Fishing occurs throughout the year by several other fisheries in the NPF managed region. Population size likely to be affected before major changes in other sub-components due to removal of individuals. Australian blacktip sharks (most commonly caught shark in the NPF) are the most likely species to be affected as they would also be potentially caught in both gillnet and long-line fisheries. Intensity: moderate as although fishing has a severe impact, it is localized to fishing hotspots. Consequence: moderate as this has a measurable impact on the stock. Confidence: high as data shows sharks are caught in numerous fisheries.
	Aquaculture	1	3	3	Population size	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	1.2	2	2	2	Three boat licenses exist for capturing <i>P. monodon</i> broodstock for aquaculture. Population size likely to be affected before major changes in other sub-components due to the removal of individuals. Australian blacktip sharks (most commonly caught shark in the NPF) are the most

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											likely species to be affected as they would also be captured in trawl net. Intensity: minor as fishing for this broodstock only occurs at a few resticted locations. Consequence: minor as minimal impact on stocks due to not much fishing in this aquaculture fishery. Confidence: high as bycatch from <i>P. monodon</i> broodstock collection would be similar to that from Banana prawn sub-fishery.
	Coastal development	1	6	6	Behaviour /movement	Chacunda gizzard shad (Anodontostoa chacunda)	6.1	2	2	1	Coastal development occurs in small pockets surrounding the NPF. Behaviour and movement likely to be affected before major changes in other sub-components due to altered water/habitat quality. Chacunda gizzard shad are the most likely bycatch/byproduct species to be affected as they are pelagic but their juvenile stage is in inshore/river systems feeding on diatoms, etc., that would potentially be affected by high sedimentation/smothering in the water. Intensity: minor as this would be in restricted locations (most coastal development is limited to large estuaries). Consequence: minor as coastal development has a minimal impact on these shad during their early lifecycle phase inshore. Confidence: low as there is little data available to demonstrate the effects of coastal development on shad behaviour/movement.
	Other extractive activities	1	3	6	Behaviour /movement	Indian pellona (Pellona ditchela)	6.1	2	2	1	Exploration for oil, gas and petroleum is underway or proposed throughout NPF, particularly in the Arafura Sea. Behaviour and movement likely to be affected before major changes in other sub- components due to the addition of structures (rigs) in the sea. Indian pellona are the most likely species to be affected as they would tend to school around the large structure feeding on components of the community that grows on these hard structures. Intensity: minor as these activities occur in restricted locations. Consequence: minor as this would have a minimal effect on the stock. Confidence: low as data are unavailable for effects of extractive activities on these fish.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Other non extractive activities	1	6	6	Behaviour /movement	Australian blacktip shark (<i>Carcharhinus</i> <i>tilstoni</i>)	6.1	3	1	1	Shipping occurs throughout the year throughout the NPF. Behaviour and movement likely to be affected before major changes in other sub- components due to an avoidance reaction. Australian blacktip shark are the most likely species to be affected as they swim on the surface. Intensity: moderate as shipping occurs throughout the NPF and is concentrated in various ports e.g. Darwin, Groote, Weipa, Karumba. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as it not known to what extent non-NPF shipping has on sharks.
	Other anthropogenic activities	1	6	6	Population size	Golden snapper (<i>Lutjanus</i> johnii)	1.2	2	2	1	Recreational boating/fishing and tourism occurs throughout the year in the NPF, but particularly inshore and near major towns/cities. Behaviour and movement likely to be affected before major changes in other sub-components due an avoidance reaction. Golden snapper are the most likely species to be affected as they are a popular target fish of recreational fishers and are also caught in high numbers in the NPF. Intensity: minor as recreational activities occurs primarily in inshore areas and near major towns/cities. Consequence: minor as recreational fishing probably has a minimal impact on the stock. Confidence: low as data unavailable for numbers of fish caught from recreational activities.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Capture	Bait collection	0									
	Fishing	1	5	4	Population size	Freshwater sawfish (Pristis pristis) and green sawfish (P. zijsron)	1.2	3	3	1	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components due to removal of individuals. Both the green and freshwater sawfish are the most likely vulnerable species as their rostra are likely to interact with fishing trawl operations and escapement rates of sawfish from trawl nets through TED openings are currently unknown. Also, (i) population status of each species is unknown and (ii) there is either no or little information on any trends based on abundances indices (e.g., catch-per-unit-effort) within this assessment period. This activity could in turn affect the population of these species. Intensity: moderate as although fishing has a severe impact, it is localized due to suitable habitat for trawling. Consequence: moderate as population of green and freshwater sawfish are already relatively low taking only few will still have an impact on stocks. Confidence: low, stock status of these species is uncertain.
	Incidental behaviour	1	3	3	Behaviour /movement	Crested tern (Thalasseus bergii)	6.1	1	1	2	Fishing crew often line fish for reef fish during their downtime when the vessel is anchored. Behaviour and movement like to be affected before major changes in other sub-components due to foraging for food. Crested terns are the most likely species to be affected as crew sometimes line fish when anchored and this activity will affect the tern's behaviour. Intensity: negligible as line fishing occurs in only a few anchoring locations. Consequence: negligible as crested tern interaction rare and is unlikely to contribute to movement/behaviour change. Confidence: high as data exists and expert consensus is that interaction with line fishing is rare (Steve Blaber pers. comm.).
	Bait collection	0									

Level 1 (SICA) Document L1.3 - Protected Species Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Direct impact without capture	Fishing	1	5	4	Population size	Olive Ridley turtle (<i>Lepidochelys</i> olivacea)	1.2	3	3	1	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components. Population size likely to be affected before major changes in other sub-components due to removal of individuals. Olive Ridley turtles are the most likely species to be affected as they have the greatest risk of extinction for marine turtle stocks in the Gulf of Carpentaria region (C. Limpus pers. comm.). Western Cape York Peninsula olive ridley genetic stock nesting population is endemic to Queensland for breeding and has currently only a few hundred individuals annually. They are approaching zero recruitment of new adults annually into the breeding population (C. Limpus pers. comm.). Intensity: moderate as Olive Ridley turtles are encounter on a larger spatial scale. Consequence: moderate as the loss of only tens of adult females annually would represent a serious impact. Confidence: low as there is no data available to show the number or condition of turtles that escape the TED.
	Incidental behaviour	1	3	3	Behaviour /movement	Crested tern (Thalasseus bergii)	6.1	1	1	2	Fishing crew often line fish for reef fish during their downtime when the vessel is anchored. Behaviour and movement like to be affected before major changes in other sub-components due to foraging for food. Crested terns are the most likely species to be affected as crew sometimes line fish when anchored and this activity will affect the tern's behaviour even if they aren't captured. Intensity: negligible as line fishing occurs in only a few anchoring locations. Consequence: negligible as crested tern interaction rare and is unlikely to contribute to movement/behaviour change. Confidence: high as data exists and expert consensus is that interaction with line fishing is rare (Steve Blaber pers. comm.).
	Gear loss	1	1	1	Population size	Freshwater sawfish (<i>Pristis</i> <i>pristis</i>) and	1.2	2	1	2	Fishing occurs in 1.6% annual footprint 770,000 km ² NPF managed area for about 4 months each year, yet these days gear loss rarely occurs (e.g. one large commercial company stated only 1 gear loss in the last 10 years). Population size likely to be affected before major changes in other sub-components due to removal of individuals. Both the green and freshwater sawfish are most likely

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
						green sawfish (P. zijsron)					species to be affected from lost gear as they are benthic and their rostra easily entangle in net mesh. Intensity: minor as gear loss is rare and interaction of sawfish with gear remote. Consequence: minor as gear loss unlikely to contribute to further population decline. Confidence: high as it is known that very little gear is lost, and interaction with sawfish is considered unlikely.
	Anchoring/ mooring	1	2	3	Population size	Olive Ridley turtle (<i>Lepidochelys</i> <i>olivacea</i>)	1.2	2	2	2	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016). Population size likely to be affected before major changes in other sub-components. Olive Ridley turtles are the most likely species to be affected of interacting with the anchor or chain. Intensity: minor as turtles may only be encountered for a short time during anchoring. Consequence: minor as anchoring is unlikely to have a detectable effect on the populations. Confidence: high as expert consensus is that it is very unlikely that turtles would interact with the anchor chain/rope.
	Navigation/ steaming	1	2	4	Population size	Olive Ridley turtle (<i>Lepidochelys</i> <i>olivacea</i>)	1.2	2	2	1	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and has the potential to cause collision with animals. Population size likely to be affected before major changes in other sub- components due to injury/death from collision. Olive Ridley turtles are the most likely species to be affected as they are slow moving, spend time at the surface (like other species), yet their stocks are already severely depleted and require population recovery. Intensity: minor as this occurs rarely. Consequence: minor as there is minimal impact on stock structure. Confidence: low as it is unknown the effect shipping has on this species - data is too deficient to assess.
Addition/ movement of biological material	Translocation of species	1	5	6	Population size	Olive Ridley turtle (<i>Lepidochelys</i> olivacea)	1.2	1	2	1	Translocation may occur throughout the NPF, through ballast water or hull fouling, gear or anchor entanglement, and has the potential to establish as most fishing areas and ports used are of similar depths. The black-striped mussel (<i>Mytilopsis sallei</i>) is now eradicated (Summerson et al. 2013) but establishes precedence for translocation to occur in the NPF area. Population size likely to be affected before major changes in other sub-components, by introducing a foreign competitor or through transmission of disease, but also directly or indirectly

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											through changing trophic linkages. Olive ridley turtles are the most likely species to be affected as the introduction of marine pests that may affect the feeding grounds of this species. Translocated species most likely to affect compromised habitats in terms of structure and function, by altering pelagic and sediment processes, and displacing species. Intensity: negligible at present as olive ridley turtles are currently not affected by introduced organisms. Consequence: minor as although there is the potential for impacts to significantly alter population size, the previously introduced pest was quickly eradicated. Confidence: low as it not known to what extent trawling in the NPF contributes to the spread of the species. No data exists to refute this risk.
	On board processing	0									
	Discarding catch	1	5	4	Behaviour /movement	Crested tern (Thalasseus bergii)	6.1	4	2	2	Discarding is common after each shot throughout the fishery. Behaviour and movement like to be affected before major changes in other sub-components due to foraging for food. Crested terns are the most likely species to be affected as their primary food source (small fish) make up most of the discarded bycatch. Intensity: major as this occurs daily throughout the fishery with a substantial amount of bycatch being discarded due to the "line trawling" that occurs during the Tiger Prawn sub-fishery. Consequence: minor as behaviour/movement changes are likely to be short-lived vessles don't move great distances between shots at night. Confidence: high as scavenging by terns behind trawlers is common and well documented.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Behaviour /movement	Crested tern (Thalasseus bergii)	6.1	1	1	2	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016). Behaviour/movement likely to be affected before major changes in other sub-components as a result of the attraction (e.g. food scraps)

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											or repulsion (e.g. raw sewage) of the organic waste. Crested tern is the most likely species to be affected by this activity. Intensity: negligible as each disposal event wouldn't have a detectable change on behaviour/movement. Consequence: negligible as impact is unlikely to be detectable. Confidence: high because expert consensus is that general fishing waste disposal is unlikely to impact the behaviour/movement of birds.
Addition of non-	Debris	0									
biological material	Chemical pollution	0									
	Exhaust	1	5	4	Behaviour /movement	Crested tern (<i>Thalasseus</i> <i>bergii</i>)	6.1	1	1	1	Fishing occurs throughout the NPF for about 4 months each year so exhaust emissions occurs over this scale. Behaviour and movement like to be affected before major changes in other sub-components due to inhalation of exhaust fumes. Exhaust poses greatest potential risk for the behaviour/movement of crested terns as emissions and pollutants are initially in the atmosphere which is where the Crested tern population spend most of their time. Intensity: negligible because although the hazard could occur over a large range/scale, exhaust considered to only impact a small area. Consequence: negligible as exhaust is unlikely to have a significant impact on the population's movement and behaviour. Confidence: low as the effects of exhaust on crested terns is unknown.
	Gear loss	1	1	1	Population size	Freshwater sawfish (<i>Pristis</i> <i>pristis</i>) and green sawfish (<i>P. zijsron</i>)	1.2	2	2	2	Fishing in the NPF has a 1.6% annual footprint on the 770,000 km ² managed area (Pitcher et al. 2016), however gear loss is rare. Population size likely to be affected before major changes in other sub-components. Both the green and freshwater sawfish are the most likely species to be affected as they are benthic and their rostra easily entangle in net mesh. Also, nets may wash up near shore where nursery grounds are. Intensity: minor as gear loss is rare and interaction of sawfish with gear remote. Consequence: minor as gear loss unlikely to contribute to further population decline. Confidence: high as it is known that very little gear is lost, and interaction with sawfish is considered unlikely.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Navigation/ steaming	1	5	4	Behaviour /movement	Bottlenose dolphin (<i>Tursiops</i> <i>truncatus</i>)	6.1	2	1	2	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the introduction of the noise and sonar. Dolphins are the most likely species to be affected as they are attracted to the sonic signals and noise emitted from the vessels. Intensity: minor as this occurs in restricted locations where fishing occurs. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as data exists which supports the theory that dolphins are attracted to vessels.
	Activity/ presence on water	1	5	4	Behaviour /movement	Bottlenose dolphin (<i>Tursiops</i> <i>truncatus</i>)	6.1	2	1	2	Fishing throughout the NPF managed area introduces noise and visual stimuli into the environment. Behaviour and movement likely to be affected before major changes in other sub-components due to the introduction of the noise and sonar. Dolphins are the most likely species to be affected as they are attracted to the sonic signals and noise emitted from the vessels. Intensity: minor as this occurs in restricted locations where fishing occurs. Consequence: negligible as any impact is unlikely to be detectable. Confidence: high as data exists which supports the theory that dolphins are attracted to vessels.
Disturb physical processes	Bait collection	0						-			
	Fishing	1	5	4	Behaviour /movement	Freshwater sawfish (<i>Pristis</i> <i>pristis</i>) and green sawfish (<i>P. zijsron</i>)	6.1	3	2	1	Fishing in the NPF has a 1.6% annual footprint of the 770,000 km ² managed area (Pitcher et al. 2016) for ~4 months each year, with the action of direct disturbance to the seafloor. Behaviour and movement likely to be affected before major changes in other sub-components due to trawl gear disturbing the seafloor habitat of benthic organisms. Both the green and freshwater sawfish are the most likely species to be affected as trawling may disturb sediments and prevent sawfish from feeding. Intensity: moderate as sediment disturbance occurs

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											regularly. Consequence: minor as disturbance of sediment causes minimal impact on sawfish behaviour/movement. Confidence: low since no data are available.
	Boat launching	0									
	Anchoring/mooring	1	3	4	Behaviour /movement	Freshwater sawfish (Pristis pristis) and green sawfish (P. zijsron)	6.1	2	1	1	Anchoring occurs daily throughout the Tiger Prawn sub-fishery when the vessel is not fishing during daylight hours. Behaviour and movement likely to be affected before major changes in other sub-components due to the anchor disturbing the seafloor. Both the green and freshwater sawfish are the most likely species to be affected as anchoring may disturb sediments and prevent sawfish from feeding. Intensity: minor as sediment disturbance may occur regularly but only in shallower waters where their feeding habitat occurs. Consequence: minor as disturbance of sediment causes minimal impact on sawfish behaviour/movement. Confidence: low since no data are available.
	Navigation/steaming	1	5	4	Behaviour /movement	Spectacled sea snake (<i>Disteira</i> <i>kingii</i>) and large-headed sea snake (<i>Hydrophis</i> <i>pacificus</i>)	6.1	1	1	1	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and creates turbulent action from the propellers. Behaviour and movement likely to be affected before major changes in other sub-components due to the repellent nature of this turbulence. Both the spectacled and large-headed sea snakes are the most likely species to be affected as turbulence from the boat will move/displace these relatively light sea snake that swim at the surface as they travel. Intensity: negligible as it is unlikely that turbulence would have a detectable change on behaviour/movement. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as it not known to what extent turbulence affects sea snakes.
External impacts	Other fisheries: spanner crab fishery, line fishery, net fisheries	1	6	6	Population size	Freshwater sawfish (Pristis pristis), green sawfish (P. zijsron), dwarf sawfish (P.	1.2	4	4	2	Fishing occurs throughout the year by several other fisheries in the NPF managed region. Population size most likely to be affected before major changes in other sub-components due to removal of individuals. Freshwater, green, dwarf and narrow sawfishes most likely to be affected as their rostra get entangled in gillnets. Intensity: major as sawfish commonly caught in gillnet fisheries operation year-round. Consequence: major as sawfish populations declining and continual

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
						clavata) and narrow sawfish (Anoxypristis cuspidata)					catches may further deplete the population in the NPF region. Confidence: high as catch data from other fisheries show high catch of sawfish.
	Aquaculture	1	3	3	Population size	Freshwater sawfish (<i>Pristis</i> <i>pristis</i>) and green sawfish (<i>P. zijsron</i>)	1.2	2	4	2	Three boat licenses exist for capturing <i>P. monodon</i> broodstock for aquaculture. Population size likely to be affected before major changes in other sub- components due to the removal of individuals. Freshwater and green sawfish are the most likely species to be affected as they would also be captured in trawl net. Intensity: minor as fishing for this broodstock only occurs at a few restricted locations. Consequence: major as high impact on stocks due a large number of sawfish caught when trawling for broodstock. Confidence: high as sawfish catch data exists from <i>P. monodon</i> broodstock collection.
	Coastal development	1	6	6	Behaviour /movement	Freshwater sawfish (Pristis pristis) and green sawfish (P. zijsron)	6.1	3	3	1	Coastal development occurs in small pockets surrounding the NPF. Behaviour and movement likely to be affected before major changes in other sub-components due to altered water/habitat quality. Both the green and freshwater sawfish are the most likely species to be affected as their habitats are in shallower waters and they may move in response to altered turbidity/habitat quality. Intensity: moderate as coastal development occurs in the vicinity of large waterways (including Weipa and Karumba) which have high numbers of sawfish. Consequence: moderate as coastal development may change sedimentation regimes which may directly affect sawfish. Confidence: low as there is little data available to demonstrate the effects of coastal development on sawfish.
	Other extractive activities	1	3	6	Behaviour /movement	Bottlenose dolphin (<i>Tursiops</i> <i>truncatus</i>)	6.1	2	1	1	Exploration for minerals is underway or proposed within NPF. Most likely to affect behaviour/movement before major changes in other sub-components. This is most likely to affect behaviour/movement of dolphins as they are sensitive to noise from drilling and seismic testing. Intensity: scored as minor as exploration activity occurs at a very few restricted areas. Consequence: scored as negligible

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											as effect on behaviour expected to be undetectable at this scale. Confidence: is low as effects are not documented in this region.
	Other non extractive activities	1	6	6	Population size	Olive Ridley turtle (<i>Lepidochelys</i> olivacea)	1.2	3	3	2	Shipping occurs year-round throughout the NPF. Population size likely to be affected before major changes in other sub-components. This is mainly due to collision with ships as turtles are slow moving. Olive Ridley turtles are the most likely species to be affected as they have the greatest risk of extinction for marine turtle stocks in the Gulf of Carpentaria region (C. Limpus pers. comm.). Western Cape York Peninsula Olive Ridley genetic stock nesting population is endemic to Queensland for breeding and has currently only a few hundred individuals annually. They are approaching zero recruitment of new adults annually into the breeding population (C. Limpus pers. comm.). Intensity: moderate as activity occurs throughout the NPF. Consequence: moderate as the loss of only tens of adult females annually would represent a serious impact. Confidence: high as turtle experts agree this species is extremely vulnerable.
	Other anthropogenic activities	1	6	6	Population size	Olive Ridley turtle (<i>Lepidochelys</i> olivacea)	1.2	2	3	2	Recreational boating/fishing and tourism occurs throughout the year in the NPF, but particularly inshore and near major towns/cities. Population size likely to be affected before major changes in other sub-components due to boat strikes. Olive Ridley turtles are the most likely species to be affected as they have the greatest risk of extinction for marine turtle stocks in the Gulf of Carpentaria region (C. Limpus pers. comm.). Western Cape York Peninsula olive ridley genetic stock nesting population is endemic to Queensland for breeding and has currently only a few hundred individuals annually. They are approaching zero recruitment of new adults annually into the breeding population (C. Limpus pers. comm.). Intensity: moderate as activity occurs throughout the NPF and is concentrated in various ports e.g. Darwin, Groote, Weipa, Karumba. Consequence: moderate as the loss of only tens of adult females annually would represent a serious impact. Confidence: high as turtle experts agree this species is extremely vulnerable.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Capture	Bait collection	0									
	Fishing	1	5	4	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	3	4	1	Fishing occurs in 1.6% of the 770,000 km ² in NPF managed area for about four months each year (August-November). Trawling at night, in waters generally >20 m deep. Shot length is 3-4 hours and relative gear selectivity creates bycatch issues in this fishery. Gear footprint is large, due to relatively large, heavy nets with high mobility. Intensity: moderate, highly localised fishing over suitable prawn habitat (generally muddy sediments) may result in severe localised structural modification of susceptible epifaunal and infaunal habitats. Consequence: major for some habitats in these depths, as encounter with heavier demersal trawl gears will result in removal and damage of erect, rugose and inflexible octocorals associated with soft muddy substrata. Regeneration times of fauna will vary between species, however in inner shelf depths (25-100 m), may be reasonably rapid as fauna are likely to be well adapted to frequent and considerable disturbance regimes (e.g. strong currents, runoff, cyclones). More structurally complex forms/ communities may take > 1 year to recover. Confidence: low, requiring data on resilience and recovery times of mud-based habitats.
	Incidental behaviour	1	3	3	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	1	1	2	Crew often line fish for reef fish when anchored, occurs daily throughout the fishery. Intensity: negligible, anchoring may occur in few restricted locations; however, effect of incidental behavior on benthos expected to be negligible. Consequence: Incidental behavior considered to have negligible impact on seafloor habitat structure directly. Confidence: high, constrained by logic.

Level 1 (SICA) Document L1.4 - Habitat Component (demersal)

DIRECT IMPACT OF FISHING Direct impact	FISHING ACTIVITY Bait collection	O PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
without capture	Fishing	1	5	4	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	3	3	1	Octocorals and hexacorals which survive passing of a prawn trawl shot, due to their apparent flexibility or strong subsurface attachment, are likely to sustain some degree of damage to contacted polyps. Sponges, bryozoans and ascidians may be detatched from the seafloor completely. Intensity: moderate - shots 3-4 hours, highly localised interannually. Consequence: moderate. Post encounter fate of fauna unknown, regeneration times of damaged tissues will vary between species, however in inner shelf depths (25-100m), can be expected to be reasonably rapid as fauna are likely to be well adapted to frequent and considerable disturbance regimes (e.g. strong currents, runoff, cyclones). More structurally complex forms/ communities may take > 1 year to recover. Confidence: low. Requiring data on resilience and recovery times of mud based habitats.
	Incidental behaviour	1	3	3	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	1	1	2	Crew often line fish for reef fish when anchored, occurs daily throughout the fishery. Intensity: negligible, anchoring may occur in few restricted locations; however effect of incidental behavior on benthos expected to be negligible. Consequence: negligible, as incidental behavior considered to have negligible impact on seafloor habitat structure directly. Confidence: high, constrained by logic.
	Gear loss	1	1	1	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	2	1	2	Fishing occurs in 1.6% of the 770,000 km ² in NPF managed area for about four months each year. Gear loss approximately <5 times per year. Trawling often over low relief muddy sediments likely to be interspersed with patches of biogenic encrusted/ coral outcrops but snagging unlikely if terrain known and hard patches avoided. Intensity: minor as gear loss is rare across the spatial scale of the fishery, therefore alteration of habitat structure from lost gear minimal. Consequence: negligible. Gear likely to be retrievable in these depths. Lost gear may change habitat

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											structure by virtue of creating new structure, which remains to eventually become habitat, impact unlikely to be measurable. Confidence: high as it is known that very little gear is lost.
	Anchoring/ mooring	1	2	3	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	2	2	1	Anchoring occurs regularly throughout the fishery, over approximately four month period, mainly in <25m depths. Anchoring may occur on sandy substratum or coral reefs. Attached/ sessile fauna may be damaged by physical contact with anchor, during anchoring and retrieval. Intensity: minor as vessels only anchor during the day when they are not fishing and anchoring has a very small footprint. Consequence: minor over scale of fishery, considered to affect only a very small percentage of the area of the habitat overall, however may be potentially severe at localised scales if fishers anchor in same reef locations. Confidence low as unknown effect on NPF habitat caused by Anchoring/ mooring.
	Navigation/steaming	1	2	4	Water quality	Northern Coastal Gulf (pelagic)	1.1	1	1	2	Navigation/steaming associated with fishing activity occurs in 1.6% of the 770,000 km ² NPF managed area for about four months each year. Navigation/steaming considered to influence water quality by disrupting the water column. Intensity: negligible, considered unlikely that there would be detectable impacts on pelagic habitat water quality. Consequence: negligible. Confidence: high because negative interactions between navigation/steaming and pelagic habitat were considered unlikely to be detectable.
Addition/ movement of biological material	Translocation of species	1	5	6	Habitat structure and function	Biogenic, low outcrop, seagrass, coastal margin (region 1: assemblage 11)	5.1	1	2	1	Translocation of species may occur throughout the NPF, through ballast water or hull fouling, and more likely to establish in shallower waters. Three species of introduced marine organisms are known to NPF, namely <i>Megabalanus tintinnabulum</i> (barnacle), <i>Aeolidiella indica</i> (nudibranch), and <i>Caulerpa taxifolia</i> (algae). The bivalve, black-striped

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											mussel, currently eradicated from Darwin harbour, this species remains a potentially serious threat. Translocated species most likely to affect compromised habitats in terms of structure and function, by altering pelagic and sediment processes, and displacing species. Intensity: considered negligible at present. Consequence: minor as although there is the potential for impacts to significantly alter habitat structure and function, the previously introduced pest was quickly eradicated. Confidence: low as it not known to what extent trawling in the NPF contributes to the spread of the species.
	On board processing	0									
	Discarding catch	1	5	4	Substrate quality	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	3.1	4	2	2	Discarding is common after each shot throughout the fishery. Hard bodied organisms discarded in considerable volumes in a single dump, may well sink to the benthos and accumulate in shallow depths, < 20% noted to be consumed by scavengers. If accumulate over fine sediments, altering substrate quality via changed biogeochemical processes and sediment ecology. Habitat ecology will be modified by the attraction of scavengers and predators. Intensity: major as high volumes of bycatch occur extensively, higher than the banana fishery. Consequence: minor as fishery discards high volumes of diverse bycatch in localised accumulations which may take long periods to breakdown. Confidence: high. Australian based Refs on fate of discards include: Wassenberg and Hill (1990), Harris and Poiner (1990), Hill and Wassenberg (1990)
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Water quality	Northern Pelagic Coastal (Gulf)	1.1	1	1	2	Discharge of organic waste (e.g. uncontaminated food waste) likely to occur daily although relatively small amounts. Intensity: negligible over area. Consequence: negligible, volume likely to be small and quickly

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											dispersed through the water column. Confidence: high, localised short term increases in nutrient not expected to adversely affect water column.
Addition of non-	Debris	0									
biological material	Chemical pollution	0									
	Exhaust	1	5	4	Air quality	Northern Pelagic Coastal (Gulf)	1.1	1	1	1	Fishing occurs throughout the NPF for about four months each year so chemical pollution from exhaust emissions possible over this scale. Chemical pollution poses greatest potential threat to the water quality of thenorthen pelagic coastal province habitats (Gulf). Intensity: negligible because although the hazard could occur over a large range/scale, pollution considered to only impact a small area. Consequence: negligible as the effects of chemical pollution are likely to be rapidly undetectable if volume small and affect surface conditions briefly until winds, wave action dissipates chemical pollution. Confidence: low as effects of the exhaust is unknown.
	Gear loss	1	1	1	Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	2	1	2	Gear loss is rare. Retrieval is usually attempted and possible in shallow depths. Lost gear may change habitat structure by virtue of creating new structure, which remains to eventually become habitat. Intensity: minor as gear loss is rare across the spatial scale of the fishery, therefore alteration of habitat structure from lost gear minimal. Consequence: negligible, impact unlikely to be measurable. Confidence: high, known that very little gear is lost.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Navigation/ steaming	1	5	4	Water quality	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	1.1	1	1	1	Navigation to and from fishing grounds and steaming between trawls can occur throughout the NPF managed areas and introduces noise and visual stimuli into the environment, affecting water quality. Intensity: negligible as there is a minimal amount and it occurs in restricted locations where fishing occurs. Consequence: negligible as any impact is unlikely to be detectable. Confidence: low as effect on pelagic habitats of noise and visual stimuli not known.
	Activity/ presence on water	1	5	4	Water quality	Northern Pelagic Coastal (Gulf)	1.1	1	1	2	Navigation/ steaming occurs throughout the NPF for about 3 months each year. Fishing occurs at night. Noise and light associated with fishing operations likely to alter the pelagic habitat for the duration of the shot. Intensity: negligible because it occurs over a large range but detection of impact unlikely. Consequence: negligible impacts unlikely to be measurable for pelagic species interactions. Confidence: high logical consideration.
Disturb physical processes	Bait collection Fishing	0	5	4	Substrate quality	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	3.1	3	2	2	Most vulnerable habitats in assemblage 6 from Pitcher et al. (2018) were chosen as potentially impacted where highest levels of effort although there is no data that shows actual impact. Trawl nets are deployed over sandy/muddy sediments which may support large/tall erect sponges and other suspension feeding sessile invertebrates in patches. Trawling may cause suspension of fine sediment layers which settle out on filter feeding organisms smothering ability to function normally, in a way that
											reeding organisms smothering ability to function normally, in a way that is greater than expected from wave/current action alone. Intensity: moderate. Consequence: minor as trawl considered to have little direct impact on seafloor. Confidence: high, however, the area fished is a highly dynamic zone, much of its fauna is adapted to mobile sediments from natural disturbance, but fishing may occur at greater frequency than these natural events.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (52.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	Boat launching	0									
	Anchoring/ mooring	1			Habitat structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	5.1	2	1	1	Anchoring/ mooring possible over the spatial and temporal scale of the NPF. Physical contact with anchor may disturb substratum in the process and damage biogenic reef forms in a more persistent way, particularly in frequently used sites. Risk of sediment suspension low as likely to anchor on 'hard' structures or coarse sands. Intensity: minor, anchoring over relatively short timeframes. Consequence: minor as anchoring considered to affect only a very small percentage of the area of the habitat that is likely to have a reasonably rapid regenerative capacity. Confidence: low because it is unknown to what degree Anchoring/ mooring has affected physical processes in mooring grounds of the NPF.
	Navigation/ steaming	1	5	4	Water quality	Northern Pelagic Coastal (Gulf)	1.1	1	1	2	Fishing activity hence navigation/ steaming occurs throughout the year over the NPF. Disturbance of physical processes will occur during the normal course of steaming throughout the fishing zone. Turbulence and disturbance of pelagic water quality is unlikely to affect normal water column processes for long. Any disruption to these processes can therefore be expected to alter habitat function only briefly. Intensity: negligible, undetectable. Consequence: negligible, remote likelihood of detection of impact against natural variation. Confidence: high, logical.
External Impacts	Other fisheries: crab fishery, spanner crab fishery, line fishery, net fisheries	1	6	6	Habitat type, structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6)	4.1, 5.1	3	3	1	Fishing occurs throughout the year by several other fisheries in the NPF managed region. Intensity: moderate for benthic habitat structure and function across the spatial scale of the NPF, as many other methods interact to varying degrees with substratum and faunal communities. Consequence: moderate as both hard and soft grounds are targeted, degree of habitat impact not quantified, or enough known about habitat potential to recover given frequent anthropogenic disturbance. Cumulative effects on habitat structure and function are a concern for all

