A.I.P.C.E.

White Fish Study 2008

A.I.P.C.E.

EU Fish Processors’ Association

Brussels, October 2008

List of Contents

1. Purpose of White Fish Study
2. Overview of the Study Findings
3. Methods of Back-calculation to Whole Fish Live Weight for Imported Headed and Gutted Fish, Fillets and Portions
3.1 Wexplanation of Derivation of Factors for Calculating Live
3.2 Impacts of Variable Conversion Factors on Apparent Volumes of Live Weight Fish Processed
3.3 Justification for Use of New Conversion Factors in the Report
4. Supply Trends
4.1 Total Fish Supply
4.1.1 Total Supply Balance
4.2 Total Whitefish Supply of Imports
4.2.1 Principle Supplying Third Countries
4.2.2 Importance of Semi-Prepared Fish Imports
$4.3 \quad$ Total Supply of Surimi
$4.4 \quad$ Total Supply Surimi Preparation
4.5 Supply of Freshwater Fish
4.6 Supply of Salmon
5. EU Supply Base
5.1 Quota by Species
5.2 EU Catches by Quota Species
6. Carbon Footprint
7. Illegal, Unreported and Unregulated Fish, Confidence in the Supply Chain and DG Mare IUU Regulations
8. Ecolabelling, EU Proposals and MSC Developments
9. Import Tariffs
10. Background to Challenges of the Integrity of the Import Supply Base
11. Nutritional Values of Fish Species
12. Food Labelling Requirements and Declarations
13. Import Price Trends

Tables

1. Purpose of White Fish Study

The European white fish seafood processing industry relies on a consistent and sustainable supply of raw materials in order to satisfy the ever increasing demand of consumers for added value seafood products by consumers, both for domestic and out-of-home consumption.

The sources and conditions of supply have changed significantly since the first annual report was issued eighteen years ago. Since that time, not only has the added value market developed enormously, both in volume and product sophistication, but much of the raw material supply source and of the primary processing have moved out of Europe to a significant extent. New species to Europe, such as Alaska pollock have also risen in importance, along with the decline of some traditional ones, such as cod from national waters, whilst aquaculture products, such as salmon and Pangasius continue to rise in importance.

Such significant changes bring with them new challenges, some which are not only of direct concern to processors, but to all stakeholders, most important of whom are the consumers. Among these challenges can be included sustainable fisheries; ethical and legal supply, along with the growing demand for ecolabelled products; plus of course international trade and tariff considerations.

Supply statistics in this report are based on analysis and interpretation of EU Eurostat data. Since the report focuses on primary volumes of fish utilised, all volumes are back-calculated to live weight equivalents of fish. Key developments highlighted and impacting supply are based on the experience of AIPCE members and the proactive steps that they have taken to either enable supply or to mitigate potential supply issues. The aim is to ensure regular, consistent and price competitive supply base meeting stakeholder and consumer expectations.

2. Overview of the Study Findings

Accession of Romania and Bulgaria into the EU in 2007 has been taken into account in the statistical analysis in this report.

The 2007 Eurostat data, on which the report is largely based, is not readily available until well into 2008, so the discussion within the report takes account of supply and political developments up until September 2008.

The overall supply trends are following those of previous years with declining supplies from EU waters and huge reliance on third country imports. Additionally, there is also a growing reliance on aquaculture imports as well, some of which are replacements for the declining marine white fish supplies. An addition this year has been an analysis of surimi and surimi product preparations, since much of the raw material base for these products is from white fish species and of course they are substitute products for white fish and seafood in general.

Eurostat and Customs codes do not identify all species individually, so that, for example, certain species such as Pangasius (Vietnamese catfish), Nile perch, and tilapia are all classified together. Such species are increasingly important to the processing economy in Europe, so AIPCE is seeking to rectify these data deficiencies
with the EU Commission. A separate evaluation of Pangasius has again been completed to demonstrate the growing importance of this species.

Eurostat data for fishery products does not estimate the amount of whole fish from which the fishery products are derived, so AIPCE has always back-calculated these values by using official German Government conversion factors. DG Mare is currently attempting to harmonise conversion factors across member states in order to ensure common national landing statistics. However, it is clear that primary processing fishery product yields have improved significantly over recent years as these operations have been transferred to China and other third countries. This is mainly due to the move back to hand processing from machine processing methods widely used in Europe. For cod, this leads to a conservative estimated increase in fillet yield of 7%, or 18% when expressed as a yield efficiency gain. It also reflects an estimated reduction of 48,000 tons less of whole cod than would be the case if official conversion factors were used to back-calculate whole fish equivalent. Consequently, modified factors, along with justification for their use, have been adopted in this report for the first time.

The overall reliance on fishery product imports stabilised during 2006 and 2007 to 60% of total consumption, but is estimated to rise to 62% in 2008.

Concerns over IUU fish, illegal, unreported and unregulated fish supply, have been growing in profile over recent years, escalating during 2006/7, with particular concern over cod from the Barents Sea and the Baltic Sea.

In 2006, AIPCE developed a Purchase Control Document for cod and haddock from the Barents Sea, which was adopted in September 2006. A similar Control Document for the Baltic was adopted in October 2007 and positive results have been seen from the application of these.

At the Brussels Seafood Show, WWF officially commended the work of NEAFC, Norwegian Government, Russian Government, DG Mare and AIPCE in helping to reduce Barents Sea IUU cod from 160,000 to 40,000 tons.

DG Mare launched the consultation on their proposed IUU legislation in October 2007 a final text was agreed in June 2008 for implementation on $1^{\text {st }}$ January 2010. AIPCE has worked with DG Mare and member state governments to reach a practical approach towards implementation of the Regulation. AIPCE is also developing a risk based supply audit protocol, which should improve confidence in sourcing and simply Border Inspection Post monitoring of imports against IUU Regulations.

The report has included an assessment of the continuing importance of aquaculture import supplies, with emphasis on Pangasius and salmon. An analysis of the importance of surimi and surimi presentations has also been included for the first time.

Fishing industry and aquaculture industry sector concerns over rising fuel prices and feed prices have been raised against what has been claimed to be a period of flat or falling fish prices across the EU. There has been a suggestion that lower import prices and inferior quality of imports is a potential reason for this. As a result, there is currently a call for increased border inspection controls and a review of the tariff regime. This is discussed within the report, but there is no evidence for price declines in imported fish for processing and in fact quality consistency and yield
improvements have been a benefit of primary processing in third countries. However, what is agreed by AIPCE is that there is a need for accurate labelling of fishery products. This particularly applies to additives and added water, which is essential in order to ensure that the whole industry is operating from the same supply base line and marketing standards.

Carbon footprint and food miles within the fishing industry and in particular, the processing sector has received much attention over the past 2 years. This has been linked, in particular to the practice of carrying out primary processing in third countries in S.E. Asia. However, a number of studies are now being published that demonstrate that the bulk transport is only a small part of the energy cycle and that this is offset by the yield and quality improvements obtained by carrying out hand processing in these third countries.

MSC fishery certifications are now accounting for over 7% of the world's fisheries and many retailers and brand owners across the EU are now using the MSC ecolabel on pack. DG Mare is proposing a new ecolabel initiative, described as fishery sustainability and is looking to develop partnerships with industry sectors to further the initiative. AIPCE has entered initial discussions, but of course the MSC is now well established and there is a marketing reluctance and consumer fatigue/confusion when it comes to multiple messages on foods.

3. Methods of Back-calculation to Whole Live Fish Weight Utilised For Imported Headed and Gutted Fish, Fillets and Portions

3.1 Explanation of Derivation of Factors for Calculating Live Weight of Fish from Fishery Products

Eurostat data do not include a back-calculation to estimate the weight of whole live weight fish utilised when quoting fishery product statistics.

During the past 17 years, for comparative consistency, the conversion factors used by AIPCE to back-calculate the equivalent amount of whole live weigh equivalent fishery product imports have been those adopted by the German Government. Each EU member state and third country has its own official conversion factors that will have been based on scientific observation of the captured fish and preparation technique used. They will have been pertinent, to a large extent on the fishing grounds and size of the fish species targeted. Likewise, the processing of the prepared fish, for example from headed and gutted (H\&G) format into fillets and portions, or for salting, will have generated further conversion factors, dependent on the processing techniques used and final form of the fillets and portions.

There have been very significant changes in the sourcing of white fish over these 17 years and more importantly, in the final methods and locations of processing into fillets and portions. As a result, many of the official conversion factors in use are no longer pertinent.

Taking cod as an example, capture has very much moved towards the Russian, Norwegian, Icelandic and Polish fleets, whilst Pacific cod from the USA fleet has grown in importance as an alternative supply source.

Likewise, final processing of frozen H\&G cod into filets and portions is now largely carried out in S.E. Asia, predominantly, in China. It is this final processing where the greatest changes in yield have occurred and hence in the conversion factors to be used In Europe, frozen H\&G cod is typically fully defrosted and processed via Baader type equipment, followed by ' V ' cutting to remove pin bones. The ' V ' cut fish is then recovered mechanically to generate mince that is typically made into blocks.

This can be contrasted with China, where the H\&G cod is hand filleted in a semifrozen state, when the pin bones are carefully removed, again by hand, so that there is very little wastage of prime fish or generation of lower value mince.

3.2 Impacts of Variable Conversion Factors on Apparent Volumes of Live Weight Fish Processed

As indicated above, there are significant differences in the official conversion factors used by EU member states and third countries for calculating live weight from both fresh landed and H\&G fish. These differences are listed in Table 4.15 in the tables section, but examples are illustrated below to show the impact on apparent live weight of fish caught based on 1,000 tons H\&G cod landed.

Conversion Factor \begin{tabular}{l}
Frozen H\&G Cod

Tons

Live Weight Equivalent

Tons
\end{tabular}

Belgium	1.5	1,000	1,500
France	1.38	$\ldots \ldots \ldots$	1,380
Germany	1.71	$\ldots \ldots \ldots$	1,710
Norway	1.5	$\ldots \ldots \ldots$.	1,500
Poland	1.64	$\ldots \ldots \ldots$	1,640
Portugal	1.4	$\ldots \ldots$.	1,400
Russia	1.5	$\ldots \ldots$.	1,500
EU Proposed	1.4		1,400

[^0]Taking the extremes of the above factors, it is evident that for every 1,000 tons of H\&G cod, the back calculation of the live weight of cod from which it was derived could vary by up to 330 tons.

The EU Commission, DG Mare member state Fisheries Management Committee began a harmonisation process during 2007 to try to reconcile these different factors, but so far without resolution. Their proposal of 1.4 for an H\&G cod factor is maybe slightly too low, but for the purposes of AIPCE calculations, bearing in mind that Russia and Norway are the principle suppliers, all calculations have now been based on a 1.5 factor for this 2008 report, instead of the German 1.71 factor used previously. This has been retrospectively applied to previous years, so that live cod utilisation will be lower than shown in earlier reports. A factor of 1.5 translates to an H\&G yield of 66.7% and a difference of 210 tons of live cod weight equivalent for every 1,000 tons of H\&G utilised, when compared to the German factor that has been used previously. Note that no attempt has been made to modify the official EU landed statistics for fresh fish landed in the EU, so only import statistics are altered in this process.

As discussed above, the major movement of the primary processing of H\&G fish into fillets and portions has been from Europe to China over recent years. This has led to very significant yield improvements of fillet type products, hence the need to make a change to the conversion factors.

The German official conversion factor from skinless cod fillets to whole fish is 2.95, which translates to an overall 33.4 \% yield. However, there is also a 5% arising of cod mince in addition to the fillet meaning an overall yield of 38.4%.

In China, a typical yield of skinless fillets from H\&G cod is up to 70%, but a value of 68.2 \% has been used for the purposes of these calculations, translating to a conversion factor of 2.2 back to live fish weight equivalent. As also explained above, there is no arising of mince, but there will be a small arising of trimmings that would be utilised elsewhere.

Overall yield in China from live weight equivalent of cod can therefore be assumed to be 45.5%. When compared to mechanically processing fish in Europe, this is an overall gain of 7% based on the live weight equivalent of cod. Another way to express this would be as an 18% efficiency and yield saving. Additionally, the overall commercial value of the derived products is higher because more fillet products will be generated without an arising of lower value mince.

The suggested yield of 45.5 \% is probably on the conservative side; since one large integrated company in China is claiming that they can achieve a 50% overall yield from their fish. However, this may well include by-product recovery as well.

Clearly, applying the more appropriate cod factor for imported fillets from China has a very significant impact on the apparent amount of live cod being utilised.

Similar logic has been applied to factors used for other white fish species, where this can be justified. For example, factors used for the Ground Fish Forum reports have been considered and it has been found that NIMS in the USA use quite different factors for Alaska Pollock.

Interestingly, increased factors result for Alaska Pollock, where the USA and Russia process fresh fish mechanically into fillets on board their integrated factory vessels. However, in China, a significantly reduced factor is calculated for hand processing block frozen H\&G, which is largely derived from Russian caught fish. An increased calculated usage of live weight fish therefore results for American and Russian processed A. Pollock, but reduced usage for Chinese processed fish. In terms of EU import statistics for previous years; this translates into very little overall change because the increase in live weight equivalent usage in the USA and Russia is offset by the yield improvements in China.

Some of the factors now applied are as outlined below (also see table 4.15):

Species	Product Type	Original Factor	New Factor
Cod	H\&G		
Cod	Frozen fillet	1.71	1.50
Cod	Fresh fillet	2.95	2.20
A Pollock	H\&G	3.48	2.90
A Pollock	Frozen fillet (USA)	1.51	1.70
A. Pollock	Frozen fillet (Russia)	2.95	3.70
A. Pollock	Frozen fillet (China)	2.95	3.70
Salmon	Frozen fillets	2.50	2.38
		2.27	

3.3 Justification for Use of New Conversion Factors in the Report.

Obviously there is always a reluctance to alter a long running statistical appraisal, but in the 2007 report, the back-calculated volumes of whole cod utilised in 2005 and 2006 were 1,116 and 1,113 million tons. These volumes were considerably above all internationally calculated legal quotas and were set against a background where it was clearly evident that the actions being taken to reduce or eliminate IUU cod were having a positive impact.

