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ABSTRACT The detection of cells with sub-optimal performance and the identification of the root-cause
of such performance is a crucial and challenging task in Network Performance Management (NPM). The
contemporary NPM approaches, being reactive, silo-based, and highly expert-reliant, are not viable options
for such tasks anymore, particularly in the emerging complex heterogeneous mobile networks. The state-
of-the-art research in the field of data-driven Artificial Intelligence (AI) is a ray of hope for developing
innovative solutions for such NPM tasks. However, the scarcity of holistic and detailed real network data
limits the potential of this approach. In this study, we present a comprehensive AI-driven framework for
the auto-diagnosis of cells with sub-optimal performance in a real network. We have explored and shared
insight about an untapped comprehensive Call Detail Record (CDR) dataset from a real network operator.
The outcome is anonymous and annotated data made public to encourage further research in this domain.
We employ a K − means clustering method that exploits CDR data and domain experts’ input for the
identification of particular types of cell performances. Next, a support vector machine-based classifier is
developed for real-time applications which classifies the network nodes based on their performance with
an accuracy of 97.69%. Subsequently, we introduce an algorithm that uses the classification results for the
root-cause analysis of sub-optimal performance by leveraging network topography and area knowledge. The
method succeeds in reaching the outcomes of an expert-led root-cause analysis and beyond. At the same time,
the algorithmic approach limits the manual root-cause analysis to 30 possible scenarios per hour as opposed
to analysis of 759 cells, thus it reduces the workload of an expert significantly. In the broad picture, the
proposed AI framework lays the foundation towards zero-touch mobile network and service management
starting with automated NPM and root-cause analysis.

INDEX TERMS ZSM, zero-touch, mobile network, service management, performance management, CDR,
machine learning, automation.

I. INTRODUCTION
Mobile networks have experienced a meteoric transformation
since their first phase of worldwide commercialization in the
late 1990s. That phase was dubbed the second generation
of mobile networks or 2G. Today’s expedited deployment
of the Fifth Generation (5G) and the research on the next
generation (6G) are the outcomes of this transformation.
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From a user’s perspective, this evolution is translated into a
seamless improvement in Quality of Experience (QoE) for
human and machine centered applications. Mobile networks
must undertake disruptive changes at a fast pace to enable the
delivery of the expected QoE by offering adaptability in ser-
vice provisioning. To this end, networks must be re-thought
by taking into consideration the explosive demand in traffic,
differing QoE expectations, and large variations in traffic
volume on small-scale temporal units. In order to sustain cost-
effectiveness, mobile networks are required to support fast
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automated adaptation in view of changing circumstances to
reshuffle the limited resources for optimum allocation.

Artificial Intelligence (AI) can transform network man-
agement into a cognitive process through which the network
can self-adapt and self-react to changing conditions with
minimal manual intervention (zero-touch). It promises to
facilitate in automating the complex tasks such as planning,
maintenance, and optimization of the network [1]. Towards
making networks intelligent and autonomous, different ini-
tiatives have been taken in recent times. For example, Self-
Net1 is the first phase of a project by 5G-PPP that mainly
aims at the autonomous management of Network Function
Virtualization (NFV) in NFV/ Software Defined Network
(SDN)-enabled 5G networks. Similarly, SliceNet3 is the
phase II project from 5G-PPP that focuses to build a frame-
work for End-to-End cognitive network slicing and slice
management [2].

The 3rd Generation Partnership Project (3GPP) release
17 employs an NFV/SDN approach to the network archi-
tecture and introduces a new function called Network
Data Analytics Function (NWDAF), that leverages AI for
data-driven network automation [3]. In parallel, the Open
RAN Alliance proposes a radio access network architec-
ture based on NFV/SDN and defines the Radio Intelligence
Controller (RIC) to enable the data-driven AI for network
automation [4]. Zero-touch Network and Service Manage-
ment (ZSM) refers to the next phase of automation which
embodies an end-to-end framework for network orchestration
that leverages data-driven AI and does not require human
intervention [2], [5]. ETSI ZSM industry specification group
was formed in 2017 with the goal to accelerate the pro-
cess of defining the required end-to-end architecture and
solutions [6].

ZSM may be seen as the advanced manifestation of Self
Organising Networks (SON), an older 3GPP effort that aimed
at automating some aspects of mobile networks [7]. SON,
however, saw limited success for two reasons. The first per-
tains to the ‘‘black box’’ feature of the SON algorithm that
is vendor-specific and often opaque. As a result, network
operators are hesitant to adopt SON on a large scale as they
prefer to keep the human-in-the-middle when it comes to
abiding by Service Level Agreements (SLA). The second
factor is related to the design of the SON algorithm which
is generally based on manually defined rules. The drawback
here is, such rules are often network-centered and specific
to particular scenarios, so they need to be re-tuned follow-
ing changes in the environment and the introduction of new
network services. This need for frequent human intervention
limits the benefit of the automation aspect [8]. Thus, prior to
ZSM, mobile networks are still at the risk of overspending
due to over-provisioning or violating the SLA as a result of
under-provisioning.

To harness AI required for enabling ZSM, role of relevant
data is pivotal, besides that of Machine Learning (ML) algo-
rithms. One such important dataset is CDR. But, very few
works in the literature examine the possibilities of enabling

ZSM using AI-driven Call Detail Record (CDR) data anal-
ysis. It is so because, the CDR data is very difficult to
obtain as it contains detailed personal information about the
network users such as their phone numbers, whereabouts,
social network, and the phone used. In addition, CDR data
reveals the internal structure of a mobile network, connec-
tions, and routes. It can expose vulnerable nodes that may be
maliciously targeted.

For the privacy and security concerns, mobile network
operators commonly share only anonymous and aggregate
CDR data Rather than the raw CDRs. For instance, the works
in [9]–[12] use aggregated CDR dataset publicly shared by
Telecom Italia.1 Each of these works employs different AI
techniques to detect anomalies in traffic surges per square
grid, which is the highest resolution available in the dataset.
However, this level of abstraction hinders the possibility of
data-driven network fault diagnosis. Authors in [13] employ
deep learning methods on the same dataset to detect sleep-
ing cells, a notorious problem in mobile networks. Authors
in [14] propose an automated mechanism to annotate CDR
data collected locally between a radio site and the mobility
management equipment. The dataset is then examined to
extract the behavior of the users of this radio site. Neverthe-
less, due to its narrow scope, this study does not capture the
relations and dependencies among various network layers and
the dynamic traffic.