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											habitats, particularly those which may possess long-lived, fragile and endemic species. Confidence: low, requires data on cumulative effects in NPF.
	Aquaculture	1	3	3	Water quality, substrate quality	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6); region 2: assemblage 5; region 1: assemblage 5; region 1: assemblage 6	1.1, 3.1	2	2	1	Three boat licenses exist for capturing <i>P. monodon</i> broodstock for aquaculture. Water and substrate quality likely to be affected before major changes in other sub-components Intensity: minor as fishing for this broodstock only occurs at a few restricted locations. Consequence: minor as minimal impact on the habitat as relatively little fishing occurs. Confidence: low since no data available.
	Coastal development	1	6	6	Water quality, substrate quality	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6); region 2: assemblage 5; region 1: assemblage 5; region 1: assemblage 6	1.1, 3.1	3	3	2	Coastal development occurs in small pockets surrounding the NPF. Most likely to affect coastal margin mangrove and seagrass habitats. Habitat structure and function most at risk of modification through indirect effects of coastal development, altered runoff and coastal sedimentation regimes, fragmentation of habitat, modified biogeochemical processes due to high nutrient loads, introduced species associated with port/ tourism/ traditional/ O and G activities (Hill and Haywood, 2002). Intensity: moderate as coastal development may have severe, concentrated effects on crucial seafloor habitats occurring close to development e.g. mangroves, estuarine, seagrass, fringing reef communities. Consequence: moderate as coastal development may fragment crucial habitats, which may take many years to recover. Confidence: high as data exists that demonstrates the effects of coastal development on shallow tropical, coastal zones.
	Other extractive activities	1	3	6	Substrate quality	Habitat forming benthos: particularly byrozoans, and	3.1	2	2	1	Exploration for oil, gas, diamonds and gold is underway or proposed throughout NPF, particularly in the Arafura Sea. Also, manganese strip mining occurs in Groote Eylandt. Most likely to affect substrate quality

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
						gorgonians (region 2: assemblage 6); region 2: assemblage 5; region 1: assemblage 5; region 1: assemblage 6					by exploratory activity e.g. drilling; port development for mineral shipment affecting coastal nursery habitats. Intensity: moderate as exploration activity probably occurs at a greater scale than the current areas mostly fished. Consequence: minor as effect localised and changes to the distribution of the communities likely to be undetectable. Confidence: low, as effects are unknown.
	Other non extractive activities	1	6	6	Water quality	Northern Pelagic Coastal (Gulf)	1.1	3	2	1	Shipping occurs throughout the year throughout the NPF. Greatest threat to pelagic habitat function is water quality due to introduction of turbulence from vessels. Intensity: moderate as shipping occurs throughout the NPF and is concentrated in a number of ports e.g. Darwin, Groote, Weipa, Karumba. Consequence: minor as effects on water quality are expected to be minimal. Confidence: low as data unavailable for effect of shippping on water quality in NPF.
	Other anthropogenic activities	1	6	6	Water quality, substrate quality, habitat types, structure and function	Habitat forming benthos: particularly byrozoans, and gorgonians (region 2: assemblage 6); region 2: assemblage 5; region 1: assemblage 5; region 1: assemblage 6	1.1, 3.1, 4.1, 5.1	2	2	1	Recreational boating/fishing and tourism occurs throughout the year in the NPF, but particularly inshore and near major towns/cities. Greatest threats to water quality, substrate quality, habitat types, structure and function as it includes boat launching, recreational fishing, diving, etc. that has effect from the water surface to the seafloor. Intensity: minor as these activities occur in restricted locations. Consequence: minor as effects on habitat expected to be minimal. Confidence: low as data unavailable for effects of these activities on habitats.

Level 1 (SICA) Document L1.5 - Community Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
Capture	Bait collection Fishing	0	5	4	Species composition	Timor Transition inner shelf: Groote	1.1	3	2	2	Fishing occurs in 1.6% of the 770,000 km ² (Pitcher et al. 2016) for about four months annually - most effort concentrated in the Timor Transition inner shelf which lies in the Gulf of Carpentaria (~44%; Groote area). Species composition likely to be affected before major changes in other sub- components. Tiger prawns are the primary target and diverse taxonomically, therefore species compositon might be affected overall. Intensity: moderate as fishing often localized due to suitable habitat. Consequence: minor; at current effort level (see scoping section) unable to detect differences in species composition or relative abundances of bycatch species between closed and open areas of Groote community even though tiger prawn stock is currently considered not overfished and overfishing is not occurring. Localised targetting spatially and temporally, non-targetting of bycatch occurs. Confidence: high as biomass estimates from stock assessment models are available, but estimate of sustainable byproduct/bycatch levels are required.
	Incidental behaviour	1	3	3	Species composition	Timor Transition inner shelf Groote	1.1	1	1	1	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually and handlining may occur occasionally. Incidental behaviour generally occurs close to the substratum and as a result selectivity of prawns is low and bycatch is high and diverse, therefore overall species composition may be affected before major changes in other sub-components. Intensity: negligible as handling occurs infrequently. Consequence: negligible, as stock is currently considered not overfished and likely to affect higher trophic levels. Confidence: low, no data are available.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE	
Direct impact without capture	Fishing	1	5	4	Species composition	Timor Transition inner shelf: Groote	1.1	3	2	1	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually. Species composition likely to be affected before major changes in other sub- components. Intensity: moderate, Stobutzki et al (2002) were unable to detect differences in species composition or relative abundances of bycatch species between closed and open areas of Groote community. Consequence: minor, as the scale of this activity. Confidence: low as data are unavailable for direct impacts without capture.	
	Incidental behaviour	1	3	3	Species composition	Timor Transition inner shelf: Groote	1.1	1	1	1	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually and handlining may occur occasionally. Incidental behaviour generally occurs close to the substratum and as a result selectivity of prawns is low and bycatch is high and diverse, therefore overall species composition may be affected before major changes in other sub-components. Intensity: negligible as handling occurs infrequently. Consequence: negligible, as stock is currently considered not overfished and likely to affect higher trophic levels. Confidence: low, no data are available.	
	Gear loss	1	1	1	Species composition	Timor Transition inner shelf: Groote	1.1	2	2	2	Fishing occurs in 1.6% of the 770,000 km ² for about four months each year. Gear loss is rare. Species composition likely to be affected before major changes in other sub-components. Benthic species most likely to be affected due to entanglement, smothering or habitat alteration. Intensity: minor as gear loss is rare (estimated ~less than five occurrences per year). Consequence: minor, as impact would affect very small area and any effect on community due to gear loss is immeasurable. Confidence: high as it is known that very little gear is lost.	
	Anchoring/ mooring	1	2	3	Distribution of the community	Timor Transition inner shelf: Groote	3.1	2	1	2	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually. Anchoring occurs daily throughout the fishery. Some sedentary fish may be disturbed by presence of vessel in very shallow waters and distributions may be disrupted briefly. Anchoring occurs on reefs, where tiger prawns are not	

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (52.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											abundant. Intensity: minor, as it occurs over a few restricted locations. Consequence: negligible. Confidence: high as it is very unlikely for community to be negatively affected by anchoring/mooring.
	Navigation/ steaming	1	2	4	Distribution of the community	Timor Transition inner shelf: Groote	3.1	1	1	2	Navigation/steaming occurs throughout the entire season in the NPF. Most likely to interact with distribution of the Timor transition inner shelf (Groote) community. Intensity: negligible, as this activity is likely to be undetectable. Consequence: negligible, as impact likely to be undetectable on the distribution of the community. Confidence: high, as it is unlikely for a strong interaction to occur between navigation/steaming and the community.
Addition/ movement of biological material	Translocation of species	1	5	6	Species composition	Timor Transition inner shelf Groote	1.1	1	2	1	Translocation of species may occur throughout the NPF, as larvae through ballast water or as adults via hull fouling, gear or anchor entanglement, and has the potential to establish as the majority of fishing areas and ports used are of similar depths. Three species of introduced marine organisms have the potential to in the NPF- <i>Perna viridis</i> (mussel), <i>Crepidula fornicata</i> (limpet) and <i>Mytilopsis sallei</i> (black-striped mussel) and establish precedence for translocation to occur in the NPF area. A massive infestation of the latter species, black-striped mussel was discovered in Cullen Bay Marina (Darwin) in March 1999 and rapidly eradicated (Summerson et al. 2013). Translocation most likely to change the species composition and trophic structure of the community, possibly by introducing a foreign competitor or through transmission of disease, but also directly or indirectly through changing trophic linkages. No mitigating measures are currently in place. Intensity: negligible at present. Consequence: minor as while there is the potential to alter the species composition and potentially trophic structure of the community (based on its incursion in 1999 of black-striped mussel), it was quickly eradicated. Confidence: low as there is no data to show the spread of the species and the likely impact on species composition of this community. Also, there is no data exists to refute the NPF risk.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (52.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
	On board processing	0									
	Discarding catch	1	5	4	Distribution of the community	Timor Transition inner shelf: Groote	3.1	4	3	2	Discarding is common after each shot throughout the NPF fishery. Most likely to affect distribution of community if scavengers and predators (e.g. sharks and trevally) are attracted to discard site. Intensity: moderate as bycatch occurs. Consequence: moderate as the fishery discards diverse bycatch but localised and may cause more permanent changes in population size of scavenger species. Confidence: high as available discard estimates (AFMA data).
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Distribution of the community	Northern Coastal Gulf (pelagic)	3.1	1	1	2	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually, so organic waste disposal is possible over this scale. Disposal of organic waste poses greatest potential risk for distribution of Northern Coastal Arafura pelagic community resulting in either attraction (e.g. food scraps) or repulsion (e.g. raw sewage). Intensity: negligible each disposal event probably only affects a small (< 1 nm) area. Consequence: negligible as it's unlikely to be detectable nor persistent. Confidence: high because consensus among experts is that general fishing waste disposal was unlikely to impact the distrubtion of the community.
Addition of non-	Debris	0									
biological material	Chemical pollution	0									
	Exhaust	1	5	4	Distribution of the community	Northern Coastal Gulf (pelagic)	3.1	1	1	2	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually, so exhaust emissions possible over this scale. Exhaust emissions poses greatest potential risk for the distribution of this community by affecting the

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											distribution of birds in the vicinity of vessels. Intensity: negligible because although the hazard could occur over a large range/scale, exhaust considered to only impact a small area. Consequence: negligible as the effects of exhaust emissions is unlikely to be detectable. Confidence: high because consensus among experts is that exhaust is unlikely to impact the distribution of community.
	Gear loss	1	1	1	Distribution of the community	Timor Transition inner shelf: Groote	3.1	2	1	2	Fishing occurs in 1.6% of the 770,000 km ² or about four months annually. Gear loss is rare (approximately less than five occurrences per year). Lost gear most likely to affect distribution of community by altering habitat and dependent species. Intensity: minor because lost gear is rare. Consequence: negligible as the impact is unlikely to be detectable. Confidence: high because it is known that very little gear is lost.
	Navigation/ steaming	1	5	4	Distribution of the community	Timor Transition inner shelf: Groote	3.1	1	1	2	Navigation/steaming occurs throughout the NPF for about four months annually and introdcues noise from vessel engine and echo sounding during fish finding/trawling. Navigation/steaming expected to pose greatest potential risk for the distribution of community which may alter distribution of community members which are most likely impacted. Intensity: negligible because it occurs over a large range and detection of impact unlikely. Consequence: negligible since impacts unlikely to be measurable. Confidence: high because consensus among experts is that the addition of non-biological material due to navigation/ steaming is unlikely to impact upon the behaviour/movement of demersal prawns and thus distribution of community.
	Activity/ presence on water	1	5	4	Distribution of the community	Timor Transition inner shelf: Groote	3.1	1	1	1	Activity/presence on water occurs throughout the NPF for about 4 months annually. Activity/presence considered most likely to affect function group composition by changing the behaviour and distribution of marine repiles (e.g. turtles), teleosts (e.g. sea snakes) due to avoidance reaction. Intensity: negligible; impact unlikely to be detectable. Consequence: negligible, since any change the community distribution would be undetectable against

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											background variation except during fishing operations. Confidence: low because the effects of activity/presence on water is unknown.
Disturb physical	Bait collection	0									
processes	Fishing	1	5	4	Distribution of the community	Timor Transition inner shelf: Groote	3.1	3	3	1	Disturbance of physical processes may occur throughout the NPF for about four months annually, which is most likely to affect distribution of community. Benthic species most likely to be affected since trawling may disturb sediments. Intensity: moderate as sediment disturbance may occur regularly. Consequence: moderate, as disturbance of sediment could affect distribution. Confidence: low as no data are available.
	Boat launching	0									
	Anchoring/ mooring	1	3	4	Distribution of community	Timor Transition inner shelf Groote	3.1	2	2	1	Fishing occurs in 1.6% of the 770,000 km ² for about four months annually. Anchoring occurs daily throughout the fishery a total of ~1815 days per year (across all vessels) in Groote area. Distribution of community most likely to be affected as anchoring occurs on reefs where damage to habitat may result in alteration of species distributions. Also, some sedentary fish may be disturbed by anchor disturbance of sediments smothering some community components. Intensity: minor occurs in a few restricted locations and vessels only anchor during the day when they are not fishing and anchoring has a very small footprint. Consequence: minor, as minimal impact on distribution of community. Confidence: low, as data deficient.
	Navigation/steaming	1	5	4	Bio- and geo- chemical cycles	Timor Transition inner shelf Groote	5.1	1	1	1	Navigation/steaming occurs throughout the NPF for about four months annually. Possible impact on bio- and geo-chemical cycles of pelagic waters by disturbing mixed layer via surface turbulence. Pelagic species most likely to be affected. Intensity: negligible as unlikely to be detectable. Consequence: negligible as impact unlikely to be detectable. Confidence: low, as effects unknown.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
External Impacts	Other fisheries: crab fishery, spanner crab fishery, line fishery, net fisheries	1	6	6	Species composition	Timor Transition inner shelf: Groote	1.1	2	2	2	Fishing occurs throughout the year by other fisheries in the NPF managed region. Other fisheries which catch a diverse range of species most likely to affect species composition of different communities. Intensity: minor, as other trawl and non-trawl fisheries target other species in other habitats e.g. fish trawling over reefs or catch prawns in low numbers (e.g. recreational fisheries). Consequence: minor, as diverse range of species captured. Confidence: high, catch data from other fisheries are recorded.
	Aquaculture	1	3	3	Trophic/size structure	Timor inner shelf	4.1	2	3	1	Three boat licenses exist for capturing P. monodon broodstock for aquaculture. Broodstock are currently captured around Tiwi Islands, Darwin and in the JBG. Removal of spawners could affect the size structure of this community as large spawners are removed from these locations. Intensity: minor, as perceived to be localized in a few locations. Consequence: moderate, as currently impact on the size structure of this community possible (spawning adults). Confidence: Low, as no data available on the removal of large spawners of this species on the size structure of this community.
	Coastal development	1	6	6	Species composition	Northern Coastal Gulf (pelagic)	1.1	3	3	1	Coastal development occurs in small pockets surrounding the NPF, in the vicinity of large waterways (Darwin, Weipa, Karumba, McArthur River). Intensity: moderate at both broader coastal development and localized centres. Coastal development occurs in the vicinity of these large waterways most likely to affect bio/geochemical cycles from sewage outfalls or other run-off (from agricultural development and extraction of water for irrigation may which may alter water flows) affecting water/habitat quality. An increasing effect of port development for mineral shipment affecting coastal nursery habitats of target and byproduct species, as well as the offshore demersal and pelagic community. Consequence: moderate, moderate impact on species composition of community. Confidence: low as there is little data available to demonstrate the effects of coastal development.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE		
	Other extractive activities	1	3	6	Distribution of the community	Timor Transition inner shelf: Groote; Northern Coastal Gulf (pelagic)	3.1	2	2	1	Exploration for oil, gas, diamonds and gold is underway or proposed throughout NPF, particularly in the Arafura Sea. Also, manganese strip mining occurs in Groote Eylandt. Most likely to affect distribution of community by exploratory activity e.g. drilling; port development for mineral shipment affecting coastal nursery habitats of target and byproduct species, as well as the offshore demersal and pelagic community. Intensity: minor, as exploration activity probably occurs at a broader greater scale. Consequence: minor as effect localised and changes to the distribution of the communities likely to be undetectable. Confidence: low, as effects are unknown.		
	Other non-extractive activities	1	6	6	Distribution of the community	Northern Coastal Gulf (pelagic)	3.1	3	2	1	Commercial shipping occurs throughout the year throughout the NPF. Greatest potential risk for the distribution of community as a result of avoidance reaction. Intensity: moderate as shipping occurs throughout the NPF and is concentrated in a number of ports e.g. Darwin, Groote, Weipa, Karumba, McArthur River. Consequence: minor as impact of shipping probably minimal on distribution of the community, but there is the possibility that pelagic aggregations of banana prawns may be affected. Confidence: low since the impact of shipping on distribution is unknown.		
	Other anthropogenic activities	1	6	6	Distribution of the community	Northern Coastal Gulf (pelagic)	3.1	2	2	1	Communities may be disturbed by recreational boating/fishing and tourism (e.g. diving) throughout the year throughout the NPF along major towns and cities. Greatest potential risk for the distribution of community resulting from avoidance reaction. Intensity: minor, unlikely to detect direct and indirect impacts on pelagic or demersal communities at the scale of the activities, concentrated along a number of ports e.g. Darwin, Groote, Weipa, Karumba. Consequence: minor as long-term effects on distribution of communty is minimal, but there is the possibility that pelagic aggregations		

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)	TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS	OPERATIONAL OBJECTIVE (S2.1)	INTENSITY SCORE (1-6)	CONSEQUENCE SCORE (1-6)	CONFIDENCE SCORE (1-2)	RATIONALE
											of banana prawns may be affected. Confidence: low, since the effects of these activities on distribution of species is unknown.

2.3.11 Summary of SICA results

Table 2.21. Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations. Those that scored ≥3 are highlighted blue and bolded if high confidence. * existing stock assessment –assessment not required. Note: external hazards are not considered at Level 2.

DIRECT IMPACT	ACTIVITY	KEY/SECONDARY COMMERCIAL SPECIES	BYPRODUCT AND BYCATCH SPECIES	PROTECTED SPECIES	HABITATS	COMMUNITIES
Capture	Bait collection	0	0	0	0	0
	Fishing	*	3	3	4	2
	Incidental behaviour	1	2	1	1	1
Direct impact without	Bait collection	0	0	0	0	0
capture	Fishing	1	2	3	3	2
	Incidental behaviour	1	2	1	1	1
	Gear loss	1	1	1	1	2
	Anchoring/mooring	1	2	2	2	1
	Navigation/steaming	1	1	2	1	1
Addition/ movement of	Translocation of species	2	2	2	2	2
biological material	On board processing	0	0	0	0	0
material	Discarding catch	1	2	2	2	3
	Stock enhancement	0	0	0	0	0
	Provisioning	0	0	0	0	0
	Organic waste disposal	1	1	1	1	1
Addition of non-biological	Debris	0	0	0	0	0
material	Chemical pollution	0	0	0	0	0
	Exhaust	1	1	1	1	1
	Gear loss	1	1	2	1	1
	Navigation/steaming	1	1	1	1	1
	Activity/presence on water	1	1	1	1	1
Disturb physical	Bait collection	0	0	0	0	0
processes	Fishing	2	2	2	2	3
	Boat launching	0	0	0	0	0
	Anchoring/mooring	1	1	1	1	2
	Navigation/steaming	1	1	1	1	1
External Impacts	Other fisheries	2	3	4	3	2
impacts	Aquaculture	2	2	4	2	3
	Coastal development	3	2	3	3	3
	Other extractive activities	2	2	1	2	2
	Other non-extractive activities	1	1	3	2	2
	Other anthropogenic activities	2	2	3	2	2

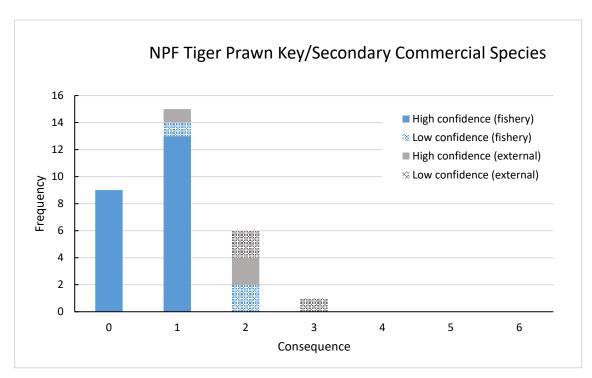


Figure 2.5. Key/secondary commercial species: Frequency of consequence score by high and low confidence.

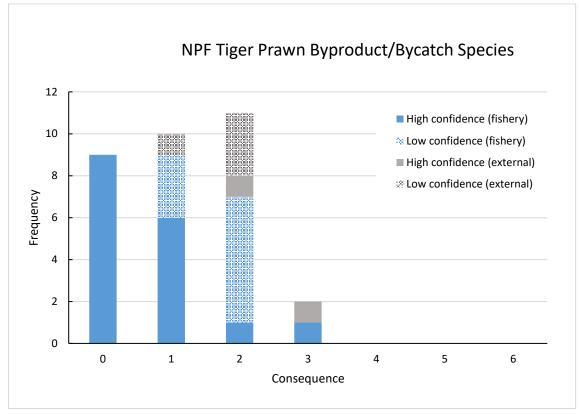


Figure 2.6. Byproduct and bycatch species: Frequency of consequence score by high and low confidence.

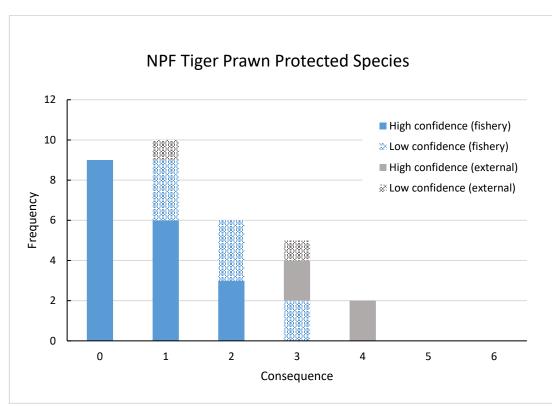


Figure 2.7. Protected species: Frequency of consequence score by high and low confidence.

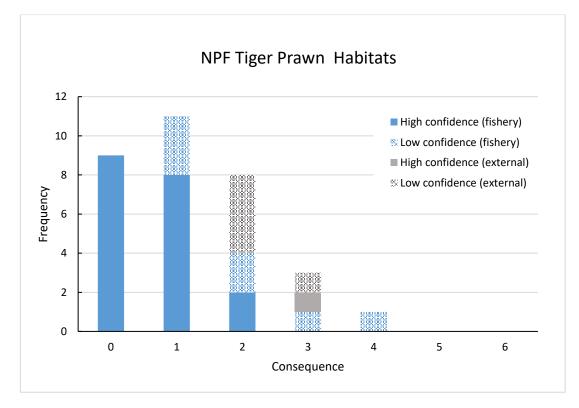


Figure 2.8. Habitat: Frequency of consequence score by high and low confidence.

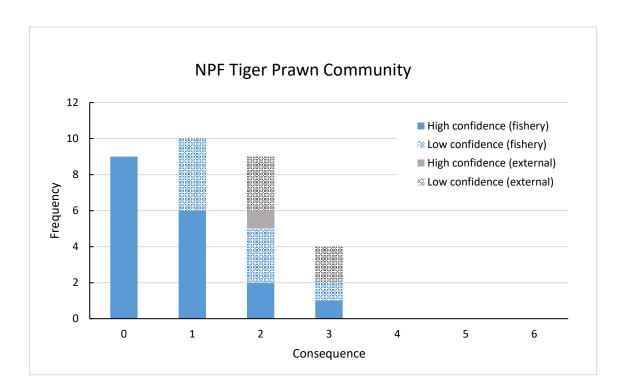


Figure 2.9. Communities: Frequency of consequence score by high and low confidence.

2.3.12 Evaluation/discussion of Level 1

One ecological component was eliminated at Level 1 (i.e. no components with risk scores of 3 – moderate – or above).

Most hazards (fishing activities) were eliminated at Level 1 (i.e. no components with risk scores of 3 – moderate – or above). Those that remained were:

- Fishing (capture impacts on 3 ecological components)
- Fishing (non-capture impacts on 2 ecological components)
- Discarding catch (addition/movement of biological material on 1 ecological component)
- Fishing (disturb physical processes on 1 ecological component)
- External hazards from other fisheries (on all 5 components)

As a result of direct capture by fishing, the most vulnerable bycatch species Australian blacktip shark (*Carcharhinus tilstoni*) was assessed at moderate risk largely due to the fact that they make up most of shark species caught in the NPF and sharks typically have low fecundity, slow growth rate and low trawl survivability.

As a result of direct capture by fishing, the most vulnerable protected species, are the green and freshwater sawfish (*Pristis zijsron* and *Pristis pristis*) as they appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown. The impact of fishing represented a major risk to habitats (assemblage 6) largely due to the concentration of effort at depths where highly vulnerable fauna occur i.e., encounter with heavier demersal trawl gears will result in removal and damage of erect, rugose and inflexible octocorals associated with soft, muddy substrata.

Significant external hazards included other fisheries in the region on all components. Only external fisheries were rated at major or above risk (scores 4) on protected species.

2.3.13 Components to be examined at Level 2

As a result of the preliminary SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- Byproduct/bycatch
- Protected species

Therefore, a Level 2 examiniation is required.

Note that a Level 2 analysis for Habitats and Communities were not examined in this report as it was outside the project scope.

2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk of direct impacts of fishing only. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk, hereafter denoted as "risk". A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday et al. (2007).

Species

The following Table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

	ATTRIBUTE
Productivity	Average age at maturity
	Average size at maturity
	Average maximum age
	Average maximum size
	Fecundity
	Reproductive strategy
	Trophic level
Susceptibility	Availability considers overlap of fishing effort with a species distribution
	Encounterability considers the likelihood that a species will encounter fishing gear that is deployed within the geographic range of that species (based on two attributes: adult habitat and bathymetry)

Table 2.22. Attributes that measure productivity and suscepability.

ATTRIBUTE

Selectivity considers the potential of the gear to capture or retain species

Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)

The productivity attributes for each species are based on data from the literature or from data sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

Availability considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

Encounterability is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, **selectivity** is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, **post capture mortality** measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However, the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

Habitats

As with species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

ASPECT	ATTRIBUTE	CONCEPT	RATIONALE
Susceptability			
Availability	General depth range (Biome)	Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area
Encounterability	Depth zone and feature type	Habitat encountered at the depth and location at which fishing activity occurs	Fishing takes place where habitat occurs
	Ruggedness (fractal dimension of substratum and seabed slope)	Relief, rugosity, hardness and seabed slope influence accessibility to different sub- fisheries	Rugged substratum is less accessible to mobile gears. Steeply sloping seabed is less accessible to mobile gears
	Level of disturbance	Gear footprint and intensity of encounters	Degree of impact is determined by the frequency and intensity of encounters (inc. size, weight and mobility of individual gears)
Selectivity	Removability/ mortality of fauna/ flora	Removal/mortality of structure forming epifauna/ flora (inc. bioturbating infauna)	Erect, large, rugose, inflexible, delicate epifauna and flora, and large or delicate and shallow burrowing infauna (at depths impacted by mobile gears) are preferentially removed or damaged.
	Areal extent	How much of each habitat is present	Effective degree of impact greater in rarer habitats: rarer habitats may maintain rarer species.
	Removability of substratum	Certain size classes can be removed	Intermediate sized clasts (~6 cm to 3 m) that form attachment sites for sessile fauna can be permanently removed
	Substratum hardness	Composition of substrata	Harder substratum is intrinsically more resistant
	Seabed slope	Mobility of substrata once dislodged; generally higher levels of structural fauna	Gravity or latent energy transfer assists movement of habitat structures, eg turbidity flows, larger clasts. Greater density of filter feeding animals found where currents move up and down slopes.
Productivity	1	J	
	Regeneration of fauna	Accumulation/ recovery of fauna	Fauna have different intrinsic growth and reproductive rates which are also variable in different conditions of temperature, nutrients, productivity.
	Natural disturbance	Level of natural disturbance affects intrinsic ability to recover	Frequently disturbed communities adapted to recover from disturbance

Table 2.23. Description of susceptibility attributes for habitats.