The official German factor for H\&G cod was on the high side of those typically applied across Europe, but Germany, the instigator of the Whitefish Study, was also a significant cod fishing nation at the time.

Now that so little cod is processed in Europe, it is no longer necessary to attempt to apply proportionate yields between European and Chinese processed fish and so using more realistic factors for imported as discussed above, similar calculations have been made and applied to other species.

This detailed explanation of changes made to the back-calculations of live fish equivalent translates into an apparent 48,000 tons less utilisation of live cod in 2006. However, for the other significant imported species, Alaska Pollock, whilst a reduced factor has been applied to Chinese processed fish, an increased factor has been applied to USA and Russian processed fish.

As already stated, the revised conversion factors adopted by AIPCE for imports have only been applied to fishery product imports, not to landed fish in the EU member states, which is covered by the member state factors. Clearly it is important for Governments to ensure that conversion factors for primary landed and primary processed fish reflect accurately reflect live weight of captured fish in order to manager quota uptake effectively.

4. Supply Trends

4.1 Total Fish Supply

Specific appraisal of EU national fish catch quotas and supply will be dealt with in section 5 of this report, but an appraisal of total fish supply and relative dependence on imports will be dealt with here.

This will be followed by a review of the key white fish species for AIPCE, their main supplying and primary processing countries. White fish has typically meant the marine species, but fresh water species, such as tilapia and Pangasius from aquaculture are now rising in importance as a supply source and these will be discussed, as will salmon, which although clearly not a white fish, can now account for half of allocated space on retailer fish counters. Surimi and Surimi products have also been included for the first time in the report as well

4.1.1 Total Fish Supply Balance

Whilst this is a white fish study, the overall supply situation, including national landings and imports, across all fish species reflects that of white fish with respect to reliance on imports from third countries.

Table 4.1 (in the tables section) details the relative food balance between EU total fish catches, with adjustments for industrial fish catches for non-food use, EU exports and imports.

The analysis of these data can be expressed in various ways as shown in the following three figure charts;

Fig. 4.1 reflects the ratio of imports of fish to EU landings of fish. Note that the EU accession in 2004 increased membership from 15 to 25 member states, further expanding to 27 in 2008. With accession came increases in EU available fish stocks, but also adjustments to take into account fish volumes that would have previously been classed as imports/exports between these trading partners. Data has been recalculated to take account of these changes.

Fig 4.2 Charts the total fish supply for consumption with the import volumes at the lower section of each bar and EU catches at the top.

Fig. 4.3 expresses the declining self sufficiency of the EU as EU catches as a percentage of total consumption, including imports. For 2007, self sufficiency was 40 $\%$, but it is estimated to be 38% in 2008. Whilst declining self sufficiency has been a constant trend, as has been explained above in section 3 , this is a slightly better result than reported in previous reports because of a reappraisal of yield calculation of fishery products from whole fish equivalents.

Fig.4.4 is indicating a steady rise in available fish for consumption across the EU 27 for 2007 and estimated 2008. However, it is interesting that the last consumption rate against population calculated for the EU 15 in 2003 was $27.2 \mathrm{~kg} /$ caput, falling to 23.1 for the EU 25 in 2005 and then rising to 24.5 for the EU 27 in 2007. Clearly these figures hide large variations in consumption rates across the member states.

4.2 Total White Fish Supply of Imports

As previously described, whilst the overall fishery product supply base is reliant on imports to a level of 60%, marine white fish dependency remained at 90% for 2007, as indicated in Table 4.2 in the tables section..

Overall, the total supply volumes of white fish decreased slightly to 2.944 million tons, of which cod was also slightly decreased at 954,000 tons, but Alaska Pollock increased slightly to 874 thousand tons. Essentially however, 2006 and 2007 volumes are very similar, suggesting a stable supply situation. Import dependency for the 7 most important marine white fish species is indicated in Fig. 4.1 below:

Again based on the analysis of table 4.2, whilst cod, Alaska Pollock and hake remain the most important species expressed in volumes utilised as live weight equivalent are indicated in Fig 4.6.

4.2.1 Principle Supplying Third Countries

Table 4.3 provides an analysis of the third countries supplying the EU with white fish and its various presentation formats such as fresh, frozen, whole filet, meat etcetera. The subsequent tables to 4.4 to 4.14 provide a detailed breakdown by species.

From the analysis in Table 4.3, the following figure 4.7 (see below) indicates the volumes supplied by each third country. Once again, China is the clear leader, but due to the re-appraisal of conversion factors, the USA now features ahead of Iceland and Norway as the second most important supplying country.

Under China's Customs and tariffs systems, all primary processing undertaken on imported and subsequently re-exported fishery products, results in a reclassification of these as of Chinese origin. However, since virtually all of the processed white fish from China is supplied by other third countries, table 4.3 does not reflect catch and country source, but final primary processing source. Obviously, since Russia supplies a very significant amount of the cod, from the Barents Sea, as well as Alaska Pollock and salmon, from the Pacific that is processed in China, then Russia would rise close to the top of the supplying countries if originating source was being reflected. Norway also supplies cod, haddock, redfish, saithe and Greenland halibut to China for processing. Whilst Iceland also sends similar species to China, this country is a major supplier of cod to the southern European salt fish processing industry, as well as supplying large quantities of both fresh and frozen product into Europe. The USA processes much of its Alaska Pollock on board its factory vessel fleet; it does send some to China as well as Pacific cod and Pacific salmon species.

Virtually all of the whitefish processed by China has its catch origins in the traditional third country fishing nations such as Iceland, Norway, Russia, USA and New Zealand. Under Chinese Customs regulations, 40 \% added value rules, processing of imported H\&G fish into fillets and portions results in a change of origin status.

Concerns have been raised within the NGO communities over the role of some aspects of the activities of the Chinese fishing fleet with respect to IUU fishing in the southern oceans and the African coast. Whether this is a major issue or not has nothing to do with the processing of white fish, other than by national association. The white fish has its catch origins in quite different international regions and is predominantly caught by vessels flagged to other countries.

Traceability of any fish source is essential, however and this has to be from catch to factory carrying out any semi-processing operation onto the final processor and added value product.

4.2.2 Importance of Semi-Prepared Fish Imports

Again, based on Table 4.3, the ever growing importance of semi-prepared processed fish for the European value added secondary processing industry can be seen in Fig. 4.8.

Whole fish imports, both fresh and frozen, continued the steady decline by a further 7 \% each in 2007 compared to 2006. To some extent, this reflects the declining primary processing facilities within the EU, as national white fish landings also decline. In Table 4.3, it is interesting that there has been a steady import of Pacific H\&G cod from the USA, which is predominantly, goes to Portugal, presumably for salt fish production. It seems that this is a major use for the H\&G imports now.

Following steady rises over previous years, fresh and frozen fillet import volumes remained virtually static compared to 2006, at 61,465 and $1,692,527$ tons respectively.

Iceland was the dominant supplier of fresh fillets at 64% of total compared to Norway at 33%, by far the dominant species being cod.

Fresh fillets are an indication of the demand for chill fresh fillets into the developing chill markets of northern Europe. Both Norway and Iceland are able to maximise their added value from their fresh fish by shipping and/or flying high quality products to the EU on a daily basis. Interestingly, the growth of the UK chill seafood market showed a slowing of growth in 2007/8 for the first time, whilst the frozen market returned to growth. No doubt this is a reflection of the current turn down in the economy and may indicate a future trend across Europe.

Whilst China dominated the frozen fillet import at 549,311 tons whole fish equivalent, the USA was second with 391,995 tons, followed by Iceland, Russia, Argentina and Namibia all with between 157,000 and 107,000 tons each. That Norway only supplied some 55,000 tons of fillet, based on whole fish equivalent, reflects the importance of China as a primary processing country, as discussed above. This put the Faeroes ahead of Russia, followed by New Zealand and South Africa at 32,215 and 31,410 tons as the other significant fillet supplying countries.

China's two principle fillet species were A. Pollock at 353,000 tons and cod at 125,587 tons, whilst the USA was essential A. Pollock with 30,000 tons hake, Russia was A. Pollock, cod and haddock fillets, with Argentina, Namibia and S.Africa as hake.

4.3 Total Supply of Surimi

Surimi has not previously been included in the Whitefish Study, but it is an important fish supply source and so should be covered. It should be realised that surimi is not a product preparation for direct consumption.

Surimi is the insoluble minced fish protein derived from a number of species through a multiple washing and separation process, which is typically distributed in frozen block form. It is used as the base for further added value product preparation, which can be as a protein enhancer in meat products, but is predominantly for surimi preparations such as crab flavoured seafood sticks and similar analogues.

From Table 4.14, it can be seen that there has been a steady rise in imports of surimi over the past 3 years to 189,038 tons of whole fish equivalent in 2007.

The most frequently used species for surimi for the European market used to be white fish, such as Alaska Pollock, but as the separation techniques have improved, then alternative species have been used. For instance, in China it is believed that most surimi is generated from red threadfin bream, one of the highest globally caught
species in the world, whilst in Chile it will be pelagic species. Here in European waters, the pelagic blue whiting is a common source of raw material for national production.

There are particularly important processing companies converting imported and nationally derived surimi in member state countries such as France, Lithuania and Poland.

Of the total surimi imports into the EU, the USA dominates with 82,396 tons equivalent whole fish, followed by Chile at 50,910 ton and Vietnam at 22,561 tons. From the above explanation, it can be assumed that the USA fish source will be Alaska Pollock, Chile pelagic mackerel/sardine types and Vietnam local fish species, including thread fin bream, one of the largest global catch species overall.

4.4 Total Supply of Surimi Seafood Preparations

Surimi preparation imports, such as crab flavoured seafood sticks, also contribute an important fish resource, but in this instance they are fully prepared added value products and subject to significantly higher tariff bands.

Imports had been rising slightly, but are now steady at 225,238 tons in 2007. Here, it is the low cost producers who can meet the tariff duties, but still remain competitive, that dominate the market. China leads this market supply with 89,835 tons, whilst Thailand exports 76,751 tons whole fish equivalent followed by India, S. Korea and Malaysia.

4.5 Total Supply of Freshwater Fish

The growing importance to the processing industry of alternative species to marine white fish species was highlighted in the 2007 report for the first time. These are also predominantly aquaculture sourced of course.

Freshwater species are not sub-divided in Eurostat, but total imports can be seen in Table 4.13.

Pangasius, or Vietnamese catfish, is highlighted as the most significant of these alternative species. This was a relatively small scale Mekong river grown aquaculture species, but is now raised in pond aquaculture by the river. The supply was described as growing exponentially in the previous report and this has continued as can be seen in Figs 4.3 and 4.4, which are based on figures from the Vietnam General Dept. of Customs, courtesy Mitsubishi Corporation. The deep skinned fillets are white and have a shape and appearance similar to sole.

The total global export volumes from Vietnam for ready prepared fillets with protective glaze for 2007 is quoted at 381,490 tons, estimated to be 1.3 million tons whole fish equivalent. Of this total volume, $48 \%, 153,630$ tons of glazed fillets, which is approximately 513,000 tons whole fish equivalent, was exported to the EU. This approximates in volume to the third most important imported marine white fish species, hake. The Netherlands is a principle receiving destination into Europe and whilst Poland and Spain appear to be the 2 largest consumers of the species, but it has become very popular across the whole of the EU.

Much of the freshwater white fish species, including Pangasius, will enter the food service and retail sectors, which will be the case for much of the Nile perch from African countries and tilapia from China and various other countries.

Total whole fish equivalent for these species from Table 4.12 is 750,729 tons, meaning that Pangasius accounts for 68 \% and Nile perch 11 \% from African countries.

Fig. 4.10 Total Global Exports of Pangasius Fillets (Glazed) from Vietnam

Source: Vietnam General Costoms (via M itsubishi Corp.
Chart: AIPCE 2008

4.6 Total Supply of Salmon

Whilst salmon is not a white fish species, as availability has increased and prices have fallen/stabilized at lower levels over the years, there has been an appreciable level of substitution of white fish by salmon. In some retailers across Europe, salmon can now account for half of all fish sales.

Table 4.12 and Fig. 4.11 indicates an overall import of 757,319 tons of all salmon species, based on whole fish weight equivalent for 2007, an increase of 13% in the 2
years since 2005. To this has to be added the 190,000 tons of production within the EU, principally from Scotland, so the total available volume well exceeds that of Alaska Pollock and is approaching total cod volumes.

Norway dominates imports of both whole salmon fresh at 97% and fresh fillets fish at 96 \% of the totals into the EU.

However, the position is quite different for frozen whole salmon, fillet and frozen prepared salmon products. For frozen fillets, then as can be seen in Table 4.12 and Fig. 4.12, Chile still dominates at 86,189 tons whole weight equivalent, having dropped by 12% from the previous year, but China rose by 9% to 61,707 tons whole weight equivalents, followed by Norway at 21,074 tons and the USA at 11,616 tons.

Whilst Chile was able to take advantage of the confusion that reined during the EU imposition of salmon import Safeguard measures, more recent disease problems have caused an export slow down. Imports of salmon fillets from Chile have fluctuated from 48,367 tons in 2004, to a high of 103,340 tons in 2005.

Import of salmon fillets from China at 61,707 tons equivalent whole fish, will also include a significant proportion of wild Alaska Pacific salmon species.

Since Alaska salmon was MSC certified, an EU market for ecolabelled salmon has developed across Europe, so that in addition to the 80,463 tons of whole fish equivalent salmon imported from the USA, there will also be a large quantity of the Chinese origin salmon that originates in the USA, putting the USA second to Norway overall, with Chile third at 90,797 tons, which includes the fillets discussed above plus whole and other preparations. Whilst Russia does not appear as a supplier of Pacific salmon, it is known that China processes Russian origin Pacific salmon.

Fig. 4.12 An Analysis of the Volume of Frozen Salmon Fillet import by country into EU for 2007

\square Canada
\square Chile
\square China
\square Faroer
\square Iceland
\square Norw ay
\square Thailand
\square USA

Wild Alaska Salmon Processing China, courtesy Trident Seafood's USA

5. EU Supply Base

5.1 EU Quota by Species

Reference Table 5.1 in tables section:
Of the 5 important white fish species to AIPCE that are caught within EU waters (cod, haddock, hake, saithe and Atlantic redfish), there was an overall drop of 4.4% in total cumulative quota in 2007 to 294,636 tons, although on the positive front, haddock quota rose by 9% and hake quota by 15%.