Recently, there has been a rise in various efforts and
research in different areas which would ultimately con-
tribute towards ZSM. For example, in [15], authors have
proposed a knowledge plane-basedManagement and Orches-
tration (MANO) framework dedicated for zero-touch net-
work slicing that exploits deep reinforcement learning model
to minimize energy consumption and virtual network func-
tion (VNF) instantiating cost. Another recent study [16]
presents a decentralized Federated Learning scheme for con-
tent offloading to user equipment or network edge. It takes
advantage of the future user demand predicted by the ML
models. This scheme can be used in caching and load bal-
ancing for ZSM. In contrast, our work examines another key
stream in ZSM which relates to Network Performance Man-
agement (NPM) with a focus on automated fault diagnosis.

In this manuscript, we present the first effective NPM
framework toward ZSMwhich automates both fault detection
and root-cause analysis. We put forward an ML model that
feeds on streaming CDR to identify network cells with sub-
optimal performance. These are analyzed online to locate
the cause of the problem based on a novel ML Algorithm.
The algorithm proposed identifies the greatest common fea-
tures of cells with sub-optimal performance: geographical
description and network architecture. Our work is validated
with a real CDR dataset collected at the core network of an
African operator and annotated by domain experts to a level
of details that is not available in any of the existing studies.
Our approach overcomes the limitations faced by previous
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FIGURE 1. Framework for the detection and classification of cells based on their performance and diagnosis of the root cause of their sub-optimal
performance.

works such as [9]–[11] owing to our access to detailed
cell-level data and information about the network architec-
ture, users’ profiles, and detailed records of all dropped
user connections.Moreover, thisML-based diagnosis method
being the first such solution to address the need for real-time
performance analysis is a steppingstone towards the design
of ZSM-compliant proactive elastic mobile networks.

A. CONTRIBUTIONS
We summarize our contributions in the following points:

• We propose the first comprehensive framework shown
in Figure 1 for the data-driven automation of mobile net-
work performance analysis. We employ our previously
designed classifier that identifies network cells with
sub-optimal performance and the type of issue observed
based on the streaming CDR data [17]. We present new
results in which we validate the model in [17] on unseen
data with encouraging accuracy of more than 97%.

• Wepresent the first detailed and annotated network-wide
CDR dataset which resulted from our processing of full
raw CDR records. We make this dataset available to the
public in the hope that it will motivate more research in
this area. The data includes:

– Hourly data per cell: Traffic volume, number of
calls, cause of termination, the time before the drop,
average call duration, number of SMS.

– Each cell in the network is annotated based on the
region it covers, the specific area within this region,

and the type of land it covers also called clutter
type (e.g., some clutter types identified are Urban,
Village, Highway (HW), etc.).

– Anonymous coordinates are associated with every
cell while preserving the dominant features (e.g.
relative positions).

– Each site in the network is annotated based on
the associated Location Area Code (LAC), a key
identifier in the mobile network architecture.

• Based on an expert’s approach towards network problem
analysis, we propose and elaborate an ML-driven root-
cause analysis algorithm that automates the detection
and framing of network faults. Further to that it iden-
tifies the root-cause of that fault, where applicable, all
in automated manner. In cases where the root-cause of
the fault is not identified, a detailed KPI report is auto-
matically generated to expedite the work of a network
expert examining the problems. The outcome is an expli-
cable report that presents the AI-based reasoning for
the faults identified and allows an efficient, speedy, and
cost-effective counter measures. The method is applied
to unseen data and the outcome is validated by a domain
expert.

Overall, the paper is structured as follows. A litera-
ture review conducted on NPM is presented in Section II.
Section III introduces the CDR dataset and the annotation
approach. Section IV describes the classification algorithm
and results for the classification of cells based on their
performance. This is followed by Section V in which we
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present a domain expert’s approach to interpreting the data
by visual inspection. On the other hand, Section VI proposes
an ML-based root-cause analysis algorithm that is validated
by the domain expert’s interpretation. The paper is concluded
in Section VIII. Note: in this work, we interchangeably use
the terms cells or radio sites to refer to a uniquely identifiable
radio unit providing wireless coverage.

II. STATE-OF-THE-ART IN NPM FOR ZSM NETWORKS
The traditional NPM relied mostly on a silo-approach for
the data analysis which focused on subsystems within the
network or deep packet inspection of interfaces connecting
them.Moreover, performance analysis relied heavily onman-
ually engineered features to identify problematic network
nodes; these are referred to as Key Performance Indicators
(KPI). Networks were generally over-provisioned to account
for peak traffic. When needed, resources were reshuffled (or
turned off) based on fixed patterns such as traffic change
between weekdays and weekends or between summer and
winter seasons. Previously, daily or weekly reactive measures
were sufficient to optimize the network performance and
compete with other mobile network service providers. Such
an approach is no longer valid in the 5G and beyond networks
which are significantly more complex and diverse than legacy
networks.

Intuitively, complexity in structure, due to heterogeneous
and ultra-dense deployment of cells, comes with bigger chal-
lenges in optimization. On the other hand, this complexity
also offers more flexibility and a higher degree of freedom in
optimization. At the same time, in the emerging networks, the
traffic demand changes much faster, spatially and temporally,
than the traditional voice-centric networks. The potential gain
of fast pro-active optimization that matches the speed of
change in the traffic and benefits from the offered degrees of
freedom in the network is significant. This gain is of pivotal
importance to network operators as it enables a cost-effective
network deployment as opposed to the crippling cost of
traditional over-provisioning. In order to capitalize on the
offered degrees of freedom and traffic diversity, a holistic
NPM approach is essential to curtail the limitations of the
silo-based analysis. Indeed, different sections of the network
can no longer be looked at independently as separate subsys-
tems since these have transformed into a fluid architecture
that requires delicate tuning [18], [19]. To this end, operators
need to leverage holistic data-driven AI methods to automate
the process of NPM and unravel the gain of indispensable
elasticity.

ZSM leverages the data-driven AI tools to automate the
network functions for creating the much-needed adaptability
in mobile networks. Data-driven approaches naturally adjust
to the changes in the environment as they feed and learn from
these data [20]–[22]. In addition, the flexibility in the imple-
mentation of AI allows for the automation of performance
management and root-cause analysis whilst giving the oper-
ator the option to keep the human-in-the-middle. Moreover,
recent solutions for explainable AI reinforce the operator’s

propensity to trust the AI algorithm and capitalize fully on
the potential of automation [23], [24]. As much as AI is a
pivotal enabler of ZSM, it still faces limitations and presents
security risks that need to be addressed ahead of its full-scale
deployment [2]. To this end, a distributed ledger technology
is proposed in [25] to implement distributed security and trust
in multi-tenant and multi-stakeholder environments. An aug-
mented reality approach is proposed in [26] to allow network
administrators to understand real-time automated tasks as a
path to a true ZSM network. Few works examine the problem
of resource-to-network-slice allocation and employ AI in
network traffic forecasting, such as [27] and [28], in order to
optimize the allocation mechanism. Authors in [29] examine
a radio-signal dataset using AI to learn the mobility behavior
of users and predict, accordingly, the traffic load.