Communities

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis (see Hobday et al. 2006 for full details).

- Step 1. Identify the units excluded from analysis and document the reason for exclusion
- Step 2. Score units for productivity
- Step 3. Score units for susceptibility
- Step 4. Plot individual units of analysis onto a PSA Plot
- Step 5. Ranking of overall risk of each unit
- Step 6. Evaluation of the PSA analysis
- Step 7. Decision rules to move from Level 2 to Level 3

2.4.1 Units excluded from analysis (Step 1)

Table 2.24. Species/species groups/taxa excluded from the PSA and SAFE because they were either not identified at the species level, not interacted in the fishery or outside the fishery's jurisdictional boundary. No obs/ints: No observations or interactions. These entries have been excluded from the protected species list since the last ERA assessment because they have not been observed within the fishery and/or occur outside the depth range of the fishery. AFMA Log: AFMA Lobook data; AFMA Obs: AFMA Observer data; CMO: Crew Monitoring Observer data.

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
вс	Teleost		Mixed reef fish	Fish (mixed)	37999999	AFMA Log. Insufficient taxonomic resolution
PS	Marine bird		Avians	Birds	4000000	AFMA Log. Insufficient taxonomic resolution
вс	Invertebrate		Algae	Algae	99000006	AFMA Obs. Insufficient taxonomic resolution
вс	Benthos	Spongiidae	Spongiidae - undifferentiated	Spongiid sponges	10114000	AFMA Obs. Insufficient taxonomic resolution
вс	Invertebrate		Class Scyphozoa - undifferentiated	Jellyfish	11120000	AFMA Obs. Insufficient taxonomic resolution
вс	Benthos		Subclass Octocorallia - undifferentiated	Octocorals - soft corals	11169000	AFMA Obs. Insufficient taxonomic resolution
вс	Benthos		Order Alcyonacea - undifferentiated	Octocorals and gorgonians	11173000	AFMA Obs. Insufficient taxonomic resolution
вс	Benthos	Coralliidae	Coralliidae - undifferentiated	Precious corals	11183000	AFMA Obs. Insufficient taxonomic resolution
вс	Benthos		Order Scleractinia - undifferentiated	Stony corals	11290000	AFMA Obs. Insufficient taxonomic resolution
вс			Class Polychaeta - undifferentiated	Polychaete worms	22000000	AFMA Obs. Insufficient taxonomic resolution

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
вс	Invertebrate		Phylum Mollusca - undifferentiated	Molluscs	23000000	AFMA Obs. Insufficient taxonomic resolution
ВС	Benthos		Large benthic items	Benthos	99000001	AFMA Obs. Insufficient taxonomic resolution
ВС	Benthos		Rubble and Rocks	Substrate or rocks	9900002	AFMA Obs. Insufficient taxonomic resolution
вс	Miscellaneous		Shells	Shells	23999999	AFMA Obs. Insufficient taxonomic resolution
BC	Miscellaneous		Unknown - other	Unknown or other	99999999	AFMA Obs. Insufficient taxonomic resolution
вс	Invertebrate		Class Ascidiacea - undifferentiated	Ascidians	3500000	AFMA Obs. Insufficient taxonomic resolution
вс	Invertebrate		Pinctada spp.	Pearl oysters and pearl shell	23236901	AFMA Obs. Insufficient taxonomic resolution
BP	Invertebrate	Pectinidae	Pectinidae - undifferentiated	Scallops	23270000	AFMA Log. Apportioned catch to existing species in list
BC	Invertebrate	Sepiidae	Sepiidae - undifferentiated	Cuttlefishes	23607000	AFMA Obs. Insufficient taxonomic resolution
ВС	Invertebrate	Sepiidae	Metasepia pfefferi	Flamboyant cuttlefish	23607015	AFMA, unlikely this species
вс	Invertebrate	Sepiidae	Sepiella weberi	A cuttlefish	23607035	AFMA, unlikely this species
ВС	Invertebrate	Loliginidae	Uroteuthis duvauceli	A squid	23617003	AFMA, unlikely this species
ВС	Invertebrate	Sepiidae	Sepia latimanus	Broadclub cuttlefish	23607004	AFMA, unlikely this species
BC	Invertebrate	Ommastrephidae	Todaropsis eblanae	Lesser flying squid	23636013	AFMA, unlikely this species
ВС	Invertebrate	Ommastrephidae	Todarodes pusillus	A squid	23636014	AFMA, unlikely this species
BP	Invertebrate		Order Teuthoidea - undifferentiated	Squids	23615000	AFMA Log. Insufficient taxonomic resolution
BC	Invertebrate	Loliginidae	Loliginidae - undifferentiated	Loligo squids	23617000	Added species to list

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Invertebrate	Loliginidae	Loligo opalescens	Opalescent inshore squid	23617011	AFMA Observer data. Present allocation is <i>Doryteuthis opalescens,</i> which is outside fishery range
вс	Invertebrate	Ommastrephidae	Ommastrephidae - undifferentiated	Flying squids	23636000	Added species to list
ВР	Invertebrate	Ommastrephidae	Nototodarus gouldi	Gould's squid	23636004	Misidentification: Outside fishery area, but 7.5 t retained from AFMA LOG. Apportioned to squid species
вс	Invertebrate		Order Octopoda - undifferentiated	Octopoda	23650000	Added 2 octopus species to list
вс	Invertebrate	Octopodidae	Octopodidae - undifferentiated	Octopuses	23659000	Added 2 octopus species to list
ВС	Invertebrate	Volutidae	Volutidae - undifferentiated	Bailer shells	24207000	AFMA Obs. Added 7 species to list
BC	Invertebrate		Class Holothuroidea - undifferentiated	Holothurians - sea cucumber	25400000	AFMA Obs. Added 16 species to list
BC	Invertebrate		Phylum Echinodermata - undifferentiated	Echinoderms	25000000	AFMA Obs. Added species to list
вс	Invertebrate		Class Crinoidea - undifferentiated	Crinoids	25001000	AFMA Obs. Added 7 species to list
вс	Invertebrate		Class Asteroidea - undifferentiated	Starfish	25102000	AFMA Obs. Added 8 species to list
BC	Invertebrate		Class Echinoidea - undifferentiated	Sea urchins	25200000	AFMA Obs. Not expanded as 25000000: Phylum Echinodermata - undifferentiated was already used to add species.
ВС	Invertebrate	Clypeasteridae	Clypeasteridae - undifferentiated	Sand dollars	25262000	AFMA Obs. misidentification; outside fishery area
вс	Invertebrate		Order Stomatopoda - undifferentiated	Mantis shrimps	28030000	AFMA Log. Added 23 species to list

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Invertebrate	Squillidae	Squillidae - undifferentiated	Squilla mantis shrimps	28051000	Not expanded as 2803000: Order Stomatopoda - undifferentiated already used to add Squillidae species
ВС	Invertebrate	Penaeidae	Penaeidae - undifferentiated	Penaeid prawns	28711000	AFMA Obs. Already in list
BP	Invertebrate	Penaeidae	Metapenaeus endeavouri and Metapenaeus ensis	Endeavour prawns	28711902	Apportioned to <i>M. endeavouri</i> and <i>M. ensis</i>
BC	Invertebrate	Penaeidae	Metapenaeus spp.	School prawns (mixed)	28711904	AFMA Obs. Apportioned to <i>M.</i> endeavouri and <i>M. ensis</i>
C1	Invertebrate	Penaeidae	Penaeus esculentus, Penaeus semisulcatus and Penaeus monodon	Tiger prawns (mixed)	28711906	AFMA Logs. Apportioned to P. semisulatus (Grooved tiger prawn) and P. esculentus (brown tiger prawn)
C1	Invertebrate	Penaeidae	Marsupenaeus japonicus, Penaeus esculentus and P. semisulcatus	Tiger prawns (grooved, brown)	28711905	AFMA Logs. Apportioned to <i>P.</i> semisulatus (grooved tiger prawn) and <i>P. esculentus</i> (brown tiger prawn)
C1	Invertebrate		Commercial prawns	Commercial prawns	28711999	AFMA Logs. Apportioned to P. semisulatus (grooved tiger prawn) and P. esculentus (bown tiger prawn)
C1	Invertebrate	Penaeidae	Penaeoidea - undifferentiated	Prawns (mixed)	28710000	Already in list - apportioned to Tiger prawns
BP	Invertebrate	Penaeidae	Melicertus latisulcatus and Melicertus plebejus	King prawns (Eastern and Western)	28711908	Apportioned to M. latisulcatus
BP	Invertebrate	Penaeidae	King prawns - Melicertus latisulcatus, Melicertus plebejus and Melicertus longistylus	King prawns (mixed)	28711910	Apportioned to M. latisulcatus and M. longistylus
BC	Invertebrate	Penaeidae	<i>Parapenaeopsis</i> spp. sensu lato	Coral prawns (mixed)	28711914	Insufficent taxonomic resolution. There are no Parapenaeopsis spp. sensu lato in Australian waters
BP	Invertebrate	Penaeidae	Penaeus indicus and Penaeus merguiensis	Banana prawns (mixed)	28711907	Apportioned to <i>P. indicus</i> and <i>P. merguiensis</i>
BC	Invertebrate	Nephropidae	Nephropidae - undifferentiated	Scampi	28786000	Appotioned to 28786001, 28786002 and 28786004

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Invertebrate	Scyllaridae	Ibacus and Thenus spp	Bugs (Ibacus and Thenus)	28821904	AFMA Obs. Already in list
BP	Invertebrate	Scyllaridae	Thenus spp.	Moreton bay bugs	28821903	AFMA Log. Apportioned to 2 <i>Thenus</i> species in list.
BC	Invertebrate		Superfamily Paguroidea - undifferentiated	Hermit Crabs (mixed)	28825906	AFMA Log. Insufficent taxonomic resolution.
BP	Invertebrate	Scyllaridae	Scyllaridae - undifferentiated	Bugs - Shovel nosed and slipper lobsters	28821000	Apportioned to <i>Thenus australiensis</i> and other species in list
BC	Invertebrate	Galatheidae	Galatheidae - undifferentiated	Squat lobsters	28840000	AFMA Obs. Did not apportion <1 kg
BC	Invertebrate	Portunidae, Polybiidae	Portunidae, Polybiidae - undifferentiated	Swimming crabs	28911000	AFMA Obs. Portunidae (4 species) already in species list
BC	Invertebrate	Majidae	Majidae - undifferentiated	Spider crabs (Majidae)	28880911	AFMA Obs. Did not apportion <1 kg
BC	Invertebrate	Homolidae	Homolidae - undifferentiated	Spider crabs (Homolidae)	28860000	AFMA Obs. Did not apportion <1= animal
BC	Invertebrate		Infraorder Brachyura - undifferentiated	Crabs	28850000	AFMA Log. Apportioned to 4 species: 28911001, 28911005, 28911006, 2890014.
BC	Invertebrate	Portunidae	Portunus spp.	Swimmer crabs (mixed)	28911922	AFMA Obs. Apportioned to <i>Portunus</i> species in list
BC	Invertebrate	Portunidae	<i>Scylla</i> spp.	Mud crabs	28911902	AFMA Obs. Insufficent taxonomic resolution. <i>Scylla</i> sp already in list
BC	Chondrichthyan	Triakidae	Mustelus spp.	Gummy shark (mixed)	37017901	AFMA Obs. All <i>Mustelus</i> sp in fishery outside fishing depth range
BC	Chondrichthyan	Alopiidae	Alopiidae - undifferentiated	Thresher sharks	37012000	AFMA Obs. Apportioned to A. vulpinis
BC	Chondrichthyan	Carcharhinidae, Hemigaleidae	Carcharhinidae, Hemigaleidae - undifferentiated	Whaler and weasel sharks	37018000	AFMA Obs. Apportioned to 37018 species already in list
BC	Chondrichthyan	Carcharhinidae	Carcharhinus spp.	Whaler sharks (mixed)	37018904	AFMA Obs. Apportioned to Carcharhinus spp. in list (5 species)

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
ВС	Chondrichthyan	Sphyrnidae	Sphyrnidae - undifferentiated	Hammerhead sharks	37019000	AFMA Obs. Apportioned to Sphyrinidae in list
BC	Chondrichthyan	Sphyrnidae	Sphyrna spp.	Hammerhead sharks (mixed)	37019902	AFMA Obs. Apportioned to two Sphyrna spp. In group.
BC	Chondrichthyan	Pristiophoridae	Pristiophorus cirratus	Common sawshark	37023002	AFMA Log. misidentification: outside fishery range
BC	Chondrichthyan	Pristiophoridae	Pristiophoridae - undifferentiated	Sawsharks	37023000	AFMA Log. misidentification: outside fishery range
PS	Chondrichthyan	Pristidae	Pristidae	Sawfishes	37025000	AFMA Log, Obs. Insufficient taxonomic resolution
BC	Chondrichthyan	Rhinobatidae	Rhinobatidae - undifferentiated	Shovelnose rays	37027000	AFMA Log, Obs. Insufficient taxonomic resolution. One ray of this family exists in list
вС	Chondrichthyan	Dasyatidae	Dasyatis brevicaudata	Smooth stingray	37035001	AFMA Obs. misidentification: outside fishery range
BC	Chondrichthyan	Dasyatidae	Dasyatidae - undifferentiated	Stingrays	37035000	AFMA Obs. Added 37035028 and 37035004
BC	Chondrichthyan		Pelagic stingray	Pelagic stingrays	37035999	AFMA Obs. species already added to list due to 37035000
ВС	Chondrichthyan	Myliobatididae	Myliobatididae - undifferentiated	Eagle rays	37039000	AFMA Obs. Added 3 species to list
BC	Chondrichthyan	Rajidae	Rajidae - undifferentiated	Skates	37031000	AFMA Obs. Outside fishery range
ВС	Chondrichthyan		Skates and rays - undifferentiated	Skates and rays	37990018	AFMA Obs. Insufficient taxonomic resolution
ВС	Teleost	Muraenesocidae	Muraenesox spp.	Pike eels (mixed)	37063901	AFMA Obs. Muraenesox species in list
вс	Teleost	Nettastomatidae	Nettastoma solitarium	Solitary duckbill eel	37065003	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Congridae, Colocongridae	Congridae, Colocongridae - undifferentiated	Conger eels	37067000	AFMA Obs. Apportioned to existing species in list

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Congridae	Conger spp.	Conger eel (mixed)	37067900	AFMA Obs. Apportioned to existing species in list
BC	Teleost	Moringuidae	Moringuidae - undifferentiated	Spaghetti eels	37057000	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Ophichthidae	Ophichthidae - undifferentiated	Snake eels	37068000	AFMA Obs. Apportioned catch to 2 existing species in list
BC	Teleost	Clupeidae, Pristigasteridae	Clupeidae, Pristigasteridae - undifferentiated	Herrings	37085000	AFMA Obs. Apportioned existing herrings in list
BC	Teleost	Engraulidae	Engraulidae - undifferentiated	Anchovies	37086000	AFMA Obs. Existing species in list
BC	Teleost	Chirocentridae	Chirocentridae - undifferentiated	Wolf herrings	37087000	AFMA Obs. Added to existing (37087001) to list
BC	Teleost	Argentinidae	Argentinidae - undifferentiated	Herring smelts and microstomatids	37097000	AFMA Obs. Outside fishery range
BC	Teleost	Bathysauridae, Synodontidae	Bathysauridae, Synodontidae - undifferentiated	Lizardfishes and deepsea lizardfishes	37118000	AFMA Obs. Apportioned to existing Synodontidae species in list
BC	Teleost	Myctophidae	Myctophidae - undifferentiated	Lanternfishes	37122000	AFMA Obs. Added 1 species to list
BC	Teleost	Notosudidae	Scopelosaurus hamiltoni	Smallscale waryfish	37125004	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Chlorophthalmidae, Paraulopidae, Bathysauroididae, Bathysauropsidae	Chlorophthalmidae, Paraulopidae and Bathysauroididae, Bathysauropsidae - undifferentiated	Cucumberfishes, greeneyes and lizardfishes	37120000	AFMA Obs. Already in list
ВС	Teleost	Ariidae	Ariidae - undifferentiated	Forktail catfishes	37188000	AFMA Obs. Apportioned to 3 existing species in list
ВС	Teleost	Plotosidae	Plotosidae - undifferentiated	Eeltail catfishes	37192000	AFMA Obs. Apportioned to 3 existing species in list
BC	Teleost	Batrachoididae	Batrachoididae - undifferentiated	frogfishes	37205000	AFMA Obs. Added 3 species to list

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
вс	Teleost	Lophiidae -	Lophiidae - undifferentiated	Goosefishes	37208000	AFMA Obs. Added 1 species to list
вС	Teleost	Antennariidae, Tetrabrachiidae, Lophichthyidae	Antennariidae, Tetrabrachiidae, Lophichthyidae - undifferentiated		37210000	AFMA Obs. Apportioned to existing species in list
ВС	Teleost	Moridae	Pseudophycis barbata	Bearded rock cod	37224003	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Moridae	Lepidion spp.	Pelagic cods - lepidid	37224902	AFMA Obs. <i>Lepidion</i> spp. outside fishery range
вс	Teleost	Ophidiidae	Ophidion muraenolepis	Blackedge cusk	37228006	AFMA Obs. misidentification: outside fishery range
вс	Teleost	Ophidiidae	Ophidiidae spp.	Cusk eels (mixed)	37228999	AFMA Obs. Apportioned to existing species in list
вс	Teleost	Macrouridae	Coelorinchus spp.	Whiptails - coelorinchid	37232900	AFMA Obs. Outside fishery depth range
вс	Teleost	Macrouridae	Coryphaenoides spp.	Whiptails - coryphaenoid	37232902	AFMA Obs. Outside fishery depth range
ВС	Teleost	Exocoetidae	Exocoetidae - undifferentiated	Flyingfishes	37233000	AFMA Obs. Added species to list
вс	Teleost	Hemiramphidae	Hemiramphidae - undifferentiated	Garfishes	37234000	AFMA Obs. Added species to list
BC	Teleost	Atherinidae	Craterocephalus fluviatilis	Murray hardyhead	37246020	AFMA Obs. misidentification: freshwater species
BC	Teleost	Atherinidae, Dentatherinidae	Atherinidae, Dentatherinidae - undifferentiated	Hardyheads and tusked silversides	37246000	AFMA Obs. apportioned to one species in list
вс	Teleost	Trachichthyidae	Trachichthyidae - undifferentiated	Roughies	37255000	AFMA Obs. misidentification: outside fishery range
вс	Teleost	Holocentridae	Holocentridae - undifferentiated	Squirrelfishes	37261000	AFMA Obs. Apportioned to existing species in list
ВС	Teleost	Fistulariidae	Fistulariidae - undifferentiated	Flutemouths	37278000	AFMA Obs. Apportioned to two existing species in list

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Trachipteridae	Trachipteridae - undifferentiated	Ribbonfishes	37271000	AFMA Obs. Added 37271002
PS	Teleost	Syngnathidae	Syngnathidae - undifferentiated	Seahorses and pipefishes	37282000	AFMA Log, Obs. Apportioned to existing species in list
BC	Teleost	Sebastidae	Helicolenus barathri and Helicolenus percoides	Ocean and coral perch	37287901	AFMA Obs. Misidentification: outside fishery range
BC	Teleost	Scorpaenidae	Scorpaenidae - undifferentiated	Coral perch	37287900	AFMA Obs. Added to existing family in list
вс	Teleost	Scorpaenidae	Scorpaena spp.	Scorpionfishes - scorpaenid	37287904	AFMA Obs. Outside fishery range
BC	Teleost	Apistidae, Neosebastidae, Plectrogenidae, Pteroidae, Scorpaenidae, Sebastidae, Setarchidae, Synanceiidae, Tetrarogidae	Apistidae, Neosebastidae, Plectrogenidae, Pteroidae, Scorpaenidae, Sebastidae, Setarchidae, Synanceiidae and Tetrarogidae - undifferentiated	Scorpionfishes	37287000	AFMA Obs. Added to existing family in list
вс	Teleost	Triglidae	Pterygotrigla leptacanthus	Bullhead gurnard	37288014	AFMA Obs. Outside depth range
ВС	Teleost	Triglidae, Peristediidae	Triglidae and Peristediidae - undifferentiated	Searobins and armour gurnards	37288000	AFMA Obs. Added to existing species in list
ВС	Teleost	Triglidae	Triglidae - undifferentiated	Searobins	37288900	AFMA Obs. Added to existing species in list
ВС	Teleost	Platycephalidae	Platycephalidae - undifferentiated	Flatheads	37296000	AFMA Obs. Apportioned to 9 existing species in list
ВС	Teleost	Platycephalidae	Neoplatycephalus richardsoni	Tiger flathead	37296001	AFMA Log. misidentification - outside fishery range
ВС	Teleost	Platycephalidae	Neoplatycephalus conatus	Deepwater flathead	37296002	AFMA Obs. misidentification - outside fishery range
BC	Teleost	Dactylopteridae -	Dactylopteridae - undifferentiated	Flying gurnards	37308000	AFMA Obs. Added to existing species in list

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
ВС	Teleost	Polyprionidae	Polyprion oxygeneios	Hapuku	37311006	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Serranidae	Caprodon longimanus	Longfin perch	37311095	AFMA Obs. misidentification: outside fishery range
вс	Teleost	Serranidae	Epinephelus spp.	Grouper	37311911	AFMA Obs. Genus already in list
ВС	Teleost	Percichthyidae, Serranidae	Percichthyidae, Serranidae - undifferentiated		37311000	AFMA Obs. AFMA Obs. Apportioned to 9 existing species in list
ВС	Teleost	Polyprionidae	Polyprion americanus and Polyprion oxygeneios	Hapuku and bass groper	37311902	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Terapontidae	Terapon spp.	Terapon grunters	37321901	AFMA Obs. Existing species in list
BC	Teleost	Terapontidae	Terapontidae - undifferentiated	Striped grunters	37321000	AFMA Obs. Existing species in list
BC	Teleost	Priacanthidae	Priacanthus spp.	Bigeyes (mixed)	37326901	AFMA Obs. Apportioned to 4 species in list
BC	Teleost	Epigonidae	Epigonus lenimen	Bigeye deepsea cardinalfish	37327001	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Apogonidae	Apogon fasciatus	Broadbanded cardinalfish	37327008	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Apogonidae	Siphamia tubifer	Urchin cardinalfish	37327021	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Atherinidae	Apogonichthys perdix	Perdix cardinalfish	37327081	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Apogonidae	Gymnapogon urospilotus	Tailspot cardinalfish	37327104	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Apogonidae, Dinolestidae	Apogonidae, Dinolestidae - undifferentiated	Cardinalfishes	37327000	AFMA Obs. Existing species in list
BC	Teleost	Sillaginidae	Sillaginidae - undifferentiated	Whitings	37330000	AFMA Log, Obs. Apportioned to 3 species in list
вс	Teleost	Carangidae	Carangidae - undifferentiated	Trevallies and scads	37337000	AFMA Obs. Existing species in list
BC	Teleost	Carangidae	Decapterus spp.	Scad (mixed)	37337901	AFMA Obs. Existing species in list

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Carangidae	Trachinotus spp.	Dart (mixed)	37337904	AFMA Obs. Existing species in list
вс	Teleost	Carangidae	Scomberoides spp.	Queenfish (mixed)	37337905	AFMA Obs. Existing species in list
BC	Teleost	Carangidae	Caranx and Pseudocaranx spp.	Trevallies	37337908	AFMA Obs. Existing species in list
BC	Teleost	Leiognathidae	Leiognathidae - undifferentiated	Ponyfishes	37341000	AFMA Obs. Existing species in list
BC	Teleost	Leiognathidae	Leiognathus spp.	Ponyfishes - Leiognathid	37341901	AFMA Obs. Existing species in list
BC	Teleost	Bramidae	Bramidae - undifferentiated	Pomfrets	37342000	AFMA Log, Obs. Apportioned to existing species in list
BC	Teleost	Lutjanidae	<i>Lutjanus</i> sp. (in Yearsley et al. 1999)	Russell's snapper	37346012	AFMA Obs. Existing species in list
BC	Teleost	Lutjanidae	<i>Lutjanus</i> spp.	Sea perch	37346905	AFMA Obs. Existing species in list
BC	Teleost	Nemipteridae	Nemipteridae - undifferentiated	Threadfin breams	37347000	AFMA Obs. Existing species in list
BC	Teleost	Nemipteridae	Nemipterus spp.	Threadfin breams	37347901	AFMA Obs. Existing species in list
BC	Teleost	Gerreidae	Gerreidae - undifferentiated	Silverbiddies (mixed)	37349000	AFMA Obs. Existing species in list
BC	Teleost	Gerreidae	Gerres spp.	Silverbiddies (mixed)	37349999	AFMA Obs. Existing species in list.
BC	Teleost	Haemulidae	Haemulidae - undifferentiated	Grunter breams	37350000	AFMA Obs. Existing species in list.
BC	Teleost	Haemulidae	Pomadasys spp.	Grunter bream (mixed)	37350902	AFMA Obs. Existing species in list.
BC	Teleost	Haemulidae	Plectorhinchus spp.	Sweetlips	37350903	AFMA Log. Existing species in list
BC	Teleost	Lethrinidae	Lethrinidae - undifferentiated	Emperors	37351000	AFMA Obs. Existing species in list
BC	Teleost	Lethrinidae	Lethrinus spp.	Emperor	37351902	AFMA Obs. Existing species in list
BC	Teleost	Lethrinidae	<i>Lethrinus nebulosus</i> and <i>Lethrinus</i> sp.	Spangled emperors	37351904	AFMA Obs. Existing species in list.
ВС	Teleost	Sparidae	Pagrus auratus	Snapper	37353001	AFMA Obs. misidentification: outside fishery range

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
вс	Teleost	Sciaenidae	Sciaenidae - undifferentiated	Jewfishes	37354000	AFMA Obs. Existing species in list.
вс	Teleost	Mullidae	Mullidae - undifferentiated	Goatfishes (Upeneus)	37355000	AFMA Log, Obs. Existing species in list.
вс	Teleost	Mullidae	Upeneus spp.	Goatfishes (Upeneus)	37355999	AFMA Obs. Existing species in list
BC	Teleost	Pempheridae	Parapriacanthus elongatus	Slender bullseye	37357002	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Ephippididae	Ephippididae - undifferentiated	Batfish	37362000	AFMA Obs. Existing species in list.
BC	Teleost	Pomacentridae	Abudefduf whitleyi	Whitley's sergeant	37372014	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Pomacentridae	Pomacentridae - undifferentiated	Damselfishes	37372000	AFMA Obs. Existing species in list
BC	Teleost	Pomacentridae	Neopomacentrus filamentosus	Brown demoiselle	37372090	AFMA Obs. misidentification: outside fishery range. However, <i>Neopmacentrus cyanomos</i> (37372089) is inside fishery area and therefore added to list
BC	Teleost	Cheilodactylidae	Nemadactylus douglasi	Grey morwong	37377002	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Latridae	Latridae - undifferentiated	Trumpeters	37378000	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Mugilidae	Myxus elongatus	Sand grey mullet	37381003	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Mugilidae	Aldrichetta forsteri	Yellow-eye mullet	37381001	AFMA Obs. misidentification: outside fishery range, AFMA Log
BC	Teleost	Sphyraenidae	Sphyraenidae - undifferentiated	Sea pikes	37382000	AFMA Obs. Apportioned to existing species in list
вс	Teleost	Sphyraenidae	Sphyraena spp.	Barracudas	37382901	AFMA Obs. Apportioned to existing species in list
BC	Teleost	Polynemidae	Polynemidae - undifferentiated	Threadfin salmons	37383000	AFMA Obs. Existing species in list. No change to BC

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Uranoscopidae	lchthyscopus fasciatus	Banded stargazer	37400010	AFMA Obs. misidentification: outside fishery range. However, <i>Ichthyscopus</i> <i>insperatus</i> (37400012) is inside fishery. Replace with this species
вс	Teleost	Blenniidae	Blenniidae - undifferentiated	Blennies	37408000	AFMA Obs. Existing species in list.
BC	Teleost	Callionymidae	Foetorepus calauropomus synomym: Synchiropus calauropomus	Common stinkfish	37427001	AFMA Obs. misidentification: outside fishery range
вс	Teleost	Callionymidae	Pseudocalliurichthys goodladi	Longspine dragonet	37427006	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Draconettidae, Callionymidae	Draconettidae and Callionymidae - undifferentiated	Deepsea dragonets and dragonets	37427000	AFMA Obs. Existing species in list
BC	Teleost	Gobiidae	Gobiidae - undifferentiated	Gobies	37428000	AFMA Obs. Added goby species (Gobiidae) to list as the three species identified by AFMA Obs were outside the NPF fishery and there were no species within the same genus in the fishery.
BC	Teleost	Gobiidae	Yongeichthys nebulosus	Hairfin goby	37428001	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Gobiidae	Acentrogobius caninus	Green-shoulder goby	37428019	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Gobiidae	Ctenogobiops aurocingulus	Gold-streaked prawn-goby	37428106	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Gobiidae	Gunnellichthys curiosus	Curious wormfish	37435003	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Acanthuridae, Zanclidae	Acanthuridae and Zanclidae - undifferentiated	Surgeonfishes	37437000	AFMA Obs. Added one species only - 37437020
ВС	Teleost	Siganidae	Siganidae - undifferentiated	Rabbitfishes	37438000	AFMA Obs. Existing species in list.

