

Royal Museum for Central Africa (RMCA Tervuren)

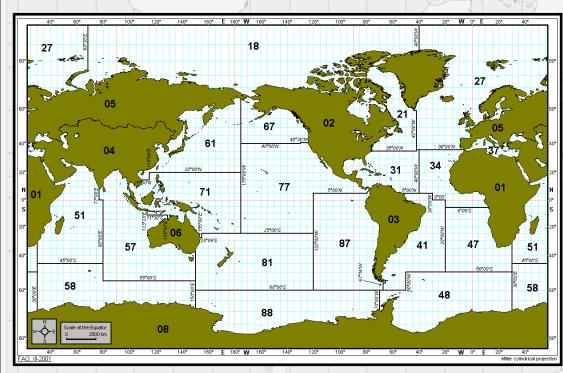
Fish distribution

FAO Areas

The FAO Areas are defined by the FAO to record fisheries catches.

01. Africa

02. North America


03. South America

04. Asia

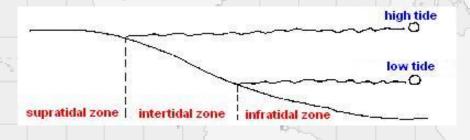
05. Europe / Russia (07)

06. Australia

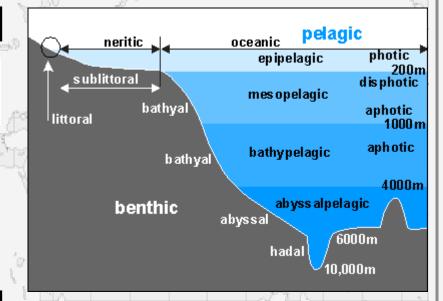
08. Antarctica

- 18. Arctic Sea
- 21. Atlantic Ocean, northwest
- 27. Atlantic Ocean, northeast
- 31. Atlantic Ocean, western central
- 34. Atlantic Ocean, eastern central
- 37. Mediterranean and Black Sea
- 41. Atlantic Ocean, southwest
- 47. Atlantic Ocean, southeast
- 48. Atlantic Ocean, Antarctic
- 51. Indian Ocean, western
- 57. Indian Ocean, eastern
- 58. Indian Ocean, Antarctic
- 61. Pacific Ocean, northwest
- 67. Pacific Ocean, northeast
- 74 Pacific Ocean, northodot
- 71. Pacific Ocean, western central
- 77. Pacific Ocean, eastern central
- 81. Pacific Ocean, southwest
- 87. Pacific Ocean, southeast
- 88. Pacific Ocean, Antarctic

Royal Museum for Central Africa (RMCA Tervuren)



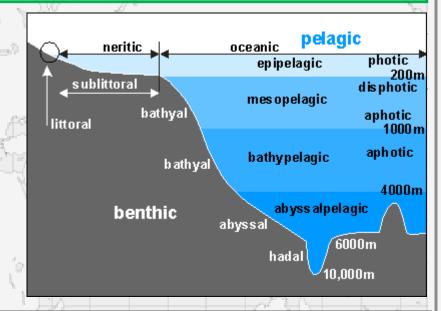
Zones of the oceanic region


1. Littoral zone.

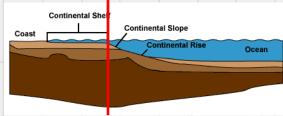
The littoral zone contains the near-shore waters, delimited by the tide marks of low and high water. It is the region most closely to the coast.

2. Sublittoral zone.

The sublittoral zone extends from the lower edge of the intertidal zone to the outer edge of the continental shelf.



Zones of the oceanic region



3. Neritic zone.

The neritic zone is the shallow pelagic zone over the continental shelf. 4. Oceanic zone.

The oceanic zone is the open ocean beyond the continental shelf.

Royal Museum for Central Africa (RMCA Tervuren)

Zones of the oceanic region

5. Pelagic zone.

The pelagic zone includes those waters further from the land, basically the open sea.

- a. The <u>epipelagic zone</u> is the uppermost normally photic layer of the ocean between the ocean surface and the thermocline (0 200m).
- b. The <u>mesopelagic zone</u> is a middle layer of the ocean, characterized by dim light and steep temperature gradients (200 1000m).
- c. The <u>bathypelagic zone</u> is a middle layer of the ocean where only the faintest blue/green light penetrates (1000 4000m).

6. Abyssal zone.

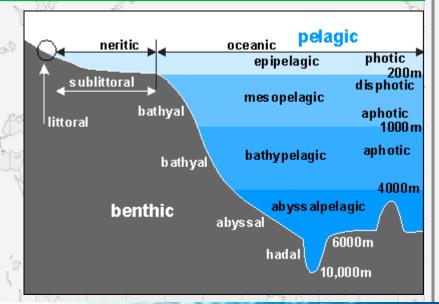
- a. The <u>abyssopelagic zone</u> is the part of the oceanic zone between 4000 and 6000m.
- b. The <u>hadalpelagic zone</u> is the part of the oceanic zone deeper than 6000m.

uren) |

ASTIGATERVUREN

oceanic neritic photic epipelagic 200m sublittoral d is photic mes opelagic bathyal aphotic littoral 1000 m aphotic bathypelagic b ath yal³ 4000m abyss alpelagic benthic abyssal 6000m hadal 10.000m

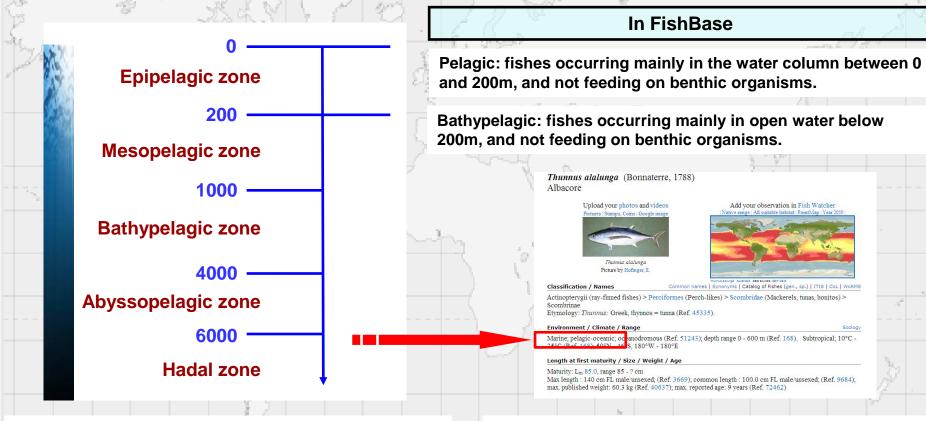
pelagic


FishBase and Fish Taxonomy Training
Session 2017

Royal Museum for Central Africa (RMCA Tervuren)

Zones of the oceanic region

7. Benthic zone.


The benthic zone is that part of the ocean below the pelagic zone, but it does not include the deepest parts (below 400m). It comprises the bottom, the sediment surface and some sub-surface layers.