5.2 EU Catches by Quota Species

Reference Table 5.2 in tables section:
Despite the quota increases for haddock and Atlantic redfish over 2006, catches of the 2 species in 2007 were 6.4% and 29.2 \% down against the 2006 catch levels. Surprisingly, there was a 1.5% increase in the catch level for cod over 2006 at 133,126 tons, which took it slightly over quota. However, cumulatively the total catch for all 5 species was 297,097 tons, which was just 75.2% of quota and 93% of the previous year's catch level.

No doubt there are a number of reasons why catch quotas are not achieved, but the cod recovery plan and effort restrictions are bound to play an important part in reducing overall catch efficiency. Whilst cod is no longer targeted as a primary species by elements of the fleet, cod avoidance will have an impact.

6. Carbon Footprint

There has been yet more concern voiced with respect to shipping frozen fish to S.E. Asia for primary processing and returning to Europe for final value added processing. In the previous years report, reference was made to the new super container vessels with up to 14,000 container unit capacities and how these now burn cleaner fuels more efficiently. It was suggested that whilst being counter-intuitive, hand processing fish in China, with the increased yields and quality advantages could well off set the food miles concerns. Independent studies recently undertaken by Seafish in the UK have confirmed this view and have demonstrated that the shipping element is actually a small proportion of the overall energy input into the fishing and processing cycle. A new addition to the website will also be a carbon dioxide calculator by species. Reference www.seafish.org,

Primary Processing White Fish China

7. Illegal, Unreported and Unregulated Fish, Confidence in the Supply Chain and the DG Mare IUU Regulations

October 2007 saw the publication of the EU Consultation on a 'Proposal for a Council Regulation to deter and eliminate illegal, unreported and unregulated fishing'. Whilst the proposal was aimed at both national and international supply, the emphasis moved towards third country fishing vessels landing at EU designated ports, but with particular emphasis on the potential for IUU fish being included in the imported fish. At the heart of the proposal was a requirement for all fish to be linked to a catch certificate verified by the flag state of the fishing vessel. Further there had to be an unbroken traceability confirmation for all fish and had to be verified by competent authorities in all third countries through which the fish passed or in which it was processed.

Fortunately, through effective lobbying by AIPCE and its partner organisations in member states, a more workable final Proposal was agreed by the EU Council on $23{ }^{\text {rd }}$ June 2008. Legislation will come into effect on $1^{\text {st }}$ January 2010, whilst a DG Mare member state working group will continue work in the interim to establish working and implementation protocols.

Whilst lobbying DG Fish for modification of the Proposals, AIPCE had no wish to dilute the legislation, which it fully supports. It simply wanted to establish a workable solution, which on the one hand would not be overly-burdensome and on the other would work effectively without the need for reams of documentation with each shipment.

AIPCE is currently working to develop a horizontal risk based approach towards fish purchasing, which will have vertical modules for specific fish types.

In the previous report, the implementation of the AIPCE 'Purchase Control Document' to ensure that IUU white fish from the Barents Sea was avoided by its member companies was outlined. During 2007, a similar Control Document was developed for the purchase of Baltic cod and this was adopted at the general assembly in Gdansk in October 2007. During 2007, AIPCE and its member associations had expressed concern at the continued reports of up to 40% over fishing by the Polish fleet, which at the time seemed to be condoned by the Polish Government.

There was discussion by some companies that they should pull out of cod purchases from Poland and the eastern Baltic altogether. However, actions such as these lead to a reduction in influence, potentially letting supplies falling into less discerning hands.

Fortunately, AIPCE concerns were whole heatedly supported by the Polish organisation member, which also included integrated companies with fishing vessels. As a result, a joint statement condemning the Polish Government and encouraging DG Fish to take action was agreed and issued.

In November, AIPCE vice president 1 presented two papers to the Russian Fishermen's Federations on IUU and the AIPCE control documents at a WWF conference in Murmansk. It was most encouraging to experience the support received form the Federations and their concern over IUU.

At the Brussels Seafood Show in April 2008, WWF International held a reception on the Seafish stand to recognise the good work by NEAFC. Norwegian Government,

Russian Government, DG Mare and AIPCE in reducing the estimated IUU cod catch in the Barents Sea from as estimated 160,000 tons to 40,000 tons. In many ways, it is disheartening that it is even possible to make estimates, but never the less; the downward trend is very encouraging.

Previously, it was explained how the cod utilisation figures had been recalculated and reduced by approximately 48,000 tons of whole fish equivalent. It is interesting that based on these recalculated figures, third country imports of cod were 919,000 tons in 2003 and 821,000 tons in 2007.

AIPCE intends to continue working towards reducing IUU across a range of species and feel sure that the new IUU Regulations will be effective. However, they stress that the current DG Mare and member state implementation team should strive to ensure workable solutions.

8. Ecolabelling, EU Proposals and MSC Developments

Following the activities on ecolabelling in 2005/6 by DG Fish and the Parliament, there was very little progress during 2007, but DG Mare (Fish) has reopened the dossier during the first half of 2008. It will be recalled that initially, DG Fish had suggested three options; do nothing and let the existing market develop, develop an EU standard and thirdly, develop minimum standards to which private schemes must comply.

AIPCE view was that the third option was most favoured, since ecolabelling standards already exist and one at least group, the MSC, already meet the FAO ecolabelling guidelines and are well established.

DG Mare proposals would logically have to meet the FAO guidelines as a minimum standard, since DG Fish had been an active member of the FAO developing group.

Meanwhile, other private standards are being developed that are far less rigorous than the FAO guidelines and therefore than the MSC. Consequently these can be achieved at inconsequential costs and are potentially going to distort the market.

DG Mare latest proposals are to develop ecolabelling standards in partnership with sector groups within the fishing industry and AIPCE have been involved in exploratory discussions. The new proposal is being described as 'ecolabelling plus' and will probably include other aspects than fish stock sustainability and traceability.

This is an interesting concept, but the number of international fisheries that have met MSC standards and certification has grown enormously over the past two years, with many European retailers and brand owners now committed to this ecolabel.

There is evidence that consumers are becoming confused with the plethora of labels already on the market across the food industry as a whole, so it will be interesting to note how this new initiative will develop.

9. Import Tariffs

The current legislation, Council Regulation EC No. 824/2007, covering autonomous tariff quotas for certain fishery products for the period 2007-2009 still has a further year to run. Despite significant discussions and agreements on tariff quotas prior to adoption of the legislation, due to ongoing EU internal supply difficulties and demand for fish, there have been a number of examples where the quota has been exceeded for species and full duty has had to be paid on those imports. DG Mare has been reluctant to review the legislation during its 3 year period of application, despite the fact that there would be no impact on the EU catching sector.

The over-arching legislation covering import tariffs, the Common Market Organisation for Fisheries, Council Regulation (EC) No. 104/2000 is currently undergoing a full review by DG Mare. AIPCE is actively participating in the review and potential reform discussions. A key area for debate going will have to include the most appropriate way to handle both tariff suspensions and the 3 year tariff quota discussions and agreements. There may well be a case to consider independent legislation from the CMO to handle these trade matters in order to avoid the ongoing implementation delays and difficulties experienced in the review process.

Whilst the huge dependence on imported fishery products to supply the added value processing industry is well understood and been accepted now for many years, recent commercial pressures on the EU fishing sector has caused some questing of the tariff system and this will be expanded on below in the next section.

10. Background to Challenges towards the Integrity of the Import Supply Base

An explanation of the recent challenges towards the integrity of fishery product imports is covered in this section 10 and is further explored in terms of labelling and supply costs for the EU added value industry in sections 12 and 13.

The EU catching sector and aquaculture organisations have suggested that at a time of rapidly rising running costs, due mainly to the associated fuel cost rises and feed cost rises respectively, that their selling prices have either stagnated or are falling. They are also suggesting that the problem can be linked to lower import prices for fish, which are also said to be of a lower quality, both organoleptically and nutritionally, when compared to locally caught fish. Consequently, there are proposals that DG MARE completes its review of the Common Marketing Organisation for Fishery Products as quickly as possible and that it then reviews tariff structures and rates.

The arguments, in terms of relative costs of fishing around the world are too complex to tackle in this report, but it is a fact that many third countries charge far lower duty rates for fuel than do EU member states. Provided that the fuel is not subsidised, then this is not an international trade issue.

The US\$ is the currency of trade for international fishery products, so there have been benefits for those countries, such as the UK, where the £sterling has had a high value against the US\$. However, this is now changing for the UK, but at the same time the Euro is beginning to rise against the US\$ and so those buyers in the Euro zone will benefit from better purchasing values.

Equally, as can be seen from Table 4.1, the EU fishing industry has been exporting around 2 million tons of fish per annum over the past 4 years and so have benefited from the US\$ exchange rate.

It is fact that much of the cod caught in the N. Atlantic and Barents Sea would have come to Europe for primary processing. However, countries such as Norway and Iceland began to develop their own primary processing facilities a number of years ago. They subsequently refined their processing away from commodity filets and frozen blocks towards added value portions and loins for export to the USA and Europe. Whilst this kind of added value processing, particularly for the fresh trade is still very important for Iceland, these countries, along with Russia, now send much of their frozen fish to S.E. Asia and China for primary processing, where they gain from quality and yield improvements. There has therefore been a consequential loss in primary processing opportunities in the EU over many years, which when coupled with the rapid declines in domestic catches has led to loss of much of the processing capacity. Given the very large primary product demands and consistent supply requirements of the added value processing sector, local purchasing of intermittent supplies is not a viable option. However, many added value producers in the EU are working with the fishing sector to develop specific lower volume, higher value products and marketing opportunities.

11. Nutritional Values of Fish Species

Pangasius, from Vietnamese aquaculture, has been cited as a nutritionally inferior and inadequately monitored species of fish that is unfairly competing against both marine and aquaculture white fish species caught or grown in the EU.

Obviously, all imports, but particularly aquaculture species are monitored at EU Border Inspection Posts on a frequent and regular basis in order to ensure safety and compliance with EU veterinarian drugs treatments.

The larger importing companies also regularly monitor their imports of fish to ensure that they are not adulterated and typical of the species. The results from one company for untreated fishery product imports using accredited analytical methods and laboratories are set out in below:

Analysis	Atlantic Cod	Pacific Cod	Pangasius	Plaice
Moisture\%	84.4	81.6	82.2	78.3
Protein	14.7	18.1	16.4	20.1
Carbohydrate	0.1	0.1	0.1	0.1
Fat	0.4	0.3	1.3	1.7
Energy kcal/100g	63	75	77	96

As can be seen from these results, white fish flesh tends to comprise protein with low amounts of fat and carbohydrates. It can also be seen that Pangasius is not untypical of other white fish species, so that the claims of inferior nutritional benefits are unfounded.

12. Food Labelling Requirements and Declarations

EU labelling regulations require that any water addition to products in excess of 5% has to be declared on-pack in the ingredients declaration. Also, that there is both a gross and net weight declaration when a glazed product is offered for sale. Any QUID, quantitative ingredient declarations, for fish should also reflect actual weight of fish used.

Sodium polyphosphates have been used for a long time to increase yield and succulence in fishery products. Use is in compliance with EU Regulations, provided of course that they are within specified limits and they are appropriately declared. However, new additives are now being offered for use in primary fish processing, often by European companies. These can be sold for one purpose, but have side benefits of increasing water up-take in fishery product by 6-12 \%. They are of dubious legality and can be difficult to detect analytically. Polyphosphates, on the other hand, can be identified relatively easily and declarations on-pack monitored. For those companies and authorities regularly monitoring products, any additional undeclared moisture addition can be detected, but of course only a small sector of the industry will have these capabilities.

Protein extracts can be in injected directly into fish flesh to yield anticipated analytical protein contents for the species, but which would mask the additional added water, which is of course the purpose of the protein use. This type of addition is more difficult to detect, but can be done by profiling the amino acids within the protein components.

These described treatments have been used in the meat industry in Europe for some time and are constantly challenged by enforcement authorities where appropriate. There is now evidence of use, both internally within Europe and also within some imported fishery products as well. It is essential that importers and also manufacturers in Europe are aware of these potential practices to ensure that the treated products are appropriately labelled where they can be legally used in order to ensure a fair competitive cost base. It must be emphasised however, that this is not just potentially an import issue, but it can equally apply to nationally supplied fish and fishery products.

13. Import Price Trends

The above description of authenticity is also very important for all sectors of the fishing and aquaculture industry, along with enforcement authorities to understand. This is particularly so when carrying out comparative cost and compositional analysis surveys and to bear in mind that both imported and nationally landed fishery products can be affected.

It is difficult for AIPCE to carry out cost analysis at the EU level because of the wide variations in price, both at member state and local level. However, the chart below, extracted from a UK Seafish report and based on the UK Marine Fisheries Agency statistics for price of key landed species across all ports, divided by total landed volume, so giving a national average price, indicates that prices have been rising over recent years. Of course, set against this have been the rapidly escalating operating costs.

Comparison of 12 month moving average for UK prices of cod, haddock, whiting and major demersal fish landings in UK (Source: Data from Marine Fisheries Agency via Seafish)

Purchase prices for imported frozen fillets of frozen fillets and meat of Alaska Pollock and hake have been published in the AIPCE report for a number of years, but have not been highlighted in this written section. Monthly purchase costs for the past 3 years 2005 to 2008 (until July) can be seen in Tables 13.1 to 13.3 and are represented in the following chart:

Fig. 13 Development of EU Import Prices of Frozen Fillets of AlaskaPollock and Hake from Third Countries

The average annual prices for the Alaska Pollock and the hake fillets have been calculated from these tables and presented in below. From this it can be seen that there is in fact there is an overall price increase for imported hake over the past 3 years, not a deflation, whilst A. pollock price has risen overall, but was lower in 2006 than 2007. One word of caution when attempting to compare the EU landed hake prices with the imported hake prices, these are essentially different species and destined for different market sectors to the fresh European hake.

