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FOREWORD

This is the first time | have had the responsibility of preparing
the Foreword for the Annual Technical Session Proceedings. Perhaps
it is appropriate that 1 take this opportunity to thank the
membership for the honor accorded me as the elected Chairman of
SSRC. On behalf of the membership | must express our appreciation
to Past Chairman John Springfield for his four years of effective,
conscientious and diligent leadership; we look forward to his continued
counsel on the Executive Committee.

“Stability of Circular Stiffened Shells™ was the title of the
Theme Session of the SSRC 1987 Annual Technical Session held at
the Adam's Mark Hotel in Houston on March 24-25, 1987. In
addition to the Theme Session, the 24 papers that were presented also
covered topics germane to the SSRC task groups and reporters, and
are the substance of these Proceedings. A highlight of the conference
was the excellent Tuesday luncheon presentation by Cor Langewis on
“Conoco’s Green Canyon Tension Leg Well Platform Project”, the
first tension leg platform designed for North American waters.
Approximately 100 people from 6 countries attended the meetings,
despite the current depressed condition of the oil industry. We trust
that a far larger number of engineers will find these printed
Proceedings to be of value.

My thanks to C. D. Miller, D. R. Sherman, C. C. Capanoglu,
R. M. Meith and R. K. Kinra who served as the Theme Session
Program Committee, and G. F. Fox, L. 8. Beedle, J. L. Durkee and
G. S. Stewart who served as the Sessions Program Committee,

We also appreciate the assistance of those who helped with the
local arrangements, including S. X. Gunzelman, J. W. Cox, and
W. J. Austin and a contingent of Rice University student helpers.
The facilities and service provided by the Adam’s Mark Hotel were
outstanding.

We are also most grateful to our sponsors. We thank the
American lIron and Steel Institute, Chevron USA, Inc., Shell Oil
Company and the Engineering Research Center for Advanced
Technology for Large Structural Systems (ATLSS) at Lehigh
University for their contributions toward the funding of the conference.
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The Annual Technical Session would not be the success it is
without the collective talents of the Council's Headquarters staff led
by the Director, Lynn S. Beedle. Our thanks to Lynn, the Technical
Secretary, Graham Stewart, the Administrative Secretary, Lesleigh
Federinic and Diana Walsh, Headquarters secretary. A special thanks
to Sue Stewart for her help at the registration area this year. The
arranging of all the many, many details and the smoothness with
which the sessions run is all due to these folks.

We invite you to look ahead with us to future scheduled

meetings:
1988 . Minneapolis, Minnesota
“Computer Technology Applied to
Structural Stability”
1989 - New York City
4th International Colloquium -
“Stability of Metal Structures”
1990 - St. Louis, Missouri

“Bridges”

I look forward to seeing you at these sessions.

V) -

Samuel J. Errera
Chairman

Bethlehem, Pennsylvania
August 1987
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BEHAVIOR AND STRENGTH OF NONPROPORTIONALLY LOADED IMPERFECT
BEAM-COLUMNS RESTRAINED PARTIALLY

Zia Razzaq and Siva Prasad Darbhamulla
0ld Dominion University
Nortolk, Virginia 23508

INTRODUCTION

Beam-co lumn research in the past has been heavily oriented toward
studies based on proportional loadings (Refs. 2,3, and 5). Thus, the axial
force and  bending moments are all increased simultaneously in a
proportional manner wuntil the load-carrying capacity of the member is
reached, The results of a preliminary study of four different
monproportional load paths for uniaxially loaded beam-columns have been
presented previously by the authors (Ref. 4). In the present paper, a
detailed theoretical study is summarized for both uniaxially and biaxially
loaded I-section beam—columns subjected to various load paths. For the
biaxially loaded beam-columns, the torsional effects are neglected in this
study. The torsional effects may be negligible when width-to-depth ratio
of a wide-flange section is nearly 1.0 as shown by Sharma and Gaylord
(Ret. &) in a study of bilaxially loaded beam-columns subjected to
proportional loading. The behavior of beam-columns is explained in the
presence of residual stresses, initial out-of-straightness, rotational end
restraints, and material unloading. Also, strength interaction curves are
obtained and compared to those based on the tangent modulus theory.

PROBLEM DEFINITION

Figure | shows an imperfect beam-column with biaxial partial
rotational end restraints subjected to an axial load P and external equal
end moments M_ and M . The rotational end restraints have linear
characteristics :wit.h lt!ftueues k and k_about the x and y axes. The
initial out-ot-straightness in the*xz and ﬂ planes is represented by u
and v,, respectively, and assumed as half-sine waves each having -%
amplitide ot L/1,000. The material of the beam-column is
elastic-pertectly=-plastic with E=29,000 ksi and a yleld stress of 36 ksi.
Lehigh-type initial residual stresses are adopted (Ref. 5) with a maximum
compressive residual stress of 0.3 times the material yleld stress.

UNIAXIALLY LOADED BEAM-COLUMNS

The study presented in Ref. 4 by the authors showed that major axis
response of beam-columns {s not load path dependant for all practical
purposes. Also, it was found that the minor axis response is load path
dependant when elastic rotational restraints are used. Therefore, in the
detailed study presented herein, beam-columns are loaded about the minor
axis in the presence of elastic partial rotational equal end restraints.

Table | summarizes the maximum external loads for uniaxially loaded




imperfect W8x3l beam-columns with partial rotational equal end restraints
subjected to two different load paths. A total of six beam-columns
numbered | through 6 are investigated to encompass three lengths (L=8, 12,
and 16 ft.), and two end restraint stiffnesses, kz and k3. given by:

kz = 13,333 in-kip/rad

k., = 24,000 in-kip/rad

3
These k values were used previously by the authors (Ref. 5) in a restraint
modelling effect study on the strength of beam-columns. The pinned-end
members do not exhibit significant elastic unloading and are not included
here, The behavior of fixed-end members is qualitatively similar to those
with k=k.. In this and subsequent tables and figures, p and m are the
dimshn?eu axial load, and moment values, respectively. The axial load
is nondimensionalized by the cross-sectional squash load, P_. The major
axis moment 1is nondimensionalized relative to the major axis yIcld moment ,
:I , while the minor axis moment is nondimensionalized relative to the
for axis yield moment, W’, of the cross section.

The two different load paths adopted are designated as LP m—p and
LP p-m and are defined as follows:

LP m-p : load path in which the external equal end moment M_ is applied
first incrementally and held constant, followed b; a gradually
increasing axial load P until the member load-carrying capacity
is reached.

The axial load corresponding to the load carrying capacity
obtained in LP m-p is applied first dincrementally and held
constant, followed by gradually increasing equal end moments
until the member load-carrying capacity is reached.

LP p-m

The maximum external loads p and m for the various beam-columns analyzed
are given. in Table 1 and plotted in Figures 2 through 4 in the form of
interaction curves between p and m_. The corresponding tangent modulus
curves were also obtained for LP nzp and included in these figures for
comparison,

Figure 2 for L=8 ft. shows that for the intermediate p and m values,
LP m-p results in peak loads higher than those obtained by LP p-m. This is
because significant material unloading takes place when LP m—p is used.
The tangent modulus curve 1is, surprisingly, unconservative for a
substantial range of p and m values. These conclusions may not necessarily
be valid for other values of L as seen from the interaction curves in
Figures 3 and & for L=12 and 16 ft., respectively. In Figure 3, LP m-p
curve results in peak loads lower than those obtained by LP p-m when p is
relatively large, whereas the converse is true for smaller p values. The
tangent modulus curve is conservative as compared to the curve for LP m-p.
However, it is unconservative compared to the LP p-m curve when m is
relatively large. The interaction curves in Figure 4 with L=16 ft. exhibit
similar character as those in Figure 3, except that the tangent modulus
curve 1is unconservative for relatively large values of m compared to the
curves for both the load paths.




BIAXTALLY LOADED BEAM-COLUMNS

Table 2 shows a comparison of predicted p values and those published
in References 1 and 6 for pinned-end beam-columns subjected to a biaxially
eccentric load. The cross section , length, and the equal end
eccentricities e and e  of the load for the beam-columns are also
given in this Ctable. The results from Reference 1 are based on an
experimental investigation, whereas those from Reference 6 are
theoretical. The ratio of predicted to the reference maximum p values is
given in the last column. Clearly, the results are in good agreement.

Table 3 gives the maximum external loads for biaxially loaded
imperfect WBx31 beam-columns (L=12 ft.) with partial rotational equal end
restraints subjected to varifous load paths. The biaxial end moments m
and m_ are applied simultaneously while holding their ratio pmportlonaf
to thé ratio of the sectional radii of gyration about the respective axes,
that is,

I‘lay - txlr, .

The results given in this table are plotted in Figure 5 in the form of
interaction curves between p and m ., The moment m_ can be found using
the equation given above. The LP -pyl:urve is above the LP p-m curve for
the entire range of p and m values. However, the tangent modulus
interaction curve with LP m-p is found to be quite unconservative for a
considerable range of the peak loads. A plausible explanation for this
phenomenon could be as follows., The tangent modulus approach results in a
more “ductile” behavior than that obtained with the analysis which
includes material unloading. Although it may appear that such ductile
response would lead to a conservative set of peak loads, it may also
result in a fictitious distribution of strains in the member particularly
in the presence of rotational end restraints. The approach based on
material unloading 1is free of such fictitious strains, thus the ensuing
deflections are correct, which following the principle of least work must
therefore result in lower peak loads. However, this type of behavior 1is
mot observed when relatively large axial load or large end moments are
applied since in these cases the P-Delta effects are less predominant in
comparison to those encountered in the "intermediate" range of p and m
values.

CONCLUSIONS

The effect of wvarious load paths on the behavior and strength of
beam-columns loaded uniaxially about the minor axis is more pronounced
than that on the bilaxially loaded ones. Neglecting significant material
unloading due to nonproportional loads may lead to unconservative
estimation of the load-carrying capacities of beam-columns. Thus, the
tangent modulus approach is found to be unconservative for a number of
uniaxially loaded beam—co lumns., Even a greater degree of
unconservativeness is noticed for the bilaxially loaded beam-columns
studied herein,
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Table |

Maximum external loads for uniaxially loaded imperfect beam=

columns with partial rotational equal end restraints and
various load paths (W Bx3l).

Beam— L load path
ey [P (LP) Maximum External loads

=2 0.000 0.075 0.737 0.961 -
P 3.211 3,000 1.500 0.000 ==

1 8
0.000 0.075 0.737 0.961 =
R 3.211 2.990 1,733 0.000 -
w 0.000 0.169 0.669 0.865 0.958
P 4.689 4,000 2,500 1.000 0,000

2 8
0.000 0.169 0.669 0.865 0,958
re 4.689 4,190 2,155 1.114 0,084
0.000 0.238 0,749 0.867 ==
i 3.736 3.000 1.500 0.001 =

3 12
0.000 0.238 0.749 0,867 ==
e 3.736 3.344 0,845 0.144 -
0.000 0.360 0.550 0.744 0,893
i 5.014 4,500 3,000 1.500 0.000

4 12
A 0.000 0.360 0.550 0.744 0.893
P 5.014 3,842 3,476 1.825 0,258
0.000 0.182 0,273 0.496 0.751
-y 5.561 4.500 3,000 1.500 0.000

5 16 :

0.000 0.182 0,273 0.496 0,751
P 5.561 3.032 3,590 1.593 0.007
0.000 0.100 0,352 0.649 0,795
i 6.983 6.000 4,500 1.500 0,000

6 16
0.000 0.100 0,352 0.649 0,795
. 6.983 5,483 3,923 2,087 0,386




Table 2 Comparison of predicted and previously published maximum loads
for pinned-end beam-columns with biaxially eccentric load*,

Reference| Cross L e e p predicted
number |section | (in.)] (in.) (IX.J Predicted | Reference | p reference
1 H bx6 96 | 1.61 |2.78 0.426 0.421 1.01
1 H 5x5 120 2,38 | 2.51 0.284 0.297 0.96
6 W 12x65 180 | 18.40 | 3.76 0.186 0.199 0.93
6 W 12x65 270 | 18.40 | 3.76 0.167 0,169 0.99
] W 12x65 360 | 18.40 | 3.76 0,149 0.144 0.97

* 'x'Pexlan 3 “y'P°ylHYy

Table 3 Maximum external loads for biaxially loaded imperfect beam-
columns with partial rotational equal end restraints and
various load paths (L=12 fr. ; W 8x31).

am—- load path
S k (LP) Maximum External Loads

p 0.000 0,251 0.525 0.876 0.869
n-p m 1,078 0.864 0,405 0,070 0,000
m 0.631 0.506 0.237 0.04]1 0.000

7 k
* s 0,000 0,250 0.500 0,750 0.869
p-m m 1.078 0.864 0,405 0.070 0,000
L) 0.631 0.506 0.237 0.04]1 0.000
P 0.000 0.276 0.503 0.919 0.904
m=p L] 1.255 0.952 0.471 0.039 0,000
m 0.735 0.558 0.276 0.023 0,000

8 k
2 P 0.000 0.250 0.500 0.750 0,904
p-m m 1.255 0,952 0.471 0.039 0.000
m 0.735 0.558 0.276 0.023 0.000
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DYNAMIC INSTABILITY OF
FRAMES HAVING THINWALLED COLUMNS

By Srinivasan Sridharan and M. Ashraf Ali
Department of Civil Engineering
Washington University in St. Louis, MO

SUMMARY

Dynamic instability of single story frames having thin-walled columns
has been Iinvestigated, The lateral loads sustained by the frame are step
loads, while the axial loads are deemed to be quasi-statically applied. The
analytical model employed by the authors has the capability of modelling
the combined action of two “companion" local modes whose amplitudes are
variable along the length of the column and any type of end conditions of
the members.

For given levels of axial loads sustained by the columns, the
magnitudes of lateral loads causing instability can be significantly
smaller than those corresponding to static buckling, provided the dynamic
load is of sufficient duration., There exists, however, a threshold value of
axial force carried by the columns, below which there is no elastic
instability - static or dynamic.

For columns with overall critical loads several times greater than the
local eritical load, there is no danger of elastic instabilicty, but the
deflections under dynamic lateral loads of less than 1% of the axial load
may reach such huge values that there is a serious danger of localized
plastic collapse. It is also shown that moment frames having thin-walled
columns such as fabricated out of cold formed steel are extremely

vulnerable to moderate seismic excitations.
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INTRODUCTION

Local buckling and the interaction of local with overall buckling are
primary considerations in the design of thinwalled columns. A serious
consequence of local buckling is the reduction of stiffness of the column-
section in its resistance to bending. Thus overall buckling occurs at a
load much smaller than the Euler critical load of the column. The
phenomenon is known to be imperfection-sensitive when the ratio (a) of the
overall cricical stress (on) to the local critical stress (¢,) is close to
unl:y.1'3

The utilization of the postbuckling strength of plate elements in the
design of the thin-walled columns such as made of coldformed steel is not
therefore possible without mastering the associated problem of interactive
buckling. In a recent pnper“ the authors have discussed a state of the art
analytical model for the interactive buckling problem. The model is
primarily intended for doubly symmetric column sections. Extension to more
general cross-sectional shapes has been accomplished r-c-ntlys. but in the
present paper attention is restricted to the doubly symmetric case,
Features of this model will be briefly recapitulated in this paper.

In the present paper the dynamic behavior of thinwalled columns is
investigated using the interactive buckling model developed by the authors,
Axial compression is considered to be the primary source of instability and
the dynamic response is triggered by suddenly applied lateral loads. The
analytical model employed has the capability of modelling the action of two
"companion" local modes whose amplitudes are variable along the length of
the column and can depict any type of end conditions. Thus the interactive
buckling in members of frameworks can be studied, For simplicity, attention
is confined in the present study to a single story frame consisting of two

flexible thin walled columns connected by a rigid member. Buckling under



step loading and base excitation is studied, Comparisons are made with the

static case wherever applicable,

THEORY

Features of the new analytical model

The essential features of the new analytical model are summarized in

the sequel. For a detailed treatment, the interested reader is referred to

ref. 4 and 5:

1.

The interaction of overall bending/buckling of the column with the
local buckling mode associated with the lowest critical stress (01) -
henceforth called the "primary local mode" - triggers a secondary
local buckling mode having the same wavelength as the primary one. In
a realistic interactive buckling analysis of a doubly symmetric
compression member, these "companion" modes must be considered
together. If the primary mode {s symmetric (antisymmetric) with
respect to the axis of bending, then the secondary mode is
antisymmetric (symmetric) with respect to the same axis. This feature
was demonstrated in vef. (4) and (6). Thus, the new analytical model
incorporates the two companion local modes.

The amplitudes of the two local modes do not remain constant, but must
be given freedom to vary along the length of the member. This
phenomenon of "amplitude modulation” is demonstrated in ref. (4) and
is accounted for in the model in an elegant manner using the concept
of a "slowly varying" function first introduced by Koiter (7).

The model employs a new beam element which has cubic polynomial shape
functions for the description of overall axial and lateral
displacements and linear variations for the functions modulating the

local amplitudes. The cross-sectional deformations as glven by the

15
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local modes together with the associated second order fields are duly
embedded into the element. The description of overall displacements in
terms of a F.E. model makes it possible to deal with arbitrarily
prescribed end-conditions and to account for changes in the overall
displacement profile which occur due to interaction with the local

modes under continued loading.

EXAMPLES

Simplified model of a single story frame (Fig. 1) consisting of two
columns connected by a rigid beam at their top levels i{s the example
studied in this paper. The frame is deemed to carry axial loads of P
applied to each column and a lateral load Q applied at the level of the
beam, While P is deemed to be always applied statically and prior to Q, the
latter may be applied statically or dynamically. This situation is typical
of frames in thin-walled metal buildings. The relationship between P and
Q(Q.) in the context of static instability was touched upon in ref. 4. A
similar relationship between P and a suddenly applied (step load) Q(Qd) is
investigated in the present paper, The Instability in this case is one in
which the frame would lose its ability to oscillate and exhibit divergence
- the characteristic mode of dynamic instability of conservative systems.
In the example, the frame is deemed to carry masses at the level of the
beam each equal to P/g (Fig. 1) where P is the axial load carried by the
columns and given in gravitational units and g is the acceleration due to
gravity. These masses are due to the dead weight of the super structure
supported by the columns. The material is assumed to be structural steel
with E = 30,000 ksi, v = 0.3, specific gravicy of 7.32. In all the
calculations reported herein, the column was divided into 5 elements. For

the extraction of the eigen modes and the second order fields, advantage is
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taken of the symmetry and 24 strip elements were used over half the column.
These have been shown to be adequate to obtain results of engineering

lccutacy.s

L-section column

Fig. 2(a) shows the cross-sectional details of the column and 2(b-c)
the local modes of buckling. The lateral loading is applied so as to cause
bending about the weaker axis. An initial imperfection in the shape of the
primary local buckling mode with & maximum amplitude of 0.1t {s assumed for
the column. In all the calculations 't' was set to be 0.1 in. and this
value is typical for cold formed sheet steel. For a column length of 2000t
(a = 1.06) the natural period of overall oscillations of the frame
including the superimposed masses works out to be 4.7 sec and 6.4 sec

respectively for P/Pcl equal 0.60 and 0.76. (?cl is the critical load

corresponding to the primary local buckling mode). A time step of 0.5 sec
was found to yleld sufficiently accurate results for the deflections and
produced convergence in 2-4 iterations in all the cases investigated.

The dynamic response for Q < Q, is illustrated in Fig, 3. The axial
load on the columns is 0.6 Pcl and Q/Q, = 0.44 (Qq = 0.101 kips). It is

found that the structure has an oscillatory response. Unlike in the linear
problem, the maximum amplitudes are more than twice the corresponding
static deflections. This is because of the increasing loss of stiffness due
to local buckling of the structure with increasing deflections. Note that
the local modes are driven by the overall bending and their frequencies
coincide with that of the overall oscillation of the frame. Note also that
the deflections in the form of secondary local mode vanish as the structure

returns to its straight configuration. To lateral loads equal or greater



than the critical local Q4. the structure responds by deflections which
increase indefinitely with time (not illustrated).

Fig. 4(a-b) shows the relationship between P/P_ and Q /P  for two
N g €y €

cases, with lengths of 2000t (a = 1,06, case (a)) and 1760t (a = 1.37,
case (b)) respectively. For each case the corresponding relationship

between P/Pc and Q'/Pc is also shown in the Fig. 4(a-b). Note that Q' and
1

Q4 are the lateral loads corresponding to elastic instability (static and
dynamic respectively) with no limit set on the yield stress % of the

material,

From Fig. 4(a-b) it is seen that there is a threshold value of axial
load below which no elastic buckling - static or dyéanic - occurs. In this
range column responds to the lateral load by developing deflections (static
case) and oscillations (dynamic case). The deflections and the amplitudes
of oscillations increase indefinitely with Q. Column thus behaves like a
solid Euler column with a reduced critical load,

For values of axial loads above the threshold value, Q. ls always
found to be greater than Q,. Fig. 4(a-b) also plots ¢, the reduction due to
the suddenness of application of the lateral load expressed as a percentage

of Q‘, (L.e, p = (l-qd/Q.) x 100) against P/Pc . As the axial load
1
increases both Q  and Q; approach zero but at differing rates. For a value

of axial load about 70% of P_ , the percentage reduction ¥, in the case of
1

column (a) is seen to be about 28% - a significant reduction which should

be important in design.
Though qualitatively similar, the behavior of columns (a) and (b) do

differ from each other noticeably. The range of P/P, over vhich elastic
1

buckling is a problem in the presence of the lateral load reduces to 0.19,



(0.91 > P/l’c > 0.72) for the shorter column (b) from 0.26 (0.81 > P/Pc
1 1

> 0.55) of column (a). As the length decreases further, there is a
continued reduction of this range (not illustrated). There occurs too a
reduction in the values of ¢ for column (b) over the entire range over

which dynamic instability is a problem.

Selsmic Response:

The same frame (with I-section columns, case (a)) is now investigated
for seismic response. An ldealized ground acceleration with a peak value of
20 in/sec? (= 0.05g) is considered (Fig. 5a). The total duration of the
earthquake is assumed to be 3 sec. The column carries an axlal load of P =

0.6?e . In Fig. 5b the lateral displacement at the top of the column (H-'!)
1

is plotted against time, t. Note that the irregularity in the response at t
= 3 sec is due to the transition from forced vibration to the free
vibration phase. The structure oscillates freely reaching deflections of
more than L/50, The peaks of local buckling amplitude once again,
synchronize with those of the lateral displacement. Note that the period of
vibration {s more than twice the period of vibration of the frame which is
obtained neglecting the local buckling deformation.

Even though the frame vibrates without apparently losing its
stability, the stresses at critical sections as given by the elastic
analysis reach such magnitudes as may very well cause ylelding in practice.
At time t = 4.5 sec, the frame reaches it first peak of displacement. It is
found that with 'y = 50 ksi, most of the flange would have ylelded in
compression or tension. Thus there exists a potential danger of collapse
due to frequent excursions of the material into the plastic range. The

analysis is repreated twice, in one case increasing the peak ground
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acceleration to 30 in/secz (= 0.078 g) (case (ii)) and in the other keeping
the ground acceleration as 0.05g but Increasing the axial load P to 0.644
P, (case (111)). In either case, the structure becomes dynamically

1

unstable developing displacements which increase indefinitely with time.

CONCLUSIONS

DPynamic instability of single story frames having thin-walled columns
has been investigated. The lateral loads sustained by the frame are dynamic
in character, while the axial loads are deemed to be quasi-statically
applied.

Under lateral step loads (of infinite duration) the frames develop
divergence type of instability at loads which can be significantly smaller
than the corresponding static load causing instability. However there
exists a threshold value of the axial force carried by the columns, below
which there is no elastic instability, static or dynamic. The elastic
behavior of the columns is controlled by the two parameters a and 7.

For columns with o >> 1, there is no danger of elastic instability,
but the deflections under dynamic lateral loads of less than 1% of axial
load may reach such huge values as may very well precipitate localized
plastic collapse.

Moment frames having thin walled columns such as made up of cold
formed steel are seen to be extremely vulnerable to moderate seismic
excitations, The full serlousness of the problem can, however, be clearly
quantified only by studying the collapse behavior with plasticity duly

accounted for.
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APPENDIX I: NOTATION

Young's modulus
Length of column
Axial load carried by column

Critical value of P corresponding to local buckling in the

primary mode

Lateral load carried by frame

Static lateral load causing elastic instability

Dynamic lateral load causing elastic instability

Maximum value of W, the lateral displacement of the column
Acceleration due to gravity

/%

Amplitudes of the primary and secondary local modes
respectively

The critical stress corresponding to overall buckling

The critical stress corresponding to the primary and secondary

local buckling modes respectively
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Fig. 1. The model of a single story
frame: A pair of columns
B connected by a rigid beam.
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Fig. 2. (a) Cross-sectional dimensions of the column.
(b) The primary local mode. (01/5-0.621 x 10 3.' half-wave length=80t)

(c) The secondary local mode. (a;,E-DJSh x 1009
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Post-Puckling Behaviour and Effective Width
of Edge-Stiffened Plate Elements
Under Combined Compression and Bending
by
Xuhong Zhou* and Si)1 Wang+*
SUMMARY

The post-buckling behaviour and effective width of edge-
stiffened plate elements under combined compression &nd
bending are investigated theoretically and experimentally

in this paper, A semi-energy method is used., Because of the
complexity in both boundary eonditions and loading conditions
the deflection along the transverse section is assumed to be
& transoendental function similar to the vibration funotion
of beams, whose eigenvalues are determined by the boundary
conditions of the unloaded edges.The stress function can thus
be solved by substituting the defleotion funmction into von
Kérmén's compatibility equation. Using the prinoiple of Bta-
tionary potential energy a set of simultaneous non-linear
algebric equations for determining the parameters of the de-
fleotion funotion can be derived., Based on the Stowell-Ilyu-
shin theorem, a eriterion for post-buckling strength is
establighed, Therefore, the ultimate load for such plate
elements oan be determined,For design purpose & simplified
effective width formula is presented,

Theoretiocal results are verified by & total of 28 cold-formed
lipped chepnel and lipped le column tests, The speoimens
are designed in various width-to-thickness ratios, aspect
ratioe and eccentricities, A comparison of theoretioal ulti-
mate loads with experimental results is presented and agree-
ment 18 mseen to be good,

INTRODUCTION

Cold-formed open msections having lips, such as lipped
channeles,lipped angles, hat sections eto,, are widely used
as struotual members, The flanges or legs in such sections
are commonly treated as edge-stiffened plate elements, whose
ultimate strength is oconsiderably larger than that of & un-
stiffened plate element of similar dimensions and material
properties,

The behaviour of edge-stiffened plate elements under unifora
compression were studied theoretiocally and experimentally by

*Hesearch and Teaching Assistant,Dept. of Civil Engineering,
Hunen Univ,, Changsha, Hunan, China,
*sProfessor, Dept. of Civil Engineering, Hunan Univ,
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Desmond, et al (1). Rhodes and Harvey examined the post-
buckling behaviour of eccentriocally loaded plate with the un-
loaded edges elastically restrained against rotation using
Ritz method (2,3), However, their theoretical boundary con-
aitionl seem to be less practiocal than conditions of stiffened
edges,

This paper is concerned with an elastic large deflection
analysis of edge-stiffened plate elements under combined com-
pression and bending, The method developed by Rodes and Harvey
(2,3) is extended in this paper,

THEORETICAL ANALYSIS
1, Basic Assumptions and Boundary Conditionms

The basic assumptions made in the analysis are the following:
(1) only the elastic behaviour is considered; (2) e stiffe-
ner is an elastically supported beam, whose effect of rota-
tional restraints on the flange is ignored. (3) at the web-
flange junotion the moment applied to the flange is propor-
tional to the rotations of the edges. (4) the unloaded edges
of flange are free from nomal and shear stresses. (5) the
loaded edges are compressed in such & way that their in-plane
movements vary linearly along the width of the plate and free
from shear stresses,

The edge-stiffened plate elements in this study are shown in
Fig.l. The deflected form of W 1s taken as

'zcns%gzﬂ'.?.{w (1)

where e=L/mb, m is the number of bugkle half-wave,
Applying Eq.(1), it is seen that the following boundary con-
ditions cen be obteined

¥Fulsca=0 (2)
Viloo =R¥ Lo (3)
?*F »Ff  _
Tay fyut=— WI.-&-O U-I--a'-—o? g 0 (4)
n : )
[V:—V(-é-b-) Y.]'_. =0 (5)
. = V., Elf =\ _
(v ~a=v () vi- Sl - (6)
oF _F|
T boet= = 500 s =0 Tolrer™ Bl =0 (7)
3 F -
atacadar — | S ()
w(0)=t;, u(b)=u;=u,(1—§) for oase 1: (9a)
u(0)=us=wu,(1—£), u(b)=u, for case 2. (9b)

wh R/b is defined as the rotational restraint cofficlent
cn;r:srict between O for a simply supported edge and = for &
clamped edge; F is airy siress function; I=moment of inertia
of the cross section of stiffener about its own centrold axis
parasllel to the flange; ’C.,'a,=m;x- stress in the x-y plane



and direct stress in the y direction; f--1"'
u

£, Deflection Function and Stress Funotion

The functions of Y,
S ot e n(¥) are chosen as vibration funotions of

Al
Y.(u)-d‘,.-inT +da cual;;l +dy. 3"2‘5—”-4-#..0&% (10)

where d.~d.. are constants to be determined
Substituting Yn(y) into Eqs.(2),(3),(5) and (6), & series of
::lgog;fl::l linear algebric equations can thus So obtained

(]

djem ~ds
d R +2d3 ke +d3R=0

die A2 +v (Z) Jsinho + {[ A+v(Z)") conho+
#[ai-v (%)']cil.} +du v (-:-)'—A:]m.-o (13)

d,, {Mco-lﬂ-(z— V)(—:—)’l-wlk +-gﬁ.-lln1.}+

(11)
(12)

+d,.{ Hshh—sink) ~ (2= V)| ) AuC e+ simda)

4..5%(:0.1.—0’4.)] +dy. {(2_")(%)' = heCh).—

Elns
-A=Ch1-+m-$hlc}-o (1‘)

The nontrivial solutions of these equations oan be found by
equating to zero the following determinant

Ffazey (Z) Jeosres
[Mﬂ(s)']unx. E[Mi{e(g:"]:nj [\, (_:_)'_M]sn-
2+ -n(3) x)~ F—@=Z) Mtk + ((z V)(;),: )
xcmh.+%lml. Eatk )+%’1(w1 x Chho+ Ded shi.

H R eh e

| —ehh)

It is poseible to solve tnnnenhnfn.l equations (15) for A s
Substituting the values of A . into Bgu(ll)~(1l4) and setting
d..=], the constantsd,~d,.are determined,
For eimplicity, introduce symbol of oprration as follows

% ¥ 0% @m_, ot | oM
L(L, ’”"'s_r—: an? ant a_r!—- ATOU - dran (1‘)

The stress distribution in plate must now obey von Kdrmén's



compatibility equation

PoF = — L EL(W,W) (17)
Snbltitutlng from Eq.(1l) for W gives
VOF = e 303 AeA(YAY S~V 1 D (VK IV 2V 4 Yeon -] e

:hu & solution for stress function can be obtained in the
orm

F-n“.(u)*—ﬂ(n)tﬂ% (19)
From Eq.(18) it can bo lun that
F, @ ()= = ze,b, EZA.A (YLVL+Y YY) (20)

Fa“'(y)—z( )F()+(——— Fiy) =

Z)_..A A(YXEI=YLYD)

ze'b' - (21)
Integrating lq.(!O) twice gives
Fiw)=—p “,,b, Lgﬁ AV oY o+Biy—B, (20)'

The integration constants B, and B, are used to satisfy the
conditions on the loaded edge as will be seen later,

To obtain & solution F; Eq.(10) is used., The solution to Eq.
(21) takes the torl

Fiw )= —mpz -}:EA.A.¢..(u) (22)

Partioular solution is

Falw)= e,b, ZEA-A.&..(UJ

where T-.(u)-A;..mnuum—b—-+Aa--ainl—fcﬂl A;y

+ Ayaa8Sin ———sh + Aymesin A—;"-'-Chk—b'y

A.y h Ant _, Aalt

+ Ayuscos 5 cos ‘y +.4...oo-—-—sh 5

+ A,..euﬂ ckA—'"- + A...snﬂsh ";"

Aa¥ %-u

4+ Agassh A—-(.‘A-L'J- + A,...ch b A;y (23)

Substituting Y, and Fiy) 1nte Eq.(21), we obtain a series of
simul taneous linear algebric equations to determine constans

A DA +EAINE+ z(—ze"-)’m - J

- .|A,..[3\£+M + (2—:)’]1.A.= il s deladha Dk (24)
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e[ ha 2t —anta +2(-22) Gz-an + ()
Ay A=A+ () Jhaham by ityu (A =220 + 2ok
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g =21 (25) Phokembotdiadin R =12 + 2udrohehd
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o) au- A+ () )= becdind A1 =22) ~ 2dsadpehehe)
Amfrz st ranmi-2( ) azan +(5))
+ 4 A2 422 = (Z2) Phakem b drdride~ dyudiharhe
Anars+aant-2 () azan+ ()
+4Apa( N34 AE = (Z2) Jhoha= b1y edA A1)~ 2o
e A2 421~ (2] J Akt Bt A2 +00 202
=2(-Z) A+ (E2) ) = becdindichs ~dyudyihie
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(27)

(28)

(29)

(30)

(31)

(32)

(33)

ticular
hus

(24)

Substituting Eq.(19) into Eqe.(4) and (7) obtaims four con-

ditions as follows
$us(0) =0, $Lu(0)=0, $us(6)=0, $L.(6)=0

(35)



These conditione are satisfied if
Avimam = (Agast Armat Aspms) I (36)

2% T _
At (—e-) + Ayyae= = (Arnet Ayae Agas)ha— Agashe (31)

o = 2= 2=
A.....rk—i— + AunﬂT + JnuC*T + Au-.-‘i-e—

= = Ay e BIN) 2 8INAy = A e 5IN) nCOBA. ~ AyneBin) shi.
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Ayyme %)ah-’% +Ajzme (%—)cli—’ +A,,..[cﬁ —%’—'- +
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— AyachaChhaChke (38)

Solving the linear algebric Eqs.(26),(37),(38) and (39), the
constants Ay e~ .. are determined,.
¥q.(8) 1s satiafied irrespective of the forms of ¥, and F; .
Acoording to the theory of lager deflection and derivation
above, the in-plane dlsplacement of the plate middle surface
in the direction y is

1=, e (T} L2 Y

L py ®L G N _
-—;E,"Fl -ngdadny-yl 2k (Ely B!) (‘o)
Eq.(9) is satiasfied 1if
2E
By=- if ud 8:--T“- for oase 1; (4la)

2E - 2E L (1-8) for case 2. 4lb)
Bl-ﬁutf . B T u(1-£) o ‘

3, Analysis of Energy Method

The total atrain energy astored in the buckle plate system 1is
given by

Veal =V Vy+V +Vy
in which V¥, , V.=strain energies of bending and mid-plane de-
formations of the flange; Vi=strain energy of the elastioally

restraing medium of the unloaded edge restrained from rota-
tion; V,=strain energy of the edge stiffensr; V,= potential



energy of the external forces. These energies are given by g

the following oxpnuiou
Vv "?DII 5 1(P)?=( 1=v)L(w, =)dxdy

- (v () e - S ) P

--——V( )EEA.A & &8 )

e -tE I’! AWFR=(1+v)L(F, F)}dzdv--—-rl L (VF)dxdy

At RLIE 2 35 3 2P WWW I'{ 282 (2 ) t..][cb.. =) on]

326
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1 S-\. \ay® 61")--' 14 )nn - 25-»::03,: . dr
- —EEJA.A.Y:( 0)¥4(0)
Ef 3wy ? LEI » =
L 1 (a;: - ( = ) E_Z_‘A.A.P (B)Y(B)

Note that the expressions for V, and V, have been simplirfied
by using the orthogonality of Y,(y) and the stress boundary
conditions,respectively, 1.e.

r‘ L(F F)d.tdy-él_[ - 01" :-%’FT- GT:xdy]-o

where ér— integration mlong the edges of flange.

It 1s u.nneouug.to find an expression for ¥; since V; is
not related to coefficlents An.

Now applying the condition of stationary potential energy
obtains

o LfEﬂ ‘{ s A
o b 2R J vy,

(32 () 0] 85+ 05— () COr w0 JJas

Lixd o e 10 LD, ey g0
- B[ vy wdy~ =55 vavidy
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Egs,.(42) are a set of simultaneous non-linear algebric equa-
tions in the coefficients, Cancelling the non-linear terms, a
set of linear homogeneous equations oan be obtained, The ori-
tical mid-plans displacement u,.. describing bifurcation can
:l;:nt:o found by equating to zero the determinant of coffi-
nts,
Using equilibrium condition and Eq.(35) the load on the
flange is found from

P-—II:a.dy-t—fI:FT(V)d"

t] ¥ (]
= btB,— 5 botB,— ;‘ei‘; 3535 4.4 V.Y dy (43)
M- lj:a.udy- —-fI:F1 (v)wdy
I 1 o '
=By = L0t~ Tl 3SR A AV Y wdy (44)

Setting M~Pd obtains

vt (La-1 o)B-tfd- 5 b)Bi- R S A Af VY (- dddu=0 (48)

where ¢ is expressed in terms of n-ﬂ';ﬁ.. i.e,

d__s___:_ for oase 1; (46a)

| ==——a
d= 1 .

PR
In post-buckling analysis, the values of ¢ and coefficlents
A,~Aq corresponding to a given u ( % >u, ) can be found by
solving N + | non-linear Eqs.(42) and (45). As this investi-
gation ie not really concerned with loads greater than about
three times the buckling load, the use of only one or two
terms in deflection series will give sufficient accuracy for
engineering practice.Finally the plate displacements, stre-
sses, ect., are all found from the theory of large deflection.

for case 2. (46b)

N|ﬂ"

4. Criterion of Poet-Buckling Strength

According to Stowell-Ilyushin's theorem, the condition of
plastic yield of plate cen be approximately expressed as
follows (4)

On=1, (47)
where o, =maximum stress in the plate in x direction after
buckling, ineluding non-linear membrane and bending stresses;

fy=yield strength of plate,

I the condition of Eq,.(47) is satisfied, the load on the
plate resches the ultimate capacity. The nominal stress o,
corresponding to the ultimete losd is considered as post-

buekling strength o. of the plete elements,




5, Effective Width Method

For design purpose, actual buckled plate is replaced a
equivalent unbuckled plate as shown in Fig.2, The width of
equivalent plate 1s so oalled effective width, The principle
of equivalenee is (a) the load-carrying capacities of both
plate are equal; and (b) when the nominal maximum stress of
the actual plate reaches post-buckling etrength o. , the
nominel maximum stress of the equivalent plate reaches yield
strength fy . 1t follows that the effective width is

b__%%[z_u_ Jm] (48)

EXPERIMENRTS

::goriaontsl investigation of 28 cold-formed lipped channel
lipped angle columns under load with various eccentri-
cities has been carried out at Human University.The cross-
sectional shapes of the specimens are shown in Fig.3., Their
dimensions sectional properties are given in Table 1, It
can be seen that they are designed in five sorts of width-
to-thickness ratios (b/t=20,40,50,60 and 90), A thick plate
was welded to each end of the specimens, and both ends were
seated on oruciformknife supports.

The theoretlocal ultimate loads are compared with experimen-
tal results in Table 1,

CORCLUSION

Bdge-stiffened plate elements under combined compression and
bending really have load-esarrying osgnoit: after buckling.
1t can bdbe used in design, Based on the theoretical analysis
in this paper, the values of effective width of edge-
stiffened plate elements can be tabulated for design purpose.
In order to conslder the effects of imperfections, strain
harding, nonlinearity of material and interaction buckling
of columns, further study is underway,
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TABLE 1. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

i Measured dimensions 1 . 1 ,I X _ 5

! mm | pt - -

Speo. 1 ¢ - ! a A '?:."E P;} Pa iy
| n 2 ] i e | | | Pu,

] 1 | L | |

SCe2-30 128.8 71.9 19.8 2.43 00 2%.54 0.193 22.0 = 21530 22076 1.025

5C56-<0 138.2 111.5 22.2 2.47 TO0 45.°z 0,706 19.3 - 18850 22388 1.188

S5CB4-50 128.8 B9.7 15.5 1.49 600 60.°€ 0.416 21.2 - 6250 6756 1.082

5C90-30 °27.7 134.5 20.5 1.48 T0O 90.8% -0.493 16.4 2800 5790 5931 1.033

SA3C - 72.5 20.9 2.48 350 29.7% 0.558 33.7 - 3912 10692 1.079

SALT - 97.7 22,4 2.456 450 33.74 -1.057 39.1 = 10500 11384 1.085

SA&5 - 91.3 16.5 1.4T7 400 52.37 -1.029 50.5 - 3200 3352 1.051

SAG0 - 135.4 21.4 1.49 500 93.€2 -0.329 57.1 - 5010 4535 0.909

LC42-3Ca 110.8 73.3 19.4 2. 35.8 - 10050 12512

LCL2-3C5 110.4 T3.2 18.5 2. 39.0 - 19200 20415 1.

tCe2-2C< 102.3 75.2 18.5 2. 5] - 8580 9666 1.12

LCT0=5Ca '08.3 7&4.3 15.0 1, 33.4 2550 3410 5060

LCTI-5C 195.5 75.2 16.0 1. 38.2 1500 4400 4661

LC84=50 121.3 93,1 16.7 1. 5.2 - 5200# 4970

LC90-90 134.9 135.5 18.7 1 59.0 2500 5570 54T

LA30a - T4.4 20.0 2. 2 0.8 38.5 - 7770 7637 O

LA3CH - 74,0 20.7 2. 7 -1.504 38.3 - 5290% 5149

LAl0c - T&.3 19.8 2. .17 =-1.635 78.5 - 31300% 4300

LA30d - Te.1 20.5 2. .97 0.919 53.0 - 7508 5499

LA&2a - 9€.2 23.2 2. .62 0.949 33901 - 3170 8859

LA4OD - §3.2 ol B £3 0,895 T78.0 - 5G60# T30T

LAS0a - 7 91 L1 =-1.875 75.2 - 1200% 1020 0.

LASSH - +9 1 b5 =1.638 59.5 - 15508 1521

La50c - | -4 =1.397 103.5 - 1200" 1135

LASOd e Il 15 .83 0.905 58.2 1500 2400 2323

LASO - 8 T £33 0.381 38.5 = LBOO 4135 0.8862

LA30a - 1 LE3=0,37T1 107.3 - 1200® 2274 0.7T11

LA3CE - v ¥ .27 =0.56T7 142.2 - 2400% 1739 0.725

P, =Experimental oritical losd at buokling (Kg);

Pl, P,=Experimental and throretiocal ultimate loads
of specimens (Kg);

L =Column length;

)L =Slenderness ratio;

a=-2"% (The minus before ¢ implies that the maximum stress
9 applies to edge stiffener, as shown in Fig.le.)

¢ Flexural buckling of columns;

. Treional-flexural buokling of columns.
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b) Case 1. Maximum stress ¢c) Case 2, Maximum stress
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FMg.2, Effective width of
edge-stiffened plate
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GENERAL BUCKLING OF SHELL-LIKE STRUCTURES
SUMMARY OF CLOSED FORM SOLUTIONS
by Kenneth P. Buchert, Professor of Engineering,
Southern Illincis University of Edwardsville

INTRODUCTION

A shell-like structure is one that resists loads in a manner
similar to that of a thin shell. That is, the major mode of
resistance is by membrane action by which forces are carried
from point to point by biarxial tension or compression and by
shear in the plane of the shell. In addition to the
membrane resistance, the shell-like structure has bending
resistance to help resist loads. It also has in-plane shear
resistance. Examples of shell-like structures are latticed
shells, reticulated shells, stiffened shells, orthotropic
shells, sandwich shells, framed shells, concrete shells,
wooden shells and composite shells. Figure 1 illustrates
several kinds of shell-like structures. ’4
Concre?e or

Sf’f{eﬂe’:’ u/ood
~Shell-T l

Usvec]
Stiffened Shel/ Compositc She//

A»erén/

-

Plastic} ~~ ~ 4
ela/
/F'er‘/azﬁ/e/ Shel Sorduich Shell

Crocked Ce m-re/f!

/Pe bqr

Concrede Shet/

Figure 1. Types of Shell-Like Structures.
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II.

The closed form equations of shell-like structures involve
what is called an equivalent membrane thickness t;, and an
equivalent bending thickness t, . The equivalent membrane
thickness is found by equating the tensile or compressive
effective area per unit length to the membrane thickness.
The equivalent bending thickness is found by equating the
bending moment of inertia per unit length to the bending
moment of inertia of an equivalent unstiffened shell. (See
References 1, 2, and 3). For example the equivalent
membrane and bending thickness of a stiffened shell are
given by:

2, =Y+t f;/.e::[/d

where A is the area of a stiffener, 4 is the stiffener
spacing and I is the combined moment of inertia of the shell
and stiffener over a lengthgl. If the stiffeners vary in
size and spacing in different directions equivalent membrane
and bending thickness are found for the principal directions
and are then substituted in the proper equations. For
example, a stiffened cylinder will usually have different
membrane and bending properties in the axial and
circumferential directins.

CLOSED FORM GENERAL BUCKLING EQUATIONS (See References 1&2)

1. Spherical shell-like structures with t;, and ﬁj are
the same in the principal directions

“hRfgs, =035( %/, Y

where U/, is the critical bugkling stress (in the case
of external pressure U",:A Lo ). R is the radius of
curvnturo.q is the plasticity reduction factor, £ is
the modulus of elasticity, f. is the egquivalent
membrane thickness and £g is the equivalent bending
thickness. The plasticity reduction factor is given by

A ’ft-'(fr*{’/.?)

where Ep is the tangent modulus at C{f and f; is the
secant modulus. The original wave length of buckle is

w. A =2l RY ('4/1;_:)’("

In order for the equations to be applicable, there must
be two or three stiffeners within the wave length of
buckle. The effects of deviations from a perfect
surface are covered in Section III.




2. Spherical shell-like structureswith different
t'. and t‘ in the principal directions.

75_{ e G*I‘(f )”2

D=

Q ™

&
, [ff"’t’. V3 -
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W SRR W s/

G5 D,‘f- J1-0)+ (D) :
vt 0ol ok D
#&(£,-DO(-D)*E (612 (-'-’J
+2([-:) D(—O){*f(f X1~ D)

H= §0"1$0(1-0)« { (-0
IR -g # i—(ﬁ-:)-f- %/F-/)z,ug/pj
r¥ F o Z F-F) ,c-g-,f--(/-,f.--)é

- 3‘».//—;)!

p is the ratio of the wave lengths in the 1 and 2
directions. U, will occur when 0 is selected such
that q'-f will be a minimum. The effects of deviations
from a perfect surface are covered in Section III.
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Spherical Segment whan wave length is restricted (for
example buckling between stiffeners of a stiffened

shell when the spacing between stiffeners is less than
the wave length of buckle of an unntiffennd shell.)

% t -aaoazé %;;7—;;

where (ﬂin the shell thicknens The effects of
deviations from a perfect surface are covered in
Section III.