Zones of the oceanic region

Benthopelagic: fishes living and/or feeding on or near the bottom, as well as in midwater, between 0 and 200m.

Demersal: fishes living and/or feeding on or near the bottom, between 0 and 200m.

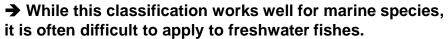
Royal Museum for Central Africa (RMCA Tervuren)

Reef-associated: fishes living and/or feeding on or near reefs, between 0 and 200m.

Bathydemersal: fishes living and/or feeding on or near the bottom, below 200m.

Zones of the oceanic region

Pelagic


Benthopelagic

Reef-associated

Bathypelagic

Demersal

Bathydemersal

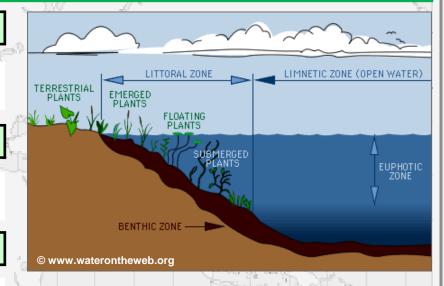
Freshwater habitats

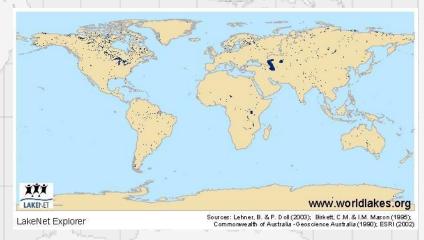
Zones of lakes

1. Littoral zone.

The littoral zone is the zone close to the shore, and where light reaches the bottom.

2. Limnetic zone.

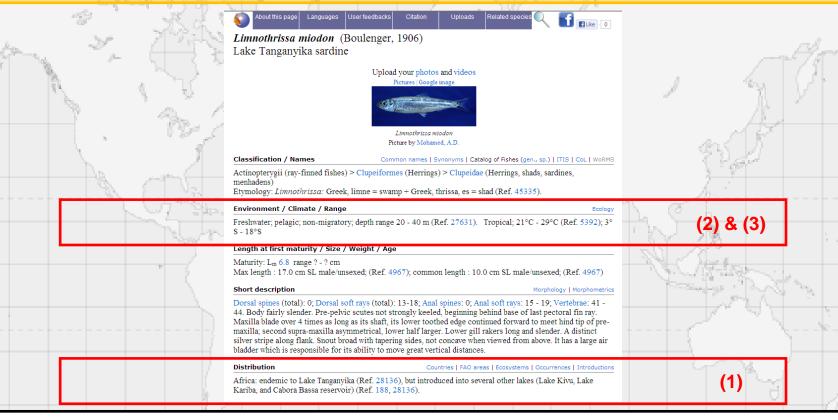

The limnetic zone is the layer of open water where photosynthesis can occur.


3. Profundal zone.

The profundal zone is a deep zone below the range of effective light penetration.

4. Benthic zone.

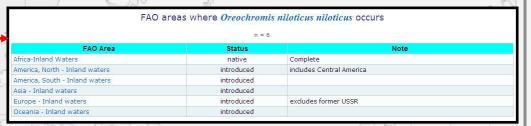
The benthic zone concerns the bottom of the lake.

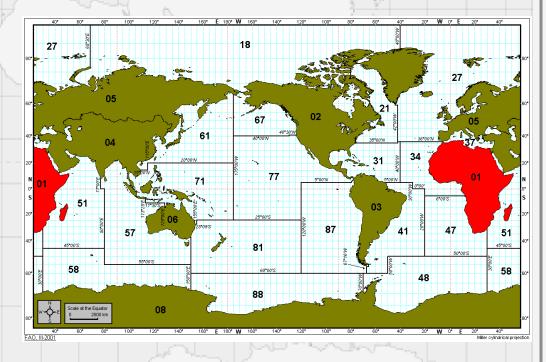


Species summary page

The 'species summary page' contains information on:

- (1) distribution,
- (2) environment [aquatic biome, habitat zone, migration pattern, depth],
- (3) climate [climate zone, temperatures].


Royal Museum for Central Africa (RMCA Tervuren)



FAO areas

Countries FAO areas	Common names	Age/Size	References	Collaborators
Ecosystems	Metabolism	Length-weight	Aquaculture profile	Stamps, Coins
Occurrences	Predators	Length-length	Strains	Sounds
Introductions	Ecotoxicology	Length-frequencies	Genetics	Ciguatera
Stocks	Reproduction	Morphometrics	Allele frequencies	Speed
Ecology	Maturity	Morphology	Heritability	Swim. type
Diet	Spawning	Larvae	Diseases	Gill area
Food items	Fecundity	Larval dynamics	Processing	Otoliths
Food consumption	Eggs	Recruitment	Mass conversion	Brains
Ration	Egg development	Abundance	Vision	

Royal Museum for Central Africa (RMCA Tervuren)

Country tables

Countries	where <i>Pantodon</i>	<i>buchholzi</i> is found	
Point map (with point info)			n = 9
Country	ABB ¢	Occurrence +	Main Ref. 💠
Benin	BEN	native	81272
Cameroon	CMR	native	81633
Chad	TCD	questionable	81633
Congo Dem Rep	COD	native	45441
Congo Rep	COG	native	44840
Gabon	GAB	native	81633
Nigeria	NGA	native	81272
Sierra Leone	SLE	native	81272
Zimbabwe	ZWE	misidentification	41543

1. Native.

If the species exists in that area in free-living and self-maintaining populations and has established itself there independent of men.

2. Endemic.

If the species is native and restricted to that particular area.

3. Extirpated.

If the species is extinct in that particular area, but surviving in others.

4. Introduced.

If the species is not native in that area, but brought in through human activities.

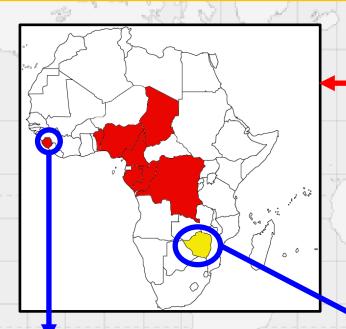
5. Reintroduced.

If the species is brought into that particular area after initial introductions failed or after the extinction of the native species.

6. Questionable.

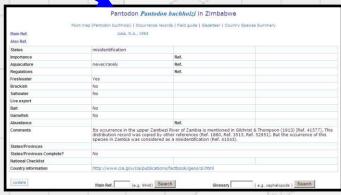
If the occurrence in that particular area needs confirmation.