On the other hand, authors in [30] integrate deep reinforce-
ment learning and federated learning to enable the inter-node
exchange of learning parameters to improve the model with-
out overloading the network with control data. The model is
evaluated for the optimization of caching and computation
offloading tasks at the mobile edge. A context-aware rein-
forcement learning approach is presented in [31] in which
the authors jointly optimize the connectivity and computa-
tional speed of the Internet of Things (IoT) network in a
smart port to deliver the qualities required by each vertical.
These works shed light on the many applications of AI in the
mobile network domain. However, none addresses the issue
of performance management and root-cause analysis.

In this work, we propose an NPM automation frame-
work that embodies the first step toward ZSM networks.
The proposed framework is composed of two stages. First,
a CDR-driven ML algorithm is put forward to automate fault
detection in near-real-time. Next, a novel ML-based method
is presented which computes the greatest common features
of cells with the sub-optimal performance from two perspec-
tives: geographical description and network architecture to
locate the root-cause of their behavior. This work is possible
thanks to a real CDR dataset that is annotated by domain
experts to a level of details which is not available to any of
the existing studies.

III. DATA DESCRIPTION AND PREPROCESSING
Through this work, we offer an annotated CDR dataset with
more network-related information to allow fault detection and
diagnosis. In this section, we present an overview of the data
collection followed by the steps that we have taken in order to
anonymize and annotate the raw CDR dataset obtained from
an African network operator.

A. NETWORK OVERVIEW
This work is based on real network data acquired from an
African GSM (Global System for Mobile Communication)
network operator. The analysis presented here is based on
the data collected on two Fridays, one in September and the
other one in November 2017. Figure 2 shows the distribution
of the 741 radio access cells in the network form which the
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FIGURE 2. Country-wide distribution of radio access cells in the
designated network. The numbers between parenthesis in the legend
represent the number of cells in each clutter category and the percentage
of the total number of cells.

data is collected. The marker for the each cell reflects the
clutter type as shown in the Figure 2 and discussed in the
Section III-D. As it can be seen, the network coverage is
restricted to main cities and towns and connecting roads and
highways. Many open areas seem to be without network cov-
erage. The zoomed area in Figure 2 shows the distribution of
356 cells with the clutter types represented by different mark-
ers for a major metropolitan city. It further highlights that
urban cells constitute more than half of the total number of
cells in the network. The legend in the Figure 2 also presents
the total number and the percentage of cells belonging to each
clutter type in the network.

The hourly voice traffic load in the network on a Friday is
presented in Figure 3 for each individual clutter type. From
Figure 3, it is clear that the peak hour of the network occurs
in the evenings between 19:00 and 21:00. It can also be noted
that cells covering urban areas carry the highest volume of
traffic, whereas those covering roads and highways carry the
least. We have observed similar behavior in the voice traffic

FIGURE 3. Traffic trend during the day in the designated network per
clutter type.

on the other Friday. This confirms the existence of cell traffic
patterns that depend on the time of the day and the clutter type
of the covered area. For simplicity, here we present the traffic
behavior of one day only.

B. CDR OVERVIEW
CDRs represent the metadata and the detail key information
about the of mobile communication while excluding its con-
tent. CDRs are generated by telephone switches, mainly for
billing purposes, whenever a subscriber consumes dedicated
network resources [32]. For example, making (by Party A) or
receiving (by Party B) a call, exchanging data (with another
user or server), and conducting a location update, that all
requiring dedicated resources. The non-content information
includes details about Party A and Party B, their respective
locations, time and duration of the call, the type of com-
munication, the call routing, among other information. CDR
generation is standardized by the 3GPP and more details can
be found in [33].

In Table 1, we present the data included in the raw CDR
dataset obtained from the African operator. From the Table 1
it can be seen, each record in the CDR provides complete
information about the established connection, the mobile
devices involved, the network nodes that serve it, and the
label for the cause of termination. The value in the cause-of-
termination field indicates whether the call was successfully
terminated or forced to terminate. In the latter scenario, the
value further specifies the dominant reason for undesired
termination. Thus, the CDR information is ideal for the
NPM of complex networks for two reasons. First, it offers
a unique holistic perspective about the network end-to-end

TABLE 1. CDR fields available in original dataset.
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FIGURE 4. Network topology extracted from CDR dataset.

performance and, second, it is automatically labeled by the
network nodes.

The network topology that can be extracted from the CDR
dataset is shown in Figure 4. This figure shows the relation
between cell, radio site, trunk, area defined by an LAC, and
Mobile switching center (MSC), which will be of pivotal
importance in the root-cause analysis. The geographical cov-
erage of each of these network layers depends very much
on the network’s specificity, such as operating frequencies,
tower height, backhaul network technologies, and core net-
work planning. In Table 2, we extract the general coverage
range of each network layer from our data.

TABLE 2. Mapping of network architecture to geographical span.

C. CDR GROUPING
The fields in Table 1 reveal private information about sub-
scribers, their devices, and their whereabouts. In this pre-
processing phase, we perform CDR grouping to remove any
information related to subscribers while retaining the data
that concerns network usage.

As highlighted in Section III-B, each entry in a CDR
pertains to one leg of a given communication. For instance,
a leg could be the outgoing call from Party A or the incoming
call to Party B. Moreover, each of these entries includes
a field labelled as ‘‘Cause of termination’’ (see Table 1)
which qualifies this communication and may describe the
immediate behavior of one or more of the network nodes that
serve it. It is, thus, undesirable to take NPM actions on these
nodes based on a single CDR’s label. Therefore, a second
phase of preprocessing is required in which streaming CDRs
are aggregated based on different criteria like the network
nodes involved, the subscribers types, and the devices used.
For instance, it would be interesting to group together the
CDRs labelled as abnormal termination,2 the CDRs that
include the same type of device, the CDRs of all roaming
numbers, or all the CDRs that originate from the same cell
or relate to a particular application, etc. Among these groups,
some of them cannot be fixed immediately such as problems
that relate to a particular mobile device type. The actionable
groups are those that relate to network nodes, and a pertinent
NPM mechanism would be able to build these groups while
CDRs are streaming.