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Siganidae	Siganus spp	Spinefeet (= rabbitfishes)	37438902	AFMA Obs. Apportioned to 7 existing species in list.
вс	Teleost	Trichiuridae	Trichiuridae - undifferentiated	Ribbonfishes and cutlassfishes	37440000	AFMA Obs. Existing species in list.
вс	Teleost	Scombridae	Scomber scombrus	Atlantic mackerel	37441790	AFMA Obs. misidentification: outside fishery range
вс	Teleost	Scombridae	Scombridae - undifferentiated	Mackerels	37441000	AFMA Obs. Existing species in list.
вс	Teleost	Scombridae	Scombridae spp (tribes Scomberomorini and Scombrini)	Mackerel (mixed)	37441911	AFMA Log. Existing species in list
вС	Teleost	Centrolophidae	Centrolophidae - undifferentiated	Trevallas	37445000	AFMA Obs. Existing species in list.
BC	Teleost	Psettodidae	Psettodidae - undifferentiated	Halibuts	37457000	AFMA Obs. Existing species in list.
ВС	Teleost	Pleuronectidae	Reinhardtius hippoglossoides	Greenland halibut	37461793	AFMA Obs. Outside AFZ
BC	Teleost	Bothidae	Engyprosopon osculus	Bumphead flounder	37460024	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Pleuronectidae	Ammotretis lituratus	Tudor's flounder	37461004	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Bothidae, Achiropsettidae, Paralichthyidae	Bothidae, Achiropsettidae, Paralichthyidae - undifferentiated	Lefteye flounders	37460000	AFMA Obs. Existing species in list
вс	Teleost	Paralichthyidae	Paralichthys spp.	Sand flounders	37460901	AFMA Obs. Existing species in list.
вс	Teleost	Pleuronectidae	Pleuronectidae - undifferentiated	Righteye flounders	37461000	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Stromateidae	Stromateidae - undifferentiated	Butterfishes	37448000	AFMA Obs. Outside AFZ
ВС	Teleost	Soleidae	Soleidae - undifferentiated	Soles	37462000	AFMA Obs. Existing species in list.
вс	Teleost	Soleidae	Brachirus nigra, synonym: Synaptura nigra	Black sole	37462017	AFMA Obs. misidentification: outside fishery range

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
вс	Teleost	Soleidae	Zebrias cancellatus	Harrowed sole	37462006	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Cynoglossidae	Cynoglossidae - undifferentiated	Tongue soles	37463000	AFMA Obs. Existing species in list.
вс	Teleost	Cynoglossidae	Cynoglossus spp	Tongue soles (mixed)	37463901	AFMA Obs. Existing species in list.
ВС	Teleost	Triacanthidae	Triacanthidae - undifferentiated	Tripodfishes and deepwater tripodfishes	37464000	AFMA Obs. Existing species in list.
ВС	Teleost	Monacanthidae	Monacanthidae - undifferentiated	Leatherjacket	37465903	AFMA Obs. Existing species in list.
ВС	Teleost	Balistidae	Balistidae - undifferentiated	Triggerfishes, durgons	37465900	AFMA Obs. Added 37465027, 37465031, 37465047
вс	Teleost	Tetraodontidae	Contusus richei	Barred toadfish	37467001	AFMA Obs. misidentification: outside fishery range
ВС	Teleost	Tetraodontidae	Tetraodontidae - undifferentiated	Toadfishes unspecified	37467000	AFMA Obs. Existing species in list.
вс	Teleost	Tetraodontidae	Lagocephalus spp.	Toadfishes - lagocephalid	37467900	AFMA Obs. Existing species in list.
вс	Teleost	Ostraciidae	Ostraciidae - undifferentiated	Boxfishes	37466000	AFMA Obs. Existing species in list.
ВС	Teleost	Triodontidae	Triodontidae - undifferentiated	Pufferfishes	37468000	AFMA Obs. Added 37468001
вс	Teleost	Diodontidae	Diodontidae - undifferentiated	Porcupine fishes	37469000	AFMA Obs. Existing species in list
вс	Teleost	Diodontidae	Allomycterus pilatus	Deepwater burrfish	37469002	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Bothidae, Psettodidae, Pleuronectidae	Bothidae, Psettodidae and Pleuronectidae	Flounders (mixed all types)	37990009	AFMA Obs. Existing species in list. No change to BC
PS	Marine reptile	Cheloniidae	Cheloniids - undifferentiated	Sea turtles	39001001	AFMA Log. Existing species in list.
PS	Teleost	Hydrophiidae	Hydrophiidae - undifferentiated	Sea snakes	39125000	AFMA Log, Obs. Existing species in list.

ROLE IN FISHERY	ТАХА	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
PS	Marine bird	Fregatidae	Fregatidae - undifferentiated	Frigatebirds	40050000	AFMA Obs. Added 2 species to list: 40050002 and 40050003
PS	Marine bird	Procellariidae	Macronectes halli	Northern giant petrel	40041008	AFMA Obs. misidentification: outside fishery range
PS	Marine bird	Laridae	Terns - AFMA Observer Code	Terns	40128999	AFMA Log, Obs. Added tern species to list
PS	Marine mammal	Delphinidae	Delphinidae - undifferentiated	Dolphins	41116000	AFMA Log. Added one species to list
PS	Teleost	Syngnathidae	Hippocampus spp.	Seahorses - hippocampid	37282900	AFMA Obs. Added 4 <i>Hippocampus</i> species to this list
BP	Invertebrate	Sepiidae	Sepia spp.	Cuttlefish (mixed)	23607901	AFMA Log, Obs. Added <i>Sepia</i> species to list
BP	Invertebrate		Order Teuthoidea - undifferentiated	Squids	23615000	AFMA Log, Obs. Added species to list
BC	Chondrichthyan	Rhinidae	Rhynchobatus djiddensis	Giant guitarfish	37026001	AFMA Obs. This is a synonym of <i>R. australiae</i> (37026005), which is already in the list. This is the wrong CAAB code, so catch is added to 37026005
BP	Invertebrate	Pectinidae	Pecten fumatus	Commercial scallop	23270007	AFMA Obs. misidentification: outside fishery range. This species is commonly found oustide this fishery range.
BC	Teleost	Halosauridae	Halosauropsis macrochir	Abyssal halosaur	37081003	AFMA Obs. misidentification: outside fishery range and depth
BC	Teleost	Dussumieriidae	Etrumeus teres	Maray	37085001	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Clupeidae	Sardinops sagax	Australian sardine	37085002	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Clupeidae	Clupea harengus	Herring	37085790	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Pomatomidae	Pomatomus saltatrix	Tailor	37334002	AFMA Obs. misidentification: outside fishery range

ROLE IN FISHERY	ΤΑΧΑ	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
ВС	Teleost	Carangidae	Trachurus novaezelandiae	Yellowtail scad	37337003	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Nemipteridae	Nemipterus mesoprion	Mauvelip threadfin bream	37347026	AFMA Obs. misidentification: outside fishery range
BC	Teleost	Ariidae	Arius spp.	Forktail catfish (mixed)	37188901	AFMA Obs. Also 37188000: Ariidae - undifferentiated
вс	Teleost	Apogonidae	Apogon sp.	Three-saddle cardinalfish	37327045	AFMA Obs. Also 37327004
BC	Teleost	Mugilidae	Mugilidae - undifferentiated	Mullets	37381000	AFMA Obs. Did not apportion 37381001 (misidentification; AFMA Log) to any species. Also 37381002 (AFMA Obs) since none identified to species level in CAAB
BC	Teleost	Uranoscopidae	Uranoscopidae - undifferentiated	Stargazers	37400000	AFMA Obs
PS	Teleost	Syngnathidae	Trachyrhamphus sp. A	Pipefish	37282998	CMO. Insufficient taxonomic resolution
PS	Teleost	Syngnathidae	Trachyrhamphus sp.	Short-tail pipefish	37282999	CMO. Insufficient taxonomic resolution

2.4.2 Level 2 PSA (Steps 2 and 3)

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium, or low) reflect potential rather than actual risk using the Level 2 (PSA) method. For species assessed at Level 2, no account is taken of the level of catch, the size of the population, or the likely exploitation rate. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However, recent fishing effort distributions are considered when calculating the availability attribute for the Level 2 analysis, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high-risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus, some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data or taking account of specific management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday et al. (2007).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this reason. For some species, attributes may be scored on information from related species or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for protected species and the other species components. Target, by-product, and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However protected species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason, there may be a higher proportion of false positives for high vulnerability for protected species, unless there is a robust observer program that can verify that species do not interact with the gear.

Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and protected components. The level of observer data for this fishery is regarded as medium. An AFMA observer program has been operating since July 2003, and coverage varies depending on the fishing location. Information on target and byproduct species is well collected, and bycatch attempts are made, but may be compromised by taxonomic difficulties. Interactions with protected species are recorded, although again, taxonomic resolution is weak for some taxa (e.g. whales and seabirds).

Summary of Habitat PSA results

The Habitat component was not analysed at Level 2 as it is outside the project scope.

Summary of Community PSA results

The Community component was not analysed at Level 2 as it is outside the project scope.

2.4.3 PSA results for individual units of analysis (Step 4-6)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then $1/3^{rd}$ of the Euclidean overall risk values will be greater than 3.18 (high risk), $1/3^{rd}$ will be between 3.18 and 2.64 (medium risk), and $1/3^{rd}$ will be lower than 2.64 (low risk).

The PSA output allows identification and prioritization (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritization means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk of an individual unit will depend on the level of impact as well its productivity and susceptibility.

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium and low, according to the risk values described above.

2.4.4 PSA results and discussion

a) Key/secondary commercial species

Under the revised ERAEF (AFMA 2017), key/secondary commercial species that undergo Tier stock assessments are not assessed at Level 2 (with respect to fishing). There were no other activities that triggered a Level 2 analysis for this component.

b) Commercial bait species

There are no commercial bait species in this sub-fishery.

c) Byproduct species

There were 11 byproduct invertebrate species considered. Of these 11 species, none were high risk, three were medium risk and eight were low risk. (Table 2.25).

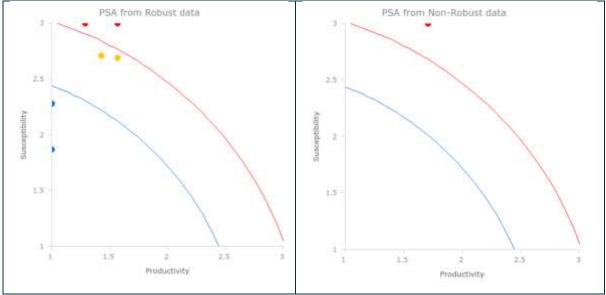


Figure 2.10. PSA plot for bycatch species in the NPF Tiger Prawn sub-fishery for a) robust [left] and (b) data deficient [right] species. Note many species fall on some points.

Table 2.25. Summary of the PSA scores on the set of productivity and susceptibility attributes for byproduct species and residual risk (RR) for high risk species. Note: a residual risk analysis was not examined for this sub-fishery, if the risk score was medium or low. Productivity attributes (P1-P7) are listed in Table 2.28 (in report). Susceptibility attributes (S1-S4) are listed in Susceptibility attributes

Table 2.29 (in report). Missing attributes are highlighted (red). Productivity score (Prod. score); Susceptibility score (Susc. score). No. interactions (No. Int. 2013-2017) reported for high risk scores only (source: Commonwealth logbook (Log) and observer (Obs) databases). Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology – version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	P6	P7	S1	S2	S3	S 4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2013- 2017)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
23607003	Sepia elliptica	Ovalbone cuttlefish	1	1	2	1	1	2	3	1	2.27	3	3	1.57	2.13	0	2.65	Medium	NE	No RR required	Medium
28821007	Thenus parindicus	Mud bug	1	1	2	1	1	2	1	2	3	3	3	1.29	2.71	0	3	Medium	NE	No RR required	Medium
23270003	Amusium pleuronectes	Saucer scallop; mud scallop	1	1	2	1	1	1	3	3	3	2	3	1.43	2.71	2	3.06	Medium	NE	No RR required	Medium
No CAAB	Uroteuthis sp 4. of Yeatman 1993	A squid	1	1	2	1	1	2	3	1	1	3	3	1.57	1.73	0	2.24	Low	NE	No RR required	Low
No CAAB	Uroteuthis etheridgei	A squid	1	1	2	1	1	2	3	1	1	3	3	1.57	1.73	0	2.24	Low	NE	No RR required	Low
28711026	Metapenaeus endeavouri	Blue endeavour prawn	1	1	1	1	1	1	1	1	3	3	3	1	2.28	0	2.49	Low	NE	No RR required	Low
28711050	Penaeus merguiensis	White banana prawn	1	1	1	1	1	1	1	1	3	3	3	1	2.28	1	2.49	Low	NE	No RR required	Low
28711027	Metapenaeus ensis	Red endeavour prawn	1	1	1	1	1	1	1	1	3	3	3	1	2.28	0	2.49	Low	NE	No RR required	Low
28711045	Penaeus indicus	Redleg banana prawn	1	1	1	1	1	1	1	1	3	3	3	1	2.28	0	2.49	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES		RISK CATEGORY	NO. INT. OR CATCH (2013- 2017)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
28711047	Melicertus latisulcatus	Western king prawn	1	1	1	1	1	1	1	1	1.37	3	3	1	1.87	0	2.12	Low	NE	No RR required	Low
28711048	Melicertus longistylus	Redspot King prawn	1	1	1	1	1	1	1	1	1.37	3	3	1	1.87	0	2.12	Low	NE	No RR required	Low

Risk ranking guidelines

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

d) Bycatch species

There were 68 bycatch teleost species considered in this PSA, since they were un-assessable in SAFE (Table 2.26). Of these 68 species, 53 were high risk and 15 were medium risk. A residual risk analysis was performed on these 53 high risk species, resulting in all 53 species reduced to medium risk.

Of other 109 invertebrate BC species assessed in this PSA, 79 were high risk, 14 medium risk and 16 low risk. A residual risk analysis was conducted on the 79 high risk species (Figure 2.11). All 79 high risk species were reduced to medium risk following a residual risk analysis.

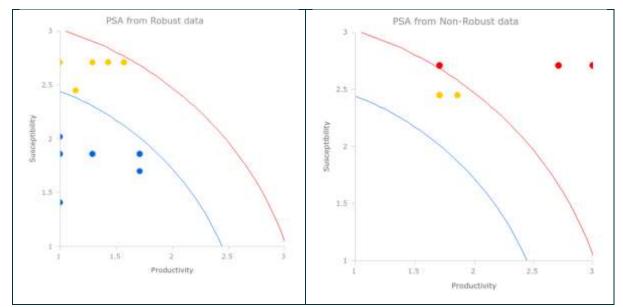


Figure 2.11. PSA plot for bycatch species in the NPF Tiger Prawn sub-fishery for a) robust [left] and (b) data deficient [right] species. Note many species fall on some points.

Table 2.26. Summary of the PSA scores on the set of productivity and susceptibility attributes for bycatch species and residual risk (RR) for high risk species. Note: a residual risk (RR) analysis was not examined for this sub-fishery, if the risk score was not high. Productivity attributes (P1-P7) are listed in Table 2.28 (in report). Susceptibility attributes (S1-S4) are listed in Susceptibility attributes