7. Misidentification.


This is for records that are known to be wrong.

Royal Museum for Central Africa (RMCA Tervuren)

Country tables



Countries	where <i>Pantodon</i>	<i>buchholzi</i> is found	
Point map (with point info)			n = 9
Country	ABB \$	Occurrence \$	Main Ref. 💠
Benin	BEN	native	81272
Cameroon	CMR	native	81633
Chad	TCD	questionable	81633
Congo Dem Rep	COD	native	45441
Congo Rep	COG	native	44840
Gabon	GAB	native	81633
Nigeria	NGA	native	81272
Sierra Leone	SLE	native	81272
Zimbabwe	ZWE	misidentification	41543

<u>Sierra Leona:</u> Teugels (1990) assumes there is a relict population of *Pantodon buchholzi* in Sierra Leone, because of its specific characters.

<u>Zimbabwe:</u> Jubb (1963) has considered the occurrence of this species in Zimbabwe as a misidentification.

Royal Museum for Central Africa (RMCA Tervuren)

Ecosystem tables

More information

Countries Common names
FAO areas Synonyms
Ecosystems Metabolism
Occurrences Predators
Introductions Ecotoxicology

onsumption

Eco1

Diet

Food Food

Malebo Pool

Metabolism
Predators
Ecotoxicology
Reproduction
Maturity
Spawning
Fecundity
Foos

Egg development

Age/Size
Growth
Length-weight
Length-length
Length-frequencies
Morphometrics
Morphology

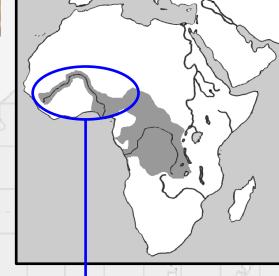
Larvae Larval dynamics Recruitment Abundance References Aquaculture Aquaculture profile Strains

Strains Sounds
Genetics Ciguatera
Allele frequencies Speed
Heritability Swim. type
Diseases Gill area
Processing Otoliths
Mass conversion Brains
Vision

Collaborators

Stamps, Coins

Pictures



Ecosystems where Pantodon buchholzi occurs

n = 23

Ecosystem \$	Type \$	Status \$	Ref. \$
Ethiopian	Zoogeographic realm	endemic	3515
Aruwimi River	River (basin)	native	41590
Benue River	River (basin)	native	81272
Congo	River (basin)	native	3515
Cross	River (basin)	native	81272
Itimbiri River	River (basin)	native	41590
Middle Congo	River (basin)	native	1010
Niger	River (basin)	native	81272
Ogowe	River (hasin)	native	81633
Ogun	River (basin)	native	3076
Osse	River (basin)	native	81272
Ouémé	River (basin)	native	81272
Pampana	River (basin)	native	81272
Rio del Rey	River (basin)	native	81633
Ruki River Region	River (basin)	native	41580
Sangha	River (basin)	native	46901
Ubangui	River (basin)	native	45441
Uélé	River (basin)	native	53267
Wouri	River (basin)	native	81633
Zambezi	River (basin)	misidentification	
Chad/Chari River	Lake	native	

native native

Reference no. Paugy, D., K. Traoré and P.S. Diouf, 1994

Ecosystem Niger

Status native

Abundance
Lifestage adults

Regional database

Remarks Known from the Lower Niger (Ref. 3515, Ref. 13331). Also Ref. 2921.

Royal Museum for Central Africa (RMCA Tervuren)

Lake

Introductions tables

More information

Countries FAO areas Ecosystems

Occurrences Pre
Introductions Ec

Ecology
Diet
Food tems
Food consumption

Common names Age/S Synonyms Grow Metabolism Leng Predators Leng Ecotoxicology Leng Reproduction Morr

Maturity Spawning Fecundity Eggs Egg development Age/Size Growth Length-weight Length-length Length-frequencies Morphometrics Morphology

Morphology Larvae Larval dynamics Recruitment Abundance References Aquaculture Aquaculture profile Strains Genetics Allele frequencies

Heritability
Diseases
Processing
Mass conversion

Collaborators Pictures Stamps, Coins Sounds

Ciguatera

Speed Swim. type Gill area Otoliths Brains © Solomon R. David

Introductions of Heterotis niloticus

[n = 12]

Year / Period	From	То	Established	Ecol. effects
unknown	Unknown	Togo	established	
1950	Cameroon	Congo	established	some
1950	Sudan	Congo	established	some
1950	Congo	Zaire	established	
1955	Cameroon	Gabon	established	unknown
1955	Chad	South Cameroon	unknown	
1956	Cameroon (Chari river)	Bangui, Central African Republic	established	
1958	Benue River, Cameroon	Bouaké, Côte d'Ivoire	unknown	
1960	Black Volta River	Aboisso, Côte d'Ivoire	unknown	
1963	Ubangui River	Congo River	established	
1963	Cameroon	Madagascar	established	
1989	Unknown	Philippines	unknown	

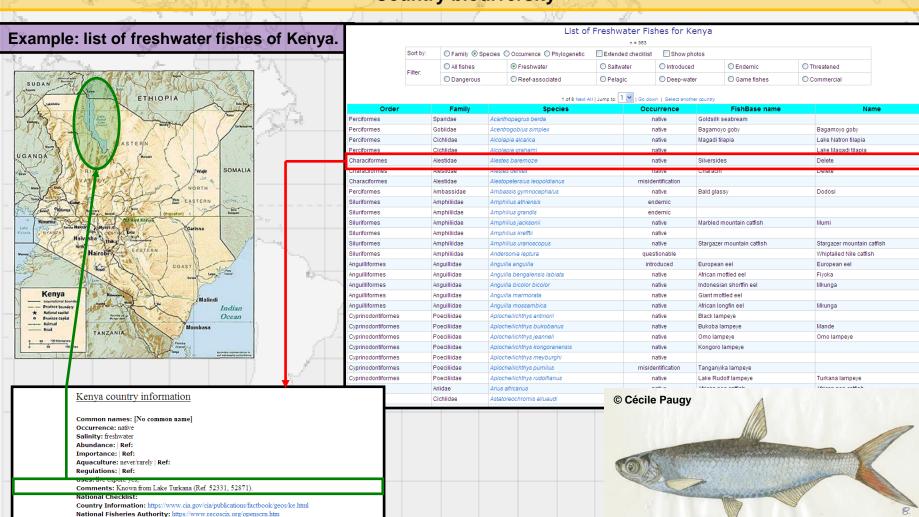
International Introductions of Heterotis niloticus
Introductions as compiled by FAO