In this work, the pre-processing phase was conducted
offline and the CDRs were grouped per hour. These are
further sorted into groups that represent communications that
either originated or terminated in each cell of the network.
It should be noted that the unit of time (1 hour) used in
this process is a design parameter that may be changed,
depending on the type of data service. It is not recommended
to reduce this aggregation period below 30 minutes for two
reasons. Firstly, intermittent degradation in performance may
be caused by factors external to the network; the root-cause
analysis proposed in this manuscript aims to detect network
issues that can be remedied. Second, taking frequent (less
than half an hour apart) actions based on detected network
problems may lead to network instability. In order to make
the anonymous dataset available for the open research, the
information in the CDRs was aggregated to a level as shown
in Table 4.Where we have removed all data relating to mobile
subscriptions and devices. The traffic data that was extracted
from the CDRs was aggregated based on the associated cell.
The traffic of each cell was divided into two groups depending
on the value of the termination cause:Normal termination and
Abnormal termination. The traffic in each group is character-
ized by two metrics, as described in Table 3.

The number of fields in Table 1 are 21 whereas the reduced
features in Table 4 are only four. The decrease in the number
of features comes with a reduction in the information about
the network behavior, but, in our case, it is essential to ensure
data protection and network anonymity. However, we would
like to emphasize that the reduction ratio is a design parameter
that may be adjusted according to the type of network service
at hand. For instance, traffic volume and count are not enough

2Abnormal termination in this work is any Cause of termination that is not
normal: No answer, Congestion, Timer expiry, destination not available, etc.
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TABLE 3. Adopted metrics in traffic characterisation.

TABLE 4. Reduced CDR data of a given cell ĉ in the network.

to represent the quality of experience of data services, instead,
these should be augmented by data rate, jitter, and delay
information. Nonetheless, we present here a methodology for
mining raw streaming CDR data and we demonstrate that,
despite the high reduction ratio, the classification accuracy in
Section IV is reliable and leads to sound root-cause analysis
in Section VII. To the best of the authors’ knowledge, none
of the open-source CDR databases that describe data services
has the same level of call details available in the dataset used
in this work. None of those, therefore, has the same potential
to be mined for root-cause analysis.

D. DATASET ANNOTATION
The steps taken in the CDR grouping in Section III-C
have successfully removed any information related to sub-
scribers, such as phone number, IMSI, IMEI, and where-
abouts. The aggregated CDR presented in Table 4 aggregated
exploiting the Cell Global Identifier (CGI) which is a
compound number composed of the MCC, MNC, LAC,
and the Cell ID (see Table 1 for the defiantion of these
acronyms) [34]. The CGI, therefore, reveals the identity of the
mobile operator, and jointly with a worldwide CGI database
(https://www.opencellid.org/), reveals the location of each
cell in the network. In fact, we have extracted the location
of each cell by interrogating the worldwide CGI database.
Next, we mapped coordinates of each location with the
country open-source map (https://www.google.com/maps)
and extracted information like the land type (it is com-
monly referred to as clutter type in mobile network planning
and optimization) and the GPS (global positioning system)

coordinates. The common clutter types identified are Urban,
Village, Road, Higway, etc. as shown in Figure 2.
In order to conduct a context-aware NPM, it is sufficient

to retain information about the placement of the cells rel-
ative to each other, their association with each LAC and
MSC, their location in different areas, and their clutter type.
Keeping the information mentioned above, the names of the
country, operator, and cities were anonymized. In addition,
the locations of the cells are anonymized using a key that
preserves the respective distances. As a result, the unique
identifier of the cell CGI is replaced with an anonymous
identifier, and additional annotations are added. The Table 5
shows the saple representation of annotated information. The
database used for determining the original location of the
cells generated some erroneous locations where the cells were
found to be in a different country or continent. From a total of
759 cells, relevant location information could be identified for
741 cells. For each of these cells, we associate a clutter type
annotation. The other 18 cells remain in the database with
their LAC information but do not have information about the
Area,Clutter Type, or coordinates. It is worth mentioning that
the location information of 741 cells mapped by the online
method are not confirmed by any other source. The annotated
data, therefore, is likely to include noise that may in the end
affect the results of automated NPM algorithm.

TABLE 5. Anonymised network data with annotations.

IV. ML FOR CLASSIFYING NETWORK CELLS WITH
SUB-OPTIMAL PERFORMANCE
In this section, we briefly discuss our ML-based scheme
for the detection and classification of network performance
issues. The proposed method first generates cell-instances
data based on the hourly data of each cell (see Table 4). In this
case, a cell-instance Sĉ,h represent a three-hours sample of
cell ĉ that terminates at hour h. The aim of this method is to
classify the performance of each cell-instance. The scheme
developed, as presented in Figure 5, contains two main func-
tions: clustering and classification. The first function is vis-
ited twice and corresponding results are labelled as Tier I and
Tier II results. Where in both tiers the K − means clustering
is used for the detection and labelling of faults.

As shown in Figure 5, the feature extraction, a prerequisite
step for the K − means clustering, in this function, is con-
ducted based on data analysis and exploration. The outcomes
are then fed to a K − means clustering. The goal of the
K − means clustering is to segregate cell-instances based
on their performance over the three hours sliding window.
Since a slidingwidow is adopted in this analysis, the detection
of cells with sub-optimal performance occurs on an hourly
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FIGURE 5. Classification scheme for the detection of cells with
sub-optimal performance.

basis. The sliding window approach is applied in the analysis
to distinguish temporary performance degradation. In other
words, a given cell ĉ may be labeled as Cluster I at one
time and as Cluster IV another time, during the same day.
As discussed in Section III-C, it is not recommended to
reduce the aggregation time unit below half an hour in order
to avoid network instability.

Clusters produced by K −means are evaluated statistically
to measure how cell-instances within a cluster are distributed
relative to each other. In essence, the objective of this step
is to ensure that distinguished types of faults realted to the
performance of cells could be identified. Metrics used to
statistically evaluate the quality of the clusters are Root Mean
Square Standard Deviation (RMSSTD) for compactness,
R-squared (RS) for separation, Calinski-Harabasz index
(CH), and Silhouette index (S) for compactness and sepa-
ration. Besides that, domain experts visually inspected the
faults identified. While we mainly rely on domain knowledge
for the finalization of clusters, statistical metrics are essential
to identify the optimal number of clusters.