Table 2.29 (in report). Missing attributes are highlighted (red). Productivity score (Prod. score); Susceptibility score (Susc. score). No. interactions (No. Int. 2012-2016) reported for high risk scores only (source: Commonwealth logbook (Log) and observer (Obs) databases). Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology – version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	Р6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
Following 6	8 BC species were un-o	assessable in bSAFE (and aı	nalys	ed in	PSA:															
37371002	Tilapia mariae	Spotted tilapia	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	OBS: 1 individual dis.	Native to Africa. Established populations in Australia http://www.i ucngisd.org/g isd/species.p hp?sc=1430 Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37068033	Phyllopichthus xenodontus	Flappy snake eel	3	3	3	3	3	3	3	1	3	3	2	3	2.06	8	3.64	High	OBS: 0.3 kg dis. Also 37068000 Ophichthidae - undifferentiated OBS: 1.37 kg dis.	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	Р5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.985 kg	3 – low/interacti on capture. Risk reduced to medium.	
37464009	Triacanthus nieuhofi	Silver tripodfish	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 1 individual dis. Also, 37464000: Triacanthidae – undifferentiated OBS: 2.1 kg dis. Estimated catch of this species is: 4.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428348	Eugnathogobius polylepis	A goby	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428292	Yoga pyrops	Fire-eye goby	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37428205	Apocryptodon wirzi	Peacock mudskipper	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428094	Cryptocentroides argulus	Insignia goby	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37427024	Repomucenus sphinx	Sphinx dragonet	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 2 kg dis. Also 24.81 kg dis. of 37427000 -Draconettidae and Callionymidae - undifferentiated (OBS).	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37400012	Ichthyscopus insperatus	Doubleband stargazer	3	3	3	3	3	3	3	1	3	3	2	3	2.06	8	3.64	High	Added from 37040010 (mis- id; OBS). Also, 31.4 kg of 37040000 – Uranoscopidae –	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			undifferentiated (OBS). Estimated catch of this species is: 8.2 kg	3 – low/interacti on capture. Risk reduced to medium.	
37357007	Pempheris ypsilychnus	Ypsilon bullseye	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 0.2 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37341004	Aurigequula longispins	Longspine ponyfish	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 0.2 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37246009	Atherinomorus lacunosus	Slender hardyhead	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 0.126 kg dis. Also 0.012 kg dis. of 37246000: Atherinidae, Dentatherinidae –	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			undifferentiated (OBS)		
																			Estimated catch of this species is: 0.14 kg		
37118002	Trachinocephalus trachinus	Snakefish	3	3	3	3	3	3	3	1	3	3	2	3	2.06	9	3.64	High	OBS: 0.39 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37384010	Choerodon schoenleinii	Blackspot tuskfish	3	3	3	3	2	3	3	1	3	3	2	2.86	2.06	7	3.52	High	OBS: 1.12 kg dis.	Population trend unknown - may not be threatened in Australia. However, the degree of fragmentatio n of its distribution and levels of abundance in the Northern Territory of Australia are unclear. https://www. iucnredlist.or g/species/446 69/10933431	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				3 – low/interacti on capture.	
																				Risk reduced to medium.	
37464008	Pseudotriacanthus strigilifer	Blotched tripodfish	3	3	3	3	3	3	2	1	3	3	2	2.86	2.06	8	3.52	High	OBS: 0.05 kg ret., 1.53 kg dis. Also 2.1kg dis. of 37464000: Triacanthidae – undifferentiated (OBS). Estimated catch of this species is: 2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37013006	Stegostoma fasciatum	Zebra shark	3	3	3	3	3	2	2	1	3	3	2	2.71	2.06	5	3.4	High	OBS: 9.1 kg dis.	This species is endangered (IUCN Red List. Population trend is decreasing. https://www. iucnredlist.or g/species/717 11344/96655 394 Abundance estimates: southern Qld, Australia: 458 (95% CI = 298-618) (Dudgeon et al. 2008).	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4		MISSING ATTRIB- UTES	PSA 2D	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																		Genetic	
																		effective	
																		population	
																		size estimates	
																		based on	
																		microsatellite	
																		data closely	
																		approximate	
																		these census	
																		sizes (377,	
																		95% CI = 274-	
																		584; Dudgeon	
																		and Ovenden	
																		2015)	
																		suggesting	
																		the	
																		aggregation is	
																		composed of	
																		breeding	
																		adults. This	
																		population	
																		extends along	
																		the Qld coast	
																		with genetic	
																		evidence of	
																		some	
																		segregation	
																		from	
																		northern	
																		Australia.	
																		Juveniles	
																		caught, but	
																		survival rate	
																		considered	
																		high. Adults	
																		are excluded	
																		by the TED.	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				3 – low/interacti on capture. Risk reduced to medium.	
37467022	Tylerius spinosissimus	Finespine pufferfish	3	3	2	3	2	3	3	1	3	3	2	2.71	2.06	6	3.4	High	OBS: 0.08 kg dis. Also 11.55 kg dis. of 37467000: Tetraodontidae – undifferentiated (OBS). Estimated catch of this species is: 1.52 kg	Population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37388001	Opistognathus latitabundus	Blotched jawfish	3	3	3	3	1	3	3	1	3	3	2	2.71	2.06	6	3.4	High	OBS: 0.7 kg dis.	Population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37365018	Coradion altivelis	Highfin coralfish	3	3	3	3	1	3	3	1	3	3	2	2.71	2.06	8	3.4	High	OBS: 2.67 kg dis.	Population trend stable. https://www. iucnredlist.or g/species/165 697/6094841	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S 2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				3 – low/interacti on capture. Risk reduced to medium.	
37355031	Upeneus vittatus	Striped goatfish	3	3	1	3	3	3	3	1	3	3	2	2.71	2.06	7	3.4	High	OBS: 0.69 kg dis. Also 40 kg ret., of 37355000 Mullidae - undifferentiated (LOG). Also 276 kg dis. of 37355999 <i>Upeneus spp.</i> (OBS). Estimated catch of this species is: 125.5 kg	Population trend unknown – is widely distributed. https://www. iucnredlist.or g/species/509 03183/11540 4893 3 – low/interacti on capture. Risk reduced to medium.	Medium
37290017	Acanthosphex leurynnis	Wasp-spine velvetfish	3	3	3	3	1	3	3	1	3	3	2	2.71	2.06	8	3.4	High	OBS: 2 individuals dis.	Population trend unknown – is widely distributed. https://www. iucnredlist.or g/species/114 155281/1141 55332 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Risk reduced to medium.	
37287033	Apistops caloundra	Shortfin waspfish	3	3	3	3	1	3	3	1	3	3	2	2.71	2.06	6	3.4	High	OBS: 2.23 kg dis.	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37210010	Tetrabrachium ocellatum	Humpback anglerfish	3	3	3	3	1	3	3	1	3	3	2	2.71	2.06	6	3.4	High	OBS: 0.25 kg dis.	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37188006	Arius leptaspis	Salmon catfish	3	3	3	1	2	3	3	1	3	3	2	2.57	2.06	4	3.29	High	OBS: 41.7 kg dis. Also 44.36 kg dis. of 37188000: Ariidae - undifferentiated (OBS). Also 65.1 kg of 37188901: Arius spp. (OBS)	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 78.18 kg		
37383009	Polydactylus plebius	Striped threadfin	3	3	3	3	1	3	2	1	3	3	2	2.57	2.06	7	3.29	High	OBS: 2.97 kg dis. Also 2.25 kg dis. of 37383000: Polynemidae – undifferentiated (OBS) Estimated catch of this species is: 3.53 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37362007	Platax orbicularis	Orbicular batfish	3	3	3	1	2	3	3	1	3	3	2	2.57	2.06	4	3.29	High	OBS: 0.34 kg dis. Also 0.9 kg of 37362000: Ephippididae – undifferentiated (OBS). Estimated catch of this species is: 0.5 kg	Population trend and status is unknown. Widely distributed and believed to be common, but not necessarily locally abundant (https://www .iucnredlist.or g/species/190 152/5393775 3) 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	Р5	P6	P7	S1	S2	S 3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37290004	Adventor elongatus	Sandpaper velvetfish	3	3	3	1	1	3	3	1	3	3	2	2.43	2.06	4	3.19	High	OBS: 0.4 kg dis.	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428384	Arcygobius baliurus	Isthmus goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Widely distributed. Population trend is decreasing in some parts of its range (outside Australia). Depth: 12-16 m. https://www. iucnredlist.or g/species/683 26872/68333 614 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428379	Taenioides gracilis	Slender eelgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS)	Widely distributed. Population trend and status is	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	Р2	Р3	Р4	P5	Р6	P7	S1	S 2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			[OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	unknown. https://www. iucnredlist.or g/species/166 963/1157622 3 – low/interacti on capture. Risk reduced to medium.	
37428374	Oxyurichthys uronema	Longtail tentacle goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428367	Drombus dentifer	Yellow drombus	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428357	Periophthalmus weberi	Weber's mudskipper	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.]	Population trend and status is unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	Р6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.02 kg	3 – low/interacti on capture. Risk reduced	
																				to medium.	
37428353	Mugilogobius rivulus	Drain mangrovegoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428351	Mugilogobius littoralis	Beachrock mangrovegoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428341	Myersina macrostoma	Flagfin goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37428330	Egglestonichthys bombylios	Egglestone's bumblebee goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428312	Eviota storthynx	Rosy eviota	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428257	Taenioides anguillaris	Bearded wormgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428256	Sueviota larsonae	Larson's sueviota	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.]	Population trend and status is unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.02 kg	3 – low/interacti on capture. Risk reduced to medium.	
37428251	Silhouettea hoesei	Hoese's silhouette goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428239	Priolepis profunda	Orange convict reefgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428221	Periophthalmus minutus	Minute mudskipper	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37428220	Periophthalmus gracilis	Slender mudskipper	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428181	Lobulogobius morrigu	Eyebar coralgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428168	Gobiopterus mindanensis	Mindanao glassgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428101	Cryptocentrus insignitus	Signal goby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.]	Population trend and status is unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.02 kg	3 – low/interacti on capture. Risk reduced to medium.	
37428100	Cryptocentrus inexplicatus	Inexplicable shrimpgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428074	Caragobius rubristriatus	Red eelgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	OBS: 0.02 kg dis. Estimated catch of this species is: 0.04 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428072	Boleophthalmus birdsongi	Birdsong's mudskipper	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37428051	Amblyotrypauchen arctocephalus	Armour eelgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37428028	Pandaka rouxi	Roux's dwarfgoby	3	3	1	3	1	3	3	1	3	3	2	2.43	2.06	6	3.19	High	Added from 37428000: Gobiidae (OBS) [OBS: 0.68 kg dis.] Estimated catch of this species is: 0.02 kg	Population trend and status is unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
37309002	Pegasus volitans	Longtail seamouth	3	3	3	3	1	1	3	1	3	3	2	2.43	2.06	5	3.19	High	OBS: 0.392 kg dis.	Population trend and status is unknown. https://www. iucnredlist.or g/species/164 76/11513396 8 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37290012	Peristrominous dolosus	Deceitful velvetfish	3	3	3	1	1	3	3	1	3	3	2	2.43	2.06	5	3.19	High	OBS: 2 individuals dis.	Population trend and status is unknown.	Medium
																				3 – low/interacti on capture.	
																				Risk reduced to medium.	
37287011	Apistus carinatus	Longfin waspfish	3	3	3	3	1	3	3	1	1	3	2	2.71	1.57	6	3.13	Medium	NE	No RR required	Medium
37362003	Zabidius novemaculeatus	Shortfin batfish	3	3	3	1	2	1	3	1	3	3	2	2.29	2.06	3	3.08	Medium	NE	No RR required	Medium
37466005	Rhynchostracion nasus	Shortnose boxfish	3	3	3	1	1	3	2	1	3	3	2	2.29	2.06	4	3.08	Medium	NE	No RR required	Medium
37287021	Minous versicolor	Plumbstriped stingfish	3	3	3	1	1	3	3	1	3	2	2	2.43	1.86	4	3.06	Medium	NE	No RR required	Medium
37287022	Erosa erosa	Pacific monkeyfish	3	3	3	1	1	3	3	1	3	2	2	2.43	1.86	4	3.06	Medium	NE	No RR required	Medium
37018020	Hemigaleus australiensis	Sicklefin weasel shark	3	3	3	2	2	3	3	1	1.90	1	2	2.71	1.4	2	3.05	Medium	NE	No RR required	Medium
37013008	Chiloscyllium punctatum	Brownbanded bambooshark	3	3	3	2	2	2	3	1	3	1	2	2.57	1.57	3	3.01	Medium	NE	No RR required	Medium
37336001	Echeneis naucrates	Live sharksucker	3	3	3	1	2	3	3	1	3	1	2	2.57	1.57	4	3.01	Medium	NE	No RR required	Medium
37037001	Gymnura australis	Australian butterfly ray	3	3	3	1	2	3	3	1	3	1	2	2.57	1.57	2	3.01	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37364001	Rhinoprenes pentanemus	Threadfin scat	3	3	3	1	1	3	1	1	3	3	2	2.14	2.06	4	2.97	Medium	NE	No RR required	Medium
37362004	Platax teira	Longfin batfish	3	3	3	1	2	1	3	1	3	2	2	2.29	1.86	3	2.95	Medium	NE	No RR required	Medium
37311030	Centrogenys vaigiensis	False scorpionfish	3	3	3	1	1	3	3	1	1	3	2	2.43	1.57	4	2.89	Medium	NE	No RR required	Medium
37210003	Tathicarpus butleri	Butler's frogfish	3	3	3	1	1	1	3	1	2.06	3	2	2.14	1.87	3	2.84	Medium	NE	No RR required	Medium
37278001	Fistularia commersonii	Smooth flutemouth	3	3	3	2	2	1	3	1	2.27	1	2	2.43	1.46	3	2.83	Medium	NE	No RR required	Medium
37210011	Antennarius nummifer	Spotfin frogfish	3	3	3	1	1	3	3	1	1.02	2	2	2.43	1.42	4	2.81	Medium	NE	No RR required	Medium
Other BC sp	pecies:			1			1			1	1									1	
25030031	Comatula solaris	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS) [1.15 kg dis.]. Estimated catch of this species is: 0.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25030032	Comatula rotalaria	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS) [1.15 kg dis.].	Current population size and trend unknown. 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.22 kg	Risk reduced to medium.	
23236001	Pinctada albina	Pale pearl oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23236901 - Pinctada spp. (OBS). [1.2 kg dis]. Estimated catch of this species is: 0.2 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28911014	Podophthalmus vigil	Sentinel crab	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	OBS: 0.13 kg dis. Also, 39 kg ret. (LOG) and 65.74 kg dis. (OBS) of 28850000: Infraorder Brachyura – undifferentiated Estimated catch of this species is: 26.3 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28911001	Charybdis feriata	Crucifix crab	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	OBS: 2.88 kg dis. Also, 39 kg ret. (LOG) and 65.74 kg dis. (OBS) of 28850000: Infraorder Brachyura – undifferentiated	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 29.1 kg		
28821015	Petrarctus demani	Shovel-nosed lobster; slipper lobster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28821000: Scyllaridae – undifferentiated (LOG; OBS). [124.7 t ret. (LOG); includes: 344.7 kg ret., 66.6 kg dis. (OBS)]. Apportioned catch of 28821000 to this species. Estimated catch of this species is: 124.7 kg	Population trend stable. Widely distributed in Australia (WA north to the NT and south to Moreton Bay, Qld). This species is of no commercial value, likely due to its small size. There are no known major threats that are currently impacting the population of this species (https://www .iucnredlist.or g/species/185 017/8349208) 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
28821013	Petrarctus rugosus	Slipper lobster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28821000: Scyllaridae – undifferentiated (LOG; OBS). [124.7 t ret. (LOG); includes: 344.7 kg ret., 66.6 kg dis. (OBS)]. Apportioned catch of 28821000 to this species. Estimated catch of this species is: 124.7 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28821005	Scyllarides haanii	Aesop slipper lobster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28821000: Scyllaridae – undifferentiated (LOG; OBS). [124.7 t ret. (LOG); includes: 344.7 kg ret., 66.6 kg dis. (OBS)]. Apportioned catch of 28821000 to this species. Estimated catch of this species is: 124.7 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	Р6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
28711055	Trachysalambria crosnieri	Southern rough prawn	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	OBS: 1.37 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051042	Levisquilla inermis	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051025	Cloridina moluccensis	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051023	Cloridina chlorida	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis.	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 23.76 kg	3 – low/interacti on capture. Risk reduced to medium.	
28051018	Clorida depressa	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051017	Clorida bombayensis	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051016	Clorida albolitura	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 23.76 kg	Risk reduced to medium.	
28046004	Lysiosquilla tredecimdentata	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	9	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.1 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28038001	Odontodactylus cultrifer	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	9	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.1 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28035005	Manningia raymondi	A mantis shrimp	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.1 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25417011	Stichopus naso	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum	Current population	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	
25417007	Stichupus horrens	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 2540000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25417006	Stichopus herrmanni	Curryfish	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and	Population trend decreasing outside Australia.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	Р6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			25400000: Class Holothuroidea - undifferentiated (OBS).	Classified as vulnerable (IUCN Redlist List).	
																			25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS).	Populations in Australia (10% of range) are mostly	
																			Estimated catch of this species is: 3.22 kg	unknown, and not yet targeted.	
																				3 – low/interacti on capture.	
																				Risk reduced to medium.	
25416064	Actinopyga spinea	Burrowing blackfish	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS).	Current population trend unknown and considered to be abundant. 3 – low/interacti on capture.	Medium
																			25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Risk reduced to medium.	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4		SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
25416050	Holothuria arenicola	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. Species is not very common. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25416039	Holothuria flavomaculata	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
25416033	Holothuria whitmaei	Black teatfish	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current trend is unspecified. Species listed as endangered (IUCN Red List). Has been overfished in Australia. 3 – low/interacti on capture. Risk reduced to medium due to low interaction /capture in this sub- fishery.	Medium
25416031	Holothuria lessoni	Golden sandfish	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS).	Population trend decreasing. Species listed as endangered (IUCN Red List). 3 – low/interacti on capture. Risk reduced to medium due to low interaction	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 3.22 kg	/capture in this sub- fishery.	
25416030	Holothuria ocellata	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25416029	Holothuria martensi	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS).	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 3.22 kg		
25408031	Psuedocolochirus axiologus	Selenka's sea cucumber	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25408007	Cercodemas anceps	Holothurian	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
25266005	Peronella lesueuri	Sand dollar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS) and 25200000: Echinoidea (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). 25200000: 120.12 kg dis. (OBS). Estimated catch of this species is: 63.28 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25211004	Chaetodiadema granulatum	Sea urchin	3	3	3	3	3	3	3	3	3	3	2	3	2.71	9	4.04	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS) and 25200000: Echinoidea (OBS).	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	Р6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). 25200000: 120.12 kg dis. (OBS).		
																			Estimated catch of this species is: 63.28 kg		
25143013	Metrodira subulata	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is:	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25139001	Euretaster insignis	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	1.16 kg Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25127018	Anthenea tuberculosa	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea -	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is:	3 – low/interacti on capture. Risk reduced to medium.	
25124002	Archaster typicus	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	1.16 kg Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25122026	Stellaster childreni	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25122010	Iconaster Iongimanus	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea - undifferentiated (OBS).	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	3 – low/interacti on capture. Risk reduced to medium.	
25105005	Luidia maculata	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25105003	Luidia hardwicki	Seastar	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25102000: Class Asteroidea - undifferentiated (OBS). 25102000: 9.31 kg dis. (OBS). Estimated catch of this species is: 1.16 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25047001	Ptilometra macronema	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS). 25001000: 1.51 kg dis. (OBS).	Current population size and trend unknown. 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.22 kg	Risk reduced to medium.	
25038002	Amphimetra tessellata	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS). 25001000: 1.51 kg dis. (OBS). Estimated catch of this species is: 0.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25030037	Clarkcomanthus comanthipinna	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS). 25001000: 1.51 kg dis. (OBS). Estimated catch of this species is: 0.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25030030	Comatula pectinata	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS). 25001000: 1.51 kg dis. (OBS).	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	Р6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is: 0.22 kg		
25030002	Capillaster multiradiatus	A crinoid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 25001000: Class Crinoidea - undifferentiated (OBS). 25001000: 1.51 kg dis. (OBS). Estimated catch of this species is: 0.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207118	Amoria damoni ludbrookae	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207108	Cymbiola pulchra cracenta	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207067	Cymbiola rutila	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000:	Current population	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	
24207059	Cymbiola flavicans	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207036	Amoria turneri	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207030	Amoria maculata	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Risk reduced to medium.	
24207016	Volutoconus grossi	A volute	3	ß	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207015	Volutoconus bednalli	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207004	Cymbiola sophia	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae - undifferentiated (OBS). 24207000: 0.44 kg (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
24207003	Cymbiola cymbiola	A volute	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 24207000: Volutidae -	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			undifferentiated (OBS). 24207000: 0.44 kg (OBS)	3 – low/interacti on capture. Risk reduced to medium.	
23659039	Octopus sp. A (other names: O. membranaceus which is a misidentification)	An octopus	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23659000: Octopodidae - undifferentiated and 2365000: Order Octopoda - undifferentiated 783 kg ret. of 23659000 (LOG) 0.2 kg dis. of 23659000 (OBS) Estimated catch of this species is 391.5 kg.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
23659021	Octopus cyanea	Day octopus	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23659000: Octopodidae - undifferentiated and 2365000: Order Octopoda - undifferentiated 783 kg ret. of 23659000 (LOG) 0.2 kg dis. of 23659000 (OBS)	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	Р6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Estimated catch of this species is 391.5 kg.		
No CAAB	Uroteuthis sp.1	A squid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added species, based on M. Dunning, encountered in trawls.	Current population size and trend unknown. Located mostly west of 136° East of the GoC (M. Dunning) and reported in low numbers in the GoC outside this assessment period (Milton et al. 2010). Risk scores for species with same genus in this assessment is either low or medium. Given the above, risk is reduced to medium.	Medium
No CAAB	Uroteuthis sp.2	A squid	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added species, based on M. Dunning,	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	Р6	P7	S1	S2	S3	S4		SCORE	MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			encountered in trawls.	This species is the third most caught squid species in the NPF (M. Dunning). This species was more abundant between 12°- 14°S and trawled between 10.4 to 63 m in GoC over two summer surveys (in 1990, 1991; Dunning et al. 1994). Risk scores for species with same genus in this assessment is either low or medium. Given the above, risk reduced to medium.	
23236002	Pinctada margaritifera	Blacklip pearl oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23236901 - <i>Pinctada spp.</i> (OBS).	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S3	S4	PROD. SCORE		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			1.2 kg dis. of 23236901 (OBS). Estimated catch of this species is 0.2 kg.	3 – low/interacti on capture. Risk reduced to medium.	
23236003	Pinctada maxima	Silverlip pearl oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23236901 - <i>Pinctada spp.</i> (OBS). 1.2 kg dis. of 23236901 (OBS). Estimated catch of this species is 0.2 kg.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
23236012	Pinctada imbricata fucata	A pearl oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23236901 - <i>Pinctada spp.</i> (OBS). 1.2 kg dis. of 23236901 (OBS). Estimated catch of this species is 0.2 kg.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
23236029	Pinctada chemnitzi	A pearl oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	Added from 23236901 - Pinctada spp. (OBS). 1.2 kg dis. of 23236901 (OBS). Estimated catch of this species is 0.2 kg.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	P5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
23257001	Crassostrea gigas	Pacific oyster	3	3	3	3	3	3	3	3	3	3	2	3	2.71	10	4.04	High	OBS: 0.2 kg dis.	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25416003	Holothuria atra	Lolly fish	3	3	3	3	3	1	3	3	3	3	2	2.71	2.71	8	3.83	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25417004	Thelenota anax	Amberfish sea cucumber	3	3	3	3	3	1	3	3	3	3	2	2.71	2.71	8	3.83	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS).	Current population size and trend unknown. 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Risk reduced to medium.	
25416032	Holothuria fuscopunctata	Elephant's trunk fish	3	3	3	3	3	1	3	3	3	3	2	2.71	2.71	8	3.83	High	Added from 2500000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS). 25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
25416004	Holothuria scabra	Sand fish	3	3	3	3	3	1	3	3	3	3	2	2.71	2.71	8	3.83	High	Added from 25000000: Phylum Echinodermata (OBS) and 25400000: Class Holothuroidea - undifferentiated (OBS).	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			25000000: 28.5 kg dis. (OBS). 25400000: 29.5 kg dis. (OBS). Estimated catch of this species is: 3.22 kg		
23607011	Sepia whitleyana	Whitley's cuttlefish	1	1	2	1	1	2	3	1	2.34	3	2	1.57	1.93	0	2.50	Low	NE	No RR Required	Low
28820013	Panulirus versicolor	Painted rocklobster - green cray	1	3	1	1	1	2	3	3	3	3	2	1.71	2.71	3	3.2	High	LOG: 40 kg ret. OBS: 4.01 kg dis.	Stable population status https://www. iucnredlist.or g/species/169 968/6695068 #population 3 – low/interacti on capture. Risk reduced to medium.	Medium
28820006	Panulirus ornatus	Ornate rocklobster	1	3	1	1	1	2	3	3	3	3	2	1.71	2.71	3	3.2	High	OBS: 22 kg ret., 2.95 kg dis.	Stable population status. https://www. iucnredlist.or g/species/169 987/6700058 3 – low/interacti on capture.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	P6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Risk reduced to medium.	
28051054	Oratosquillina quinquedentata	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051052	Oratosquillina interrupta	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051051	Oratosquillina inornata	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051046	Miyakea nepa	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000:	Current population	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	P5	P6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	
28051039	Harpiosquilla stephensoni	Stephenson's mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051036	Harpiosquilla harpax	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	3	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051035	Harpiosquilla annandalei	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	3	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated	Current population size and trend unknown.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	Р6	P7	S1	S2	S3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	3 – low/interacti on capture. Risk reduced to medium.	
28051033	Erugosquilla woodmasoni	A mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	Added from 28030000: Order Stomatopoda - undifferentiated LOG: 570 kg ret.; OBS: 7.66 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
28051030	Dictyosquilla tuberculata	Warty mantis shrimp	1	1	3	1	1	2	3	3	3	3	2	1.71	2.71	4	3.2	High	OBS: 12.73 kg dis. (OBS). CMO: 763.49 kg dis. NPF Monitoring: 0.35 kg dis. Estimated catch of this species is: 23.76 kg	Current population size and trend unknown. 3 – low/interacti on capture. Risk reduced to medium.	Medium
23607013	Sepia smithi	A cuttlefish	1	1	2	1	1	2	3	1	2.29	3	2	1.57	1.93	0	2.49	Low	NE	No RR required	Low
23607008	Sepia pharaonis	Pharaoh cuttlefish	1	1	2	1	1	2	3	1	2.31	3	2	1.57	1.93	0	2.49	Low	NE	No RR required	Low
23617006	Sepioteuthis lessoniana	Northern calamari	1	1	2	1	1	2	2	1	3	3	2	1.43	2.06	0	2.51	Low	NE	No RR required	Low
28051019	Clorida granti	A mantis shrimp	1	1	3	1	1	3	3	3	3	2	2	1.86	2.45	4	3.08	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	P5	P6	P7	S1	S 2	S3	S4		SUSC. SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
28911005	Portunus armatus	Blue swimmer crab	1	1	1	1	1	3	2	3	3	3	2	1.43	2.71	2	3.06	Medium	NE	No RR required	Medium
28911006	Portunus sanguinolentus	Three-spotted crab	1	1	1	1	1	3	2	3	3	3	2	1.43	2.71	2	3.06	Medium	NE	No RR required	Medium
28821008	Thenus australiensis	Sandbug	1	1	2	1	1	2	1	3	3	3	2	1.29	2.71	1	3	Medium	NE	No RR required	Medium
23270004	Annachlamys flabellata	Fan scallop	1	3	2	1	1	1	3	3	3	2	2	1.71	2.45	4	2.99	Medium	NE	No RR required	Medium
28051050	Oratosquillina gravieri	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	4	2.99	Medium	NE	No RR required	Medium
28051041	Lenisquilla lata	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	3	2.99	Medium	NE	No RR required	Medium
28051037	Harpiosquilla melanoura	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	3	2.99	Medium	NE	No RR required	Medium
28051013	Carinosquilla carita	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	4	2.99	Medium	NE	No RR required	Medium
28047002	Acanthosquilla multifasciata	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	3	2.99	Medium	NE	No RR required	Medium
28035004	Manningia notialis	A mantis shrimp	1	1	3	1	1	2	3	3	3	2	2	1.71	2.45	3	2.99	Medium	NE	No RR required	Medium
23617010	Uroteuthis noctiluca	Luminous Bay squid	1	1	2	1	1	2	3	3	3	2	2	1.57	2.45	1	2.91	Medium	NE	No RR required	Medium
28714011	Solenocera australiana	Coral prawn	1	1	1	1	1	1	1	3	3	3	2	1	2.71	2	2.89	Medium	NE	No RR required	Medium
28711029	Metapenaeus macleayi	School prawn	1	1	1	1	1	2	1	3	3	2	2	1.14	2.45	1	2.7	Medium	NE	No RR required	Medium
28786001	Metanephrops australiensis	Australian scampi	1	2	2	1	1	2	3	3	1	2	2	1.71	1.86	2	2.53	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGORY	NO. INT. OR CATCH (2012- 2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
28786004	Metanephrops sibogae	Siboga scampi	1	2	2	1	1	2	3	3	1	2	2	1.71	1.86	2	2.53	Low	NE	No RR required	Low
28786002	Metanephrops boschmai	Boschma's Scampi	1	2	2	1	1	2	3	3	1	2	2	1.71	1.86	2	2.53	Low	NE	No RR required	Low
23607007	Sepia papuensis	Papuan cuttlefish	1	1	2	1	1	2	3	1	2.07	2	2	1.57	1.7	0	2.31	Low	NE	No RR required	Low
28711003	Atypopenaeus formosus	Orange prawn	1	1	3	1	1	1	1	1	3	2	2	1.29	1.86	2	2.26	Low	NE	No RR required	Low
28711004	Atypopenaeus stenodactylus	Periscope prawn	1	1	3	1	1	1	1	1	3	2	2	1.29	1.86	1	2.26	Low	NE	No RR required	Low
28711051	Penaeus monodon	Black tiger prawn - Leader prawn	1	1	1	1	1	1	1	1	2.75	3	2	1	2.02	0	2.25	Low	NE	No RR required	Low
28711031	Kishinouyepenaeop sis cornuta	Coral prawn	1	1	1	1	1	1	1	1	3	2	2	1	1.86	1	2.11	Low	NE	No RR required	Low
28711057	Megokris gonospinifer	Rough prawn	1	1	1	1	1	1	1	1	3	2	2	1	1.86	1	2.11	Low	NE	No RR required	Low
28711054	Trachypenaeus anchoralis	Northern rough prawn	1	1	1	1	1	1	1	1	3	2	2	1	1.86	1	2.11	Low	NE	No RR required	Low
28711016	Metapenaeopsis novaeguineae	Northern velvet prawn	1	1	1	1	1	1	1	1	1	2	2	1	1.41	0	1.73	Low	NE	No RR required	Low
28711017	Metapenaeopsis palmensis	Southern velvet prawn	1	1	1	1	1	1	1	1	1	2	2	1	1.41	0	1.73	Low	NE	No RR required	Low

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

e) Protected species

Sawfishes would normally be subject to a bSAFE analysis since they are classified as chondrichthyans. However, their biological characteristics and reference points are uncertain, so a PSA, which is a precautionary method was conducted for the four sawfish species. In addition, a residual risk analysis (RRA) was performed on these species.

There were 41 protected species assessed in this PSA. Of these species, seven were high risk (one marine bird, four marine reptiles, two chondrichthyans), 32 medium risk (12 marine birds, 17 marine reptiles, one marine mammal, two chondrichthyans) and two species low risk (two marine birds) (Table 2.27; Figure 2.12a, b). A residual risk analysis was performed on the seven high risk species (one marine bird, four marine reptiles, two chondrichthyans) and two medium risk chondrichthyans. Of the seven high risk species, two species remained high risk and one species was reduced to low risk (Crested tern *Thalasseus bergii*), following a residual risk analysis. The two remaining high-risk species were narrow sawfish (*Anoxypristis cuspidata*) and dwarf sawfish (*Pristis clavata*).

In addition, the overall risk score for the remaining two sawfish species increased from medium to a precautionary high risk following a residual risk analysis. These species were green sawfish (*Pristis zijsron*) and freshwater sawfish (*Pristis pristis*).

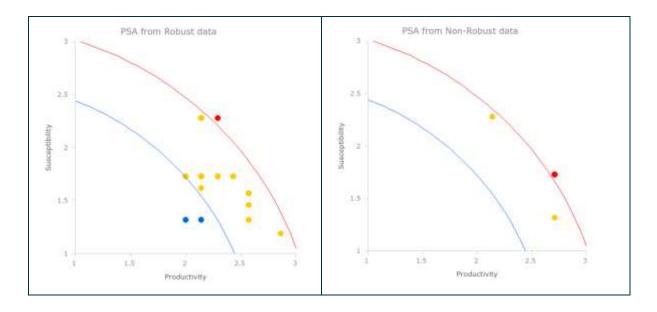


Figure 2.12. PSA plot for protected species in the NPF Tiger Prawn sub-fishery for (a) robust [left] and (b) data deficient [right] species. Note many species fall on some points.

Table 2.27. Summary of the PSA scores on the set of productivity and susceptibility attributes for protected species and residual risk (RR) for high risk species. Note: residual risk analyses were not examined for this sub-fishery, if the overall risk score was not high. Productivity attributes (P1-P7) are listed in Table 2.28 (in report). Susceptibility attributes (S1-S4) are listed in Susceptibility attributes

Table 2.29 (in report). Missing attributes are highlighted (red). Productivity score (Prod. score); Susceptibility score (Susc. score). No. interactions (No. Int. 2012-2016) reported for high risk scores only (source: Commonwealth logbook (LOG) and observer (OBS) databases). Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology – version Oct 12, 2016. See numbers at the foot of this table. Ret: retained. Dis: Discarded; NE: not entered. A: alive; D: dead; U: unknown. NPFM: Northern Prawn Fishing Monitoring; CMO: Crew Member Observer data.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S 3	S 4	PROD. SCORE			PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
40128025	Thalasseus bergii	Crested tern	1	3	3	1	2	3	3	3	1	3	3	2.29	2.28	2	3.23	High	Added from 4012899: Terns (LOG). LOG: 1 A	Population trend stable. https://www.iucnr edlist.org/species/ 22694571/132561 035 3 – low/interaction capture. Risk reduced to low.	Low
39125009	Astrotia stokesii	Stokes' sea snake	3	3	3	2	2	3	3	1	3	1	3	2.71	1.73	3	3.22	High	OBS: 27.1 kg dis 45 individuals dis. CMO: 1.3 t dis – 586 individuals dis. (501 A, 78 D, 1 U). NPFM: 13.2 kg dis – 6 individuals dis. (5 A, 1 D). Also, 39125000: Hydrophiidae - undifferentiated LOG: 24149 animals A; 8132 animals D. OBS: 1.2 kg dis.	Distribution: coastal and shelf waters of tropical Australia and Australasia, including New Guinea and south- east Asian waters (Cogger 1992). Population trend is unknown. Overall flat standardized CPUE trend within assessment period (accounting for 95% C.Is (Fry et al. 2018), but	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S 3	S 4		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
															UTES		RY	INFORMATION CMO: 572.78 kg dis. (549 individuals dis. (288 A, 226 D, 35 U). NPFM: 6.26 kg dis., 6 individuals dis. (2 A, 1 D, 3 U).	apparent increase	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	Р6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Therefore, risk reduced to medium.	
39125033	Pelamis platurus	Yellow-bellied sea snake	3	3	3	2	2	3	3	1	3	1	3	2.71	1.73	3	3.22	High	CMO: 0.48 kg dis. 16 animals dis. (3 A; 13 D). NPFM: 0.43 kg dis., 12 animals dis. (12 D). Also, 39125000: Hydrophiidae - undifferentiated LOG: 24149 animals A; 8132 animals D. OBS: 1.2 kg dis. CMO: 572.78 kg dis. (549 individuals dis. (288 A, 226 D, 35 U). NPFM: 6.26 kg dis., 6 individuals dis. (2 A, 1 D, 3 U).	Population trend is considered stable, but unknown (https://www.iucn redlist.org/species /176738/1158838 18) Distribution: widely distributed from east coast of Africa, through Indian and Pacific Oceans, to west coast of Americas. Distribution pattern within Australia ranges from south west northwards to south east coast, including within GoC (Cogger 1992, Milton et al. 2008). Standardized CPUE unavailable within assessment period. Post capture survival rates from trawling are highly uncertain due to low sample sizes (~18% - 50%), from Crew Member Scientific surveys in the NPF.	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	Р6	P7	S1	S2	S3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				TED and BRDs are used in this fishery. Limited species distribution overlap with the fishery operations. There may be more animals of this species caught which has been attributed to 39125000. Therefore, risk reduced to medium.	
39125011	Disteira major	Olive-headed sea snake	3	3	3	2	2	3	3	1	3	1	3	2.71	1.73	3	3.22	High	OBS: 24.2 kg dis – 63 individuals dis (40 A, 16 D, remaining unknown). CMO: 868.33 kg dis – 1135 individuals dis (824 A, 301 D, 10 U). NPFM: 20.83 kg dis – 27 individuals dis. (23 A, 2 D, 2 U). Also, 39125000: Hydrophiidae - undifferentiated LOG: 24149 animals A; 8132 animals D. OBS: 1.2 kg dis.	Population trend is unknown. Overall flat standardized CPUE trend within assessment period (accounting for 95% C.Is (Fry et al. 2018). Distribution: coastal waters of northern Australia from north- western WA and the Arafura Sea to eastern Qld, widely distributed within GoC (Cogger 1992, Milton et al. 2008).	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	Р6	Р7	S1	S2	S 3	S4		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																	KY	CMO: 572.78 kg dis. (549 individuals dis. (288 A, 226 D, 35 U). NPFM: 6.26 kg dis., 6 individuals dis. (2 A, 1 D, 3 U).	Commonly caught	
																			CPUE.	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S 3	S 4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Therefore, risk reduced to medium.	
39125010	Disteira kingii	Spectacled sea snake	3	3	3	2	2	3	3	1	3	1	3	2.71	1.73	3	3.22	High	OBS: 1 individual dis. CMO: 11.7 kg dis – 21 individuals dis. (14 A, 6 D, 1 U). NPFM: 2.3 kg dis – 4 individuals dis. (3 A, 1 D). Also, 39125000: Hydrophiidae - undifferentiated LOG: 24149 animals A; 8132 animals D. OBS: 1.2 kg dis. CMO: 572.78 kg dis. (549 individuals dis. (288 A, 226 D, 35 U). NPFM: 6.26 kg dis., 6 individuals dis. (2 A, 1 D, 3 U).	Distribution: confined to the tropical coastal waters northern Australia from WA to the eastern coast of Qld (Cogger 1992). Population trend is unknown. Restricted distribution in GoC (Milton et al 2008) and considered rare in trawl catches. Catch rates (0.075 – 0.336 snakes/ha) from surveys in the GoC (Milton et al 2008). Standardized CPUE higher in shallower waters (Milton et al. 2008). Species distribution in GoC overlaps fishery effort. Standardized CPUE unavailable within assessment period.	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	P6	P7	S1	S2	S 3	S 4			MISSING ATTRIB- UTES	PSA 2D		NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Low fecundity: 4 – 6 young per litter however young occur in shallower waters and not on trawl grounds (Fry et al 2001).	
																				Post capture survival rates from trawling are relatively high, but uncertain, due to low sample sizes (67% - 75% within assessment period), from Crew Member Scientific surveys in the NPF. TED and BRDs are used in this fishery. There may be more animals of this species caught which has been attributed to 39125000. Risk reduced to medium.	
41116019	Tursiops truncatus	Bottlenose dolphin	2	3	3	3	3	3	3	1	1	1	2	2.86	1.19	0	3.1	Medium	NE	No RR required	Medium
40128006	Chlidonias hybrida	Whiskered tern	2	2	3	1	1	3	3	3	1	3	3	2.14	2.28	2	3.13	Medium	NE	No RR required	Medium
40128031	Gelochelidon nilotica	Gull-billed tern	2	2	3	1	1	3	3	3	1	3	3	2.14	2.28	2	3.13	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	Р6	P7	\$1	S2	S 3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
40128029	Sterna hirundo	Common tern	1	3	3	1	1	3	3	3	1	3	3	2.14	2.28	2	3.13	Medium	NE	No RR required	Medium
40128028	Onychoprion fuscatus	Sooty tern	1	3	3	1	1	3	3	3	1	3	3	2.14	2.28	2	3.13	Medium	NE	No RR required	Medium
40128007	Chlidonias Ieucopterus	White-winged black tern	1	3	3	1	1	3	3	3	1	3	3	2.14	2.28	3	3.13	Medium	NE	No RR required	Medium
39020001	Caretta caretta	Loggerhead turtle	3	3	2	2	2	3	3	1	2	1	3	2.57	1.57	1	3.01	Medium	NE	No RR required	Medium
39125001	Acalyptophis peronii	Horned sea snake	3	3	3	2	2	3	3	1	1	1	3	2.71	1.32	3	3.01	Medium	NE	No RR required	Medium
39020002	Chelonia mydas	Green turtle	3	3	2	2	2	3	3	1	2	1	3	2.57	1.57	1	3.01	Medium	NE	No RR required	Medium
39020003	Eretmochelys imbricata	Hawksbill turtle	3	3	2	1	2	3	3	1	3	1	3	2.43	1.73	1	2.98	Medium	NE	No RR required	Medium
39020005	Natator depressus	Flatback turtle	2	3	3	1	2	3	3	1	3	1	3	2.43	1.73	2	2.98	Medium	NE	No RR required	Medium
39020004	Lepidochelys olivacea	Olive ridley turtle	3	3	3	1	2	3	3	1	1.5	1	3	2.57	1.46	1	2.96	Medium	NE	No RR required	Medium
39021001	Dermochelys coriacea	Leatherback turtle	3	3	2	2	2	3	3	1	1	1	3	2.57	1.32	1	2.89	Medium	NE	No RR required	Medium
39125003	Aipysurus duboisii	Reef shallows sea snake	1	2	3	2	2	3	3	1	3	1	3	2.29	1.73	1	2.87	Medium	NE	No RR required	Medium
40128026	Hydroprogne caspia	Caspian tern	1	3	3	1	2	3	3	1	1	3	3	2.29	1.73	1	2.87	Medium	NE	No RR required	Medium
39125007	Aipysurus laevis	Golden sea snake	1	2	3	2	2	3	3	1	3	1	3	2.29	1.73	1	2.87	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	Р7	S1	S2	S 3	S 4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
39125004	Aipysurus mosaicus	Stagger- banded sea snake	1	2	3	1	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
40128002	Anous stolidus	Common noddy	1	3	3	1	1	3	3	1	1	3	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125031	Lapemis curtis	Spine-bellied sea snake	1	1	3	2	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125029	Hydrophis pacificus	Large-headed sea snake	1	1	3	2	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125028	Hydrophis ornatus	Spotted sea snake	1	1	3	2	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125021	Hydrophis elegans	Elegant sea snake	1	1	3	2	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125016	Hydrophis atriceps	Black-headed sea snake	1	1	3	2	2	3	3	1	3	1	3	2.14	1.73	1	2.75	Medium	NE	No RR required	Medium
39125013	Enhydrina schistosa	Beaked sea snake	1	1	3	2	2	3	3	1	2.31	1	3	2.14	1.62	0	2.68	Medium	NE	No RR required	Medium
39125025	Hydrophis mcdowelli	Small-headed sea snake	1	1	3	1	2	3	3	1	3	1	3	2	1.73	1	2.64	Medium	NE	No RR required	Medium
40128034	Sterna sumatrana	Black-naped tern	1	2	3	1	1	3	3	1	1	3	3	2	1.73	1	2.64	Medium	NE	No RR required	Medium
40128027	Sterna dougallii	Roseate tern	1	2	3	1	1	3	3	1	1	3	3	2	1.73	1	2.64	Medium	NE	No RR required	Medium
40128024	Thalasseus bengalensis	Lesser crested tern	1	2	3	1	1	3	3	1	1	3	3	2	1.73	1	2.64	Medium	NE	No RR required	Medium
40128023	Onychoprion anaethetus	Bridled tern	1	2	3	1	1	3	3	1	1	3	3	2	1.73	1	2.64	Medium	NE	No RR required	Medium
40050003	Fregata minor	Great frigatebird	1	3	2	1	1	3	3	1	1	3	3	2	1.73	0	2.64	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	Р5	P6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
40050002	Fregata ariel	Lesser frigatebird	1	3	3	1	1	3	3	1	1	1	3	2.14	1.32	1	2.51	Low	NE	No RR required	Low
40128013	Chroicocephalus novaehollandiae	Silver gull	1	2	3	1	1	3	3	1	1	1	3	2	1.32	1	2.4	Low	NE	No RR required	Low
A PSA was	conducted on the fol	lowing four saw	fish sp	ecies:																	
37025002	Anoxypristis cuspidata	Narrow sawfish	2	3	3	3	3	3	3	1	3	1	3	2.86	1.73	0	3.34	High	217 [165 A; 52 D]. Also, an unknown proportion of Pristidae, sawfishes – unidentified: 812 [593 A; 219 D]	Sawfish appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown. Post-release survival rates of sawfish are currently unknown. However, post capture mortality is high (88%) in nearby areas (east coast inshore Finfish fishery; Tobin et al. 2010). The catch per unit effort (CPUE) trend between 2013-16 for Narrow Sawfish and Pristidae combined, is flat based on survey	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	Р5	Р6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				data (Fry et al. 2018).	
																				In Australia, this species is listed as migratory (EPBC Act) and critically endangered elsewhere (IUCN Redlist).	
																				The presence of distinct sub- populations suggests that if local depletion occurs, it would not be replenished by adjacent locations (i.e. between eastern and western part of range; D'Anastasi 2010). The risk score remains High	
37025004	Pristis clavata	Dwarf sawfish	2	3	3	3	3	3	3	1	2.63	1	3	2.86	1.68	0	3.31	High	35 [25 A; 10 D]. Also, an unknown proportion of Pristidae, sawfishes – unidentified: 812 [593 A; 219 D]	Sawfish appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown. Post-release survival rates of sawfish are	High