Shell-like structures with positive Gaussian curvature
(such as ellipsoids and perabioloidl)

o, R Az R
7e 0./3?- TP_"
uhcu,?‘ }? 1‘-{;? P)‘%_x ,p)ﬁ see Fig. 2.

C*i //gk Mini wam
A= #7*(6, -/)+(q.-/) +4 04 ~ 40 -/)
rE(E-)r$ (B0 ")*?(c'- -)e=1)
-frfca B PRV NS
&)t *f-(ﬁ-)(f-/) )

,;./(.-/ e -+ (-] a)
Bet th (a4 TrE ()

rCh Mg Ca- Yo Ir 2t
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)7" df( )
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Figure 2 - Notation

5. Cylindrical shell-like structures or shell-like
structures with zero Gaussian curvature
a. Cylindrical shell-like structures under external
pressure:
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where O;‘,- is the critical buckling stress in the
circumferential direction, & is the radius of the
cylinder, f,,” is the equivalent membrane thickness
in the axial direction, Z,, is the eguivalent
membrane thickness in the circumferential
direction, €, and Cgp are the equivalent bending
thicknesses and [ j.- the longth of the cylinder.

1= EEY 4 3 E)
wh=133/%t C'af/t,,,'/’

Cylindrical shell-like structure under axial
compression. In this case one must check for both
symmetric and asymmetric buckling. For symmetric

buckling: V, _fé
U::r R - e 6- 613/
‘lg ﬁ = /e J/
= T eSrE 8 Y

For auymef.r:l.c buckling:

0-;-” a?nmc dric ® {q;tr.n:pmn-e*rfr_ru

where i

Ut P4+ Lo
fg:/s +/

s pt (P )E

/-’.-.z /—-<) 47—
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c. Cylindrical shell-like structure under radial
compression:

T R b Lt R
_J%_:D.S"-—;r“[_—-

£ Ly,
The &ve leﬁgth of buckle‘il approximately one
forth of the circumference. The plasticity

reduction factor is ¥
7= (FEF:!
d. Cylindrical shell-like sgructuge und’efanhear
NViger R el gl 5
13L - o:‘? oy

tncd tl' 4 é 5

where A/, -is the critical shear load per unit
length.

_ &
1= F

Shell-like structures with negative Gaussian curvature.
For a hyperbolic paraboloid:

WYLV -
where eris the critical vertical pressure,{ is the

corner/elevation, & is the length along the X axis and &
is the length along the } axis. The equation for the

HP is
z=ﬁ'xy T‘t 3 ‘ 2 ”‘
The wave length of buckle is y/_’f_z[l‘-i .2£ (%)]
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EFFECT OF DEVIATIONS FROM A PERFECT SURFACE ON THE BUCKLING
LOAD.

Deviations from a perfect surface may be due to a
combination of many causes. Some of these causes are the
deviations of the "as-built" structure, deviations or
deflections caused by the external loads acting upon the
*as-built” structure, deviations caused by the deflections
of the boundry, deviations due to concentrated loads,
deviations due to non-linear effects such as concrete
cracking, deviations due to connection effects such as
yielding of attachment welds, deviations due to the
combination of applied loads and residual stresses and many
other effects. In applications, the sum of all the
deviations are added together and their effects are
deternmined over the wave length of buckle. See Figure 3.

/aerfccf“-ﬂrf‘fact
:43 Boi W Surface

,,-L"_’Qu,_;,,;,@ Frior
@4 “o 3au£/lﬂj

ra

Figure 3 -& as a function of Wave Length.
1f the sum of the deviations is A the guantity AJE, is
determined. The reduction factor can then be determine@ by
using Figure 4.

T o.: r 10
o' -
Z Y o
0;.\“0 0.4 1
o2 2
L - - |/
o /.0 2.0 Fo0
a
Y

Figure 4 - Effects of Deviations from a Perfect Surface
onthe Buckling Load.
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The curves apply to the reductions for spherical shell-like
structures, shell-like structures with positive Gaussian
curvature, cylindrical shell-like structures under external
pressure, axial compression, shear and shell-like structures
with negative Gaussian curvature. In general deviations do
not have a significant effect on cylinders under radial
pressure.

SUMMARY

The previous sections give some of the details for
determining the initial general buckling load of a number of
shell-like structures. After initial general buckling, the
structural will continue to deflect and in most cases
ultimate failure will result. Stiffened shell-like
structures can buckle locally between stiffeners in some
cases and the overall structure can remain stable against
general buckling. References 1 and 2 give more complete
details and give examples on the basic results for buckling
of shell and shell-like structures. Hundreds of tests have
been conducted on shell-like structures. Deviations from
perfect surfaces have been measured on many of these tests
and the results generally agree with the equations presented
herein. It should be noted that the deviations can be large
enough to give essentially zero buckling loads. In
addition, numerous tests have shown that the zero deviation
buckling load can be reached with accurately built
structures. Models used to determine buckling loads must
simulate actual conditions. For example, plastic models
cannot be used to simulate composite construction for
concrete-steel structures because, in general, concrete
cracking and steel yielding and effects of residual stresses
cannot be simulated with plastic. Non-linear computer and
closed form equations are often used to find the deviations
from a perfect surface that are then used in the closed form
equations. Since, in general, the wave length of buckle is
relatively small, the buckling of shell-like structures with
non-uniform loads can be determined using the formulas given
herein by calculating the local compressive stress and
comparing it to the buckling load calculated by the
equations presented herein.

REFERENCES
1 Buchert, K. P., "Buckling of Shell & Shell-Like

Structures,” book published by K. P. Buchert &
Associates, 1973.

2. Buchert, K. P., "Split Rigidity Theory of Plates,
Shells & Stability,” book published by K. P. Buchert,
2nd Edition, 1985.
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Structures,” Third Edition, John Wiley, New York, 1976.
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THE BUCKLING BEHAVIOUR OF SINGLE LAYER, SHALLOW BRACED DOMES

R.E. McConnel

Department of Engineering, University of Cambridge

The author presented a paper to the same general title at the
1984 SSRC meeting in San Francisco (Ref. 1). This present paper
will review the current state of the continuing numerical and
experimental work being carried out at Cambridge on the behaviour of
shallow single layer braced domes, and will conclude that there is
still much work to be done.

1. NONLINEAR COMPUTER PROGRAM DEVELOPMENT

The stability theory employed in the programs developed in
conjunction with the work reported in this paper, was briefly
outlined in the 1984 SSRC paper (Ref. 1), and has been covered in
detail elsewhere by See and McConnel (Ref. 2), and by Kani and
McConnel (Ref. 3). Briefly stated, buckling is indicated if any
eigenvector of the full current tangent stiffness matrix becomes
negative during the load history. This theory is based on the form
of the spectural resolution of the tangent stiffness matrix, 4i.e.
its form when transformed into its own eigenvector space, and not on
the more usual energy arguments. This means that in principle at
least the development should hold (or elasto-plastic materials.
However, this is impractical, as it would require a consideration of
all possible tangent stiffness matrices at the current displacement,
given that any yielded material in the structure might unload in the
next displacement increment in a bifurcation mode. In spite of
these problems, successful nonlinear material calculations have been
performed (see Ref. 4, and below) on imperfect structures which show
a clear limit point response with no bifurcation. This is because
the problems outlined above can be avoided in such situations, as
the strain history is largely uni-directional.

Returning to the basic elastic theory, the examination of even
one eigenvalue at every iteration step in a large nonlinear
iteration analysis would be quite impractical. Fortunately, in
elastic problems, it can be shown that there is a one to one
relationship between negative eigenvectors and negative main
diagonal terms in the decomposed stiffness matrix (Refs. 4, 5), so
that it is only necessary to observe these main diagonal terms
during each matrix decomposition to detect instability.

With the earliest program developed in the current programme
(See, Ref. 2), it was necessary to repeat any analysis that detected
bifurcation via negative diagonal terms. This repeated analysis
needed to be 'deflected' onto its bifurcation path by either initial
geometric or load imperfection in the form of the eigenvector
associated with the negative eigenvalue. The current program avoids
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the necessity of stopping the analysis and beginning again, by
introducing a suitable local imperfection into the analysis Just
prior to the load level at which the negative diagonal was detected.
If this imperfection is very small (and it need not be large to set
off the bifurcation mode), and if it is removed shortly after the
solution procedure is established on the bifurcation path, the
program will generate the structures theorectical (perfect] primary
and bifurcation paths. This form of analysis is illustrated in Fig.
1 (reproduced here from Ref. 3) as the 'perturbed perfect analysis'

path.

Such bifurcation (or secondary) equilibrium paths can also be
obtained from energy based formulationa, However, while such
methods can adequately deal with 3 degree-of-freedom problems of the
type shown in Fig. 1, they cannot be applied to multi-degree-of-
freedom systems such as those shown in Fig. 2. Such limitations do
not apply to tangent stiffness based numerical calculations.

2. IMPERFECTIONS

It is well known that random imperfections in real structures
mean that any elastic critical bifurcation predicted by the
theoretical analysis of a perfect (symmetric) model of the structure
never occurs in practice. A simple numerical explanation of this
observed real behaviour can be easily deduced from the spectral
resolution of the tangent stiffness matrix. If therefore, random
imperfections of either shape and/or load are introduced to any
perfect numerical model, then all bifurcation points should be
avoided and only realistic limit point behaviour should result. It
would, however, still be advisable to retain checks for negative
diagonals during decomposition. Such an approach also has other
advantages in relation to the analysis of materially nonlinear
structures, as discussed above in section 1.

Unfortunately, the inclusion of imperfections normally requires
the introduction of at least one extra node per member, which leads
to a two, three, or more fold increase in the size of the tangent
stiffness matrix. Because of this problem, a study was directed at
developing a numerical method for the introduction of imperfections
which avoided extra mid-member nodes by considering them directly in
the formulation of the element analysed to produce the member
stiffness matrix (Ref. 6). The results of a typical calculation are
shown in Fig. 2, where it can be seen that the use of imperfect two
noded members has set off the appropriate buckling mode.

3. VARIABLE JOINT STIFFNESS

A long term aim of the work summarised in this paper has been
to investigate the influences of joint size and bending continuity
on the behaviour of shallow domes. To this effect, and because of
the problems outlined in the previous section, numerical techniques
have been developed to include the relevant joint properties in a



two noded member model. Extensive tests have been carried out on a
number of domes of B metre span constructed with MERO joints (see
Fig. 2) using two different member sizes to obtain experimental dome
response data for different member-to-joint bending stiffness
ratios. This work is presented in brief detail in Ref. 6 and will
be more extensively reported in the near future.

4. GENERAL REMARKS

A great deal of work has been carried out since that reported
in 1984 (Ref. 1) was completed. Unfortunately, in a general sense,
not much progress has been made. This is because, although the two
main program developments (imperfections and joint variable
stiffness) perform well with simple examples, the programs in which
they are incorporated fail to converge for many analyses of even
moderate size. Therefore, the hoped for ability to numerically
study the general effects on dome behaviour of imperfections, dome
geometry, joint properties, and load patterns, by analysing many
structures using & program extensively tested against a moderate
number of experimental domes, has so far proved to be impractical.

On the positive side, the results that have been obtained in
the last three years have generally supported the general
conclusions reported in 1984; namely that the response of real domes
is dominated by imperfections in node heights, and that the
inclusion of realistic joint continuity gives reasonably shallow
unloading paths. Also, although the computer programs have not so
far proved to be practical for the analysis of a large number of
domes, they have been capable of following particular experimental
results with reasonable accuracy provided sufficient time has been
available to sort out the numerical convergence problems associated
with a particular dome. The realistic analysis of one-off domes can
therefore be approached with some confidence.

Despite the rather barren returns gained so far from the
investigations undertaken over the last three years, work is
continuing at Cambridge to overcome the program difficulties noted
in this report, and to assemble sufficient data to make reliable
predictions of the general behaviour of shallow braced domes.
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THE EFFECT OF STRUCTURAL STIFFNESS ON THE
PROGRESSIVE COLLAPSE OF SPACE TRUSSES

by Nicholas F. Morris
Manhattan College
Riverdale, New York 10471

INTRODUCTION

Space trusses are highly redundant structures. Hence one
would expect them to be able to carry a substantial overload
even after several members have failed either by yielding or
buckling. Recent problems with constructed space truss
structures (7) have lead to questions concerning their abil-
ity to carry load and the influence of redundancy on their
overload capacity. Methods for the progressive collapse
analysis of space trusses have been presented in (2,4,5,7,
8). 1In each reference except (8), the behavior of buckled
members was modeled by following the unstable branch of the
thrust-axial shortening curve and using the tangent modulus
of this curve to define the member's negative post-buckling
stiffness. While this approach appears to be reasonable,

it overlooks the fact that in order for a member to follow
the unstable branch of a stress-strain curve, the loading
device must be stiffer than the member being loaded. Ref-
erence (8) errs in the other direction in that it is

assumed that the member is always stiffer than the loading
device so that jump instability always occurs.

A typical set of axial load-axial shortening curves is
presented in Figure 1 (3,6,7,9). Such curves are usually
linear along the rising branch OA and are assumed to be so
herein. The situation after the buckling load is reached
is the more interesting portion of the curve. Perfect
columns, with low slenderness ratios can be expected to
follow the curve a shown in Figure 1. There is a rapid
drop off in load with increased axial shortening. Since
the loading device which is unloading the specimen must be
stiffer than the specimen, which is unlikely for a member
with such a large negative tangent modulus as that which
occurs at A, the unloading curve cannot be followed. The
member must unload suddenly and the axial force must jump
to the value at C. Curve b shows the typical curve for a
member with some imperfections such as an initial deflec-
tion and applied transverse load, or a high slenderness
ratio. There usually is some slip at constant load and
then a negative axial load-axial shortening curve. Whether
this curve is actually followed also depends on the stiff-
ness of the loading device, If the stiffness of the device
is greater that that defined by the negative tangent
modulus at any point, the curve can be followed. If, how-
ever, the testing device is less rigid than the member, the
axial force must jump to that portion of the load-deflection
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curve where the tangent modulus is less than that of the 51

loading device.

The loading device for an individual member in a space truss
is the remainder of the structure. Therefore, one cannot
determine the negative branch of the axial load-shortening
curve unless one investigates the structure with the buckled
member removed to determine the axial stiffness of the re-
maining structure against relative motion of the end joints
toward each other. Herein, an attempt will be made to in-
vestigate the effect of this fact on the computation of the
progressive collapse load of space trusses.

ANALYSIS

Three approaches to the computation of the collapse load are
considered herein. In all cases, the member is assumed to
follow the compressive axial load-deflection curve shown in
Figure 1; the tensile curve is the usual ideal elastic-
plastic curve. Unloading is assumed to be elastic. Non-
linear geometry is included in the analysis of structure.
With the exception of minor details, the method of analysis
is described in (4). The variation from the previous method
of analysis is presented herein.

The first approach completely neglects the effect of the sur-
rounding structure on member post-buckling behavior. A
buckled member is assumed to follow the compressive force-
axial shortening curve. This is the traditional method for
the computation of the progressive collapse load. Since

this method does not assume any jump in axial force, it can
be expected to yield an upper bound to the failure load. It
is also the most simple analysis to carry out since the
collapse load is computed with a single analysis.

The second method of analysis is an interactive analysis. The
structure is analyzed as in method one until the first member
buckles. At this point, the nonlinear analysis is stopped.

A linear analysis of the structure, with the buckled member
removed, is carried out to determine the stiffness of the
structure in the direction of the member (This is accom-
plished by analyzing the structure subjected to unit loads

at the end joints of the removed members and computing the
relative movement of the joints). If the structure stiffness
exceeds that of the bar on the unstable branch, the analysis
is restarted with the buckled member following the curve AB.
Oon the other hand, if the member stiffness is greater than
that of the structure, the load in the member is lowered to
B' and the analysis is restarted. The process is repeated
when the next member buckles. A new linear analysis of the
structure is carried out with the two buckled members re-
moved to determine if member unloading is to occur along

the negative axial force-shortening curve or by jumps to a
new branch of the curve, B'C. The nonlinear analysis is re-
started at this point and continues until the next member or
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members buckle. Then the procedure is repeated. This
approach is, admittedly, much more complicated than the
first method of analysis. Nonetheless, it can easily be im-
plemented. In addition, it should be noted that as members
buckle, the structure's stiffness can be expected to drop
off sharply so that once the analysis reveals that a jump
will occur, it can usually be assumed that jumps will occur
for each additional buckled member.

The third approach is a dynamic analysis. A member cannot
jump from one equilibrium position to another one stati-
cally. Hence the jump load is an impact load on the
structure. In addition, the structure which was in equi-
librium under static load when the stiffness of the
buckled member was defined by its positive elastic modulus
must move to a new equilibrium position when that member
has a stiffness defined by the negative tangent modulus
along curve FC. This can only be done dynamically. There-
fore an analysis procedure similar to approach two can be
carried out until it is determined that some buckled member
must undergo a jump. A restart analysis is again carried
out but the analysis, in this case, is a dynamic one. An
impact analysis of the structure is carried out; a full
period should be sufficient to determine whether additional
members will buckle. If no new members buckle, the static
analysis is continued until another member buckles and, if
a jump occurs, another dynamic analysis is carried out. If
any members fail during the dynamic analysis, it is assumed
that these members have failed at the load level at which
the original member which has undergone a jump has failed.
A static analysis is continued until another member under-
goes a jump, at which point a new dynamic analysis is
carried out. The procedure is repeated until the collapse
load is found.

NUMERICAL RESULTS

The preceding analyses were carried out for the double
layered space truss shown in Figure 2. Figure 2 depicts
a quarter plan of the first Hartford Coliseum roof (7).
This structure was chosen because complete axial load-
axial shortening curves were available for its members (7).
No attempt was made to form an exact model of the roof.
The roof as built had a design error in all east-west
members; defective bracing made their effective length
larger than the 15 ft assumed by the designer. No flaw
existed in the north-south members. Herein it is assumed
that all top chord members have this defect. This
approach was followed because it was desired that the
failure path be unknown at the start of the analysis. It
should be noted that more than 50 different member types
were employed in the model so space is not available to
give the member details. The only support other than the
symmetry conditions along lines 1-37, 37-42, 43-68 and
68-72 is a vertical support at the bottom node 51. Hence
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the force distribution resembles the moment distribution in
a flat slab. The design load is 70 psf on the top surface.

The results of the usual buckling analysis is presented in
Table 1. As can be seen, the failure pressure is 62.24 psf
which is 40 percent larger than the load at which the first
member buckled. It is interesting to note that nonlinear
behavior is not apparent from an analysis of the load-
deflection curve for node 37 until the structure is at the
failure state. Table 2 presents the analysis wherein jump
instability is permitted. No jump occurs when member 31
buckles but jumps do occur at the buckling of all other
members. Failure occurs at apressure= 59.51 psf so the
two analyses differ slightly for this structure.

It may seem surprising that the effect of jumps is not that
large. The reason for this is the rapid unloading of
buckled elements which reach the curve B'C in one or at
most two load steps when no jumps are assumed. Therefore,
the jump phenomenon has little influence on the structure's
static behavior, at least for the structure under investi-
gation.

Although a dynamic analysis at each load step wherein a
member buckles can be time-consuming, there is no need to
be so refined. If it is assumed that the ultimate failure
path will be unchanged by any dynamic jump and that the
effect of a dynamic analysis will be the same failure path
at a reduced load level, the interactive analysis used to
compute the structural stiffness at a buckled member can
be used to estimate the influence of an impact load. The
change in tension due to a unit unloading force is com-
puted in this analysis. Since the change in force due to
the jump in compressive stress is known, the static effect
of the jump can be computed. Although the actual dynamic
load factor is unknown, one would expect it to be around
1.20 to 1.60. Hence it is possible to estimate which
members will buckle due to the dynamic effect of the jump
instability. Using this approach it is seen that member
18 also buckles at a pressure = 49.00 psf. This has very
little effect on the structure's overall behavior because
the dynamic jump for this member is only around 42 kips.
The critical load is p = 54.24 psf at which 3 members fail.
This will cause a progressive failure of the structure and
result in a failure pressure = 56.0 psf.

CONCLUSION

The numerical results obtained by the methodology intro-
duced herein is insufficient to permit one to make broad
generalizations. For the structure investigated herein,
the difference between the two methods of static analysis
is not large, leading one to conclude that interactive
modeling need not be done for static failure analysis.
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TABLE 1. USUAL BUCKLING ANALYSIS

plpsf) Wiq Buckled Members

t

| 43.76 .619 JL

45.51 . 645 26

47.24 .676 none

49.00 . 726 21

50,76 . 763 18

52.51 .851 13

54,24 .919 none

56.00 1,004 16,23,39,50

57.76 1.096 7,8

59.51  1.343 3,11,44,45,46,47,169

61.24 4.865 failure

TABLE 2. INTERACTIVE BUCKLING MEMBERS

p(psf) Wiq Buckled Members

143.76 .619 31

45,51 .645 26

47.24 .694 none

49.00 . 727 21
50.76 .816 18
52.51 .876 13
54,24 .966 16,39,50

56.00 1.137 7,8,44

57.76 1.439 2,3,4,11,23,164,169

59.51 8.401 failure




Although the influence of dynamic behavior is more pro-
nounced, it must be admitted that the existence of a
dynamic jump instability effect has not, to this writer's
knowledge, been observed in any experiments on space
trusses. Nonetheless, such jumps can be expected if the
curves drawn in Figure 1 correctly describe the post-
buckling curve. If the dynamic jumps postulated herein
do not occur there must be some other mechanism acting
which has not been hitherto considered.
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BEAM-COLUMN BEHAVIOR OF UNSTIFFENED FABRICATED STEEL TUBES

by
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P.C. Birkemoe
Professor, Dept. of Civil Engineering, University of Toronto

The beam-column behavior of manufactured steel tubes has been well
established, both analytically and experimentally, The automated
production procedures produce a relatively high degree of accuracy in
terms of cross-sectional shape and straightness. The size of these
members, however, is limited to s diameter of about 300 to 400 mm, Larger
cross—-sections, up to 3 m in diameter, are required for structural
applications such as offshore production platforms, and are typically
fabricated from flat plate. [Rolling and welding processes introduce
significantly high levels of residual stress and geometric imperfection,
which influence the load-deflection behavior and strength resistance of
such members.

The column behavior [4,6,7,8,9,10,12,19,20] and the response under pure
bending [14,18] of fabricated members have been studied experimentally and
established by other researchers, The experimental beam-column behavior,
however, has been largely done on manufactured rather than fabricated
tubes [5,16,17]. The objective of this study was thus to establish
experimental evidence on the strength and behavior of large scale
fabricated tubes subjected to combinations of axial load and bending.
Fabrication procedures as well as the induced residual stresses and
geometric imperfections were measured to assist in subsequent analytical
modelling. Extensive instrumentation and sophisticated load control
permitted the close scrutiny of the behavior during loading, ultimate and
post-buckling stages,

DESCRIPTION OF EXPERIMENT
Specimen parsmeters:

All the tubes had s nominal diameter of 450 mm with wall thicknesses
varying between 4.5 and B.8 mm, In terms of the non-dimensional
slenderness factor a = (B-tIP,'D). all the specimens could be grouped
into two categories, namely a ® 7.5 and a ® 9.0, representing a
transitional regiom where local buckling begins to have am influence om
the load resistance of members. Test specimens were made up from either
two or four cans of 750 mm length each, with added extension tubes for the
longer specimens.
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Test parametors:

Four types of tests were comducted:

(a) Stub-column tests with fixed ends were done on five two-can specimens
(length 1500 mm) (Fig.1(a)).

(b) Five short columns, consisting of two cans esch, with pinned ends,
were subjected to an eccentrically applied axial load (Fig.1(b)).

(¢) Six 10 m long members, consisting each of a four-can test section and
two 3.5 m long extension tubes, with spherioal pinned ends. were
subjected to an axial load and two equal lateral point loads, 2.4 m
apart (Fig.1(e)).

(d) Four 5 m long specimens, consisting each of a four-can test section
and two 1.0 m long extension tubes, with spherical pinned ends, were
subjected to an eccentrically applied axial load (Fig.1(d)).

Specimen fabricatiom:

Hot-rolled steel plate was cold-formed into tubular sections, the seams of
which were butt-welded with a single pass full penetration weld, using an
automated DC submerged arc process. Two or four cans were joined, with
longitudinal welds staggered at 90°, with a hand-held Metal Inert Gas
welding process., For the stub-columns and short eccentrically loaded
columns, the ends wore machined flat and parallel. For the S m and 10 m
beam-columns, flanged extemsion tubes were welded to the four-can test
sections,

During fabrication, dats was recorded to determine the amount of
distortion and residual strain induced by the lonmgitudinal welds.
Residual strains were measured with a mechanical extensometer on targets
which were 100 mm apart and set around the circumferemce, om the outside
as well as the inside of the tube. A profiling rig in combination with an
automated data amcquisition system recorded radius readings at set
intervals around the perimeter of a tube. Complete surface profiles of
single cans were obtained before and after seam welding to determine the
distortions. Entire specimens were profiled before testing to obtain a
complete record of initial geometry.

Testing procedure:
(a) Stub-columm tests

A concentric axial load was applied to the two-can specimens with the 5340
kN universal testing machine of the Structures Laboratory, University of
Toromto. The bottom loading fixture was a fixed pedestal whereas a
spherical bearing transmitted the force at the top. Omce the specimen was
geometrically aligned for uniaxial load, the bearing was locked into
position for the remainder of the test. 0.5 mm thick aluminum sheets were
placed between the machined edges of the specimen and loading plates to
smoothen contact unevenness. The loading was controlled manually, through
adjustment of the hydraulic pressure. During the loading phase, the rate
was maintained at approximately 50 kN/min, and a strain rate of 0,.003/min
during unloading. The post-ultimate behavior was followed to about 30% of
the ultimate load.
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(b) Short columas with sccemtric load

Instead of fixed loading heads, hinged end bearings which allowed rotation
about one axis were used. The specimens were positioned eccentrically to
introduce s small moment in conjunction with the axial losd. Testing
proceeded as for the stub-columns.

(c) 10 m lomg beam-columas with lateral loads

The axial load was introduced through low friction spherical bearings with
a manvally controlled 10,000 kN actuator. After the prodetermined axial
load was reached, two equal lateral loads were applied with servo-
controlled actustors while the axial load was kept constant, Lateral
loads and reactions were introduced to the specimen through meoprene lined
load collars. Translation of the load and reaction points was permitted
by the use of gravity load simulators, thus avoiding any longitudinal
force compoments. Except for the axial load, all load control and data
scquisition was done with a computer controlled testing system.

(d) 5 m long beam—columns with ecccentric axial load

These specimens were tested in the universal testing frame, similar to the
short beam—columns, The same spherical bearings which were used for the
10 = specimens were employed here and the specimens were bolted to the
loading plates at various eccenmtricities. Testing proceeded as for tests
of the shorter beam columns,

In all the tests, one longitudinal seam weld was positioned to coimcide
with the maximum axial compression stress.

Instrumentation:

For all the specimens, load and stroke measurements, as well as the
longitudinal strain distribution in the test section, at four locations
around the circumference, were recorded. Diameter changes as well as
lateral displacements were measured for the beam-column specimens ((b),
(c) and (d)) at girth weld locations, Strain gages were positioned at
stategic locations om the outside as well as the inside of the tubes to
detect the onset of local buckling. Numerous displacement and strain
measurements were taken to supplement the primary data records.

Specimen behavior wader load:

All specimens exhibited a simultaneous yielding and buckling behavior at
ultimate load with varying rate of decay after the ultimate load had been
resched. In gomeral, local yielding started around the girth weld long
before a widespread yielded surface could be detected in the weld-free
region, In the more slender specimens (a = 7.5), some elastic buckling
was observed before a plastic bulge developed over a localized area, in
most cases opposite the junction of a lomgitudinal and girth weld, The
more compact specimens (a = 9.0) underwent a significant amount of
yielding before a plastic buckle initiated the decay of resistance. The
ares engulfed by a buckle was considerably larger and buckles gemerally
extended over the girth weld, In the 5 m and 10 m long specimens ((c)
(d)), colummn buckling followed soom after a local buckle weakened the
section., Lateral movement was rather abrupt ( within a few seconds) due
to the release of elastic energy in the specimen and reamction frames. A
test in progress on a 10 m long beam—column is shown in Fig, 2.
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Fig. 2: 10m Beam-Column Test

(s) Ring buckle (b) Symmetric buckle (¢) Asymmetric buckle

Fig. 3: Typical Buckling Characteristics



Three distinct types of buckles could be observed, as shown in Fig. 3:

(i) 8 single symmetric rimg buckle that extended over the entire
compression area. For the stub-columns, it extended around the full
perimeter, which is often described as an "elephant foot" buckle.

(ii) & symmetric alternating set of buckles with the initial buckle in
the region of maximum compression, flanked by smaller buckles on
either side.

(iii) an asymmetric pair of buckles on either side of the maximum
compression zone. A further set of smaller buckles often developed
beside these.

In all tests, no significant end effects were observed, Only one 10 m
long beam-column specimen (BC-06) failed at the load collar, but only
after a higher than sverage stress level was reached in the remaining test
region of the specimen.

KESUL T,

Residual Strains

The maximum weld induced compressive residual strains in the longitudinal
direction were found to be consistently about half the yield strain, and
extended for about 1/8 of the circumference on either side of the weld,
starting from the edge of the heat affected zome. The weld zone itself is
generally believed to be strained beyond yield in tension, No significant
difference was found in the strains on the inside and outside surface. A
few selected strain gage readings confirmed the mechanically measured
strains. (Fig. 4)

Distortions and Misalignment

Distortions caused by the longitudinal sesm weld were the major resson for
misalignment at the girth weld, and necessitated some cold forming and
clamping to facilitate welding. A typical developed surface profile of a
single can before and after welding is shown in Fig. 5.

The surface profile of a complete specimen, in Fig. 6, shows can
deformations and misslignment at the girth weld, the extemt of which is
typically shown in Fig. 7. In Table 1, the misalignment inm the
compression region is given for all the girth weld locations.

Stremgth Imteraction

The actual axial load and bending moment (including second order effects)
at ultimate at & critical section are generally entered into a linear
intersction formula of the type:

P
—_— %

Py My

which restricts the member capacity to the point of first yield in the
extreme compression fiber.

s 1.0 (1)

7l
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When full plastification of a section is regarded as the criterion for
failure, the interaction formula becomes:

zun’[%]+['—‘3]sx.o (2)

Both formulas are shown in the interaction diagram (Fig. 8) together with
the test dats.

As opposed to the pure axial load case where initial yield coincides with
full plastification, the attainment of full plastic moment capacity
requires compression strains far beyond yielding. The reduced load
carrying capscity due to plastic local buckling is typified by a proposed
set of reduced interaction curves [1,2,3,11,13]), shown for the two section
slenderness ratios tested.

Stability Intersction

The overall buckling of & beam-colummn is typically treated with an
interasction of the form:

P 1 M

= [——]

LS 1-p/pp " M

s 1.0 (3
r

The member slenderness is incorporated im the critical buckling load Pn .
The total moment is approximated by multiplying the first order moment ]
with an amplification factor 1/(1-P/Pg) while the moment resistance wil
generally incorporate local buckling reduction factors and may be based on
the elastic (M) or plastic (lp) moment capacity. Stability interactiom
curves from several popular specifications [1,2,3] are shown in Fig. 9,
together with the test data from the 5§ m and 10 m long besm—column
experiments.

Load-deformation

For the purpose of uniformity the non-dimensionalized load parameter
B= Ifll’ + PlP,

was plotted against the compression fibre strain., The value f = 1
represents the onset of yield in the extreme compression fiber. Typical
load-deformation curves are shown in Fig. 10,

Within the scope of this experimental study, a few important points are
highlighted bere. While further evaluation of the data is underway, a few
tentative conclusions can be made at this time.

Although fabrication procedures introduced significant imperfections in
the tubes, no direct correlation was spparent between the imperfection
level and the ultimate loads.

In considering the cross-sectional stremgth at the failure locationm, the
stub-column specimens behaved as predicted, reaching the full yield load
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based on the coupom properties. With an increasing moment compoment, it
became evident that full plastificstion could not be achieved.

The test results gonerally are lower than predicted by the stremgth
interaction curves. The suggested stremgth mechanism compares well with
experimental results of tubes subjected to pure bending [14,18], The
interaction botween axial load and bending, however, may best be described
with a linear relationship with the same reduced bending capacity as the
limit for moments.

Two distinotive trends can be observed for the different slenderness
ratios (a = 7.5 and 9.0). The more slender specimens show a marked
reduction from the predicted capacity with the exception of specimen BC-6,
which failed at the load collar, rather tham at one of the three girth
weld locations.

The stability interaction equation (3) shows a reasonable agreement with
experimentally observed capacities. The larger amount of scatter is
expected since the second order moments are approximated with an
approximate amplification factor,

An extenmsive analytical study is underway at the University of Toromto to
model the behavior of fabricated tubular beam—columns and thus permit the
extrapolation of the experimental results for more gemeral geometric
strength parameters.

Nominal outside diameter

Lateral member deflection at failure
Young's modulus, taken as 205,000 MPa
Coupon yield stress

Effective specimen length

Plastic moment capacity = Fy-Z
Moment resistance M_ =

Reduced plastic moment capacity, due to local buckling
Yield moment = Fy-8

Applied bending moment (first order)
Total bending moment (second order)
Applied axial load

Axial buckling load

Q“ ‘DFFV.-HV r.""“ et

Pn' Euler load

P, Axial yield load

r Radius of gyration

5. 2 Elastic, plastic section modulus
t Wall thickness

a Section slendernmess E-.t/Fy-D

B Load parameter

B Performance factor

(Alphabetically)

(1] API Recommended Practice for Planning, Design and Constructing
Fixed Offshore Platforms, API RP 2A, 12th Edition, Jan, 1981,
American Petroleum Institute, Washington, D.C.

(2] Code of Practice for Fixed Offshore Structures, BS 62345: 1982,
British Standards Institution.
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ULTIMATE BEHAVIOUR OF CIRCULAR TUBULAR MEMBERS
WITH
LARGE INITIAL IMPERFECTIONS

by

Jon Taby and Torgeir Moan
Division of Marine Structures, The Norwegian Institute of Technoloy,

The University of Trondheim

The paper presents a method for calculating the load-displacement behaviour
of tubulars with large initial imperfections, subjected to combined axial
compression and bending moment.

Frame analyses are normally carried out with beam-column elements without
accounting for the effect of local imperfections of the circularity of
tubes, Effects such as local buckling of the cross section in the post-
collapse region are neither considered.

Premature local buckling of the tube wall is normally avoided in structures
made of unstiffened tubulars by choosing a sufficiently low D/t ratio or by
use of a reduced yield strength. But even by taking this precaution, local
buckling might occur if a dent is present. This is because abnormal imper-
fections are not accounted for by determining the safe D/t ratio given in
codes.

In the method presented the effect of premature local buckling and buckling
deformation of the cross section in the post-collapse region is accounted
for. The method is assumed to be valid for any magnitude of initial imper-
fections in terms of overall beam deformation and local dent depth.

The theory is supported by a relatively large number of experimental
results, Three series of tests with simply supported tubes, one series
with tubes with clamped end conditions and one series with eccentrically
loaded tubes have been carried out, 107 specimens in all.

The correlation between theoretical predictions and experimental results is
discussed.

The method has been implemented on PC's as well as main-frame computers
(VAX, I8M and NORD).
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INTRODUCTION

To make decisions regarding safety and economy during design and operation,
it is important to have knowledge about the ultimate strength after pro-
bable accidents have caused damage in form of large geometrical imperfec-
tions.

The verification of residual structural strength is in most cases done by
means of linear methods. Especially for damaged trussworks such methods
yield too conservative values. Methods which account for the geometrical
and material non-linearities associated with load redistribution should
therefore be applied.

However, such methods are normally based on ordinary beam-column elements
without accounting for the occurrence of dents. Effect of further defor-
mation of the cross-section in the post-collapse region are neither con-
sidered. Local buckling of the tube wall is normally avoided in structures
made of unstiffened tubulars by choosing a sufficient low diameter to
thickness ratio or by using a reduced yield strength., But even by taking
this precaution, local buckling migh occur if a dent is present because the
safe D/t ratio or the reduction in yield strengh found in the various
design codes are not accounting for abnormal impefections.

Rigorous analysis of dented tubes may in principle be carried out by means
of non-linear finite element shell analysis; such analysis requires,
however, a major investment of time and effort. Hence, simplified methods
for calculating the strength of damaged tubular structures are needed.

Previous Work

The effect of damage on the behaviour of tubular members subjected to axial
compression was first studied by Sith et al. /1/. They reported results
from experiments with undamaged and slightly damaged tubular members. The
damage was in the form of lateral bending and/or local denting. These
results indicated a substantial loss of strength due to relatively small
damages.

Later Smith /2/ presented a semi-empirical method to account for dents
based on finite elements and empirical reduction factors for yield strength
and material stiffness. The empirical factors were based on experimental
results carried out at AMTE /1,3/ and in Trondheim /4/.

Shortcomings were, however, observed with respect to the post-collapse
behaviour due to local buckling of thin-walled cross-sections.

Ellinas /5/ used the analytical model presented in Ref. /6/ in combination
with ordinary beam column theory to evaluate ultimate strength of axially
compressed tubes with denting and bending damages. Ellinas seems to be more
interested in a lower bound solution, but the method seems to give dif-
ferent degree of under-estimation depending on tube geometry and degree of
damage. It is found that the method corresponds quite closely to experi-
mental results for slender tubes (A > 0.6). While for more stocky tubes

(A = 0.4) the method gives rather conservative results at small initial
deflections and non-conservative values at large initial lateral deflec-



tions. The under-estimation further increases with increasing dent depth;
and decreases with increasing D/t ratio. A main reason for too low estima-
tes for deeper dents may be the fact that the eccentricity acting at the
short dented length is treated as if it was the amplitude of a sinusoidal
initial lateral deflection curve over the whole member. Furthermore, this
method only gives the ultimate load and may not be used effectively in a
progressive collapse analysis.

Rashed and Taby /4,6,7/ developed during 1980 a simplified method for the
computer program DENTA based on results from 24 dented test specimens.
DENTA was designed to simulate partly damaged tubes where the damage had
the form of a dent only., The effect of initial lateral deflection was not
included. However, the method was later modified to include initial
lateral deflections too /8/.

Present Work

The present paper deals mainly with the further development of the theory

behind DENTA. From the experimental results carried out in ref. /8/ there

were observed some discrepancy between experimental and theoretical

results:

- Buckling strength of thick-walled tube were under-estimated by the pre-
sent method.

- Buckling strength of thin-walled tubes were more influenced by prema-
ture local buckling of the tube wall than expected.

- The post-collapse strength was to a large extent influenced by
increasing distortion of the cross-section during loading.

~ In the case of restrained end supports it was found that effective
buckling length of a dented tube differs from an undented one.

The refined method is based on a physically realistic, but simplified
characterization of the dented length of the tube. The simplifications
made have been justified by a large number of test results.

Experiments with 107 tubular specimens, with a various extent of damage
have been carried out. The experimental result from these tubes have been
the basis for the semi-empirical methods used for describing the interac-
tion with premature local buckling and the increasing cross-sectional
deformation in the post-collapse region.

Further, the validity of the method is demonstrated by comparative tests
between experimental and theoretical results.

At the end of the paper, some parametric studies are carried out. The
influence of dent depth, dent length, magnitude of overall bending damage
and the location of the dent are examined.

BASIC OBJECTIVES OF THE THEORETICAL METHOD

The analysis model may be divided into four main modes of behaviour, namely
(as shown in Fig. 1.):
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(i) Elastic behaviour up to first yield, P.

(i1) Elastic-plastic behaviour up to u‘ltiﬂ&!& load, Py.
(ifd) Transition to fully plastic behaviour.
(iv) Fully plastic post-collapse behaviour.

In the following the theoretical model is briefly described. This includes
the idealization of the dented tube, the representation of premature local
buckling and the growing cross-sectional deformation. For a more detailed
description see ref /9/.

Idealization of a Dented Tube

As shown in Fig. 2 the member is modelled by three components; the dented
length and the two parts adjacent to this.

The dented length is further divided into two part, namely the dented part
of the cross-section and the undamaged part.

The dented part of the cross section is substituted by a force, Fq, which
may increase to a maximum value which causes a yield hinge to be developed
in the bottom of the dent. This maximum force, Fgp, is derived from a
single flat, bent plate analogy. An empirical linear correction factor,

, due to the restraining effect of the rest of the cross-section is intro-
duced. Thick-walled tubes are by this simulated properly. Fgp may then be
written as:

= 4n? 3 -
de cdp oy D a(¥dn® + ¢t 2n) (1)
where:
Cdp = 80 « t/D (2)
D diameter to mid-thickness

wall thickness

Q
<
IR A

yield stress
n the distance from the line of action of the force Fgp
to the line at the bottom of the dent
= (sin a/a - cos a) D/2 (3)
a = arccos (1 - 204/0) (see Fig. 2) (4)

Dg - dent depth

The neutral axis of the undamaged part of the cross section at the dented
length is eccentrically located to the neutral axis of the undamaged cir-
cular cross-section. Normally the dented length is relatively short
compared to the overall length and it's influence on the overall deflection
during loading in the elastic region is normally small, of the order of 1%
at first yield.

Al f ield

The behaviour up to first yield is analyzed by two different methods
depending on the boundary conditions:

(i) In the case of simply supported tubes the load deflection relations
are calculated analytically by means of a simplified amplification
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factor, y, to account for second order effects. This factor is
approximately calculated as

y=1+Cq/(Pgpr - P) (5)

where Cq is a correction factor to account for the location of the
dent. Pg. is an approximate value for a reduced Euler load of a
dented tube under the assumpiton of a sinusoida) buckling mode.

The primary deflection to be amplified by this factor is the sum of
the initial deflection and the deflection caused by the bending moment
in the dented length caused by the eccentricity. The Toad level at
first yield at most stressed fibre adjacent to the dent in the dented
cross-section, Py, is then found analytically.

(i1) In the case of end conditions other than simply supported, a secant
stiffness matrix is derived from the differential equation of the
idealized dented column under the assumption of a sinusoidal bending
damage. A tangential stiffness matrix is established and the analysis
is performed in steps by incrementing the axial load /10/.

local 14

Interaction with premature local buckling is accounted for by replacing the
yield stress, oy, with a critical local buckling stress,

Oc. The critical buckling stress is derived from a regression analysis
which included results from 11 specimens. The method is based on "real"
stress at a damaged cross-section and not a fictitious average stress
derived from an intact cross section. Replacement of the yield stress by
the critical buckling stress is performed during calculation of first yield
and ultimate load. The critical local buckling stress may for members
which are affected by plasticity be written as:

Oc = $ oy (6)
where ¢ is an empirical function related to the structura) slenderness and
ay is the yield strength. Several slenderness parameters may be used.

Here, the so-called reduced slenderness, A, is adopted for small imperfec-
tions (dents):

A= fayjo's (1)

where og is the elastic shell buckling stress. One expression for ¢ as a
function of X may be obtained from a simple interaction approach,
[Merchant-Rankine approach)

o a
5 e 5 .1 (8)
E Y
By combination of Egs. (6), (7) and (8), the following result is obtained,

¢ =101 + A4 (9)




By definition:

g = p O¢) (10)

where p is the knockdown factor and og) is the classical buckling stress
for cylindrical shells under axial compression given by:

9c1 = 0.606 Et/R (11)

An analytical expression for the knockdown factor, p, is obtained from Ref.
/11/

p=1- 5(!) Y1 - 5( ) - 1]. au 331 - vh) (12)

where w is considered as an "effective” imperfection amplitude measured
over a length t = 4/Rt,

From a regression it was found, /11/, that a best fit for cylinders with
"normal"” imperfections was obtained for

W = 0.0022 - &Rt (13)

The imperfection parameter w is not a physical quantity. However, by taking
W as the actual imperfection theoretical results compare well with
experimental ones. Hence, Eq. (12) is adopted in the present theory in
order to take "normally appearing imperfections" (small dents) into
account. The minimum dent depth is set equal to w derived from Eq. (13).

The above formulation is developed on the basis of cyiindrical shell theory
valid for relatively small imperfections in relation to most frequent dent
sizes. Consequently, it has been necessary to derive another expression
for ¢ to account for larger dents.

To obtain an estimate for ¢, a regression analysis have been carried out
using experimental data from 107 tubes with different dents sizes and nomi-
nal geometries. However, in only 11 cases premature local buckling
occurred. For each test specimen a value for ¢ was adopted for which
theoretical and experimental ultimate load was equal (¢ < 1 in 11 cases).
The tube parameters which might influence ¢ were judged to be D/t, E/oy
and the dent depth expressed in terms of: sin(a) + 1. (see Eq. (4)).

A factor ¢ was derived,

= ’E/ay (t/0 [1 + sin a] (14)
and a regression equation of the form
0--001100|20' (15)

was assumed and values of the coefficients ag, a; and a; were computed
using a least-squares method to provide a best fit to the "true" value of
¢. The equation finally obtained was



11.095 & - 30.47 o* ® < 0.164
o= 1.0 L » 0.164 (16)

1.0 ;EIUY (t/D)> 0.08

The last term in Eq. (16) is overriding the two other if satisfied. This
term is almost identical to what suggested by Ostapenko /12/ for undented
tubes. He suggested a limit value of 0.07.

Fig. 3 shows Eq. (9) and Eq. (16) as function of the dent depth. The knock-
down factor is calculated according to Eq. (12) and the imperfection para-
meter w is substituted by the dent depth D, and set equal to a min value
according to Eq. (13). The curves are dnan for a tube with D/t = 118.8,

@, = 290 MPa and E = 2.07 » 10% MPa. For this particular tube, DnV App. C
rlco-lndl a value of ¢ equal to 0.94 due to the high D/t ratio. As seen
from the figure this is obviously not enough if the tube had a dent damage
of about 0.02 times the diameter.

The curve derived from Eq. (16) implies an increasing buckling stress with
increasing dent depth and may seem paradoxial. Nevertheless, it is logical
since the theory used in DENTA accounts for a dent and is not using any
fictitious average stress based on intact cross-section.

Fig. 4 shows the theoretical ultimate load compared to the experimental ones
for the 11 tubes sensitive to premature local buckling before and after a
reduction of the yield strength.

lasti i ult 1

The method is based on equilibrium between internal and external forces
while the stresses are kept within the yield surface. oy is replaced by o
if premature local buckling is likely to occur.

The lateral deflection is incremented until the axial load starts to drop at
the level of the ultimate load, .

The plastic deformation is lssmg to be limited to a length equal to the
dented length or the diameter, whichever is largest.

tion i 11

Buckling of the tube wall in the post-collapse region is not a phenomenon
addressed exclusively to initially dented tubes. This effect also influen-
ces the post-collapse behaviour of all tubular members, however, to a dif-
ferent extent; strongly in case of thin-walled tubes, and insignificantly
to tubes with a D/t ratio lower than about 30.

For tubes with a D/t ratio above 60 it is assumed in DENTA that a certain
degree of the (cross-sectional) deformation, dependent on D/t ratio, takes
place during the transition from elastic-plastic state to a fully plastic
one. The transition to fully plastic state is necessary in order to bring
the tube to a condition which is consistent to the yield-hinge theory used
for the post-collapse part of the analysis.