The first K − means clustering, referred to as Tier I
clustering, could segregate samples, from cell-instances, into
four groups as shown in Figure 6(i), with the main goal of
segregating cells with the bad performance from the cells with
good performance. For this purpose, the average duration
of normally terminated calls, F1, and the relative load of
the maximum number of dropped calls, F2, are used as fea-
tures [17]. In Figure 6(i), we highlight three clusters: Type I
with low traffic (red markers), Type III with medium traffic
(green markers), and Type II with high traffic (light green
markers). It can be seen that these three clusters have no
significant network performance issues. On the other hand,
Type IV which is presented with aqua markers is an aggre-
gation of cell-instances with network issues. The Figure6(i)
shows the Tier I clustering results of two different days (both
Friday, around ten weeks apart); samples from Day I are
presented with marker ’x’, and samples from Day II are
presented with a marker ’o’. It is clear that the clustering
scheme at Tier I can group samples with the same behavior
in these four prominent clusters. At the end of Tier I, the

FIGURE 6. Results of cell performance classification.

samples of interest are those gathered in Cluster IV, as they
all represent cell-instances with poor performance. In Tier II
clustering, these samples with poor performance are further
segregated with the aim of identifying the different potential
types of poor performance. Therefore, the K − means clus-
tering is called again on Cluster IV samples, referred to as
Tier II clustering. It again involves the complete process of
feature extraction, K−means application and evaluation. But
the objective here is to further segregate samples based on
the type of issue causing the sub-optimal performance. The
outcome of Tier II clustering is three distinct Types (IV, V,
and VI), as shown in Figure 7. They depict the three common
types of sub-optimal performances registered in this network.
At the end of the two-Tier clustering in this study, we get six
distinct clusters in total, representing the different types of
traffic loads and performance behaviors. These six clusters
are analyzed by a domain expert to label their respective
performance type based on the traffic load and quality (see
Table 6). Here it can be seen that the 701 unique cells have
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FIGURE 7. Samples from three clusters representing three different types of bad performance in the cells over the three hours window of time.

TABLE 6. Distinct cell behavior trends.

4541 times low traffic and overall good performance over the
intervals of three hours in a day. Similarly the behaviour of
cells in other classes listed the Table 6 can also be interpreted.

The second function shown in Figure 5, is the classification
which uses a Support Vector Machine (SVM) based model.
The model is trained based on the labeled data obtained as the
result of clustering. In [17] the clustering and classification
scheme is applied on the data of Day I only. In contrast, here
we present results for the data of both Day I and Day II.
Samples of the cells from two different days are differentiated
by the marker style in Figure 6(i).

Results for the prediction accuracy for each type are
presented in Figure 6(ii) with two different colors for two
different days. The accuracy results reported in [17] are
shown in blue bars in Figure 6(ii). These results are obtained
by training the SVM classifier on 75% of Day I data and
tested on 25% unseen Day I data. In this work, we have
trained the SVM classifier on the complete data of Day I
and tested it on the unseen complete data of Day II, shown
with red bars in Figure 6(ii). We have used Linear kernel and
penalty score C = 1000. These are the same parameters that
yielded the best performance for Day I in cross-validation and
testing [17].

The classifier trained on the data from Day I classifies the
completely unseen samples from Day II with an accuracy
of 97.69%. Some significant variation in the performance of
the classifier can be seen in detecting Types III, and IV on
two different days. However, the overall accuracy score and
type-specific accuracy reflect that the model is very effective,
even on unseen data of complete Day II. It also reasserts

that the features extracted and used for clustering are very
relevant and meaningful. One possible explanation of the
observed differing model performance can be the variance in
the number of cell-instances of poor performance on Day I
and Day II. On Day I there are 638 cell-instances reported
with poor performance. On Day II there are only 362 such
cell-instances; almost half of those on Day I.

In the subsequent sections, we further investigate how the
results of this hybrid scheme for classification can lead to
root-cause analysis of the source of poor performance.

V. VISUAL DATA INTERROGATION AND
INTERPRETATION
As discussed in Section IV, each cell-instance, Sĉ,h, is clas-
sified as having one of six possible behaviors listed in
Table 6. In this notation, the index ĉ refers to the anonymous
cell ID and the index h indicates the most recent hour of
this cell-instance. In this section, a root-cause analysis is
conducted manually by examining the results of cell-instance
classification conducted in Section IV.

We first examine the cell-instances with sub-optimal per-
formance, particularly, those which are classified as, Type IV,
Type V, and Type VI on Day I. The distribution of these
cell-instances during the period of interest is shown in
Figure 8. It is immediately evident that a major failure
occurred between 10:00 and 12:00 and has affected around
130 cells. The corresponding cell-instances follow the same
pattern of classification in the same chronological order:
Type IV followed by Type V which precedes Type VI.
We refer to this group behavior as Case 1 and we provide
a comprehensive analysis of such behavior in Section VI-A.
A similar trend is observed later between 14:00 and 15:00,
although fewer (only 17) cells are affected. This is another
occurrence of Case 1 group behavior and is further analyzed
in Section VI-A. Moreover, by inspecting Figure 8, another
sub-optimal performance trend is seen in the evening starting
at 18:00 which is characterized by an exponential increase in
the number of cell-instances classified with behavior Type IV.
This trend is presented as Case 2 and is further analyzed in
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TABLE 7. Root-cause analysis pertaining to Case 1.

FIGURE 8. Distribution of cell-instances of Types IV, V, and VI on Day I.

Section VI-B. Another issue that can be spotted by visual
inspection of Figure 8 occurs around 06:00 and is character-
ized by a peak in the number of cell-instances (corresponding
to exactly 17 cells) suffering from Type IV. This trend is
referred to as Case 3 and is discussed in Section VI-C.

VI. ALGORITHMIC DATA INTERROGATION AND
INTERPRETATION
For NPM, visual inspection is neither efficient nor cost-
effective. Instead, we present Algorithm 1 which runs every
time unit (an hour, in this example) with the aim of auto-
matically extracting poor performance trends without visual
inspection. The algorithm is divided into four parts. Part 1
(Lines 4-10) performs the classification of cell-instances cre-
ated using a sliding window of three hours. Each cell-instance
contains data of the last three hours, where hour h is the recent
one, h−1 the last one and h−2 is the second last hour. All cell
instances Sĉ,h that are classified as sub-optimal performance
type T , (i.e.issue type T ∈ {IV ,V ,VI }) at time h, are
grouped into three separate sub-optimal performance group:
Gh,IV , Gh,V , or Gh,VI , depending on the type of sub-optimal
performance T . Some patterns are observed by analyzing
the way some groups of cells have sub-optimal performance
for consecutive hours or on a particular hour of the day.
Such Sub-optimal Performance Groups, SPG, are identified
in Part 2 (Lines 13-18), as defined below:
• SPGi

h,T : These represent groups of cells with sub-
optimal performance (i.e., T ∈ {IV ,V ,VI }), dur-
ing the three hours of the sliding window and they
follow the same pattern of sub-optimal performance.