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	Р6	P7	S1	S2	S 3	S4		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			currently unknown.	
																			This species has low biological productivity, matures at 8 years and is long lived (34 years; Peverell 2009). In Australia, this species is listed as vulnerable (EPBC Act) and critically endangered elsewhere (IUCN Redlist).	
																			No population estimates are available, and this species occurs now only in Australia, as there have been no records elsewhere in the world for more than a century (https://www.iucn ssg.org/regional- fast-facts- australia.html). Also, trends in catch-per-unit- effort (CPUE) are based on too few data points and only one within the assessment	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	Р4	Р5	P6	Р7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				period (2013; Fry et al., 2018).	
																				This species has the smallest distribution of any sawfish species in Australia. There may be local refuges where commercial fishing does not occur, but given there are no verified population estimates, and unknown PCS rates, the risk remains High.	
37025001	Pristis zijsron	Green sawfish	2	3	3	3	3	3	3	1	1	1	3	2.86	1.32	0	3.15	Medium	107 [71 A; 36 D]. Also, an unknown proportion of Pristidae, sawfishes – unidentified: 812 [593 A; 219 D]	Sawfish appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown. Post-release survival rates of sawfish are currently unknown. However, post capture mortality is high (100%) in nearby areas (east	High

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	Р4	Р5	P6	P7	\$1	S2	S3	S 4		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			coast inshore Finfish fishery; Tobin et al 2010).	
																			No population estimates are available. Also, trends in catch- per-unit-effort (CPUE) are based on too few data points and only one within the assessment period	
																			(2013; Fry et al., 2018). This species is long lived (>50 years), grows slowly, matures late (9 years) and has low fecundity (Peverell 2009).	
																			In Australia, this species is listed as vulnerable (EPBC Act) and critically endangered elsewhere (IUCN Redlist).	
																			This species is listed as vulnerable, it has low biological productivity, no available population	

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	Р5	P6	P7	S1	S2	S 3	S4			MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				estimates in northern Australia or trends in CPUE are available, vulnerable to capture by trawl nets and have 100% PCM estimates. Therefore, the risk has been changed to a (precautionary) High.	
37025003	Pristis pristis	Freshwater sawfish	2	3	3	3	3	3	3	1	1	1	3	2.86	1.32	0	3.15	Medium	12 [12 A; 0 D]. Also, an unknown proportion of Pristidae, sawfishes – unidentified: 812 [593 A; 219 D]	Sawfish appear to have a high entanglement rate in trawl nets and escapement rates of sawfish from trawl nets through TED openings are currently unknown. Post-release survival rates of sawfish are currently unknown. This species is long lived (44 years), grows slowly, matures late (8-10 years; and has low fecundity (Peverell 2009).	High

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	Р3	P4	Р5	Р6	Р7	S1	S2	S3	S4		MISSING ATTRIB- UTES	PSA 2D	RISK CATEGO RY	NO. INT. (2012- 2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			In Australia, this	
																			species is listed as	
																			vulnerable (EPBC	
																			Act) and critically	
																			endangered	
																			elsewhere (IUCN	
																			Redlist).	
																			This species is	
																			listed as	
																			vulnerable, it has	
																			low biological	
																			productivity, no	
																			population	
																			abundance	
																			estimates in	
																			northern Australia	
																			or trends in CPUE	
																			are available and	
																			are highly	
																			vulnerable to	
																			capture by trawl nets. Therefore,	
																			the risk has been	
																			changed to	
																			(precautionary)	
																			High.	

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

Productivity attributes

Table 2.28. Productivity attribute names and cutoff scores for the ERAF L2 PSA method. These cutoffs have been determined from analysis of the distribution of attribute values for species in the ERAF database, and are intended to divide the attribute values into low, medium and high productivity categories.

ATTRIBUTE NUMBER	ATTRIBUTE NAME	LOW PRODUCTIVITY (RISK SCORE: 3)	MEDIUM PRODUCTIVITY (RISK SCORE: 2)	HIGH PRODUCTIVITY (RISK SCORE: 1)
P1	Average age at maturity	> 15 years	5 – 15 years	< 5 years
P2	Average max age	> 25 years	10-25 years	< 10 years
Р3	Fecundity	< 100 eggs per years	100-20,000 eggs per year	> 20,000 eggs per year
P4	Average max size	> 300 cm	100-300 cm	< 100 cm
Р5	Average size at Maturity	> 200 cm	40-200 cm	< 40 cm
P6	Reproductive strategy	Taxa is "Marine bird" or "Marine mammal"	Family is : "Syngnathidae" or "Solenostomidae" Or Reproductive Strategy is: "Demersal Spawner" Or "Brooder"	Reproductive Strategy is "Broadcast Spawner"
Р7	Trophic level	> 3.25	2.75-3.25	< 2.75

Susceptibility attributes

Table 2.29. Susceptibility attribute names and cutoff scores for the ERAF L2 PSA method. These cutoffs have been determined from analysis of the distribution of attribute values for species in the ERAF database, and are intended to divide the attribute values into low, medium and high susceptibility categories.

ATTRIBUTE NUMBER	ATTRIBUTE NAME	LOW SUSCEPTIBILITY (RISK SCORE: 1)	MEDIUM SUSCEPTIBILITY (RISK SCORE: 2)	HIGH SUSCEPTIBILITY (RISK SCORE: 3)
S1	Availability	< 10% overlap	Continuous [1,3]	> 30% overlap
S2	Encounterability (habitat and bathymetry based)	Fishery Specific	Fishery Specific	Fishery Specific
S3	Selectivity (size based)	Fishery Specific	Fishery Specific	Fishery Specific
S4	Post-Capture Mortality (role in fishery based, protected Species based)	Some Protected (Live)	Byproduct or bycatch Some protected (generally alive)	Key or secondary commercial Some protected (likely to be dead)

Post Capture Mortality

The following rules were used to assign a risk score to Post Capture Mortality (PCM), based on each species ERAEF classification (see also Table 2.30):

- Commercial, secondary commercial, commercial bait or byproduct species: score is 3.
- Bycatch species: score is 2
- Protected species (which are discarded), PCM is based on taxa, i.e.,
 - marine birds and marine reptiles: score is 3
 - \circ $\hfill maximum m$
 - syngnathids: score is 1

Table 2.30. Post capture mortality attribute risk score for the Tiger Prawn sub-fishery for the ERAEF L2 PSA and bSAFE methods. High: H; M: medium; Low: L. Risk scores that are not assigned by taxa (not specific) for each ERAEF classification are shaded.

ROLE IN FISHERY	ТАХА	RATIONALE	RISK CATEGORY	RISK SCORE
Key commercial	Not specific	Retained, therefore dead	н	3
Secondary commercial	Not specific	Retained, therefore dead	Н	3
Commercial bait	Not specific	Retained, therefore dead	н	3
Byproduct	Not specific	Retained, therefore dead	н	3
Bycatch	Not specific	Discarded alive or dead	м	2
Protected Species	Marine birds	Long duration set, if caught, highly likely to drown	Н	3
	Marine reptiles	Long duration set, if caught, highly likely to drown	Н	3
	Marine mammals	Large enough/strong swimming to have a chance of survival	М	2
	Chondrichthyans	Large enough/strong swimming to have a chance of survival	М	2
	All others e.g. syngnathids, invertebrates (if any)	Likely to survive	L	1

2.4.5 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently with regard to risk, it should be the subject of more study.

The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and protected) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.

2.5 bSAFE results and discussion

Each of the reference points (MSM, LIM, and CRASH) were evaluated. If the biological reference point mean was higher than the estimated F attributed to this sub-fishery, then the species was categorised as 'Below'. When the biological reference point mean was lower than the estimated F attributed to the sub-fishery, then the species was categorised as 'Above' for that species and reference point measure. The overall risk is a summary of the three reference point measures (Table 2.31). If all reference points are categorised as 'Below', then the overall risk is low.

MSM	LIM	CRASH	OVERALL RISK
Below	Below	Below	Low
Above	Below	Below	Medium
Above	Above	Below	High
Above	Above	Above	Extreme

Table 2.31 Overall risk summary against each of the three reference point measures.

2.5.1 bSAFE – Key/secondary commercial species

Under the revised ERAEF (AFMA 2017), key commercial species that undergo Tier stock assessments are not assessed at Level 2.

2.5.2 bSAFE - Commercial bait species

There were no commercial bait species in this sub-fishery.

2.5.3 bSAFE - Byproduct species

There were no byproduct species considered in this SAFE. Instead they were assessed in a PSA.

2.5.4 bSAFE - Bycatch species

There were 411 bycatch species considered in this SAFE (Figure 2.13a, b). Sixty-eight species were un-assessable due to missing biological attributes employed in the SAFE method (Table 2.32, classified as NA: un-assessable). A PSA was conducted on these 68 species (see Table 2.27). Of the remaining species, none were extreme or high risk, one was medium risk and 342 species were low risk (Table 2.32).

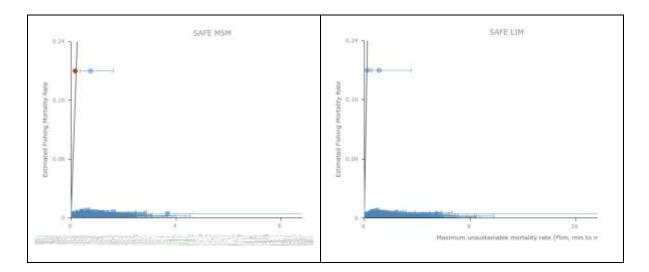


Figure 2.13. SAFE plot for Bycatch species in the NPF Tiger Prawn sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right].