Main Ref:	Depierre, D. and J. Vivien 1977
To:	South Cameroon
FAO area:	Africa-Inland Waters
From:	Chad
FAO area:	Africa-Inland Waters
Year:	1955
Range:	=
Period:	1950-1974
Established in the wild:	unknown,
Established in aquaculture:	-
Significant ecological interactions:	=
Significant socio-economic effects:	-
Introduced by:	
Reason:	aquaculture
Other reason:	
Comments:	Introduced for the development of aquaculture in South Cameroon (Melen, Yaounde, Bertoua, Ngaoundere) (Ref. 50415), originating from Fort-Lamy (Ref. 50153). Also Ref. 1978. Ref. Deplerre, D. and J. Vivien, 1977

Royal Museum for Central Africa (RMCA Tervuren)

Country biodiversity

Information by Country / Island Biodiversity Uses Tools Miscellaneous All fishes C Commercial C Identification Country info C Identification keys C FAO profile C Freshwater Aguaculture C ReefBase profile C Marine C Aquarium trade Field guide C Occurrences C Treaties & Conv. C Introduced C Invasiveness C Endemic C Game fishes Type localities C Collaborators FAO aquaquiture C References C Fish stamps C Threatened C Dangerous C FAO catches C Missing data C Common names C Missing photos C ICES catch C Reef-associated C Public aquariums Pelagio C SAUP catch C Ecopath data MPA database C Fish Loss C Species Ecology Matrix C Deep-water C Spawning aggregation C Checklist (extended)

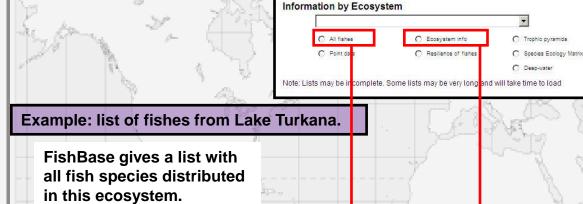

Royal Museum for Central Africa (RMCA Tervuren)

Note: Lists may be incomplete. Some lists may be very long and will take time to load.

Country biodiversity

Royal Museum for Central Africa (RMCA Tervuren)

Occurrences: Occurrences Point map


National Database:

Main Ref: Seegers, L., L. De Vos and D.O. Okeyo, 2003

Ecosystem biodiversity

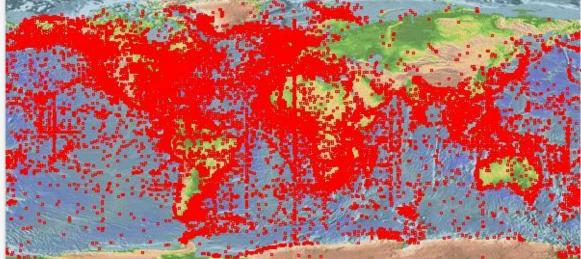
Species	o Name o	Family	Habitat	Length (cm) (Trophic Level	• Status
Alestes baremoze	Silversides	Alestidae	benthopelagic	43.0 TL	3.0	native
Alestes dentex	Characin	Alestidae	pelagic	55.0 TL	2.9	native
Brycinus ferex	Large-toothed Lake Turkana robber	Alestidae	pelagic	9.9 TL	2.9	endemic
Brycinus macrolepidotus	True big-scale tetra	Alestidae	pelagic	64.7 TL	2.3	native
Brycinus minutus	Dwarf Lake Turkana robber	Alestidae	pelagic	4.0 TL	3.0	endemic
Brycinus nurse	Nurse tetra	Alestidae	pelagic	25.0 TL	2.4	native
Hydrocynus forskahlii	Elongate tigerfish	Alestidae	pelagic	95.2 TL	4.0	native
Hydrocynus vittatus	Tiger fish	Alestidae	demersal	116.6 TL	4.4	native
Micralestes elongatus	Elongated Turkana robber	Alestidae	pelagic	6.0 TL	3.3	native
Andersonia leptura		Amphiliidae	demersal	50.0 TL	3.1	native
Heterotis niloticus	African bonytongue	Arapaimidae	pelagic	122.0 TL	2.5	native
Bagrus bajad	Bayad	Bagridae	demersal	124.3 TL	4.0	native
Bagrus docmak	Semutundu	Bagridae	benthopelagic	70.5 TL	4.1	native
Haplochromis macconnell		Cichlidae	benthopelagic	9.4 TL	3.3	native
Haplochromis rudolfianus		Cichlidae	benthopelagic	7.1 TL	3.2	native
Haplochromis turkanae	Turkana haplo	Cichlidae	benthopelagic	10.5 TL	3.5	native
Hemichromis exsul	Turkana jewel cichlid	Cichlidae	benthopelagic	12.2 TL	3.4	endemic
Hemichromis letourneuxi	Jewel fish	Cichlidae	benthopelagic	14.5 TL	3.0	native
Oreochromis niloticus niloticus	Nile tilapia	Cichlidae	benthopelagic	73.2 TL	2.0	native
Oreochromis niloticus vulcani		Cichlidae	benthopelagic	31.2 TL	2.2	native
Sarotherodon galilaeus galilaeus	Mango tilapia	Cichlidae	demersal	41.0 TL	2.0	native
Tilapia zillir	Redbelly tilapia	Cichlidae	benthopelagic	48.8 TL	2.0	introduced
Citharinus citharus citharus	Moon fish	Citharinidae	demersal	70.8 TL	2.0	native
Citharinus citharus intermedius		Citharinidae	pelagic	70.8 TL	2.1	endemic
Clarias gariepinus	North African catfish	Clariidae	benthopelagic	170.0 TL	3.2	native
Hatembranchus (annifilis	Campa	Clasiidae	domoroal	183 O TI	2.7	making.

Royal Museum for Central Africa (RMCA Tervuren)

C Ecopath parameters

Identification

FishBase also gives some general information about the ecosystem [locality, depth,...].



FishBase and Fish Taxonomy Training
Session 2017

© World resources Institute

Occurrences - fish collections

FishBase contains records and data of more than 40 fish collections of different musea all over the world [including MRAC, BMNH, AMNH, SAIAB].