Patterns of such performances are described as sequence
{T ,T1,T2} of type of issues faced at time h, h − 1 and
h− 2 respectively. Thus, there are 33 = 27 possible pat-
terns or group formations in this category for each hour
of the day. These are formed such that ĉ ∈ SPGi

h,T if
ĉ ∈ Gh−2,T2 ∩Gh−1,T1 ∩Gh,T and where i ∈ {1, . . . , 27}
such that for i = 1, T = T1 = T2 = IV , for i = 12,
T = V ,T1 = IV ,T2 = VI , and so on, for i = 27,T =
T1 = T2 = VI .

• SPGj
h,T : These represent cells that do not fit in any

of the 27 groups SPGi
h,T at time h. There are three

such groups SPG28
h,T , SPG

29
h,T , and SPG30

h,T for T = IV,
V, and VI, respectively. These are formed such that,
SPGj

h,T = Gh,T−SPGi
h,T for T ∈ {IV ,V ,VI } and for

all i ∈ {1, . . . , 27}.

Part 3 (Lines 21-24) aims to identify a particular undesired
behavior (T ∈ {IV ,V ,VI }) where the number of affected
cells increases with time i.e., |Gh,T | > |Gh−1,T | > |Gh−2,T |,
where |G| indicated the size of the group. In other words,
the actual cells that are affected by Type T may change with
time, but the number of affected cells increases. This part
is important to capture issues that cause a ripple effect in
the network (e.g., congestion). A Focus Group FGh,T =

Gh,T ∪ Gh−1,T ∪ Gh−2,T is formed to track the root-cause
of the problem.
The last part (Lines 27-32) identifies the root-cause of the

problem by inspecting both the network architecture features
and the geographical/landscape characteristics of cells with
sub-optimal performance. Two Greatest Common Descrip-
tors (GCD) with respect to the network architecture (GCDN )
and the geographical distribution (GCDG) are calculated to
identify the largest common feature among the majority of
cells in the group and to none (or few) outside the group,
as follows:

GCD = argmax
z

∑
ĉ∈Gh

I (zi ∈ Z)∑
ĉ∈G/Gh

I (zi ∈ Z)
(1)

where zi is the value of the ith feature from the potential
feature set Z (see Table 5) contributing towards the bad
performance found in Group Gh at time h of the day. I is
an indicator function that takes 0 when a feature value is
not present or 1 when it is present. Equation (1) identifies
feature z with the highest frequency of its value in the bad
performance group of cells Gh as compared to the rest of
cells in G/Gh at time h. There are two types of features:
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Algorithm 1: Identifying Groups of Cells in the Network
With Sub-Optimal Performance

while (1) do
h = current-time;
PART 1: Identifying cells with undesired
performance;
for ĉc ∈ Network-Cells do

from cell-instance Sĉ,h based on h− 1 and h− 2;
Classify cell-instance Sĉ,h based on trained
model=> L(Sc,h);
for T ∈ {IV ,V ,VI } do

if L(Sc,h) = T then
Add ĉ to Gh,T ;

end for
end for
PART 2: Grouping of cells with similar sub-optimal
performance;

for T ∈ {IV,V,VI} do
for All ĉc ∈ Gh,T do

for T1 ∈ {IV ,V ,VI } do
for T2 ∈ {IV ,V ,VI } do

if ĉc ∈ Gh−2,T2 ∩ Gh−1,T1 ∩ Gh,T
then

Calculate value of i;
Add ĉc to SPGi

h,T ;
Set
Member−of−SPG(Cc) = True

end for
end for
if Member − of − SPG(Cc) = False then

Calculate value of j;
Add ĉc to SPGj

h,T
end for

end for
PART 3: Identifying network trends;
for T ∈ {IV,V,VI} do

if |Gh,T | > |Gh−1,T | > |Gh−2,T | then
Find FGh,T = Gh,T ∪ Gh−1,T ∪ Gh−2,T

end for
PART 4: Root-cause analysis and KPIs;
for All g ∈ SPG where |SPG| ≥ MinSize do

Find GCDN (g) and GCDG(g) using Eq (1);
if GCDN (g) is empty and GCDG(g) is empty or
|SPG| < MinSize then

Generate cell specific KPIS for past 24h;
ANCD, ADCD, ADCD/ANCD, DCR

end for
end while

Network-related andGeography-related. The network-related
features are ranked from greatest to smallest as follows:
Network > MSC > LAC > site > cell. Whereas
the geography-related features are ranked according to
the size of the area covered by the problematic group

Countrywide > Region > Town > AreaInTown >

Scattered . In this case, Scattered refers to a feature that is
common to multiple scattered areas, such as clutter type.
For example, for a given LAC, if most of its cells belong
to G/Gh and few or none have normal performance at time
h, then LAC will be selected as network-related GCD (or
GCDN ). From a geography-related perspective, if the most
of the cells with sub -optimal performance are located in
the same Town TownA and no/few cells in TownA exhibit
normal behavior, it can be said that the GCDG is TownA.
In case no GCD is found from both network and geography
perspectives, a detailed KPI report is generated to facilitate
the diagnosis analysis by a domain expert.

Algorithm 1 successfully identifies all the issues that are
visually observed by examining Figure 8. In addition, two
previously undetected events are further identified on Day I.
The first event follows the trend Case 1; it takes place at
8:00 and involves seven cells. The second occurs at around
13:00 where five cells follow a new pattern of sub-optimal
performance: Type VI followed by Type IV, then Type V. This
is discussed in Section VI-D with other cell-specific root-
cause analysis. More importantly, the algorithmic approach
guarantees that no other event of interest goes unnoticed
during the period of interest.

A. ROOT-CAUSE ANALYSIS: CASE 1
There are three occurrences of this case in the CDR data
of Day I and one occurrence in data of the Day II. This
trend is followed by a group of cells that are classified as
Type IV at time h − 2, followed by Type V at h − 1 and
Type VI in the current hour h. These cases are detected by
the algorithm (Part 2) as SPG6

h,VI and also as SPG28
h−2,IV .