Table 2.32. bSAFE risk categories for bycatch species ecological component for F_MSM, F_Lim and F_crash. Note: a residual risk analysis was not examined for this sub-fishery, if the risk score was medium or low. Catch from Commonwealth logbook (LOG) and observer (OBS) databases. Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology – version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered. NA: not assessable.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
The following	g 68 species have been analys	ed in the PSA (see Table 2.25):											
37013006	Stegostoma fasciatum	Zebra shark	0.006	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37467022	Tylerius spinosissimus	Finespine pufferfish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37466005	Rhynchostracion nasus	Shortnose boxfish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37464009	Triacanthus nieuhofi	Silver tripodfish	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37464008	Pseudotriacanthus strigilifer	Blotched tripodfish	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428384	Arcygobius baliurus	Isthmus goby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428379	Taenioides gracilis	Slender eelgoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428374	Oxyurichthys uronema	Longtail tentacle goby	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428367	Drombus dentifer	Yellow drombus	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428357	Periophthalmus weberi	Weber's mudskipper	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428353	Mugilogobius rivulus	Drain mangrovegoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428351	Mugilogobius littoralis	Beachrock mangrovegoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428348	Eugnathogobius polylepis	A goby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428341	Myersina macrostoma	Flagfin goby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428330	Egglestonichthys bombylios	Egglestone's bumblebee goby	0.004	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428312	Eviota storthynx	Rosy eviota	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428292	Yoga pyrops	Fire-eye goby	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37428257	Taenioides anguillaris	Bearded wormgoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428256	Sueviota larsonae	Larson's sueviota	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428251	Silhouettea hoesei	Hoese's silhouette goby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428239	Priolepis profunda	Orange convict reefgoby	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428221	Periophthalmus minutus	Minute mudskipper	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428220	Periophthalmus gracilis	Slender mudskipper	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428205	Apocryptodon wirzi	Peacock mudskipper	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428181	Lobulogobius morrigu	Eyebar coralgoby	0.005	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428168	Gobiopterus mindanensis	Mindanao glassgoby	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428101	Cryptocentrus insignitus	Signal goby	0.009	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428100	Cryptocentrus inexplicatus	Inexplicable shrimpgoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428094	Cryptocentroides argulus	Insignia goby	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428074	Caragobius rubristriatus	Red eelgoby	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428072	Boleophthalmus birdsongi	Birdsong's mudskipper	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428051	Amblyotrypauchen	Armour eelgoby	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37428028	Pandaka rouxi	Roux's dwarfgoby	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37427024	Repomucenus sphinx	Sphinx dragonet	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37400012	Ichthyscopus insperatus	Doubleband stargazer	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37388001	Opistognathus	Blotched jawfish	0.004	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37384010	Choerodon schoenleinii	Blackspot tuskfish	0.008	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37383009	Polydactylus plebius	Striped threadfin	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37371002	Tilapia mariae	Spotted tilapia	0.2	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37365018	Coradion altivelis	Highfin coralfish	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37364001	Rhinoprenes pentanemus	Threadfin scat	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37362007	Platax orbicularis	Orbicular batfish	0.005	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37362004	Platax teira	Longfin batfish	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37362003	Zabidius novemaculeatus	Shortfin batfish	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37357007	Pempheris ypsilychnus	Ypsilon bullseye	0.006	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37355031	Upeneus vittatus	Striped goatfish	<0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37341004	Aurigequula longispins	Longspine ponyfish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37336001	Echeneis naucrates	Live sharksucker	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37311030	Centrogenys vaigiensis	False scorpionfish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37309002	Pegasus volitans	Longtail seamouth	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37290017	Acanthosphex leurynnis	Wasp-spine Velvetfish	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37290012	Peristrominous dolosus	Deceitful velvetfish	0.007	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37290004	Adventor elongatus	Sandpaper velvetfish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37287033	Apistops caloundra	Shortfin waspfish	0.007	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37287022	Erosa erosa	Pacific monkeyfish	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37287021	Minous versicolor	Plumbstriped stingfish	0.006	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37287011	Apistus carinatus	Longfin waspfish	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37278001	Fistularia commersonii	Smooth flutemouth	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37246009	Atherinomorus lacunosus	Slender hardyhead	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37210011	Antennarius nummifer	Spotfin frogfish	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37210010	Tetrabrachium ocellatum	Humpback anglerfish	0.005	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37210003	Tathicarpus butleri	Butler's frogfish	0.004	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37188006	Arius leptaspis	Salmon catfish	0.004	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37118002	Trachinocephalus	Snakefish	0.003	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37068033	Phyllopichthus xenodontus	Flappy snake eel	0.005	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37037001	Gymnura australis	Australian butterfly ray	0.002	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37018020	Hemigaleus australiensis	Sicklefin weasel shark	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
37013008	Chiloscyllium punctatum	Brownbanded bambooshark	0.001	-	NA	-	NA	-	NA	NA	-	-	see Table 2.26
Other BC spe	cies:												
37285001	Monopterus albus	Lai	0.2	0.16	Above	0.25	Below	0.33	Below	Medium	NE	No RR required	Medium
37012001	Alopias vulpinus	Thresher shark	<0.001	0.08	Below	0.12	Below	0.16	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37013010	Nebrius ferrugineus	Tawny shark	0.002	0.04	Below	0.06	Below	0.08	Below	Low	NE	No RR required	Low
37013012	Sutorectus tentaculatus	Cobbler wobbegong	<0.001	0.07	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37015007	Cephaloscyllium	Reticulated swellshark	<0.001	0.15	Below	0.22	Below	0.3	Below	Low	NE	No RR required	Low
37015027	Asymbolus analis	Australian spotted catshark	<0.001	0.17	Below	0.26	Below	0.35	Below	Low	NE	No RR required	Low
37015028	Atelomycterus macleayi	Australian marbled catshark	<0.001	0.17	Below	0.26	Below	0.35	Below	Low	NE	No RR required	Low
37015029	Aulohalaelurus labiosus	Australian Blackspot catshark	<0.001	0.17	Below	0.26	Below	0.35	Below	Low	NE	No RR required	Low
37018005	Loxodon macrorhinus	Sliteye shark	0.001	0.11	Below	0.16	Below	0.22	Below	Low	NE	No RR required	Low
37018006	Rhizoprionodon acutus	Milk shark	0.001	0.25	Below	0.37	Below	0.49	Below	Low	NE	No RR required	Low
37018007	Carcharhinus plumbeus	Sandbar shark	<0.001	0.05	Below	0.08	Below	0.11	Below	Low	NE	No RR required	Low
37018009	Carcharhinus coatesi	Whitecheek shark	<0.001	0.08	Below	0.13	Below	0.17	Below	Low	NE	No RR required	Low
37018013	Carcharhinus sorrah	Spot-tail shark	0.001	0.14	Below	0.21	Below	0.28	Below	Low	NE	No RR required	Low
37018014	Carcharhinus tilstoni	Australian blacktip shark	0.001	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37018022	Galeocerdo cuvier	Tiger shark	<0.001	0.07	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37018023	Carcharhinus brevipinna	Spinner shark	0.001	0.07	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37018024	Rhizoprionodon taylori	Australian sharpnose shark	<0.001	0.31	Below	0.47	Below	0.63	Below	Low	NE	No RR required	Low
37018025	Carcharhinus macloti	Hardnose shark	0.001	0.07	Below	0.1	Below	0.13	Below	Low	NE	No RR required	Low
37018030	Carcharhinus	Grey reef shark	<0.001	0.07	Below	0.11	Below	0.14	Below	Low	NE	No RR required	Low
37018034	Carcharhinus cautus	Nervous shark	0.001	0.07	Below	0.1	Below	0.13	Below	Low	NE	No RR required	Low
37018035	Carcharhinus fitzroyensis	Creek whaler	0.002	0.07	Below	0.1	Below	0.13	Below	Low	NE	No RR required	Low
37018039	Carcharhinus limbatus	Blacktip shark	0.001	0.1	Below	0.15	Below	0.19	Below	Low	NE	No RR required	Low
37019001	Sphyrna lewini	Scalloped hammerhead	<0.001	0.07	Below	0.1	Below	0.14	Below	Low	NE	No RR required	Low
37019002	Sphyrna mokarran	Great hammerhead	<0.001	0.08	Below	0.13	Below	0.17	Below	Low	NE	No RR required	Low
37019003	Eusphyra blochii	Winghead shark	0.002	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37020001	Centrophorus moluccensis	Endeavour dogfish	<0.001	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37020002	Dalatias licha	Black shark	<0.001	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37020008	Squalus acanthias	Whitespotted spurdog	<0.001	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37026002	Rhina ancylostoma	Shark ray	0.001	0.11	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37026005	Rhynchobatus australiae	Whitespotted guitarfish	0.002	0.11	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37027010	Glaucostegus typus	Giant shovelnose ray	0.003	0.12	Below	0.18	Below	0.23	Below	Low	NE	No RR required	Low
37035004	Neotrygon australiae	Bluespotted maskray	0.003	0.11	Below	0.16	Below	0.22	Below	Low	Width: to 47 cm; level of TED exclusion not clear (smaller ones probably poorly excluded, larger ones excluded to some extent); risk is somewhat mitigated by being largely an inshore species (although not well studied in general). Dave. Brewer (pers. comm.)	No RR required	Low
37035011	Pastinachus ater	Cowtail stingray	0.001	0.1	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37035012	Neotrygon annotata	Plain maskray	0.002	0.1	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37035013	Neotrygon leylandi	Painted maskray	<0.001	0.1	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37035020	Maculabatis astra [synomym: Himantura astra or H. toshi]	Black-spotted whipray	0.003	0.08	Below	0.11	Below	0.15	Below	Low	Width: to 80 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low
37035022	Maculabatis toshi [synonym: Himantura toshi or H. sp A.]	Brown whipray	0.004	0.08	Below	0.11	Below	0.15	Below	Low	Width: to 74 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low
37035023	Urogymnus dalyensis	Freshwater whipray	<0.001	0.08	Below	0.11	Below	0.15	Below	Low	Width: to 124 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37035025	Pateobatis jenkinsii	Jenkins' whipray	0.006	0.08	Below	0.11	Below	0.15	Below	Low	Width: to 150 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low
37035026	Himantura leoparda	Leopard whipray	0.001	0.1	Below	0.16	Below	0.21	Below	Low	Width: to 140 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low
37035027	Urogymnus asperrimus	Porcupine ray	0.001	0.1	Below	0.16	Below	0.21	Below	Low	Width: to 115 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37035028	Megatrygon microps	Smalleye stingray	<0.001	0.08	Below	0.11	Below	0.15	Below	Low	Width: to 222 cm; likely to have high exclusion rates from TEDs. Dave Brewer (pers. comm.)	No RR required	Low
37035030	Neotrygon ningalooensis	Ningaloo maskray	<0.001	0.08	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37039002	Aetomylaeus	Banded eagle ray	0.001	0.07	Below	0.11	Below	0.14	Below	Low	NE	No RR required	Low
37039003	Aetobatus ocellatus	Spotted eagle ray	0.001	0.08	Below	0.12	Below	0.17	Below	Low	NE	No RR required	Low
37039005	Aetomylaeus vespertilio	Ornate eagle ray	0.002	0.07	Below	0.11	Below	0.14	Below	Low	NE	No RR required	Low
37054001	Megalops cyprinoides	Indo-Pacific tarpon	0.002	0.11	Below	0.16	Below	0.22	Below	Low	NE	No RR required	Low
37063002	Muraenesox cinereus	Daggertooth pike conger	0.001	0.23	Below	0.35	Below	0.47	Below	Low	NE	No RR required	Low
37067015	Conger cinereus	Blacklip conger	<0.001	0.23	Below	0.34	Below	0.45	Below	Low	NE	No RR required	Low
37068017	Ichthyapus vulturis	Vulture eel	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37085006	Amblygaster sirm	Spotted sardinella	0.006	1.09	Below	1.64	Below	2.19	Below	Low	NE	No RR required	Low
37085007	Herklotsichthys	Largespotted herring	0.004	0.96	Below	1.44	Below	1.92	Below	Low	NE	No RR required	Low
37085009	Pellona ditchela	Indian pellona	0.006	0.9	Below	1.35	Below	1.8	Below	Low	NE	No RR required	Low
37085010	Dussumieria elopsoides	Slender rainbow sardine	0.008	0.93	Below	1.4	Below	1.87	Below	Low	NE	No RR required	Low
37085012	Ilisha lunula	Longtail ilisha	0.005	0.91	Below	1.37	Below	1.83	Below	Low	NE	No RR required	Low
37085013	Sardinella gibbosa	Goldstripe sardinella	0.003	0.9	Below	1.35	Below	1.8	Below	Low	NE	No RR required	Low
37085014	Sardinella albella	White sardinella	0.006	0.9	Below	1.35	Below	1.8	Below	Low	NE	No RR required	Low
37085015	Anodontostoma chacunda	Chacunda gizzard shad	0.003	0.75	Below	1.12	Below	1.49	Below	Low	NE	No RR required	Low
37085016	Nematalosa come	Western Pacific gizzard shad	0.006	0.85	Below	1.27	Below	1.69	Below	Low	NE	No RR required	Low
37085025	Herklotsichthys	Goldspot herring	0.008	0.67	Below	1.01	Below	1.35	Below	Low	NE	No RR required	Low
37085028	Sardinella brachysoma	Deepbody sardinella	0.001	0.92	Below	1.38	Below	1.84	Below	Low	NE	No RR required	Low
37085030	Spratelloides gracilis	Silver-stripe round herring	0.006	3.69	Below	5.53	Below	7.37	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37086002	Encrasicholina punctifer	Buccaneer anchovy	0.003	2.09	Below	3.13	Below	4.17	Below	Low	NE	No RR required	Low
37086004	Thryssa setirostris	Longjaw thryssa	0.005	1.47	Below	2.21	Below	2.95	Below	Low	NE	No RR required	Low
37086005	Thryssa hamiltonii	Hamilton's thryssa	0.001	1.42	Below	2.13	Below	2.85	Below	Low	NE	No RR required	Low
37086006	Stolephorus indicus	Indian anchovy	0.008	1.63	Below	2.44	Below	3.26	Below	Low	NE	No RR required	Low
37086008	Setipinna tenuifilis	Common hairfin anchovy	0.001	1.57	Below	2.35	Below	3.14	Below	Low	NE	No RR required	Low
37087001	Chirocentrus dorab	Dorab wolf herring	0.001	0.23	Below	0.35	Below	0.46	Below	Low	NE	No RR required	Low
37118001	Saurida undosquamis	Brushtooth lizardfish	0.001	0.56	Below	0.85	Below	1.13	Below	Low	NE	No RR required	Low
37118005	Saurida argentea	Shortfin saury	0.003	0.53	Below	0.8	Below	1.06	Below	Low	NE	No RR required	Low
37118023	Synodus variegatus	Variegated lizardfish	0.004	0.55	Below	0.83	Below	1.11	Below	Low	NE	No RR required	Low
37118028	Saurida tumbil	Common saury	0.001	0.53	Below	0.8	Below	1.07	Below	Low	NE	No RR required	Low
37119001	Harpadon translucens	Glassy bombay duck	0.003	0.75	Below	1.12	Below	1.5	Below	Low	NE	No RR required	Low
37119750	Harpadon nehereus	Bombay duck	0.2	0.75	Below	1.12	Below	1.5	Below	Low	NE	No RR required	Low
37122079	Benthosema pterotum	Opaline lanternfish	<0.001	1.11	Below	1.66	Below	2.21	Below	Low	NE	No RR required	Low
37188001	Netuma thalassina	Giant sea catfish	0.002	0.3	Below	0.45	Below	0.6	Below	Low	NE	No RR required	Low
37188013	Plicofollis nella	Shieldhead catfish	0.006	0.3	Below	0.45	Below	0.59	Below	Low	NE	No RR required	Low
37192002	Plotosus lineatus	Striped catfish	0.003	0.61	Below	0.92	Below	1.22	Below	Low	NE	No RR required	Low
37192003	Euristhmus nudiceps	Nakedhead catfish	0.003	0.45	Below	0.67	Below	0.89	Below	Low	NE	No RR required	Low
37192004	Euristhmus lepturus	Longtail catfish	0.002	0.45	Below	0.67	Below	0.89	Below	Low	NE	No RR required	Low
37205002	Halophryne diemensis	Banded frogfish	0.003	0.43	Below	0.64	Below	0.86	Below	Low	NE	No RR required	Low
37205003	Batrachomoeus trispinosus	Threespine frogfish	0.001	0.43	Below	0.64	Below	0.86	Below	Low	NE	No RR required	Low
37205004	Batrachomoeus sp. [in	[A frogfish]	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37208001	Lophiomus setigerus	Broadhead goosefish	<0.001	0.21	Below	0.31	Below	0.41	Below	Low	NE	No RR required	Low
37225002	Bregmaceros mcclellandi	Unicorn codlet	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37225003	Bregmaceros atlanticus	Antenna codlet	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37228005	Sirembo imberbis	Golden cusk	<0.001	0.18	Below	0.27	Below	0.35	Below	Low	NE	No RR required	Low
37233004	Cheilopogon arcticeps	Bearhead flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233005	Cheilopogon cyanopterus	Margined flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37233006	Cheilopogon heterurus	Piebald flyingfish	<0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233007	Cheilopogon abei	Abe's flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233009	Cheilopogon spilopterus	Manyspot flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233010	Cypselurus poecilopterus	Yellow-wing Flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233011	Exocoetus monocirrhus	Barbel flyingfish	<0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233014	Hirundichthys oxycephalus	Bony flyingfish	0.003	0.83	Below	1.25	Below	1.67	Below	Low	NE	No RR required	Low
37233016	Parexocoetus brachypterus	Sailfin flyingfish	0.003	1.39	Below	2.09	Below	2.78	Below	Low	NE	No RR required	Low
37233017	Cheilopogon suttoni	Sutton's flyingfish	0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233020	Cheilopogon intermedius	Intermediate flyingfish	<0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233021	Cheilopogon katoptron	Indonesian flyingfish	<0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233022	Cheilopogon	Stained flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233025	Cypselurus hexazona	Darkbar flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233026	Cypselurus naresii	Pharao flyingfish	0.003	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37233027	Cypselurus oligolepis	Largescale flyingfish	0.002	2.02	Below	3.03	Below	4.03	Below	Low	NE	No RR required	Low
37233028	Cheilopogon olgae	[A flyingfish]	0.001	0.98	Below	1.48	Below	1.97	Below	Low	NE	No RR required	Low
37234016	Hyporhamphus affinis	Tropical garfish	0.002	0.67	Below	1.01	Below	1.34	Below	Low	NE	No RR required	Low
37261002	Myripristis murdjan	Pinecone soldierfish	0.001	1.75	Below	2.62	Below	3.5	Below	Low	NE	No RR required	Low
37269002	Velifer hypselopterus	Sailfin velifer	0.001	0.44	Below	0.66	Below	0.88	Below	Low	NE	No RR required	Low
37271002	Desmodema polystictum	Spotted ribbonfish	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37278002	Fistularia petimba	Red cornetfish	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37280001	Centriscus scutatus	Grooved razorfish	0.004	0.95	Below	1.42	Below	1.89	Below	Low	NE	No RR required	Low
37280002	Centriscus cristatus	Smooth razorfish	0.006	0.65	Below	0.98	Below	1.3	Below	Low	NE	No RR required	Low
37287010	Dendrochirus brachypterus	Shortfin turkeyfish	0.006	0.33	Below	0.5	Below	0.67	Below	Low	NE	No RR required	Low
37287014	Cottapistus cottoides	Marbled stingfish	0.001	0.4	Below	0.6	Below	0.8	Below	Low	NE	No RR required	Low
37287040	Pterois volitans	Red lionfish	0.003	0.33	Below	0.5	Below	0.67	Below	Low	NE	No RR required	Low
37287055	Inimicus caledonicus	Demon stingerfish	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37287060	Paracentropogon vespa	Wasp roguefish	0.002	0.65	Below	0.98	Below	1.31	Below	Low	NE	No RR required	Low
37287101	Brachypterois serrulifer	Sawcheek scorpionfish	0.001	0.33	Below	0.5	Below	0.67	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37288016	Lepidotrigla russelli	Smooth gurnard	<0.001	0.62	Below	0.93	Below	1.24	Below	Low	NE	No RR required	Low
37296010	Inegocia harrisii	Harris' flathead	0.004	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296011	Ratabulus diversidens	Orange-freckled flathead	<0.001	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296013	Elates ransonnettii	Dwarf flathead	0.003	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296018	Cociella hutchinsi	Brownmargin flathead	0.001	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296020	Platycephalus westraliae	Yellowtail flathead	0.006	0.4	Below	0.6	Below	0.8	Below	Low	NE	No RR required	Low
37296023	Cymbacephalus	Fringe-eye Flathead	0.005	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296024	Rogadius asper	Olive-tail Flathead	0.003	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296029	Inegocia japonica	Japanese flathead	0.003	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37296033	Platycephalus australis	Bartail flathead	0.004	0.39	Below	0.58	Below	0.78	Below	Low	NE	No RR required	Low
37308004	Dactyloptena orientalis	Purple flying gurnard	0.002	0.9	Below	1.35	Below	1.8	Below	Low	NE	No RR required	Low
37311007	Epinephelus coioides	Orange-spotted grouper	0.001	0.3	Below	0.45	Below	0.6	Below	Low	NE	No RR required	Low
37311008	Cephalopholis boenak	Brown banded rock-cod	0.004	0.82	Below	1.23	Below	1.64	Below	Low	NE	No RR required	Low
37311009	Epinephelus areolatus	Areolate grouper	0.001	0.24	Below	0.37	Below	0.49	Below	Low	NE	No RR required	Low
37311012	Plectropomus maculatus	Barcheek coral trout	0.006	0.34	Below	0.51	Below	0.68	Below	Low	NE	No RR required	Low
37311015	Epinephelus	Banded grouper	<0.001	0.2	Below	0.29	Below	0.39	Below	Low	NE	No RR required	Low
37311017	Epinephelus sexfasciatus	Sixbar grouper	0.003	0.32	Below	0.49	Below	0.65	Below	Low	NE	No RR required	Low
37311021	Epinephelus fuscoguttatus	Flowery rockcod	0.002	0.21	Below	0.32	Below	0.43	Below	Low	NE	No RR required	Low
37311028	Parascombrops	Sharptooth seabass	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37311041	Epinephelus bleekeri	Duskytail grouper	<0.001	0.21	Below	0.31	Below	0.41	Below	Low	NE	No RR required	Low
37311057	Epinephelus tauvina	Greasy grouper	<0.001	0.19	Below	0.28	Below	0.38	Below	Low	NE	No RR required	Low
37311061	Epinephelus lanceolatus	Giant grouper	0.001	0.19	Below	0.28	Below	0.37	Below	Low	NE	No RR required	Low
37311078	Plectropomus leopardus	Common coral trout	0.003	0.38	Below	0.57	Below	0.76	Below	Low	NE	No RR required	Low
37311079	Plectropomus laevis	Bluespotted coral trout	<0.001	0.31	Below	0.47	Below	0.62	Below	Low	NE	No RR required	Low
37320002	Glaucosoma magnificum	Threadfin pearl perch	<0.001	0.22	Below	0.33	Below	0.45	Below	Low	NE	No RR required	Low
37321001	Pelates quadrilineatus	Fourlined terapon	0.001	0.85	Below	1.27	Below	1.7	Below	Low	NE	No RR required	Low
37321002	Terapon jarbua	Jarbua terapon	<0.001	0.77	Below	1.15	Below	1.53	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37321003	Terapon theraps	Largescaled terapon	<0.001	0.89	Below	1.34	Below	1.78	Below	Low	NE	No RR required	Low
37321006	Terapon puta	Spinycheek grunter	0.001	0.85	Below	1.28	Below	1.7	Below	Low	NE	No RR required	Low
37321019	Mesopristes argenteus	Silver grunter	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37326001	Priacanthus macracanthus	Red bigeye	0.001	0.88	Below	1.32	Below	1.75	Below	Low	NE	No RR required	Low
37326003	Priacanthus tayenus	Purple-spotted bigeye	0.004	0.75	Below	1.12	Below	1.49	Below	Low	NE	No RR required	Low
37326005	Priacanthus hamrur	Lunartail bigeye	0.002	0.64	Below	0.96	Below	1.28	Below	Low	NE	No RR required	Low
37326008	Heteropriacanthus	Blotched bigeye	0.002	0.88	Below	1.31	Below	1.75	Below	Low	NE	No RR required	Low
37327013	Jaydia truncata	Flagfin cardinalfish	0.003	1.31	Below	1.97	Below	2.62	Below	Low	NE	No RR required	Low
37327014	Ozichthys albimaculosus	Creamspotted cardinalfish	0.003	1.31	Below	1.97	Below	2.62	Below	Low	NE	No RR required	Low
37327016	Jaydia melanopus	Monster cardinalfish	0.003	1.31	Below	1.97	Below	2.62	Below	Low	NE	No RR required	Low
37327026	Jaydia poecilopterus	Pearlyfin cardinalfish	0.001	1.31	Below	1.97	Below	2.62	Below	Low	NE	No RR required	Low
37327028	Ostorhinchus cavitiensis	Yellow cardinalfish	0.003	1.31	Below	1.97	Below	2.62	Below	Low	NE	No RR required	Low
37330005	Sillago robusta	Stout whiting	0.004	0.79	Below	1.19	Below	1.59	Below	Low	NE	No RR required	Low
37330006	Sillago sihama	Northern whiting	0.001	0.73	Below	1.1	Below	1.46	Below	Low	NE	No RR required	Low
37330015	Sillago maculata	Trumpeter whiting	0.006	0.71	Below	1.07	Below	1.42	Below	Low	NE	No RR required	Low
37333001	Lactarius lactarius	False trevally	0.007	0.76	Below	1.14	Below	1.52	Below	Low	NE	No RR required	Low
37335001	Rachycentron canadum	Cobia	<0.001	0.32	Below	0.48	Below	0.63	Below	Low	NE	No RR required	Low
37337005	Carangoides malabaricus	Malabar trevally	0.002	0.67	Below	1.01	Below	1.34	Below	Low	NE	No RR required	Low
37337008	Selar boops	Oxeye scad	0.001	0.77	Below	1.16	Below	1.54	Below	Low	NE	No RR required	Low
37337009	Selar crumenophthalmus	Bigeye scad	0.002	0.71	Below	1.06	Below	1.41	Below	Low	NE	No RR required	Low
37337010	Alepes apercna	Smallmouth scad	0.001	0.68	Below	1.02	Below	1.36	Below	Low	NE	No RR required	Low
37337011	Carangoides chrysophrys	Longnose tlongnose trevally	0.001	0.56	Below	0.84	Below	1.12	Below	Low	NE	No RR required	Low
37337012	Gnathanodon speciosus	Golden trevally	0.002	0.51	Below	0.77	Below	1.03	Below	Low	NE	No RR required	Low
37337014	Seriolina nigrofasciata	Blackbanded trevally	0.001	0.58	Below	0.87	Below	1.17	Below	Low	NE	No RR required	Low
37337015	Selaroides leptolepis	Yellowstripe scad	0.003	0.96	Below	1.44	Below	1.92	Below	Low	NE	No RR required	Low
37337016	Caranx bucculentus	Bluespotted trevally	0.001	0.47	Below	0.7	Below	0.93	Below	Low	NE	No RR required	Low
37337017	Decapterus macrosoma	Shortfin scad	<0.001	0.81	Below	1.22	Below	1.63	Below	Low	NE	No RR required	Low
37337018	Alectis ciliaris	African pompano	0.001	0.48	Below	0.72	Below	0.96	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37337020	Uraspis uraspis	Whitemouth jack	0.002	0.65	Below	0.97	Below	1.3	Below	Low	NE	No RR required	Low
37337021	Carangoides	Coastal trevally	0.003	0.57	Below	0.86	Below	1.15	Below	Low	NE	No RR required	Low
37337022	Carangoides gymnostethus	Bludger	0.003	0.62	Below	0.92	Below	1.23	Below	Low	NE	No RR required	Low
37337024	Atule mate	Barred yellowtail scad	0.001	0.62	Below	0.94	Below	1.25	Below	Low	NE	No RR required	Low
37337027	Caranx ignobilis	Giant trevally	0.001	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37337028	Megalaspis cordyla	Torpedo scad	0.003	0.57	Below	0.86	Below	1.14	Below	Low	NE	No RR required	Low
37337031	Carangoides humerosus	Duskyshoulder trevally	0.006	0.62	Below	0.92	Below	1.23	Below	Low	NE	No RR required	Low
37337032	Scomberoides	Talang queenfish	0.001	0.55	Below	0.83	Below	1.11	Below	Low	NE	No RR required	Low
37337036	Alepes kleinii	Razorbelly trevally	0.001	0.59	Below	0.89	Below	1.19	Below	Low	NE	No RR required	Low
37337037	Carangoides fulvoguttatus	Yellowspotted trevally	0.003	0.62	Below	0.92	Below	1.23	Below	Low	NE	No RR required	Low
37337038	Alectis indica	Indian threadfish	0.001	0.48	Below	0.72	Below	0.96	Below	Low	NE	No RR required	Low
37337039	Caranx sexfasciatus	Bigeye trevally	0.001	0.41	Below	0.62	Below	0.82	Below	Low	NE	No RR required	Low
37337041	Ulua aurochs	Silvermouth trevally	0.002	0.58	Below	0.87	Below	1.17	Below	Low	NE	No RR required	Low
37337042	Carangoides hedlandensis	Bumpnose trevally	0.007	0.62	Below	0.92	Below	1.23	Below	Low	NE	No RR required	Low
37337043	Carangoides	Whitetongue trevally;	0.001	0.62	Below	0.92	Below	1.23	Below	Low	NE	No RR required	Low
37337044	Scomberoides tol	Needlescaled queenfish	0.006	0.6	Below	0.9	Below	1.19	Below	Low	NE	No RR required	Low
37337045	Scomberoides tala	Barred queenfish	0.001	0.55	Below	0.83	Below	1.11	Below	Low	NE	No RR required	Low
37337047	Pantolabus radiatus	Fringefin trevally	0.003	0.58	Below	0.87	Below	1.17	Below	Low	NE	No RR required	Low
37337048	Ulua mentalis	Longrakered trevally	0.001	0.58	Below	0.87	Below	1.17	Below	Low	NE	No RR required	Low
37337055	Decapterus macarellus	Mackerel scad	<0.001	0.73	Below	1.09	Below	1.46	Below	Low	NE	No RR required	Low
37337064	Caranx papuensis	Brassy trevally	0.001	0.37	Below	0.56	Below	0.75	Below	Low	NE	No RR required	Low
37337067	Alepes vari	Herring scad	0.002	0.68	Below	1.02	Below	1.36	Below	Low	NE	No RR required	Low
37337068	Carangoides ferdau	Blue trevally	0.004	0.49	Below	0.74	Below	0.99	Below	Low	NE	No RR required	Low
37337072	Parastromateus niger	Black pomfret	0.002	0.55	Below	0.82	Below	1.1	Below	Low	NE	No RR required	Low
37338002	Coryphaena equiselis	Pompano mahi mahi	<0.001	1.49	Below	2.23	Below	2.97	Below	Low	NE	No RR required	Low
37340001	Mene maculata	Moonfish	0.001	0.99	Below	1.49	Below	1.98	Below	Low	NE	No RR required	Low
37341002	Photopectoralis bindus	Orangefin ponyfish	0.002	1.53	Below	2.29	Below	3.05	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37341005	Equulites leuciscus	Whipfin ponyfish	0.007	1.41	Below	2.11	Below	2.81	Below	Low	NE	No RR required	Low
37341006	Secutor insidiator	Pugnose ponyfish	0.002	1.41	Below	2.11	Below	2.82	Below	Low	NE	No RR required	Low
37341007	Gazza minuta	Toothpony	0.004	1.27	Below	1.9	Below	2.53	Below	Low	NE	No RR required	Low
37341009	Aurigequula fasciata	Striped ponyfish	0.001	1.65	Below	2.48	Below	3.3	Below	Low	NE	No RR required	Low
37341010	Eubleekeria splendens	Splendid ponyfish	0.004	1.31	Below	1.96	Below	2.62	Below	Low	NE	No RR required	Low
37341013	Nuchequula glenysae	Twoblotch ponyfish	0.003	1.99	Below	2.99	Below	3.98	Below	Low	NE	No RR required	Low
37341014	Leiognathus equulus	Common ponyfish	0.004	1.49	Below	2.23	Below	2.97	Below	Low	NE	No RR required	Low
37341015	Leiognathus ruconius	Deep pugnosed ponyfish	0.004	1.65	Below	2.48	Below	3.3	Below	Low	NE	No RR required	Low
37342001	Brama brama	Ray's bream	<0.001	0.28	Below	0.42	Below	0.57	Below	Low	NE	No RR required	Low
37346002	Pristipomoides multidens	Goldbanded jobfish	<0.001	0.4	Below	0.6	Below	0.8	Below	Low	NE	No RR required	Low
37346003	Lutjanus vitta	Brownstripe red snapper	0.009	0.43	Below	0.64	Below	0.85	Below	Low	NE	No RR required	Low
37346004	Lutjanus sebae	Red emperor	0.001	0.32	Below	0.48	Below	0.64	Below	Low	NE	No RR required	Low
37346005	Lutjanus erythropterus	Crimson snapper	0.001	0.33	Below	0.49	Below	0.65	Below	Low	NE	No RR required	Low
37346007	Lutjanus malabaricus	Saddletail snapper	0.001	0.3	Below	0.46	Below	0.61	Below	Low	NE	No RR required	Low
37346008	Lutjanus lutjanus	Bigeye snapper	0.003	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37346015	Lutjanus argentimaculatus	Mangrove jack	0.001	0.23	Below	0.35	Below	0.47	Below	Low	NE	No RR required	Low
37346019	Pristipomoides typus	Sharptooth jobfish	<0.001	0.34	Below	0.51	Below	0.67	Below	Low	NE	No RR required	Low
37346030	Lutjanus johnii	Golden snapper	0.001	0.31	Below	0.47	Below	0.63	Below	Low	NE	No RR required	Low
37346032	Pristipomoides	Rosy snapper	<0.001	0.33	Below	0.5	Below	0.66	Below	Low	NE	No RR required	Low
37346034	Lutjanus fulviflamma	Blackspot snapper	0.008	0.43	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37346043	Lutjanus fulvus	Blacktail snapper	0.004	0.38	Below	0.57	Below	0.75	Below	Low	NE	No RR required	Low
37346045	Lutjanus monostigma	Onespot snapper	0.006	0.33	Below	0.5	Below	0.66	Below	Low	NE	No RR required	Low
37347003	Nemipterus peronii	Notchedfin threadfin bream	0.003	0.91	Below	1.37	Below	1.82	Below	Low	NE	No RR required	Low
37347006	Scolopsis monogramma	Monogrammed monocle	0.006	1.04	Below	1.57	Below	2.09	Below	Low	NE	No RR required	Low
37347008	Scolopsis taenioptera	Lattice monocle bream	0.007	1.04	Below	1.57	Below	2.09	Below	Low	NE	No RR required	Low
37347014	Nemipterus hexodon	Ornate threadfin bream	0.003	1.04	Below	1.57	Below	2.09	Below	Low	NE	No RR required	Low
37347018	Scolopsis vosmeri	White-cheeked monocle	0.003	1.04	Below	1.57	Below	2.09	Below	Low	NE	No RR required	Low
37347020	Scaevius milii	Green-striped coral bream	0.009	0.69	Below	1.04	Below	1.38	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37347028	Pentapodus paradiseus	Paradise whiptail	0.008	0.99	Below	1.49	Below	1.98	Below	Low	NE	No RR required	Low
37349002	Pentaprion longimanus	Longfin mojarra	0.001	1.24	Below	1.86	Below	2.48	Below	Low	NE	No RR required	Low
37349003	Gerres filamentosus	Whipfin silver-biddy	0.004	1.23	Below	1.84	Below	2.46	Below	Low	NE	No RR required	Low
37349004	Gerres oyena	Blacktip silverbiddy	0.006	1.22	Below	1.82	Below	2.43	Below	Low	NE	No RR required	Low
37349005	Gerres subfasciatus	Common silverbiddy	0.007	1.18	Below	1.76	Below	2.35	Below	Low	NE	No RR required	Low
37349022	Gerres oblongus	Slender silverbiddy	0.005	1.18	Below	1.76	Below	2.35	Below	Low	NE	No RR required	Low
37350002	Pomadasys maculatus	Blotched javelin	0.003	0.59	Below	0.89	Below	1.19	Below	Low	NE	No RR required	Low
37350003	Diagramma pictum	Painted sweetlip	0.001	0.57	Below	0.86	Below	1.15	Below	Low	NE	No RR required	Low
37350008	Pomadasys trifasciatus	Black-ear javelin	0.006	0.6	Below	0.9	Below	1.2	Below	Low	NE	No RR required	Low
37350011	Pomadasys kaakan	Javelin grunter	0.007	0.58	Below	0.87	Below	1.16	Below	Low	NE	No RR required	Low
37350014	Plectorhinchus	Spotted sweetlips	0.009	0.58	Below	0.86	Below	1.15	Below	Low	NE	No RR required	Low
37351006	Lethrinus laticaudis	Grass emperor	0.007	0.36	Below	0.54	Below	0.72	Below	Low	NE	No RR required	Low
37351007	Lethrinus lentjan	Red spot emperor	0.006	0.42	Below	0.62	Below	0.83	Below	Low	NE	No RR required	Low
37351012	Lethrinus rubrioperculatus	Spotcheek emperor	0.002	0.42	Below	0.63	Below	0.83	Below	Low	NE	No RR required	Low
37353006	Argyrops spinifer	Frypan bream	0.001	0.3	Below	0.45	Below	0.61	Below	Low	NE	No RR required	Low
37354001	Argyrosomus japonicus	Mulloway	<0.001	0.39	Below	0.59	Below	0.78	Below	Low	NE	No RR required	Low
37354003	Protonibea diacanthus	Black jewfish	0.001	0.42	Below	0.62	Below	0.83	Below	Low	NE	No RR required	Low
37354004	Johnius laevis	Smooth jewfish	0.001	0.6	Below	0.91	Below	1.21	Below	Low	NE	No RR required	Low
37354006	Otolithes ruber	Silver teraglin	0.003	0.55	Below	0.83	Below	1.11	Below	Low	NE	No RR required	Low
37354007	Johnius borneensis	River jewfish	0.002	0.51	Below	0.77	Below	1.03	Below	Low	NE	No RR required	Low
37354009	Johnius amblycephalus	Bearded jewfish	0.001	0.6	Below	0.91	Below	1.21	Below	Low	NE	No RR required	Low
37354012	Atrobucca brevis	Orange jewfish	<0.001	0.4	Below	0.6	Below	0.79	Below	Low	NE	No RR required	Low
37354026	Larimichthys pamoides	Southern yellow jewfish	0.001	0.41	Below	0.61	Below	0.81	Below	Low	NE	No RR required	Low
37355003	Upeneus moluccensis	Goldband goatfish	0.001	0.77	Below	1.16	Below	1.54	Below	Low	NE	No RR required	Low
37355007	Upeneus sulphureus	Sulphur goatfish	0.002	1	Below	1.5	Below	2	Below	Low	NE	No RR required	Low
37355010	Upeneus asymmetricus	Asymmetric goatfish	0.001	0.88	Below	1.31	Below	1.75	Below	Low	NE	No RR required	Low
37355013	Upeneus sundaicus	Ochrebanded goatfish	0.003	0.88	Below	1.31	Below	1.75	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37362005	Drepane punctata	Spotted sicklefish	0.003	0.37	Below	0.56	Below	0.75	Below	Low	NE	No RR required	Low
37365003	Parachaetodon ocellatus	Sixspine butterflyfish	0.004	0.8	Below	1.21	Below	1.61	Below	Low	NE	No RR required	Low
37365015	Chelmon muelleri	Blackfin coralfish	0.002	0.8	Below	1.21	Below	1.61	Below	Low	NE	No RR required	Low
37365017	Chelmon rostratus	Copperband butterflyfish	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37372001	Pristotis obtusirostris	Gulf damselfish	0.005	0.75	Below	1.13	Below	1.51	Below	Low	NE	No RR required	Low
37372089	Neopomacentrus	Regal demoiselle	0.001	0.82	Below	1.23	Below	1.64	Below	Low	NE	No RR required	Low
37380002	Acanthocepola abbreviata	Yellowspotted bandfish	0.003	0.48	Below	0.72	Below	0.95	Below	Low	NE	No RR required	Low
37381002	Mugil cephalus	Sea mullet	<0.001	0.38	Below	0.57	Below	0.75	Below	Low	NE	No RR required	Low
37382001	Sphyraena pinguis	Striped barracuda	0.002	0.32	Below	0.48	Below	0.65	Below	Low	NE	No RR required	Low
37382004	Sphyraena jello	Pickhandle barracuda	0.001	0.42	Below	0.63	Below	0.83	Below	Low	NE	No RR required	Low
37382007	Sphyraena obtusata	Yellowtail barracuda	0.002	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37382008	Sphyraena barracuda	Great barracuda	0.002	0.4	Below	0.6	Below	0.8	Below	Low	NE	No RR required	Low
37383001	Polydactylus nigripinnis	Blackfin threadfin	0.002	0.82	Below	1.23	Below	1.65	Below	Low	NE	No RR required	Low
37383002	Polydactylus multiradiatus	Australian threadfin	0.005	0.82	Below	1.23	Below	1.65	Below	Low	NE	No RR required	Low
37383004	Eleutheronema	Blue threadfin	0.008	0.82	Below	1.23	Below	1.65	Below	Low	NE	No RR required	Low
37384004	Choerodon cephalotes	Purple tuskfish	0.008	0.39	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37384007	Bodianus perditio	Goldspot pigfish	<0.001	0.33	Below	0.49	Below	0.65	Below	Low	NE	No RR required	Low
37384008	Choerodon monostigma	Darkspot tuskfish	0.008	0.39	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37384009	Choerodon sugillatum	Wedgetail tuskfish	0.003	0.39	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37384014	Xiphocheilus typus	Bluetooth tuskfish	0.005	0.53	Below	0.79	Below	1.06	Below	Low	NE	No RR required	Low
37390005	Parapercis nebulosa	Pinkbanded grubfish	0.006	0.42	Below	0.64	Below	0.85	Below	Low	NE	No RR required	Low
37390006	Parapercis alboguttata	Bluenose grubfish	<0.001	0.42	Below	0.64	Below	0.85	Below	Low	NE	No RR required	Low
`	Parapercis multiplicata	Doublestitch grubfish	<0.001	0.42	Below	0.64	Below	1.85	Below	Low	NE	No RR required	Low
37400005	Pleuroscopus	Scaled stargazer	<0.001	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37400008	Uranoscopus cognatus	Yellowtail stargazer	<0.001	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37400024	Uranoscopus kaianus	Kai stargazer	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37408057	Nannosalarias nativitatus	Pygmy blenny	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37427005	Dactylopus dactylopus	Fingered dragonet	0.005	0.77	Below	1.16	Below	1.55	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37427008	Calliurichthys afilum	Lowfin stinkfish	0.002	0.77	Below	1.16	Below	1.55	Below	Low	NE	No RR required	Low
37428001	Yongeichthys nebulosus	Hairfin goby	0.001	1.26	Below	1.89	Below	2.52	Below	Low	NE	No RR required	Low
37428129	Eviota prasina	Rubble eviota	<0.001	1.19	Below	1.78	Below	2.38	Below	Low	NE	No RR required	Low
37428190	Mugilogobius platynotus	Flatback mangrovegoby	0.001	1.19	Below	1.78	Below	2.38	Below	Low	NE	No RR required	Low
37428208	Oxyurichthys auchenolepis	Scaly-nape tentacle goby	0.001	1.34	Below	2.01	Below	2.68	Below	Low	NE	No RR required	Low
37428250	Silhouettea evanida	Vanishing silhouette goby	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37428282	Valenciennea longipinnis	Ocellate glidergoby	<0.001	1.68	Below	2.52	Below	3.36	Below	Low	NE	No RR required	Low
37428344	Gnatholepis argus	A goby	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37437020	Acanthurus xanthopterus	Yellowmask surgeonfish	0.001	0.67	Below	1.01	Below	1.34	Below	Low	NE	No RR required	Low
37438001	Siganus fuscescens	Mottled spinefoot	0.005	1.02	Below	1.53	Below	2.04	Below	Low	NE	No RR required	Low
37438004	Siganus canaliculatus	White-spotted spinefoot	0.006	1.13	Below	1.69	Below	2.26	Below	Low	NE	No RR required	Low
37438007	Siganus argenteus	Streamlined spinefoot	<0.001	0.95	Below	1.43	Below	1.9	Below	Low	NE	No RR required	Low
37438008	Siganus corallinus	Blue-spotted spinefoot	<0.001	1.09	Below	1.63	Below	2.17	Below	Low	NE	No RR required	Low
37438011	Siganus puellus	Masked spinefoot	<0.001	1.09	Below	1.63	Below	2.17	Below	Low	NE	No RR required	Low
37440004	Trichiurus lepturus	Largehead hairtail	<0.001	0.45	Below	0.68	Below	0.91	Below	Low	NE	No RR required	Low
37441007	Scomberomorus	Spanish mackerel	0.001	0.41	Below	0.61	Below	0.82	Below	Low	NE	No RR required	Low
37441012	Rastrelliger kanagurta	Mouth mackerel	0.003	1.21	Below	1.81	Below	2.41	Below	Low	NE	No RR required	Low
37441014	Scomberomorus	School mackerel	0.001	0.53	Below	0.8	Below	1.07	Below	Low	NE	No RR required	Low
37441015	Scomberomorus munroi	Spotted mackerel	0.002	0.66	Below	1	Below	1.33	Below	Low	NE	No RR required	Low
37441018	Scomberomorus	Grey mackerel	0.001	0.65	Below	0.97	Below	1.3	Below	Low	NE	No RR required	Low
37441025	Grammatorcynus	Shark mackerel	0.001	0.58	Below	0.87	Below	1.16	Below	Low	NE	No RR required	Low
37445007	Psenopsis humerosa	Blackspot butterfish	<0.001	0.38	Below	0.57	Below	0.77	Below	Low	NE	No RR required	Low
37457001	Psettodes erumei	Australian halibut	0.001	0.48	Below	0.71	Below	0.95	Below	Low	NE	No RR required	Low
37460002	Pseudorhombus jenynsii	Smalltooth flounder	0.003	0.49	Below	0.74	Below	0.98	Below	Low	NE	No RR required	Low
37460009	Pseudorhombus arsius	Largetooth flounder	0.002	0.42	Below	0.64	Below	0.85	Below	Low	NE	No RR required	Low
37460010	Grammatobothus	Threespot flounder	0.004	0.57	Below	0.86	Below	1.15	Below	Low	NE	No RR required	Low
37460015	Pseudorhombus diplospilus	Bigtooth twinspot flounder	0.003	0.49	Below	0.74	Below	0.98	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37460045	Arnoglossus waitei	Waite's flounder	0.003	0.57	Below	0.86	Below	1.15	Below	Low	NE	No RR required	Low
37462001	Aesopia cornuta	Unicorn sole	<0.001	0.33	Below	0.5	Below	0.66	Below	Low	NE	No RR required	Low
37462003	Zebrias craticulus	Wicker-work Sole	0.003	0.38	Below	0.57	Below	0.75	Below	Low	NE	No RR required	Low
37462007	Brachirus muelleri	Tufted sole	0.003	0.38	Below	0.57	Below	0.75	Below	Low	NE	No RR required	Low
37462009	Pardachirus pavoninus	Peacock sole	0.005	0.33	Below	0.5	Below	0.66	Below	Low	NE	No RR required	Low
37463001	Paraplagusia bilineata	Lemon tongue sole	0.003	0.55	Below	0.83	Below	1.1	Below	Low	NE	No RR required	Low
37463002	Paraplagusia longirostris	Pinocchio tongue sole	0.003	0.55	Below	0.83	Below	1.1	Below	Low	NE	No RR required	Low
37463017	Cynoglossus ogilbyi	Ogilby's tongue sole	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37464001	Trixiphichthys weberi	Blacktip tripodfish	0.001	0.32	Below	0.48	Below	0.64	Below	Low	NE	No RR required	Low
37464002	Triacanthus biaculeatus	Short-nosed tripodfish	0.001	0.32	Below	0.48	Below	0.64	Below	Low	NE	No RR required	Low
37464007	Tripodichthys angustifrons	Yellowfin tripodfish	0.002	0.32	Below	0.48	Below	0.64	Below	Low	NE	No RR required	Low
37465009	Monacanthus chinensis	Fan-bellied leatherjacket	0.006	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37465010	Anacanthus barbatus	Bearded leatherjacket	0.003	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37465011	Abalistes stellaris	Starry triggerfish	0.001	0.68	Below	1.02	Below	1.37	Below	Low	NE	No RR required	Low
37465022	Aluterus monoceros	Grey leatherjacket	0.003	0.42	Below	0.62	Below	0.83	Below	Low	NE	No RR required	Low
37465024	Paramonacanthus	Threadfin leatherjacket	0.003	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37465027	Pseudobalistes fuscus	Yellowspotted triggerfish	0.006	0.83	Below	1.24	Below	1.66	Below	Low	NE	No RR required	Low
37465029	Pseudomonacanthus	Fourband leatherjacket	0.001	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37465031	Balistoides conspicillum	Clown triggerfish	0.006	0.08	Below	0.12	Below	0.17	Below	Low	NE	No RR required	Low
37465047	Balistapus undulatus	Orangestripe triggerfish	<0.001	0.68	Below	1.02	Below	1.37	Below	Low	NE	No RR required	Low
37465064	Paramonacanthus	Pigface leatherjacket	0.006	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37466015	Anoplocapros	Western smooth boxfish	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37467007	Lagocephalus sceleratus	Silver toadfish	0.003	0.4	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37467008	Lagocephalus inermis	Smooth golden toadfish	0.002	0.44	Below	0.67	Below	0.89	Below	Low	NE	No RR required	Low
37467009	Torquigener	Rusty-spotted toadfish	0.002	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37467010	Feroxodon multistriatus	Ferocious puffer	0.001	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37467012	Lagocephalus lunaris	Rough golden toadfish	0.003	0.4	Below	0.6	Below	0.81	Below	Low	NE	No RR required	Low
37467015	Chelonodon patoca	Milkspotted puffer	0.004	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F Lim	F Lim RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012- 2016) AND OTHER INFORM- ATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37467017	Lagocephalus spadiceus	Brownback toadfish	0.003	0.4	Below	0.6	Below	0.81	Below	Low	NE	No RR required	Low
37468001	Triodon macropterus	Threetooth puffer	<0.001		Below		Below		Below	Low	NE	No RR required	Low
37469004	Tragulichthys jaculiferus	Longspine burrfish	0.002	0.55	Below	0.82	Below	1.1	Below	Low	NE	No RR required	Low
37469007	Cyclichthys orbicularis	Shortspine porcupinefish	0.002	0.55	Below	0.82	Below	1.1	Below	Low	NE	No RR required	Low
37469008	Cyclichthys hardenbergi	Plain porcupinefish	0.004	0.55	Below	0.82	Below	1.1	Below	Low	NE	No RR required	Low
37469010	Lophodiodon calori	Four-bar porcupinefish	0.001	0.55	Below	0.82	Below	1.1	Below	Low	NE	No RR required	Low