In the fully plastic state the rate of the further deformation is
controlled by an empirical function and the current load condition. This
function is derived from a regression analysis which includes results from
84 experiments. The buckling is treated as it should have been a dent
which is growing deeper. The current dent depth is found possible to




describe as a function of the nominal geometry and the current relative
load leve), This is at least true if the bending of the tube is only
caused by the axial compression load:

The growing dent depth Dgq, as function of post-collapse load may be
expressed as

Dgg = Dg + 6y fg1 (P, Py, pp) + G2 fgz (P, Py, Pp) (17)
where

Dy - dent depth at the beginning of the plastic post-collapse

Gy = 0.00254 D/t + 5.093 + 107*(D/t)*- 3.465 + 10~7(D/t)?
-0.03847 2 0
62 = 3.086 (0y/E)(D/t) + 8.0246; - 29.24 Gy*
+ 34.12G1%- 0.8525 2 0 (19)
fg1 = D[(1 - P/Pp)2+* - (1 = Py/Pp)(1 - P/Pp)'+*] (20)
fg2 = D(0.25 - P/4Py)sin (1,57 (Py - P)/Py) (21)

In Fig. 5 the effect of cross-sectional deformation on the load end-
shortening behaviour is demonstrated and compared to experimental results.
In this case the D/t ratio is as high as 78. However, the effect is also
significant for D/t ratios as low as 40.

Post-collapse behaviour

The post-collapse behaviour is calculated by means of a yield-hinge theory
introduced by Ueda et. al in Ref. /13/. The yield-hinge is inserted at the
location of the most stressed cross section, most often the dented cross-
section.

By this method the plastic interaction relationship between moment and
axial force is regarded as a plastic potential describing the behaviour of
the plastic hinge. The interaction relationship is influenced by the
growing deformation of the cross section; and this effect is regarded when
a tangential stiffness matrix is established. The post-collapse behaviour
is then calculated by incrementing the axial load.

The plastic interaction curve for a dented tube is assumed to be expressed
as:

I =M/Mp -8 - siny + 0.5 sina = 0 (22)
where:
B = (ogp/20y) sin a (23)

M - current moment



Y = half the sector with tension
= 0.5[r - a + aogp/oy - nP/Pp]

a = half the dented sector (Eq. 4)

9dp - the maximum compressive stress in the dent

= Fgp/(Dta) (25)
Mp - the theoretical fully plastic moment capacity
= Dtay (26)
AL I T

The primary geometrical parameter of a dented tube, besides the dent
itself, is the D/t ratio. Therefore the tubes tested may in general in
this context, be divided into three groups:

= "Tnick-walled" tubes; tube with a D/t ratio lower than about 35.
wWhen the D/t ratio decreases below 35, the influence of a dent is
decreasing substantially.

- "Normal-thick-walled” tubes; tube with a D/t ratio between 35 and
100. Above the upper limit, presature local buckling may be
expected, especially if a dent is present.

= "Thin-walled" tubes; tube with a D/t ratio higher than 100. Tubes
within this group are at least if a dent is present, likely to have
their ultimate strength influenced by premature local buckling.

Several parameters may be used to classify types of tests. Here, the load-
and boundary conditions are used for dividing the tubes into groups. In
general three types of tests have been performed:

(i) 69 tubes under central axial compression and simply supported end
conditions. A1l tubes but 3 thin-walled ones among them, were sub-
jected to damage in form of a dent or a combination of a dent and
overall bending.

(i1) 10 tubes under central axial compression and clamped end condition.
All tubes in this category were subjected to a lateral load under
fully clamped end condition (both axially and rotationally).

(111) 13 tubes under eccentrical axial compression. A1l tubes were sub-
jected to a combined overall bending and denting damage.

In order to have more ductile material without residual stresses, all the
tubes, but four, were stress relieved. The four tubes not heat-treated had
a diameter/thickness ratio of about 135 and a stress relieving process could
easily affect their circular shape.

The overall bending damage and/or the dent were in all cases made by an
indenter with a straight edge with a tip radius of about 5§ mm. The dent
was oriented 90° to the tube's axis.



Compression tests were carried out under displacement control in a
hydraulic testing machine after initial measurements of diameter to mid
thickness, D; thickness t; initial lateral displacement, &g, and dent
depth, D4, were carried out.

Static yield stress, o,, was obtained from tensile specimens. No correc-
tions for a possibly, !ighcr- yield stress in compression have been made.

In order to obtain static ultimate load, both tensile tests and the final
compression test of the tubes were carried out at similar average strain
rate of about 3 « 10"7/sec. Fig. 6 shows the arrangement for testing
simply supported tubes.

Tables 1 - & summarize the main parameters of the tested specimens.
1 ted t

Most of the tubes have been tested under simply supported end condition,
with D/t ranging from 12 to 135. Tables 1 - 3 show dimensions and material
properties.

In Fig. 7 experimental ultimate loads from €9 simply supported tubes are
compared with theoretical predictions.

Clamped tubes

For undamaged tubes the effect of the boundary conditions is normally
accounted for by use of an effective buckling length. In order to decide
by which confidence a similar procedure could be used for dented tubes, 10
tubes with clamped end condition were tested /8/. Dimensions were chosen
to cover a D/t range from 12 to 78, Table 4 shows dimensions and material
properties of these tubes.

A lateral load simulating a colliding object was prior to compression test,
applied centrally making a damage in form of a combination of dent and
overall bending. The tube ends were prevented from both axial and rota-
tional movement during this process.

Two methods have been used to predict the theoretical strength. In the
first case by means of DENTA by simulating a clamped tube by use of simply
supported tube with a buckling length equal to #/2. Thereafter by means of
DENTA-2 where the real boundary conditions are taken into account /10/. By
comparing both theoretical results with test results, /9/, it was found
that a use of buckling length equal to 1/2 gave conservative results. It
seems to be two reasons for this:

-  The effective buckling length: The true length between the two inflec-
tion points goes to zero when the stiffness at the dent approaches
zero.

=« The residual strength at the ends: The strength at the ends is the same
in dented and intact cases.

In Figs. 8 and 9 theoretical results obtained with DENTA and DENTA-2 are
compared to experimental results.
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13 tubes were loaded eccentrically with the eccentricity equal at each end,
making an "S"-type moment along the tube. The eccentricity was so chosen
for most of the tubes that the end moments caused a bending stress at ends
equal to 20% of the axial normal stress. Specimens with load ratios of 10%
and 40% were also tested.

Denting and bending damage was applied at different locations as indicated
in Table §. In some of the cases the dent was located at the tension side
of the applied end moment. A1l tubes including those with a dent on the
tension side of the end moment collapsed due to the dent. As shown in Fig.
10, theoretical calculations derived by DENTA-2 was in reasonable agreement
with test results.

THEORY COMPARED TO EXPERIMENTS

The presented method have been used to analyze tubes tested at NTH. Fig.
11 shows that experimental ultimate loads compared well to theoretical
ultimate loads. Fig. 12 presents test results compared with a charac-
teristic strength defined as theoretical mean minus 2 st. dev. (0.08 Pp).
As seen from the figure, only results for three tubes (which probably
should have been disregarded) lay on the unsafe side.

The present study has addressed important aspects relating to the collapse
behaviour of partly damaged unstiffened tubulars. In addition, interesting
observations are made regarding cross-sectional deformation of tubulars in
general. The effect of this deformation is important for progressive
collapse analysis, especially if the structure is constructed of members
with a diameter to thickness exceeding 5C.

The study has also revealed a relatively large drop in collapse-load for
relatively small dents in tubes subjected to premature local buckling.

A method is proposed to represent the behaviour of tubes with or without
damage in form of a dent or lateral bending deformation or a combination of
these. The method accounts for premature local buckling and cross sectional
deformation in the post-collapse region.

The proposed theory is mainly based on a simplification of the physical
behaviour of the dented area of a tube subjected to axial load and bending.
Obtained results correlate well with 107 experimental tests conducted.
However, premature local buckling, which affects the behaviour of thin-
walled tubes, and post-ultimate rate of deformation of the cross-section
are accounted for by using some of the experimental results to establish a
semi-empirical approach.

The maximum bending to axial stress ratio which the theoretical model has
been checked against, is that of a tube with reduced slenderness of about
0.8 and initial lateral deflection equal to 0.03 « f. The model seems to
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give, at least for tubes within the mentioned range, reasonable results for
dent depths between zero and D/2.
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Table 1

« | Diam. | Thick-| Length Yield | Young's Slender- | Reduced | Max Depth

no. to mid | ness stress | Modulus ness slender- | initial of

thick- (assumed )™ ness lateral Dent
ness = deflection

D t 1 o E D/t r L D
[mm] | [mm] | [w;] | [(n/Bm;e]] [n/mme] M [mi] o/
IAI 123.11 | 2.04 | 3500 204 188000 60.35 80.40 0.843 2.59 .051
IAII 123.09 | 2.04 " 211 196000 60.34 80.42 0.840 6.41 .102
IAIII | 123.15)12.04 v 207 203000 237 0.817 20.40 : 204 |
1BI 122.64 | 2.50 = 250 211000 49.06( 80.70 0.884 1.89 .051
IBII 122.68 | 2.51 % 230 198000 48. 80.68 0.875 5.29 .102
| IBIII | 122.61 | 2.50 " 268 195 4 .72 0.953 20.90 .204
IcI 122.04 | 3.07 " 290 201000 39.75 81.09 0.981 2.00 .051
IcII 122.04 | 3.09 % 328 198000 39.50| 81.09 1.051 7.21 .100
ICIII | 122.03 | 3.06 - 256 198000 3 s 0.928 25,20 207
1IAI 167.68 | 2.52 " 351 0.81 051
IIAIL 157.64 | 2.52 b s 5.81 . 102
IIAIII] 157.65 |2.52 i 314 3.71 9_1%
11BI 157.10 | 3.08 » 330 4.20 .050
1IBII | 157.07 | 3.07 > 233 6.79 .102
3.06 Ll 2 1.79 .020
4.06 . 470 3.19 .055
4.10 ™ 457 7.60 .103
4.07 - 384 2.59 .020 |
4.23 ” s00 2.10 .051
4.27 » 5 3.50 .104
5.20 i 470 0.21 .055
5.21 = 433 7.00 . 106
6.02 = aT2 3.08 .052
6.00 = 465 6.41 .102 |

* Values equal 207.000 N/mm* are theoretical adopted because of dubious strain measurements

[ —
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Table 2

Spec. | Diam. | Thick-| Lengthl Yield Young's Slender-| Reduced | Max Depth
no. to mid | ness stress | Modulus ness slender- | initial of
thick- (assumed )™ ness lateral Dent
ness il deflection
1} L | ‘y D/t yr A 60 DG,D
[mm] [mm] | [mm] [M/mme] | [N/mme] [mm]
IAIS 109.33 | 4.95 2000 362 207000 22.06 51.69 .688 7.02 0.0699
1BIS 109.33 | 4.92 - 362 “ 22.19 | 51.69 .688 21.62 0.1292
1CIS 109.19 | 5.14 W 362 = 21.24 | 51.75 .689 11.42 0.1185
109.11 15.11 - 362 = 21.34 ]| 51.79 .689 4.08 0.0628
IALIS 105.99 | 8.40 " 475 = 12.61 53.20 .811 25.68 0.0543
IBIIS | 105.88 | 8.53 e 475 = 12.41 | 53.26 .B812 58.54 0.1335
IClIS 105.99 | 8.41 " 475 e 12.59 53.20 .811 9.72 0.0591
| 106,25 | 8,03 .. 600 e 13.22 | 53.09 .910 26.32 0.1206
IAS 118.47 | 1.51 . 383 . 78.15 aT.74 654 1.46 0.0480
IBS 118.48 | 1.51 w 458 » 78.41 47.74 .T15 4.72 0.1266
1cs 118.47 | 1.52 - 478 . 77.89 | 47.75 .T30 11.50 0.2168
108 118.52 | 1.51 . 430 e 78.44 | 47.73 .692 4.82 0.1146
1IAS 123.12 | 2.09 > 224 - 58.77 45.94 481 2.82 0.0588
1188 123.19 | 2.09 = 224 - 58.75 | 45.91 -481 5.94 0.1157
1ICS 123.17 | 2.07 . 228 . 59.42 45,92 .485 1.48 0.0652
11DS 123.19 1 2.07 = 228 e 59.43 | 45.91 _+ 485 4.32 0.1106
ITIIAS | 157.49 | 2.49 » 455 o 63.27| 35.91 .538 1.12 0.0490
I1IBS | 157.44 | 2.50 - 455 - 63.10 35.93 .536 3.80 0.1025
I1ICS | 157.46 | 2.49 e 470 . 63.14 | 35.92 545 0.68 0.0602
157.47 | 2.49 . 470 -3 63,32 | 35.92 545 3.20 0.1156
IVAS 202.03 | 1.50 3500 286 200000 135.1 49.00 .590 0.77 0.0431
1vBs 202.09 | 1.50 ¥ 286 w 135,07 48.%98 .590 0.00 0.0663
IvCcs 201.98 | 1.50 = 286 » 134. 495.01 .590 4.24 0.1070
Ll-_L' . 286 = |13s.61 as.99 7.60 | 0.2047

* Th.onﬂcnl values adopted because of dubious accuracy of strain -uurntnt
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Table 3
Spec.| Diam. | Thick-| Length Yield Young's Reduced | Initial Depth | Supports
no. to mid | ness stress Modulus slender- | lateral of during
thick- (assumed)* ness deflection] Dent denting
ness ”
] t ] ay D/t A LA nd/D
[mm] [mm] [ma] [N/mme] | [N/mme] [mm] [mm]
1AAA 118.74 | 1.00 2500 290 207000 118.74 | 0.710 1.48 0.00 -
1ABB 119.08 | 1.00 s = e 119.08 | 0.707 1.2 4.63 (A)
1ACB 118.80 | 1.00 - " - 118.80 0.709 4.35 6.97 (A)
1ACC 118.96 | 0.99 o W - 120.16 | 0.708 2.97 7.95 (B)
1ADB 118.92 | 1.00 b i . 118,92 | 0.708 2.95 11.72 (A)
1ADC 119.15 | 0.99 » ” - 120.35 | 0.707 4.88 13.89 (8)
1AEC 118.89 | 1.01 - * - 117.71 | 0.709 17.8 25.70 (8)
1BAA 124.19 | 1.24 . 312 » 100.16 | 0.704 0.42 0.00 -
1888 124.30 | 1.25 » o . 99.44 | 0.703 1.16 4.95 (A)
1BCB 123.53 [ 1.24 - s L 99.62 | 0.707 3.19 6.57 (A)
18CC 123.92 | 1.24 e - - 99.94 | 0.705 1.88 7.36 (8)
18D8 124.18 | 1.25 % y "4 99.34 | 0.704 2.33 14.33 (A)
180C 124.37 | 1.26 » " - 98.71 0.703 4.02 13.48 (8)
1BEC 127.60 | 1.26 " ' - 101.27 | 0.685 11.12 26.51 (B)
1CAA 133.55 | 1.47 - 295 7 90.85 | 0.636 0.79 0.00 -
1ce8 134.05 | 1.46 » - -+ 91.82 | 0.634 1.22 3.2 (A)
1ccs 133.89 | 1.51 = - iy 88.67 | 0.835 0.97 8.30 (A)
1ccc 133.89 | 1.52 = = o 88.09 | 0.635 1.88 10.31 (B)
1cos 133.81 | 1.42 ol - - 94.23 | 0.635 4.72 15.63 (A)
1coc 133.95 | 1.47 od - . 91.12 0.634 5.96 18.87 (B)
| JICEC | 133.59[1.53 - - < 87.31 | 0.838 21.81 31.12 _[8) |
* Theoretical values adopted because of dubious accuracy of strain measurement.
— b )
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Diam. Thick-| Length | Yield Young's Slender- | Reduced | Max Depth
no. to mid | ness stress | Modulus ness slender- | initial of
thick- (assumed)* ness lateral Dent
ness B deflection
4] t 1 °y D/t L/r A, 5, D,/D
_[mm] [mm] | [mwe] | [N/mme] | [N/me2] [mm]
IAIC 109.18 | 5.06 2000 3e2 207000 21.56 25.86 .345 1.36 0.0552
IBIC 109.36 | 4.95 @ 362 - 22.10 25.84 .344 4.26 0.1042
IAIIC | 106.04 | B.24 . 600 - 12.88 26.59 .456 5.12 0.0503
IBIIC | 106.01 | 8.25 5 600 = 12.85 26.60 . 456 15.70 0.1114
IAC 118.47 1.51 3500 420 ” 78.46 41.78 .599 6.69 0.1040
IBC 118.48 | 1.50 . 350 d 78.93 41.77 .547 14.46 0.1850
1IAC 123.21 | 2.10 b 213 k 58.67 40.17 .410 2.59 0.0501
118C 123.20 | 2.08 " 219 " 59,37 40.17 4186 6.79 0.1199
IITAC | 157.48 | 2.50 o 462 * 62.99 31.43 .473 2.66 0.0541
IIIBC | 157.46 | 2.49 € 449 " 63.21 31.43 .466 6.76 0.1199
Buckling length, 2 , is set to 2/2 when is calculated
* Theoretical val adopted because of ijous accuracy of strain measurement
e .
P _—
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Table 5
Epoc. Diam. | Thick- | Length | Yield | Young's Reduced | Inftial Depth | Eccentri-| Place | Bending
no. to mid | ness stress| Modulus slender-| lateral of cities of to normal
thick- (assumed )% ness deflection Dent dent | stress
ness - = at ends
0 t ! cy D/t A ao D d/[:l e cb/a &
(wm] | [mam] [mwm] | N/mme]|  [N/mm] 2 [om] | [mm] [mn] (%]
2AABB | 122.57 2.57 2500 455 207000 47.69 0.8607 7.41 9.39 6.25 (A) 20
2BABB | 122.58 2.57 = 454 " 47.7 0.8597 13.57 18.15 6.25 (A) »
2CABB | 122.59 2.57 - 443 al 47.7 0.8492 25.68 25.16 6.25 (A) -
2ABBB | 122.60 2.57 - 459 - 47.7 0.8643 -0.75 10.50 6.25 (B) »
2BBBB | 122.63 2.56 o 449 it 47.90 0.8546 7.39 17.14 6.25 (B) »
2CBBB | 122.61 2.56 4 444 » 47.89 0.8500 17.64 24.87 6.25 (B) -
2ACBB | 122.59 2.57 b 459 47.7 0.8644 4.00 10.16 6.25 (c) "
2BCBB | 122.58 2.58 g 442 47.51] 0.8483 6.81 16.36 6.25 (C) »
2CCBB | 122.862 2.58 = 456 47.5 0.8613 14.33 23.20 6.25 (c) -
2BCAB | 123.07 2.05 o 452 60.0. 0.8545 3.28 11.42 6.00 (c) 19
2BCCB | 122.04 3.04 " 520 40.1 0.9241 4.12 11.58 6.00 (C) -
2BCBA | 122.64 2.55 - 448 » 48.0 0.8536 4.03 11.69 3.00 (c) 10
2BCBC | 122.59 2.5 = 447 - 47.7 0.8530 3.98 10.86 12.50 (C) 40

* Theoretical value adopted because

—g

bt 2o

of dubious accuracy of strain measurement
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ULTINATE CAPACITY OF DAMAGED TUBULAR BEAM COLUMNS:
AN EXPERIMENTAL STUDY

by

I. Lotsberg® and P.C. Birkemoe'®

At the end of 1985 a project on experimental investigation of
ultimate capacity of damaged tubular beam columns commenced at A/S
Veritec im Oslo. This paper presents the goals of the study, and the
experimental techniques which are being used. The purpose of the
project is to determine experimentally the moment vs., axial force vs.
rotation relationships for damaged tubular steel members. This
information may them be used in the evaluation and verificatiom of the
residual strength of damaged offshore structures and to further develop
and verify analytical models, The main test setup enables axial force
and moment om the dented regiom to be specified and controlled
simultaneously and independently. Computer controlled loading and
displacement as well as computer based data acquisition are being used
to obtain complete loading and collapse behavior of the dented region as
well as the global member behavior,

. A/S Veritec, Hovik, Norway. 1986/87 Visiting Professor, Dept. of
Civil Engineering, McMaster University, Hamiltonm.

**  Dept. of Civil Engineering, University of Toromto.

105




106

by

I. Lotsberg
A/S Veritec, Hovik, Norway
1986/87 Visiting Professor, Dept. of Civil Engineering
McMaster University, Hamilton, Canada

P.C. Birkemoe
Professor, Dept. of Civil Engineering
University of Toronto, Toronto, Canada.

Tubular members are used for the comstruction of jacket structures and
other offshore structures such as jack-ups and certain types of steel
gravity structures. Also deck trusses may be composed of tubular
members.,

The external loads in such structures are carried almost exclusively by
axial forces in the members - compression or temsion. The loadings
which may influence the compression capacity of tubular beam—columns
includes beams bending due to wave and current, frame bending due to
global deformations, intermal or external pressure and to a lesser
degree torsion and shear,

The primary failure mode of members subjected to axial compression is
column buckling. Local failure modes may, however, interact with the
global member buckling depending on the geometry, material data and the
loading. The detrimental effects of imperfections with respect to
compression capacity is well recognized. Damage to tubular members in
offshore structures will further reduce the compression capacity of
tubular members, After damage has occurred the ability of the structure
to withstand the functional and environmental loads is questioned.
Also, repair of damaged members below water level is difficult and very
costly. Therefore, decisions regarding acceptable damage im tubular
members have to be made. After damage has been reported, it is
important to be able to assess quickly and accurately the residual
strength of the damaged member or the structure in order to take the
precautions when necessary.

The purpose of the present project is to gain more experimental data om
capacities of damaged beam columns which cam be used in residual
strength evaluations. Other researchers (Refs. 1, 2, 3, 4) have
approached the damaged tubular problem in recent years from both
theoretical and experimental standpoints, This study has been designed
to provide data which is broadly applicable to analytical treatment and
extrapolation, and which complements the reported experimental work of
others,



In order to arrive st results practical for design verification it has
been decided to describe the capacity of the dented region by forces and
rotations related to sections of the tubular outside the damaged region,
see Fig. 1. From the M-P-0 relations as shown schematically in Fig. 2,
it should be possible to determine the residual strength of damaged
beam-columns based on analytical methods, and it should also include
enough data to perform a more advanced residual strength analysis of a
platform accounting for the postbuckling behavior of the members using a
finite element formulatiom.

The project commenced at A/S Veritec im Oslo at the end of 1985 and is
planned to be finished within 1987.

SPECIMENS AND MATERIAL DATA

The relative geometry of the tubulars to be tested corresponds to that
of typical members in jacket structures with D/t-ratios of 31 and 47.
The diameter of the test specimens is 140 mm.

The dent (damage) depths are approximately 0.1 x D and 0.2 x D, Three
coupons (or specimens) from the end of each tubular will be tested to
obtain & typical average erou-u%tionnl yield stress. The specimens
are tested at a strain rate of 107" /sec. At a strain of 0.002 the test
is stopped at constant straim until a static stress level is reached.
This procedure is repeated at a strain of 0.005. The lowest stable load
recorded during the stop at a maintained strain is used to calculate the
static yield stress.

The material used for the specimens is St352-N for D/t = 31 and Std44-N
for D/t = 47 corresponding to typical yield strengths used in offshore
tubular construction members. Approximately 30 tubular member specimens
will be tested in the current program.

The loading conditions are indicated in Table 1 for ome type of specimen

geometry. The axial load is to be kept constant while the specimen is
subjected to an increasing moment ceused by lateral loading.

TABLE 1: Loading conditions for onme geometry

Test No. Axial force Bending Moment
Compression Tension in
P in dent dent
3 0 x
2 0 x
3 P. x
2
4 Py x
5 Py x
6 P! x
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Fig. 1: Damaged part of tubular with M-P-0 definitions

A
e )r

Fig. 2: Schematic M-P-0 curves



Damage of the tubulars is simulated in a denting rig with the member
fizxed against end rotations but free to move lomgitudinally. This is
achieved by supporting the member at a distance L/4 from its ends, where
L is member length.

The member used for denting has a wedge shape with an edge radius of 20
mm. To achieve the specified dent depth the denting is performed in
steps by loading and unloading in order to separate the eclastic and
permanent deformations, The dent width (in a plane normal to the
member/loading plane) and the depth are measured during the denting
process.

A rig for geometry measurements has been constructed. The specimen is
mounted in this rig in a vertical position amd the surface shape of the
tubular is measured using displacement transducers: a schematic
representation of the rig is shown in Fig. 3. Measurements of the
radial surface position are obtained around the circumference through a
rotation of the tubular member in steps of 5 degrees. The ovalization
and the out-of-straightness can then be calculated according to the
procedure given in Ref, § for measurements of tolerances on shells.

TESTING OF ULTIMATE CAPACITY

A test rig has been designed where s constant axial load can be applied
simultaneously with an increasing uniform bending moment over the
central damagoed regiom of the test specimen, see Fig. 4. The constant
axial load is applied by means of a servo-hydraulic actuator operating
in force control mode., The moment is created by the vertical hydraulic
cylinders comnected to gravity load simulators such that the transverse
forces are acting normal to the axial load axis. The forces in these
vertical cylinders are controlled manually.

The test progress is monitored through measurement of
- wertical displacements at the transverse load points
= horizontal displacements along the specimen

~ rotations at the connections between the specimen and the
lateral load actuators (inside the constant moment region)

= lateral (transverse) loads
= axial load
Through a computer based comtrol/data acquisition system the force and

moment in the dented region can be specified and controlled
simultancously or independently.

109



110

Displacement
transducers

#=0, 5° 10°...360°
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CLOSURE

The study described hereim is supported by a joint industry program and
is scheduled for completion during the current year. After a period of
confidentiality, the results will provide wvaluable new data for a
growing body of information used in the reliable safoty assessment of
damaged steel structures.
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STUDY OF CARRYING CAPACITY OF FABRICATED
TUBULAR COLUMNS UNDER AXIAL COMPRESSION

Xiao-Ning Yang,Guo-Zhou Wang and Shao-Fu Li
Department of Civil Engineering
Tsinghua University
Beijing ,China

1. INTRODUCTION

Fabricated tubular colusns are the basic elements of steel offshore
platforms., This kind of column has a lot of advantages in nechanics, but it
also has inevitable imperfections, because it involves & complicated
wapufacturing process. The manufacturing process of a fabricated tubular
column {ncludes three main steps: (1) Rolliung from steel flat plate to form
a cylinder; (2) Velding of the lougitudinal seam of the cylinder to form a
can; and (3) Transverse welding of the cans to form a long column. All the
above steps may result in significant resfdual stresses and geometrical
impecrfectious. These factors, as it is known, may have i{mportant effects on
the ultimate atrength and buckling behavior of axially loaded columns.

Therefore, it must be considered for s reasonable desigu of axially
loaded columus that an actual colusn is geomtrically and materially
fuperfect, and is also frequently subjected to bending moments resulting
from unavoidable end eccentricities and support restraints. In the last
decade, some research work on the buckling behavior of fabricated tubular
columns have been done(8)(9). Despite these research efforts, the behavior
of this kind of member is still not fully understood and samples of
available test data are too small to reach a reliable conclusion for these
columns, Up to the present, the design method of these columns is still
based on eumpirical formulae. A need clearly exists for accurate and
effective method of assessing the effects of all the factors that may
affect the buckliog bdehavicr and ultizate strength of axlally loaded
fabricated tubular colusns so as to lay the foundations for making the
reasonable design curve of these columns.

lerein, an experimental and theoretical study on the buckling behavior
and ultimate strength of fabricated tubular columns under axfally loaded
coudition is carried cut. In the experivental fnvestigation some medium and
long coluwn tests and its corresponding tension coupon tests and stub
column tests are completed. osased on finite difference principle aud
Kewtor-Raphson iterative technique, an elastic-plastic analysis method of
beas-columns is advanced for the entire range of monotonic axial loading up
to ultimate load including post-buckling unloadirg, and its corresponding
computer program in FORTRAN is alsc cdeveloped. To demonstrate the valldity
of the computer program, comparisons between the computed results and
tested results of steel colusns are wmade. Usiug the computer program,
systematical studies of the effects of longltudinal residual stresses and
inftial out-of-straightness imperfections on the ultimate strength and
buckling behavior of fabricated tubular columns are completed and, finally,
a reasopable colunn strength curve for this kind of column is obtained and
compared with the current design curves specified in different design
codes,
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2. EXPERIMENTAL INVESTIGATION

The test program includes six wmedium and long column tests with
slenderness ratioc ranging from 43 to 72 and with diameter-to-thickness
ratio of 50, three stub column tests with length of 500 mm, and thirty
tension coupon tests. A diagram is shown in Fig.l of the dimensions of the
specimens as fabricated. All these tests were conducted in the Engineering
Structure Laboratory,Tsinghua University, Beijing, China.

2.1 Tension Coupon Tests and Stub Column Tests

It is essential for the prediction of the buckling load and behavior
of a medium or leng tubular column to know the material properties, The
material properties that have the most effects on the behavior of a steel
tubular column are the modulus of elasticity, E, the yield stress, [ A and
the stress-strain curve.Tensile specimen tests and stub column tests were
conducted to obtain the material properties, respectively, in tension state
and compression state.

(a) Tensile specimen tests : To obtain a statistical average value of
material property, 30 tensile specimens that were taken from 5 flat plates,
6 specimens per flat plate, were tested.The size of the specimen and
testing method of the specimen conformed to Chinese Standards (GB 228-76)
(13).The test results of the statistical average values of the modulus of
elasticity, E, and the yield stress, (5, are given in Tab.l . It also gives
the corresponding values as contained in the mill report accompanying the
flat plates. The typical stress-strain curve of the steel of teansile
specimen is shown in Fig.2 and it is found that the stress-strain curve can
be closely approximated by the elastic-perfectly plastic curve before
strain hardening region is reached.

{b) Stub column tests : A stub column may be defined as a column long
enough to retain the original magnitude of residual stresses in the section
and short enough to prevent any premature failure occuring before the yield
load of the sectlon is reached. A stub column test is performed in order to
obtain an average stress-strain curve for the complete cross-section which
takes into account the effects of residual stresses. The stub column tests
were conducted in a 500 ton compression testing wachine and the test rig is
shown in Fig.5 . During the testing, the strains at midheight of the stub
columu were measured by electric resistance strain gages and the
corresponding relative wmovements between the machine heads were also

measured by electric dial gages. A typical stress-strain curve for stub
column is shown in Fig.3 . These stress-strain curves for stub columns are
significant different frem those for tensile coupon tests, which is due to
the effects of residual stresses in the cross-sections of stub columns.

Good correlation is found between the results obtained from tension
tests and stub colusn tests for the modulus of elasticity, E, and yield
stress @3 , which is given in Tab.l .

2.2 Residual Stresses
There are twe major types of vresidual stresses in the fabricated

tubular columns. They are circumferential residual stresses due to forming
of a flat plate into a cylinder, and longitudinal residual stresses due to



welding of a cylinder into a can. The longitudinal residual stresses are
believed to have wmore significant effects on the behavior and ultimate
strength of a fabricated tubular column; hence, they must be considered in
a reasonable theoretical analysis of beam-column. The longitudinal residual
stresses in the cans were measured by a "slicing" technique(11). The
distribution of the measured longitudinal residual stresses of these cans
is shown in Fig.4. 1t is found that the curve can be closely approximated
by following equation:

0z (B)=1.0662-6.1227P +9. 3851/ -5.91258 +1. 6488 p™0.16898°

in which @=radians rotating from weld; Or(A )=nondimensional residual
stresses, The curve in Fig.4 is similar to the curve of longitudinal
residual stress distribution measured by D.A.Ross and W.F.Chen (1976)(12).

2.3 Long Column Tests

In the test program, six medium and loug columns with overall leungth
of Ju and 5u ,each of which consists of three caus were tested to provide
the data for check up the theoretical analysis.

As the initial out-of-straightness is one of the most important
factors affecting the ultimate load of axially compressed columns, an
extensive measurement of the Initial crockedness of each column was carried
cut before testing. Typical specimen out-of-straightnesses are shown in
Fig.b. To allow the column buckling in its weakest direction, two spherical
bearings were used at both ends of the colusmns during testing. It also
provides a real pin-ended condition which allows valuable information on
column behavior to be collected. The testing rig is shown in Fig.5 . The
deflections at 7 sections in buckling direction were measured by electric
dial gages, and the deflections in perpendicular direction were also
measured at 3 of these sections . The strains in the same sections were
also measured with electric-resistance strain gages. Before testing,
alignment in which the center of each end of specimen is aligned with the
center of the spherical bearing at that end was carefully made and the
unintensional end eccentricities were measured by the measuring sets, The
axial load was applied in increments and the static readings of column
behavior were recorded.

The geometrical properties aud collapse loads of medium and long
columns are summarized in Table 2, In Fig.7. the test data recorded of
ultimate load were given and compared with other test results of the same
sort (B)(9), APl design curve (6), ECCS/DnV-0S design curves (3)(4), and
SSRC multiple curves (7). It is found that the test data here trend to the
agreement with the test data obtained by former researchers and most of the
test results are above the wost of design curves.

3. THEORETICAL ANALYSIS
3.1 General

Because it {is unavoidable for an actual column to have sowe
imperfections such as initial crookedness, end eccentricities, residual

stresses, end restraints and so on, which have, Lo varying degrees, effects
on the buckling behavior of an axially loaded column, it is reasonable that
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an actual column is analyzed as an elastic-plastic beam-column. An analysis
of an elastic-plastic beam-column can be fall into two steps: (1) The
generation of the behavior of a column segment, M-P-¢ relations; (2) then,
using this as input data, the load-deflection behavior of a beam-column is
calculated and, therefore, the ultimate strength of the beam-column is also
deternined.

In this paper, a finite difference principle is first used to turn
the equilibrium differential equation of beam-columns into an set of
algebraic equations, which makes it easy to treat defferent end restraints
and varying kinds of initial crookedness, and then a MNewton-Raphson
iterative technique is used to solve this set of equations. A reneral
solution of elastic beam-column is also derived as initial state of the
iterative process. The assumptions adopted in following theoretical
derivation are as follows:

(1) Plane section remains plane after the deformation.

(2) The deflections are small and the slope angles {n radian are

negligible compared to unity.

(3) The behavior of the material along the column has not deferences.

(4) There are no occurrence of local buckling and twisting during

loading.

(5) There are no variations of residual stresses along the columm.

3.2 Equilibrium Equation

defering to the column shown in Fig.8, the equlibrium equation of a
general beaw-coluwn can be derived as follows:

w=plzrvrey )-c, 8, -x(ple,~e,)-(c, 0,-c, 4, )) (1)

where p=conpression load; 2z=deflection of column due to compression load;
v=initial crookedness of the column; e, , ¢,=end eccentricities at end A, B;
& » & =slope angles at ead A,Bjc, ,c,=end restraint coefficients at end
A,je=bendiug woment of the section at a distance x from the left end A of
column. All the above quantities are nondimensional quantities and the
dimensional quantities corresponding to above quantities are:

Men,Hs;  P=p.Ps; @=p.fs; Ga=sm-0; OGh=0.65; Ca=c,.Cs; Cbmey.Cs;
Ms=\.Gy; Ps=A.0y; @g=is/EL; 6 =L.¢s; Cs=L1/L;
Z=z.q,; Vevaqys Ea=tq o4y Ep=ey.qy; X=x.Lj qgeW/A.

where A=cross-sectional area ;I=moment of inertia of the section; We=section
modulus; L=length of beau=-coluun.

3.3 General Solutlon of Elastic Beam=-column

In the elastic range , the bending moment ,m, has a simple relation
with the curvature,p , as follows:

] (2)

and then it is easy to obtain the solution of the equation (1). If we
define ¥ as:

Hep/t (3)

!
wheie = s A=NNs 3 A=La/1 ; h,-t/% (4)



anc express the fuitial crookedness, v, as:

v(x)-fa,smurfx) (5)
the solution o;-;n elastic beam-column can be obtained:

2(x)= 's:mu(t.SIN(bx—b)-z,SIH(bx)h%(:.(l-x)ﬂ'x)ou (6
where z, , 2z, are defined as:

2 =2, (D ca (b eytc, Dy )= (D, ¢y -0y ) (6 € =y 1)y )) (n

2472, (D, ¢, (W ey -, D )-(Dy cg -0y ) (¥ ¢ +cy 1y )) (8)
and D, D, ,Dy ,D, D, ,and z,are given as follows:

Dy =SIN(b)~b (9)

Dy =bCOS(b)-SIN(b) (10)

Dy=b SIN(b) (11)

D= W £.52 ua, (12)

D=7 22 aa, (-1 (13)

2, =pSIN(b) /(D] ¢ ey~ (U cq =Dy ) (Dyc, -Dy)) (14)
and ue E-S o sIN(om) in which w, =b%/(om) (15)

In the case of pin-ended condition, the equation (6) becomes
z(x)=(e, SIN(b-bx)+e, SIN(bx))/SIN(b)~-(e, (1-x)+e,x)+u (16)
3.4 NHoment-Curvature Relations of Column Segment

In the elastic-plastic range, the equation (2) can not be true and |,
generally speaking, the bending mement m is a function of the stress-strain
behavior of the material and the residual stresses in the section. To
derive out a general moment-curvature relation of an arbitrary section
considering arbitrary shapes of stress-strain curve and residual stresses
in longitudinal direction, a general strain distribution of the cross-
section is first derived as follows:

E =#fSIN(d-B8)+E,+E, (17)

where £ =strain, g, =strain at centre of form, & =residual strain,all the
strain are non-dimensionalized with rtespect to the yield strain £,;
S =radial distance in the polar coordinates located in the centre of form
of section non-dimensionalized with respect to f=1/W; o =angle between y-
axis and the neutral axis; A =the angle in the polar coordinate located in
the centre of form of the section.

A general stress-strain relationship in uniaxial stress test condition
can be expressed by :

G=G(E) (18)
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Substituting equation (17) into equation (18) , the stress distribution in
the section can be obtained as follows:

C=G(AgSIH(k-B) +E,+E,) (19

Thus , the generalized stresses : bending moments and axial force, are
computed by:

-

. io‘ dA (20)
m,-‘—:-lic zdA (21)
'“z'ﬁj;”‘“ (22)

The equations (20),(21),(22) and (19) give a general moment-thrust-
curvature relationship of any section. As the M-P-@ curve usually cannot be
computed by direct methods because of the nonlinear behavior of the stress-
strain relationship, an iterative procedure must be applied to treat the
nonlinear problem.The iterative procedure adopted in this paper is as
follows:

(1) Determine the following quantities:
# Range of the thrust, p , and its increment, dp
# Range of the curvature ,§ , and its increment , d¢
(2) Set the load p=p+dp for ith loop
(3) Set the curvature g=g+d¢ for jth loop
(4) Get €4 from equation (20) by Newton-Raphson method
(5) Subtitute @,and # into equations (21),(22) to get my,ny
(6) Goto step (3) for j+ith loop of ¢
(7) goto step (2) for i+lth loop of p
(8) Output the M-P-p matrix

Based on the above algorithms , an computer program in FORTRAN ,MCTAP,
has been coded and the comparison of the computed results with analysis
results of some sections has also been made. It leaves no doubt as to the
validity of the computer program.Using the computer program , extensive
studies of the effects of the longitudinal residual stresses and the
direction of applied bending moment with respect to the longitudinal weld
on the M-P-¢ curves have been carried out. It is found that these factors
have significant effects on the M-P-@ curves. The effect of residual
stresses on M-P-@ curve is shown in Fig.9 and the results computed in some
directions are shown in Fig.10-12.

3.5 Analyses of Elastic-Plastic Beam-Columns

As the moment-thrust-curvature relationship in plastic range behaves
nonlinearly, recourse must be made to numerical methods to obtain the
solution of the equation (1). Here , a finite difference principle is used
to reduce the differential equation to a set of algebraic equations ,and
then a Newton-Raphson iterative technique is used to solve this set of
equations.

The difference formulations used in the transformation of the
differential equation to the set of algebraic equations are:



- 1
5= Tip{ =2y g *16z;_ -30z; +162j, -2;,,) 1=2,3,040,0=1

]
=I’-"',l"("l-l =2z %24y ) i=1,n
| (23)
2 -i"(-.'i:i vhZpy) ~2jp ) i=0
tf -;;(;M' ~bz ¥dz; ) i=n+1
where li-dltlection at ith node; h=constant, x =i{h. Substituting the

above difference formulations into the governing equation (1), a set of
algebraic equations can be obtained as follows:

u(p, by )-plz; +v; ve, Jrc, @ +ih(ple,~e,)~(c, 4 ~c, §))=0  1=1,2,..,n (24)
where “--1;?
&=tz, (2%)
0= tag,

Using Newton-Raphson iterative technique and considering equations (19)-
(22), the set of equations (24) can be solved taking the elastic solution
equation (6) as the initial values of the first Iteration and then taking
the interpolating values as the one,

Based on the above formulations , a computer program in FORTRAN, BCAP,
has been developed and some of comparison between the medium and long
column test rtesults and the corresponding computed results are given in
Fig.13-16. The further comparison of the results between test and
computation is given in Fig.17. It is found that the identity between the
both is good and the related coefficiant equals 0.9896 .

3.6 Column Strength Curves

Using the computer program, BCAP , some column strength curves of
fabricated tubular columns are developed considering the longitudinal
residual stresses in Fig.4 and 0.1% initial crookedness , and the results
that are corresponding to different buckling directions of column with
respect to the longitudinal weld are shown in Fig.18. It is found that the
curve whose buckling direction is opposite to the longitudinal weld gives
the lowest column strength. Therefore ,it may be adopted as the design
curve for the fabricated tubular columns . The suggested column strength
curve can be closely approximated by the following equation:

b 1+ e No/lTr e ) 4N0) (26)
where Eg=0.1826A,; A=M/Ag,nondimensional slenderness ratio.

A comparison between the suggested curve and API design curve as well
as SSRC multiple curves is shown in Fig.19 . It i{s found that the suggested
curve is significautly lower than the API curve and the SSRC curve "1" but
higher than the SSRC curve "2" . The comparison between the suggested curve
and ECCS/DnV-0S curves is given in Fig.20 and it {is shown that the
suggested curve is close to the ECCS/DnV-0S curve "a" but slightly higher
than {t.
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4, CONCLUSIONS

Experimental and analytical studies of the ultimate carrying capacity
of axially loaded fabricated tubular colummns have been made. An analysis
wethod based on finite difference principle and Newton-Raphson iterative
technique is used to compute the load-deflection curves of bean-columns
for the entire range of wouotonic loading up to ultimate load including
post-buckling unloading . B5ased on this method ,a computer program ,BCAP,
in FORTRAN has also been developed and its validity was demonstrated by
the wedium and long column tests, which are as a part of this study, and
other test results. Using the computer program , accurate and systematical
studies of the strength and behavior of real fabricated tubular steel
columns , considering residual stresses , initial crookedness , end
eccentricities and end restraints , can be carried out easily. From this
paper, the following conclusions appear valid:

(1) The test results of 6 fabricated tubular columns were consistant
with the results of previous tests of the same sort and collapse
streugth of these columns 1is found to be mostly above the
strength curves contained in API, ECCS/Dnv-0S, and SSRC design
recomnendations.

(2) By the computer program, BCAP, theoretical prediction of the
strength and behavior of these test specimens was In goed
agreement with the experimental results and the comparison
between the both is shown in Fig.17 .

(3) Using the computer program, the effects of longitudinal residual
stresses on the N-P-p curves and the column strength curves of
fabricated tubular columns were studied and it is found that the
longitudinal residual stresses and its location with respect to
the buckling direction have considerable effects on these curves.

(4) Among the above column strength curves, the one whose buckling
direction Is opposite to the longitudinal weld gives the lowest
column strength, therefore, it may be adopted for the design of
fabricated tubular columns. The suggested column strength curve
can be closely approximated by the equation (26).

(5) Comparisons between the suggested columm strength curve and API,
ECCS/Dnv=-0S, and SSRC curves are shown in Fig.19 and Fig.20 . It
is found that the suggested curve is close to the ECCS/DnV-0S
curve "a" but slight higher than it.
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Table 1  Material Properties

Yield Stress Hodulus of Elasticity
(kg/cnt) (kg/en?)

Mill

Tension Test 3250.0 2.206E6
Stub Column Test 3189.0 2.195E6

Report 3290.0 »

Table 2 Long Columns: Derived Parameters aud Collapse Loads

Specimen | Effective Collapse|Collapse|Col. Strs.
No. Length I/t Ao Loads Stressg |=eeve-eee-
Lo (m) (ton) [(kg/cm®)|Yie. Strs.

-1 3.187 45.98 | 0.5644 7.1 3130.3 0.9544
-3 3.187 45.98 | 0.5644 79.2 3215.6 0.96804
2C-5 3.187 45,95 | 0.5644 75.4 3061.3 0.9333

1 5.187 74.54 | 0.9185 70.0 2842.1 U.E065
3 5.187 74,84 | 0.9185 72.8 2955.7 0.9011
3 5.187 74,84 | 0.9185 62.4 2533.5 0.7742
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APPLICATION OF THE NUMERICAL INTEGRATION METHOD
TO STABILITY OF RING-STIFFENED CYLINDERS

John E. Goldberg, Professor Emeritus, Purdue University
Divaker V. Pathak, Consulting Engineer, Ypsilanti, Michigan

Introduction

This is a brief description of the Numerical Integration Method and
its application to stability problems of ring-stiffened cylinders. The
cylinder may have closed ends: spheroidal, paraboloidal, conoidal as well
as flat; and the stiffeners may be internal or external and may have any
practical profile including closed sections. In fact, the program which
has been written for the stability problem includes a catalog of stiffen-
ing rings: flat, angle, jay, tee and flanged tee; and a catalog of clo-
sures; both of the catalogs can be readily expanded. Radial pressure and
longitudinal loads are handled, and both of these may vary in the longitu-
dinal direction.

The procedure and program are based on the first-order method, some-
times called the Numerical Integration Method, originated by Goldberg and
Bogdanoff [1] for stress, stability and vibration analysis of shells of
revolution. Two significant features of this method are its ability to
handle shells of revolution of arbitrary shape with arbitrary variations
of thickness and material properties, and its direct handling of all phy-
sically possible boundary conditions. For stability analysis, since only
the lowest eigenvalue 1is required, the numerical integration method is
coupled with an iteration procedure.

Theory

The governing equations are derived with the aid of classical shell
theory. The stress-displacement relations and the differential equilibrium
for a deformed shell in generalized orthogonal curvilinear coordinates are
taken from Love [6] and the stress-strain relations are taken from Novo-
zhilov (7). The coordinates, s and 8, define points on the middle surface
of the shell and on the middle surfaces of the stiffeners; with s and 9,
respectively, being the distance along the meridional curve, and the angle
between the meridional plane through the point and a reference meridional
plane. The third coordinate, z, is the normal distance from the middle
surface and is positive inward. It is convenient also to define the angle,
¢, between the normal and the axis of the shell.