Royal Museum for Central Africa (RMCA Tervuren)

Occurrences - species

Occurrence Record of Barbus somereni Main Ref . Anonymous, 1997 (Ref. 12818) Museum: MRAC Name used Barbus somerini Sex: Catalog No. : MRAC P 92604-92607 Picture : Locality: riv. Nvakagunda Station: Gazetteer: 1953 Date: 19/02/1953 Year : Salinity: Water depth Altitude : Temperature: °C Coordinates : Accuracy : In decimal: -2.78 , 29.07 Geog. area: 108 - Burundi Length: Range: -Collector: Identifier: Matthes H. Marlier G. Gear: Back to Search Barbus somereni : Occurrence Records Sort by @ Country C Locality C Year C Denth C Source MRAC P 46952 46962 David L 1936 MRAC P 46980-David L MRAC P 46997 Lestrade A David L MRAC P 47000-47002 Poll M. Poll M. MRAC P 47336-47339 Poll M. MRAC P 47342 1936 Poll M. Bururi, haute Malagaraz Matthes I Portal: FR. 1953 Portal: FB. Source: MR riv. Musasa, près du pont sur la route Portal: FB. Rutana-Gihofi Source: MRAG MRAC 89.013.P.0008-BMNH 1987.2.3.84-87 1087 2 3 107-117

View map: Google Earth | C-square Mapper | KGS Mapper

FishBase contains some possibilities to reproduce distribution maps.

Royal Museum for Central Africa (RMCA Tervuren)

Refresh

n = 66 (FB = 66)

'C-square mapper'.

Example: Clarias gariepinus (Burchell, 1822)

There are different possibilities to reproduce a distribution map with the 'C-square mapper'.

With the option 'landmask on', only the marine occurrences of the species are visible.

It is also possible to zoom in on a certain part of the world.

Another possibility with the 'C-square mapper' are the outline maps.

Point Map for Clarias gariepinus

Africa: almost Pan-Africa, absent from Maghreb, the upper and lower Guinea and the Cape province and probably also Nogal province. Asia: Jordan, Israel, Lebanon, Svan and southern Turkey. Widely introduced to other parts of Africa, Europe and Asia. Several countries report adverse ecological impact after introduction. Trade restricted in Germany (Ani.3 BArtSchtv).

Click on map to see points and environmental data.

Map: World map/Gobe vews 1 (photorealsic) Largest size No mask Visibility: Bold Refresh.

Selbe / polar views - Quick links (including seamless pan/zoom):

[Poles] Antarctic | Arctic
[Continents] N America | S America | Europe | Africa | Asia | Australia
[Oceans] Atlantic | N Atlantic | S Atlantic | Pacific | Indian

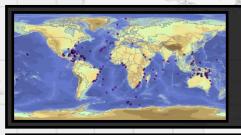
List of Point Data

Range map

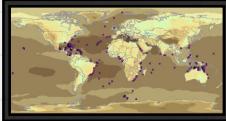
Download data (as csvy)

[Save image to cache

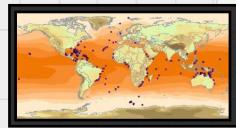
Royal Museum for Central Africa (RMCA Tervuren)

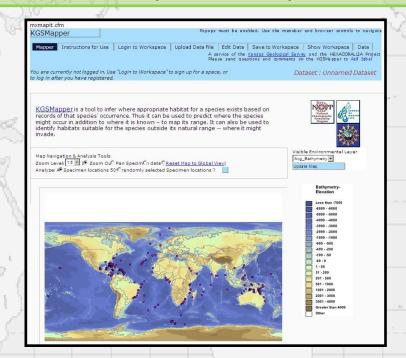


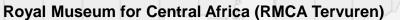
FishBase and Fish Taxonomy Training
Session 2017


'KGS mapper' (OBIS).

Example: Sphyraena barracuda (Edwards, 1771)


OBIS (Ocean Biogeographic Information System) contains different world maps. Because FishBase contains data of different fish collections of musea, it is possible to reproduce distribution maps of species in function of different parameters.


a. bathymetry

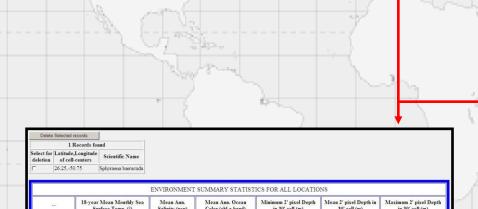


b. salinity

c. average surface temperature

verage over 30' cell values inimum 30' cell

aximum 30° cel


Std. devn. of cell

25.09

25.09

Example: Sphyraena barracuda (Edwards, 1771)

It is possible to obtain the data for different points on the distribution map [coordinates and other parameters of the area].

54.71

0.00

Cell and Co-ordinate Definitions

4.043.00

4.043.00

4.897.05

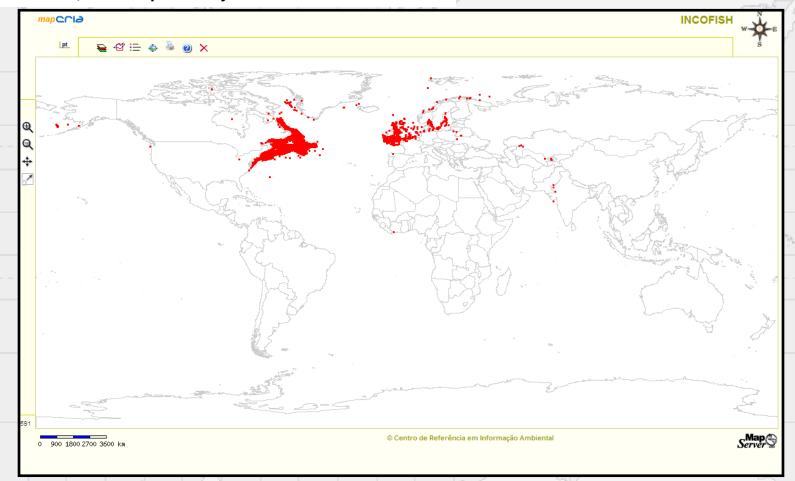
4 897 05

10.0	mxmapit.cfm						
87	KGSMapper		Popup	must be enabled.	Use the menubar	and browser controls	to navigate
	Mapper Instructions fo	r Use Login to Workspac	Α	Edit Data Sav service of the <u>Kansa</u> ase send questions	Geological Survey	Show Workspace and the HEXACORA the KGSMapper to A	Data Data Data Project
	You are currently not logged to log in after you have reg		e" to sign up for a spa	ce, or	Dat	aset : Unnamed	Dataset
3	records of that species might occur in addition	to infer where appropria of occurrence. Thus it can to where it is known – to to the species outsid	be used to predict to map its range. It	where the species can also be used	to	National Contragged Program	
		Tools om O௴ Pan Specim€n data tions 50€ randomly selected			Avg_	e Environmental Lay Bathymetry 💌 e Map	er
N. Carrier			•	White the second		Bathymetry- Elevation Less than .7000	
i,						1999 - 1000 1999 - 500 499 - 200 199 - 50 49 - 0 1 - 50 1 - 50 51 - 200	
1						201 - 500 501 - 1000 1001 - 2000 2001 - 3000 3001 - 4000 Greater than 4000 Other	

				BAT	HYMETRY					
Variable Name	Mean	Std. Dev.	One Std. Dev. Range	Two Std. Dev. Range	Entire Range	Use to Find Similar Areas	Use fo	r upper limit	Use fo	r lower limit
Source : ETOPO2	1800.22	1828.91	1 to 3629.14	1 to 5458.05	1 to 6593		□<		D >	
MEAN BATHYMETRY Source : ETOPO2	1176.73	1618.49	1 to 2795.22	1 to 4413.71	1 to 5463.52	п	□<		□>	
MINIMUM BATHYMETRY Source : ETOPO2	645.24	1438.99	1 to 2084.23	1 to 3523.21	1 to 5374		□<		□>	
STD DEV BATHYMETRY Source : ETOPO2	312.8	387.76	0 to 700.56	0 to 1088.31	0 to 1962.5		□<		□ >	

Royal Museum for Central Africa (RMCA Tervuren)

5.613.00


5.613.00

'CRIA mapper'.