Risk ranking guidelines:

Γ	1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
Γ	2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
	3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

2.5.5 bSAFE - Protected species

There were nine protected species considered in this SAFE (Figure 2.14a, b). All species were low risk.

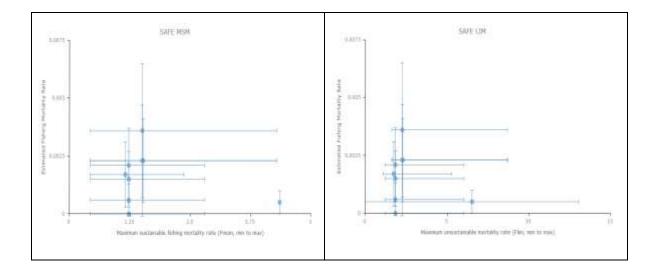


Figure 2.14 SAFE plot for protected species in the NPF Tiger Prawn sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right].

Table 2.33. bSAFE risk categories for protected species ecological component for F_MSM, F_Lim and F_crash. Note: a residual risk analysis (RR) was not examined for this sub-fishery, if the risk score was medium or low. Catch from Commonwealth logbook (Log) and observer (Obs) databases. NE: not entered. A: Alive; D: Dead.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPT- IBILITY	F MSM	F MSM RISK	F LIM	F LIM RISK	F CRASH	F CRASH RISK	F OVERALL RISK	CATCH (2012-2016) AND OTHER INFORMATION	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37282006	Trachyrhamphus bicoarctatus	Bentstick pipefish	0.002	1.16	Below	1.74	Below	2.32	Below	Low	NE	No RR Required	Low
37282007	Haliichthys taeniophorus	Leafy pipefish	0.001	1.23	Below	1.84	Below	2.46	Below	Low	NE	No RR Required	Low
37282030	Halicampus grayi	Mud pipefish	0.002	1.23	Below	1.84	Below	2.46	Below	Low	NE	No RR Required	Low
37282064	Filicampus tigris	Tiger pipefish	<0.001	1.23	Below	1.84	Below	2.46	Below	Low	NE	No RR Required	Low
37282080	Hippocampus zebra	Zebra seahorse	0.002	1.52	Below	2.29	Below	3.05	Below	Low	NE	No RR Required	Low
37282101	Trachyrhamphus longirostris	Straightstick pipefish	0.002	1.23	Below	1.84	Below	2.46	Below	Low	NE	No RR Required	Low
37282119	Hippocampus semispinosus	Halfspine seahorse	0.001	4.35	Below	6.53	Below	8.7	Below	Low	NE	No RR Required	Low
37282124	Hippocampus multispinus	Northern spiny seahorse	0.004	1.51	Below	2.26	Below	3.02	Below	Low	NE	No RR Required	Low
37282126	Hippocampus grandiceps	Bighead seahorse	0.002	1.51	Below	2.26	Below	3.02	Below	Low	NE	No RR Required	Low

2.6 Habitat Component

The Habitat component was not assessed at Level 2 as it is outside the project scope.

2.7 Community Component

The Community component was not assessed at Level 2 as it is outside the project scope.

2.8 Decision rules to move from Level 2 to Level 3 (Step 7)

For the PSA overall risk values, units that fall in the upper third (risk value > 3.18) and middle third (2.64 < risk value < 3.18) of the PSA plots are deemed to be at high and medium risk respectively. For the SAFE method, species that fall above the SAFE-MSM or limit reference point (SAFE-LIM) are considered to be at risk of overfishing (Table 2.31). Species identified from either method need to be the focus of further work, either through implementing a management response to address the risk to the vulnerable species or by further examination for risk within the particular ecological component at Level 3. PSA-units at low risk, (i.e. in the lower third), or at SAFE where units were below the overfishing limit point (i.e. SAFE-LIM) will be deemed not at risk from the sub-fishery and the assessment is concluded for these units.

The output from the Level 2 analysis will result in four options:

- The risk of a unit of analysis within a component (e.g. single species or habitat type) is not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken
- The risk of a unit is high and there are no planned management interventions that would remove this risk, therefore the reasons are documented and the assessment moves to Level 3.

At the conclusion of the Level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a Level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The

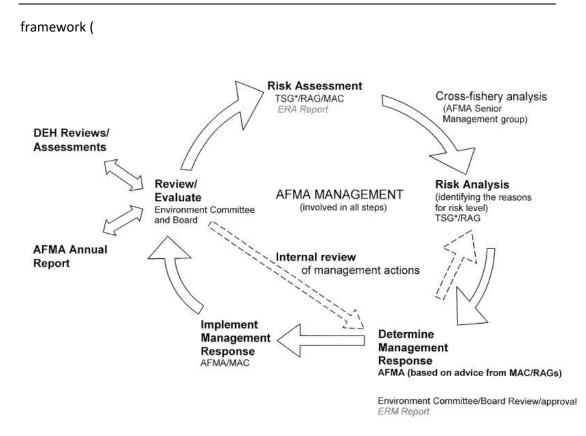


Figure 2.15) makes use of the existing AFMA management structures to enable the ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document, the ERM report, will be developed that outlines the reasons why species are at high risk and what actions the fishery will implement to respond to the risks.

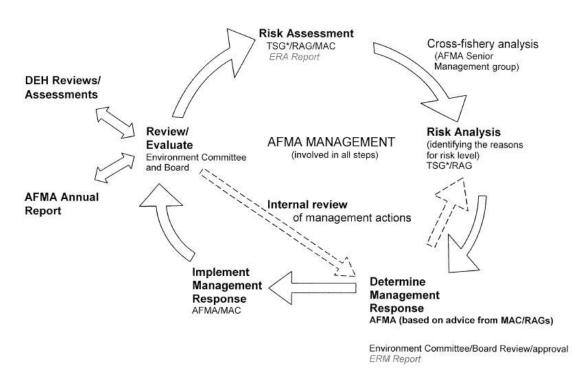


Figure 2.15. Schematic of the Ecological risk management cycle. TSG – Technical Support Group.

2.9 Extreme and high risk categorisation (Step 8): update with Residual Risk information

PSA

Byproduct species: No residual risk analysis was required.

<u>Bycatch species</u>: A residual risk analysis was performed on the 53 high risk species (from the 68 initially ranked as un-assessable), resulting in all 53 species reduced to medium risk due to the few interactions/capture within the assessment period. All 79 of the remaining 109 high risk species were reduced to medium risk following a residual risk analysis.

<u>Protected species</u>: Of the 41 protected species assessed in this PSA, seven were high risk (one marine bird, four marine reptiles, two chondrichthyans), 32 medium risk (12 marine birds, 17 marine reptiles, one marine mammal, two chondrichthyans) and two species low risk (two marine birds). A residual risk analysis was performed on the seven high risk species (one marine bird, four marine reptiles, two chondrichthyans) and the two medium risk sawfishes. Of the seven high risk species, two species remained high risk and one species was reduced to low risk (Crested tern *Thalasseus bergii*), following a residual risk analysis. The two remaining high-risk species were narrow sawfish (*Anoxypristis cuspidata*) and dwarf sawfish (*Pristis clavata*).

The overall risk score for the remaining two sawfish species increased from medium to a precautionary high risk following a residual risk analysis. These species were green sawfish (*Pristis zijsron*) and freshwater sawfish (*Pristis pristis*).

bSAFE

Byproduct species: No SAFE was performed for these species, as a PSA was conducted instead.

<u>Bycatch species</u>: No residual risk analysis was required, as all risks scores were classified as either medium (1) or low (342).

<u>Protected species</u>: All nine species were low risk following a bSAFE analysis, so no residual risk analysis was conducted.

3 General discussion and research implications

3.1 Level 1

In this case, 23 out of 32 possible activities were identified as occurring in this sub-fishery, including the six external scenarios. Thus, a total of 23 activity-component scenarios were considered at Level 1. This resulted in 114 (excluding the key commercial x direct impact by capture activity) scenarios (of 160 possible) to be developed and evaluated using the unit lists (Key commercial/secondary, byproduct/bycatch, protected species, habitats, communities).

3.2 Level 2

3.2.1 Species at risk

A Level 2 analysis was triggered for two ecological components: byproduct/bycatch species, protected species, as risk (consequence) scores were \geq 3 in the Level 1 SICA analysis.

Residual risk

As discussed elsewhere in this report (Section 1), the ERAEF methods are both hierarchically structured and precautionary. The Level 1 (SICA) analyses are used to identify potential hazards associated with fishing and which broad components of the ecological system they apply to. The Level 2 (PSA) analyses consider the direct impacts of fishing on individual species and habitats (rather than whole components), but the large numbers of species that need to be assessed and the nature of the information available for most species in the PSA analyses limits these analyses in several important respects. These include that some existing management measures are not directly accounted for, and that no direct account is taken of the level of mortality associated with fishing. Both these factors are considered in the ERAEF framework at Level 3, but the analyses reported here stop at Level 2. This means that the risk levels for species must be regarded as identifying potential rather than actual risk, and due to the precautionary assumptions made in the PSA analyses, there will be a tendency to overestimate absolute levels of risk from fishing.

In moving from ERA to ERM, AFMA will focus scarce resources on the highest priority species and habitats (those likely to be most at risk from fishing). To that end, and because Level 3 analyses are not yet available for most species, AFMA (with input from CSIRO and other stakeholders) has developed guidelines to assess "residual risk" for those species identified as being at high potential risk based on the PSA analyses. The residual risk guidelines will be applied on a species-by-species basis and include consideration of existing management measures not currently accounted for in the PSA analyses, as well as additional information about the levels of direct mortality. These guidelines will also provide a transparent process for including more precise or missing information into the PSA analysis as it becomes available.

CSIRO and AFMA will continue to work together to include the broad set of management arrangements in Level 2 analyses, and these methods will be incorporated in future developments of the ERAEF framework. CSIRO has also undertaken some preliminary Level 3 analyses for bycatch species for several fisheries, and these or similar methods will also form part of the overall ERAEF framework into the future.

References

- Australian Fisheries Management Authority. (2017). Guide to AFMA's Ecological Risk Management. 130 p.
- Blaber, S.J. M., Milton, D.A. (1994). Distribution of seabirds at sea in the Gulf of Carpentaria, Australia. *Marine and Freshwater Research* 45: 445-454.
- Buckworth, R., Ellis, N., Zhou, S., Pascoe, S., Deng, R., Hill, F., O'Brien, M. (2013). Comparison of TAC and current management for the white banana prawn fishery of the Northern Prawn Fishery. Final report to the Australian Fisheries Management Authority. Technical Report. CSIRO Marine and Atmospheric Research, Brisbane.
- Bustamante, R.H., Dichmont, C.M., Ellis, N., Griffiths, S., Rochester, W.A., Burford, M.A.,
 Rothlisberg, P.C., Dell, Q., Tonks, M., Lozano-Montes, H., Deng, R., Wassenberg, T., Okey,
 T.A., Revill, A., van der Velde, T., Moeseneder, C., Cheers, S., Donovan, A., Taranto, T.,
 Salini, J., Fry, G., Tickell, S., Pascual, R., Smith, F., Morello, E. (2011). Effects of trawling
 on the benthos and biodiversity: Development and delivery of a Spatially-explicit
 Management Framework for the Northern Prawn Fishery. Final report to the project
 FRDC 2005/050. CSIRO Marine and Atmospheric Research, Cleveland, 382 p.

Cogger, H.G. (1992). Reptiles and Amphibians of Australia. Reed Sydney.

- D'Anastasi, B.R. (2010). Conservation genetics of the critically endangered narrow sawfish (*Anoxypristis cuspidata*) in northern Australia. James Cook University.
- Dichmont, C.M., Die, D., Punt, A.E., Venables, W., Bishop, J., Deng, A., Dell, Q. (2001). Risk Analysis and Sustainability Indicators for Prawn Stocks in the Northern Prawn Fishery. FRDC 98/109.
- Dichmont, C.M, Jarrett, A., Hill, F., Brown, M. (2014). Harvest Strategy for the Northern Prawn Fishery under Input Controls. AFMA.
- Dunning, M., McKinnon, S., Lu, C.C., Yeatman, J., Cameron, D. (1994). Demersal cephalopods of the Gulf of Carpentaria, Australia. *Australian Journal of Marine and Freshwater Research* 45, 351-374.
- EPBC Act List of Threatened Fauna. http://www.environment.gov.au/cgibin/sprat/public/publicthreatenedlist.pl
- Fry, G., Milton, D., Wassenberg, T.J. (2001). The reproductive biology and diet of sea snake bycatch of prawn trawling in Northern Australia: Characteristics important for assessing the impacts on populations. *Pacific Conservation Biology*. 7: 55-73. 10.1071/PC010055.
- Fry, G., Laird, A., Lawrence, E., Miller, M., Tonks, M. (2018). Monitoring interactions with bycatch species using crew-member observer data collected in the Northern Prawn Fishery: 2014 – 2016. Final Report to AFMA; R2015/0812. June 2018. CSIRO, Australia. 236 p.

- Griffiths, S., Kenyon, R., Bulman, C., Dowdney, J., Williams, A., Sporcic, M., Fuller, M. (2007).
 Ecological Risk Assessment for the Effects of Fishing: Report for the Northern Prawn
 Fishery. Report for the Australian Fisheries Management Authority, Canberra. 327 p.
- Harris A.N., Poiner, I.R. (1990). By-catch of the Prawn Fishery of Torres Strait; Composition and Partitioning of the discards into components that float of sink. *Marine and Freshwater Research* 41: 37-52.
- Haywood M., Hill B., Donovan A., Rochester W., Ellis N., Welna A., Gordon S., Cheers S., Forcey K., Mcleod I., Moeseneder C., Smith G., Manson F., Wassenberg T., Thomas S., Kuhnert P., Laslett G., Burridge C., Thomas S. (2005). Quantifying the effects of trawling on seabed fauna in the Northern Prawn Fishery. Final Report on FRDC Project 2002/102. CSIRO, Cleveland. 462 p.
- Hill, B.H., Wassenberg, T.J. (1990). Fate of discards from Prawn Trawlers in Torres Strait. Australian Journal of Marine and Freshwater Research 41(1): 53 – 64.
- Hobday, A.J., Bulman, C., Williams, A., Fuller, M. (2011). Ecological risk assessment for effects of fishing on habitats and communities. FRDC Project 2009/029, Canberra.
- Hutton, T., Deng, R.A., Plaganyi, E., Pascoe, S., Miller, M., Upston, J., Punt, A., Moeseneder, C., Kompas, T., Sterling, D., and E. Lawrence (2018). Northern Prawn Fishery Assessments 2015-18. Final Report. Report to the Australian Fisheries Management Authority, Project 2015/0811, September 2018. CSIRO. Brisbane. 261 p.
- Jefferson, T.A., Webber, M.A., Pitman, R.L. (2015). *Marine mammals of the world: a comprehensive guide to their identification*. Second edition. London: Academic Press: London.
- Laird, A. (2018). Northern Prawn Fishery Data Summary 2017. NPF Industry Pty Ltd, Australia. 66 p.
- Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., and White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40m depth). National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.
- Lukoschek, V., Keogh, J. (2006). Molecular phylogeny of sea snakes reveals a rapidly diverged adaptive radiation. *Biological Journal of the Linnean Society*. 89: 523 539. 10.1111/j.1095-8312.2006.00691.x.
- Menkhorst, P., Rogers, D. I., Clarke, R., Davies, J. N., Marsack, P., Franklin, K. (2017). *The Australian bird guide*, Original print edition, Clayton South, VIC. CSIRO Publishing. 566 p.
- Milton, D.A., Zhou, S., Fry, G.C. Dell, Q. (2008). Risk assessment and mitigation for sea snakes caught in the Northern Prawn Fishery. Final report on FRDC Project 2005/051. CSIRO Cleveland, 123 p.
- Milton, D.A., Fry, G.C., Kuhnert P., Tonks, M., Zhou, S., Zhu, M. (2010). Assessing data poor resources: developing a management strategy for byproduct species in the Northern Prawn Fishery. Final report on FRDC Project 2006/008. CSIRO Marine and Atmospheric Research. 218 p.

Patterson, H, Noriega R, Georgeson, L, Larcombe, J. Curtotti, R. (2017). Fishery status reports 2017, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra. CC BY 4.0. Available at:

www.agriculture.gov.au/abares/publications/display?url=http://143.188.17.20/anrdl/D AFFService/display.php?fid=pb_fsr17d9abm_20170929.xml.

- Peverell, S.C. (2009). Sawfish (Pristidae) of the Gulf of Carpentaria, Queensland, Australia. MSc Thesis, James Cook University, Townsville.
- Pitcher, C.R., Ellis, N., Althaus, F., Williams, A., McLeod, I. (2015). Predicting benthic impacts & recovery to support biodiversity management in the South-east Marine Region, in: Hedge, N.J.B.P. (Ed.), Marine Biodiversity Hub, National Environmental Research
 Program, Final report 2011–2015. Report to Department of the Environment. Canberra, Australia.
- Pitcher, C.R., Williams, A., Ellis, N., Althaus, F., McLeod, I., Bustamante, R., Kenyon, R., Fuller, M. (2016). Implications of current spatial management measures for AFMA ERAs for habitats. FRDC Project No 2014/204. CSIRO Oceans and Atmosphere, Brisbane, Qld, 50 p.
- Pitcher, C.R., Rochester, W., Dunning, M., Courtney, T., Broadhurst, M., Noell, C., Tanner, J., Kangas, M., Newman, S., Semmens, J., Rigby, C., Saunders T., Martin, J., Lussier, W. (2018). Putting potential environmental risk of Australia's trawl fisheries in landscape perspective: exposure of seabed assemblages to trawling, and inclusion in closures and reserves — FRDC Project No 2016-039. CSIRO Oceans and Atmosphere, Brisbane. 71 p.
- Poiner I., Glaister J., Pitcher R., Burridge C., Wassenberg T., Gribble N., Hill B., Blaber S., Milton D., Brewer D., Ellis N. (1998). Environmental effects of prawn trawling in the Far Northern Section of the Great Barrier Reef: 1991-1996. Final Report to the Great Barrier Reef Marine Park Authority and the Fisheries Research and Development Corporation. 745 p.
- Reid, T.A., Hindell, M.A., Eades, D.W., Newman, M. (2002). Seabird Atlas of South-Eastern Australian Waters. Birds Australia Monograph 4.
- Stobutzki, I.C., Miller, M.J., Jones, P., Salini, J.P. (2001). Bycatch diversity and variation in a tropical Australian penaeid fishery: the implications for monitoring. Fisheries Research 53: 283–301.
- Tobin, A. J., Simpfendorfer, C. A., Mapleston A., Currey, L., Harry, A. J., Welch, D. J., Ballagh, A.
 C., Chin, A., Szczenski, N., Schlaff, A., White, J. (2010). A quantitative ecological risk assessment of sharks and finfish of Great Barrier Reef World Heritage Area inshore waters: A tool for fisheries and marine park managers: identifying species at risk and potential mitigation strategies. In: Marine and Tropical Sciences Research Facility. Cairns.
- Wassenberg T.J., Hill, B.J. (1990). Partitioning of material discarded from Prawn Trawlers in Morton Bay. *Marine and Freshwater Research* 41: 27-36.
- Williams, A., Gardner, C., Althaus, F., Barker, B.A., Mills, D. (2009). Understanding shelf-break habitat for sustainable management of fisheries with spatial overlap. Final report to the FRDC, project no. 2004/066. Hobart, Australia, 254 p.

- Williams, A., Dunstan, P.K., Althaus, F., Barker, B.A., McEnnulty, F., Gowlett-Holmes, K., Keith, G. (2010). Characterising the seabed biodiversity and habitats of the deep continental shelf and upper slope off the Kimberley coast, NW Australia. Final report to Woodside Energy Ltd. 30/6/2010. CSIRO Wealth from Oceans, Hobart, Australia. 94 p.
- Williams, A., Daley, R., Fuller, M., Knuckey, I. (2011). Supporting sustainable fishery development in the GAB with interpreted multi-scale seabed maps based on fishing industry knowledge and scientific survey data in: FRDC (Ed.), FRDC 2006/036. CSIRO, Hobart. 178 p.
- Woinarski, J. C. Z., Burbidge, A. A., Harrison, P.L., Milne, D.J. (2014). *The action plan for Australian mammals 2012*, Collingwood, VIC CSIRO Publishing. 1038 p.
- Zhou, S. (2011). Sustainability assessment of fish species potentially impacted in the Northern Prawn Fishery: 2007-2009. Report to the Australia Fisheries Management Authority, Canberra, Australia. February 2011. 31 p.

Glossary of Terms

Assemblage	A subset of the species in the community that can be easily recognized and studied. For example, the set of sharks and rays in a community is the Chondricythian assemblage.
Attribute	A general term for a set of properties relating to the productivity or susceptibility of a particular unit of analysis.
Bycatch species	A non-target species captured in a fishery, usually of low value and often discarded (see also Byproduct).
Byproduct species	A non-target species captured in a fishery, but it may have value to the fisher and be retained for sale.
Community	A complete set of interacting species.
Component	A major area of relevance to fisheries with regard to ecological risk assessment (e.g. target species, bycatch and byproduct species, threatened and endangered species, habitats, and communities).
Component model	A conceptual description of the impacts of fishing activities (hazards) on components and sub-components, linked through the processes and resources that determine the level of a component.
Consequence	The effect of an activity on achieving the operational objective for a sub-component.
Core objective	The overall aim of management for a component.
End point	A term used in risk assessment to denote the object of the assessment; equivalent to component or sub-component in ERAEF
Ecosystem	The spatially explicit association of abiotic and biotic elements within which there is a flow of resources, such as nutrients, biomass or energy (Crooks, 2002).
External factor	Factors other than fishing that affect achievement of operational objectives for components and sub-components.
Fishery method	A technique or set of equipment used to harvest fish in a fishery (e.g. long-lining, purse-seining, trawling).
Fishery	A related set of fish harvesting activities regulated by an authority (e.g. Southern and Eastern Scalefish and Shark Fishery).
F_MSM	Maximum sustainable fishing mortality
F_Lim	Limit fishing mortality which is half of the maximum sustainable fishing mortality
F_Crash	Minimum unsustainable fishing mortality rate that may lead to population extinction in the longer term
Habitat	The place where fauna or flora complete all or a portion of their life cycle.
Hazard identification	The identification of activities (hazards) that may impact the components of interest.

Indicator	Used to monitor the effect of an activity on a sub-component. An indicator is something that can be measured, such as biomass or abundance.
Likelihood	The chance that a sub-component will be affected by an activity.
Operational objective	A measurable objective for a component or sub-component (typically expressed as "the level of X does not fall outside acceptable bounds")
Precautionary approach	The approach whereby, if there is uncertainty about the outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or community).
PSA	Productivity-Susceptibility Analysis. Used at Level 2 in the ERAEF methodology.
Scoping	A general step in an ERA or the first step in the ERAEF involving the identification of the fishery history, management, methods, scope and activities.
SICA	Scale, Impact, Consequence Analysis. Used at Level 1 in the ERAEF methodology.
Sub-component	A more detailed aspect of a component. For example, within the target species component, the sub-components include the population size, geographic range, and the age/size/sex structure.
Sub-fishery	A subdivision of the fishery on the basis of the gear or areal extent of the fishery. Ecological risk is assessed separately for each sub-fishery within a fishery.
Sustainability	Ability to be maintained indefinitely
Target species	A species or group of species whose capture is the goal of a fishery, sub-fishery, or fishing operation.
Trophic position	Location of an individual organism or species within a foodweb.
Unit of analysis	The entities for which attributes are scored in the Level 2 analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the units are "assemblages".

CONTACT US

- t 1300 363 400 +61 3 9545 2176
- e csiroenquiries@csiro.au
- w www.csiro.au

AT CSIRO, WE DO THE EXTRAORDINARY EVERY DAY

We innovate for tomorrow and help improve today – for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation. CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

Insert Business Unit name

- Insert contact name
- t +61 0 0000 0000
- e first.last@csiro.auw www.csiro.au/businessunit

Insert Business Unit name

- Insert contact name t +61 0 0000 0000
- e first.last@csiro.au
- w www.csiro.au/businessunit

Insert Business Unit name

- Insert contact name
- t +61 0 0000 0000
- e first.last@csiro.au
- $\boldsymbol{w} \text{ www.csiro.au/businessunit}$