Taking the solution in the form consistent and generalized Fourier
series, the basic partial differential equations are reduced to uncoupled
sets of ordinary differential equations. It may be noted that the Fourier
series representation is associated directly with the buckling and vibra-
tional modes. In accordance with a basic principle of the Goldberg-
Bogdanoff method, the differential equations are written in first-order
form, which is particularly convenient for numerical integration, and in
terms of physically meaningful variables: stress and moment resultants
and displacements in the local coordinate directions.
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The final form of the equations for an arbitrary circumferential wave
number or 4index, n, is shown in Appendix Il. The set of equations is of
eighth order, consisting of eight first-order simultaneous ordinary dif-
ferential equations. In symmetrical cases, n becomes zero and the set
reduces properly and identically to sixth order.

Stability Problem

The stability problem is solved in two stages. The first stage,
which may be called the prebuckling stage, determines the state of stress
throughout the system due to symmetrically applied pressure and longitudi-
nal loading distribution and a convenient unit or reference magnitude. The
second stage, which may be called the buckling stage, determines Cthe
eigenvalue, which 4is the multiple of the unit or reference loading at
which the system will buckle. The eigenvalue is obtained through the use
of an Aiterative procedure (with which the names of Schwarz, Engesser,
Vianello and Stodola are associated) in conjunction with the numerical
integration method.

To apply the iterative procedure for a specific circumferential wave
number, m, a geometrically admissible mode shape is assumed. The products
of the prebuckling stress resultants and stress couples times the
appropriate deformations of the assumed mode shape are taken as a distri-
buted applied loading, and a new set of deformations {s calculated by
integrating the shell equations presented in Appendix II1. A test for con-
vergence is applied. If convergence to a desired degree has not been
attained, the calculated deformations are normalized and the process is
repeated until satisfactory convergence is attained.

Theoretically, the process has converged when the ratio of the previ-
ous displacements to the newly calculated displacements is uniform over
all integration points. From a practical standpoint, a certain tolerance
is acceptable and it can be assumed sufficient when the difference between
the maximum and minimum deflection ratios does not exceed a specified per-
centage which may be set at the discretion of the analyst. The newly cal-
culated displacements should not be normalized prior to calculating the
deflection ratios. It 41s 1likely that the ratios behave erratically at
points where the calculated normal deflection is small compared to the
maximum calculated normal deflection. Consequently, when calculating max-
imum and minimum ratios at the end of onme cycle, it is advisable to disre-
gard the ratios for these points where the deflections are small. The
entire procedure must be repeated for other values of n, the Fourier index
number, until the lowest buckling load (multiple of the unit or reference
value) is found. It should be noted that the computer calculates the
deflections (by use of the differential equations) so that the deflection
ratios can be calculated within the computer.

Computational Procedure

The differential equations, which are given in the Appendix, form a
system of eight simultaneous first-order differential equations in the
complete set of eight intrinsic variables. The intrinsic variables are the
amplitudes of the three orthogonal displacements, the rotation in the




meridional plane and four stress resultants. With appropriate initial
values of these varlables, the equation may be integrated numerically
using any stable technique such as the Runge-Kutta process, Adam”s method
or a predictor-corrector method. The problem, consisting of the set of
equations together with appropriate boundary conditions at the initial
edge, s = 0, and at the terminal edge, s = s _, form a two-point boundary
value problem. The problem, therefore, is transformed into a corresponding
set of initial wvalue problems by the technique described below. It is
assumed that the system is of eighth order; however, with obvious changes,
the technique may be applied to systems of higher order as well as of
lower order such as the sixth-order system corresponding to the prebuck-
ling state.

The process of transformation to an initial wvalue problem is
explained with the aid of the table which follows. Let p_, p_, P, and p
represent, in any convenient order, the initial values of Ehe ":oul nr1§
ables which are specified, and let p , p,, Pys P represent initial values
of the remaining unspecified variablés. ;ive solutions, numbered 0, 1, 2,
3, and 4 are constructed by numerical integration. For solution O, the
nonhomogeneous terms (loadings) in the differential equations are
retained, and p ., pP,, P, and p, are taken to be zero. For Solution 1 to 4,
the nnnho-ognue&ul Eanl and pg to p, are deleted; and the initial wvalues
of p, to Py are taken to have mnvegleut arbitrary nonzero values and one
and only one of these is retained for each solution.

.Salution H Invtial Values Nonh B —'
7 T g
No. ¥y, o] Pyl P, | PP Terms
Li
0 0 '0lo |0 |zsciede Include
1 1 Lole | e 0 Delete
| 2 0 1 (o fo 0 Delete
by e loli lo 0 Delete
[ 4 fo 40 Lo |1 0 Delete

The correct solution is the sum of the nonhomogeneous solution (Solu-
tion 0) plus the linear combination of the homogeneous solutions (Solu-
tions 1, 2, 3, 4) which satisfies the set of terminal boundary conditions.
It should be noted that each of the five solutions (Solutions 0 to 4)
yields terminal values for each of the eight intrinsic wvariables (dis-
placements and stress resultants: u, v, w, 8, N, T, V_, lll). Thus with
Py (3 = 1,04.,8) denoting the initial vgluu of tlu} lntrh{llc variables as

ed in the heading of Table 1, let q x Fepresent terminal values at s =
5, obtained by integration in accordancé with Table 1. The superscript m
indicates the BSolution HNumber, the su
bscripts j correspond to the sub-
scripts in the heading of Table 1, and the subscripts k (k = 1,...,8)
define the list of variables from which the four variables for which ter-
minal values have been specified. Also let fk be the defined values.

To these definitions, add the definition a ., a,, a,, 4, are the fac-
tors by which the four homogeneous solutions must ic .31{1311&1 to obtain
the complete and proper solution. For example, let f_, f be

£ £
"
the values of the four iatrinsic varisbles which aré spicified af the
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terminus. Then the following equation can be written

oy 1.2 3 \ \
r“:1[ |:3 i3 4 “;? o)) [t
qo' ar a2 ay qq e £
5, s 95 95 9 % 5
< + | & bt ? (1)
0 IR B .
i) 96 9% 9% 98 |3 6
0 ¥ 2 4 ;
Y1) & 9 % Y % 7
4 B

When the a”s have been calculated, a single and final integration of the
equations with the nonhomogeneous terms included will provide the values
at any location between 8 = 0 and s = s .

Alternatively, if the results of integrating the equations according
to the table above had been stored for all of the intervening division
points, these stored values may be multiplied by the calculated values of
the a”s to obtain the values of all of the intrinsic variables at those
points.

It is well known that, depending on geometry and wave number, the
effect of conditions imposed at one end of a shell generally attenuate
markedly with distance from that end. Under these circumstances the solu-
tion may be greatly damaged by round-off and truncation errors, and the
matrix equation, Eq. (1), ylelds an undependable or perhaps totally
incorrect set of values for the solution coefficients. An efficient tech-
nique for maintaining numerical stability has been devised [4,5] and has
proved to be very useful, particularly so for stiffened shells.

The first step in using this technique 1s to divide the complete path
of integration in the shell body into segments each of which is suffi-
ciently short to preclude numerical instability. In the case of ring-
stiffened shells, the points of attachment of the stiffeners should be
taken as division points with one or more intermediate division points Aif
needed for numerical stability. The next step is to construct five solu-
tions, as listed in Table 1, for the first segment, which terminates at s
= 8 . It 1is convenient to take the four components of displacement
(u,o v,y ., B,) to be p ses+2,+ The terminal boundary conditions for
solutidn &' (dhich retalns the nonhomogeous terms) are that the four com—
ponents of displacement at s are equal to zero; that is, the "edge" at s
= s, 1s clamped, For each 3f the remaining four solutions, one displace-
ment at 8 = §, is set equal to zero and the remaining displacements equal
to zero. The iswnduy condition equation (at s = 8,) becomes

™~ r—

T r
ul ul 03 u atl' “l' "l' nf 1 0 00 -n6.
1 2 3 4||lw v w B8 .9
v v v vila, a, a, a, 0100 v "
- 2
ul wz u3 u“ n; n; a'; ‘g g 010 —wu
ptat s‘l o ay af o 0001 -g0



The elements of the first matrix and the last column of the third matrix
are displacements at s = s as given by the solutions of Eq. (1) with
inputs as directed by Table 1. tiplication of both sides of Eq. (2)
by the inverse of the first matrix provides the numerical values of the
a's.

The tractions at s , the end of the first segment, can now be calcu-
lated for any prucribeé set of the (four) displacements at that location.
Thus, in particular, the tractions (N , T, V , M ) which would exist if
the first segment were clamped at s = ) arel !

1)) = (£}, + (7', @),

or

] B0 2 2 2
| o Tl L
rL-r° 111213 T ng

0

{F}, = + (3)

1 R G TR Rl
W"x i1 % YN %
I T T
w B e T e e T

When arbitrary displacements, represented by the column vector {d} , are
imposed at s = 5 the tractions due only to these displacements n-l given
by

(7}, = (71, (A1, fa), ®

in which [!'lj is the 4 x 4 square matrix in Eq. (3) and [A], 15 the 4 x 4
square ncrll made up of the first four columns of the u!ond matrix in
Eq. (2). The total tractions at s = s due to loading and displacements,
{dll’ imposed at the location are

* 0
(F'}, = (F} + (P (5

Before proceeding to the second segment, the matrix [A], and the vector
ldl} are stored in the computer for use in future steps of the analysis.

Integration over the second segment proceeds in accordance with Table
1 where Py Pys Pqys P, Tepresent the displacements u, v, W, B8 and
Pgs Pgs Pyr Py gepr sent the tractions at s, obtained from the influence
coeftgclenu of the first segment. The nonhomogeneous solution for the
second segment is constructed by setting the initial valu of the dis-
placements equal to zero, and taking the tractions as {F},. If there is a
sharp change in direction at s , the traction vector should be transformed
appropriately. The four hu-og&naoua solutions are taken as given in Table
1, and the initial values of the tractions are the vector (F} from Eq.
(4), transformed directionally if necessary. The initial values of the
tl.'nsr.iolu used for the nonhomogeneous solution are stored as a vector, say
(S}z, and the initial values of the tractions used for the four homogene-
ous integrations are stored as the columns of a 4 x 4 matrix IBI2 matrix
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[A]

2 and vector {1}2 are also stored.

Integration over the third and subsequent segments proceeds in the
same manner as for the second segment unﬁi.l the last segment is reached.
Matrices [S] and [A] and the vectors {S} and {d } are stored for each
segment. final segment may be h8ndled tu.'eucntull:. the same
manner as the preceding segments but taking account of the fact that the
terminal boundary conditions are known.

Ring stiffeners may be located at any parallel circle of the shell
but it is convenient to place a division point at that location. A stiff-
ness matrix should be obtained for the junction edge and then added, after
proper directional transformation, to the stiffness matrix of the "incom-
ing" segment of the shell. It is advisable to due the integrations over
the stiffeners by starting at the free edges of the stiffener and
integrating toward the shell. If any of the stiffeners are identical, the
homogeneous solutions for one stiffener may be used for all of the identi-
cal stiffeners.
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APPENDVY 1

Illustrative Examples
By way of illustrative examples, a part of the results for two sets
of uniform cylindrical shells having hemispherical closures of the same
thickness at both ends are presented. The radius of each shell is 10
inches and the spacing of the stiffeners for shells A2, A3, and B2 is 2.5
inches. Other geometrical properties are presented in the following
table.

!s Ring Stiff 8
hell, L h Type | m b d h'
Al 20 | 0.5 - - - - -
A2 20 | 0.5 | Flat | 9 - 1.0 | 0.5
A3 20 | 0.5 | Tee 9 1.5 1.0 | 0.5
Bl 5 1.0 - - - - -
B2 5 1.0 | Flat | 3 - 1.5 | 0.8
Dimensions are in inches
L = length of cylindrical body b = flange width
h = thickness of cylinder and closures d = web depth
m = pumber of stiffeners h. = thickness
— W Shall M
l Cale. Pressure, psi Cala. Pressure, psi
13 Maxlman Minimum pire. 2 A Mexives | MWiniwes | Dif.8
M 682 P 2.8 2 85,250 8,057 8.1
3 2,063 2.0% 0.3 ] a3, 00 43,00y 5.5
" 2,29 2,10 {9 ] l &'.'Il II.I!! 38
s 116 1,000 5.0 s 3,007 a2,370 1.3
6 53,5710 5,80 3.2
6 (Y ) (W] v 4
. e 1 ,nt 6,01 2.3
8 83,657 80,990 3.2
9 101,21 9. 14
Shell A3
’ L Cale. Pressure, poi
n Maxisum Hiniem bire. 8 Shell B2
Zale, Pressure, pal
? 7,984 T.918 0.9
1 605 63m 2.1 'Y Maxizum Miaisus Difr. 8
. 9.0 9,603 2.4 H 83,307 0,6 (8 ]
3 18,809 1,210 1.6 1 PR35 (T3 1T
€ w00 19,539 L | . 81,920 .97 ERY
5 109,260 93,807 1.0
6 | 1so01 106,993 .6
1 T2t 132,567 .3
2l A
Cals. Pressure, pai
] Maxisus Hisimm birr. .3
i pERLELY 13,065 31
3 16,126 13,063 3.1
. n,m 23,108 19.1

11



132

0
[l




1,

Appendiz

Detailed form of Equations (1)
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RETROFITTING OF A LOCALLY BUCKLED TUBULAR COLUMN

A. Ostapenko and 5.C. Apte
Department of Civil Engineering
Lehigh University
Bethlehem, PA 18015

ABSTRACT

Locally buckled or dented tubular columns in structures, such as offshore plat-
forms, require a means for simple and quick repairs, even if only of a temporary na-
ture. A study of repairing by stiffeners bridging over the local buckles is presented.

A short tubular column with local buckles from a previous test was reinforced with
six stiffeners and then re-tested. Full capacity was regained from the 25% of the
capacity after the local buckling test. The test specimen had a diameter of 0.585 m
and D/t=59.1. The stiffeners were designed using a simple procedure and the AISC
Specification(1978) limitations. The attachment to the buckled tube wall required no
special fitting since the attachment points were outside the buckled portion.

The specimen was also analyzed by using the finite element program ADINA, and
the stresses and the postbuckling behavior showed reasonable agreement with the test
observations, The ultimate load, however, was somewhat lower than in the test, ap-
parently because the computational yield stress was taken from the tensile coupon data
and, thus, the increase due to strain hardening was not taken into account.

The repair system studied is proposed as a practical method for expedient retrofit-
ting of locally buckled or dented structural tubulars.

1. INTRODUCTION
1.1. Background

Cylindrical tubular columns are commonly used in many structures such as,
clevated storage tanks, transmission towers and offshore platforms. A sudden overload
or impact by a ship may lead to the formation of local buckles and/or dents and to
significant reduction of column capacity. Major repairs and/or replacement of the
damaged columns for continued operation of the platform can be too time-consuming
and not feasible under sdverse weather conditions. Thus, a simple and guick method
of retrofitting such columns in the field is needed; permanent repairs can be completed
later when conditions permit.

A method for temporary retrofitting by welding a system of stiffeners to bridge
over the local deformations is described here.

1.2. Previous Research

The use of a system of stiffeners was recently explored at Lehigh University.” ®
The specimen was a locally buckled tubular column from a previous axial test.®* The
repair system consisted of six stiffeners fabricated from steel plates and Tee sections,
arranged symmetrically around the circumference and attached to the column by brack-
ets using fillet welds.

An axial load test was conducted, but the load did not reach the full capacity of
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this repair system because of the unforeseen failure by the yielding and fracture of the
welds at the lower brackets,

1.3. Objectives of Present Research

The first objective of the research reported here was to repair and modify the
specimen and retest it Lo determine the full strength of the retrofitted specimen. The
specimen, then, was to be analyzed using a finite element program in the large
deflection elasto-plastic range. Then, the accuracy of the design procedure for the stif-
feners used in the previous work was to be re-examined and any necessary corrections
and/or modifications suggested as indicated by the results from the test and the finite
element analysis.

2. EXPERIMENTAL WORK
2.1. Test Specimen

The original test specimen was fabricated from ASTM A36 steel. It was 1.22 m
long with a diameter of 0.58 m and a plate thickness of 9.73 mm. The first axial test
resulted in Jocal buckles at the lower end of the specimen. Only the upper portion of
0.87 m remained straight and the overall length shortened to 1.1 m.®

The first attempt at retrofitting consisted of welding six stiffeners which bridged
over the local buckles.” ® As shown in Figs. 1 and 2, the stiffeners were fabricated
from a 150 mm x 25 mm fange plate and a Tee section cut from a Wi2x14 wide-
Nange section. The brackets at the ends of the stiffeners were 75 mm wide and
25 mm thick. The flange plates and the brackets were made of ASTM A 588 Grade
50 steel and the Tee section was made of ASTM A572 Grade 50 steel. All the con-
nections were made by fillet welds. Due to the location of the buckles close to one
end of the specimen, the stiffener connections to the column were different at the two
ends. The axial capacity of the reinforced specimen was limited by the premature and
unexpected yielding and fracture of the shear welds connecting the lower brackets to
the tube wall and, thus, did not indicate the full amount of strength that could be
regained through the use of stiffeners.

In the current program, in order to focus on the upper connection which was in-
tended to represent a connection in a long column as it would exist in a full-scale
structure, previous deficiencies were corrected by rewelding the fractured portions and
tackwelding an additional base plate below each stiffener, thus fully supporting its over-
hang beyond the base ring through direct bearing as shown in Figs. 3 and 5. This en-
sured that the capacity would be controlled by the failure of the stiffener proper or of
the tube wall at the upper end.

2.2. Test Setup and Procedure

The specimen was tested under axial compression in a 2500 ton (5,000,000 Ib)
capacity Baldwin hydraulic universal testing machine. The specimen was placed be-
tween a movable pedestal and the machine head with a layer of Hydro-Stone grout at
each end of the specimen.(Fig. 5) A preload of 9 kN was applied to form level contact
surfaces before the grout was allowed to set. The grout layers ensured a concentric
and uniform application of the load to the specimen.

Three dial gages were used to measure the longitudinal deformation of the
specimen. They were mounted around the specimen on the bottom pedestal with a
fine wire leading from the dial gages to the magnets attached to the underside of the




machine head. The wire was yielded by hand to produce a straight and taut line, free
of kinks.

With the ultimate capacity expected to be about 6300 kN, a load increment of
220 kN was used at the begining to capture any initial adjustments in the load-
deformation relationship and then increased to 445 kN. Later, as can be seen in
Fig. 4, the load increments were reduced when the phases of yielding and failure ap-
proached. The loading was continued beyond the maximum of 6540 kN to more
closely observe the failure pattern and the load-deformation relationship as the load
continued to drop with increasing deformation. After the load had dropped to
4000 kN, the specimen was unloaded with load steps of 1335 kN,

3. TEST RESULTS

The ultimate capacity of the specimen was 6540 kN. This value is very close to
the capacity of the original unbuckled specimen of 6580 kN.®

3.1. Axial Deformation

The plot of the load-vs-overall deformation (Fig. 4) shows an initial non-linear
region up to the load of 890 kN. This can be attributed to the apparent redistribu-
tion of forces through the loading system. From 890 kN to 3780 kN, the plot is linear
indicating an elastic behavior of the specimen. Then, it slightly deviates from linearity
for the loads from 3780 kN to 4670 kN reflecting the initiation of yielding in the
specimen. From this stage on, an increased load could not be sustained at the same
level as it started dropping by 20 to 25 kN after each load increment. From the load
of 4670 kN on, extensive deflection of the tube wall was observed. Finally, as the
load reached 6540 kN, the specimen could not sustain the load for long. This was
then considered to be the ultimate capacity of the specimen. Further loading of the
specimen resulted in dropping of the load with a rapid increase of the deflection.
Loading was continued in order to obtain the load-deformation relationship beyond the
ultimate point.

After the load had dropped to 4000 kN, the unloading phase was started. Be-
tween 4000 kN and 1335 kN, the unloading curve is approximately parallel to the in-
itial elastic range. Below 1335 kN, the curve is shallow, indicating reduced stiflness.
The permanent plastic deformation was 35 mm.

3.2. Test Behavior

No visible changes were observed till the load reached 4000 kN. Then, the flaking
of the whitewash on the surface and the appearance of yield lines in the upper web of
the stiffeners near the brackets indicated the progression of yielding. The flaking was
also observed in the spot welds connecting the stiffeners to the base plates. The yield
lines had a pattern of a series of shallow arcs parallel to the longitudinal axis of the
web. Each load increment in this range was accompanied by a slight drop-off.

Approximately above the load of 6320 kN, shallow bulges appeared on the wall
near the upper connection of the stiffeners, and the bracket tops were pushed inside
thus forming dents in the tube wall. More yield lines appeared on the stiffener web in
the form of horizontal lines indicating high shearing stresses. As the loading continued,
the dents in the tube wall became more and more pronounced and the yield lines con-
tinued to grow in the stiffener web and in the bracket at the upper end. Eventually,
these deformations and the yielding in the tube wall made the specimen reach the ul-
timate capacity at the load of 6540 kN (Fig. 6).
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At this time, cracks appeared in the weld between the stiffener web and the inner
flange plate at the upper end. At one of the stiffeners the weld between the bracket
and the tube wall cracked completely, thus separating the stiffener, whereas at other
stiffeners, the cracks were slower to appear. These cracks were due to local shearing
stresses induced in the upper web of the stiffeners and a complex effect of stress con-
centration and residual stresses.

As the test continued beyond the maximum load, the cracks and the dents in-
creased and the load dropped off. See the crack at the top of the left stiffener in
Fig. 6. A banging noise was heard when the load dropped to 4670 kN. It was prob-
ably caused by the fracture of the web at the upper end of one of the stiffeners. Fur-
ther on, the weld on the lower bracket also cracked. The overall deformation increased
as the specimen continued to crush without offering much resistance. The loading was
stopped when the load dropped to 4000 kN which represented about 60% of the ul-
timate capacity.

4. FINITE ELEMENT ANALYSIS
4.1, Description of Analytical Model

Theoretical analysis of the specimen was made by using the finite element program
ADINA.M %4 Non-linear material properties and large deformations were considered.
Since the specimen was supposed to represent a locally buckled portion of a long
column, as is the case in the field, the analytical model was assumed to be symmetri-
cal with respect to the buckled portion of the tube with each half represented by the
upper portion of the test specimen and with identical connection at both ends.

As the six stiffeners were identical in size and were symmetrically placed around
the circumference of the tube, only onesixth of the circumference with a stiffener at
the center was discretized. This closely matched the actual behavior of the specimen
as revealed by test results. Due to the symmetry in the longitudinal direction, just
one half of the length was considered. To minimize local disturbances in the area of
the stiffener attachments due to the applied loads, the loaded end was set at a suf-
ficient distance (Fig. 2).

Four finite element models were explored to determine which would give a better
correlation with test results.

The first three models had different types and numbers of elements in order to
check their relative suitability. Since the variation in the results from these three
models was less than 2%, Model 3, with a smaller number of elements but with a
higher-order element type, was considered to be sufficiently accurate.

In these three models, the buckled portion of the column wall was discretized as a
‘gap’, and, thus, the contribution of the buckled wall was neglected. However, in view
of the significant capacity of the specimen after local buckling revealed by the earlier
test®, another model (Model 4) was prepared which considered the strength of the
buckled wall.

Model 4 was identical to Model 3 except that the buckled portion of the wall was
discretized by reducing the thickness of the bottom row of the wall elements and the
‘gap’ was closed by extending these elements to the line of support. Furthermore, the
height of these elements was also reduced to match the length of the buckled portion.
The reduction in thickness was proportional to the reduction of the capacity of the
column after buckling in the original test. The reduced thickness was about 30% of
the original thickness — 2.8 mm versus 9.73 mm.



4.2. Modelling Boundary Conditions

The modelled specimen portion was described in a cylindrical coordinate system.
The top edge was free to move only in the longitudinal direction. The side edges were
free to move in the longitudinal and radial directions, but, due to symmetry, not in
the circumferential direction, nor could they rotate. Since the translational degree of
freedom in the circumferential direction for one side of the model did not coincide with
the global axes, the restraint was provided by using additional elements at each node
of this side. A rigid beam element was connected on both sides of each node in the
radial direction with only the translational degree of freedom along its axis released.
This allowed the node to move freely in the radial and longitudinal directions, while
the circumferential motion and the rotation in the horizontal plane were prevented
(Fig. 7).

Similar rigid beam elements were also connected to the bottom end of the stiffener
since this end also could move only in the radial direction. In Models 1, 2 and 3, the
buckled portion, that is, the bottom edge of the tube wall was assumed to be free to
move in any direction. In Model 4, the bottom edge was fully restrained.

4.3. Finite Element Types and Material Properties

In Models 1 and 2 , the tube wall was discretized using 3-node, triangular, flat
plate/shell elements (Element No. 6 in the ADINA element library).! Model 1 had 56
elements whereas Model 2 had 84 clements (Fig. 10). Models 3 and 4 (Figs.11 and
12) used 28 9-node shell elements (No. 7) with 8 integration points. This is a higher
order curvilinear element which better matches the cylindrical shape of the specimen.

For all four models, the material was assumed to have the idealized bilinear
elastic-plastic relationship (Fig. 8) with von Mises yield criterion and isotropic strain
hardening. The yield stress was set to 336 MPa, that is, the same as in the original
test specimen, the modulus of elasticity to E = 203,400 MPa and the strain hardening
modulus to E; = 210 MPa.

The stiffeners and brackets were discretized using identical elements and material
properties for all four models.(Fig. 13) The stiffener web and bracket were modelled
using 2-D, plane stress elements (No. 2) and the flanges were modelled with 2-node, 3-
D beam clements (No. 4). Models 1 and 2 used 3 elements for the bracket and 4 ele-
ments for the stiffener, whereas Models 3 and 4 used 5 and 6 elements, respectively,
The yield stress was taken to be 345 MPa with E = 203400 MPa and
E; = 210 MPa. This data is summarized in Table 1.

4.4. Loading

The loading was applied at the nodes of the top boundary as a series of equal
axial forces. The loading increments were larger in the elastic range and smaller after
the initiation of yielding as can be seen in Fig. 9.

5. RESULTS OF FINITE ELEMENT ANALYSIS

The behavior and ultimate loads of Models 1, 2 and 3 were computed to be essen-
tially the same (in all three the buckled portion carried zero load). See Table 1. The
ultimate load of 4115 kN for Model 3 increased by over 30% to 5625 kN after the
model was modified to Model 4 by including the post-ultimate strength of the buckled
portion of the tube wall. This gave a much better correlation with the test results,
and Model 4 is used in further discussion.
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5.1. Load-Deformation Relationship

A plot of the load-vs-longitudinal deformation computed for Model 4 is shown in
Fig. 9. The relationship is linear up to a load of 2670 kN. In the load range of
2670 kN to 3560 kN, the plot deviates slightly from linearity. In this range, the tube
wall portion near the bracket connection and the upper part of the web had started
yielding.

Further loading resulted in extensive deformations and yielding in the tube wall
and the web of the stiffener. At the load step which would have increased the total
load to 5625 kN, there was no convergence within the prescribed number of iterations.
This load was taken as the ultimate capacity.

5.2, Comparison with Test Results

The ultimate capacity of the specimen from the finite element analysis was
5625 kN, that is, 85% of the ultimate capacity obtained from the test on the original
unbuckled specimen (6580 kN) or on the retrofitted specimen (6540 kN).

One possible reason for the lower computed capacity may be the use of the yield
stress of 336 MPa obtained from the tensile coupons in the original test program.®
The actual yield stress in the fabricated specimen was probably higher due to cold-
rolling and welding.

Another reason could be the finite element modelling of the connections. In the
model, the connection between the bracket and the tube wall and the bracket and the
stiffener was only at the nodes and not continuous as in the actual specimen. This
might have affected the load transfer through the stiffeners and reduced their capacity.

However, the overall behavior of the analytical model was consistent with that of
the test specimen. The deformation pattern of the tube wall near the bracket connec-
tion and of the stiffener (Figs. 14 and 15) was similar to that observed in the test.
This included the bulging in the tube wall above the bracket connection, the bracket
pushing into the wall to form a dent and the bending of the upper part of the stif-
fener. The stress pattern, that is, the development of bending stresses in the tube wall
and of high shearing stresses in the stiffener web, was also consistent with the obser-
vations made on the test specimen.

6. COMMENTS ON THE REPAIR SYSTEM
6.1. Observations

Comparison of the test results indicates that the buckled specimen regained its full
capacity through the use of the retrofitting system designed according to the AISC al-
lowable stress method.® This procedure is simple and quick enough to be applied to
field problems and as such is considered satisfactory and accurate.

Although the designed stiffener system was unsymmetrical with respect to the
buckles because of the location of these buckles on the test specimen, the same proce-
dure can easily be used for a symmetrical case by making the connections at both
sides of the buckled portion the same as the top connection in the specimen. This
would represent the case of a longer column as would exist in the field.
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6.2. Recommendations for Improvement

Even though the original column capacity was restored, the immediate post-
ultimate strength in the test was drastically reduced by the fracture and opening-up of
the joint between the web and the inner flange (see Fig. 6). To relieve the high
shearing and tensile stresses in this area, it is recommended to weld an additional plate
at the ends of the stiffeners.

It is proposed to design this plate to resist 50% of the bending moment developed
about the inner corner between the bracket and the inner flange used as a pivot point
during the transfer of the load.

For the specimen at hand, the plate size was worked out to be 75 mm wide and
12 mm thick and connected to the stiffener with a weld 260 mm long as shown in
Fig. 16,

7. SUMMARY AND CONCLUSIONS

Locally buckled or dented tubular columns in offshore platforms need simple and
quick repairs, at least, of temporary nature to restore their capacity. A simple system
may be a set of stiffeners that bridges over the damaged portion of the member.

In a previous research, a short, locally buckled, tubular specimen was reinforced by
a system of six fabricated stiffeners. However, in a compressive test performed on the
specimen, the stiffener system failed prematurely due te the failure of the connections
at one end.

In the current program, the specimen was repaired to strengthen the failed connec-
tions and then retested to determine its axial capacity. The ultimate capacity was
found to be 6540 kN which is very close to 6580 kN, the capacity of the original un-
buckled specimen.

A finite element analysis was performed on a model which represented a locally
buckled portion of a longer column as would exist in the field. The ultimate capacity
was found to be 5625 kN which represents 85% of the ultimate capacity from the test
on the original unbuckled specimen or on the reinforced test specimen. The lower
value of the ultimate capacity obtained from the analysis may be due to a higher
value of the actual yield stress for the specimen because of the cold rolling and welding
during its fabrication and due to the discontinuous analytical model of the connection
of the stiffener to the column wall. However, the deformation and stress patterns in
the analytical model were consistent with those of the test specimen,

It was concluded from the test results that the design procedure for the stiffeners
was simple and adequate and that the finite element program ADINA can be used for
more accurate analysis.

It is recommended that the post-ultimate strength can be improved by welding an
additional plate at the ends of the retrofitting stiffeners.
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TABLE 1: Description of Finite Element Models

MODEL 1 MODEL 2 MODEL 3/4

Tube Wall  Elem.Type Plate Plate Shell
No. of Elem's 56 B4 28
Web Elem.Type 2-D PlStress 2-D Pl.Stress 2-D Pl.Stress
No. of Elem's 4 1 6
Stiffener
Flange  Elem.Type 2-D Beam  2-D Beam  2-D Beam
No. of Elem's 4 4 6
Bracket Elem.Type 2-D Pl.Stress 2-D Pl.Stress 2-D Pl.Stress
No. of Elem's 3 3 5

Results of Analysis Ultim. Load 4090 kN 4115 kN 4115 kN
/5625 kN
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THE EFFECT OF ELASTIC SUPPORT AND SHEAR DEFORMATION
ON

STATIC AND DYNAMIC CHARACTERISTICS
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Rolla, MO 65401

INTRODUCTION

The theoretical analysls of the flexural vibration of beams was
generally based on the Bernoulli~Euler theory with consideration of
lateral inertia forces and bending deformations. Ever since Timoshenko
pointed out that the effects of cross-sectional dimensions on the
frequencles of beams could be significant (15), a considerable amount of
research work based on Timoshenko's beam theory has been published.
Early researchers atudied the vibrations of Timoshenko beams with
various boundary conditions (1,2,3,13). Later investigators employed
the Timoshenko theory in developing numerical techniques for electronic
computat ion such as consistent mass matrices and dynamic stiffness
matrices by Archer (4) and Cheng (5), respectively. Cheng then extended
his formulations for the frequency analysis of thin wall member grid
systems (6), and for the response analysis of continuous beams and
frames with various types of externally applied forces and foundation
movements (7).

It has been well recognized that the axial force acting on a member
can significantly affect the natural frequencies of that member. Djodjo
studied the combined effects of axial loads and Timoshenko theory on the
natural frequencies of beams (11). Howson and Willlams {nvestigated the
combined effect based on both the analytical and experimental results
(12). cheng and his associates further extended his dynamic stiffness
approach for plane frames of which the constituent members may have
axial forces, transverse and rotatory inertia, and bending and shear
deformations (7,8). He also studied the combined effects on the
frequencies and responses of aspace structures based on the finite
element approach (9).

The effects of elastic media on the flexural vibrations were
examined by a number of researchers (11,14,18). Cheng employed the
Bernoulli-Euler theory and the transfer matrix technique (17), to derive
the dynamic stiffness and flexibility matrices for transverse and
longitudinal vibrations (10).
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This paper is an extension of Cheng's work of dynamic stiffness
formulation to include elastic media of Winkler type, axial forces,
lateral and rotatory inertia, and shear and bending deformations.
Furthermore, the formulations presented herein consist of two new
approaches as to how the shear component of the axial force {s acting on
a cross-section. In the first approach the shear component of the axial
load {a assumed to act perpendicular to the tangent line of the total
slope which consists of the bending and shear slope; in the second
approach the shear component of the axial load is acting perpendicular
to the tangent line of the bending slope. The resulting stiffness
coefficients and fixed-end forces are general and can be applied to
large structural systems with the numerical procedures previously
presented by the senior writer. In addition, the atiffness coefficients
and the fixed-end force formulations are distinguished In the sense that
the complex roots are not treated separately as solved previously in
Cheng's work (5,8). These resulting formulations are expressed in terms
of nondimensional parameters associated with the effects of lateral and
rotatory inertia, axial force, elastic medla, and shear and bending
formations. When the individual effect is not considered then the
associated parameter can be dropped. Numerical results are provided to
show the significant effects of the individual parameters and that of
the two approaches on natural frequencies, and dynamic response
behavior.

BASIC DYNAMIC EQUATIONS
Consider the beam element shown in Fig. 1. The total slope 3y/dx is

a combination of the bending slope, ¥ and the shearing slope B

g e e e P S E e e [

3y
ax

The equilibrium equations for the free-body diagram shown in Fig. 1
yleld

2
%{-.p.\%‘-‘-wfqy...........................................(2)
-M_ 53 3%

Ve N el S eidsbauiiS)

where p = Y/g, N = axial force, V = shear, M = bending moment, w =
lateral load, q = foundation constant, A = cross~sectional area, g =

acceleration of gravity, Y = weight per unit volume. From structural
mechanics the bending moment, M of a Timoshenko-beam {s

R
M EL 25 sovernrsnnanananans snssusees tessesesarsssnsssavseves(l)

in which E = modulus of elasticity and I = moment of inertia of cross-
section.

Differential Equations Based on First Approach.=—From Fig. 2 tlé! shs!r
component of the axial load N, on the cross-section ia N sin (ax) "
Considering shear deformations .
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in which G = modulus of rigidity and X = shear factor for cross-section.

By eliminating ¢ and y from Eqs. 2-5, the following complete
equations in y and ¢ are obtained

a3t q1, 2* . Eg, 2y _ EA, _ 3%
Elg #.' n(.: -3 )# + (:l 3 )!433: Ip(g + ry )—'l"ll'ax 3t
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a* 1, 3 _ EIq, 2%y _ EA, _2*
B ¥+ oh + 30 Gk o o - K ¥ - 1oc + ) gt

2 L3
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where
g=1- i sessssssasnsensasassssanessnansnssrssinssnssssnsensas(9)

Differential Equations Based on Second Approach,—From Fig. 3 the shear
component of the axial load N on the cross-section is Ny, which can be
expressed as

.
V + Ny (ax ) @ seisnsraaven aesasaresbessenssansvendenansensll0)

By eliminating ¢ and y from Egqs. 2,3,4 and 10, the following
differential equations in y and ¥ are obtained

b 0 - Elgy 3%y | T
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in which
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BASIC STATIC EQUATIONS

Differential Equations Based on First Approach.--Consider the beam
element shown in Fig. 1, subject to a static gylal load N and static
lateral force w. As shown, the total slope, ax’ is a combination of the
bending slope, ¥, and the shearing slope, B,

- ST IS O ST A SO SO

dx
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Because the time function is not considered, the slopes, shears, and
moments sketched in Fig. 1 should now be expressed in total differential
equat lon as shown In Eqe. 14, 15 and 16. The equilibrlum conditlons for
the free-body diagram shown in Fig. 1 yleld:

dav
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dx
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in which q = elastic media constant, V = shear, and M = bending moment.
From structural mechanics

.- 3 .
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The two approaches differ in terms of the assumed shear component of the
axial load acting on the cross-section a _jhoun l.a Figs. 2 and 3, 1In
the first approach it is equal to N sin ( ) ~ N=L; in the second
approach it is equal to N sin ¥ = N ¢. the tﬁat approach the
force~deformat fon relationship of the shear may be expressed as

v-u-l-( - ¥ -4 I e e ssaeisarseriinY

in which G = modulus of rigidity, A = area of cross-section, and ) =
shear factor. From Eqs. 14-18, the following differential equations are
derived

a _ Elg, ¢* EL d% _ . .
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Differential Equations Based on Second Approach.——As shown in Fig. 3,
the shear component of the axial load N acting on the cross-section is
taken as Ny for which the force-deformation relationship is

o L =
V+ N (dx e T T T S R R e e s ¢y I
Using Eqe. 15-17 and 21 yields the following differentlial equations

a* 2 2
EI .d_x.& + (Ny = .E.I‘ﬂ) %;* + wqy + %1—%'-"‘- - W ® 0 usisssspnenesaslen)

da* Elgq, d*
B ¥ e (o - -%‘1) ¥ v v 0 (23)
in which v = | + N/g.

SAMPLE STUDIES OF DYNAMIC CASE

Observation of the Frequencies based on the Two Approaches.--Presented
herein is the effect of two approaches on the fundamental and higher
frequencies of a typical simply supported beam. Using the first
approach ylelds the following frequency equation
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PI2 = o2 ([n'e%(gr + 0%) + 1 » 3"—:"' 1

~/(nu2(gr? + s?)+1+ Q-L':—r'J'-h[n‘t's'{;n"'- ;’:Joab;—r:(n't‘s'ﬂ)]}.(zlﬂ

where n = mode number, r® = I/(AL?)(associated with rotatory inertia),

and s? = EI/(¢L?)(associated with shear deformations). When the shear
deformat fons and rotatory inertia effects are ignored

1 EI N q1*

. s .

PE E'["'(m m)' M}............. ...... AP

For the second approach, the frequency equation may be expressed as

PZ; B ?:T {[n*n2(r® + 8%) + v ¢ 3‘%]

=/ (n¥a(rieg?)eys 1[3-:-':]'4[n*t'a'r‘(n't'- g&'-‘-)&l'—:ﬁ(u':‘a‘w)]] .(26)

When the shear deformations and rotatory inertia are neglected, Eqs. 26
becomes identical to Eq. 25.

Using the parameters of u = 0.25 (Poisson's ratio), X = 1.5 p =
7829 kgm™*, and E = 212,95 kNm *, a plot of P1/PE and P2/PE versus N/NE
is given in Fig. 4, for q/qe = 0, and two slenderness ratios, L/R = U0
and L/R = 20. P1, PE and P2 are the natural frequencies of the first
five modes from Eqs. 24, 25 and 26 respectively. NE 18 the fundamental
Euler buckling load (w?EI/L*). It may be observed that the Timoshenko
theory has significant effect on a smaller L/R and a higher frequency
and that the differences between P1/PE and P2/PE become significant for
higher modes and for larger axial loads.

The ratios of P| and P2 are given in Fig. 5 for the first five modes
associated with q/qe = 0. The figure shows that the first approach
yields lower frequency than the second; the difference becomes more
pronounced for higher axial loads and lower slenderness ratios.

SAMPLE STUDIES OF STATIC CASE
Parametric Studies of a Typical Beam-Column.~—For a simply~-supported

beam-column on elastic media, one obtains the critical load Ner
associated with the first approach

NE A .
M — [k* + 3'1 G * ICIR T . P, O
¢

where k is an integer corresponding to the number of buckling loda'.ﬂd
NE is the Euler buckling load for a simplv-supported colum, (NE= <7

Similarly, one may obtain the buckling load assoclated with the
second approach as

S - g0~ oot 3 (GG« wme « o)
or 2/¢

When shear deformations are not included, A = 0, then 1/¢ = 0; Ega. 27
and 28 yleld the buckling load with bending deformations and elaatlic

cssnan(28)
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media only. If no elastic media is present, q = 0, then Egqs. 27 and 28
become the buckling load expressions with both bending and shear

deformat lons. It ls worthwhile of noting that when the shear
deformations are neglected, Eqs. 27 and 28 should be identical which can
be obtained as follows:

L.
- 2
Hor NE (k ’P%,ﬁ) e A L B R e e

A plot of Eqs. 27 and 29 is shown in Fig. 6, for comparison of the
critical load with and without shear deformations. The critical load is
expressed as a function of the elastic media constant, q, for a
slenderness ratio, L/R = 20, and for the first three buckling modes (k =
1,2,3). The numerical data used for this figure are: E = 29000 ksi (200
x 10* kN/m*®), A = 20 in* (.012903 m*), I = 724 in* (3.01315 x 10=* m"*),
u=0.25, A = 1.5; where A = area of cross-section, I = moment of
fnertia of section and y = Poisson's ratio. It {s observed from Fig. 6
that the inclusion of shear deformations ylelds less buckling load, than
that when it is ignored.

Figure 7 shows a plot for L/R = 40, with the same numerical data as
given for Fig. 6. Comparing these two figures reveals that shear
deformation effects are more important at low slenderness ratios. We
may also note from Fig. 7 that second-mode buckling governs, for q 2
2.18 ksi when shear deformations are included (point A), and q 2 2.44
ksi if shear deformations are ignored (point B). The value of q for
which a transition occurs from one buckling mode to another (points A
and B in Fig. 6), can be obtained from Eq. 30 which is derived from
Eq. 27

w*ElL k*(k+1)?
q, = (T)im] denssiesvsneissnsessvensestI0)

- NE _ 2n%n(1+u)
in which Z 3 -—(ﬁw—

Figure B, ls a plot of the first three buckling mode shapes (k =
1,2,3) for L/R = 60 and 80. It may be observed that the higher the
slenderness ratio, the less the value of 9, at which a buckling mode
changes.

Equation 30 can be used to determine the buckling load and its
associated mode when q and the properties of the beam are known. The
buckling mode-shape k, can be obtained first by solving Eq. 30, and then
the buckling load N__ can be obtained from Eq. 27. Numerical examples
demonstrate these pFbcedures as follows:

a. Using L = 16 ft (4.B768 m), q = 5 ksl (34474 kN/m*), E = 29000
ksl (200 x 10* kN/m*), A = 32.9 in? (0.02123 m*), I = 719 in“ (0.29927 x
10** m*), v = 0.25, and A = 1.5 we have NE = 5582 kips (24832 kN), ¢ =
254427 kips (1.13174 x 10* kN). From Eq. 30, k = 0.975. Hence the
firat buckling mode will occur. Let k = 1, then Eq. 27 ylelds Ner =
24138 kips (107371 kN). Similarly for the second approach Eq. 28 yields
N__ = 24148 kips (107415 kN).

b. Using L = 32 ft (9.7536 m), q = 3 ksi (20684 kN/m®) and other
information given above, we have Ne = 1396 kips (6208 kN) and ¢ = 254427
kips (1.13174 x 10* kN). From Eq. 30 k = 1,974, Hence the second
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buckling mode will occur. Let k = 2, from Eq. 27 we obtain N__ = 16669
kips (THI&T kN) for the first approach and from Eq. 28 N__ = 8677 kips
(TH183 kN) for the second approach. It is seen that botR approaches
give similar answers. However they differ for low slenderneas ratios as
can be seen from Fig. 6 for L/R = 20. From Figs. 6, 7 and 8 we note
that higher orders of buckling modes are possible for beam-columns with
larger slenderness ratlos.

OBSERVATION REMARKS

Comparison of the two approaches shows that the second approach
givea higher natural frequency valuea and the difference increases with
increasing axial load and decreasing slenderness ratlo. Furthermore the
two approaches result in different values for static stiffness
coefficlents, The effect of the elastic media (q-parameter) on the
natural frequencies shows that gq-values affect the fundamental frequency
more than they affect the higher frequencies. The elastic media causes
the frequencies to be increased. The effect of shear deformations and
rotatory inertia becomes significant at higher modes,

The order of the buckling mode ls affected by the magnitude of the
elastic media. Depending on the beam-column properties, and the value
of the elastic medila constant, buckling may occur in a higher mode than
the first. For given properties of the beam-column, the value of the
elastic medla constant, for which a transition from one buckling mode to
a higher mode occurs, was derived. It was observed that the higher the
slenderness ratio, the leas the value of the elastic media at the
transition point.

The two approaches yield different critical axial load for low
slenderness ratios. When shear deformation is conaidered the critical
axial load is reduced for both approaches, expecially for beam-columns
with low slenderness ratlos.
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1. Introduction

The 19 September 1985 Mexico earthquake left many buildings in
Mexico City that suffered various degrees of damage.

NKK participated in the construction of a steelmaking shop in
Lazaro city near the epicenter and the structural steel framework of
this shop was near completion.

This shop was not damaged as much as anticipated. However, anchor
bolts and lateral bracing members were partially damaged.(9, 10)

The object of this paper is to present the elastic-plastic frame
analysis method, applied to a computer program, and compare the
computed results with observed damage, then study the reason why the
damage was slight.

2. Response characteristics of observed earthquake

In the epicentral region, there was a network of strong motion
observation 4instruments by National Autonomous Univeraity of Mexioco
(UNAM) and California State University(Fig. 1)(1).

A strong motion instrument set on bedrock at Villita near the site
recorded earthquake acceleration as shown in Fig, 4.

The amplitude of the observed acceleration response spectra is
shown in Fig. 8. The predominant period is 0.5 - 0.6 sec.

3. Building structure and outlines of damage

This building was designed according to the aseismatic design
standards which provided that aseismatic design force coefficient
distributes in inverted triangular shape of which the base shear
coefficient is 0.2 in elastic design. Fig. 2 shows the building plan
and damage of anchor bolts and bracing members.

In the transverse direction, which coincides with NS direction, the
building is one-story with a three-span gabled roof frame having over-
head cranes(Fig. 3). The lower part of the columns are lattice built-
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up members and the upper part of the columns and beams are full web
members. The bracing members are installed under a working deck.

Sectional moment of inertia of the upper part of the column is less
than 10 percent of that value of the lower part, therefore input
earthquake force of certain grid line frame can't be expected to
distribute to another one, even assuming that plane rigidity of the
roof is infinite.