Year	Hake Fillets	Alaska Pollock Fillets
2005	$2.10 € / \mathrm{kg}$	$1.84 € / \mathrm{kg}$
2006	$2.62 € \mathrm{~kg}$	$2.02 € / \mathrm{kg}$
2007	$2.87 € / \mathrm{kg}$	$1.93 € / \mathrm{kg}$

From Table 4.8, it can be seen that of the 333,325 tons of imported whole fish equivalent hake fillets imported in 2007, 3 \% came from Argentina, where their species tends to be less white, softer fleshed and with much more pronounced fat lined than European hake and so commands a lower price. This hake will often be labelled as generic white fish in coated products and would therefore not be traded against fresh hake fillets.

Import prices for cod have not been tracked in a similar way in the AIPCE reports, but prices have continued to rise year on year as well. A statistic from 5 years ago, when comparing retail price of boneless cod against boneless chicken, indicated that cod was three times more expensive and was also significantly more expensive than beef, pork and lamb on a similar basis. Fish is seen to have health benefits by the consumer, but they also have budgets to manage, so that added value producers have to offer competitive innovative products to compete with other animal proteins.

List of Tables

Tab. 4.1 Food balance for fish and fishery products, EU (15); 1.000 tons live weight
Tab. 4.2 Results of the tables "Origin of imports of important white fish into EU from third countries

Tab. 4.3 Origin of imports into EU from third countries for important white fish species
Tab. 4.4 Origin of imports into EU from third countries for cod
Tab. 4.5 Origin of imports into EU from third countries for saithe
Tab. 4.6 Origin of imports into EU from third countries for redfish
Tab. 4.7 Origin of imports into EU from third countries for haddock
Tab. 4.8 Origin of imports into EU from third countries for hake
Tab. 4.9 Origin of imports into EU from third countries for alaska-pollock
Tab. 4.10 Origin of imports into EU from third countries for hoki
Tab. 4.11 Origin of imports into EU from third countries for plaice
Tab. 4.12 Origin of imports into EU from third countries for salmon
Tab. 4.13 Origin of imports into EU from third countries for freshwater fish
Tab. 4.14 Origin of imports into EU from third countries for Surimi
Tab. 4.15 Overview of the adjusted rates of conversion
Tab. 5.1 EU-quota by species
Tab. 5.2 EU-catches by quoted species
Tab. 13.1 Import of frozen fillets and meat of alaska-pollock and hake from third countries into EU in 2005, average import price

Tab. 13.2 Import of frozen fillets and meat of alaska-pollock and hake from third countries into EU in 2006, average import price

Tab. 13.3 Import of frozen fillets and meat of alaska-pollock and hake from third countries into EU in 2007, average import price
Tab. 4.1 FOOD BALANCE FOR FISH AND FISHERY PRODUCTS 1000 tons live weight

	EU (15)							EU (25)		EU (27)		
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008 b)
Catches a)	8.146	8.009	7.628	7.357	7.414	7.922	7.536	7.230	6.905	6.911	6.699	6.434
- Non-food uses b)	2.172	2.146	1.822	2.100	2.500	3.000	2.600	2.500	2.400	2.200	1.900	1.700
= Catches for consumption	5.974	5.863	5.806	5.257	4.914	4.922	4.936	4.730	4.505	4.711	4.799	4.734
+ Imports (Third countries) c)	5.963	6.595	6.007	6.422	7.050	6.735	7.477	7.993	8.355	9.066	9.390	9.860
= Total supply	11.937	12.458	11.813	11.679	11.964	11.657	12.413	12.723	12.860	13.777	14.189	14.594
- Exports (Third countries) c)	1.545	1.459	1.610	1.654	1.879	1.752	1.995	2.239	2.196	2.039	2.055	2.076
= Supply for consumption	10.392	10.999	10.203	10.025	10.085	9.905	10.418	10.484	10.664	11.738	12.134	12.518
Total supply (kg/caput) d)	32	33	31	31	32	31	32	28	28	28	29	30
by catches for consumption in \%	50	47	49	45	41	42	40	37	35	34	34	32
by third countries imports in \%	50	53	51	55	59	58	60	63	65	66	66	68
Supply for consumption (kg/caput) e)	28,0	29,5	27,1	26,6	26,6	26,0	27,2	22,8	23,1	25,3	24,5	25,2
Self-sufficiency (\%) f)	57	53	57	52	49	50	47	45	42	40	40	38

[^1]Tab. 4.2 RESULTS OF THE TABLES "ORIGIN OF IMPORTS OF IMPORTANT WHITE FISH INTO EU FROM THIRD COUNTRIES"

Species	Catches of quoted species					Third countries imports					Total supply (catches + import)				
	1000 tons					1000 tons					1000 tons				
Year	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)
Total a)	324	324	311	320	297	2.690	2.617	2.561	2.662	2.647	3.014	2.941	2.872	2.982	2.944
Cod	139	139	125	131	133	919	801	844	834	821	1.058	940	969	965	954
Saithe	51	51	55	68	58	145	154	170	178	170	196	205	225	246	228
Hake	41	41	44	41	38	659	628	566	563	514	700	669	610	604	552
Alaska-Pollock	-	-	-	-	-	675	746	707	811	874	675	746	707	811	874
Haddock	62	62	60	52	48	120	140	144	144	156	182	202	204	196	204
A. Redfish	31	31	27	28	20	112	111	95	90	75	143	142	122	118	95
Hoki	-	-	-	-	-	60	37	35	42	37	60	37	35	42	37
Plaice b)	77	77	68	71	64	13	15	13	13	12	90	92	81	84	76

Total supply:															
Species	by catches					by third countries imports					by imports from China				
	(\%)					(\%)					(\%)				
Year	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)	2003 c)	2004 d)	2005 d)	2006 e)	2007 e)
Total a)	11	11	11	11	10	89	89	89	89	90	14	17	20	25	22
Cod	13	15	13	14	14	87	85	87	86	86	9	11	15	18	18
Saithe	26	25	24	28	25	74	75	76	72	75	1	1	2	4	7
Hake	6	6	7	7	7	94	94	93	93	93	-	-	-	-	1
Alaska-Pollock	-	-	-	-	-	100	100	100	100	100	43	45	48	56	41
Haddock	34	31	29	27	24	66	69	71	73	76	9	8	9	14	16
A. Redfish	22	22	22	24	21	78	78	78	76	79	17	29	36	30	31
Hoki	-	-	-	-	-	100	100	100	100	100	1	1	3	6	10
Plaice b)	86	84	84	85	84	14	16	16	15	16	17	29	27	25	33

Notes: a) Total of the 7 listed species without plaice.- b) Listed for reason of comparison.- c) EU (15).- d) EU (25).- e) EU (27).-
Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.3 Origin of imports into EU from third countries
for important white fish species a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 e)	2005 e)	2006 f)	2007 f)	2007	07/06
Whole, fresh of it from Norway Iceland Faroe Isles Russia South Africa Namibia	205.511	195.898	172.696	159.839	100	-7
	61.063	54.206	49.282	49.921	31	1
	45.540	47.383	48.483	47.256	30	-3
	35.479	32.860	20.595	15.160	9	-26
	813	2.262	1.316	84	0	-94
	19.144	19.731	19.499	16.599	10	-15
	6.793	7.187	5.564	4.846	3	-13
Whole, frozen of it from Norway Iceland Faroe Isles Russia South Africa Argentina Namibia	289.321	262.024	309.372	286.193	100	-7
	25.210	31.921	46.989	48.320	17	3
	16.760	14.344	19.369	15.848	6	-18
	2.311	1.098	2.176	859	0	-61
	89.785	85.256	86.508	60.839	21	-30
	25.322	21.543	18.204	14.470	5	-21
	32.986	17.039	26.404	21.176	7	-20
	29.904	17.199	19.177	11.203	4	-42
Fillet, fresh c) of it from Norway Iceland Faroe Isles	55.451	63.874	61.706	61.465	100	0
	13.763	18.347	18.905	19.130	31	1
	34.996	38.494	34.781	32.132	52	-8
	6.482	6.723	7.558	9.496	15	26
Fillet, frozen of it from Norway	1.579 .206	1.571 .385	1.652 .266	1.692 .527	100	2
	84.283	77.933	66.767	55.053	3	-18
Iceland	161.705	165.297	157.899	157.011	9	-1
Faroe Isles	47.685	53.826	55.779	58.879	3	6
Russia	138.749	126.912	155.983	137.570	8	-12
South Africa	34.421	37.255	25.242	31.410	2	24
Argentina	151.188	127.614	138.761	108.446	6	-22
Namibia	117.119	111.795	96.537	107.315	6	11
USA	357.708	358.394	310.042	391.995	23	26
New Zealand	34.201	31.118	36.608	32.251	2	-12
China	374.983	415.201	535.703	549.311	32	3
Meat, frozen of it from Norway	140.029	129.260	154.272	134.638	100	-13
	4.535	4.146	2.373	2.281	2	-4
Iceland	13.200	14.143	12.905	11.599	9	-10
Faroe Isles	11.240	9.779	15.246	12.872	10	-16
Russia	11.623	14.030	23.703	23.831	18	1
USA	30.629	36.841	22.772	27.750	21	22
Argentina	12.497	7.904	12.747	8.185	6	-36
Namibia	29.257	23.753	25.445	16.486	12	-35
China	5.848	10.572	15.970	16.030	12	0
Fish and Fillet, dry/saltedof it from Norway	347.343	338.241	310.410	312.292	100	1
	168.967	162.035	159.062	172.911	55	9
Iceland	105.510	113.910	94.979	87.295	28	-8
Supply (Catches + Import)	2.940 .749	2.874 .142	2.980 .463	2.944 .059	100	-1
of it catches of quoted species import from third countries	323.888	313.460	319.741	297.106	10	-7
	2.616.861	2.560.682	2.660 .722	2.646 .953	90	-1
of it from China d)	384.776	433.395	561.491	574.521	22	2
USA d)	435.372	437.533	396.308	498.460	19	26
Iceland	377.750	393.571	368.416	351.140	13	-5
Norway	357.821	348.587	343.377	347.616	13	1
Russia d)	260.557	244.041	276.820	220.828	8	-20
Argentina d)	198.606	153.722	178.868	138.713	5	-22
Namibia d)	183.073	159.935	146.723	139.849	5	-5
Faroe Isles	133.711	126.179	119.676	114.730	4	-4
South Africa d)	88.584	86.927	67.532	67.732	3	0
Chile d)	50.153	39.041	41.387	42.653	2	3
New Zealand d)	40.082	37.714	44.252	39.904	2	-10
Uruguay d)	39.593	34.940	37.158	29.646	1	-20
Peru d)	13.634	17.906	19.234	16.704	1	-13

Notes: a) Cod, saithe, redfish, haddock, hake, alaska-pollock and hoki.- b) Selected countries, which are most important for EU supply with white fish.- c) Cod, saithe and redfish.- d) Incl. quantities not listed above.- e) EU (25).- f) EU (27).-

Tab. 4.4 Origin of imports into EU from third countries for cod a)
44.268

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh of it from Argentina Faroe Isles Iceland USA Norway Russia South Africa	44.809	43.625	37.071	31.138	100	-16
	167	30	22	27	0	23
	7.983	6.814	4.108	2.048	7	-50
	10.976	10.392	9.915	8.133	26	-18
	-	-	-	-	-	-
	24.554	23.961	21.667	20.686	66	-5
	763	2.210	1.002	-	-	-100
	-	-	-	-	-	-
	126.688	136.852	144.293	137.838	100	-4
of it from Argentina	-	-	25	37	0	-
Faroe Isles	294	446	1.114	112	0	-90
Iceland	920	376	712	1.423	1	100
USA	27.218	37.216	42.148	53.300	39	-
Norway	8.039	14.672	13.501	15.763	11	17
Russia	82.857	78.951	80.147	56.563	41	-29
South Africa	-	-	-	-	-	-
Fillet, fresh of it from Faroe Isles Iceland Norway	36.418	40.501	43.349	42.586	100	-2
	481	150	376	796	2	112
	27.391	27.276	28.122	27.316	64	-3
	8.374	12.852	14.510	13.945	33	-4
Fillet, frozen of it from Argentina	227.484	263.183	272.968	272.533	100	0
	377	9	95	25	0	-
Chile	48	-	46	-	-	-
China	71.135	102.890	114.524	125.587	46	10
Faroe Isles	16.430	10.708	11.863	12.888	5	9
Iceland	72.293	70.596	71.447	69.555	26	-3
USA	401	529	214	964	0	-
New Zealand	424	201	136	30	0	-78
Norway	36.258	35.318	30.583	26.966	10	-12
Russia	23.502	34.393	32.658	26.254	10	-20
South Africa	-	46	-	-	-	-
Meat, frozen of it from Argentina	18.604	21.402	25.708	24.581	100	-4
	22	-	-		-	-
China	2.022	5.079	9.237	11.146	45	21
Faroe Isles	523	119	207	236	1	14
Iceland	9.034	9.654	7.972	7.258	30	-9
USA	2.811	2.224	3.294	1.723	7	-
Norway	3.157	2.686	1.791	1.936	8	8
South Africa	-	-	-	-	-	-
Fish and Fillet, dry/salted	347.343	338.241	310.410	312.292	100	1
of it from Iceland	105.510	113.910	94.979	87.295	28	-8
Norway	168.967	162.035	159.062	172.911	55	9
Supply (Catches + Import)	940.559	968.938	964.949	954.094	100	-1
of it catches of quoted species	139.213	125.135	131.149	133.126	14	2
import from third countries	801.346	843.803	833.800	820.968	86	-2
of it from Norway	249.349	251.523	241.114	252.207	31	5
Iceland	226.124	232.204	213.147	200.979	24	-6
China c)	77.006	115.524	133.009	145.758	18	10
Russia c)	128.732	136.205	132.289	92.461	11	-30
USA c)	43.621	47.529	51.184	61.704	8	21
Faroe Isles c)	56.220	40.127	35.985	33.545	4	-7
Argentina c)	566	40	142	89	0	-37
New Zealand c)	599	201	143	31	0	-78
Chile c)	64	3	47	-	-	-100
South Africa c)	-	46	-	-	-	-