Example: Gadus morhua Linnaeus, 1758

The CRIA mapper gives a clear overview of the different point data in FishBase, with the possibility to zoom.

Royal Museum for Central Africa (RMCA Tervuren)


'Google Earth'.

Example: Hepsetus odoe (Bloch, 1794)

With 'Google Earth' it is possible to look at the distribution of freshwater fishes. The locality can be seen in detail thanks to the 'zoom' option.

'Google Earth'.

Example: Hepsetus odoe (Bloch, 1794)

Data of the different records can be obtained by clicking on the respective points. These data are present in FishBase.

Main Ref:

Main Ref:

Anon... 1997 (Ref. 12818)

Museum: MRAC

Sex:

Catalog No.:

MRAC P 91055.0236

Picture:

Locality:

Forcados river, about 1 km W of Oboro and 7km NW of Bomadi

Station:

Year:

Water depth:

Altitude:

-m

Salimity:

Altitude:

Coordinates:

Geog. area:

Country:

566 - Nigeria

Length:

Come Range:

Collector:

Powell C B.

Back to Search

Update

Royal Museum for Central Africa (RMCA Tervuren)

'Google Earth'.

Example: Hepsetus odoe (Bloch, 1794)

These maps can be used for further studies on the species.

© Frank Teigler

Revalidation of *Hepsetus cuvieri* (Castelnau, 1861) (Characiformes: Hepsetidae) from the Quanza, Zambezi and southern part of the Congo ichthyofaunal provinces

T.A. Zengeyaa, E. Decrub,c and E. Vrevencs

*DST-NRF Centre of Excellence for Invasion Biology (CIB), Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; *K. U. Leuven, Laboratory of Animal Diversity and Systematics, Charles Deberiotstraat 32 B-3000 Leuven, Belgiam; *Royal Museum of Central Africa, Vertebrate Section, Ichthyology, Leuvensesteenweg 13 B-3080

(Received 4 May 2010; final version received 26 January 2011; printed 12 May 2011)

Hepsetus cuvieri (Castelnau, 1861), originally described from "lac N'gami' (Botswana) and synonymized with H. odie (Bloch, 1794) by Roberts (1984), is revalidated. Hepsetus cuvieri can be readily distinguished from H. odoe based on a lower total number of gill rakers (8–13 versus 14–21); a generally higher number of scales between the dorsal fin and the lateral line (10^2_b – 11^3_b versus 7^3_b – 10^3_b) and a higher number of scales between the adipose fin and the lateral line $(6^3_b$ – 7^3_b versus 4^3_b – 6^3_b) and other characters. A neotype is designated, as the holotype of this nominal species is apparently lost. Hepsetus cuvieri is restricted to the Quanza, Zambezi ichthyofaunal provinces and the southern part of the Congo Basin, i.e. the Congo ichthyofaunal province.

Keywords: Hepsetus; H. odoe; H. cuvieri; revalidation

A revision of the West African Hepsetus (Characiformes: Hepsetidae) with a description of Hepsetus akawo sp. nov. and a redescription of Hepsetus odoe (Bloch, 1794)

E. Decrua, E. Vrevenb and J. Snoeksa,b*

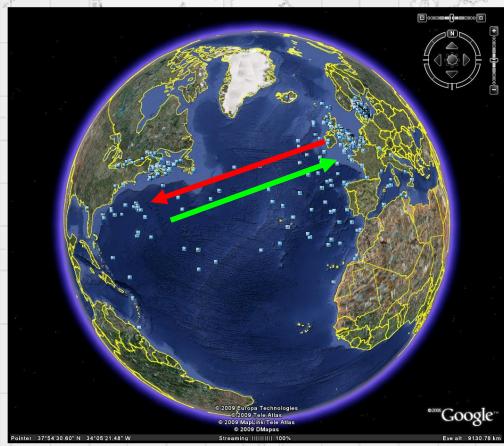
⁸K. U.Leuven, Laboratory of Animal Diversity and Systematics, Charles Deberiotstraat 32 B-3000 Leuven, Belgiam, ⁸ Royal Museum for Central Africa, Vertebrate Section, Ichthyology, Leuvensesteenweg 13 B-3000 Tervuren, Belgium

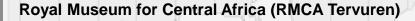
(Received 20 January 2011; final version received 6 September 2011; printed 10 November 2011)

Within the genus Hegsetus, a new species from the eastern part of West Africa is described. Hepsetus akawo sp. nov. is mainly distinguished from Hepsetus odoe by a smaller number of lateral line scales [43–51 vs 50–60 (exceptionally 49)] and a shallower head depth [38.0–45.6 (mean 42.0)] whead length vs 41.4–49.0 (44.6) % head length vs 41.4–49.0 (44.6) % head length (positive) allomotric). Hepsetus akawo sp. nov. differs mainly from the recently rehabilitated Hepsetus scaler by: a higher number of gill rakers (17–23 vs 8–13); and a lower number of scales between the dorsal fin and the lateral line ($7^{1}y_{z}$ –9 y_{z} vs $10^{1}y_{z}$ –11 y_{z}). Within West Africa, the distribution area of the new species is restricted to the Sassandra River (Ivory Coast) in the west up to the Cross River (Cameroon) in the east. The species is entirely allopatric with H. odoe, which has a far more restricted distribution than previously thought and occurs from the Senegal River (Senegal) in the west to the Cavally River (Ivory Coast) in the east.