Yield of anchor bolts, buckling of bracing members and breakages of
clumping metals of crane rails were remarkably found in the tranaverse
direction. Damage of end gables was slightly larger than that of inner
grid line frames.(Figs. 26, 27)

In the longitudinal direction, the building has a braced frame
structure, the columns are full web and the beams are built-up members.
In this direction damage was negligible.

4. Simulated input acceleration for analysis

The site soll conaists of sand and the model of the boring log is
shown in Fig. 5. Shearing modulus is taken from Fig. 6, corresponding
to N-value, assuming that the damping ratio is 5 percent.(2)

Site ground surface response was computed by means of inputting the
observed Villita acoceleration into bearing stratum layered 23 meters
under the ground level, assuming that acceleration of bearing stratum
is equal to the value of bedrock of Villita.

Simulated ground surface acceleration is shown in Fig. 7 and its
acceleration reaponse spectra in Fig. 9.

There are two peaks in the response spectra : the first predominant
period is 1.1 = 1.4 sec, and the second period is 0.5 - 0.7 sec,

5. Elastic-plastic frame analysis method
(1) Beam=column element

Plastic stress and strain increments are derived mathematically
from the plastic potential flow theory, assuming that relation between
generalized streas and strain is perfectly plastic, and yield funotion
expressed by generalized stress also represents the plastic
potential.(3)

If the process of loading is continued after the yield point has
been reached, a material work-hardens and the initial yield surface
will  change its form depending on the increasing plastic
deformation.(3).

In order to describe work-hardening mathematically, two theoretical
hypotheses are presented. One 1is isotropic work-hardening which
presents the situation when the yield surface expands uniformly and
retains its initial shape. (Fig. 10). The other is kinematic work-
hardening which assumes that the yield surface undergoes a translation,
like a rigid body without changing its initial form (Fig. 11).



Here Q is the generalized stress, pf denotes the translations of
the center of the yield surface, and eX represents the plastic work
done in the deformation process.(0 < e ¢ 1).

W. Prager has proposed the following hypothesis:

dol = H dg’

ool = inorement of of

where

d$§P= increment of plastic atrain 3’
H = positive constant of kinematic work-hardening

The strain increment vector lies in the exterior normal of the
yield surface at the stress point. (Fig. 12)

Y. Ueda applied the plastic flow rule to the plastic hinge method
and derived the elastic-plastic stiffness matrix of beam-column
element(4), M., Hanai applied a kinematic work-handening rule(5), then
the authors added both isotropic and kinematic work-hardening rules to
the stiffness matrix presented by Y. Ueda.(6)

In this study, yield function @ for structural sections of beam-
column elements subjected to thrust and bi-axial bending moments having
a trapezoid section about the thrust load axis, is shown in Fig. 13,

where

N = actual thrust load
Np = full plastic thrust load
My,Mz = actual bending moment about y, z member axis
Mpy,Mpz = full plastic bending moment about y, z member axis
@ = parameter defines the yield surface form

(2) Bracing systems

The authors presented the numerical analysia methods of bracing
systems subjected to repeated thrust loading by applying the open form
stiffness to the plastic hinge method.(7)

In this analytical model, the brace is assumed to remain linear,
whenever loaded in thrust, except for a central plastic hinge location.

Kinematic hardening and isotropic hardening rules are applied to
the plastic hinge, and the plastic deformation is decided by the
plastic potential theory, using the appropriate yield function § for
the member section as shown in Fig. 14.

Fig. 15 shows the relation between thrust load N and displacement x
of bracing systems subjected to alternating thrust load under constant
displacement amplitude.

Fig. 16 shows the stress hysteresis process between thrust load N
and bending moment M acting at plastic hinge. Numerals written in Fig.
15 and Fig. 16 represent the stress state of plastic hinge and
correspond to each other. Each stress state is described as follows.

(1) STATE-0

Member is perfectly straight and performs elastic behavior.
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(i1) STATE=-1

Member buckles at the critical load, then plastic hinge is formed.

In this study, the author used the critical load proposed by
Architectural Institute of Japan as shown in Fig. 17, where A is a
nondimensional slenderness ratio.(8)

(111) STATE-2

Member is continuing plastic flow at plastic hinge under the
condition of unloading compression force.

(iv) STATE-3, 3'

Member performs elastically under the condition that plastic hinge
rotation is locked.

(v) STATE-U

Member performs similarly to STATE-2, except for yield function,
direction of thrust load and plastic hinge rotation.

(vi) STATE-5

Member stress is pure tension and located at the corner point of
yield function.

(3) Anchor Bolt

Bond stress between anchor bolt and concrete was originally
eliminated by grease in construction. Restoring force-displacement
characteristics of anchor bolt was modeled as a bi-linear tension
yielding type. The yield strength Np is calculated from the reduced
effective sectional area.

6. Non-linear dynamic response analysis

We selected the 22th grid line frame as the typical frame in the
transverse direction and replaced it with a lumped mass model presented
in Fig. 18. To evaluate the effect of traveling crane girders,
appropriate stiffness tie beams are installed within crane span AB and
CD. In this case, crane loading is assumed to be empty.

Results of the eigenvalue are shown in Fig. 18. The first natural
period is 1.28 sec. and the second is 0.62 sec. These periods
eventually coincide with predominant periods of ground response spectra
shown in Fig. 9. +

In this analysis, H/H and @ are assumed to be 0.9 and 0.4, where H
is sum of the isotropic and kinematic work-hardening coefficient and
taken to be 1 percent of elastic stiffness (Fig. 12).

The input acceleration used in non-linear response analysis is a
part of the simulated acceleration records and its duration time is 10
seconds. (Fig. 21).



Fig.19 and Fig.20 show the maximum absolute response accelerations
and the maximum response displacements in horizontal direction,
respectively. Values shown in parentheses are those of the structure
of which the members are elastic and column bases are clumped
perfectly. Compared with the perfect elastic response, non-linear
response decreases to 30-40 percent in acceleration and 60-80 percent
in displacement.

Figs. 23, 24 and 25 show the time history of the axial force ratio
and the axial force-ductility ratio hysteresis of anchor bolts and
bracing members respectively in (a) and (b).

Fig. 26 shows the bracing member of which the details are shown in
Fig. 28, buckled about the weak axis out of the structural plane.

The N-M hysteresis at the plastic hinge of member B1 is shown in
Fig. 29.

The maximum ductility ratio of members, computed from response
analysis, is shown in Fig. 30. Ductility ratio of beam-column elements
was less than 2.0, therefore this influence is negligible.

7. Comparison between analytical results and observed damage

Analytically computed ductility ratio 44 of the anchor bolts at the
intersection of the grid lines 22th and A was 4.62 - 6.77.(Fig. 30).
Measured plastic elongation 8§p = Smm(Pig. 2) and bolt length fb =
1110mm, therefore the plastic strain Ep = 8p/fb = 0.0045. Yield point
Oy = 2.4 t/em? and Young's modulus E = 2100 t/em2, thus the yield
strain €y = Oy/E = 0.0011,  Therefore, observed ductility ratio
#y becomes M= 1 + Ep/y = 5.1. As a result, ductility ratio of
anchor bolts M4 and j, coincide fairly well.

The bracing members buckled about the weak axis out of the
structural plane, however plastic elongation was not measured in this
damage investigation.

Notable damage of beam-column members was not observed.

8. Conclusion

The authors presented the elastic-plastic frame analysis method
applied to a computer program and compared the computed results with
the observed damage. The following conclusions can be derived.

1) Elastic-plastic analysis using our proposed numerical methods
can simulate observed damage fairly well.

2) Compared with the perfect elastic response, the non-linear
response decreases to 30-40 percent in acceleration and 60-80
percent in displacement.

3) In other words, seismic force decreases if the members possess
enough plastic deformation capacity.

4) On the whole, damage is slight and negligible on repair.
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BRACE FAILURES AND COLUMN BUCKLING IN STEEL STRUCTURES 0y

by

Subhash C. Goel and Xiaodong Tang
Department of Civil Engineering
The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

In the current design practice concentrically braced
structures are not considered as ductile structures. The
non-ductile behavior of these structures mainly results from
early cracking and fracture of bracing members due to local
buckling in regions of plastic hinges which form during cyclic
post-buckling deformations. The building codes recognize this
fact and attempt to take care of this problem by specifying
increased design forces for braced frames in general. This
practice may not always result in safer structures, however,
since the fracture life of less slender bracing members may be
smaller than that of more slender ones. Furthermore, columns
may also be subjected to buckling leading to possible collapse
of some stuctures.

The above mentioned problems may be more critical in
braced structures in which no backup ductile moment frames are
provided. These structures are quite common and inspite of
increased design forces they generally turn out to be more
economical because of simple connections between the beams and
columns. The problems associated with column buckling and
early failure of bracing members in non-moment resisting
braced structures during severe earthquake motions are studied
in this paper. A practical and rational method for safe
design of such structures is also presented.

The structure selected for this study is patterned after
the six-story, full-scale test structure (shown in Fig. 1)
with concentric K-bracing in one bay of the middle frame in
the direction of loading, which was used in the U.S.-Japan
Cooperative Earthquake Research Program. The floor plan,
dimensions and gravity loads are kept the same, but this
structure has no backup moment-resisting frames. Thus, the
braced bay provides all the lateral force resistance for the
entire structure.

FRAME F1

The structure is first designed in strict compliance with
the requirements of current Uniform Building Code, 1982
edition [6], and allowable design procedure of the current
AISC Specification [l1]. W sections in A36 steel are used for
beams and columns, and square structural tubes of AS00 grade B
steel for the bracing members. The connections of beams with
columns are simple, non-moment type. The resulting member
sizes of the braced frame are shown in Fig. 2. This frame
which provides all the lateral force resistance for the entire
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structure is designated as Fl in this study.

The inelastic response of Frame F1 is computed for the NS
component of the 1978 Miyagi-ken Oki earthquake with the peak
acceleration scaled to 500 gals (1 gal = 1 cm/sq. cm). This
ground motion was also used in the final pseudodynamic test of
the U.S.-Japan concentrically braced structure. Some response
results of Frame Fl1 are shown in Figs. 3 and 4. DRAIN-2D
program originally developed at UC Berkeley (6] and later
enhanced at the University of Michigan [5,8] was used for this
study. It is noticed from Fig. 3 that the horizontal
displacements at upper three floors are quite large. Few
plastic hinges formed in the beams and inspite of large
displacements at the upper floors brace buckling occurred cnly
in the second and third stories, Fig. 4. This figure also
shows that plastic hinges formed at a number of locations in
the columns even though the columns received only small
moments from the bracing members. This indicates that columns
in this frame were subjected to large axial forces which led
to buckling in three of them, also shown in Fig. 4. Column
buckling commenced as early as 4 seconds into the response.
Buckling of columns resulted in large tilt of the frame in
upper four stories as shown in Fig. 4.

Buckling of columns is perhaps the most significant and
undesirable aspect of the response of Frame F1 resulting in
large displacements at upper floor levels. Buckling in
columns (local or overall) due to large axial force reversals
may cause instability and complete collapse of braced
structures under certain conditions. This aspect seems to
have played an important role in the observed behavior of Pino
Suarez buildings during the 1985 Mexico City earthquake [2].

FRAME F2

In order to eliminate the problem of column buckling
during a severe earthquake motion the design procedure for
columns was modified in Frame F2. 1In this frame the braces
and beams were kept the same as in Frame Fl. An upper bound
on the required ultimate strength for the columns is
calculated due to 1.3 times the design dead and live loads,
and the vertical component of maximum compressive strength of
the braces. The sections for columns in the braced bay were
then selected according to the requirements of AISC
Specification Part 2 (Plastic Design). This frame is called
F2 and the member sizes are shown in Fig. 5. Increase in
column sizes in the braced bay as compared with those in
Frame F1 is apparent.

Response of Frame F2 to the same ground motion is shown in
Figs. 6 - 8. It is noticed that inspite of formation of
plastic hinges in beams as well as columns no buckling
occurred in the columns. However, the braces in the second,
third and fourth stories underwent cyclic buckling to the
extent that they fractured quite early during the response.
This caused very large drifts in those stories and large
overall floor displacements. Inspite of this the structure




did not become unstable. The reason for this is that the i
columns in those stories could develop moments due to

continuity in the stories where the braces did not fracture,

thus, providing a second line of defense for the structure.
Nevertheless, it is questionable whether the columns could

remain stable under such large story drifts and associated

plastic rotations.

The fracture criteria for the rectangular tube bracing
members used in the analysis is rather simple and crude which
is based on recent tests at The University of Michigan [3,7].
The detailed derivation of the criteria is given in Ref. 8.
1t is empirical in nature and can be expressed as follows:

Ng = C (KL/r) (b/d)/[(b-2¢)/t)?  KL/r 3 60

where, Nf = number of equivalnet cycles to failure
c = 262, an empirical constant

KL/r = effective slenderness ratio of the member

b/d = width to depth ratio of the section, and

=

(b=2t)/t clear width-thickness ratio of the flanges.

It should be pointed out that the width-thickness ratioc of
tubular bracing members used in Frames F1 and F2 meet the limit
specified by the AISC Plastic Design criteria [1].

FRAME F3

It should be clear from the above fracture criteria that
fracture life of tubular bracing members can be increased by
using significantly smaller width-thickness ratios. Thus, the
tubular bracing members of Frame F3 were designed by limiting
the width-thickness ratios to 95/yF., which is exactly half of
that allowed by the current AISC prcification Part 2 [1]. For
nominal yield strength of 46 ksi for AS00 grade B steel this
would amount to a limit of 14.

Modern building codes generally allow smaller design
seismic forces for ductile structures while imposing
"penalties” for less ductile structures or structural
elements. According to the current Uniform Building Code
buildings having ductile moment resisting space frames can be
designed with a horizontal force factor of 0.67 or 0.8. For
buildings in Seismic Zone Nos. 3 and 4, and for buildings with
importance factor greater than 1.0 in Zone No. 2, all members
in braced frames must be designed for 1.25 times the force
determined otherwise. Since, the ductility of the bracing
members in Frame F3 is ensured by using lower width-thickness
ratios it was decided to delete the "penalty” factor of 1.25
in their design. The columns were designed by following the
procedure as in Frame F2. The resulting member sizes for the
braced frame P3 are shown in Fig. 9.

The computed response of Frame F3 is shown in Figs. 10 -
12. It is noticed that the horizontal floor displacements are
much smaller than those of Frame F2. Plastic hinges formed in
several beams and columns but no column buckling was
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encountered. Cyclic buckling occurred in all braces. Axial
deformation histories of some braces are shown in Fig. 12,
which are quite severe. However, due to much more compact
sections their integrity is ensured. Thus, it can be
concluded that Frame F3 should perform satisfactorily when
subjected to a severe ground motion such as the one used in
this study.

CONCLUSIONS

Based on the results and discussion presented in this
paper the following conclusions can be drawn:

1. Columns in braced non-moment resisting structures may be
subjected to large forces cusing them to buckle during a
severe earthquake. It is necessary to check their buckling
strength by an ultimate strength method such as the one
suggested in this study.

2. | The allowable width-thickness ratio specified by the AISC
Specification for rectangular tubular bracing memebers should
be reduced in order to increase their ductility and energy
dissipation capacity for survival during a severe earthquake.

3;) If the ductility of bracing members is ensured the design of
concentric braced structures can be based on forces smaller
than those specified by current building codes. Yy
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COMPRESSIVE TESTS OF GUSSET PLATE CONNECTIONS

by J.J. Roger Cheng1 and §.2. Hu?

ABSTRACT

The compressive behavior and buckling strength of thin-
walled gusset plate connections were examined on the basis of an
experimental investigation of full-scale diagonal bracing
connections. Such connections are commonly used to transfer
forces from a bracing member to the beam and column through the
gusset plate, A total of 14 tests were run on six connection
specimens. Plate thickness, geometric configuration, boundary
conditions, eccentricity and reinforcement were considered in
planning the tests. All of the tests failed in plate buckling
except the tests with eccentricity which failed in bending
yielding of the spliced plates. The test results were evaluated
based on load and deformation data. An attempt was made to
correlate the test results with the analytical studies using the
finite element program BASP. The comparison is shown to be in
reasonable agreement. Current design practices are discussed
briefly and the methods are found to be very unconservative
compared with test results.

INTRODUCTION

One of the most common methods of connecting two or more
members together is by a gusset plate which is used to transfer
forces from one member to another such as connections in trusses
or braced steel frames. In the latter case, either tensile or
compressive loads from a bracing member which is designed to
resist horizontal forces are transferred to the beam and column
through the gusset plate. The gusset plate is normally bolted to
the bracing member, in which the spliced plate may or may not be
used depending upon member geometry, and connected to the column
and beam by bolts or welds. Fig. 1 illustrates such a
connection. Although it is customary to assume that the bracing
members in this arrangement are loaded only in their axial
direction, the delivery of these loads will produce bending,
shear and normal forces in the gusset plate.

Despite the popularity of this type of connection, the
gusset plate has received relatively little attention in terms of
strength, behavior and design investigation. Current design
specifications only mention the design philosophy and no specific

1 assistant Professor of Civil Engineering, University of
Alberta, Edmonton, Alberta, Canada, T6G 2G7

2 Graduate Student in Civil Engineering, University of Alberta,
Edmonton, Alberta, Canada T6G 2G7
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formulas for evaluating the dimension and thickness of the gusset
plate (AASHTO, 1983). The traditional method of gusset plate
design (Gaylord et al., 1972) is primarily based on elastic
analysis and uses beam theory to check the stresses at selected
sections, It has been recognized that the applicability of the
beam theory to the configuration of gusset plates is
questionable. An alternative method is performed by evaluating
the critical normal stress using Whitmore's effective width
concept (Whitmore, 1952). The normal stress on this effective
area should not exceed the allowable stress permitted by the
appropriate specification.

Recently, a few studies have been conducted to determine the
behavior and ultimate strength of gusset plate connections which
aimed at providing a rational design method. A test was
conducted by Bjorhovde et al. (1985) to determine the ultimate
tensile strength of a gusset plate used in a diagonal bracing
connection. The physical tests done by Bjorhovde et al. (1985)
allowed Richard et al. (1983) to model gusset plate behavior
using the finite element method. Based on these investigations,
Hardash et al. (1985) derived the block-shear concept of coped
beam-to-column connections into the gusset plate loaded in
tension. It was concluded that the governing block-shear model
was to be the one incorporating tensile ultimate stress on the
net area between the last row of bolts and a uniform effective
shear stress acting on the gross area along the outside bolt
lines. However, these studies did not address the problem of the
compressive gusset plate connections, nor the related problem of
gusset plate buckling.

Using compressive diagonal members increases the complexity
of the connection. Common yielding stress analysis cannot
represent the actual stresses because of load concentrations,
warping of the plate section, local yielding and local
eccentricity. All of these may cause buckling or crippling in
the gusset plate adjacent to the diagonal member or to the
spliced location. In addition, due to the uncertainty of
boundary conditions, the prediction of buckling load becomes
extremely difficult. Besides, compression stresses along free
edges of gusset plates may cause local buckling and insufficient
gusset plate thickness may cause unacceptable deformations in the
connection. In order to avoid the local buckling along free
edges of gusset plate, AASHTO (1983) limits the length of an
unsupported edge of a gusset plate to a maximum of 930//F_ times
its thickness. It is assumed that the free edge behaves is a
unit width column with a fixed-fixed boundary condition. From
the previous discussion, it can be easily found that the above
provision is oversimplified and very conservative.

A research project was undertaken by the authors to
investigate the behavior of compressive gusset plate connections
sponsored by the Canadian Steel Construction Council. This paper
presents the results of the test phase of this project. The
principal purpose of the tests was to provide experimental data
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for the various design parameters so the ultimate goal of
designing such a connection could be established. The test
results will be compared with the analytical studies using the
finite element program BASP and current design practices are
briefly discussed.

EXPERIMENTAL PROGRAM

The experimental program was designed to represent the
conditions of actual gusset plate connections. Thus, full-scale
single gusset plate connections of a diagonal bracing member at
the joint of a beam and a column as shown in Fig. l(a) were
used, The gusset plate was bolted to the bracing member by using
spliced plates and then bolted to the column and beam through
pre-welded end plates. The variables chosen for investigation
are plate thickness, plate size, boundary condition, eccentricity
and reinforcement. Two loading conditions, namely concentrical
and eccentrical loadings, were used by arranging various
positions of the spliced plates (see Fig. 4). To simplify the
problem, thin plates were used in the test specimens. It was
planned that most of the tests would fail in elastic buckling.

The test series consisted of six gusset plate specimens with
varying plate thickness and plate size as given in Table 1. Two
different thicknesses of splice plate used in each gusset plate
specimen are also given in the Table. The detail of the two
different plate sizes (850 mm x 700 mm and 850 mm x 550 mm) used
in the test specimens are shown in Fig. 2. The gusset plate
specimens were designed to be loaded in 45° by the bracing
member. Plates Cl to C4 were loaded concentrically while plates
E5 and E6é were loaded eccentrically. For comparison purposes,
plates ES5 and E6 have the identical cross-sectional properties as
plates Cl and C3 respectively but have different loading
conditions. The major material properties of the gusset plate
specimens and the spliced plates are summarized in Table 2.

To simplify the test set-up, the gusset plate was loaded as
shown in Fig. 3 and the forces that exist in the beam and column
to balance the compressive load from the bracing member were
neglected. A schematic test set-up is shown in Fig. 3. The test
frame consisted of two W31l0 x 97 members as beam and column and
one W250 x 58 acting as bracing member. The gusset plate was
braced at the spliced plate locations as shown in Fig. 3 by
tension bars and was allowed to move laterally by placing an
additional pair of rollers underneath the test frame. The
magnitude of the applied load and overall displacement of the
specimens were monitored by the MTS test machine and a set of
LVDTs and dial gages as shown in Fig. 4. Strain gages were
placed in various locations of each specimen in pairs, one set on
either side of the gusset plate, to measure the strain
distribution. A pair of rosette gages was located on the gusset
plate adjacent to the end of the spliced plate. For the
specimens subjected to an eccentric load, a pair of strain gages
was put on the spliced plate where a bending yield might occur.
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Fourteen tests were run on the six specimens in order to
best utilize the material. Eight concentric loading tests were
run on plates Cl to C4, in which two tests were conducted for
each plate. One, named "free case", allowed the bottom of the
test frame free to move and the other, called "fixed case" did
not allow movement. The test procedure was generally the same
for plates Cl to C4. First, the specimen was tested in the free
case and the test was terminated when the lateral displacement of
the roller underneath the test frame became excessive, around
30 mm. Then the specimen sprang back to its original position
when the load was removed. Stoppers were provided subsequently
at the roller locations. A new test, fixed case, was then
conducted until the maximum load was reached. Another six tests
were performed on plates E5 and E6 with eccentric loading, in
which three cases were tested for each plate and they were called
"free without reinforcement", "free with reinforcement® and
“fixed with reinforcement", respectively. The details of the
three different cases were shown in Fig. 4. The test procedure
followed the sequence of the above three cases. The first test
was terminated when the maximum load was reached and unloading
occurred or the lateral displacement of the rollers underneath
the test frame became excessive, around 30 mm. In the second
test the specimen was forced back to its original position and
reinforcement was added at the spliced plate location and the
specimen was reloaded, again, until it reached the maximum
load. For the last case, fixed with reinforcement, the stopper
was provided at the bottom of the rollers and the test procedure
was the same as before.

TEST RESULTS AND GENERAL BEHAVIOR

The test results are divided into two groups: concentric
and eccentric loadings. The concentric loading tests will be
discussed first, followed by the eccentric loading tests. A
;ugqarg of the highest measured applied loads, Pp,,. is given in

able 3.

Concentric Loading Tests

An examination of the reduced data showed that a plot of
applied load versus critical lateral deflection reading gave the
best representation of buckling phenomena of the test specimens.
The final deflected shapes also afforded the best description of
the failure due to plate buckling.

Because of the similarity of the behavior, only two plate
specimens, C3 and C4 of which the thicknesses are 6.7 mm and 3.1
mm respectively, will be shown and discussed here. Two loading
cases, free and fixed, will be discussed separately.

Free Case - All specimens failed as a result of overall buckling

of the plates. The maximum deflection occurred at the roller

locations. There was no yielding observed during the tests. The
curves of applied load versus lateral deflection of the rollers



for the plate C3 and C4 are shown in Fig. 5. The curve for 6.7
mm plate, specimen C3, shows a typical plate buckling curve with
a distinctive buckling load. For 3.1 mm plate, specimen C4, the
curve gradually increases to the maximum load. This can be
attributed to the large intial imperfection of the plate section
which was induced by the end plate welding. The buckling shapes
of the specimens C3 and C4 along two free edges and the center
line of spliced plate were plotted in Fig. 6(a).

Fixed Case - The lateral translation of the test frame was
prohibited in this case. The maximum deflection of the plates
occurred at the mid-point of the longer free edge as shown in
Fig. 6(b). Yield lines were observed on the spliced plate near
the top of the gusset plate for both Cl and C3 due to the high
axial load and the large lateral deformation of the gusset
plate. A typical curve of load versus lateral deflection at the
mid-point of the longer free edge is shown in Fig. 7(a). The
load versus lateral deflection curve for test C4 as shown in Fig.
7(b) is different from other tests. The reason was that before
reaching the maximum load two free edges of the plate were
deflected in the opposite direction due to the large initial
imperfection. After reaching its maximum load, the plate was
forced to buckle in the same direction with a sharp decreasing
load.

Eccentric Loading Tests

It is customary to neglect the eccentricity in designing
gusset plate connections. However, some actual practice showed
that the eccentricity may cause a significant reduction of the
carrying capacity of gusset plates. Six tests run on two plate
specimens, E5 and E6, also show the importance of the
eccentricity. Due to the similar load-deflection curves and
buckled shapes to the concentric loading tests, only the general
behavior of three loading cases of the eccentric loading tests
will be discussed below.

Free without Reinforcement - Both of the specimens failed by the
yielding of the spliced plate. Yield lines were observed on the
spliced plate at the last row of the bolts of the bracing
member. The load decreased when the maximum load was reached.
Permanent deformation was in the spliced plate after unloading.

Free with Reinforcement - Same specimens were stiffened and
tested in the same boundary condition as the previous case to
evaluate the effect of the reinforcement. Only one stiffener was
provided for the plate E5 while three additional spliced plates
were placed on the other side of the plate E6 (Fig. 4). The load
carrying capacity of the specimens increased significantly which
was approximately three times higher than previous case for plate
ES and six times for plate E6. However, both tests were unable
to reach the loads of plates Cl and C3 in the free case. Again,
the plate E5 failed due to the load exceeded the carrying
capacity of the combined spliced plate and stiffener. For the
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plate E6, the specimen failed in overall buckling of the gusset
plate and no sign of yielding was found on the spliced plate.
The maximum load of the test reached 89% of the plate C3 in the
free case.

Fixed with Reinforcement - The same plates with the same
stiffeners were used to perform another set of test with the
stopper provided at the bottom the test frame. Both of the
specimens failed in the loads less than the maximum loads of the
plates C1 and C3 in the fixed case. Yielding in the spliced
plate and stiffeners was observed during the tests, Sliding
between the spliced plate and stiffeners also occurred for the
plate E6.

DISCUSSION OF TEST RESULTS

The highest applied load of each test, Pg.., is used for
primary comparison and is summarized in Tablons. The
corresponding load carrying capacity of each plate calculated
according to the effective width concept (Whitmore, 1952) was
also listed in the Table. As expected the effective width
concept which is primarily based on the material strength of a
gusset plate at the end of a bracing member gives much higher
predicted values than the P, ax® Since the test specimens were
purposely designed to fail ?n plate buckling.

The computer program BASP which can handle plate buckling
with stiffeners originally written by Akay et al. (1977) was used
to compare with the test results. In the analysis, the gusset
plates were assumed to be fixed at the boundaries of beam and
column and fixed but allowing out-of-plane translation at the top
of the plate for the free cases and fixed both rotation and
translation for the fixed cases as shown in Fig. B, The plates
were idealized by two-dimensional finite elements while the
thicker elements were used for the spliced plate locations. The
applied loads were assumed uniformly distributed among the
numbers of bolt on the gusset plate. The problems solved by this
program are treated as a linear-elastic buckling problem. The
results of the BASP are summarized in Table 3. The comparison
with the test results is shown to be in reasonable agreement,
However, large discrepancy exists for the free and fixed cases of
the plate Cl and the fixed case of the plate C3. There are two
major reasons. One is the simplified assumptions of the spliced
plate thickness and uniform distribution of the applied load.

The other is the yielding that occurred in the spliced plates due
to the high axial load in the spliced plate and large lateral
deformation of the gusset plate., The yielding reduced the
rotational restraint at the spliced plate locations and
consequently reduced the buckling capacity of the gusset plate.
The analysis phase of this project which is in progress shows
that the rotational restraint is a very important parameter for
the buckling capacity of the gusset plate. The local buckling
provisions of the AASHTO specification (1983) was calculated and
shown in Table 3. The provisions yield very conservative results
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as expected.

It was found from the tests conducted on the plates E5 and
E6 that the eccentricity initiated the yielding in the spliced
plate and eventually caused the failure of the connection. Thus,
the beam-column formulus of a rectangular cross-section (ASCE,
1971) was used to calculate the cross-sectional strength of the
spliced plates at the conjunction of the bracing member and the
gusset plate. Good correlation exists between the test results
and the predicted values. The conservatism of the beam-column
formulas applied to the fixed with reinforcement case of the
plate E5 is because that the yielding in the spliced plate is not
the final mechanism of the gusset plate. Comparing the cases
with reinforcement to the cases without reinforcement indicates
that the eccentricity could curtail the carrying capacity of
gusset plates significantly. However, it also implies that the
reduction of the strength could be minimized or even avoided by
providing the sufficient stiffeners at the spliced plate
locations.

SUMMARY AND CONCLUSIONS

The compressive behavior and buckling strength of thin-
walled gusset plate connections were examined by an experimental
investigation of full-scale diagonal bracing connections. The
tests considered parameters such as plate thickness, plate size,
boundary condition, eccentricity and reinforcement. A total of
14 tests were run on six connection specimens. Current design
practices and finite element solutions were used to compare the
test results. The following is a summary of the findings.

1. Por the concentric loading cases that were examined, the
primary failure mode for the free cases is overall buckling of
the plate. The maximum deflection occurred at the roller
locations. For the fixed cases, the failure is initiated at
the free edges due to the local buckling of the plate. The
maximum deflection occurred at the mid-point of the longer
free edge.

2. Another type of failure may occur in spliced plate due to the
existance of the eccentricity. This has been shown in the
cases of free without reinforcement of the plates E5 and E6.
The reduction of the strength may be significant.

3. The cases of reinforcement of the plates E5 and E6 shows that
the reduction of the strength due to the eccentricity could be
minimized by providing sufficient stiffeners at the spliced
plate locations.

4. The effective width concept which is currently used in
designing gusset plates was found to be very unconservative if
the primary failure mode is the plate buckling. The local
buckling provision adopted by the AASHTO appears to be very
conservative and doesn't cover the various boundary
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conditions.

5. The finite element solutions is shown to be in reasonable
agreement with the test results. The beam-column formulus of
a rectangular cross-section gives reasonable prediction for
the carrying capacity of the eccentrically loaded gusset
plates.

6. The available design methods for compressive loaded gusset
plates has been found to be inappropriate for determining the
compressive behavior and failure of the gusset plate. The
effects of variables such as thickness, size, boundary
condition, etc. on the compressive strength of a gusset plate
should be further investigated for the improvement of the
existing design methods.

7. The requirement of the stiffeners for gusset plates and
spliced plates should also be studied.
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Table 1. Geometric Properties

Test Thickness Size Thickness of Splice
Specimen mm mm X mm Plate Used, mm
Ccl 6.70 850 x 550 13
c2 3.11 B850 x 550 13
Cc3 6.70 850 x 700 13
Cc4 3.11 850 x 700 13
ES 6.70 850 x 550 8.1
E6 6.70 850 x 700 8.1

Table 2. Material Properties

Static
Elastic Yield Ultimate
Material Used Modulus Strength Strength
(MPa) (MPa) (MPa)
6.70 mm Gusset Plate 211,000 505 595
3.11 mm Gusset Plate 197,000 240 340
13.0 mm Splice Plate 205,000 260 420

8.1 mm Splice Plate 211,000 305 495




Table 3. Summary and Comparison of Test Results

Plate

Size Load Case P Effective BASP AASHTO Beam
(RRY width (kN)  (kN) (kN)  Column
Cl B850x550x6.7 Free 441.7 1142 944 - -
c2 850x550x3.1 Free 122.4 529 120 - -
c3 850x700x6.7 Free 380.1 1142 382 - -
c4 850x700x3.1 Free 89.6 529 43 - -
Cl1 850x550x6.7 Fixed 914.0 1142 1314 137 -
c2 B50x550x3.1 Fixed 140.6 529 152 43 -
c3 B850x700%x6.7 Fixed 678.2 1142 1083 137 -
c4 B50x700x3.1 Fixed 145.5 529 130 43 -
ES B50x550x6.7 Free w/o Reinf. 80.4 1142 - - 73.7
E6 B50x700x6.7 Free w/o Reinf. 55.8 1142 - - 737
ES B50x550x6.7 Free w/ Reinf. 232.8 1142 - - 251
E6 850x700x6.7 Free w/ Reinf. 338.6 1142 - 518
ES B850x550x6.7 Fixed w/ Reinf. 392.5 1142 - - 251
E6 B850x700x6.7 Fixed w/ Reinf. 523.2 1142 - - 518

00z
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CONCENTRIC AXIALLY COMPRESSED ANGLE COLUMNS--COMPARISON OF
EXPERIMENTAL AND CALCULATED FATILURE STRESSES

by

Murty K. S. Madugula and 5. Mohan
Dept. of Civil Engg., Univ. of Windsor, Windsor, Ontario, Canada

ABSTRACT

The paper presents a review of the design practices of hot-rolled and
cold-formed steel single and double angle members under concentric axial
compression. Specifications of the American Institute of Steel
Construction, American Iron and Steel Institute, American Soclety of Civil
Engineers, Canadian Standards Assoclation, Indian Standards Institution,
and Standards Association of Australia are 1included 4in the review.
Failure stresses computed according to the above specifications are
compared with the avallable experimental failure stresses of concentric
axially compressed hot-rolled and cold-formed single and double angles. A
total of 269 hot-rolled and 22 cold-formed angle test results are included
in the paper.

NOTATION

distance between connectors in built-up angle compression member
fully effective cross-sectional area of cold-formed angle
effective area of cold-formed angle member i{n compression
gross area of angle
width-to~thickness ratioc of angle leg
factored compression resistance
modulus of elasticity
critical stress at failure
critical torsional or flexural-torsional elastic buckling stress
eritical elastic buckling stress, which 1is the least of the
stresses for Euler flexural, torsional, and torsional-flexural
elastic buckling
Fy = yield strength
Fyeee ™ effective yleld strength in ASCE Manual No. 52
(Kl.;r). = modified slenderness ratio of built-up angle compression member
(KL/r), = slenderness ratlo of built-up angle compression member acting as
a unit
= full reduction factor for slender angles in compression
= minimum radius of gyration of a component angle
= thickness of angle leg
w/t = flat width-to-thickness ratio of angle leg

-

JTEAS A
L B B U B B B B BN

resistance factor
Poisson’s ratlo
non-dimensional slenderness ratio

INTRODUCTION

Angles are the most common structural shapes used in latticed
electrical transmission towers and antenna-supporting towers. Angles are
also extensively used in nuclear power plants as pipe supports. They are
also used as chord and web members of trusses, as web members of long-span
open-web steel joists, and as bracing members to provide lateral support
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to the primary load-carrying members of a structure. Angles are easy to
fabricate and erect because of the basic simplicity of their
cross-section. They are classified as equal- or unequal-leg angles,
single or built-up (i.e., compound) angles, hot-rolled or cold-formed
angles. They can be plain angles, lipped angles or bulb angles, of steel
or aluminium. Angles are loaded concentrically or eccentrically, axially
or transversely, inducing stresses either below or beyond the proportiomal
limit of the material. This paper deals with hot-rolled and cold-formed
steel angles (without lips) under concentric axial compression.

REVIEW OF DESIGN SPECIFICATIONS

(a) AISC-LRFD specification for hot-rolled angles

Factored compression resistance for flexural buckling:

C_=0.85AF (1)
r B cr
Qag
For xc.ﬁ < 1.5, F_ = Q(0.658 )ry (2)
0.877
For A/ > 1.5, F = [_x?_ Iry (3
[

F
where A = % o g (4)

Angle sections should also be checked for torsional and flexural-torsional
buckling as follows:

a2
For ;.e.f(: < 1.5, F . = Q(0.658 )", (5)
0.877
For A, /@ > 1.5, F__ = [ =— ]P, (6)

A2
e
L L
where J.e F (7)
e
in which F, = critical torsional or flexural-torsional elastic buckling
stress. 1If the width-to-thickness ratic does not exceed 76//Fy (where F,
is the yield strength in ksi), the angle is non-compact and the value of s
is 1.0 for angle without 1ips. If b/t ratio exceeds 76//F,, the angle 1is

slender, and the value of Q for unstiffened angles is determined as
follows:

When l'ru"fl’,r < b/t < 155/!1?;:
Q= 1,340 - 0.00447 (blt)n’; (8)

When b/t > lSSNF;:

Q=15 SOOI[Fy(bIt)zl (9)



(b) AISI specification for cold-formed angles

This 1s an allowable stress specification. However, In this paper,
the factor of safety is taken as 1.0.

For F . > 0.5 Fos Py @ F,(l - r,lirﬂn) (10)

.

For F, < 0.5 ?y. P ol (1)

Fpin 18 the least of the elastic flexural, torsional, and torsional-flex-
ural buckling stress. For single angle sections with unstiffened flanges,
For shall be taken as the smaller of F.,. caleculated from Eq. (10) or (11)
and F., given by Eq. (12).

nlE

F_oo— 12
er  25.69(w/t)? A

(c) ASCE Manual No. 52 - Recommendations for hot-rolled and cold-formed
angles

(1) For w/t < awfr, (where Fy is the yleld strength in kei):

2
If K/r <C_, F =1 --} [5‘&-’-" ) ]r, (13)
[

If KL/r > C_, F__ = 286 000/(KL/r)2 (14)
where C. = ‘JEF; (15)

(11) For w/t > BOH?; (where Fy 1s the yleld strength in ksi):

The values of Fy £ given by Eq. (16) and (17) should be substi-
tuted for Fy in Eq. (13) and (15).

1f aoHF, < wit € ua/ﬁy:

2, ., = [1.677 - 0.677 2L p (16)
Tage wor/E) 7
If w/t > 144//7

Pyore * 9500/ (w/t)? an

(d) CAN/CSA-S37-MB6 and CAN3-516.1-M84 for hot-rolled angle members

These limit states design specifications use SSRC Column Curve 2 as

the basic curve for determining the factored consseuiu resistance C, of

hot-rolled angles with b/t ratios not exceeding 200 (where F, is the yield

strength in MPa): fl"_,

For 0 < ) < 0,15, cr-.AP,

For 0.15 € A € 1,00, C_ = ¢ A F_[1.035 - 0.202) - 0,222 A2
T y
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208 For 1.0 € X €2.00, C_=¢A ry;-o.m + 0.636/% + 0,087/22] (18)
For 2.0 € A €3.6, C_=¢A ryto.ooa + 0.877/22)
For A » 3.6, C.=¢A l»'),/:u2
where A = Xk F JE (19)
rw y

If b/t ratio exceeds 200 , singly symmetric angle sections with t € 4.5 mm

y
shall be designed according to CSA Standard CAN3-5136-M84 (cold-formed
steel structural members); thicker sections must be designed by rational
analysis.

(e) CAN3-5136-M84 for cold-formed angles

The factored compressive resistance

cr I O . (20)

where the compressive limit stress F, . is obtained from Eq. (21) or (22),
whichever is applicable:

When l"p (= 0.833 Pn.‘ln) > 0.5 Fy,

= - F2/4F 21
Yer = 7y = F/AT, (21)

When FP (= 0.833 Puin) < 0.5 Fy'

Fcr - ?P (22)

The factored compressive resistance of single angles is further limited as
follows:

. _#(0.50)x2EA -,

T 12(1-u2)(w/t)?

In Eq. (20) to (23), A, A_, Fotn® w/t, ¢ and p are as defined in the nota-
tion. . &

(f) Indian Standard 1S5:800-1984

This 1s an allowable stress specification. (In this paper the factor
of safety is taken as 1.0.) The critical stress is calculated using the
Merchant-Rankine formula. Width-to-thickness ratio (b/t ratio) is limited
to 256/#; or 16, whichever is less (where Fy is the yield stress in MPa).
If the b/t ratio exceeds this 1limit, the excess material shall be
neglected in calculating the effective geometrical properties of the
section.

FF
o

F = (24)
er [(ro)l.é = (Fy)l.kllll.&
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where 'o = Euler critical stress = (RL/)?

(g) Standards Association of Australfa AS:1250-1981

This is also an allowable stress specification. (In this paper, the
factor of safety is taken as 1.0.) Critical stress is given by Eq. (25).
Width-to-thickness ratio (b/t ratio) is limited to 208!/9; (where Fy 1s
the yleld stress in MPa). When the value of b/t for any angle exceeds
this limit, the critical stress is further limited to 0.833 Py.

F_+(n+1)F / FHmF_ 2
o ok °_ ol el 1 e
yo= | 7 [ 5 ] F, (25)

where n = 0.3(KL/100r)?
and F_ = Euler critical stress = w2E/(KL/r)?

(h) Design Requirements for Built-up Angles

AISC and CAN3-S136-MB84 specifications require the modification of the
slenderness ratio for buckling about the built-up member axis.
1S:800-1984 and AS:1250-1981 require a minimum of two {nterconnectors.
Table 1 summarizes the requirements of various specifications regarding
built~up angle compression members.

EXPERIMENTAL INVESTIGATIONS

The results of the following experimental i{nvestigations are included
in this paper:

(a) Tests on Hot-rolled Angles
(1) U.S. Bureau of Standards (1924):
Specimens with square ends (Al to Al0) - 10
Specimens with one bolt in each leg (Pl to EB8) = 11
Specimens with two or more bolts in each leg (DIl to E32)- 37

(11) Ishida (lmz:
Semi-killed high strength “SHY' steel angle specimens:
75 x 75 x 6 mm size specimens (1A20 to Cl00 and 2A40 to S70)- 24

65 x 65 x 6 mm size specimens (D40 to 90) - 6

(111) Yokoo, Wakabayashi and Nonaka (1968):
90 x 90 x 7 mm size mild steel angle specimens (1020 to 1150)=10

(iv) Marsh (1971):
Z1/2x 2 I;Z x 1/8 in. specimens (1 to 4) - length 24, 34, 64
and 74 in, - &

2 1/2x 2 1/2 x 3/16 in. specimens (5 to B) - length 24, 34, 64
and 74 {n. ~ &

21/2 x2x 3/16 in. specimens (9 to 11) - length 24, 34, and
74 in. = 3

21/2x 2x 1/4 in. specimens (12 to 15) = length 24, 34, 64 and
74 {n. - &

21/2x 1 1/2 x 3/16 in. specimens (16 to 19) - length 24, 34,
64 and 74 in. - &

209
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(v) Kennedy and Murty (1972):
Seventy-two hot-rolled angle struts, with both hinged and fixed
end conditions were tested at the University of Windsor. To obtain a
statistical average of the critical stress, three struts in each category
were tested. Double angle struts had one intermediate connector at
mid-length,

(vi) Short (1977):

Fourteen tests were carried out by Short on double angles
arranged back to back (with 10 mm gap between them and connected together
at 350 mm intervals) to investigate their buckling about the material axis
(xx-axis), while thirteen tests were performed on double angles arranged
back to back with 30 mm gap between them to {nvestigate their buckling
about the symmetric yy-axis.

(vii) Mueller and Erzurumlu (1983):
x 3 x 1/4 in. specimens - &
(viii) Kitipornchal and Lee (1984):

The experimental program consisted of testing two series of
pin-ended struts. For each strut size and length, two struts were
prepared and tested to obtain an average failure load. A total of &2
angle struts were tested, comprising 14 single equal angle struts, 12
single unequal angle struts, 12 double equal angle struts, and 4 double
unequal angle struts. Double angle struts had two intermediate connectors
measuring 5 mm (gap) x 25 mm x leg length. For double unequal angle
struts, long legs were connected.

(ix) Wilhoite 519862:
Details of seven post angles used in a full scale transmission

tower test are given in Table 2.

(b) Tests on Cold-formed Angles
(1) Chiico, Fang and Winter (1966):
Inelastic equal leg cold-formed angles - 6
(11) Madugula, Prabhu, and Temple (1983):

x 45 x 3 mm specimens (S45-1 to 8) - 8
65 x 65 x 4 nm specimens (565-1 to 8) - 8

COMPARISON OF EXPERIMENTAL AND CALCULATED FAILURE STRESSES

The experimental and calculated falilure stresses for the test
specimens described above are presented in Tables 3 and 4 for hot-rolled
and cold-formed angles, respectively. The following comments apply to
Tables 3 and 4:

(a) For U.S. Bureau of Standards test specimens, the following effective
length factors are used:
(1) angles with square ends - no bolts: K=1/1.9
(11) angles with one bolt in each leg: K=1/1.3
(111) angles with two or more bolts in each leg: K = 1/1.5

(b) For double angle specimens S1 to S13 tested by Short (1977), the nom—
inal slenderness ratio ('ﬂ.lt),, was calculated from a radius of gyra-



tion based on a minimum separation of 8 mm between angles, although 211
the bars as tested had a gap of 30 mm.

(c) The calculated values for the test specimens by Marsh (1971) are
based on the nominal yield stress of 44 ksi.

(d) For hot-rolled angle test specimens having b/t ratio greater than
zoofﬂ; (where F, is the yield stress in MPa) and thickness greater
than 4.5 mm, failure stresses according to CAN/CSA-537-M86 are not
calculated.

(e) The factor of safety is taken as 1.0 for failure stresses calculated
from AISI, 15:800-1984 and SAA:AS 1250-1981,

(f) For CAN/CSA-837-M86 and CAN3-S136-M84, failure stress is ob-
tained by dividing the factored compressive resistance Cp by the area
of cross-section, i.e., resistance factor ¢ of 0.9 is included in the
calculated values. If ¢ 1s taken as 1.0, the failure stresses will
be 10/9 times the tabulated values.

(g) The following double angle sections which did not satisfy the
requirements of various specifications are treated as two single
angles:

(1) Double angle specimens which did not meet the requirements of

ASCE Manual No. 52:
Short (1971): Specimens S1, 2, 3, 5, 6 7, 9, 10 and 12,
Kitipornchai and Lee (1984): DAS.

(11) Double angle specimens which did not meet the requirements of
15:800-1984:
Kennedy and Murty (1972): All double angle specimens.
Short (1977): 81, 2, 3, 5, 6, 7, 9, 10, 12 and 13.
Kitipornchal and Lee (1984): DAS.