In fact, the outcome of Algorithm 1 highlights only four
such groups SPGi

h,T (where i ≤ 27) in which the size of
(SPGi

h,T ) > 3. The first three groups are in Day 1, SPG6
h,VI

at h = {10, 12, 16}.
For each of the groups SPG6

h,VI , we calculate GCDN and
GCDG using Eq (1), as listed in Table 7. Based on the GCDN
and GCDG findings for each SPG, we offer an interpretation
validated by a domain expert, as shown in Table 7. The
sub-optimal performance group captured in Day I SPG6

10,VI
is presented by Figure 9. Cells belonging to SPG6

10,VI are
highlighted in blue; these are mostly from two problematic
sites in the same area. Thus, it can be seen that the GCDG is
Area A in City C and the GCDN = {1129, 1142} with the
blue square and blue cross, respectively.

The sub-optimal performance groups SPG6
12,VI in Day I

and SPG6
21,VI in Day II are visually shown in Figure 10. Cells

belonging exclusively to Day I’s SPG6
12,VI are presented by

left-directed orange triangles. Cells with bad performance in
SPG6

21,VI only on Day II are highlighted by right-directed
green triangle markers. The first group shows that 98.5%
of all cells in Zonen have issues on Day I and the second
group represents 82.6% of these cells have the same issue
on Day II. Zonen is served byMSCm, hence in both days, the
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FIGURE 9. All cells in Area A of City C.

FIGURE 10. All cells from groups SPG6
12,VI in Day I and SPG6

21,VI in Day II
in Zonen of the network.

GCDG = Zonen and GCDN = MSCm are visible greatest
contributing descriptor for the faults present in these groups.
Indeed, the failures, that caused these events would have
likely generated an immediate alarm at the Operation and
Maintenance Centre (OMC), alarm for link failure, or MSC
failure for faults presented in Figures 9 and 10, respectively.
These failureswould have also triggered a ripple effect of sub-
sequent alarms related to each link or node that is connected
and affected. From the data available, it is evident that there is
a serious problem with MSCm which has caused disruptions
of service to a whole region of the network (Zonen shown in
Figure 10). However, it is not clear what is triggering theMSC
failure; the cause does not seem to be correlated with the traf-
fic volume. An immediate investigation should have been ini-
tiated onDay I and a redundancy plan should be put in place to
avoid this problem from reoccurring. A domain expert at the
OMC would have been able to identify the root-cause among
all the beeping alarms and acted accordingly.

On the other hand, cells in SPG6
16,VI may not necessarily

generate an alarm and would have the typical symptoms
of a sleeping cell. Based on the common features listed in
Table 7, these 13 cells seem to have suffered from the Case 1
disruption earlier at 12:00 and they never fully recovered.
In this case, the CDR-driven NPM is able to identify such
cells and hint to the possible cause in a timely fashion. The

alternative expert-led detection would have taken days before
it was noticed and diagnosed.

B. ROOT-CAUSE ANALYSIS: CASE 2
Only one occurrence of this trend is detected by the algorithm
(Part 3), that is FG21,IV on Day I, and it matches the case
reported in Section V. The number of cells classified as Type
IV are 2 at h = 19 and increase to 5 cells at h = 20 and
21 cells at h = 21. A closer examination reveals that most
of the cells in this group are in residential areas in various
sections of the country. The remaining cells in FG21,IV cover
the highways and roads leading out of the large cities. Thus,
in this case, there is no network-related GCDN but the under-
lying GCDG is the clutter type Residential, although it does
not apply to all cells in FG21,IV . This case depicts the behavior
of cells that suffer from congestion. Since these cells are
dispersed and not within a specific area or city, the constricted
resources are likely to be related to radio access. This case
is only captured on Day I of the data which indicates that
the congestion experienced may be related to a special event
on this day. Indeed, Day II (which is also a Friday) does not
manifest signs of congestion in these cells. In situationswhere
Case 2 is repeated, the affected cells should be diverted to the
planning department with the recommendation of a capacity
upgrade.

C. ROOT-CAUSE ANALYSIS: CASE 3
There are many occurrences of a group of cells having the
same classification for a single hour, SPGj

h,T , however, only
one stands out on Day I, as the size of the group is larger
than three (MinSize = 3 see Algorithm 1) and the occurrence
is neither covered by Case 1 nor Case 2. This is labeled as
SPG30

6,VI , detected by Algorithm 1 Part 2 and can be seen
visually at 6:00 am in Figure 8. Locations of the cells in this
group are varied: 13 are in the same city and neighboring
areas, 2 are in other cities, and 2 are in open space/road. Thus,
Part 4 in Algorithm 1 yields empty GCDN and GCDG and
triggers the generation of a detailed KPI report. We examine
the average normal call duration ANCD (for calls that ter-
minate normally), the average dropped call duration ADCD,
and the drop call rate DCR for each of these cells during the
hour 6:00 and 7:00, and further group these cells as shown in
Table 8.
In order to validate the interpretations in Table 8, a compar-

isonwith historical data would be very useful, in particular for
Case 3-A and Case 3-B. If the cause of quality deterioration
were interference, then it is likely to be detected at similar
times in the past. In this case, an in-depth investigation can
be conducted using drive tests or Minimisation Drive Test
(MDT as in [35]) to locate the exact location of the quality
degradation. Once the planning department is provided with
this information, it should be possible to solve the problem
with controlled frequency planning and antenna fine-tuning.
As for Case 3-C, there seems to be a correlation between
the duration of calls and the likelihood of a drop, as seen in
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TABLE 8. Root-cause analysis pertaining to Case 3.

FIGURE 11. This figure represents the average performance of cells in
Case 3-C of SPG30

6,VI . It is clear that around 6 AM, the increase in Dropped
Call Rate (DCR) (i.e., the percentage of dropped calls from the total
number of calls) is correlated with the Average Dropped Call Duration
(ADCD). In other words, calls that go on for longer than half an hour are
likely to drop. This may be due to handover issues, but the data available
is not sufficient to confirm.

Figure 11. Therefore, a closer examination of the handover
metrics and of the timing advance parameters of the con-
cerned cells would shed light on the cause of this problem.
Similarly, a drive test along the roads concerned or an MDT
would help recreate the problem and capture the detailed steps
leading to the failure.