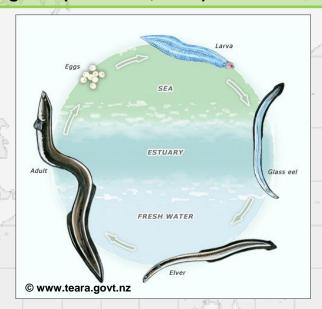
Keywords: Hepsetus odoe; Hepsetus akawo sp. nov.; West Africa; revision; new species

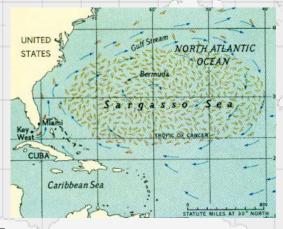
Royal Museum for Central Africa (RMCA Tervuren)

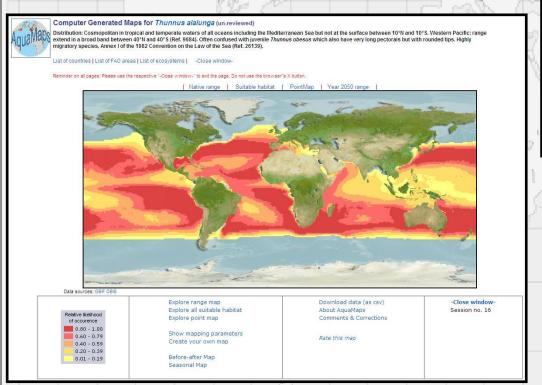




'Google Earth'.


Example: Anguilla anguilla (Linnaeus, 1758)


The distribution of the European eel (*Anguilla anguilla*) reflects its catadromous behaviour. The freshwater fish species migrates to the Sargasso Sea to spawn.



'AquaMaps'.

Example: Thunnus alalunga (Bonnaterre, 1788)

'AquaMaps' is nearly the same as the 'C-square mapper'.

- 'C-square mapper' shows only those points which are part of the fish collection data.
- 'AquaMaps' shows the probability of the occurrence of that particular species in a certain area.

Albacore
Thurnms alalunga
Bonnaters, 1°BD)
Scenebulas Olackersts, tunas, bonito), subfamily Scombrinas

Periformas (perchilate)

Actinopterygii (nyy-finned fishes)

Actinopterygii (nyy-finned fishes)

Actinopterygii (nyy-finned fishes)

FishBase name:

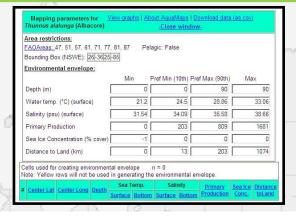
Albacore

Mar. size:

140 cm FL (male tunnend, (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max. publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted weight 60.3 kg (Ref. 262D);
max. reported age 5 years (Ref. 265D), max publishted for the publishted for the publishted for the publishted for the publish

The probability of occurrence is graded from highest (red) to lowest (yellow).

Royal Museum for Central Africa (RMCA Tervuren)



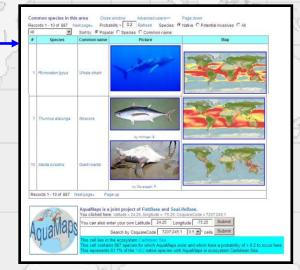
'AquaMaps'.

Example: Thunnus alalunga (Bonnaterre, 1788)

For 'AquaMaps', an environmental tolerance profile is made based on point data, but also on depth, salinity, temperature, primary productivity, and its association with sea ice and coastal areas.

Aquallaps (10/2008):
Standardized distribution maps for currently 9,000 species of fishes, marine mammals and invertebrates.

Aquallaps is a joint project of fishibase and SeaLifeBase.

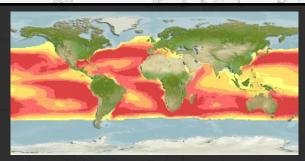

Home | About Aquallaps | Tools | Environmental Dita | Services

Marine Biodiversity Map: click on the map to obtain local species list for that area.

G All | C Sharis & rays | C Bonytish | C Invertebrates | C Deep-sea | C Marine mammals

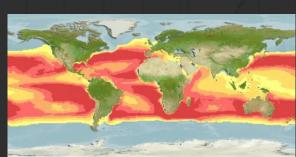
Common Name | Common Name

On the main page of 'AquaMaps' is a Marine Biodiversity Map. A click on the map gives you a species list for that particular area.

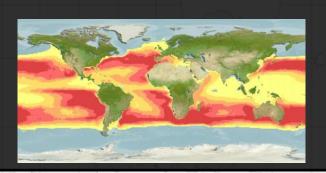

Royal Museum for Central Africa (RMCA Tervuren)

'AquaMaps'.

Example: Thunnus alalunga (Bonnaterre, 1788)


<u>Native range:</u> These are all areas with suitable environmental conditions that fall within the species distributional range known from literature.

Point map: This is an overview of point data originating from collection records (FishBase, IOBIS and GBIF). These were used to generate an environmental tolerance profile.


<u>Suitable habitat:</u> These are all possible areas where environmental conditions are suitable for the species to exist.

Native range

PointMap | Year 2050 range

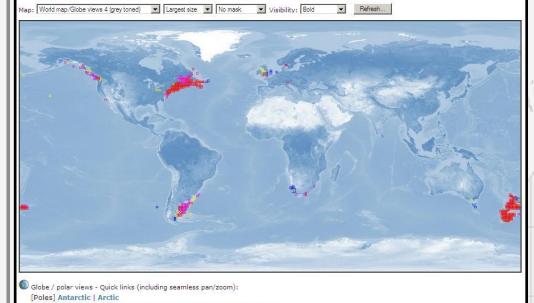
<u>Year 2050 range:</u> this is a prediction of all possible areas where the species can exist in the year 2050.

Royal Museum for Central Africa (RMCA Tervuren)

Suitable habitat

'AquaMaps'.

Example: Squalus acanthias Linnaeus, 1758


Point Map for Squalus acanthias

Western Atlantic: Greenland to Argentina. Eastern Atlantic: Iceland and Murmansk Coast (Russia) to South Africa, including the Mediterranean and Black Sea. Western Pacific: Bering Sea to New Zealand. Reports from off New Guinea are doubtful (Ref. 6871). Eastern Pacific: Bering Sea to Chile.

-Exit Map-

Click on map to see points and environmental data.

Code	Month collected	n
	Jan-Mar	5892
	Apr-Jun	410
	Jul-Sep	4129
	Oct-Dec	503
	Total:	19163

A seasonal map is available, which is based on point data in time. These point data are colour-coded by season collected.

Royal Museum for Central Africa (RMCA Tervuren)

[Continents] N America | S America | Europe | Africa | Asia | Australia [Oceans] Atlantic | N Atlantic | S Atlantic | Pacific | Indian

'Freshwater AquaMaps'.

Example: Carnegiella strigata (Günther, 1864)

'Freshwater AquaMaps' is an extension of the model to freshwater ecosystems*.