(111) Double angle specimens which did not meet the requirements of
SAA:AS 1250-1981:
Kennedy and Murty (1972): All double angle specimens.
Short (1977): s81, 2, 3, 5, 6, 9, 10, 12 and 13,

CONCLUSIONS
A study of Tables 3 and 4 leads to the following general conclusions:

(a) The fallure stresses calculated according to ASCE Manual No. 52 are
the highest and are the closest to the experimental failure stresses.

(In a few cases, the calculated stresses even exceeded | the <L
experimental values.) -~ W\

(b) The stresses calculated according to —f!\]ﬁcTL-h_éB‘ 7 and
CAN3-5136-M84 are the lowest. e

(c) The requirements in some specifications regarding the maximum spacing
and minimum number of interconnectors for double angle struts lead
to unnecessarily conservative values.
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TABLE 1

Built-up Angle Compression Members

Specification Design Requirement

AISC-LRFD (a)

= of component angle between fasteners }

min
governing slenderness ratio of built-up member.

(b) For buckling about built-up member axis producing
shear forces in the connectors between individual
angles, the slenderness ratfo is modified as
follows:

(1) For snug-tight bolted connectors

K, _ /(T a2
=/ (T et (35)

(11) For welded connectors and for fully tightened

bolted connectors as required for slip-

critical joints:

With ‘_‘ > 50:
min

T he/(FhEE -
min

A : (B « (%
uuh?;-;cso. (#h=(F )

(a) ?"— of component angle between stitch bolts }

min
0.75 times the governing slenderness ratio of the
built-up angle member.

(b) The maximum spacing of stitch bolts 3} 24 in.

CAN/CSA-837-MB6

= of component angle between fasteners } slender-
min

and CAN3-8[E 1-M84 | ness ratio of built-up angle member.
ma—sns—nu Modify slenderness ratio about built=-up member axis.

() =-/(E0+ ('T‘

TS5:800-1984 (a) rL of component angles between fasteners }

min
0.6 times the governing slenderness ratio of
built-up member or 40, whichever is less.

(b) Min. no. of interconnectors = 2, equally spaced.

213



214 SAA:AS 1250-1981 (a) rL of component angle between fasteners } 0.6
min
times the governing slenderness ratio of built-up

member or 50, whichever is less.

(b) Min. no. of interconnectors = 2, equally spaced.

TABLE 2

Details of Post Angles - Full Scale Tower Test - Wilhoite (1986)

Specimen Size (in) KL/r l?,r (ksi)
1 31/2x31/2x1/4 B4 35
2 Ix3x1/4 78 58
3 5x5x 5/16 76 57
4 & x 4x 1/4 76 61
6 5x 5x 3/8 81 56
7 4x b4x1/4 70 52
8 4 x 4x 1/4 45 52

TABLE 3 (follows Table 4)

TABLE &
Comparison of Experimental and Calculated Failure Stresses
for Cold-formed Angles

Calculated failure stress (ksi)
according to

Experimental Failure AISI ASCE  CAN3-S136-MB4
Test Specimen Stress (ksi) (F.S5.=1.0) (¢ = 0.9)
(1) (2) (3) (4) (5)
(1) Chajes et al. (1966)
A-I1 38.3 30.0 35.1 27.0
A-12 38.3 34.5 39.3 31.9
A-13 33.2 26.6 32.7 24.9
A-14 33.2 26.5 32.4 24.6
A-15 32.2 27.3 32.0 24.6
A-16 22.5 24.5 26.3 22.7
(11) Madugula et al. (1983)
845 - 1, 2 14.6 13.5 15.2 11.2
S45 - 3, 4 9.1 8.5 9.1 7s1
45 - 5, 6 6.2 5.8 6.1 4.8
S45 - 7, 8 4.8 4.3 .4 3.5
865 ~ 1, 2 27.9 23.3 30.0 19.3
565 -~ 3, 4 15.8 13.9 16.4 11.6
565 - 5, 6 9.8 9.0 9.9 7.5
865 - 7, 8 6.0 6.1 6.5 5.1




TABLE 3

Comparison of Experimental and Calculated Failure Stresses for Hot-rolled Angles
Calculated failure stresses (ksi) according to

Experimental AISC-LRFD ASCE CAN/CSA-S37-M86 15:800-1984 SAA:AS 1250-1981
Test Specimen Failure Stress (ksi) (=t O) ($=0.9) (F.S.=1.0) (F.S.=1.0)
W B (3) (4) (5) (6) (7)
(1) U.S. Bureau of Standards
Al ~%0.0 24.7 33.8 -— 32.4 31.1
A2 26.8 20.2 24.6 — 19.3 18.6
Al 10.75 10.8 11.5 — 10.7 9.3
Ad 37.0 30.9 36.0 3.7 35.9 35.9
AS 36.0 30.2 33.7 27.9 32.0 32.8
A6 32.5 26.9 29.9 22.9 25.5 26.2
A7 25.0 21.1 24.5 16.7 19.2 18.4
AB 16.58 15.4 16.5 12,3 14.2 12.8
A9 10.75 10.8 11.5 9.5 10.7 9.2
AlD 9.0 7.9 B.4 7.4 8.2 6.9
Dl 13.82 11.3 12.1 — 1.2 9.7
D2 10.98 1.3 1.7 -— 7.6 6.4
D3 11.62 11.3 12,1 9.8 1.2 9.7
D4 9.76 7.3 1.7 6.8 7.6 6.4
D5 13.7 11.3 12.1 9.8 11.1 9.6
D9 9.0 7.3 7.7 6.8 7.7 6.4
D10 6.13 5.0 5.4 4.8 5.5 4.5
El 5.96 7.3 7.7 -— 7.6 6.3
E2 4.53 5.0 5.4 — 5.5 4.4
E3 5.0 3.7 3.9 -— 4.1 3.3
E8 3.93 5.0 5.4 4.8 5.5 4.4
D11 36.8 24.5 31.9 -_— 29.0 30.2
D12 26.05 21.3 25.8 -— 20.5 20.0
D13 32.4 29.4 31.8 25.4 28.7 29.7
D14 29.9 22.2 25.7 17.9 20.3 19.8
D15 29.9 22.0 25.5 17.8 20.2 19.6
D16 22.7 15.1 16.1 12.1 14.0 12.5
Di8 25.0 22.6 26.2 18.1 20.6 20.2




(1) (2) (3) (4) (5) (6)

D19 17.7 15.1 16.1 12.2 14,1
D20 19.9 15.1 16.1 12.2 14.0
D21 15.8 15.1 16.1 12.3 14.1
D22 41.0 25.1 35.6 o 35.8
D23 35.5 30.7 35.5 30.8 35.2
D24 36.0 32.2 34.9 30.3 34.7
D25 35.3 29.0 31.4 25.1 28.3
D26 35.5 34.0 35.6 30.9 35.4
D28 33.8 29.5 31.9 25.5 28.7
D3l 36.0 32.4 36.7 il.8 36.4
D33 34,0 30.2 32.8 26.1 29.4
D34 38.0 33.8 36.5 31.7 36.2
D35 34.9 30.1 32.6 26.0 29.3
D36 41.8 36.3 37.4 32.3 37.0
D37 34.1 30.6 33.3 26.4 29.8
E1D 14,25 14.8 16. 1 S 13.8
El4 33.5 23.9 31.0 e 28.2
E17 30.0 28.8 31.1 24.9 28.2
El18 31.6 24,7 34,4 - 34.8
E19 22.8 21.0 25.2 g 20.2
E20 20.0 15.0 16.1 12.1 13.9
E21 37.5 24.6 34.4 — 34.4
E25 31.0 33.1 34.6 30.1 34.4
E26 30.2 24,1 30.9 === 28.4
E27 28.3 30.5 35.3 30.6 5.1
E28 27.9 29.3 31.7 25.3 28.6
E29 27.75 22.2 25.6 17.9 20.3
E30 31.7 34.0 35.7 30.9 35.4
E3l 35.0 29.5 32.0 25.5 28.8
E32 28.82 29.5 32.0 25.5 28.8
(11) 1Ishida (1968)

1A 20 57.2 46.4 62.5 s 62.5
40 56.3 44.9 58.5 S 55.6
50 50.6 44.2 55.5 — 50.2
60 44,7 43.8 51.9 prmie 44.3
70 40.4 40.2 48.1 s 38.9




(1) (2)

80 37.2

100 27.6

B 40 66.8

50 60.5

60 53.2

70 45.2

80 45.1

100 30.0

C 40 54.4

50 47.2

60 42.9

70 42.9

80 1.7

90 36.9

100 27.3

D 40 58.5

50 56.6

60 48.1

70 48.9

80 40.9

90 37.2

24 40 48.1

80 36.0

S 60 38.4

70 38.1
(111) Yokoo et al. (1968)

1020 42.1

1040 42.1

1060 40.9

1070 41.6

1080 37.6

1090 33.3

1100 31.4

1110 27.2

1130 18.9

1150 14.2

31.5

(4)

42.9
28.6
62.0
58.6
54.4
49.3
43.7
28.6
60.5
57.3
53.4
49.1
43.6
37.3
28.6
59.1
56.6
52.8
48.2
43.0
37.1
54.2
40.7
36.9
35.0

43.5
41.6
38.4
36.3
33.9
31.2
28.2
24.9
16.9
12.7

(6)

33.5
24.8
60.3
52.3
46,2
36.5
30.5
21.6
57.3
51.5
45.3
39.5
33.9
29.0
25.0
56.1
51.0
44.9
39.0
33.5
28.8
51.9
32.1
33.6
30.5

43.5
40.5
34.7
31.3
28.0
26.8
21.9
19.3
15.1
12.0

L1z



(1)
(1v) Marsh (1971)

(v)
SH1
SH2
SH3
SH&
SHS5
SH6
S§F1
SF2
SF3
SF4
SF5
SF6
DHI1
DH2
DH3
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42.0
35.3
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13.6
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35.1
16.3
12.8
51.7
39.6

9.9
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13.1
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(vi) Shoret (1977)
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(1) (2)
13 40.2
(vii) Mueller and Erzurumlu (1983)
§2 HH 36-2 A
S1 HH 50-1 30.6
Sl HH 36-2 34.7
S0 BB 50-1 27.8
(viii) Kicipornchai and Lee (1984)
SAl - a, b =
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THE INTERCONNECTION OF WIDELY SPACED ANGLES

Murray C. Temple and Joo-Chai Tan
Department of Civil Engineering, University of Windsor
Windsor, Ontario N9B 3P4

INTRODUCTION

Double angles are frequently used as web members in trusses and as
bracing members. Basically one of three configurations can be chosen if
double angles are used and these are, as {llustrated in Fig. 1,
back-to-back, starred and boxed. The back-to-back configuration is used
most frequently.

Each type of double angle has 1its advantages and disadvantages.
Bolted connections 4in the back-to~back configuration make effective use
of bolts since they are used in double shear whereas bolts 1in starred
angles are in single shear., The only practical method of making a
connection with boxed angles is by welding. Boxed angles make effective
use of the material as the minimum moment of inertia is much greater than
when the same angles are used in the back-to-back configuration. 1In an
atmosphere where cleanliness 1s important, starred angles are
advantageous since all surfaces are accessible for maintenance.

The back-to-back arrangement can be used with different types of
chord members and hence the spacing between angles varies considerably.
If the chord of the truss 1s a tee section, then the spacing between
angles 1is relatively small. In other cases, however, the chord members
consist of structural tubing which results in a spacing between angles
that 1s relatively large and hence these double angles can be regarded as
"widely spaced" angles. Fig. 2 illustrates widely spaced angles in the
back-to~back configuration that are being used as web members in a truss.

Recent research (6, 7) on the interconnection of starred and boxed
angle compression members indicates that two interconnectors, one at each
of the third points, should be used in these double angle members to make
them act as an integral unit. The Canadian Standard (4) and American
Specification (1) require only one interconnector. Thus some concern has
been expressed with regard to the interconnection of widely spaced
back-to-back angles.

In this research project 44 widely spaced angles were tested. Two
different column lengths were used but the angles were the same size.
Most of the columns were tested with pinned ends but a few tests were
conducted where the columns were pinned about the y axis and fixed about
the x axis. The coordinate axes are shown in Fig. 3.

Four parameters were studied, which are:

(1) the number of interconnectors,

(2) the back-to-back spacing of angles,

(3) the thickness of the interconnectors, and

(4) the weld pattern used to connect the {interconnectors to the
angle.
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INTERCONNECTION REQUIREMENTS IN STANDARDS AND SPECIFICATIONS

(a) CSA Standard S516.1 (4). One of the reasons for conducting this
research was to determine whether or not the requirements for the
interconnection of double angles as contained in CSA S16.1 are adequate
for the back-to-back arrangement. Clause 18.1.3 states that "Unless
closer spacing 1s required for transfer of load or for sealing
inaccessible surfaces the longitudinal spacing, in line, between
intermediate bolts or clear longitudinal spacing between Iintermittent
welds 1in built-up compression members shall not exceed the following, as
applicable: (a) for compression members composed of two or more rolled
shapes 1in contact or separated from one another by intermittent fillers,
the slenderness ratio of any shape between points of interconnection
shall not exceed the slenderness ratio of the built-up member. The least
radius of gyratlion of each component part shall be used In computing the
slenderness ratio of that part between points of interconnection with
other component parts; ...."

The preceding can be expressed as

K, d
=<

L
c
o i

=l =

where Ky, K. = the effective length factor of an individual angle and of
the built-up section, respectively; d = distance between points of
interconnection; r,, ry = minimum radius of gyration of an individual
angle and of the built-up section, respectively (see Fig. 3); and L = the
length of the built-up member. The geometric properties of the double
angle back-to-back compression members made from equal leg angles are
such that the mean value of the ratio ry/r; = 1.56 with a standard devia-
tion of 0.0l. These values were computed using the data for all the
back-to-back double angles made from equal leg angles listed in the
Canadian Institute of Steel Construction’s Handbook of Steel Construction
(3). With this relationship the minimum number of interconnectors
required by CSA §16.1 can be calculated., Substituting ry/r, = 1.56 and
L/d = n+l, where n = the number of interconnectors, into Eq. (1] results
in a value of n of 0.56. Thus only one interconnector {s required for a
double angle back-to-back compression member made from equal leg angles.

(b) AISC Specification (1). This specification has the same
requirements as CSA S16,1.

(c) DIN 4114 (5). There are two criteria used in this standard to
determine the spacing of interconnectors. These are

d
-‘;-S 50 (2]
E
or a minimum of two interconnectors at the third points, whichever gives
the smallest spacing.

(d) BS 5950 (2). This standard has two requirements for the spacing
of interconnectors which are



d
4 ¢ s (3]
I’s-

kL
I.ld$ [ (4]
rl l"

The minimum number of Iinterconnectors, in addition to the end connectors,
is two, so that the member {is divided into at least three bays of
approximately equal length. The interconnectors should be placed
opposite each other at points of interconnection so that they form a
cruciform, but this does not seem to be applicable to widely spaced
angles.

(e) Example. Consider a back-to-back double angle compression
member 96.0 1in. long which consists of two 2 1/2 x 2 1/2 x 5/16 in.
angles. The number of interconnectors required by each standard is:

(1) CSA S16.1 and the AISC Specification require only one
interconnector, and

(11) DIN 4114 and BS 5950 require three interconnectors.

If the length of the same member is reduced to 48.5 in. the number
of interconnectors required by each standard (s

(1) CSA Sl6.1 and AISC Specification still require only one
interconnector, and

(11) DIN 4114 and BS 5950 require two interconnectors.

(f) Interconnection of Double Angles With Fixed Ends About the Weak
Axis. The interconnection requirements for double angles pinned about
the y axis and fixed about the x axis were determined in accordance with
CSA Sl16.1., Using Eq. [1] and a K. of 0.65, as recommended by the CISC
Handbook (3) as an approximation of the 1ideal fixed ended conditions,
results in & requirement of two interconnectors for any back-to-back
angle made from equal leg angles.

(g) Force and Moment Requirements in the Interconnector. Standards
and specifications generally state force and/or moment requirements for
"lacing" and "battens". Due to the arrangement and spacing of angles in
a widely spaced double angle compression member it is unlikely that
buckling will occur about the y axis which would be similar to buckling
of a battened column, in which case the interconnector would behave like
a batten. It is more likely that buckling will occur about the x-axis
which 1s an Euler type of buckling. Thus the stitching on double angles
does not, in general, behave as lacing or battens and might more
correctly be termed an interconnector. Present practice 1s to use an
interconnector of manageable proportions which is welded with a fillet
weld to the angles.

EXPERIMENTAL PROGRAM

The experimental investigation consisted of tests on "intermediate
length" and "slender" widely spaced double angles. Eighteen intermediate
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length and 26 slender columns were tested of which 15 intermediate length
and 23 slender columns were tested with pinned ends. The other six
specimens, of which three were of intermediate length and three slender,
were tested with end conditions which were pinned about the y axis and
fixed about the x axis (see Fig. 3).

In order to reduce the number of variables the same size angles,
21/2 x 2 1/2 x 5/16 in., were used for all tests. The length of the
specimens were either 96 or 48.5 in. The back-to-back separation between
angles was either 3 or 5 in., the outer dimensions of the structural
tubing used to represent the upper and lower chords of the truss. The
number of interconnectors was varied from zero to two. The
interconnectors were 2 in., wide with a thickness of either 5/32 or 3/8
in. and a length to suit the back-to-back spacing of the angles. It is
not suggested that the 5/32 in. interconnector is a practical
interconnector but the small thickness was selected as some concern was
expressed as to whether or not the strains in a thicker interconnector
would be large enough to be measured. The 5/32 4in. thick
interconnectors were welded to the angles with a 0,1 in. weld while a
3/16 1in, weld was used with the 3/8 in. thick interconnector. Most of
the interconnectors were welded to the angles on three sides, a normal
weld pattern, as shown in Fig. 4(a), but in a few cases the
interconnectors were welded to the angles with welds on the inside only,
a special weld pattern, as shown in Fig. 4(b). Straln gauges were
attached to both faces of the interconnectors in order to determine the
axial forces and bending moments in the interconnectors. Three different
combinations of thickness of interconnector and weld pattern were used
and these will be designated as follows:

(a) Type A - a 5/32 in. thick interconnector with a normal weld
pattern (see Fig. 4(a)).

(b) Type B - a 3/8 in. thick interconnector with a mnormal weld
pattern (see Fig, 4(a)), and

(c) Type C = a 3/8 in. thick interconnector with a specifal weld
pattern (see Fig. 4(b)).

Designation of Specimens. Each test specimen will be designated by
a test series number. For example, 96.0B2.5.1 indicates that the column
has a length of 96,0 in., had two type B interconnectors, there was a 5
in. separation between angles, and the last digit indicates that this
was the first specimen of this type. In the case of 96.08B1.3.1 the "S"
indicates that the specimen was tested with special end conditions which
were fixed about the x axis and pinned about the y axis (see Fig. 3).

Preparation of Specimens. The specimens in this study were
fabricated from 2 1/2 x 2 1/2 x 5/16 in. steel angles made from
G40.21-M300W steel (44 ksi yield). The ends of the angles were welded to
6 in. long pleces of structural tubing made from G40.21-M350W steel (50
ksi yleld). With the large dimension of the structural tubing placed
horizontally a 5 in. separation between angles was obtained. With the
large dimension vertical a 3 in. separation was achieved. The outer
face of each plece of structural tubing contained two holes which were
used to fasten the specimen to the knife edges. The 1initial
out-of-straightness of each 96.0 1in. specimen was measured at the
mid-height and the quarter points prior to each test,




Loading System. Each strut was tested using the set-up shown in
Fig. 5. The load was applied at the base of the column by means of a 100
kip capacity mechanical jack. The jack was placed in a frame which
allowed the top of the jack to move freely in the vertical direction but
prevented rotation of the ends of the specimen. The magnitude of the
load was determined using a load cell, The strains in the interconnector
were determined by using a strain indicator. The lateral displacements
of each of the angles in both the x and y directions were determined with
dial gauges located at mid-height of the specimen as shown in Fig. 6.

The regular end conditions, which are pinned-pinned, were obtained
in the laboratory by using double knife edges. The knife edges allowed
the column to rotate freely about each of the principal axes. The knife
edges were arranged in such a manner that the effective length of the
specimens about each of the perpendicular axes is the same. The double
knife edges are illustrated in Fig. 7.

The special end conditions, fixed about the x axis and pinned about
the y axis, were obtained by using a single knife edge.

RESULTS

The results for the 44 specimens are summarized in Tables 1 and 2.
The factored compressive resistances were calculated in accordance with
Clause 13.3.1 of CAN3-516.1-MB4 (4). The yleld stress and modulus of
elasticity, as determined from standard tensile tests, were taken as 49.3
and 29,560 ksi, respectively. The performance factor was taken as 1.0.

96.0 in. Specimens

These specimens, with a slenderness ratio of 126, can be classified
as slender columns. The upper and lower limits of the slenderness ratio
for slender columns for G40.21-M300W steel were given in a former
standard as 200 and 96.1, respectively.

Zero Interconnectors. Since the individual angles are not
interconnected, except at the ends, Lt can be assumed that each angle
acts independently. The Euler buckling load for an individual angle when
it buckles about the z axis (see Fig. 3) 1s 11,1 kips and hence 22,2 kips
for both angles in the back-to-back double angle compression member. The
Euler 1load for buckling about the minor principal axis of the combined
cross section, the x axis, is 53.8 kips. The compressive resistance
calculated in accordance with CSA S16.1, 1if the section met the
interconnections requirements, is 44.7 kips. The experimental failure
loads for the three specimens ranged from 40.9 to 42.9 kips, as listed in
Table 1. Thus, as expected, the angles are neither pinned to the ends nor
does the cross section act as an integral unit., The average failure load
was 95% of the failure load as computed in accordance with CSA S16.1, but
is only 79% of the Euler load.

The failure mode of the specimens was basically one of flexure about
both the x and y axis, which is termed a "combined"” failure. At failure
the deflection in the y direction was about four times that in the x
direction.

The results indicate that at least one interconnector, the number
required by CSA S16.1, must be used.
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One interconnector. With a back-to-back separation of 5 in. and
one Type A interconnector, two of the three specimens had failure loads
less than that specified by the standard. With one Type B
interconnector, however, all three specimens had loads greater than that
specified by the standard. With one Type B interconnector and a 3 in.
separation, all failure loads were once again greater than that specified
by the standard and were similar in magnitude to those obtained with a 5
in. separation.

In order to determine the effect of the weld pattern, five specimens
were tested with a Type C interconnector. All failure loads were greater
than that specified by CSA S§16.1 and were of similar magnitude to those
obtained with specimens which contained the normal weld pattern. Since
this weld pattern does not offer significant rotational restraint to the
angles, the conservative approach would be to avoid this weld pattern.

The double angles with double knife edges behaved consistently and
buckled about the x axis, the weak axis of the entire cross section.

As shown at the end of Table 1, three specimens were tested with
special end conditions, that is, fixed about the x axis and pinned about
the y axis. Theoretically the specimens should have failed by buckling
about the y axis at a load of 89.1 kips. In all cases the failure loads
were greater than that specified but the fallure mode was one of buckling
about both the x and y axes. The failure load of 89.1 kips was
calculated using an effective length about the x axis equal to 0.65
times the centre-to-centre distance between the structural tubes.
Although CSA §16.1 requires two interconnectors for these columns only
one was used in the tests and that seemed to be adequate.

Two Interconnectors. Three specimens with two Type A
interconnectors and a 5 in. separation were tested. All had failure
loads greater than that specified by CSA Sl6.1. With two Type B
interconnectors and the same separation the faillure loads were
essentially equal to or greater than that specified. The average failure
load of specimens with two interconnectors was essentially the same as
that of similar specimens with one interconnector.

The failure mode was one of buckling about the x axis.

48.5 in. Specimens

These columns, which had a slenderness ratio of 64, can be classed
as intermediate length columns since in a previous standard the upper and
lower limits for intermediate columns made from G40,21-M300W steel were
given as 96.1 and 20, respectively.

The results for these columns are given in Table 2. The failure
loads of all specimens, except those with zero interconnectors, were
greater than those specified in CSA Sl6.1. 1In these tests only the
thicker interconnector, 3/8 1in., was used because of experience gained
from testing the slender columns with a 5/32 in. interconnector. Once
again, changing the back-to-back separation from 3 to 5 in. or changing
the number of interconnectors from one to two did not significantly
effect the failure loads. The three specimens with a Type C
interconnector and the special weld pattern had failure loads similar to



those specimens which used the regular weld pattern to weld the
interconnectors to the angles.

The specimens with the special end conditions had failure loads
equal to or greater than that specified in CSA Sl6.1.

The failure mode of the 48.5 in. specimens was the same as for the
96.0 1in. specimens. With zero interconnectors and with the special end
conditions, the failure mode involved buckling about both the x and ¥
axis while specimens with one or more interconnectors failed by buckling
about the x axis, the weak axis of the composite cross section.

Forces and Moments in Interconnectors

The strains measured in the interconnectors indicates that forces
and moments are very small. The largest force of 0.9 kips and moment of
3.5 in.~kip were measured in Type C interconnectors but not in the same
specimen,

CONCLUSIONS
The following conclusions can be made based on the preceding work:

(a) There is a great variation with regard to the design of the
interconnectors for the back-to-back double angle compression members
between North American and Juropean standards.

(b) To satisfy the requirements of CSA S16.1 and the AISC
Specification, only one interconnector is required at mid-height of any
back-to-back double angle made from equal leg angles.

(c) Struts with zero interconnectors had a fiilure mode which
involved buckling about both the x and y axes. Columns with one or more
interconnectors consistently failed by buckling about the x axis, the
weak axis of the composite cross section.

(4) Columns with one or more interconnectors had a failure load
which 18 at least equal to and in most cases greater than the compressive
resistance specified by CSA Sl6.l.

(e) Axial forces and moments in the interconnectors are very small.

(f) The weld pattern used to weld the interconnectors to the angles,
whether welded on three sides or the inside only, did not affect the
failure load. Conservatively, however, it might be best to use a normal
weld pattern of weld on three sides of the interconnector.

(g) For back-to-back double angle compression members made from
equal leg angles, only one interconnector at mid-height is required.
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TABLE 1. - RESULTS FOR 96.0 IN. SPECIMENS 229

TEST ACTUAL EXPERTMENTAL FAILURE 20
NUMBER FACTORED FAILURE MODE ’
COMPRESSIVE LOAD (x)
RESISTANCE, Py (kips)
CSA S16.1

(:1_.l (kips)

96.0A0.5.1 44,7 42.9 Combined 9
96.0A0.5.2 44.7 42.9 Combined 96
96.0A0.5.3 44,7 40.9 Combi ned 92
96.0A1.5.1 44,7 42.0 x axis 94
96.0A1.5.2 44,7 46.1 x axis 103
96.0A1.5.3 44,7 44,1 x axis 99
96.0A2.5.1 44.7 49.9 x axis 112
96.0A2.5.2 44,7 49.9 x axis 112
96.0A2.5.3 44,7 47.0 x axis 105
96.0B1.5.1 44,7 51.9 x axls 116
96.0B1.5.2 44,7 51.0 x axis 116
96.0B1.5.3 44,7 47.0 x axis 105
96.082.5.1 44,7 55.1 x axis 123
96.082,5.2 44,7 44,1 x axis 99
96.082.5.3 44,7 49.9 x axis 112
96.0B1.3.1 44,7 49.0 x axis 110
96.081.3.2 44,7 48.1 x axis 108
96.0B1.3.3 44,7 51.0 x axis 116
96.0C1.5.1 44,7 49.9 x axis 112
96.0C1.5.2 44,7 47.0 x axis 105
96.0C1.5.3 44,7 47.0 x axis 105
96.0C1.5.4 44,7 48.1 x axis 108
96.0C1.5.5 44.7 48.1 x axis 108
96.0881.3.1 89.1 100.7 Combi ned 113
96.08B1.3.2 89.1 98.0 Combined 110

96.08B1.3.3 89.1 103.0 Combined 116
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TABLE 2. - RESULTS FOR 48.5 IN. SPECIMENS

TEST ACTUAL EXPERIMENTAL FAILURE Pflcr .
NUMBER FACTORED FAILURE MODE g
COMPRESSIVE LOAD (%)
RESISTANCE, l’f (kips)
CSA S16.1
Cr.a (kips)
48.5A0.5.1 103.5 95.1 Comb1ined 92
48.5A0.5.2 103.5 95.1 Combined 92
48.5A0.5.3 103.5 94,0 Combined 91
48.5B1.5.1 103.5 107.9 x axis 104
48.5B1.5.2 103.5 109.9 x axis 106
48.5B1.5.3 103.5 112.0 x axis 108
48.582.5.1 103.5 103.0 x axis 100
48.582,5.2 103.5 109.0 x axis 105
48.582.5.3 103.5 107.0 x axis 103
48.5B1.3.1 103.5 106.1 x axis 103
48.581.3.2 103.5 109.0 x axis 105
48.581.3.3 103.5 104.1 x axis 101
48.5C1.5.1 103.5 109.9 x axis 105
48.5C1.5.2 103.5 107.0 x axis 103
48.5C1.5.3 103.5 105.0 x axis 101
48,.55B1.3.1 129.4 136.0 Combined 105
48.58B1.3.2 129.4 133.1 Combined 103
48.5881.3.3 129.4 133.1 Combined 103
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STABILITY OF STEEL BOX GIRDERS RESULTING FROM MODEL STUDIES

Zbigniew Manko
Department of Civil and Environmental Engineering
Florida International University, Miami, Fl. 33199

ABSTRACT

This paper presents the results of experimental studies
the aim of which was to determine the limiting load carrying
capacities and the forms of stability loss in box spans. The
studies were conducted for four schemes of loading on 12
models of such spans made of sheet brass. Relationships be-
tween the schemes of loading and the local forms of of
stability loss were found. Moreover, the load capacity of such
spans was found to be greatly dependent on the deck stiffness
and the character of the load. The kind of deck plate and the
arrangement along the length of the span of such elements as
diaphragms, cantilever ribs, webs, stiffening, etc., have a
special influence on structures of this type. This paper
presents also a comparison of the obtained results with the
results obtained by the Finite Strips Method.

INTRODUCTION

The problem of the stability of a thin-walled construc-
tion (Kl8ppel et al. 1966; Massonnet et al. 1972) is currently
the subject of widespread research, in consequence of numerous
breakdowns, especially of steel spans of box bridges. The
problem seems to be serious considering the numerous damages
of steel bridge spans which were shown at the Xth and XIth
IABSE Congresses (Tokyo 1976 and Vienna 1980) and at the Con-
ferences of the Steel Construction (London 1973 and Moscow
1978). Some results are presented of research into the be-
havior of models of box spans under destructive loads. The
purpose of the research was to determine the maximum load
capacity of the spans and of the plate deck, as well as the
character of the stability loss in this type of structure.

MODEL AND RESEARCH DESCRIPTION

All the models were one-span, free supported by a M63
brass plate of varying thickness for particular elements of
the span. All the elements were Jjoined by tin soldering.
Transverse and longitudinal cross-sections as well as the
detailed arrangement of dial indicators and strain gauges are
shown in Fig. 1. The basic types of models were tested. Type I
was a box with a plate deck in the shape of an orthotropic
plate and it was stiffened with diaphragms. Type II differed
from Type I in that it had no intermediate diaphragm. In Type
III, the plate deck was an isotropic plate with closer diaph-
ragm spacing than in Type I. Altogether, 12 models for four
load schemes presented in Fig. 1 were tested. There were two
models of type I - I1 and I2; three models of type II - II1,
112 and I13; and one model of type III - III1.
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Fig. 1. Types of models and loading schemes.

Fig. 2. General view of the test
stand.

After full failure tests had been carried out on models of
types, I and III, and the damaged panel between the two diaph-



ragms had been cut out, six additional models of shorter span

were built. The following three independent measuring systems

were used in the tests:

1. A system which controlled and recorded the realized loads.

2. A system which measured unit strains, on the basis of which
normal stresses in selected points of all the longitudinal
ribs and in the upper and the lower plate could be deter-
mined.

3. A system which measured vertical and horizontal displace-
ments in the longitudinal ribs, in selected points of webs,
the deck and the lower plate.

Detailed arrangements of dial and strain gauges for each model

are shown in Fig. 1, and a general view of the tests stand is

shown in Fig. 2.

MODEL I
o
R 28 825 8% BR 858286588 83 ¢8
mm I as
: 7T
GPUES&H&N 12
\ = 8 8
25323888 :58 83885 358g¢cs
e

I1a P=21,085 kN P=9338kN.
g & s 8
B EIgo 3B sz OB TR 2N
oo am o

I P=25,604kN
2

-

P=12.049 kN I12b

Fig. 3. Ultimate diagrams of the transverse cross-section dis-
placements at the half-length of the spans of model I
under destructive force action.

The models were subjected to loads monotolically increasing at
every 0.25 kN up to the destructive force or ultimate
strength. The destructive force or ultimate strength was
defined as the value of the load at which local losses of
stability in the deck or webs were accompanied by plastic
deformation in these elements. In the case of large deforma-
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tions, divisions of the material sometimes occurred, e.g.
sheet puncture or cracking of welds.

TEST RESULTS

Some test results obtained from measurements made at the
half-length of the spans are presented. The ultimate values of
the cross-section displacements, under the destructive force
for three types of models and various schemes of loading are
shown in Fig. 3 for model I and in Fig. 4 for models II and
III. Fig. 5 shows the relationship between (load) force P and
the vertical displacement w of a selected cross-section point
characteristic of all the models in half-span for the full
range of loading, at every 1 kN, until destruction.
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(=4
8 8§
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Fig. 4. Ultimate diagrams of the transverse cross-section dis-
placements of the half-length of the span models II
and III under destructive force action.

The characteristic points are: point 5 (the middle rib or the
center of the plate) or point 8 (above the web of the box)
depending on which element of the span had failed or been
destroyed. Fig. 5 also shows the relationship P = P( ) for
point 5 of some selected models. The ultimate diagrams™ of the
local forms of buckling (final forms of destruction) for all




the models and the loading schemes after unloading are
presented in Fig. 6 (model I) and in Fig. 7 (models Il and
I11). The view of the deck puncture in model I2a for loading
scheme A is shown in Fig. 8, The antisymmetric form of the
deck plastic strain in model I2b and the view of its convex
web destroyed by scheme B loading are presented in Fig, 9 and
10 respectively. The view of model II destroyed by scheme B
loading is shown in Fig.11. Fig. 12 presents the view of the
deck and web of model III1 destroyed by scheme B loading
(symmetric form); and Fig. 13 shows model III1a destroyed by
scheme C loading. Furthermore, the comparison of results ob-
tained for model II (at 1 kN) with results obtained by Mahko
et al. 1977-1980 and 1984-1985 with the finite strips method
for four schemes of loading is presented in Fig. 14.
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Fig. 5. Diagrams P = P(w) and P = P(E) for selected character-
istic points 5 and 8 at the half-length of the span.
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ANALYSIS OF RESULTS

It was found that the deformation range of the load car-
rying plate varied according to the type of top deck plate
(iso-orthotropic) and the kind of stiffening (with or without
diaphragms). The range of strains for the load carrying plate
deck is different. In spans with an orthotropic plate and
diaphragms - model I - only three inter-diaphragmal sections
clearly mate along the span length. However, in the case of
local vertical loads in spans without diaphragms - model II -
mating occurs along the whole span length but the displace-
ments are considerably greater F Fig. In isotropic plate
span - model III - the deck sheet mates over the whole span
length and considerable deflections are observed between the
diaphragms in the directly loaded section. In case models II
and III, mating of the cross-section between the webs is ob-
served over the whole deck width, even at narrow loads
(schemes A and B, Figs. 4 and 12) but deflections model III
are greater. Spans lose their carrying capacity as a result of
the local buckling of deck elements, ribs or webs, depending
on the scheme of loading. The loss of stability in the case of
loading schemes A and B is the results buckling of the middle

MODEL 1
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Fig. 6. Ultimate diagrams of the local forms of buckling in
the c;oss-sectlon at the half-length of the span for
model I.
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Fig. 7. Ultimate diagrams of the local forms of buckling in
the cross-section at the half-length of the span for

models II and III.

Fig. 8. View of the
deck puncture
in model I2a
for scheme A
loading.

rib or a puncture of the deck (scheme A - model I2a, Figs. 6
and 8); and in the case of loading schemes C and D, it is the
outcome of the web buckling under loading, leading to cracking
of the welds which join the webs to the deck plate.
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Fig. 9. View of the
antisymmetric
form of the
deck plastic
strain in model
I2b under load-
ing scheme B.

Fig. 10. View of the
convex web
in model I2b
resulting
from loading
scheme B.

Fig. 11. View of model
II destroyed
by loading
scheme B.

Buckling of a web occurred only in model II under scheme B
loading (Fig. 11) and it was accompanied by a considerable sag
in the directly loaded ribs. In the case, the increasing load
causes the closing of the cross-section (reduction of the dis-
tance between the webs at the top of the span), which is at-
tributable to the lack of intermediate diaphragms. It should



also be noted that the buckling of webs which results from
loading according schemes A and B develops symmetrically to
the outside of the span, except for model I2b (Figs. 6 and
10), and the buckling which results from loading according to
schemes C and D develops to the inside of the span.

12. View of the sym-
metric form of
the destruction
of model IIIM
under loading
scheme B.

The unsymmetrical loss of stability by the webs could be
caused by the eccentric positioning of the load or to inac-
curacies in the construction of the models. Graphs of the
relationship P = P(w) and P = P(EJ have linear character for
all the models. A change in the graph's slope occurred only in
the case of model 1I2a, loaded according to scheme A,
presumably premature failure of the middle rib (Fig. 5).

Fig. 13. Side view of
model III1a
destroyed by
loading scheme C.

The greatest load capacities are achieved by the models in
which the loads are transferred directly onto the webs (scheme
D - models I1b and III1b), when the deck, Iirrepective of its
type, is loaded by an evenly distributed load, and the highest
values are reached by those models with orthotropic plates. At
the same time, models of smaller span achieve load capacities,
for the same loading scheme, which are similar to those of
models of greater span (models I1 and I2b). However, the
deflections of the first are smaller. For the same loading
schemes, the deflections of the models with isotropic plates
and those with orthotropic plates are almost similar (models
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I1 and III1). For scheme B loading, the models without diaph-
ragms (models II1 and II2) achieve about half the load
capacity of those with diaphragms (model I1 and I2, Fig. 5).

l

3:=§§ B> 2. £ 2
:3sgf o EEERE
IR R R R R ERIE R IR
o
. |

a)
g §- §. MODEL 11 S' g- g
3 ¥ ¥ ez B 08
~= =~ 8 @ T T L
85 85 2 83 § ¢ 3
- g = S N a6 =
§8 R 8% 288358 8°8853
i ] ' mn mn
b) d)
ek A | i 3 8
e ¥ g [ § £ 8
- s— Research = ememee Finite Strip Method ( )

Fig. 14. Comparison of results obtained for the model II for
four schemes of loading.

Studies of this scheme of loading conducted on two models gave
results which were in close agreement (Fig. 4). At the same
time, model II has a similar load capacity as the models with
diaphragms (model I2) when loading scheme C is applied. The
comparison of computational results and those obtained ex-
perimentally for model II has shown relatively high agreement
of the results (Fig. 14).

CONCLUSIONS

As a result of the studies conducted on the models of box
spans, a relationship was found between the schemes of loading



and the local forms of stability loss. Deck stiffness and the
character of the load have a decisive influence on the load
capacity of box spans which is higher for models with an or-
thotropic plate and for loading schemes C and D. The kind of
deck plate and the arrangement along the length of the span of
such elements as diaphragms, cantilever ribs, webs, stiff-
ening, etc., acquire special significance for structures of
this type. Moreover, this paper presents a comparison of the
obtained results with the results by the Finite Strips Method.
This method can be successfully applied to constructions of
this type for solving various analytical problems. The studies
conducted so far represent the first stage of the work which
is to tackle the above problems. Studies on large scale steel
spans will be made in the future.
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APPLICATION OF THE FINITE STRIPS METHOD
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ABSTRACT

The paper presents the attempt to apply the Finite Strips
Method to the analysis of the thin-walled simple-supported box
girders. The possibility of the application of this method is
connected with the construction of such structures charac-
terized by the stable geometrical and physical properties
along the analyzed span. The advantage of this method is that
it makes use of functions orthogonal to the longitudinal ap-
proximation, leading to the separation of the equations of
equilibrium for the particular harmonics. This allows for
remarkable economy of calculations by comparison with the
standard method of finite elements.

The main aim of this approach is the presentation of the
analysis of buckling of such constructions under the arbitrary
loads with the application of the Finite Strips Method and
complex trajectories of the primary stress and interconnected
buckling shapes. The examples of one and three-chamber box
girders were treated for various loads schemes. The analysis
of the results shows convergence depending on the number of
strips and terms and the comparison with the other solution
was made. Additionally the influence of orthotropy on the
stability of such girders was taken into consideration.

INTRODUCTION

The stability of thin-walled construction is a problem
which is presently the subject of wide research because of
numerous breakdowns, especlially of steel spans of box girders.
The problem seems to be remarkable, considering the numerous
damages of the steel bridge spans which was shown at Xth and
XIth IABSE Congresses (Tokyo 1976; Vienna 1980) and at the
Conferences of Steel Construction (London 1973; Moscow 1978).
Solution methods have depended on the complexity of the par-
ticular structure, the nature of the loading and support con-
ditions, the type of buckling considered and the required ac-
curacy. The completely general method employs finite elements
(Przemieniecki 1973; Zienkiewicz 1977). However, the well-
known expansiveness of finite elements can make other methods
competitive for particular types of structure and it is for
this reason that the finite strips method has received atten-
tion (Cheung 1968 and 1976; Mahko 1975, 1978, 1980).

The paper presents the attempt to apply the Finite Strips
Method to the analysis of the prismatic thin-walled simple-
supported box girders. The possibility of the application of
this method is connected with the construction of such struc-
tures, characterized by the stable geometrical and physical
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properties along the analyzed span. The advantage of this
method is that it makes use of the functions orthogonal to the
longitudinal approximation, leading to the separation of the
equations of equilibrium for the particular harmonics, which
allows for remarkable economy of the calculations by com-
parison with the standard Finite Elements Method.

The main aim of this approach is to present the analysis
of the buckling of such constructions under the arbitrary
loads with the application of the Finite Strips Method and
complex trajectories of the primary stresses and coupled buc-
kling shapes (Graves Smith 1978; Plank and Wittrick 1974;
Mafko et al. 1984 and 1985).

BOX GIRDERS DISCRETIZATION

Analyzed box girders (Fig. 1a and h) have been divided
into a set of narrow longitudinal strips connected along the
edges. Properties of each strip are assumed to be constant
along the whole surface, they can be, however, various for
particular strips. The strips are flat elements subjected to
the forces active in the plane (plane state) and to bending
(bending state). The state of the strain of the forces active
in the plane is explicitly described by the composites u and
v, and the state of strain by bending is described by w and
parameter & (Fig. 1b). Behavior of the typical strip is
described by the displacements being the local degrees of
freedom on their edges in the set qy[i = 1,...,4(M+N)]; where
M and N are numbers of the harmonics, expressed by the har-
monic Fourier series in the longitudinal direction and polyno-
mial linear functions for the plane state and of the cubic
ones for the bending state in the transverse direction of the
strip (Cheung 1968; Mahko 1975).

In the dimensionless co-ordinates = y/1 and 2= x/b
corresponding displacement functions show as follows

u = t1n(7Jsin(m:ry), e NuiesM, (1)
v = fzm(q)coa{mﬂrp) + ag(2)1(1/2 - y). (2)
w = f3,(n)sin(nxyg), n = 1...N, (3)

where the functions Lamr foms 13 , are given in details in
the papers of Cheung (m19682 and “1976) and Mahko (1975 and
1978). It can be showed relatively easily that the second term
in the equation (2) allows for the equilibrium of the strips
when the final stress G, is described by

Gy = - Ag(Q)E/(1 - v2), (4)

In this way, choosing suitable functions g(p) for the strips,
various systems of the longitudinesl final stresses can be
modeled for the construction as the whole. In order to obtain
the non-conjugate equations of transformations between the
global X, Y, Z (Fig. 1c¢) and local degrees of freedom, the
nodes displacement u, v, w and 6 are assumed to be defined by
the equations
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U = Upsin(marg), (5)
V = Vycos(mag) + ¥1(1/2 - g¢), (6)
W = Wysin(nwg), (7)
6 = Onsin(n 'x!), (8)

where U, V,, W,, and 6, are the degrees of freedom in any
nodal lfhe vﬁlle ¢ is the value of ag(p) in the node. The com-
plete collection of the global degrees of freedom is desig-
nated by Qs = [J = ,...2(M+N)J], where J is the number of the
nodal linea. Compatibility then requires that for each strip,
there is a linear relationship between q; and Q; of the form

qy = Ty4Q4 (9)

where the transformation matrix T is established by the pro-
cedures of the stiffness method oijstructural analysis (Cheung
1976; Zienkiewicz 1977).

Transverse load of the construction is distributed into com-
ponents 0, V, W, M (Fig. 1b) corresponding to the global dis-
placements which are then developed into the same series as
the displacements (Cheung 1968; Manko 1975; Zienklewicz 1977).

PRIMARY FORM OF THE TRAJECTORY OF EQUILIBRIUM

In order to obtain the equilibrium trajectory the total
potential energy V of the deformed construction under a con-
servative load system in the function of the global degrees of
freedom Q; should be defined. This energy 1s composed of the
internal strain energy U and the potential energy W of the
loads. The internal strain energy for strip Ug is found from
the result of equation

Et 2 2 1
U. - m_-:é-)-—fAl:ex + Ey + ZﬂExEy L T(1 - ﬂjrzxyjdﬂ ¥

Et? 2%wd2w 2%
{(w2w)2 - 2(1 - V)= - (==)2]}dA,(10)
' 24(1 - 92)'1; o x2dy? 2xdy '

where the strain components are defined according to the dis-
placement by the following non-linear strain-displacement
relations

du 1 du .2 v .2 v 2

P R g 2t Rk K It
v 1 du .o v .2 LLIRY

gy = . ¢ - {(.3;_) + (_5;_) & il )=l, (12)
Ju v du 2du av  dv Adw v

Txy'T'ax’[ax 'BT’T?T*T;"ST]'H})




In the expression enclosed in the square brackets of the
equations (11-13) the displacements w and u together model the
shapes of general (overall) buckling modes in the case when
the nodal lines of structures are subject to remarkable dis-
placements, the shape of the local buckling modes is modeled
by w, while v has no considerable influence. The potential
energy of the loads connected with the strip W, is stated by
the expression

b y=1
Vg = -tfo (6yvyl o (14)

where G, is given by Graves Smith (1978) and Mafiko et al.
{1981, ¥§84. 1985)., After doing the proper substitutions of
the displacement functions (1-3) and integration the equation
for Vg can be defined

1 1
Vg = -Aagqy + —7(agy - Acgq)ayqy ¢ 5721 3k9193%> (15)

So, the total potential energy of the construction according
to the global degrees of freedom can be found by substituting
the equations of transformation summing for the strips and ad-
ding the lateral loads potential energy ('.PB 19¢), where B,
are corr:apondlng coefficients depending on tﬂe Ilcmds. Hencg.
one obtains

:
VA, B0 Qq) = -AhgQy - 8850y ¢ oAy - RCy5IQQy ¢

1
where
FEs 35 K = Ass s 2l s WIT1 Bt = 1iackdls (17)

Use of the principle of the stationary potential energy mini-
malization, the equilibrium paths can be found by differen-
tiating V with respect to Q; and equating the obtained deriva-
tives Bl to zero. In this way the following equation is formed

Bl(ﬂ-, .P' Ql’ - -ui - .papl + (‘IJ -a.Cu)Qd *
+ %Aiakqqu = 0. (18)

from which the required number of the non-linear equations are
obtained for the unknowns Q; as functions of the load
parameters A and @..