Notes: a) Gadus morhua, ogac and macrocephalus.- b) Selected countries, which are most important for EU supply with white fish.- c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-
Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.5 Origin of imports into EU from third countries for saithe a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh	28.008	22.348	15.246	13.560	100	-11
of it from Argentina	-	-	-	-	-	-
Faroe Isles	10.716	11.698	4.949	4.615	34	-7
Iceland	1.609	1.010	930	1.325	10	42
Namibia	-	-	-	-	-	-
Norway	14.415	8.585	8.415	7.570	56	-10
Russia	2	2	-	-	-	-
South Africa	-	-	-	-	-	-
Whole, frozen	4.174	6.004	22.736	20.230	100	-11
of it from Argentina	-	-	-	-	-	-
Faroe Isles	126	237	245	358	2	46
Iceland	202	115	285	292	1	2
Namibia	-	-	-	-	-	-
Norway	3.736	5.643	22.061	19.438	96	-12
Russia	92	10	116	34	0	-71
South Africa	-	-	-	-	-	-
Fillet, fresh	10.936	17.037	12.710	13.652	100	7
of it from Faroe Isles	3.263	4.942	4.876	7.506	55	54
Iceland	2.394	6.639	3.426	829	6	-76
Norway	5.278	5.454	4.357	5.142	38	18
Fillet, frozen	98.375	112.334	110.457	107.705	100	-2
of it from Argentina	-	-	-	-	-	-
Chile	-	-	-	-	-	-
China	1.784	2.272	5.366	11.740	11	119
Faroe Isles	21.909	33.109	35.667	38.406	36	8
Iceland	41.621	48.503	48.170	41.976	39	-13
Namibia	-	-	-	-	-	-
New Zealand	-	-	-	-	-	-
Norway	31.380	27.227	20.120	13.743	13	-32
Russia	355	242	130	720	1	453
South Africa	-	-	-	-	-	-
Meat, frozen	12.835	12.032	16.404	14.819	100	-10
of it from Argentina	-	-	-	-	-	-
China	18	135	45	403	3	805
Iceland	2.273	2.143	2.336	2.381	16	2
Faroe Isles	9.419	8.606	13.576	11.868	80	-13
Namibia	-	-	-	-	-	-
Norway	1.092	1.126	447	144	1	-68
Russia	-	-	-	-	-	-
South Africa	-	-	-	-	-	-
Supply (Catches + Import)	205.139	225.217	245.293	227.595	100	-7
of it catches of quoted species	50.811	55.461	67.741	57.629	25	-15
import from third countries	154.328	169.756	177.552	169.966	75	-4
of it from Faroe Isles	45.432	58.592	59.313	62.754	37	6
Iceland	48.100	58.411	55.147	46.802	28	-15
Norway	55.902	48.034	55.399	46.038	27	-17
China c)	1.801	2.407	5.426	12.189	7	125
Russia c)	449	254	246	754	0	206
South Africa c)	-	-	-	-	-	-
Namibia c)	-	-	-	-	-	-
Argentina c)	-	-	-	-	-	-
Chile c)	-	-	-	-	-	-
New Zealand c)	-	-	-	-	-	-

Notes: a) Pollachius virens.- b) Selected countries, which are most important for EU supply with white fish.-
c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.6 Origin of imports into EU from third countries for redfish a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh of it from Argentina Faroe Isles Iceland Namibia Norway Russia South Africa Whole frozen	20.263	20.288	19.949	19.193	100	-4
	-	-	-	-	-	-
	1.911	1.529	937	662	3	-29
	13.910	15.025	15.834	15.556	81	-2
	-	-	-	-	-	-
	4.357	3.643	3.078	2.859	15	-7
	4	4	26	4	0	-84
	-	-	-	-	-	-
	21.084	17.535	24.894	16.910	100	-32
of it from Argentina	10	4	122	265	2	117
Faroe Isles	968	380	786	376	2	-52
Iceland	15.170	13.755	18.135	12.618	75	-30
Namibia	-	45	-	-	-	-
Norway	2.243	2.203	2.143	1.680	10	-22
Russia	510	290	1.877	455	3	-76
South Africa	-	-	-	-	-	-
Fillet, fresh of it from Faroe Isles Iceland Norway	8.097	6.336	5.646	5.227	100	-7
	2.737	1.630	2.305	1.194	23	-48
	5.211	4.578	3.233	3.987	76	23
	111	40	38	43	1	14
Fillet, frozen of it from Argentina	60.967	50.802	39.335	33.327	100	-15
	97	110	77	-	-	-100
Chile	-	37	6	-	-	-
China	30.867	32.812	25.548	23.355	70	-9
Faroe Isles	239	198	490	863	3	76
Iceland	21.470	15.779	12.659	7.933	24	-37
Namibia	-	-	-	-	-	-
New Zealand	-	3	13	-	-	-
Norway	423	373	126	144	0	14
Russia	7.042	895	-	-	-	-
South Africa	33	-	112	42	0	-
Meat, frozen of it from Argentina China Faroe Isles Iceland Namibia Norway Russia South Africa	208	273	359	239	100	-33
	-	-	-	-	-	-
	-	-	7	-	-	-
	-	-	-	-	-	-
	194	272	340	238	99	-30
	-	-	-	-	-	-
	15	-	-	-	-	-
	-	-	-	-	-	-
	-	-	-	-	-	-
Supply (Catches + Import)	141.880	124.606	118.213	94.727	100	-20
of it catches of quoted species	31.261	29.371	28.030	19.832	21	-29
import from third countries	110.619	95.235	90.183	74.895	79	-17
of it from Iceland	55.954	49.410	50.201	40.332	54	-20
China c)	30.923	32.812	25.568	23.355	31	-9
Norway	7.149	6.260	5.385	4.726	6	-12
Faroe Isles	5.856	3.737	4.519	3.094	4	-32
Russia c)	7.556	1.189	1.903	459	1	-76
Argentina c)	107	113	199	265	0	34
South Africa c)	33	-	112	42	0	-63
New Zealand c)	49	10	41	-	-	-100
Chile c)	17	37	18	-	-	-100
Namibia c)	-	45	-	-	-	-

Notes: a) Sebastes species.- b) Selected countries, which are most important for EU supply with white fish.-
c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.7 Origin of imports into EU from third countries for haddock a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh	49.726	49.657	45.997	46.034	100	0
of it from Argentina	-	-	-	-	-	-
Faroe Isles	14.862	12.813	10.602	7.832	17	-26
Iceland	19.042	20.954	21.800	22.241	48	2
Namibia	-	-	-	-	-	-
Norway	15.681	15.828	13.299	15.876	34	19
Russia	42	45	288	80	0	-72
South Africa	-	-	-	-	-	-
Whole, frozen	18.464	15.143	13.206	16.357	100	24
of it from Argentina	-	-	-	-	-	-
Faroe Isles	924	34	26	12	0	-55
Iceland	468	99	237	1.515	9	538
Namibia	-	-	-	-	-	-
Norway	11.119	8.981	8.551	11.129	68	30
Russia	5.954	5.971	4.288	3.698	23	-14
South Africa	-	-	-	-	-	-
Fillet, frozen	68.412	75.621	79.622	90.537	100	14
of it from Argentina	-	-	-	-	-	-
Chile	-	-	-	-	-	-
China	11.517	12.661	19.836	24.152	27	22
Faroe Isles	9.107	9.811	7.759	6.721	7	-13
Iceland	25.721	30.198	25.584	37.544	41	47
Namibia	-	-	-	-	-	-
New Zealand	-	-	-	-	-	-
Norway	16.162	14.992	15.874	14.189	16	-11
Russia	4.563	6.733	9.399	6.939	8	-26
South Africa	-	-	42	-	-	-
Meat, frozen	3.270	3.669	4.708	3.514	100	-25
of it from Argentina	-	-	-	-	-	-
China	4	204	784	821	23	5
Faroe Isles	1.299	1.054	1.462	768	22	-47
Iceland	1.699	2.074	2.257	1.723	49	-24
Namibia	-	-	-	-	-	-
Norway	244	334	134	200	6	49
Russia	-	2	7	-	-	-
South Africa	-	-	-	-	-	-
Supply (Catches + Import)	201.722	203.897	195.260	204.881	100	5
of it catches of quoted species	61.850	59.808	51.727	48.439	24	-6
import from third countries	139.872	144.089	143.533	156.442	76	9
of it from Iceland	46.930	53.325	49.879	63.023	40	26
Norway	43.206	40.135	37.858	41.393	26	9
China c)	11.521	12.900	20.721	24.973	16	21
Faroe Isles	26.193	23.712	19.849	15.333	10	-23
Russia c)	10.559	12.752	13.982	10.717	7	-23
South Africa c)	-	-	42	-	-	-
Argentina c)	-	-	-	-	-	-
Namibia c)	-	-	-	-	-	-
Chile c)	-	-	-	-	-	-
New Zealand c)	-	-	-	-	-	-

Notes: a) Melanogrammus aeglefinus.- b) Selected countries, which are most important for EU supply with white fish.-
c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.8 Origin of imports into EU from third countries for hake a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh of it from Argentina Chile Namibia Norway Peru Russia South Africa Uruguay	61.188	58.465	52.641	48.009	100	-9
	1.767	1.135	934	879	2	-6
	13.241	13.499	12.937	12.877	27	0
	6.793	7.187	5.564	4.846	10	-13
	559	761	1.049	1.044	2	-1
	-	-	-	-	-	-
	1	-	-	-	-	-
	19.144	19.731	19.499	16.599	35	-15
	-	-	-	-	-	-
Whole, frozen of it from Argentina Chile Namibia Norway Peru Russia South Africa Uruguay	116.600	83.488	98.656	84.222	100	-15
	32.727	17.001	25.960	20.874	25	-20
	13.467	12.709	14.847	16.507	20	11
	29.904	17.154	19.177	11.203	13	-42
	8	116	526	87	0	-83
	-	5	3	-	-	-100
	88	3	80	11	0	-86
	25.322	21.543	18.204	14.470	17	-21
	109	-	50	51	0	-
Fillet, frozen of it from Argentina	385.561	367.488	343.864	333.325	100	-3
	149.862	126.676	137.131	108.128	32	-21
Chile	17.886	7.294	7.569	6.989	2	-8
China	831	954	3.404	6.741	2	98
Namibia	117.045	111.716	96.437	107.315	32	11
Peru	12.888	16.456	17.047	15.388	5	-10
Russia	3.283	19.133	54	-	-	-100
South Africa	34.388	37.209	25.089	31.368	9	25
Uruguay	30.528	26.889	30.755	23.775	7	-23
USA	15.411	19.518	24.061	31.315	9	30
Meat, frozen of it from Argentina	64.564	57.055	67.357	48.600	100	-28
	12.460	7.904	12.747	8.185	17	-36
Chile	4.970	5.406	5.966	6.159	13	3
China	6	58	111	140	0	26
Namibia	29.257	23.753	25.445	16.486	34	-35
Norway		-	1	-	-	-
Peru	743	1.325	2.050	1.173	2	-43
Russia	712	1.398	-	4	0	-
South Africa	9.679	8.369	4.576	5.252	11	15
Uruguay	3.036	3.192	3.373	2.570	5	-24
Supply (Catches + Import)	668.666	610.181	603.612	552.236	100	-9
of it catches of quoted species	40.753	43.685	41.094	38.080	7	-7
import from third countries	627.913	566.496	562.518	514.156	93	-9
of it from Namibia c)	182.999	159.810	146.623	139.849	27	-5
Argentina c)	196.816	152.716	176.772	138.065	27	-22
South Africa	88.551	86.882	67.378	67.690	13	0
Chile c)	49.564	38.908	41.320	42.533	8	3
USA	20.621	27.312	35.641	41.125	8	15
Uruguay	39.593	34.940	37.158	29.646	6	-20
Peru	13.634	17.906	19.234	16.704	3	-13
China c)	836	1.021	3.515	6.881	1	96
Norway	568	878	1.579	1.131	0	-28
Russia c)	4.085	20.533	134	14	0	-89

Notes: a) Merluccius spp. and urophycis spp..- b) Selected countries, which are most important for EU supply with white
fish.- c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.9 Origin of imports into EU from third countries for alaska-pollock a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh or it from Argentina Faroe Isles Iceland Norway Russia South Africa USA	1.516	1.515	1.794	1.904	100	6
	-	-	-	-	-	-
	7	6	-	3	0	-
	3	2	4	2	0	-53
	1.496	1.428	1.773	1.887	99	6
	-	-	-	-	-	-
	-	-	-	-	-	-
	-	-	-	-	-	-
Whole, frozen of it from Argentina Faroe Isles Iceland Namibia Norway Russia South Africa USA	1.823	2.640	4.938	10.499	100	113
	13	21	-	-	-	-
	-	-	2	-	-	-
	-	-	-	-	-	-
	-	-	-	-	-	-
	66	306	208	224	2	8
	284	31	-	78	1	-
	-	-	-	-	-	-
	1.261	2.151	4.172	9.889	94	137
Fillet, frozen of it from Argentina	702.024	667.703	764.721	818.472	100	7
	324	99	86	220	0	156
Chile	93	-	-	71	0	-
China	258.386	262.522	364.325	353.988	43	-3
Faroe Isles		-	-	-	-	-
Iceland	415	221	38	2	0	-94
Namibia	74	56	45	-	-	-100
Norway	34	17	62	11	0	-82
Russia	100.004	65.517	113.741	103.657	13	-9
South Africa		-	-	-	-	-
USA	341.813	338.346	285.767	359.715	44	26
Meat, frozen	40.548	34.830	39.736	42.885	100	8
of it from Argentina	16	-	-	-	-	-
China	3.798	5.097	5.787	3.520	8	-39
Faroe Isles	-	-	-	-	-	-
Iceland	-	-	-	-	-	-
Norway	27	-	-	-	-	-
Russia	8.889	7.551	14.458	12.682	30	-12
South Africa	-	-	-	-	-	-
USA	27.818	22.175	19.478	26.027	61	34
Supply (Catches + Import)	745.911	706.687	811.188	873.760	100	8
of it catches of quoted species import from third countries	745.911	- 706.687	$\stackrel{-}{\square} 811.188$	873.760	100	8
of it from USA c)	370.892	362.672	309.417	395.631	45	28
China c)	262.224	267.641	370.552	357.617	41	-3
Russia c)	109.177	73.098	128.199	116.417	13	-9
Norway	1.622	1.751	2.042	2.122	0	4
Argentina c)	353	120	86	220	0	156
Chile c)	93	-	-	71	0	100
Iceland	419	222	42	4	0	-90
Faroe Isles	7	6	2	3	0	104
Namibia c)	74	56	45	-	-	-100
South Africa c)	-	-	-	-	-	-