D. ROOT-CAUSE ANALYSIS: CELL-SPECIFIC USING KPIS
The algorithmic approach in 1 identifies a group SPG20

15,V
which includes 5 cells with pattern VI , IV ,V . These cells are
captured in multiple groups during Day I including SPG6

12,VI
discussed in Section VI-A and SPG6

16,VI and SPG
18
17,VI . These

cells seem to never recover completely. The GCDG shows
that these cells belong to two distinct radio sites that are
geographically very distant however they both serve high-
ways in the proximity of small towns. The GCDN shows
that these radio sites do not serve other cells except the
affected ones. Moreover, the GCDN shows that each of these
radio sites is associated with an exclusive LAC. It is likely
that the dedicated trunk connecting each of these two LACs
fails repetitively during the afternoon (possibly caused by
the major incident reported in SPG6

12,VI ) and causes the per-
formance degradation. One particular radio site, S1, is out
of the geographical boundary of the MSCm for which the
failure is reported in Section VI-A on Day I. Nonetheless, all
cells in this site seem to go completely off two times during
the day and remain so for a duration of three hours each
time, as seen in Figure 12. This first occurs between 11:00
and 12:00 and the second time between 16:00 and 17:00.

FIGURE 12. This figure represents the aggregate number of normally
terminated and dropped calls in Site S1 which consists of three cells. The
site is seen to go off (not carry any traffic) over two periods during Day I:
at 11:00 and at 16:00.

Systematically, two hours prior to each of these episodes,
a jump in dropped calls is noticed in all three cells. This
indicates that the problem is related to the routing of calls
within the LAC, i.e., to the connected trunk. A trunk failure
may cause some processes in the site to restart or perhaps
the restart action is taken by an operator at the OMC to
clear some issues. In both cases, a reset normally results
in no traffic on the site for a few minutes. In this par-
ticular case, however, it remains off for much longer. The
site, thus, goes to sleep until a general reset is applied.
These symptoms may be the result of multiple failures in the
connected trunk as well as the site’s hardware in the base
station.

Another peculiar cell-specific behavior is seen on Day II
and consists of a group of cells that remain as Type VI for
three consecutive cell-instances. The first occurs between
6:00 and 8:00. It includes three cells of the same Site S2.
The corresponding generated KPI report is presented in
Figure 13(i) which shows the number of normally terminated
and dropped calls for the three cells in S2. The values pre-
sented are the aggregated values for the three cells in that site.
From Figure 13(i), it can be seen that the overall traffic (calls
entertained) drops on-site S2 at 8:00am and the number of
dropped calls increase. But it can be seen as a temporary issue
as the traffic gets normalized afterward, indicating that it can
be a temporary hardware failure issue. The second such cells
specific behavior occurs between 18:00 and 20:00 for the two
cells of the same Site S3. The corresponding generated KPI
report is shown in Figure 13(ii). Here it can be seen that
the traffic load increases from 19:00 to 20:00 and the call
drop rate is also high, it can likely be a traffic congestion
case.
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FIGURE 13. Cell-specific analysis of S2 and S3 on Day II.

VII. ANALYSIS OF PROPOSED AI-DRIVEN CDR-BASED
ROOT-CAUSE ANALYSIS
We have presented a framework that analyses streaming CDR
records to identify cells with sub-optimal performance and,
where possible, locate the root-cause of the problem. This
framework is validated using a real dataset and the obtained
points of interest are compared to the visual inspection con-
ducted by a domain expert in Section V. The visual inspection
is carried off-line by the end of the day after all data has
become available. It allows spotting patterns of sub-optimal
performance, as shown in Figure 8 and focusing the attention
of the domain expert to investigate and interpret the detected
problems after 24 hours. In contrast, the proposed framework
depicted in Algorithm 1 identifies each of these detected
problems within a three-hours window (a design parameter
that may be reduced) and offers an automated root-cause
analysis that matched the expert’s conclusion. Thus, the first
gain of the proposed framework is the online capability joined
with the overarching view of the network from the CDR
perspective that allows the immediate location of the root-
cause. Furthermore, the framework ensures that all cells with

sub-optimal performance are detected, even those which may
not be seen by visual inspection such as Case 1 occurrence
on Day I at 10 AM (SPG6

10,VI ). Thus, the second gain of
the proposed framework is the guaranteed detection of all
problems and the identification of their root-cause. The algo-
rithm is designed to detect groups of cells with sub-optimal
performance that are greater than or equal to a threshold
(3 in our implementation) and that match three predefined
types of sub-optimal performance (T ∈ {IV ,V ,VI } shown
in Figure 7). With these settings, a network expert is asked to
examine every hour a maximum of 30 possible groups of cells
with sub-optimal performance that have been pre-processed
and their GCDs are identified. In practice, there is never a
time where more than three groups are identified within a
single hour, based on our dataset. As such, the third gain of the
proposed framework is the automated processing of online
data that reduces the information that requires an expert’s
attention from the total number of cells in the network to a
maximum of 30 cases.

The framework can be tuned and adjusted to different
objectives by tuning the unit of time for CDR aggrega-
tion, sliding window size, the threshold for the size of
sub-performing groups of cells, the network and geogra-
phy features, and the detailed KPI report. In this work,
we demonstrate the advantages of automating the cell per-
formance classification and root-cause analysis in precision,
time-efficiency, and usage of domain expert’s resources.

VIII. CONCLUSION
In this paper, we have proposed an AI framework for the
automation of theNetwork PerformanceManagement (NPM)
process towards a Zero-touch network and Service Manage-
ment (ZSM). The proposed framework not only identifies
and classifies cells based on their performance computed
through hourly aggregated CDR data but also identifies
performance-related issues present in the cells of the network.
In addition, the distinctive feature of this framework, which is
missing in state of the art, is CDR-driven algorithm that auto-
mates the diagnosis of the root-cause of any performance-
related issues identified. As part of the AI framework, our
SVM-basedmodel classifies cells with poor performance into
respective types of sub-optimal performance groups with an
accuracy of 97.69%. Besides, the diagnosis algorithm in the
proposed framework offers an accurate root-cause analysis
that is verified by domain experts using visual graphs and
statistical summaries. Furthermore, it guarantees that no net-
work fault goes unnoticed. Our proposed framework signif-
icantly reduces an expert’s job of detecting and analyzing
networks faults and subsequently the network performance
management cost. For example, in this study, the manual
inspection of the performance of network cells is reduced to
a maximum of thirty cases as opposed to analyzing 759 cells,
at any time. The proposed AI framework is a stepping stone
towards the realization of ZSM networks where the NPM
is AI-driven and used for the automation of optimization
process.
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