The cnrresponﬂing non-linear primary trajectories can be
also obtained by means of perturbation (Croll et al. 1972) or
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the other methods; but the paths got in this way are so very
close to the linear in most practical cases the complications
involved would not seen to be necessary. The present approach
considers only the linear solutions obtained from equation the
(18) by taking into account the first three terms and solving

-M.l - .PBPI + AIJQJ = 0, (19)
The solution of the equation (19) takes the general form
in which the primary trajectories are produced by indepen-
dently changing A and 8, . Since the displacement functions (1-
3) are orthogonal, tﬂ% coefficients corresponding to the
various harmonics are uncoupled, enabling solutions to be ob-
tained with computational effort only linearly proportional to
the number of harmonics considered.
THE SECONDARY EQUILIBRIUM PATH

For the sake of the simplicity of analysis, the construc-

tion behavior under the end load and constant lateral loads

(® Epl) vas solely examined. Then the corresponding primary
pugh of equilibrium takes the shape

qi - R.Dl + Fli (21)
where Fy = @.E (Eq.19) are the initial displacements from
the lateral 18afs. Supposing that the secondary path branches
from the primary trajectory at A,, its displacements can be
written as

Q¥ = Q4P + aqy, (22)
where QP are the primaery trajectory displacements for the
same A. &he derivatives of potential energy V corresponding to
the secondary path E;* can be obtained by substituting the
equation (22) into (1&5

Etv = Eip + (AIJ - "'cij + liqukp)ﬂg‘-} + %Aldkﬂq‘jﬂokl (23)

where

EqP = Ey(a, Q4P) = O. (24)
From the equation (24) one obtains displacements of the
primary path, because it results from the definition (E,P =
0), that this is an equilibrium trajectory. Thus

Ei“(r\., AQJ) - [‘13 + Aiijk - a'(C:I.J - A;Jkok) ]ﬁQJ +

+ —7Aq 3kAQ580;. (25)



The secondary path can be described by means of the perturba-
tion method (Croll et al. 1972) assuming that it branches off
from the primary trajectory at the point (A,aQq) = (A&., 0).
Then, in order to state the increase along this irajectory ar-
bitrary parameter g should be selected. When supposing A and
4Q; are anslytic functions of g

£F
Rl Z"‘-,r 7 (26)
r
Er
AQI = ZAQI.I.‘ =i il r= 1,...R,y (27)
3
where
r
QPR (28)
dg’

The secondary path is the equilibrium path (E;¥ = 0) for all
the values g, and therefore all derivatives of the higher or-
der E;¥ in relation to g at the branching point equal zero.
Hence, the sets R of the perturbation equations can be derived
as

[Bl,r'](at, 0) =% (r = 1,..,R). (29)

The equation (29) is sufficient in the aspect of number for
stating the unknowns A . and &Qy ., if g is taken as one of
these unknowns. Thus if g = a, t%hn Aq4=1 ap,=0 (> 1)
and there are then sufficient equationb to obtaln aQ p+ Con-
sidering only the first set of the perturbation equa%lona and
differentiating the equation (25) one obtains the expression

(By,1"J(ag, 0) = [Agg + ApgFic = Ac(Cyy = AygeDy)laQy 4 = O,

(30)
which leads either to the trivial solution aQ = 0 or to the
indeterminable solution for the particular ghiua of A&, for
which the following determinant equals zero

This is the standard problem of the eingenvalues and the smal-
lest values A, of the 2(M+N)J satisfying the equation (31)
states the cri?ical load buckling of the given construction.

NUMERICAL EXAMPLES

On the basis of the algorithm presented, a calculation
procedure in ALGOL-1900 was elaborated. The calculations were
executed on the compliter ODRA 1305 in the Computer Center of
Wroclaw Technical University. The applicability of the finite
strips method to the analysis of more complex structures is
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illustrated by the case of the thin-walled box girder shown in
Fig. 1h and it was compared with the results given in the work
by Graves Smith (1978). Critical (bifurcational) strains in
the strip of constant thickness can be expressed in the form
given by Timoshenko and Gere (1961)

N a°D
B w el e 3 (32)
= t b2t

where k is the dimensionless coefficient dependent on the way
of loading, conditions of support and length of plate's sides
ratio.

One Box Girder Under Partial Web Loading

The analysis was made for the two linear loads, each of
the length of 14, placed above webs symmetrically with the
relation to the span's longitudinel axis (Fig. 1h). The cal-
culation were verified and optimized by different methods
which, among others, consisted in assuming the arbitrary num-
ber of strips p and the harmonics M (Fig. 11i). The results of
buckling coefficients for the ratios 11l1 = 0.25, 0.50 and
1.00 are shown in Table 1.

Table 1. Comparison of the obtained results for one-cell

girder
Load kg1 N p k p M k
scheme
Smith Mariko Smith Mahko
4 -~ 3351 5 3.327 3.392
8 3.245 3.342 7 3.227 3.287
10 - 3.305 9 3.205 3.237
0.25 7 ) 3.292 11 3.200 3.201
12 3.227 3.287 12 19 - 3.196
16 3.220 3.215
5 20 3.216 3.198
8 - 2.423 1 - 2.732
16 -~ 2.412 16 5 - 2.487
0.50 7 9 2.410
19 - 2.406
8 ~ 1.738 1 - 2.013
16 - 1.734 16 5 - 1.811
1.00 7 9 - 1.736
19 - 1.733

* - the strip with higher order



Three-cell Box Girders Under The Arbitrary Load

The Finite Strips Method was alsoc applied to the compli-
cated thin-walled box girder given in Fig. 1a for different
load schemes. Four load schemes were here analyzed (Fig.
1d,e,f,g). The first load was identical with the one in Ex-
ample 1, the second load equaled half of it, the third formed

Table 2. Juxtaposition of the obtained results for three-
chamber girder

Load M p k P N k
scheme
0.25 0.50 1.00 0.25 0.5 1.00
12 4,623 4.025 3.326 1 4.987 5.032 4.133
15 4.604 4,012 3,303 5 4.713 4.128 3,677
1 9 18 4.591 4.001 3.292 18 9 4.591 4.001 3.292
22 4.587 3.902 3.288 19 4.583 3.892 3,279
12 5.325 4.734 4.010 1 5.923 4.908 4.423
15 5.301 4.692 3.962 5 5.308 4.702 4.041
2 9 18 5.282 4.668 3.939 18 9 5.282 4.668 3,939
22 5.272 4.649 3.912 19 5.265 4.639 3,913
12 4,038 3.425 2.732 ; | 4.325 3.623 2.983
15 4.001 3.384 2.698 5 4,081 3,427 2.712
- 9 18 3.980 3.361 2.669 18 9 3.980 3.361 2.669
22 3.969 3.342 2.648 19 3.962 3,341 2.642
12 6.125 5.384 4.123 1 6.432 5.621 4.325
15 6.040 5.332 4.024 5 6,182 5.342 4.132
4 9 18 5.981 5.299 4.001 18 9 5.981 5.299 4.001
22 5.937 5.278 3.998 19 5.936 5.270 3.996

a uniform load placed along the whole width of the span, and
the fourth was similar to the load according to the scheme 3
while its width occupied only the middle cell. The lengths of
loads in the four load schemes were identical and equaled 1 ‘5
= 0,25, 0.50 and 1.00. The elasticity constants E = 3.3 GN}
and v= 0,375 were annu!ed as in the case of metaplex (Manko
1975), and E = 106 GN/m“ and v = 0.348 as in the case of brass
(Manko et al. 1977, 1978, 1979, 1980, 1984 and 1985).

The results were analyzed according to the number of
strips and the harmonics used in the solution. The influence
of the number of strips p on the final result was analyzed
firstly. Four different divisions were made of girder's ele-
ments into strips, distinguishing 12, 15, 18 and 22 strips
(Fig. 1d,e,f,g). Assuming the divisions, considerably small
influence of number of strips was found out on the final
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result. Then, for the optimal divisions of box girder into 18
strips optimization was done according to the number of har-
monics, 1, 5, 9 and 19 harmonics were assumed. Considerable
fast stabilization was found out as convergence of results
depending on the number of harmonics (terms). It can be stated
that 9 terms are sufficient to assess the correct results of
coefficient k. All the results of analysis were given in Table

The Influence Of Material Orthotropy

The influence of material orthotropy on the stability of
some one- and multi-box girders in compression was addi-
tionally analyzed. All the computed results (Fig. 2) are
presented graphically, i.e. the dimensionless buckling stress
is plotted against the dimensionless half wavelength of the
buckling mode. As such results only give an indication of the
effects of orthotropy on the buckling stress and the half
wavelength values, No attempt has been made to directly il-
lustrate the influence of orthotropy on the buckling mode. The
procedure adopted for the illustrating the influence of the
orthotropy on the structural response to compressive loading
consists of comparing various orthotropic results with
geometrically similar and equal weight, isotropic results for
each type of one- and multi-box structures in turn (equal
weight, isotropic results are obtained by reducing the plate
thickness in the ratio of the densities of the isotropic and
orthotropic materials). Fig. 2a shows a plot of the initial
buckling stress against half wavelength u of the buckle for
the series of doubly symmetric, rectangular, brass boxes. This
graph has been included for the sake of completeness, since it
illustrates the influence of variations in the geometric
parameters, rather than the material parameters, for par-
ticular structure.

In contrast to this, Fig. 2b illustrates the significant
variations in the initial buckling stress that the material
orthotropy may give rise to when the geometric parameters are
maintained constant. Moreover, the superposition of the buc-
kling curves for equal weight and geometrically similar brass
boxes gives and indication of the structural efficiency of
metaplexes - metaplex being approximately seven times lighter
than ©brass. Furthermore, Fig. 2b confirms for multi-plate
structures what is well known for single, specially or-
thotropic plates, namely, that material orthotropy has a sig-
nificant influence not only on the initial buckling stress but
also on the wavelength at which this occurs. Thus the initial
buckling minimum stress value occurs at longer wavelengths for
higher values of the longitudinal elastic modulus and this ap-
pears to apply throughout the results presented in this work.
Since this computer program handles rather more complicated
structural types than the other two examples, the computa-
tional times involved in producing the same quantity of
results are rather more lengthy. Hence, more emphasis has been
placed on demonstrating the versatility of the program and so
results for number of different structural types are
presented, somewhat at the expense of achieving concrete in-
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formation about the effects of orthotropy. These results for
multi-box spans are presented in Fig. 2¢ and d. Once again the
influence of orthotropy seems to be quite significant.

CONCLUSIONS

The presented numerical examples show that critical
stress for complicated structures such as box girders can be
effectively and with high accuracy calculated by means of the
Finite Strips Method. The presented algorithm based on this
method is an effective tool for box girder stability analysis.
In relation to more general programs based on the method of
finite elements the worked out program contributes to con-
siderable decrease of calculation time. It {s particularly
seen in the case of structures simple-supported on both op-
posite edges. Still in each case the dimension of the matrix
diminishes because of the generally small number of finite
strips. It 1is consequently followed by the simplification of
input data.

Graphs of initial buckling stress against the half

wavelength of the buckling mode have been computed for a wide
range of isotropic and orthotropic box girders in a state of
of uniform compression and under the arbitrary loads.
By comparing the orthotropic results against the equal weight
and geometrically similar isotropic results, it has been
demonstrated that the material orthotropy can significantly
alter both the initial buckling stress and the half wavelength
at which buckling occurs. By use of this algorithm a rela-
tively narrow strip matrix of construction is obtained. Hence,
the expenditure of work for calculations is considerably smal-
ler compared with the finite elements method, and moreover,
only a few harmonics are necessary to obtain the proper
results.
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SSRC 4th EDITION OF GNIDF =
CHAPTER ON STIFFENED CYLINDEPS

Donald R, Sherman
University of Wisconsin-Milwaukee

INTRODUCTION

The primary purpose of this paper is to introduce the
topic of stiffened cylinders and provide the background for
the research and design papers that follow. A good way to
accomplish this is to summarize what the SSRC Guide has to
say about stiffened cylinders., The 3rd edition of the Guide
was the first to have a chapter devoted to Cylindrical Tubes
and Shells. 1In the 4th edition, this chapter has been
updated as well as rearranged for clarity and to provide more
definitive guidelines. As in other chapters of the Guide,
the stability criteria are based on theory which has been
empirically modified to agree with test data.

The seven sections of Chapter 14 can be divided into
three topic groups; unstiffened cylinders, stiffened
cylinders and interactive effects, Although much of the
material on unstiffened cylinders forms the basis of the
stability criteria for stiffened cylinders, this paper will
be devoted to summarizing the two sections concernina the
latter topic. Since the equations and detailed discussion
appear in the Guide, only a gualitative summary will be
provided.

Figure 1 defines the key terminology used with stiffened
cylinders. Both ring and stringer stiffeners can be used
alone or in combination on either the outside or inside of
the cylindrical shell. Alternate terminology for the
stiffeners are circumferencial and longitudinal. The
stiffeners can be projecting plates or heavier sections such
as angles, tees, channels or wide flange shapes. In modern
fabrication, the stiffeners are welded to the shell, usually
continuously although intermittent welds can be used. The
bulkhead in Figure 1 is a diaphram that keeps the shell
circular where it is attached, Heavy rings or end closures
can act as bulkheads for stability purposes.

RING STIFFENERS
Aside from column buckling under axial compression, rina
stiffened cylinders fail in one of three modes:

1. Axisymmetric collapse of the shell between adjacent ring
stiffeners. This mode is inelastic buckling and is
characterized by acordion-shaped pleats around the
circumference of the shell,

2. Asymmetric or lobar buckling of the shell between adjacent
ring stiffeners. This is the elastic buckling mode as is
characterized by two or more dimples around the
circumference.






3. General collapse characterized by large dished-in portions
where both stiffeners and shell deflect together.

The first two instability modes are shell buckling and are
governed by the criteria for unstiffened cylinders. These
will occur if the rings have the stiffness and strength to
act as bulkheads. The third mode occurs with lighter rings.

Ring stiffeners have little or no effect on column
buckling. Therefore, they are used to enhance the local
buckling strength. In order to accomplish this, they must be
spaced closely enough so that length is a parameter in the
buckling equations for the unstiffened shell between the
rings. 1In the sections of the Guide dealing with unstiffened
cylinders, groups of equations for critical loads are given
for various loading conditions. A parameter that includes
length defines the applicable range for each equation. One
equation in a group applies to infinitely long cylinders
where end boundary conditions do not effect the stability.
The length parameter which defines when this equation is
applicable also indicates a spacing above which ring
stiffeners should have no influence.

Under axial loads, the implied critical length is
L/D ¢ 1.22//D/t. This is an extremely short spacing relative
to the critical length for pressure loads and would seldom be
encountered in practice. Therefore, it can be concluded that
ring stiffening is a very inefficient method of reinforcing
a cylinder for axial loads or that the presence of rings will
seldom influence the critical axial load.

For elastic buckling in flexure, the critical stress
equations for axial loads are frequently used. This
indicates that a very close spacing would again be required
for rings to be effective. However, it is also known that
ovalization is a factor in the buckling of cylinders due to
flexure while it does not occur under axial loads.
Therefore, rings may have more influence in flexural
buckling, especially when it is inelastic. The boundary
conditions for flexural buckling have not been thoroughly
investigated so that specific recommendations for ring
stiffeners are not given. However, it is believed that they
would still need to be closely spaced and would be efficient
only in regions of steep moment gradients.

The implied critical ring spacing for torsional loads is
much larger than for axial loads, implying that this type of
stiffener could be efficient. However, no information is
available on the the interaction of shell and ring buckling.
This is needed to determine the required stiffener size to
act as a bulkhead. The lack of information could be due to
the fact that torsional loading in thin cylinders seldom
occurs in practice.
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Ring stiffeners are most frequently used to increase the
local buckling strenath of cylinders subject to external
pressure, Numerous studies of ring stiffened cylinder
subject to pressure are cited and a history of criteria
development is outlined in the Guide.

According to the solutions for unstiffened cylinders
under external pressure, the critical spacing of rings is
L/D € 2.1/D/t for the hydrostatic loading case. The
recommended equation for the critical buckling pressure
involves the sum of a shell term and a ring term.

2 Aﬁ El (n2 = 1)
p. = +
© W OI) - 1)l + 222 LR R i
where A= TD/2Ln

Rg = the outside radius of the shell

Re = the radius to the centroid of the ring and an
effective width of shell

= moment of inertia of ring and effective width
of shell

Lf = center-to-center spacing of rings

Lp = length between bulkheads or equivalent

Te

n is the number of circumferential lobes existing at collapse
and the correct value is that which produces the minimum
critical pressure, For large stiffener spacings, there is
little restraint to shell buckling and n is equal to 2. For
closer spacings, the second term in FEqu. 1 dominates.
Equations are given in the Guide for determining the
effective width of the shell.

The largest effective ring size is determined when the
critical buckling pressure from Equ. 1 equals that for an
unstiffened shell with a length equal to the ring spacing.
Larger rings will not increase the critical pressure, The
determination of the optimum ring size involves both an
iterative solution for n and a trial solution for the size.

In some applications, there are a series of small
uniformly spaced rings and at greater intervals there are
heavier rings, also uniformly spaced. An empirical equation
for the critical pressure when the buckling pattern includes
both set of rings is recommended in the Guide. This is a
complex equation to use and it involves applying Equ. 1 for
both sets of rings. It can, however, be used to determine
when the large rings will act as bulkheads.

Equ. 1 can be modified to account for inelastic behavior.
For the shell term that is based on membrane stiffness, the
value of E should be replaced by /F F , while in the ring term
that reflects bending stiffness, F 15 replaced by the tangent
modulus, Epg. In order to determine the tangent and secant
moduli, the stress field at the stiffener and in the shell
midway between stiffeners must be known., FEquations for the
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stress field are provided. The moduli are then determined
from a representative stress-strain curve of the material.
Charts in the ASME Boiler & Pressure Vessel Code can also be
used to determine reduced moduli for different materials at
various temperature. This procedure is illustrated for
unstiffened cylinders and can be used for stiffened
cylinders.

Imperfections can also effect the critical pressure for
instability. An approximate equation for the bending stress
in a ring due to out-of-roundness is given. Another type of
stress is induced if the ring is initially tilted. When the
sum of hoop stresses, the bending stress and the tilt induced
stresses reaches yield, collapse in a general instability mode
is likely to occur.

STRINGER STIFFENERS

Stringer stiffeners are very effective in increasing the
axial load and bending capacity of cylinders. 1In addition to
raising the critical stress for instability of the shell,
they decrease the stress level by increasing the area and
section modulus. They also influence the critical pressure
but are not as efficient as ring stiffeners in this respect.
Due to the large number of parameters involved when the are
used with ring stiffeners and the multiple potential
mechanisms of failure, it is difficult to achieve a universal
set of design formulas substantiated by tests. Therefore,
this section of the Chapter is limited to a general
discussion of the methods that can be used to evaluate
critical axial stresses and critical pressures,

For the case of axial compression, five failure modes
are discussed:

COLUMN BUCKLING - The stringer stiffeners should be included
in the calculation of the radius-of-qyration of the column
cross section. T1f rings are also present, they have no
effect.

LOCAL WITH SEVERAL STRINGERS - This mode usually occurs with
closely spaced stringers and they can be treated as if
uniformly distributed on the shell’'s circumference. [Under
this assumption, the stiffened shell is is modeled as an
equivalent orthotropic shell.

PANEL BUCKLING - If the stringers and rings (if they are
present) are sufficiently rigid, the cylinder can be
treated as a series of curved panels each of which is
supported along four edges. If the panel is short and its
curvature small, the panel buckles essentially as if it
were a flat plate, which is treated in Chapter 4. For long
panels or those with larger curvature, an estimate of the
elastic buckling strength can be obtained by using the
equations for moderately long unstiffened cylinders.
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INDIVIDUAL STRINGERS - Buckling of individual stringers can
be investigated by treating the stiffener and an effective
width of shell as as a column. The critical load of a
typical stringer and effective shell skin is obtained by
assuming it to behave as a column on an elastic foundation.
Ring stiffeners act as the foundation, and depending on
their spacing and area, the foundation is considered to be
continuous or made up of elastic or rigid point supports.

LOCAL YIELDING - This is more of a stress analysis problem
than a stability problem, but it must be given
consideration.

Reference is made to Chapter 4 for a better understading of
stiffened plate behavior, which has some similarity to
stringer stiffened cylinders in compression.

1f stringers are spaced more closely than the buckling
wave length of .the shell, they will increase the critical
pressure. Very little information is current available on
this topic but test programs are currently underway to study
the influence of size and spacing of stringer stiffeners on
the critical pressure.

CONCLUSIONS

Ring stiffeners are used primarily to increase the
critical external pressure while stringer stiffeners are most
effective for axial compression and bending. A large volume
of equations would be required to treat all the combinations
of parameters and potential failure modes. The Guide
recommends equations and details of procedures for
determining critical pressures of ring stiffened cylinders.
However, the treatment of stringer and combined stiffener
arrangments and other loads is largely gualitative.




ON THE BEHAVIOUR OF DAMAGED AND INTACT
STIFFENED CYLINDRICAL SHELLS

Patrick J Dowling and Beverley F Ronalds
Department of Civil Engineering
Imperial College, London, England

SUMMARY

This paper briefly summarises work at Imperial College on the inelastic buckling
strength of ring-stiffened and stringer-stiffened cylindrical steel shells under axial and
combined axial and pressure loading. It then concentrates on the most recent research
relating to the denting of such shells and the residual strength of the damaged shells.
The results of experimental programs and a new numerically based computer package,
FINAS, have been used to validate simple analytically based methods. These are
intended for use by designers to estimate the extent of damage caused by, say, a
supply ship impacting the leg of an oil rig and thereafter to estimate the knock-down
in strength of the damaged shell compared with that of the original undamaged or
intact shell.

INTRODUCTION

Over a period of nearly ten years a number of studies have been undertaken at

Imperial College concerning the ultimate load behaviour of stiffened cylindrical shells

used in offshore structures. This work brought progressive developments in analytical

techniques as well as in the fabrication and testing of small-scale models, Ring-

stiffened, stringer-stiffened and orthogonally-stiffened shells have been tested under
binati of axial pression and external pressure loadings.

Early analytical work concentrated on inter—ring buckling of ring-stiffened shells, using
a finite difference approach [1]. Subsequent numerical analyses have been undertaken
using the finite eclement package, FINAS, which was developed at Imperial College.
The inclusion of an eight-noded isoparametric shell element, and a compatible stiffener
capable of representing any open-section stiffener with cross—section comprising
rectangular elements, makes this package particularly suited to stiffened shell structures.
In addition to FINAS several simpler mechanism approaches have been developed to
model various aspects of shell behaviour. These analyses have been correlated with
both FINAS and the test results,

The research programmes are very briefly outlined in the following sections with
emphasis placed on the most recent results concerning the effect of local damage in
the shells.

5. RESEARCH ON INTACT STIFFENED CYLINDERS
1.1  Longitudinall ened Shells

Several test serics have been undertaken on stringer-stiffened shells, firstly under
concentric and eccentric axial compression, and later under combined axial and pressure
loading.  All models had either twenty or forty stringers for ease of fabrication,
There were no intermediate rings (although strong rings were attached 1o each end)
and thus the models represented one bay of an orthogonally=stiffened shell. Three bay
orthogonally-stiffened models have been fabricated more recently and used in the
damage tests discussed in a later section. The range of geometries chosen in the tests
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ensured that failure occurred in different modes. Both local buckling of the shell
between stringers and general buckling of the stringer-stiffened bay were produced
experimentally.

Corresponding analytical work has concentrated on the local failure mode of the
inter-stringer panels. A single stiffener between two adjacent half pancls was modelled
using the finite element package FINAS [1]. The centre-lines of the panels were
assumed to be lines of symmetry, and symmetry was also invoked around the
circumferential centre~line. Comparison between this model and test results can be
seen in Fig. 1.  Subsequently a parametric study was carried out on a range of
geometries and loadings which produced local panel failures and the results of the study
were used in a detailed examination of available design guidance.

In another approach a general collapse mechanism theory was established using rigid
panel elements [1]. The method is closely parallel to the development of rigid-plastic
finite elements, Correlation between the mechanism unloading curve for a curved
panel and the corresponding FINAS results is shown in Fig. 2.

1.2 Ring-stiffened Shells

Two mechanism analyses have been developed for ring-stiffened shells [1]. The first
looked at inter-ring panel failure under interactive loading while the second considered

mﬂlhﬂmdmcyﬁm including the rings, under predominant pressure loading.
By combining the two mechanisms for a given size of stiffener, the point at which the

two failure modes were predicted to be coincident could be obtained (see Fig. 3).
mw;.wmmmummr.mmmmwwmwn

beyond the range of applicability of the
mechanisms (for example, in the geometriul ranges appropriate to elastic buckling).
Two series of tests were also conducted to provide data under interactive loading.

2, DAMAGE TESTS ON STIFFENED CYLINDERS

Over twenty damage tests have been conducted on ring-stiffened [2-5] and
arthogonally-stiffened [6-9) cylindrical shells in the slenderness range 133 ( R/t ¢ 267.
The damage was applied using a wedge-shaped indenter with a radiused nose, aligned
perpendicular to the longitudinal axis of the cylinder. The indenter was positioned at
different longitudinal locations in relation to the rings to generate both near-ring and
mid-bay dents. Residual dent depths of up to 5% of the diameter were produced.
The deformed shells were subsequently loaded in axial compression to determine the
effect of the damage on their buckling behaviour.  Analytical techniques have been
developed for both the denting and compression phases of the tests.

2.1 Longitudinally-stiffened Shells

A plastic mechanism analysis of the denting process was developed in which the
stiffened shell was divided into a number of imaginary longitudinal beams [8]. The
beams become loaded as the dented area gradually increases and this load is carried in
axial tension and bending,. The analysis is compared with test data for an
orthogonally-stiffened shell in Fig. 5. A step increase in load carrying capacity is
the dent edge (as measured by p) reaches a stringer. The symbol o,
the intermediate ring stiffeners begin 1o deflect radially at a stringer
produces a small reduction in lateral stiffness.
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Figure is a membrane solution found by assuming that
beam strips is at yield. This simple approximation

wi the more rigorous mechanism solution and the test poinis.
The ends of the shells were restrained during denting by stiff end blocks, enabling
membrane effects o become the dominanmt mode of lateral resistance. The actual
development of membrane stresses in the dent zone during lateral loading is illustrated
in Fig. 6.

In the compression tests the dent was found to carry wvery little longitudinal stress.
This suggested an analysis of the axial response which simply neglected the damaged
material [7], The load was redistributed circumferentially to the effective arc of
undamaged material, with the maximum stresses occurring immediately adjacent w0 the
dent. The damaged cylinders failed when the maximum stresses attained the collapse
strength of the intact shell geometry. This approach gave good correlation with the
experimental results, as shown in Fig. 7. In this diagram the residual strength is
drawn as a function of dent depth for three values of compression load eccentricity
from the cylinder centre. The triangles represent test points for orthogonally-stiffened
models in which the net load was applied a small distance away from the centre
(0.045 ¢ ecc/R ¢ 0.086). Ring-stiffened cylinders were loaded concentrically
(ecc/ R = 0) and the results are marked using circles.

The most slender models fell below the predictions in Fig. 7 and the additional
weakness was caused by the material next to the dent.  This material, although
“undamaged®, had imperfections caused by its proximity to the dent. Firstly, it had
significant radial distortion. Superimposed on the initial deflections formed during
fabrication was an outward bulge produced under lateral loading to help relieve the
circumferential shortening in the dent and to reduce the local circumferential curvature,
Secondly, compressive stresses were generated here during denting (Fig. 6) and some
residual stress may have remained after the lateral load had been removed. These
imperfections were quantified for a typical ring-stiffened cylinder using FINAS and are
discussed below.

2.2 Ring-stiffened Shells

For ring-stiffened shells the lateral loading process was modelled using finite element
analysis {3]. The results gave a detailed picture of stresses and deformations during
both loading and unloading and the latter enabled the residual state of the dented shell
w0 be determined. Computed residual deflections and stresses are plotted in Fig. 8.
The left side of the diagram shows the deflection profile around the

centre line of the dent, to an exaggerated scale, and the right side
longitudinal residual stresses at mid-panel. A peak outward bulge of approximately
0.124, occurred adjacent to the dent in a region of tensile residual stresses of up to
06«7 Compressive stresses of 0.3oy occurred further round the circumference,
combined with diminishing outward deflections which eventually became inward locally.

The compression tests of the damaged ring-stiffened shells were also analysed using
FINAS [4,5], with good correlation being achieved. Fig. 9 compares the analysis and
test results for a typical ring-stiffened model. A finite element prediction of the
response of the corresponding undamaged geometry is included to show the stiffness
and strength loss caused by denting.

These two numerical models were combined in a parametric study [5] of slender ring=
stiffened shells in the range 300 ¢ R/t ¢ 500, which was outside the scope of the
tests. Experimental results had pointed towards an increase in sensitivity to damage for
more slender geometries, (Fig. 7) possibly due to the dent deformations acting as a
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sympathetic imperfection. The parametric study was intended (0 examine the
implications of such a trend. Initially perfect shells were analysed to investigate the
possible interaction between the dent form and different modes of collapse. Initially
imperfect shells were also examined to enable an assessment of the effect of general
imperfections to be made. Preliminary results indicated that there was little increase in
the sensitivity to denting as the slenderness increased. The study showed that the
simple effective section approach would still give good strength estimates in this slender
range of geometries, with a 10% reduction in the predictions providing safe results.
However further work is necessary to confirm the range of geometries in which these
conclusions remain valid.

CONCLUSIONS

a) New experimental and theoretical results are available to improve current design
rules for stiffened cylindrical shells.

b) A powerful numerical program, FINAS, has been produced to deal specifically
with the non-linear inelastic buckling of stiffened shells and was used in the
design of the first Tension Leg Platform.

€)  Verified simple new methods to predict the extent of damage to shells caused by
impact are now available,

d) A verified simple new method to predict the residual strength of damaged shells
is also available.
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STRENGTH OF DAMAGED RING STIFFENED CYLINDERS SUBJECTED TO SIMULTANEOUS
EXTERNAL PRESSURE AND AXIAL COMPRESSIVE LOADING.

A.C. Walker; S. McCall; M.K.Kwok
Department of Mechanical Engineering, University of Surrey,
Guildford, U.K.

INTRODUCTION

This paper presents the methodology of, and results from, a series
of tests on ring stiffened cylinders which were initially subjected to
simulated collision damage and then loaded to failure with a combination
of external pressure and axial compression. These tests are one
component of a research programme initiated and funded jointly by the UK
Department of Energy and the Science and Engineering Research Council,
Marine Technology Directorate. The research was a co-operative venture
involving a number of Universities inm the UK; ecoherence was maintained
by the appointment of a Steering Committee and an industrial company
(J.P. Kenny & Partners Ltd., London) to act as managers. Full detatils
of the types of shells tested, thF loading parameters and test results
are contained in the final report 1,2 prepared by the managing company
and the researchers.

The stimulus for the tests reported here comes from a requirement
for engineers to be aware of the implications which minor damage may
have for the strength of thin-walled stiffened shells which commonly
form components in floating offshore structures. Whereas a large data-
base exists for the strength of as-built shells there is relatively
litetle information on the corresponding cmrg absorption and damage
tolerance characteristics. A recent survey ) has shown that minor
impacts are not rare events and so damage tolerance, etc., has
considerable practical significance.

In the testing reported here, it was decided at the outset to
impose the damage to the test shell using a knife edged indenter with
its axis at right angles to the axis of the shell. In practice, of
course, damage can be inflicted on a shell in a variety of ways; an
attendant vessel may hit the structural member with its bow, stern or
side. The vessel may be more or less structurally rigid than the shell
and this absorbs more or less of the collision energy. It was
considered here that the use of a rigid knife-edged indenter would
inflict damage the test shells which would tend to be more severe
than the corresponding practical circumstances. This 1s open to debate
but nevertheless the information obtained from tests on shells thus
damaged will certainly give valuable insight to the behaviour of shells
with other forms of damage.

DESCRIPTION OF TEST PROGRAMME

The geometries of the test shells are shown in Pig.l. The
simulated damage, {i.e. the dent, was {imposed at mid-length of each
shell, so that for the plain ring stiffeners the damage occurred on a
panel, midway between two rings. The indenter was applied in the plane
of a T-ring stiffener in the cases of shells RJ and R4, In the tests
reported here, the shells were to be subjected to damage and then
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loaded with a combination of external hydrostatic pressure and axial
compresasive loading until failure occurred. Table 1 presents the level
of residual damage, i.e. dent depth, dr' and the specified magnitude of
the applied hydrostatic pressure.

TABLE 1. TEST PARAMETERS

Shell Code  Type d, (mm) p (N/wa?)
Rl Plain ring stiffeners 5.3 (9¢t) 0.5
R2 " . - 5.3 (9t) 1.0
R3 T-ring stiffeners 3.0 [5¢) 1.0
R4 = = 3.0 (5t) 0.5

where t {8 the thickness of the shell skin.

The T-rings of shells R3 and R4 were designed to have approximately the
same value of second moment of areas as the plain ring in shells RI
and R2.

The shells had been manufactured using techniques developed in
previous programmes of {nvestigation into shell buckling. The
fabricated shells were stress-relieved and attached to rigid end rings
using a mixture of sand and Araldite. This has been found to give end
conditions to the shell which very closely reproduce classical encastre
conditions. The averaged material characteristics are given in Table
24 All the shells had their {initial {imperfections measured and
analysed statistically to provide a best-fit cylinder. The magnitudes
of the imperfections in all the shells were found to be less than those
corresponding to code tolerances. Details of these results are
presented in Ref.l.

TABLE 2.  AVERAGED VALUES OF MEASURED MATERIAL CHARACTERISTICS (ll-z)

|
Shell Skin; Uu = 387, E= 208 x 10,; v = 0,29
Plain Ring Stiffeners Bo = 387, E= 208 x 10 ; v=0.29
T-Ring Stiffeners o - 366, E = 205 x 10%; v = 0,29

where o is the tensile yleld stress, E is Young's modulus and v {is
Poisson’® ratio.

The shells were all very extensively strain gauged, both for the denting
tests and for the failure tests. A layer of brittle lacquer was also
applied to the shells to provide information on the development of the
damage region during the denting test. The fallure tests were
performed in a hyperbaric chamber in the University of Surrey; the
chamber had the facilities to apply axial loading to the test shell and
to permit strains and deflections to be measured during the test.

The following is a very brief summary of the results of the various
phases of the test programme




Shells Rl and R2

The results from the denting test in Rl is considered here, the
results from the corresponding test on R2 were, within engineering
accuracy, identical. Figure 2 shows the external view of shell Rl omn
completion of the denting tests; it may be seen from the crazing
pattern in the brittle lacquer that the dent pattern extends through the
ring stiffeners. Except for the small regions with no cracking, the
shape of the dant boundaries was very similar to that observed on
unstiffened shells 5),  This similarity is reinforced by the results in
Fig. 4 which show that the relationship between the applied denting
load, F, and the corresponding residual dent depth, d_, i.e. that which
remains when ! = 0, can be predicted using an lﬂllyl[l developed for a
plain shell ( )- It would seem that the plain stiffeners are subjected
to very large values of tensile and compressive strains during the
denting process, see Fig.4 for strain gauge layout and Figs. 5 & 6 for
typical results. The gauges on the stiffener at the dent centre line
show that even for very small values of indenter load, strain values
well in excess of the material yield strain are induced. The gauges at
position 13 show that for an indenter load up to 2kN the stiffener is
subject to moderate values of compressive strains. At that load the
yleld strain 1s induced and the stiffener is quickly strained to a state
where plastic tripping occurs. This local buckling of the stiffener is
shown in Fig.7 which 1s a photograph of the interior of the shell RI
subsequent to its failure. It would appear from the results of the
tests on Rl and R2 that this form of stiffener provides virtually no
support to the shell in resisting lateral impact loading.

Shells Rl and R2 were each loaded in external pressure subsequent
to the denting. Figure 8 i{s a recording of prc.lur! vs. time for shell
Rl. It may be seen that at a pressure of 0.4 N/mm“ the shell suffered
a localised buckling, as indicated by the sudden drop in applied
pressure due to the change in volume of the shell as it buckled. Tt is
evident from Fig.9, that the stiffener was severely strained by the
application of the pressure. When the strain level developed
sufficiently beyond the material yileld strain the ring stiffener
developed a plastic mechanism and could no longer sustain increasing
pressure loading. When the stiffener nearest the initial damaged
region buckled due to the pressure, the loading on all the other
stiffeners were required to carry considerably increased loading
circumferentially, in the line of the original damage region. That
they could not sustain this loading and buckled {s evident from
Fig.7. It may be surmised that 1if the shell had been longer and
incorporated more plain ring stiffeners, they in turn would have
collapsed in a "cascade"” effect and the length of the buckle would be
limited only by the provision of rigid ring stiffness or diaphragms.

Subsequent to this {initial buckling, the shells Rl and R2
stabilised and were capable of carrying increased pressure loading.
Shell Rl was pressurised to 0.5 N/mm“ and, with this pressure held
constant, was loaded {in axial compressive loading until collapse
occurred at P = 29.6kN. Shell R2 was subjected to slowly increasing
presgure loading in an attempt to reach the specified pressure of 1.0
N/mm?. Collapse occurred at 0.55 N/mm?. It is evident from Figs. 10
= 12 that apart from the damage zone, which was very severely extended
and deformed by pressure loading, collapse occurred due to Inter-ring
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buckling. 1In other words, it would seem that if the shell had not been
damaged the strength of the rings would have been adequate to prevent
general buckling. However, the plain ring stiffeners tested here were
quite unable to provide the shell with strength to withstand the effects
of the imposed damage.

Shells R3 and RA.

The denting tests on Shells R3 and R4 yileld virtually identical
results. Figures 13 and 14 show external and internal views of Shell
R3 at the end of the denting test. Evidently considerable deformation
has heen {imposed but there 1is no indication that local stiffener
buckling had occurred. The development of the damage region appears to
have been restricted by the ring stiffeners. Figure 15 shows the test
results relating the applied denting load, F, to the corresponding
residual dent depth, d_, and compares them to values obtained from an
analysis of a plain shell having the same radius and thickness as R3 but
with a length of 48mm, 1{.e. the distance between the outer T-ring
stiffeners. The T-ring stiffeners obviously have an important effect
in supporting the shell against damage. This comment is supported by
strain gauge results shown in Figs 17 and 18, the strains at position 1,
see Fig. 16 on the inside face of the T-ring stiffener exceed yield but
are much smaller than the strains recorded on the plain ring stiffness
for the same position and corresponding load. None of the strains
recorded in tests on the T-ring stiffeners shows any indication of local
buckling. The longitudinal strains between the stiffeners exceed the
yleld strain, see Fig 18. ﬂ would be expected with the development of a
plastic damage mechanism (4),

Subsequent to the denting test the T-ring stiffened shells were
able to carry their specified pressure and were loaded to failure by
applying a slowly increasing axial compressive loading in conjunction
with a constant pressure. Figures 19-2]1 show the deformed state of the
shells after collapse and it is evident that the damage zone had not
extended significantly and that collapse was caused by inter-ring
buckling.

Table 3 gives the collapse loads for the four shells considered
here.

TABLE 3. LOADING mzﬂ SHELL COLLAPSE
Shell code Hydrostatic Pressure(N/mm“) Axial Compressive Load (kN)

Rl 0.5 29.6

R2 0.55 -

R3 1.0 58.4

R4 0.5 123.0
CONCLUSIONS

One must be tentative in drawing conclusions from so few tests and
in the absence of valid analytical models. However, it would seem
evident that the T-ring stiffeners in R3 and R4 were very much more
efficacious in resisting the effects of damage than were the plain ring
stiffeners of Rl and R2. Indeed the latter seem to be quite valueless
in that task while the T-ring stiffeners significantly increased the



damage tolerance of the shells and were able to sustain the specified
pressure load in the damaged state. Another conclusfon which may be
drawn is that if, for any reason, plain ring stiffeners must be used it
is wvital that stronger ring stiffeners or diaphragms must be
incorporated along the length of the shell to prevent disastrous
buckling of the damaged zone occurring when the shell i{s subjected to
quite low value of external pressure loading.

The authors gratefully acknowledge the support of the UK Department
of Energy in funding the testing reported here.
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Fig.13 External view of damage on Shell R2.

Fig.14 Internal view of damage on shell R3
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Fig.20 External view of R4 after collapse

Fig.21 Internal view of R4 after collapse.




API BULLETIN 2U INTERACTION EQUATION FOR STIFFENED CYLINDERS
SUBJECTED TO AXIAL COMPRESSION AND EXTERNAL PRESSURE

C.D. Miller and J.F. Vojta
CBI Industries, Inc.
Research Laboratory
Plainfield, I1linois

SUMMARY

The offshore oil industry in the U.S5. has developed a need for design
rules for the buckling strength of cylinders having diameter/thickness
ratios exceeding 300, and for ring and stringer stiffened cylinders. API
Bulletin 2U is being prepared for this purpose.

One important portion of Bulletin 2U contains interaction equations
to determine stability of cylinders under combinations of axial, bending,
and external pressure loadings. This new interaction equation is of
quadratic form, but fits shape changes with stress magnitude, cylinder
geometry, and buckling mode. It applies to a wide spectrum of geometries
and vessel stiffening patterns.

This paper discusses the interaction equation, provides a brief guide
to using it in Bulletin 2U, and presents comparisons of its predictions
with numerous large scale model tests of fabricated stiffened and
unstiffened cylinders. The paper is intended to present an understanding
of this equation and its use, rather than attempt to promote or compare
its strengths against other techniques.

INTRODUCT ION

In recent years considerable finterest has been focused on the
buckling strength of stiffened cylindrical shells subjected to various
combinations of axial and external pressure loading conditions. This is
particularly true for the offshore ofl industry where deep water drilling
platforms such as tension leg platforms have become a reality. These
require stability designs for cylinders with geometric parameters not
previously tested or formulated to a sufficient degree.

In the United States the most commonly used rules for design of
cylinders for offshore structures are those given by the American
Petroleum Institute in API RP 2A (1). The rules are limited, however, to
unstiffened and ring stiffened cylinders with diameter/thickness (D/t)
ratios of 300 or less. Economical offshore designs, however, are now
investigating ring and stringer stiffened cylinders having D/t values up
to 1000,

Det MNorske Veritas (2) updated its criteria for buckling strength
evaluation in 1982. These rules can be applied to unstiffened, ring
stiffened, stringer stiffened, or ring and stringer stiffened cylinders
having larger D/t values. However, DNV emphasizes very close stringer
spacing and other seemingly conservative techniques. These rules also
appear to be inconsistent with more recent test results.
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Tests have recently been performed to provide data for some of the
missing parameter values. For example, buckling tests were reported (3)
in 1983 on 66 large scale fabricated ring stiffened and ring and stringer
stiffened cylinders with D/t ratios to 1000 and subjected to combinations
of axial load and external pressure. Using the additional test data, the
Averican Petroleum Institute will publish API Bulletin 2U (4) in April,
1987. This bulletin presents a design/analysis procedure based on semi-
empirical formulations for evaluating the buckling strength of
unstiffened, ring stiffened, stringer stiffened, or ring and stringer
stiffened steel shells. It follows the design methods of ASME Code Case
N284 (14) with modifications based upon tests and analytical studies
conducted since 1979, Bulletin 2U is applicable to D/t ratios up to 2000
and uses a unique finteraction equation to determine stability under
general loading cases of combined axial load and external pressure.

The interaction equation in Bulletin 2U is of quadratic form but its
shape changes with cylinder geometry, stress level, and buckling mode.
This equation essentially covers the full spectrum of geometry and loading
conditions anticipated for current designs in accordance with APl Bulletin
2U, This paper will discuss this interaction equation, its use, and will
compare it against some current test results.

API BULLETIN 2U STABILITY APPROACH

The general equations in Bulletin 2U to predict shell buckling
stresses are (Eqs. 3-1 and 3-2 in Bulletin 2U):

Fiej = 91j%ej (for elastic shell buckling) (Eq. 1)
Ficj = Fiej (for "inelastic" shell buckling) (Eq. 2)

where o is the theoretical elastic buckling stress based on classical
linear zﬁéory and a4 and n are reduction factors which account for the
effects of 1mper~fect’1ons. boundary conditions, residual stresses, and
nonlinearity of material properties. The reduction factors were
determined from test data. The subscripts (see nomenclature and Bulletin
2U) typically are as follows:

i = denotes direction (and load); subscripts are 4, 8, x, h, r.

e,c = denotes elastic or inelastic stresses, respectively

j = denotes shell buckling failure mode (L = local shell buckling,

B = bay instability, G = general instability)

The above equations are used to calculate predicted buckling stresses
for the specific unfaxial load cases of axial Ioad only (F and Fx 1y
and radial external pressure only (F and F, Factors 0 snfety nd
other such design considerations can béj entered ’II nto the design by methods
discussed in Bulletin 2U.

The calculation of wuniaxial stresses and F. are made
separately for each of the shell buckling modes ﬁo‘l:al shell” ckling (j =
L), bay instability (j = B) or general instability (j = G)). Other modes
(stringer tripping or column buckling), are controlled by other checks in
the bulletin. Design techniques are also presented to preclude
interaction between the buckling modes.




APl BULLETIN 2U INTERACTION EQUATION

Having calculated F, ., and Ferey for each selected buckling mode,
interaction equations can iau be uséd to determine the failure stresses
for various combinations of axial load and external pressure. Based on
Ref. 5 it was deemed reasonable and conservative to treat stresses from
full section bending as equivalent membrane axial stresses. Section 6 of
API Bulletin 2U provides the rules for use of the interaction equations.

For cases involving net axial tension combined with hoop compression
a bi-linear stress envelope is used. This will not be further discussed.

For the more common cases involving net axial compression combined
with hoop compression, a special quadratic failure enveiope Ts utilized.
The axial stresses are normalized by the predicted uniaxial failure stress
Fxc » while the hoop stresses are normalized by the predicted unfaxial
hoop stress F ci* The end points of the curve are both equal to -1,0
(sign conventfol‘; discussed later). Load combinations lying inside the
curve are considered acceptable, those outside are unacceptable, The
interaction curve is:

RyZ = cR R, + R Z = 1.0 (Eq. 3)

where:

Ra * Foci/Fxcj

Ry = Fscj’Frcj

¢ = coefficient dependent on cylinder stiffening configuration,
load magnitude, and buckling mode

F‘cj and Fo = coincident failure stresses in the axial and hoop
dtrecﬂoas (after applying modification factors Il” and K“)

Investigations (6,7) of various ring stiffened model tests noted that
the form of the interaction curve tends to flatten out for elastic
buckling and approaches the elliptical Hencky-von Mises failure curve for
highly inelastic buckling. When this occurs, higher compressive axial
stresses can occur under combined loads than for axial load alone.
Expanding the approach to ring and stringer stiffened cylinders, the
coefficient ¢ in Eq. 3 was thus formulated to better predict the shape.