Notes: a) Theragra chalcogramma.- b) Selected countries, which are most important for EU supply with white fish.-
c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-

Tab. 4.10 Origin of imports into EU from third countries for hoki a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 e)	2005 e)	2006 f)	2007 f)	2007	07/06
Whole, fresh of it from Argentina Faroe Isles Iceland Norway Russia South Africa Thailand USA	d) d)	d) d) d) d) d) d) d) d) d)	d) d) d) d) d) d) d) d) d)	d) d)		
Whole, frozen	488	362	648	137	100	-79
of it from Argentina	236	13	297	-	-	-
Faroe Isles	-	-	2	1	0	-
Iceland	-	-	-	-	-	-
Namibia	-	-	-	-	-	-
New Zealand	59	30	143	127	92	-
Norway	-	-	-	-	-	-
South Africa	-	-	-	-	-	-
Thailand	-	0	-	-	-	-
USA	-	-	-	-	-	-
Fillet, frozen	36.384	34.254	41.300	36.628	100	-11
of it from Argentina	528	719	1.373	74	0	-95
Chile	415	93	3	49	0	1350
China	465	1.090	2.700	3.748	10	39
Faroe Isles	-	-	-	-	-	-
Iceland	184	-	-	-	-	-
Namibia	-	23	55	-	-	-
New Zealand	33.777	30.914	36.460	32.221	88	-12
Norway	25	6	-	-	-	-
South Africa	-	-	-	-	-	-
Thailand	48	124	101	62	0	-39
USA	83	1	-	-	-	-
Meat, frozen	d)	d)	d)	d)		
of it from Argentina	d)	d)	d)	d)		
Faroe Isles	d)	d)	d)	d)		
Iceland	d)	d)	d)	d)		
Norway	d)	d)	d)	d)		
Russia	d)	d)	d)	d)		
South Africa	d)	d)	d)	d)		
Thailand	d)	d)	d)	d)		
USA	d)	d)	d)	d)		
Supply (Catches + Import)	36.872	34.616	41.948	36.765	100	-12
of it catches of quoted species import from third countries	36.872	34.616	41.948	36.765	100	-12
of it from New Zealand c)	33.836	30.944	36.603	32.347	88	-12
China c)	465	1.090	2.700	3.748	10	39
Argentina c)	765	732	1.670	74	0	-96
Thailand c)	48	124	101	62	0	-39
Chile c)	415	93	3	49	0	1350
Faroe Isles	-	-	2	1	0	-
Iceland	184	-	-	-	-	-
USA c)	83	1	-	-	-	-
Norway	25	6	-	-	-	-
South Africa c)	-	-	-	-	-	-
Namibia c)	-	23	55	-	-	-

Notes: a) Macruronus novaezealandiae.- b) Selected countries, which are most important for EU supply with white
fish.- c) Incl. quantities not listed above.- d) Not available.- e) EU (25).- f) EU (27).-

Tab. 4.11 Origin of imports into EU from third countries for plaice a)

Origin	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 b)	2005 b)	2006 c)	2007 c)	2007	07/06
Whole, fresh of it from Argentina Faroe Isles Iceland Norway Panama Russia South Africa USA	5.280	4.715	5.209	4.170	100	-20
	-	-	-	-	-	-
	450	346	322	264	6	-18
	2.114	1.923	2.520	2.042	49	-19
	2.709	2.443	2.363	1.859	45	-21
	-	-	-	-	-	-
	2	1	1	1	0	-25
	-	-	-	-	-	-
	-	-	-	-	-	-
Whole, frozen	587	750	771	865	100	12
	-	-	-	-	-	-
Faroe Isles	1	6	14	38	4	169
Iceland	48	117	90	155	18	72
Namibia	-	-	-	-	-	-
Norway	13	36	65	42	5	-35
Panama	-	-	-	-	-	-
Russia	346	411	514	287	33	-44
South Africa	-	-	-	-	-	-
USA	-	-	27	5	1	-
Fillet, frozen	9.371	7.744	6.889	6.750	100	-2
	9	-	-	-	-	-
Chile	-	-	-	-	-	-
China	4.341	3.547	3.129	3.756	56	20
Faroe Isles	23	132	13	4	0	-67
Iceland	3.590	3.807	3.139	2.513	37	-20
Namibia	-	-	-	-	-	-
Norway	-	-	-	-	-	-
Panama	-	-	-	-	-	-
Russia	1.022	157	45	77	1	70
South Africa	-	-	-	-	-	-
USA	-	-	-	-	-	-
Supply (Catches + Import)	91.941	81.268	83.939	76.219	100	-9
of it catches of quoted species	76.703	68.058	71.071	64.434	85	-9
import from third countries	15.238	13.210	12.868	11.785	15	-8
of it from Iceland	5.751	5.846	5.750	4.710	40	-18
China	4.437	3.574	3.136	3.924	33	25
Norway	2.722	2.479	2.428	1.900	16	-22
Russia	1.370	569	561	365	3	-35
Faroe Isles	473	484	349	306	3	-12
Argentina	9	-	-	-	-	-
USA	-	-	27	5	0	-
South Africa	-	-	-	-	-	-
Namibia	-	-	-	-	-	-
Chile	-	-	-	-	-	-
Panama	-	-	-	-	-	-

Notes: a) Pleuronectes Platessa.- b) EU (25).- c) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.12 Origin of imports into EU from third countries for salmon a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 d)	2005 d)	2006 e)	2007 e)	2007	07/06
Whole, fresh of it from Canada Chile Färöer Iceland Norway USA	352.377	373.137	393.121	459.077	100	17
	221	243	398	329	0	-17
	1	48	-	-	-	-
	25.932	10.324	4.741	10.080	2	113
	2.206	3.572	2.899	540	0	-81
	323.766	358.864	384.937	448.014	98	16
	215	75	135	108	0	-20
Whole, frozen	31.646	28.306	34.863	30.976	100	-11
	4.583	3.016	3.073	1.820	6	-41
Chile	286	770	1.244	1.739	6	40
China	436	446	821	919	3	12
Färöer	1.098	600	187	144	0	-23
Iceland	-	15	1	2	0	27
Norway	3.560	3.195	3.487	3.452	11	-1
Thailand	13	2	15	6	0	-62
USA	20.487	19.356	24.851	22.495	73	-9
Fillet, fresh of it from Canada	61.558	61.131	61.401	78.495	100	28
	118	292	453	301	0	-34
Chile	484	1.493	159	786	1	394
China	1.622	172	490	1.711	2	249
Färöer	336	135	168	25	0	-85
Iceland	24	11	6	3	0	-45
Norway	58.770	58.028	59.718	74.798	95	25
USA	126	970	355	847	1	139
Fillet, frozen of it from Canada	130.310	184.587	200.833	196.594	100	-2
	1.475	1.392	1.816	747	0	-59
Chile	48.367	103.340	98.133	86.189	44	-12
China	30.884	37.915	56.492	61.707	31	9
Färöer	9.445	8.112	7.253	7.524	4	4
Iceland	502	710	200	183	0	-8
Norway	30.138	22.036	22.581	21.074	11	-7
Thailand	1.252	2.545	3.837	5.400	3	41
USA	7.383	8.087	9.992	11.616	6	16
Salmon prepared	91.179	83.041	73.836	69.909	100	-5
of it from Canada		-	-	-	-	-
Chile	1.926	2.043	1.947	2.082	3	7
China	846	1.176	583	403	1	-31
Färöer	43	41	53	46	0	-13
Iceland	181	83	42	29	0	-32
Norway	3.675	4.814	3.221	3.406	5	6
Thailand	4.509	5.223	5.190	5.421	8	4
USA	57.866	47.557	43.171	45.397	65	5
Supply (Catches + Import)	607.156	670.141	703.502	757.319	100	8
of it catches of quoted species import from third countries	1.644	1.071	849	763	0	90
	605.512	669.070	702.653	756.556	100	8
of it from Norwegen c)	419.908	446.936	473.944	550.743	73	16
Chile c)	51.063	107.693	101.483	90.797	12	-11
USA	86.076	76.045	78.504	80.463	11	2
China c)	33.788	39.710	58.443	64.742	9	11
Färöer	36.854	19.213	12.402	17.819	2	44
Canada	28.613	27.394	25.941	16.098	2	-38
Thailand	5.774	7.775	9.041	10.827	1	20
Iceland c)	2.914	4.391	3.148	757	0	-76

Notes: a) Salmon salar and other salmon species.- b) Selected countries, which are most important for EU
supply with white fish.- c) Incl. quantities not listed above.- d) EU (25).- e) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.13 Origin of imports into EU from third countries for freshwater fish a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 c)	2005 c)	2006 d)	2007 d)	2007	07/06
Whole, fresh of it from Kenia Norway Russia Tansania Uganda	3.954	3.654	3.907	3.320	100	-15
	224	230	336	261	8	-22
	13	12	3	4	0	18
	2.274	1.562	916	39	1	-96
	215	203	155	89	3	-43
	1.091	1.561	2.351	2.736	82	16
Whole, frozen	25.344	28.741	37.337	35.043	100	-6
of it from Bangladesh	2.673	3.597	3.761	2.319	7	-38
China	547	1.886	3.412	5.963	17	75
Indonesia	2.523	1.592	1.733	831	2	-52
Kenia	482	473	1.085	1.160	3	7
Tansania	1.219	1.118	1.716	604	2	-65
Thailand	4.270	6.797	9.409	8.822	25	-6
Uganda	1.376	1.794	1.912	1.056	3	-45
Vietnam	2.620	1.468	1.708	1.530	4	-10
Fillet, fresh of it from Kenia	111.068	111.858	93.442	94.317	100	1
	12.653	8.234	6.758	6.484	7	-4
Russia	2.880	3.120	2.156	1.182	1	-45
Tansania	56.298	47.171	39.512	44.065	47	12
Uganda	36.816	46.632	41.112	37.070	39	-10
Vietnam	1.047	3.004	2.456	3.416	4	39
Fillet, frozen of it from China	117.614	192.441	415.145	597.678	100	44
	107	2.446	8.398	17.140	3	104
Indonesia	2.266	1.854	2.725	2.854	0	5
China	107	2.446	8.398	17.140	3	104
Kenia	2.368	3.468	2.796	5.212	1	86
Kasachstan	8.031	12.166	11.462	12.858	2	12
Russia	14.870	16.247	13.912	13.788	2	-1
Tansania	12.998	18.246	19.659	18.713	3	-5
Uganda	4.467	6.256	6.651	7.879	1	18
Vietnam	66.676	126.594	343.655	512.884	86	49
Meat, fresh of it from Norway	3.208	2.476	2.983	6.509	100	118
	246	171	295	70	1	-76
Sri Lanka	12	3	253	-	-	-100
USA	866	1.191	1.278	1.193	18	-7
Meat, frozenof it from Chile	4.340	7.526	8.648	13.862	213	60
	431	2.303	2.174	3.852	28	77
Norway	671	978	1.592	1.475	11	-7
Vietnam	356	1.106	1.790	3.963	29	121
Supply (Catches + Import)	265.528	346.696	561.462	750.729	100	34
of it catches of quoted species	-	-	-	-	-	0
import from third countries	265.528	346.696	561.462	750.729	100	34
of it from Vietnam	70.700	132.171	349.609	521.793	70	49
Tanzania	71.040	66.938	61.043	63.548	8	4
Uganda	43.826	56.299	52.168	48.740	6	-7
China	559	2.908	9.114	18.241	2	100
Russia	20.957	21.618	17.956	15.402	2	-14
Kasachstan	8.209	12.405	11.697	13.180	2	13
Kenia	15.727	12.416	10.974	13.117	2	20
Thailand	4.270	6.797	9.409	8.822	1	-6

Notes: a) Selected countries, which are most important for EU supply with freshwater fish other than salmon, trout and carp.-
b) Incl. quantities not listed above.- c) EU (25).- d) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

Tab. 4.14 Origin of imports into EU from third countries for surimi a)

Origin b)	Quantity (tons live weight)				Share (\%)	Change (\%)
	2004 c)	2005 c)	2006 d)	2007 d)	2007	07/06
Surimi, frozen of it from USA Chile Vietnam Thailand Argentina India China	163.476	163.832	175.082	189.038	100	8
	104.091	90.552	81.268	82.396	44	1
	33.584	36.995	46.576	50.910	27	9
	-	380	7.831	22.561	12	188
	8.726	5.544	9.369	8.586	5	-8
	4.174	5.474	3.304	4.531	2	37
	592	1.343	3.220	1.104	1	-66
	2.691	4.169	5.282	2.994	2	-43
Surimipresentation, frozen of it from China	216.923	218.595	222.003	225.238	100	1
	53.275	74.236	87.228	86.840	39	0
Thailand	84.214	73.422	69.271	76.751	34	11
India	11.110	19.533	23.111	21.494	10	-7
South Korea	44.369	26.990	17.133	15.733	7	-8
Malaysia	12.182	17.046	16.651	13.951	6	-16
Russia	426	87	524	3.410	2	551
PeruJapan	5.060	1.424	3.078	2.829	1	-8
	1.190	1.350	1.295	1.344	1	4
Supply (Catches + Import)	379.751	382.016	396.871	414.040	104	4
of it catches of quoted species import from third countries	-	-	-	-	-	0
	379.751	382.016	396.871	414.040	104	4
	55.967	78.405	92.510	89.835	23	-3
	92.940	78.966	78.640	85.337	20	9
	105.482	91.940	82.308	83.206	21	1
	33.780	37.223	46.678	50.910	12	9
	11.702	20.876	26.331	22.598	7	-14
	-	380	7.934	22.589	2	185
	44.601	27.290	17.378	15.733	4	-9
	8.917	15.006	13.571	14.786	3	9
	12.375	17.342	17.002	14.192	4	-17
	4.446	5.474	3.304	4.636	1	40
	426	171	524	3.674	0	601
	5.060	1.538	3.967	3.357	1	-15