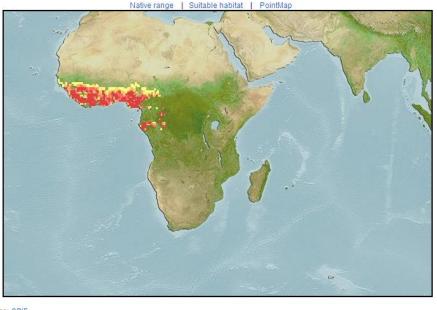
* Currently for a limited number of species from South America (600), Africa (258), Europe (33) and China (32).

			(Marbled h	atchetfis	sn)	2	lose Ma	p Parame	ters					
	1000	ea restricti	100000	0.	lagic: Fa									
	100000	isins = Ama ivironmenta			iagic. Fa	iise								
	<u> </u>	vironinenta	пепчеюре	Min		Pref Min (10th	Pref Ma	x (90th)	Max					
	E	evation		300000	29.12	36.9		223.76	100000000	54.31				
	i ii	ean Annual	Tomp		23	2		26		27.5				
	N	et Primary F	roductivity	0.6983		0.8075624		712497	1.0579					
	S	oil pH		4	.2665	4.766	5	5.7665	6.	2665				
	S	oil Moisture		2	6.572	80.54	6	148.772	212	2.414				
	S	oil Carbon		4	.0335	5.33	5	8.719	11.233					
	C	CTI Annual Runoff			сті Г		1246		153	1539 2221		2393		
	4													
		nnual Precipitation 106.265		1510	154.93 265.69		200							
	- AI		Jitation	- 10										
			or for the con-	1000		154.9	2 [265.69	300	6.945				
		creating en			e n=	37		265.69	300	0.345	24			
Vote	e: Yellow ro	creating en	be used in	generatir	e n =	37 nvironmental e	envelope.				Net Prim Pro			
Vote	e: Yellow ro	creating en	be used in	generatir	e n = ng the er	37	envelope.	Presipitatio	Runoff					
Jote	e: Yellow ro	creating en	be used in Temperature	generation Elevation	e n = ng the er	37 nvironmental e	envelope.	Precipitatio	Runoff	<u>CTI</u> 1951	0.77			
Jote 1	Center Lat Cente	creating en lws will not Center Long -61.25	be used in Temperature 25.25	generatin Elevation 199.11	e n = ng the er Soil pH 5.063 5.28	37 nvironmental e Soil moisture 80.905	envelope. Goil carbon 6.274	Precipitatio	1 Runoff 3 425 5 1111	<u>CTI</u> 1951	0.77 0.92			
1 2	-13.75	creating en ws will not Center Long -61.25	be used in Temperature 25.25	generation Elevation 199.11 215.84	e n = ng the en Soil pH 5.063 5:28 5.412	37 nvironmental e Soil moisture 80.905 95.896	envelope. Goil carbon 6.274 5.715	Precipitatio	1 Runoff 3 425 5 1111 3 502	<u>CTI</u> 1951 2026	0.773 0.925 0.705			
1 2 3	-13.75 -12.75 -12.75	creating en ows will not Center Long -61.25 -68.75 -64.25	be used in <u>Femperature</u> 25.25 25 26.42	generation 199.11 215.84 134.09	e n = ng the er 5.063 5.28 5.412	37 nvironmental (<u>Soil moisture</u>) 80.905 95.896 60.255	6.274 5.715 7.181	Precipitatio	1 Runoff 3 425 5 1111 3 502 8 586	CTI 1951 2026 2041	0.77: 0.92: 0.70: 0.69i			
1 2 3	-13.75 -12.75 -10.75	creating en ws will not Center Long -61.25 -68.75 -64.25 -65.25	be used in Temperature 25.25 25 26.42 26.08	generatin 199.11 215.84 134.09	e n = ng the er Soil pH 5.063 5.28 5.412 5.246 4.879	37 nvironmental e <u>Soil moisture</u> 80.905 95.896 60.255 74.818	6.274 5.715 7.181 6.371	Precipitatio	Runoff 3 425 5 1111 3 502 8 586	2026 2041 1530 1848	0.77 0.92 0.70 0.69 0.97			
1 2 3 4 5	-12.75 -10.75 -17.75 -17.75 -17.75	creating en ows will not Center Long -61.25 -68.75 -64.25 -65.25 -70.25	be used in Femperature 25.25 25 26.42 26.08 25.67	generatin 199.11 215.84 134.09 166.28 194.42	e n = ng the er Soil pH 5.063 5.28 5.412 5.246 4.879	37 vironmental e 80.905 95.896 60.255 74.818 121.591	6.274 5.715 7.181 6.371 7.64	Precipitatio	1 Runoff 3 425 5 1111 3 502 3 586 5 1028 3 33	2026 2041 1530 1848	0.773 0.923 0.703 0.696 0.970 0.999			
1 2 3 4 5 6	-12.75 -12.75 -12.75 -12.75 -10.75 -7.75 -8.75	creating en ws will not -61.25 -68.75 -64.25 -65.25 -70.25 -75.75	be used in Femperature 25.25 25 26.42 26.08 25.33	generatir Elevation 199.11 215.84 134.09 166.28 194.42 554.31	e n = ng the en Soil pH 5.063 5.28 5.412 5.246 4.879 5.505 4.96	37 vironmental e 80.905 95.896 60.255 74.818 121.591 105.550	6.274 5.715 7.181 6.371 7.64	Precipitatio	1 Runoff 3 425 5 1111 3 502 3 586 5 1028 3 33 5 1616	2026 2041 1530 1848 1981	Net Prim Pro 0.77: 0.92: 0.694 0.97: 0.99- 0.96:			

The parameters used to generate these 'AquaMaps' include elevation, temperature and soil characters (pH,...).

Royal Museum for Central Africa (RMCA Tervuren)

'Freshwater AquaMaps'.


Example: Synodontis obesus Boulenger, 1898

Computer Generated Map for Synodontis obesus ()

Distribution: Africa: coastal drainages of the Bay of Guinea from Ghana to Gabon (Ref. 82238), including the Pra, Mono, lower Niger (Ref. 57223), Cross (Ref. 57223, 81251), Wouri, Sanaga (Ref. 81251, 82238), Lobe and Kribi (Ref. 82238), Possibly also in the Nyong (Ref. 81251), Presence in Volta and Comoe basins (Ref. 82238) unconfirmed (Ref. 57223). Presence in Gabon (Ogooue drainage) questionable (Ref. 78218).

List of countries | List of FAO areas | List of ecosystems |

Data source: GBIF

Explore range map
Explore all suitable habitat
Explore point map

Show mapping parameters

Create your own map

Download data (as csv) Comments & Corrections

Rate this map

See some public comments

Exit Map Session no. 28

1 🛱 rating for distribution

Royal Museum for Central Africa (RMCA Tervuren)

Royal Museum for Central Africa (RMCA Tervuren)