Notes: a) Selected countries, which are most important for EU supply with surimi amd surimipresentation.-
b) Incl. quantities not listed above.- c) EU (25).- d) EU (27).-

Source: Eurostat-Comext; EU catch report.-
Published by: AIPCE 2008

	COD		POK		RED		AP		SAL		Freshwater fish		SURIMI	
	adj.	reg.												
Whole, fresh		1,17		1,19		1,07		1,16		1,15		1,00		
Whole, frozen	1,50	1,71		1,51		1,93	1,71	1,51		1,15		1,00		
Fillet, fresh	2,90	3,48		2,73		3,37				2,50		2,22		
Vietnam									2,27		3,33			
Fillet, frozen	2,20	2,95	22	2,43	278	3,00		2,95		2,50	202	2,22		
Russia							2,38							
USA							3,70							
Vietnam											3,33			
Meat, fresh												1,92		
Meat, frozen	2,40	2,64		2,12		2,34		2,64				2,22		
of it from China												2,02		
Vietnam												3,33		
Fillet, dry / salted	4,31	4,31												
Fish, dry / salted	6,60	8,33												
Fish, dry / salted	3,65	4,00												
Fish, salted	2,55	2,74								2,55				
Fillet, salted										4,00				
Whole, smoked										1,70				
Piece, prepared										2,55				
Prepared										2,00				
Surimi													4,55	7,50
Surimi, prepared													4,55	6,33

Tab. 5.1 EU-QUOTA BY SPECIES

		EU (15)	EU (25)		EU (27)			
Species	Codename	2003 t	2004 t	2005 t	2006 t	$\begin{gathered} 2007 a) \\ t \end{gathered}$	$\begin{array}{\|c} \hline \text { Change } \\ 07106 \\ \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Quota '07 } \\ \text { by species } \\ \% \end{array}$
Herring	HER	682.643	809.693	962.027	879.145	781.371	-11,1	22,7
Sprat	SPR	448.565	671.515	794.566	636.884	655.764	3,0	19,1
Anchovy	ANE	41.000	41.000	38.000	13.000	8.000	-38,5	0,2
Atl. Salmon	SAL	2.026	2.415	2.333	2.333	2.221	-4,8	0,1
Cod	COD	121.984	147.201	138.252	142.927	130.461	-8,7	3,8
Haddock	HAD	64.013	82.417	78.535	71.678	78.152	9,0	2,3
Saithe	POK	103.401	125.171	97.265	85.596	84.708	-1,0	2,5
Pollack	POL	20.432	20.154	19.859	17.988	17.980	0,0	0,5
Norway pout	NOP	223.000	223.000	5.000	75.250	5.000	-93,4	0,1
Blue whiting	WHB	231.000	757.500	901.257	488.138	409.613	-16,1	11,9
Greater forkbeard	GFB	-	-	2.394	2.390	2.143	-10,3	0,1
Whiting	WHG	54.177	47.651	48.653	48.511	50.861	4,8	1,5
Hake b)	HKE	37.000	45.050	53.568	57.961	67.065	15,7	1,9
Jack\&horse macke.	JAX	226.667	236.055	235.239	242.775	250.765	3,3	7,3
Mackerel	MAC	391.654	365.924	320.768	313.800	139.687	-55,5	4,1
Europ. Plaice	PLE	101.344	84.089	79.775	78.744	73.545	-6,6	2,1
Common sole	SOL	28.617	30.426	32.668	34.357	32.804	-4,5	1,0
Soles	SOX	1.600	1.520	1.216	1.216	1.216	0,0	0,0
Megrims	LEZ	25.460	27.026	27.456	28.704	28.618	-0,3	0,8
Anglerfish nei	ANF	35.190	39.540	49.957	56.019	59.723	6,6	1,7
Penaeus shrimps	PEN	4.000	4.000	4.000	4.000	4.108	2,7	0,1
North deep prawn	PRA	16.432	25.338	21.726	26.702	24.661	-7,6	0,7
Norway lobster	NEP	54.033	56.267	63.096	81.369	90.214	10,9	2,6
Atl. Redfish	RED	60.852	60.176	79.764	54.468	34.620	-36,4	1,0
Greenland halibut	GHL	23.626	18.803	17.196	16.965	16.146	-4,8	0,5
Att. Halibut	HAL	-	1.200	1.200	1.200	1.200	0,0	0,0
other species	OTH	12.210	12.210	8.210	8.210	8.210	0,0	0,2
Sandeels	SAN	954.000	902.200	665.960	300.000	178.238	-40,6	5,2
Blue ling \& ling	B/L	3.240	3.240	3.240	3.065	3.065	0,0	0,1
Blue ling	BLI	3.841	3.850	3.281	3.226	2.628	-18,5	0,1
Ling	LIN	19.867	19.867	20.161	20.160	16.338	-19,0	0,5
Flat fish	FLX	1.000	1.000	600	450	300	-33,3	0,0
Capelin	CAP	64.295	95.985	50.050	16.170	-	-100,0	-
Catfish	CAT	600	-	-	-	-	-	-
Witch flunder	WIT	-	-	-	-	-	-	-
American plaice	PLA	-	-	-	-	-	-	-
Yellow tail flounder	YEL	290	290	-	-	-	-	-
Roundnose grenad.	RNG	3.350	10.576	15.373	15.701	12.000	-23,6	0,3
Industry fish	I/F	800	800	800	800	800	0,0	0,0
Skates (NAFO)	SKA	-	-	-	-	-	-	-
Turbot / Brill	T/B	5.738	4.877	4.550	4.229	5.263	24,5	0,2
Skates (ICES)	SRX	4.121	3.503	11.720	11.237	10.690	-4,9	0,3
Dab / Flunder	D/F	23.001	19.551	18.000	17.100	17.100	0,0	0,5
Lemon Sole/Witch Flunder	L/W	8.262	7.023	6.500	6.175	6.175	0,0	0,2
Northern blue fin tuna	BFT	19.231	18.450	18.331	18.301	16.780	-8,3	0,5
Albacore	ALB	41.599	43.043	51.967	42.735	44.983	5,3	1,3
Bigeye tuna	BET	36.840	35.937	44.475	46.508	31.500	-32,3	0,9
Swordfish	SWO	12.747	12.691	14.666	12.540	13.598	8,4	0,4
Picked dogfish	DGS	5.640	4.472	-	961	3.619	276,6	0,1
Black scabbardfish	BSF	7.140	7.383	11.357	7.220	7.351	1,8	0,2
Greater argentine	ARU	7.813	7.813	-	6.641	6.758	1,8	0,2
Tusk (=Cusk)	USK	1.155	1.155	996	996	809	-18,8	0,0
Orange roughy	ORY	1.437	1.437	1.338	1.338	314	-76,5	0,0
Blackspot(=red)seabream	SBR	2.757	2.757	2.514	2.514	2.515	0,0	0,1
Deep Sea Sharks	DWS	-	-	-	-	2.637	-	0,1
unserted species	VFF	-	-	-	-	-	-11,1	-
Total:		4.239 .690	5.143 .241	5.029.859	4.008.397	3.442 .316	-14,1	100,0

Tab. 5.1 EU-QUOTA BY SPECIES

		EU (15)	EU (25)		EU (27)			
Species	Code- name	$\mathbf{2 0 0 3}$ \mathbf{t}	$\mathbf{2 0 0 4}$ \mathbf{t}	$\mathbf{2 0 0 5}$ \mathbf{t}	$\mathbf{2 0 0 6}$ \mathbf{t}	2007 a) \mathbf{t}	Change 07/06 $\%$	Quota '07 by species $\%$
Of which: (COD, POK, HAD, HKE, RED)								

Notes: a) Preliminary figures.- b) Including red and white hake.-

Source: EU, TAC regulations.-
Published by: AIPCE 2008

Tab. 5.2 EU-CATCHES BY QUOTED SPECIES

		EU (15)	EU (25)		EU (27)			
Species	Codename	$\begin{gathered} 2003 \\ t \end{gathered}$	$\begin{gathered} 2004 \\ t \end{gathered}$	$\begin{gathered} 2005 \\ t \end{gathered}$	$\begin{gathered} 2006 \\ t \end{gathered}$	$2007 \text { a) }$	$\begin{gathered} \text { Change } \\ 07106 \\ \% \end{gathered}$	Quota'07 by spec. \% b)
Herring	HER	574.262	727.994	838.966	754.227	612.452	-18,8	78,4
Sprat	SPR	372.527	589.517	649.235	483.869	458.193	-5,3	69,9
Anchovy	ANE	14.227	21.826	5.514	5.812	5.571	-4,2	69,6
Atl. Salmon	SAL	1.297	1.644	1.071	849	763	-10,2	34,3
Cod	COD	112.642	139.213	125.135	131.149	133.126	1,5	102,0
Haddock	HAD	57.998	61.850	59.808	51.727	48.439	-6,4	62,0
Saithe	POK	49.636	50.811	55.461	67.741	57.629	-14,9	68,0
Pollack	POL	6.593	5.959	6.230	6.229	5.914	-5,1	32,9
Norway pout	NOP	16.650	11.468	40	38.667	87	-99,8	1,7
Blue whiting	WHB	173.643	345.849	434.714	399.764	315.708	-21,0	77,1
Greater forkbeard	GFB	-	-	1.855	1.777	1.621	-8,8	75,6
Whiting	WHG	33.172	27.725	30.187	31.478	31.483	0,0	61,9
Hake c)	HKE	32.395	40.753	43.685	41.094	38.080	-7,3	56,8
Jack\&horse macke.	JAX	205.327	227.101	208.297	203.199	183.455	-9,7	73,2
Mackerel	MAC	363.758	423.277	285.771	272.934	170.054	-37,7	121,7
Europ. Plaice	PLE	82.009	76.703	68.058	71.071	64.434	-9,3	87,6
Common sole	SOL	28.958	28.560	27.107	23.242	25.029	7,7	76,3
Soles	SOX	848	820	888	687	493	-28,2	40,6
Megrims	LEZ	18.908	18.013	17.282	15.563	14.959	-3,9	52,3
Anglerfish nei	ANF	32.954	38.459	43.989	42.580	46.550	9,3	77,9
Penaeus shrimps	PEN	3.565	3.325	2.943	2.229	2.362	6,0	57,5
North deep prawn	PRA	7.608	13.874	8.708	12.675	11.884	-6,2	48,2
Norway lobster	NEP	48.451	50.798	56.346	62.081	67.468	8,7	74,8
Atl. Redfish	RED	24.675	31.261	29.371	28.030	19.832	-29,2	57,3
Greenland halibut	GHL	19.995	15.370	14.351	13.406	15.116	12,8	93,6
Atl. Halibut	HAL	-	143	72	78	65	-17,3	5,4
other species	OTH	8.130	7.223	4.273	4.445	4.928	10,9	60,0
Sandeels	SAN	306.582	336.276	164.658	292.389	179.344	-38,7	100,6
Blue ling \& ling	B/L	2.467	2.374	2.082	1.765	2.643	49,7	86,2
Blue ling	BLI	3.431	3.586	3.094	2.878	2.396	-16,7	91,2
Ling	LIN	12.628	10.367	10.158	9.543	8.148	-14,6	49,9
Flat fish	FLX	253	160	123	141	89	-36,9	29,7
Capelin	CAP	19.007	-	-	-	-	-	-
Catfish	CAT	15	437	436	223	71	-68,2	-
Witch flunder	WIT	1.057	1.178	626	1.073	280	-73,9	-
American plaice	PLA	1.628	1.146	818	833	949	13,9	-
Yellow tail flounder	YEL	309	357	353	445	666	49,7	-
Roundnose grenad.	RNG	45	4.587	9.969	10.283	7.812	-24,0	65,1
Industry fish	I/F	752	558	799	84	422	402,7	52,8
Skates (NAFO)	SKA	-	8.184	785	495	152	-69,3	-
Turbot / Brill	T/B	4.531	4.339	4.263	3.949	4.576	15,9	86,9
Skates (ICES)	SRX	2.394	2.044	5.616	6.475	6.700	3,5	62,7
Dab / Flunder	D/F	12.567	12.874	13.779	13.918	12.890	-7,4	75,4
Lemon Sole/Witch Flunder	L/W	4.005	3.617	3.551	3.501	3.716	6,1	60,2
Northern blue fin tuna	BFT	16.556	17.176	22.053	19.393	22.513	16,1	134,2
Albacore	ALB	15.725	17.069	35.115	29.592	17.873	-39,6	39,7
Bigeye tuna	BET	11.225	13.111	17.667	9.247	8.238	-10,9	26,2
Swordfish	SWO	10.641	9.971	11.752	11.956	11.996	0,3	88,2
Picked dogfish	DGS	1.236	1.137	-	251	1.956	679,3	54,0
Black scabbardfish	BSF	5.528	5.983	9.563	5.077	5.771	13,7	78,5
Greater argentine	ARU	2.514	5.791	-	1.287	4.043	214,1	59,8
Tusk (=Cusk)	USK	600	534	579	635	552	-13,1	68,2
Orange roughy	ORY	591	530	387	585	372	-36,4	118,5
Blackspot(=red)seabream	SBR	1.427	1.507	1.772	1.376	1.619	17,6	64,4
Deep Sea Sharks	DWS	-	-	-	-	1.745	-	66,2
unserted species	VFF	-	333	333	333	333	0,0	-
Total:		3.182.878	3.424 .762	3.339.688	3.194.330	2.643 .557	-17,2	76,8

Tab. 5.2 EU-CATCHES BY QUOTED SPECIES

		EU (15)	EU (25)		EU (27)			
Species	Code- name	$\mathbf{2 0 0 3}$ \mathbf{t}	$\mathbf{2 0 0 4}$ \mathbf{t}	$\mathbf{2 0 0 5}$ \mathbf{t}	$\mathbf{2 0 0 6}$ \mathbf{t}	$\mathbf{2 0 0 7} \mathbf{a)}$ \mathbf{t}	Change 07/06 $\%$	Quota'07 by spec. \% b)
Of which: (COD, POK, HAD, HKE, RED)								

Notes: a) Preliminary figures.- b) \% of utilization of the quota.- c) Including red and white hake.-

Source: EU catch report
Published by: AIPCE 2008
Tab. 13.1 IMPORT OF FROZEN FILLETS AND MEAT OF ALASKA-POLLOCK AND HAKE FROM THIRD COUNTRIES INTO EU (25)

Month	1	2	3	4	5	6	7	8	9	10	11	12
Alaska-Pollock												
Fillets a), frozen: Total import	1,69	1,70	1,69	1,72	1,76	1,85	1,86	1,87	2,03	1,94	1,89	2,02
from it: Germany	1,69	1,70	1,69	1,70	1,75	1,81	1,85	1,82	2,05	1,98	1,96	2,10
France	1,67	1,71	1,74	1,77	1,81	1,88	1,87	2,05	2,05	2,05	1,95	2,11
UK	1,75	1,83	1,85	2,07	1,90	2,16	2,10	2,21	2,16	2,03	2,14	2,23
NL	1,76	1,82	1,84	1,89	1,89	1,92	2,06	2,10	2,19	2,20	2,23	2,27
Spain	1,97	1,75	1,76	1,80	1,63	1,80	-	2,10	1,99	2,11	1,90	2,09
Denmark	1,89	1,89	1,68	1,97	1,87	2,12	2,24	2,11	2,23	2,21	2,35	2,37
Belgium	1,89	1,79	1,77	1,69	1,74	1,84	1,90	1,93	2,02	1,86	2,08	1,96
Sweden	1,75	1,80	1,82	1,86	1,85	1,97	1,94	2,01	2,07	2,09	2,19	2,27
Poland	1,44	1,46	1,43	1,48	1,40	1,62	1,49	1,53	1,57	1,52	1,49	1,58
Meat b), frozen: Total import	1,09	1,08	1,17	1,15	1,18	1,11	1,22	1,32	1,29	1,28	1,34	1,37
from it: Germany	0,99	1,08	1,25	1,03	1,14	1,07	1,17	1,11	1,12	1,26	1,16	1,37
France	1,19	1,08	1,14	1,31	1,21	1,14	1,34	1,59	1,38	1,43	1,44	1,44
UK	0,99	0,95	0,94	1,12	1,27	1,12	1,14	1,19	1,54	1,13	1,19	1,20
NL	0,99	1,00	1,02	2,84	1,16	1,07	-	1,19	1,35	1,37	1,39	1,41
Spain	1,35	-	-	-	1,09	-		-	2,06	-	-	1,66
Denmark	0,96	0,98	-	-	-	-	-	-	-	-	-	-
Poland	1,39	1,18	0,91		0,96	0,66		-	-	-	-	1,38
Hake												
Fillets c), frozen: Total import	2,06	2,02	2,14	2,22	2,28	2,24	2,44	2,44	2,36	2,59	2,50	2,40
from it: Germany	1,50	1,56	1,57	1,56	1,55	1,89	1,85	1,67	1,66	1,93	1,69	1,99
France	1,87	1,93	2,01	1,98	2,04	2,21	2,13	2,30	2,29	2,04	2,46	2,30
UK	2,93	3,16	2,70	2,85	3,17	2,79	3,26	3,00	3,42	2,93	3,29	2,42
NL	2,23	2,28	2,30	2,37	2,57	2,36	2,51	2,51	2,27	2,54	2,75	2,47
Spain	2,22	2,35	2,30	2,28	2,60	2,15	2,51	2,52	2,54	2,67	2,53	2,47
Poland	1,46	1,48	1,46	1,49	1,45	1,63	1,67	1,84	1,79	1,88	1,87	2,01
Italy	2,76	2,45	2,89	3,42	2,97	3,17	3,29	3,41	3,19	3,22	3,40	2,96
Meat d), frozen: Total import	1,28	1,31	1,43	1,39	1,72	1,54	1,86	1,50	1,64	1,73	1,61	1,85
from it: Germany	0,93	0,85	0,89	0,90	0,82	0,91	0,96	1,10	1,06	1,08	1,04	1,30
France	0,93	0,95	1,10	1,03	1,35	1,20	1,11	1,33	1,21	1,12	1,26	1,26
UK	0,89	1,02	0,85	1,25	1,01	1,79	1,03	1,07	1,08	1,07	1,10	1,10
NL	-	-	-	-	-	-	-	-	-	-	-	-
Spain	1,49	1,92	1,66	1,67	2,24	1,65	2,17	1,69	1,98	1,94	1,90	2,16
Poland	-	-	-	-	-	-	-	-	-	-	-	-
Italy	3,13	1,78	1,87	2,48	2,32	1,60	1,97	2,12	2,24	1,60	1,97	1,53

Tab. 13.2 IMPORT OF FROZEN FILLETS AND MEAT OF ALASKA-POLLOCK AND HAKE FROM THIRD COUNTRIES INTO EU (25)

Month	1	2	3	4	5	6	7	8	9	10	11	12
Alaska-Pollock												
Fillets a), frozen: Total import	2,02	1,99	2,03	2,06	2,08	2,03	2,02	2,05	2,01	1,99	1,95	1,97
from it: Germany	2,00	2,01	2,07	2,10	2,12	2,07	2,04	2,08	2,04	2,03	2,03	2,06
France	2,14	2,09	2,17	2,16	2,09	2,02	1,97	2,03	2,05	2,14	2,08	2,03
UK	2,22	2,20	2,20	2,10	2,25	2,09	2,05	2,30	2,18	2,38	2,03	2,28
NL	2,26	2,27	2,29	2,28	2,27	2,23	2,30	2,25	2,23	2,17	2,23	2,13
Spain	2,06	1,80	1,89	2,10	2,00	1,83	2,47	1,98	1,93	1,98	1,81	1,69
Denmark	2,26	2,34	2,11	2,26	2,27	2,45	2,40	25,66	2,29	2,38	2,56	2,33
Belgium	2,04	2,16	2,02	2,07	2,14	2,11	2,09	2,01	2,02	2,15	2,09	1,99
Sweden	2,20	2,00	2,18	2,21	2,30	2,03	1,92	2,08	2,10	2,08	2,27	2,20
Poland	1,63	1,60	1,57	1,60	1,55	1,47	1,57	1,47	1,49	1,42	1,47	1,40
Meat b), frozen: Total import	1,38	1,30	1,39	1,53	1,51	1,43	1,50	1,45	1,45	1,43	1,45	1,45
from it: Germany	1,40	1,29	1,39	1,53	1,45	1,42	1,46	1,40	1,43	1,38	1,47	1,45
France	1,42	1,43	1,53	1,64	1,51	1,42	1,48	1,40	1,44	1,45	1,39	1,45
UK	1,29	1,24	1,29	1,42	1,42	1,40	1,46	1,32	1,39	1,40	1,47	1,45
NL	-	1,42	1,38	0,72	-	1,40	-	1,60	1,57	1,61	1,56	1,56
Spain	-	2,01	-	-	2,28	2,61	2,13	2,58	2,61	1,87	2,48	1,48
Denmark	-	-				-		0,53	-	-	-	-
Poland	1,47	1,27	1,43	0,90	1,55	1,52	-	1,22	1,17	-	1,22	1,19
Hake												
Fillets c), frozen: Total import	2,30	2,42	2,58	2,65	2,76	2,76	2,56	2,71	2,69	2,77	2,73	2,52
from it: Germany	1,85	2,21	2,08	2,27	2,26	2,22	2,10	2,20	2,15	2,30	2,15	2,08
France	2,22	2,42	2,30	2,61	2,73	2,50	2,50	2,91	2,72	2,63	2,77	2,46
UK	3,45	3,45	2,49	3,16	3,26	3,23	2,91	3,20	3,09	3,12	3,25	2,95
NL	2,67	2,55	2,69	2,69	2,58	2,74	2,84	2,76	2,93	2,57	3,12	2,79
Spain	2,21	2,38	2,55	2,60	2,67	2,79	2,56	2,59	2,63	2,89	2,89	2,59
Poland	1,95	1,88	2,01	1,96	2,14	1,62	1,93	1,69	1,74	1,90	1,90	1,96
Italy	2,86	2,85	3,24	3,40	3,36	3,39	3,25	3,70	3,56	3,43	3,13	3,16
Meat d), frozen: Total import	1,55	1,76	1,74	1,89	1,98	1,98	1,83	1,63	1,90	1,87	1,69	1,71
from it: Germany	1,16	1,15	1,12	1,09	1,15	1,03	1,04	1,19	1,13	1,31	1,18	1,34
France	1,12	1,30	0,98	1,08	1,89	1,25	0,98	1,05	1,20	1,44	1,45	1,23
UK	1,17	1,14	1,13	1,16	-	0,78	0,83	1,16	1,23	0,85	0,86	1,64
NL	1,17	-	-	-	-	-	0,99	-	-	1,22	1,00	-
Spain	2,02	1,91	2,01	2,01	2,16	2,22	2,31	1,91	2,11	2,22	1,81	2,07
Poland	-	1,26	-	1,43	-	-	-	1,31	1,34	-	1,39	1,30
Italy	1,83	1,70	1,70	2,34	2,02	1,48	1,89	1,43	1,58	1,64	1,49	1,54

Tab. 13.3 IMPORT OF FROZEN FILLETS AND MEAT OF ALASKA-POLLOCK AND HAKE FROM THIRD COUNTRIES INTO EU (27)

Month	1	2	3	4	5	6	7	8	9	10	11	12
Alaska-Pollock												
Fillets a), frozen: Total import	1,96	1,97	1,97	2,05	1,96	1,94	1,95	1,90	1,95	1,87	1,85	1,79
from it: Germany	2,03	2,02	2,04	2,06	1,99	1,97	2,00	1,97	1,98	1,92	1,91	1,87
France	2,03	2,03	2,02	2,07	1,98	1,97	1,92	1,94	2,00	1,94	1,94	1,85
UK	2,07	2,12	2,08	2,33	2,16	2,03	2,13	2,17	2,07	1,96	2,06	2,05
NL	2,17	2,11	2,22	2,10	2,09	2,12	2,09	2,04	2,10	1,97	2,01	1,96
Spain	1,75	1,87	1,98	1,58	1,80	1,65	1,97	1,45	1,50	1,56	1,63	1,64
Denmark	2,20	2,34	2,33	2,25	2,35	2,16	2,53	2,02	2,44	2,44	2,25	2,30
Belgium	1,96	2,11	2,08	2,02	1,78	1,88	1,86	1,94	2,05	1,86	1,88	1,76
Sweden	1,96	2,10	2,12	2,09	2,12	2,06	1,98	2,00	2,03	2,04	1,91	1,89
Poland	1,31	1,34	1,39	1,68	1,41	1,59	1,39	1,33	1,47	1,37	1,36	1,30
Meat b), frozen: Total import	1,41	1,44	1,42	1,44	1,42	1,37	1,35	1,39	1,34	1,31	1,37	1,27
from it: Germany	1,32	1,46	1,40	1,43	1,41	1,40	1,34	1,43	1,35	1,34	1,31	1,30
France	1,38	1,46	1,47	1,42	1,40	1,32	1,35	1,26	1,29	1,25	1,24	1,18
UK	-	-	1,05	1,44	1,67	1,37	1,37	1,33	1,40	1,27	1,52	1,24
NL	-	1,45	1,68	1,61	-	1,63	-	1,67	1,34	1,47	1,37	1,44
Spain	-	1,69	-	-	1,62	1,63	1,51	1,58	1,43	1,68	1,75	-
Denmark	-	-	-	-	-	-	-	1,29	-	-	-	-
Poland	1,04	1,13	1,36		0,97	1,04	-	1,42	1,27	-	-	-
Hake												
Fillets c), frozen: Total import	2,49	2,85	2,76	3,05	3,00	2,98	2,93	2,87	3,07	2,84	2,94	2,73
from it: Germany	2,12	2,15	2,16	2,28	2,20	2,26	2,03	1,97	2,18	2,24	2,40	1,98
France	2,67	3,14	2,82	2,62	3,11	2,71	2,79	3,06	2,95	2,67	2,79	3,02
UK	4,08	2,88	3,63	3,62	4,11	3,89	3,60	3,55	3,73	2,69	3,80	3,66
NL	1,88	3,29	2,97	2,95	1,79	2,35	2,99	2,84	2,00	2,47	3,56	2,82
Spain	2,79	2,94	2,86	3,27	3,24	3,17	3,29	3,05	3,28	3,00	3,02	2,89
Poland	1,94	1,93	1,84	2,23	2,36	2,27	2,61	2,01	2,86	2,55	2,27	2,08
Italy	3,17	3,47	3,24	3,72	3,30	3,29	3,46	3,72	3,81	3,43	3,51	3,13
Meat d), frozen: Total import	1,87	1,89	1,86	1,91	2,17	1,87	2,14	2,12	2,17	2,05	2,44	2,24
from it: Germany	1,28	1,33	1,32	1,25	1,21	1,26	1,24	1,22	1,17	1,16	0,98	1,20
France	1,24	1,13	1,27	1,37	1,34	1,26	1,38	1,29	1,23	1,34	1,12	-
UK	-	0,57	1,86	1,05	-	1,04	1,04	1,01	-	1,02	-	-
NL	1,07	-	-	-	-	-	-	-	-	-	-	-
Spain	2,53	2,19	2,08	2,15	2,40	2,30	2,47	2,37	2,62	2,61	3,03	2,56
Poland	-	1,28	-	1,28	-	-	-	1,33	-	-	1,33	1,31
Italy	1,50	1,92	1,69	1,79	2,36	1,71	1,25	2,19	2,47	1,97	3,42	2,07

[^0]: *From FAO Handbook, Circular No 847, rev. 1

[^1]: Notes: a) Incl. Aquaculture production - Catches $2005=\mathrm{EU}(25)$. - b) Estimation.- c) Without fishmeal (feed) and fishoil, product weight converted into live weight.d) Total supply / EU-population * $1000=$ kg/caput/year.- e) Supply for consumption / EU-population * 1000.- f) Catches for consumption / supply for consumption * $100=$ Rate of self-sufficiency in \%.-

 Source: FAO, Eurostat-Comext, EU catch report, estimations
 Published by: AIPCE 2008