Figure 1 demonstrates various forms of the interaction curve which
result from varying "c* in Eq. 3. When c = +1,0, the Hencky-von Mises
curve results. When ¢ = 0, a circle results. When ¢ = -1.0 the curve has
become quite flat. The hypothetical case of ¢ = -2.0 would be a straight
line.

API Bulletin 2U suggests the following formulae for determining "c®.

1)  Unstiffened and Ring Stiffened Cylinders (both shell buckling
modes, j = L, G)
F F

c .L‘J.F*_ﬁl- 1.0 (Eq. 4)

¥
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2) Stringer Stiffened and Ring and Stringer S5tiffened Cylinders
a) Local buckling mode (j = L)

0.4 {F“ +F. 2}

c _F_J_"CJ_ - 0.8 (Eq. 5)

¥
b) Bay instability and general instability modes (j = B, 6)

L5(F  +F )

cs __F-I__-L"c - 2.0 (Eq. 6)

¥y
where Fy = effective yield stress (use the greater of Fys'

F:cj' or Frcj)

For design/analysis purposes the interaction curve can be used many
ways. As one example, assume a geometry has been decided and we want to
determine what maximum net axial load (N, ) that can be sustained for a
selected pressure load (Ny). Assume Tocdl buckling is considered (j =
L). The steps are:

1) Determine F“L and F_, for geometry by Eqs. 1 and 2 and methods

in Section 4 of Bulletin 2U.

2) Calculate ¢ from Eqs. 4, 5, or 6. Generate interaction curve by
Eq. 3 (-R,, -R, quadrant) using end points (-1.0, 0) and (O,
-1.0)

3)  For Ng = PRos calculate Fgp = -LE-Q- * Ky where K, adjusts
for the effect of ring stiffener on shell

4) Calculate desired Ry = For /P

5) From interaction curve find corresponding R, value; calculate
Focl = Ra/FreL

6) Calculate maximum net axial load, N,

H’ = F‘ﬂ- - W K‘L
where N, = maximum net axial load (axial plus bending)

L]

P M
N, = oo+ =
¢ = =R

COMPARISON OF INTERACTION EQUATION WITH TEST RESULTS

Comparisons between interaction Eq. 3 and a variety of test results
will now be presented. The test results cover a wide range of geometries,
stiffener spacing, load ratios, and shell buckling modes. In addition the
test models were fabricated cylinders utilizing rolled plates and welded
joints. Some models were stress relieved while others were not. The
plasticity factor (n in Eq. 2) accounted for either possibility.

The following interaction equation curves and test points have both
been normalized by actual uniaxial stress values. This tends to isolate




the comparison from ongoing changes in formulation and techniques for
calculating F s and F. ... It should also be noted that during tests it
is generally qdhe di(fﬂ:ult to uniquely depict shell buckling modes for
local buckling and bay finstability. These modes occur as an ongoing
serfes of small waves forming over a range of loads or pressures. The
test points shown here generally relate to the first such depicted sign of
the respective shell buckling mode.

In the comparison plots that follow, test results plotted outside of
the interaction curve denote an underprediction; those falling inside
depict an overprediction.

Figure 2 shows results from short unstiffened tubular columns under
various combinations of axial load, external pressure, and bending moment
(8). There were four values of D/t, ranging from D/t = 31 (Group 1) to
D/t = 74 (Group 4). These are short stocky columns which have net axial
plus bending stresses approaching (or slightly exceeding) the yield
stress., The uniaxial hoop stresses, however, vary from about 0.5 F‘y to
1.0 F,,. The unfaxial stresses are shown for reference purposes. ° For
these “cases the interaction curves are approaching the Hencky-von Mises
curve. The interaction curve appears to predict the results moderately
well, In all but Group 1 the deviations are underpredictions of the
actual strength, It might also be noted that for these cases the
cylinders were capable of sustaining axial loads near, or above, yleld
stress levels for R, values up to about 0.8.

Tests by Sherman (9) showed that for cylinders with D/t values less
than 48 the buckling stresses related to bending are higher than axial.
Bulletin 2U conservatively neglects this effect.

Figure 3 shows results for axial and external pressure loaded ring
stiffened cylinders (3, 10, 11). Groups 1, 2, 3, 4 (Ref. 10) were for
local buckling failure loads (ring stiffeners intentionally overdesigned)
with D/t values from 48 to 96, M, = 8.8 to 24.1, and two different
strength materfals. These stocky models were designed for unfaxial hoop
stresses to range from about 0.5 F, to 0.9 F_ with high axial only
stresses. Group 6 (Ref, 11) is for ld‘al buckling of a thinner shell with
moderately short ring stiffener spacing (D/t = 1000, M, = 6.01). Group 1-
4 is for stress relieved models (3) having a thin shell with a short ring
stiffener spacing (D/t = 600 and M, = 3.4). In Figure 3 the correlation
is again reasonably good, with thexbetter predictions seemingly occurring
for the more elastic thin shell cases.

Figures 4 and 5 present comparisons of the interaction equation with
the results of a series of 44 tests of ring and stringer stiffened
cylinders for Conoco/ABS, et al (Ref. 3). A follow-up series of tests has
also been performed, but the results are not available for release at this
time. The tests presented here were made on large scale fabricated models
(diameters of 28.5 inches to 75 inches) having generally elastic behavior
and the following ranges of parameters: 0/t = 380 to 1000, M, = 6.9 to
17.9, Mg = 2.2 to 6.0 and various combinations of axial load and external
pressure. Two nominal materfal yield strengths were used (50 ksi and 80
ksi) and most of the models were stress relieved. Welding sizes and
procedures were closely scaled to actual conditions, and typical shell
imperfections were also incurred during fabrication. All models exhibited
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local buckling and bay instability (pressure cases only) but none failed
by general instability where ring collapse would be involved.

Figure 4 shows the comparisons for the local buckling mode while
Figure 5 presents the comparison for the bay instability mode. It should
be noted these are all slender shells with large D/t values. The larger
axial F“ (relative to uniaxial hoop Frc ) indicates the strengthening
effects 61' stringer stiffeners. The valTues of “c" are all negative
indicating a curve which is flatter than the circular shape (c = 0.0).
Considering the wide range of parameters, the correlation appears to be
very good for both Figures 4 and 5. However, there is a lack of data
points at the higher axial stress levels. The follow-up tests should

furnish some of this missing data.
DISCUSSION OF INTERACTION EQUATIONS

There are numerous test results for welded steel cylindrical shells
for either axial compression alone or external pressure alone. Most of
these are for unstiffened or ring stiffened cylinders, Except for the
Conoco/ABS tests, there is very little published data available for almost
any form of stringer stiffened or ring and stringer stiffened cylinders.
It is not surprising, then, that there are numerous forms of interaction
equations in existence. The intent of this paper is simply to present the
form to be used in API Bulletin 2U and to show some of its correlations
with test data. As further test data becomes avaflable further refinement
of the methods is expected.

Some methods currently in use are: (i) linear, as per the ECCS code
(12), (i1) circular, as per the DNV code (2), (i11) linear/quadratic, as
suggested by Odland (13) and (iv) variable quadratic, as discussed in this
paper. The linear and circular forms are essentially the same as Eq. 3
when ¢ = -2.0 and ¢ = 0.0 respectively. The linear case is obviously the
most conservative.

Almost all of the methods are intended to be lower bound predictors
and safety factors will be applied to obtain allowable stresses.

CONCLUSIONS

The interaction equation presented here can be applied to a wide
spectrum of cylindrical shell sizes, stiffener spacing, and combinations
of axial, pressure, and external pressure loading conditions. Reasonably
good correlation was shown for numerous fabricated steel scale models
representative of those in the offshore industry and other fields
involving stability design/analysis of cylindrical sections.

NOMENCLATURE

Note: The terms not defined here are uniquely defined in the sections in
which they are used.

1 subscript denoting direction and load
¢ - longitudinal direction and any load combination
8 - hoop direction and any load combination
x = longitudinal direction and axial compression load only {Ne = 0)
h - hoop direction and hydrostatic external pressure (N’/Me =0.5)
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r - hoop direction and radial external pressure (n 0)
subscript denoting buckling failure mode

L = local shell buckling

B - bay instability

G - general instability

stringer spacing measured as arc length along shell mid-thickness
centerline diameter of shell

predicted inelastic shell buckling stress for fabricated shell
predicted elastic shell buckling stress for fabricated shell
yield stress of material

static yield stress of material (zero strain rate)

?gl and hoop stress adjustment factors, see APl Bulletin 2U
ring spacing

applied bending moment across full cylinder cross-section
Lrl¢ Rt

b/v Rt

axial load per unit of circumference

circumferential load per unit of length

applied external pressure

applied axial load

radius to centerline of shell

OCJIFKCJ

P514sTED outside of shell

thickness of shell

capacity reduction factor to account for the difference between
clli:ical theory and predicted instability stresses for fabricated
shells

plasticity reductfon factor which accounts for the nonlinearity of
material properties and the effects of residual stresses.
theoretical elastic instability stress

PARTIAL GLOSSARY - BUCKLING MODE TERMS

Bay

Instability Simultaneous latera) buckling of the shel)l and
stringers with rings remaining essentially round

General Instability Overall collapse of the combined shell and

stiffening system including lateral buckling of ring

stiffeners

Local Buckling Buckling of shell plate between stiffeners without
significant stiffener distortion
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GENERAL BUCKLING OF RING AND STRINGER STIFFENED CYLINDERS
by
Tore H. S¢reide*, Sverre Valsgard**, Benedicte Brodtkorb*#*

ABSTRACT

The paper presents recent advances in the general buckling of cylindrical
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shells. The presentation is based on work carried out at Det norske Veritas /1/
and at the Norwegian Institute of Technology /2/. Special attention is given to

the energy formulation for the cylinder wall where the expressions for
extensional and inextensional theory are discussed.

Axial compression, external pressure and shear loading are included in the
formulation together with the stiffening effect of an elastic medium.

Comparison is made with test results on ring stiffened cylinders. Based on the
energy formulations design formulas for elastic buckling of ring and stringer

stiffened shells are presented together with analysis examples on real struc-
tures. Comparison is made between the formulations.

1. INTRODUCTION

The buckling modes of an orthogonally stiffened cylindrical shell may con-
veniently be categorized as follows /1/.

a. Shell buckling: Buckling of shell between stiffners.
b. Local stiffener buckling: The shell remains undeformed.
c. Panel buckling: Buckling of stiffened panels between rings, see Figure 1.

d. General buckling: Buckling of shell including stiffeners (rings and
stringers), Figure 1.

e. Overall buckling: Column buckling of the cylinder.

*  Norweglan Institute of Technology, Trondheim
#* Det Norske Veritas, Oslo
#%% The Foundation of Scientific and Industrial Research, SINTEF, Trondheim
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The present work deals with mode d. on general buckling. One objective of the
study has been to develop simplified formulas for necessary stiffener dimen-
sions so as to exclude general buckling as the most critical failure mode. The
second aim of the work is to come up with simple computer programs for use in
design, based on series expansion and energy methods.

Advanced numerical techniques for handling shell buckling problems have recently
been developed /3,4/ based on finite element formulation with nonlinear geo-
metric and material effects included. However, for a designer simpler formu-
lations should be available in the form of either design formulas or small
program packages for use on PC-type of computers. An example on this type of
program is given in the paper.

The need for a simple computer program as an alternative to formulas is more
strengthened in the case of cylinders surrounded by elastic and elastoplastic
media, where also a layered distribution of soil stiffness is input. The new
concepts of gravity platforms for soft soils include such problems as pene-
tration skirts are being used to ensure soil/structure interaction, see Figure
2. It should also be mentioned that based on the program system FENRIS /3/ a
project is going on in Norway /5/ to come up with a nonlinear program system for
integrated analysis of gravity platforms including cyclic degradation of the
soil.

In the present study special emphasis has been given to the buckling behaviour
of the cylindrical shell and to consider the difference between extensional and
inextensional energy expressions.
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2. BASIC THEORY
The present chapter gives two versions of energy formulation in the sense that
potential functions as well as virtual work expressions are being used. The
latter could be "anti-varied® into a potential but from the programming point of
view this is not necessary and represents extra work.
2.1 ENERGY EXPRESSIONS
In the subsequent derivations U is being used as the symbol for strain energy
and the associated variational term is &U. Further, H is the potential of
external loads and the total potential function reads

x=0+H (2.1)

The DnV /1/ version of the study is based on the following assumptions:

a. Linear membrane theory for the prebuckling state. Includes only membrane
stresses uncoupled to the bending mode of deformation.

b. Energy contributions from torsion deflection in ring direction and warping
are neglected for rings and stringers.

c. Effective cross sections are used for ring and stringer stiffnesses.

The energy contribution for the shell from prebuckling state into the buckled
configuration comes out to be, see definitions in Figure 3:

D L 2wr 2 2
Seh*3 i ‘!’ LT u.") - 2{V-v) [u.nu.” - w."I 1) dxdy
t L 2vr - ’ (2.2)
+ 7E (l:’u‘: (ll‘.nf Po") = 2(14v) [l-'.'ml’.W - (!.lyl ]} dxdy
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For the stringers the simple expression used is

N L

2
U, =5EI £ £ ! lu,“)

1
5 dx (2.3)
st 2 " se Tl & y=y;

and for the ring stiffeners

1 M 2nr
U = 5unet L [ (w,

% dy (2.4)
i=1 o

w5 e
r i
The external loads are o, in axial compression, p in external pressure and

o“ in torsion with the potential contribution:

- L sx 3
B=-3 (+ade [ [ (w, )" dxdy

oo
L 2»r »

=pJ | [14x (w, _+ — )]wdxdy (2.5)
oo w2

L 2»x
B tso‘y I I W,

w, dxdy
o0 y

The relation between Airy's stress function F and lateral deflection according
to linear theory reads

4 E
Ll k8 (2.6)

The interpolation of lateral deflection w is taken as

ur n
w=C -sj.n(z- X ~3 Y) (2.7)

where m is the number of half waves in longitudinal direction and n is the
number of full waves in the circumferential direction.

The expression (2.7) does not satisfy simply supported boundary conditions at
the ends, but may be used for medium length and long cylinders where the end
conditions have minor influence on the critical load.
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Based upon the notation in Figure 4 the six equilibrium equations on component

form read /2/.

“: =0 : I“'l + N“'v + g - 0
IK. =0: N +N - EX- +p
 § Yy.Y XY, X T
N
g =0: Q o+ 0 FII

D=0 My Moy " My ™ix Ry iy~ Gy = 0

=0: N M

e, xt Myx,y MYy

M
0.3 - b ¢ g
[Ht 0: l", 'yx + - 0

including geometric effects.

_ngo

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Denoting by an upper bar the virtual displacement the virtualized form of Eqs.

(2.8 - 2.13) becomes

{j [ll“- u.“ + llﬂ l.“ + n“- u.“ + "YY "Y!'

M
= L Mox - -
+ {J [N, Uy * Hx,(u.y* Vi) BT e uyyv,y] dA

Fm, v, + W v, + Fey¥ia? * Ny Moy
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= {I [p‘ﬁ + pyG + pgi] dA

Wk Wt W) 4 !ZE W, W

-{I[Nn°v.1°i.x+l“(w., 5 ol ¥ v Yix
+ “Y?. "y' "yl dA
+ [ M-8, +MB 145 - [ Q -wds + [ [N-u+ N, v] ds
cuy Y XX cl'l c X 4
1 -
+ i = l’v ds (2.14)

where the left-hand side represents internal virtual work and the right hand
side is external work.

Introducing now the Fliigge /6/ stress-strain relations the following equation
emerges for the first variation of internal shell energy:

sU_. = DJJ l[u.u = % Uy *+oviv, - -::v.,)]bv,“
A

sh Yy
# (1) (2w, + U, - v, ) bW
A TS SR T 'yx
1
+ ‘:i' + "'YY + vw.‘x)ﬁu.yyida
D
e {I (- Wiy ﬁu.l
- 1=v e )6
T "'Y" “'y uny
1=v .3
+ 5 (E Wiy = 3\1.‘_")'6?,' (2.15)

o v*l.‘x-av,x

+ 13w) 6wl dA

1
- l; W, 5

Yy
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Et 1
+ [Itu, + viv, + = w)]bu,
T e x y r x
# L2 (u, 4 v, 00 (80, BY,)
p) u.y V’.x I.I,"I V.x

+ “"y % % W+ v-u.‘)ev.vl dA

s —BE_ Il (%uﬂr.

+ veuy, )-8, dA
r(1-v3) A LI

Y

The last integral is of higher order and is neglected in the subsequent con-
siderations.

It should be emphasized that the above expressions have been obtained from
equilibrium equations in deformed configuration through virtualization., The
alternative way of obtaining a shell energy is to use the assumption behind Eq.
(2.2) namely that bending and membrane energy may be separated in the way

D 2 2
T % {I gt x )™ = 201-v) (e ey = k7)) dA

b xy
Et 2 1 2
o J] e+ )" - 201=¥)(s e =77, )) dA (2.16)
0v)3a T % =y S
as described in /7/ with the curvature expressions
¥x = ¥ixx
K = 1 W o+w, (2.17)
Y 2 Yy

1
';V. + W,

“xy x ¥x

The curvatures introduced in Eq.(2.15) differ by

1
®ey = 32 t(n.v- v.xl + "yx (2.18)




Combining Eqs.(2.16, 2.17) gives the following first variation of strain energy:

1
§U0_. =D {I (['.n tv(mwe "YY)] LT

sh -

2
+ (t~v) (- T Vig ® 2 "Yi) ﬁﬂ.vx

D < =
2 {I (2(1=v) (: . "yx] §v,
tdwelu  +lu, Hmar (2.19)
rJ- ru T uw -
Et 1
+ II '[ua + viv, + = ')] bu
U T x y r x
+ LY (u, 4w, )8, + By,
T 'Y 'x ry "%
1
* (v.y towdy “'x) av,y} dA
Et 1
L R - P R
r(1-v) A T ¥ x

Comparing now Egs.(2.15, 2.19) shows that the two alternative formulations give
mostly identical energy terms. The discrepancy is partly due to the fact that
thick shell effects are incorporated in Eq.(2.15) and partly caused by
differences in geometrical considerations on the deformed shell.

The present study will investigate how this difference also effect the buckling
load as well as the buckling mode.
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Specialization of Egs.(2.15, 2.19) may be performed for socalled inextensiopal

theory implying

'Y = ﬁcv =0

= 61x =0

Yxy” Txy

or with strain-displacement relations incorporated
Ny bu, =0

1 1
V.’ + T w 6'.7" T bw 0

u.' i Wye lu.,-\- &v,‘ =0

and the two formulations give identical results.

(2.20)

(2.21)

For the subsequent derivations Eq.(2.15) is taken as the basic variational prin-
ciple. In the development of a computer program the interpolation functions

assumed are simply

| n
u-.lco-,_ xun?y

6u = BA-cos -:—' x-sin % y

nr n
B-sin f X'cos Ty

<
"

L a
8v = 8B-sin g X'cos Ty

av n
w = C-sin g= x-sin =¥

g

8C-sin I.E y-sin % ¥y

(2.22)
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satisfying hinged supports with no tangent displacements at the ends

"U-“=V-0t0t!-0.h (2.23)

2.3 IMPLEMENTATION OF SURROUNDING ELASTIC MEDIUM

The problem of a cylindrical skirt penetrating into the soil is illustrated in
Figure 5. The buckling of the shell has to be checked taking into account the
interaction with surrounding soil which also may be layered. The below deri-
vations are based upon the assumption that the soil behaves linearly elastic.

Specifying an elastic soil resistance constant Emn[ﬂtln’] for the lateral

deflection of the shell the contribution to strain energy variation becomes

L {I Egoiy” W oW da (2.24)

where integration is taken over the shell surface and possibly over soil layers
with different stiffnesses. The last modification is easily incorporated in the
program by predefining the thickness of each layer.
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3. DESIGN FORMULAS

The two energy formulations presented in Section 2.1 and 2.2, respectively, have
been used in the development of design formulas for ring and stringer stiffened
shells /1,/ A summary of this work is given below. For a broader discussion of
design formulas and code application reference is made to /9,10/.

3.1 INTERACTION FORMULA

Based on Eqs. (2.2 -2.4) the combination of axial compression, lateral pressure
and torsion may be checked by the formula

£ -4 t t
2 22,242 2 ] 2 =4 - o NPT |
(=)° [(a°#+n°]° + 12(1~v") ———+ v, (=)" ® + v, (=)"(n"-1)
r [-z+n2]z s 'r R'r
-2 z -
= 12(1+a’) M 12(1+nn) (n"-1) o t 24nm 'xy (3.1)

where

n = ok

= (3.2)

In Eq.(3.1) 0‘, 0' and t‘y are nondimensional loading parameters
for axial stress, circumferential stress and shear stress, respectively

¢ = o(1-v?)/E (3.3)

Further, : and g are geometric parameters related to stringers and
rings, respectively

v, = 1201-v%) =

g = 12(1-v%) £ (3.4)
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and a, and ap are the area coeffisients

- A!Iat
(3.5)
ap = Ap/Lt
From the general expression (3.1) specialized capacity formulas may be derived

for the three basic load cases, These formulas are given below on the form
usually applied for plate buckling

2
g, =0, —Lh— (§t (3.6)
17 % (1) F

where the buckling coefficient co depends on the loading. In the expression
(3.6) imperfections are not included so that a knock-down factor g should be
applied

C=0C, (3.7)

The imperfection sensitivity for a stiffened shell is different from that of an
unstiffened shell. Thus, the stiffener geometry and spacing has to be accounted
for when defining .

3.2 AXIAL COMPRESSION

The solution for axial compression is illustrated in Figure 6 where the buckling
coefficient

C: = Cox(1+ls) (3.8)

is plotted against the Batdorf's parameter 2.

The general solution for cox from Egs.(2.2 - 2.5) comes out to be

=4 2 =242 2
2 n [m” +1n"] 12 .2 n
(1..,‘)': = y m +1_+ +_z.__.__ (].9)
] ox s R .2 .i 't [.! + nl]l

The buckling coefficient for ghort cylinders is obtained for m = 1, n = 0, that
is the axisymmetric mode. The result is (meglected the last term in Eq.(3.9))
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(3.10)

Eq.(3.10) indicates that the buckling coefficient is independent of Batdorf's
parameter only effected by the stringer properties. The buckling stress is like
the formula for a wide plate.

For moderately long cylinders m = 1 is also assumed. Minimization with respect
to n gives

1
1
2 g
nos 2.42 i (3,1%)
(4yp) 8
and
1
(14y,) 2
43 R
Cox s :2_- . -17-.5— 2 (3.12)
In Figure 6 Eq.(3.12) is shown by
2
(:x (‘I#I.) col (3.13)
The curve for c‘“’ represents the exact minimum of the general
formula (3.9) form = 1,
For application of Eq.(3.11 - 3.12) the Batdorf's parameter is limited by
- (14y.)
.55 U (5?52 100 —2 (3.14)
(1+1ll2 (1+1l)2

3.3 EXTERNAL PRESSURE

The results for external pressure are presented in Figure 7. The lowest value of
c“ always is associated with one half wave in the longitudinal direction,
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After some manipulation the general form becomes

¥ -2 .2
[ =3 +n ) T | 1
{ o) w g el o+ = + — 2 S (3.15)
o8 o2 R = 't i [“nz]z
and the minimum of this formula is denoted ca(1) in Figure 7.
ce = (1+axlcoo (3.16)

The most interesting case is the one for moderately long cylinders, simplified
into
§ 3
4 76 (i+1l)4 ]
coe = 3._ W « 2 (3417)

with the buckling mode

1
e
- l6n 2 I |
n T i (3.18)
(101l)0
Bq. (3.17) is illustrated by c,'?) in Figure 7.
The limitation of Batdorf's parameter for applying Eq.(3.17) is
1 il
g [1+(14y,)2 (14y_)]2
1.7 8L &7 5253 R— (3.19)
(lf1l)2 ‘1+18}16
ce(1) in Figure 7 gives the exact minimum of the general formula
(3.15).

3.4 SHEAR AND TORSION

It is assumed that the cylinder under shear loading may satisfactorily be
treated by the expressions for loading in torsion. The illustrations are given
in Figure B where the solutions for coxs are plotted directly as function
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of the Batdorf's parameter. For moderately long cylinders the following solution
appears as represented by c“(Z) in Figure 8:

g 3
Coxp = 0-442 't(ﬂ"'lnl! Z4 (3.20)

where L 1.937; is a correlation factor for errors in boundary conditions

arising from the assumed deformation mode in Eq.(2.7)

The associated buckling mode reads

i
n-2.6—‘—-—-

, (3.21)
(1+1R)i

=i

m=1

For large values of Z Eq.(3.20) has to be checked against the formula for a long
cylinder

0.331 v, i .
c“e W et (140.563 13) (;} 2 (3.22)
(1-V')‘
with vd = 0,868, see Figure 8 curve C“‘”. The curve for

c““’ in Figure 8 is the exact minimum for short and moderately long
cylinders for m = 1.
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4. NUMERICAL STUDIES
In this chapter two examples on analysis of unstiffened shells are given by the
energy formulatins described in Chapter 2. The first case is a sensitivety study

on the buckling of axically loaded cylinders while the second example illu-
strates the application on a real design problea.

4.1 BUCKLING UNDER AXIAL LOADING

The following data are given:

Geometry: Length L = 1000 mm
Radius r= 200 mm
Thickness t=0.5-6.67 mm
Batdorf's parameter z =0.95-10" - 0.72-10°
Material: Youngs modulus E=2.10-10° MPa
Poisson’s ratio v=2023

Comparison is made between three alterntive procedures. These are the energy
expressions in Section 2.1 and the refined theory in Section 2.2 together with

empirical formula /8/.

The value of the Batdorf's parameter indicates that the cylinders examined all
are classified as long cylinders, see Section 3.2 for the unstiffened case with

o %9, " 0.

The buckling coefficient as function of the Batdorf's parameter is shown in
Figure 9 for the three alternative procedures. It is seen that the two
formulations in section 2.1 and 2.2 only differ by 5 percent and that a knock
down factor in the range 0.35 --0.75 has to be implemented so as to reach the
empirical design curve.

Figure 10 shows the number of half waves in congitudinal direction for the
refined energy formulations together with the number of half waves according to
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the axisymmetric mode for short cylinders.

The dependency of the solution for critical load on the number of longitudinal
and circumferential waves is more clearly depicted by the graphical plots in
Figure 11, where values of Batdorf's parameter equal to 0.715-10’ and 0.477-10
are considered. It is seen that the solution is highly sensitive with regard

to the number of circumferential waves n as opposed to the number of longitu-
dinal half waves m. As a conclusion from this figure the mode in circumferential
direction is the most important to represent correctly.

4.2 ANALYSIS OF CONCRETE PENETRATION SKIRT

The present example concerns the buckling analysis of the soil penetration skirt
of a Condeep type of gravity platform where the effect of the surrounding elas-
tic medium is included. The effect from soil stiffness E‘ou on buckling

mode and corresponding buckling stress is studied.

The real problem is illustrated in Figure 2 while Figure 12 shows the modelling.
The shell data are:

Geometry: Length L=22m
Average radius r=13.8nm
Wall thickness t=20.4m
Batdorf's parameter =084

Material: Youngs modulus concrete = 2.0-10" MPa
Poisson's ratio concrete = 0.2
Lateral stiffness soil = 0.0 - 100 MN/m’

The loading consists of axial compression together with external radial pres-
sure. The external pressure is applied as an axisymmetric pressure plus a
varying contribution according to the deformation mode.

Figure 13 shows the dependency of axial buckling coefficient on lateral soil

stiffness ratio. The stiffness ratio is taken as Esoi.l relative to membrane

ring stiffness of the shell. A clear indication is given on the stiffening
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effect from the soil.

The same figure also shows the variation in buckling mode as function of soil
stiffness ratio. It is seen that the number of half waves in longitudinal
direction m decreases rapidly from 3 for zero soil stiffness down to 1, while
the number of circumferential waves increases from initial 5 up to 7 at the
highest soil stiffness.

5. CONCLUSIONS

Alternative energy expressions have been presented for the buckling analysis of
stiffened shells. The formulations differ by the strain energy functions for the
shell wall.

Design formulas for buckling under axial load, external pressure and shear have
been derived. The effect of a surrounding elastic medium has also been included
on energy form.

The conclusions from the numerical studies on unstiffened shells are that the
simplified energy expressions give results that lies 5 percent on the
nonconservative side. Further, the examples demonstrate that an attractive '
alternative to the use of explicit design formulas is to develop simple computer |
programs by which sensitivity studies may easily be carried out. Such programs
will also be useful for estimating the most critical buckling modes before a
detailed finite element model for nonlinear analysis is formed. In many cases

the finite element model may be reduced by introducing boundary conditions that
satisfy the critical mode of buckling.

The numerical examples also demonstrate that the number of circumferential
waves is the most important mode parameter to model correctly.

The work in Norway will continue into the development of computer codes for
calculating stresses and amplitudes of deformation. This is necessary for
obtaining a full design package.

R e
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Figure 5  Buckling of penetration skirt
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*STABILITY OF CIRCULAR STIFFENED SHELLS -
FROM RESEARCH TO PRACTICE"

“INCORPORATING RESEARCH INTO CERTIFICATION STANDARDS"

by Joseph E. Herz
American Bureau of Shipping

The theme of this Panel Session "Stability of Circular Stiffend Shells - From Research
to Practice” is certainly of interest to ABS both on the research end and the practice
side. The majority of our classification and certification work is concerned with new
and existing structures that are in service or soon will be. However, new rescarch
results must be reviewed and incorporated into our existing standards to prevent them
from becoming dated. Probably the best way to bring research results into practice is
to incorporate them into accepted standards. The two other speakers on the program
spoke of matters having to do with Tension Leg Platforms, | would like to stay with
that subject. 1 wish I could rattle off the names of a several TLPs that ABS has
classed or certified and recount our service experience with them. 1 am unable to do
that since there is only one TLP in service - the Conoco Hutton Platform in the UK
Sector of the North Sea and ABS was not involved with its certification.

However, Conoco is proceeding with its second TLP which will be installed in Green
Canyon Block 184 in the Gulf of Mexico in 1760 fr of water. The proposed
installation date is mid-1989. ABS will be involved with the review and verification
of the structural design of this TLP.

I would like to focus on ABS’ effort to prepare itself to offer meaningful certification
services to the operatcrs of the future TLPs since it involves research and a
considerable effort to prepare TLP standards.

I believe it will be helpful to provide a bit of history about ABS and its standard
making lunction.

ABS was formed in 1862 due primarily to the efforts of the insurance industry, (This
is our 125th year of operation) ABS’ initial function was to certify ship captains and
the company was originally called the American Shipmasters Association. The
insurance companies evidentally reasoned that having a qualified ship captain went a
long way towards assuring a safe voyage.

Over the years the work of ABS moved away from evaluating personnel and
concentrated on the ships themselves.

Today the major Classification Societies of the world produce standards - called Rules
- which contain requirement for the structure, machinery plant, materials, electrical
systems, piping systems, fire detection and fire fighting systems, etc., all of which
have to do with the safe operation of the vessel.

Most Class Societies initially were concerned exclusively with the ships however, most
have extended their certification activities to include offshore installations such as
MODUs, fixed and floa.ing production platforms, single point moorings and undersea
pipelines. The Societici have produced Rules or Guides applicable to these kinds of
installations.
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Now back to the TLP. The TLP is a relatively new concept that offers economic
advantages over conventional jacket structures for deep water production applications.
By deep water I mean over about 1500 feet water depth.

1 would like to recount some of ABS' efforts in research and standards preparation
applicable to Tension Leg Platforms.

The TLP looks similar to a semi-submersible MODU having corner columns and lower
pontoons, however there arc significant differences. The TLP is not floating at her
natural waterline - she is held deeper in the water by the tension legs on tendons. The
tendons are anchored to a foundation template which in turn is attached to the seabed
usually by means of piles.

The corner columns of the TLP are circular stiffened shells of large diameter
subjected to combined loading i.c. external water pressure, compression due to deck
loads and tension or compression from tendon reactions, depending on the location of
the tendon attachment points.

The structural designer is faced with difficulties and uncertainties when he starts to
design this type of structure. For R/t ratios greater than 150 there is very little test
data on the buckling strength of such structures particularly under combined loading,
and with an orthogonal stiffening system, The actual structures will be built with
residual stresses and fabrication imperfections. All of these factors should be
considered in the design to the maximum extent practical.

The Conoco Hutton TLP has corner columns of 58 ft. diameter and these are ring
stiffened. At the conclusion of their design effort on the Hutton TLP, Conoco
realized that there was potential for more efficient design of this type of stiffened
cylindrical structure if applicable test data were available and a reliability based
design standard could be developed and used. The beliel was that safe structures
could be designed with considerable weight savings when compared to what could then
be done.

Conoco approached ABS is late 1981 to solicit support for a Joint Industry sponsored
Stiffened Cylinder Test Program that would utilize conligurations and loadings that
would yield test data applicable to TLP structures.

This program began in 1981 with the following participants: Conoco, Mitsubishi
Heavy Industries, United Kingdom Department of Energy, Standard Oil Company of
California and ABS as Administrator.

- Testing was done at the University of Glasgow under Prof. Doug
Faulkner and at CBI under direction of C. Miller.

- Phase | was completed in 1984,

- Phase Il testing was done at CBI and is just now complete - Phase Il
Participants - all Phase I, Shell Development Co. FLUOR, and US. Coast
Guard.

Under the Phase 1 Program CBI tested 4 ring stiffened and 44 orthogonally stiffencd
cylinders. University of Glasgow tested 18 ring stiffened cylinders. This Phase 1 test
program has been reported upon in the following papers:



C.S. Miller, P.A. Frieze, R.A. Zimmer, H.Y. Jan - "Collapse Tests of Fabricated e

Stiffened Steel Cylinders under Combined Loads" - ASME, 4th National
Conference on Pressure Vessels & Piping Technology, Portland, Oregon, June
1983

Y.N. Chen, R.A. Zimmer, J.G. de Oliveira, H.Y. Jan - "Buckling and Ultimate
Strength of Stiffened Cylinders: Model Experiments and Strength Formulations”
- OTC 4853, 1985

When Conoco first approached ABS to solicit support for the cylinder test program,
they also proposed a second related project to develop a reliability based limit state
design standard for the main structural components of the TLP. This project got
under way in early 1982 and a TLP Rules Case Committee (RCC) was formed to
develop this standard. The Committee met 13 times - about once a month - and had its
final meeting in March 1983, The results of this RCC work is a Model Code for
Structural Design of TLP and is dated 1984,

The RCC had the following members:

Prof. D. Faulkner - University of Glasgow - Chairman
R. Van Hooft - Conoco

W. Schott -

C. Miller - CBI

P. Wirsching - University of Arizona

Y.N. Chen - ABS

H.Y. Jan - ABS - Secretary

Two other visitors who represented organizations who supported the Buckling Test
Program should be mentioned since they made important contributions to the work:

Gerry Burns - Standard Oil Company of California
Vic Davey - U.K. Department of Energy

There is not time for me to go into detail about the Model Code, however, the RCC
did include 4 recommendations that say quite a bit about the Code and point out arcas
where more work is nceded. I would like to go over these recommendations:

1) The strength formulations for cylindrical structures were derived on the basis
of test data available to the Committee, at the time. They may need further
development when all the test results (Phase | & 1II) are compiled and
interpreted. The effect of residual stresses should be examined and accounted
for in the strength formulations.

2) In the Model Code the Target Safety Indexd was fentatively selected as 3.72,
corresponding to a probability of failure of 10™. The Committee felt that a
ﬁ of 3.72 was on the conservative side. If direct design procedures using
appropriate level II algorithms could be used in place of code-specified PSF's a
lower target safety index is possible.

Model uncertainties and economic considerations should be further studied as
to their implications on the P sclection process.

3) The interim loading model in the Model Code considers that the design levels
of wave, wind and current act on the structure in the same directions and their
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load components can be directly superimposed to determine extreme load
effects.

This direct superposition is done only for convenience. The Model Code could
directly account for the situation of different directions if kmown and if
required. For TLP type structures, the maximum extreme environmental
effects such as 100 year storm wave may not produce maximum loadings in a
structural component. Model Code accounts for this too.

4) The main objective of the RCC was to take the development of a reliability-
based design standard to the stage where its validity could be demonstrated so
that further development could be carried out. The Committee had focused its
effort on only one limit state, namely, ultimate strength of cylindrical
structures under extreme loading. Further work may be required before the
suggested strength formulations can be finalized. Other design limit states
relating to serviceability during operation and installation have yet to be
considered. Thus the recommended Design Code, while it may serve as the
basis for a reliability-based design standard cannot be utilized as a complete
design tool at this time.

ABS is currently working on its own Rules for TLP's. Our plan is to produce a
standard built around the working stress format but to also include a reliability based
alternative which will build upon the framework of the Model Code.

Qur work at ABS has been hampered by lack of continuous sustained effort applied to
developing this Code. The downturn in the price of oil and cutbacks in deepwater
exploration had raised questions in our minds as to when the next TLP will be
installed. However, we did make a commitment to complete the TLP Rules and have
again taken up the task. We plan to have a version far enough along to submit to our
Committee by end of 1987,

The largest effort made to prepare a design standard for TLP’s that I know of was
that undertaken by the United States offshore oil industry and administered by APL
This effort has produced APl RP-2T plus two supplementary Bulletins i.c.:

Bulletin 2U - "Stability Design of Cylindrical Shells”
Bulletin 2V - "Design of Flat Plate Structures”

These three documents are to be published this year and will be available by mid-year.

The buckling formulations in the three standards I mentioned: Model Code, ABS Rules
which are in preparation and API-RP-2T and Bulletin 2U, all reflect the work done in
the ABS administered Joint Industry sponsored Test Program plus the considerable
experience and expertise of some very good people from industry and academia.

We are looking forward to reviewing the structural design of the new Conoco TLP.
Conoco provided the impetus to establish the Joint Industry Test program, and the
RCC that produced the Model Code. Their people were very active in the API-RP-2T
effort. We hope the test program results and the standard making effort has helped
with their TLP design.



DEVELOPMENT OF API BULLETIN 20U
FOR STABILITY DESIGN OF CYLINDRICAL SHELLS

by

R.K. Kinra, Staff Civil Engineer
Shell 0il1 Company, Houston, Texas

and

C.D. Miller, Director of Structural Research
CBI Research Corp., Plainfield, Illinois

Introduction

This paper briefly discusses the background and development of a guide
for the stability design of cylindrical shells for offshore structures,
API Bulletin 2U (Reference 1). The first edition of the guide will be
published in May 1987 by the American Petroleum Institute (API). Work
on the guide was started approximately four years ago by the API Task
Group on Tension Leg Platform Structural Design. This task group was
one of nine task groups formed in 1982 by the newly formed APl
Subcommittee 2T, which was charged by the API Standardization Committee
on Offshore Structures (Committee 2) with the development of a
Recommended Practice for the Design of Tension Leg Platforms (TLP”s).
The diligent efforts of the nine task groups culminated in March 1987 in
the publication of the first edition of API RP 2T, Recommended Practice
for Planning, Designing and Constructing Tension Leg Placforms
(Reference 2). Bulletin 2U was developed by the Task Group on TLP
Structural Design as a supplement to the chapter on TLP Structural
Design in API RP 2T. A companion document, API Bulletin 2V (Reference
1), was also developed to provide guidance for the design of flat plate
structures.

The development of Bulletin 2U was undertaken for several major reasons.
The columns and pontoons of tension leg platform hull structures, such
as depicted in Figure 1, often include wvery Jlarge diameter
orthogonally-stiffened shells. Design guidance for such large diameter
orthogonally-stiffened shells under combined loading 1s currently not
available in any United States code of practice. The API Recommended
Practice for Fixed Offshore Structures, API RP 2A (Reference 4) only
covers low D/t unstiffened and ring stiffened cylinders. The broader
scope ASME Code Case N-284 (Reference 5) issued in 1980 has not yet been
formally adopted and has not been updated to include the results of
extensive new fabricated cylinder test data that have become available
since 1979. Bulletin 2U is intended to fill this gap in design guidance
for large diameter orthogonally-stiffened shells.

129
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Scope of Bulletin 2U

Bulletin 2U covers all the cylinder geometries, buckling modes and
loading conditions pertinent for offshore structures. The cylinder
geometries and buckling modes included are illustrated in Figure 2. The
loads and load combinations covered in the bulletin include:

Axial compression

Bending

Radial or hydrostatic external pressure

Axial compression, bending and hoop compression
Axial tension, bending and hoop compression.

Semi-empirical Design Approach

The design approach adopted in Bulletin 2U is semi-empirical. The same
basic approach 4is used for all the different buckling modes. For a
given buckling mode, the elastic buckling stress is computed from:

For = @ Og,

where ¢,

el = the theoretical elastic buckling stress, and

a = a reduction factor.

The reduction factor, a, is an empirical factor which accounts for the
effect of geometric {imperfections, boundary conditions, ete. If the
elastic buckling stress, F,;, is above the proportional 1limit of the
material, the effects of inelasticity must be considered. This is done
by applying a plasticity reduction factor:

For = n Fgr,

where n = the plasticity reduction factor.

The plasticity reduction factors in Bulletin 2U are empirical factors
determined on the basis of available test data. For a givem cylinder,
the failure mode and corresponding buckling stress are determined by
evaluating the lowest buckling stress among all the possible buckling
modes for the cylinder.

Key Features of Bulletin 2U

Some key features of Bulletin 2U are discussed below:



1. Working stress design approach - Bulletin 2U is based on a working
stress design approach. The available test data are used to develop
empirical lower-bound buckling curves. The allowable stresses are
obtained by dividing the buckling stresses by safety factors chosen
to reflect the lower-bound nature of the buckling stresses.

2. Recommended safety factors - In order to account for the greater
sensitivity to geometric imperfections of cylinders which buckle in
the elastic range, a variable factor of safety equal to 1.67¢% for
normal design conditions is recommended. The partial safety factor
¥ depends on the buckling stress. The recommended value of ¥ is 1.2
when the buckling stress is elastic and 1.0 when the buckling stress
equals the yield stress. A linear variation {s recommended between
these limits. Por extreme loading conditions, where a one-third
increase in allowable stresses is appropriate, a factor of safety
equal to 1.25V is recommended.

3. Mode separation - The buckling stress equations in Bulletin 2U were
developed on the basis of no interaction between the buckling modes.
The buckling stresses for local shell buckling, however, may be
reduced {f the predicted buckling stress for either bay instability
or general instability is approximately equal to the predicted local
buckling stress. Similarly, 4if the predicted general instability
stress is approximately equal to the bay instability stress, the
actual buckling stress for either of these modes may be less than
predicted.

Mode interaction can be avoided by applying a factor 8 to the
strains corresponding to the buckling stresses. It is desirable to
provide a hierarchy for failure with general instability preceded by
bay instability and bay {instability preceded by local shell
buckling, because local shell buckling 4is generally much less
catastrophic than bay or general instability. A minimum factor of
1.2 is recommended for B for both the bay and general instabilicy
modes. The designer may elect to choose a higher § value for the
general instability mode.

4. Commentary - A detailed commentary is provided in the bulletin,
describing the background of the recommended buckling stress
equations and showing comparisons of the equations with all the
available fabricated cylinder test data.

Summary of Fabricated Cylinder Tests

Table | summarizes all the buckling tests carried out in the United
States on fabricated steel cylinders that are found in the published
literature. Tests on manufactured steel cylinders and cylinders made of
other materials such as aluminum and mylar are not included, because it
is felt that these may not provide realistic imperfection reduction
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factors and plasticity reduction factors for fabricated cylinders such
as are used in offshore platforms, due to differences in geometric
imperfections and residual stresses. Table 1 1lists 176 tests on
unstiffened cylinders, 249 tests on ring stiffened cylinders, 28 tests
on stringer stiffened cylinders and 51 tests on ring and stringer
stiffened cylinders. The geometry of the cylinders, the material yield
strength and the loading conditions are described in the table.

Results from the tests listed in Table | have been used to develop the
empirical reduction factors and plasticity reduction factors recommended
in Bulletin 2U. The table shows that a long 40 year hiatus followed the
early tests on unstiffened cylinders under axial compression conducted
in the 1930°s at the University of Illinois. In the mid-seventies, the
oil industry realized the importance of fabricated cylinder tests and
began a series of tests starting with tests on cylinders under axial
compression at Lehigh University. This was followed by many test
programs funded by the American Petroleum Institute and joint industry
cooperative efforts. Many of the test programs have been conducted at
Southwest Research Institute and CBI Research Corporation, which have
excellent test facilities for hydrostatic pressure loading.

Figures 3, 4 and 5 from Bulletin 2U have been selected to illustrate the
type of calibrations carried out between available test results and the
semi-empirical buckling stress equations recommended in Bulletin 2U.
Figures 3 and 4 show the results for elastic and inelastic local
buckling of unstiffened cylinders under axial compression. Figure 35
shows the calibration for local shell buckling of stringer stiffened
cylinders under axial load. The Bulletin 2U Commentary contains many
simtlar figures, which cover the other cylinder geometries and buckling
modes included in Bulletin 2U.

Verification of Bulletin 20

Late in 1985 the Task Group on TLP Structural Design decided that it was
necessary to carry out an independent evaluation and verification of
Bulletin 2U before it was submitted for approval to the TLP
Subcommittee. A joint industry project supported by ten companies was
organized and administered by Earl and Wright Consulting Engineers. The
verification work, documented in Reference 6, was carried out by Earl
and Wright, CBI Research and J.P. Kenny. The intensive verification
effort resulted in some important suggestions for changes in Bulletin
20, which have already been implemented.

A major part of the effort carried out by J.P. Kenny was to compare the
Bulletin 20U formulations with the strength formulations recommended by
European codes and with the results of fabricated cylinder tests carried
out 4in Europe. In general, the Bulletin 2U formulations were found to
compare favorably with test results and formulations from other codes.
For example, Figure 6 shows a comparison of test results for local
buckling of ring stiffened cylinders under axial compression with the



buckling formulations recommended by Bulletin 2U, ASME Code Case N-284,
the DNV-08 Rules (Reference 7) and the ECCS Recommendations (Reference
8). The figure shows that Bulletin 2U compares favorably with the other
available codes, providing a reasonable lower bound to the test results
and slightly less scatter of the test results than the other code
formulations. Reference 6 contains many similar comparisons for other
cylinder geometries and loading conditions.

Conclusions and Recommendations

The release of the first edition of API Bulletin 2U represents an
important milestone in the development of design guidance for fabricated
cylindrical shells. Much work, however, remains to be done in the
future. Some recommendations for further research follow:

1. Reliability-based design approach - As discussed, Bulletin 2U {is
based on a working stress design approach using essentially lower
bound formulations. Further work with the existing test data should
focus on comprehensive statistical analysis of the test data leading
to a reliability-based design approach and more consistent safety
factor levels.

2. Additional model tests - Inspite of the hundreds of model tests on
fabricated cylinders listed in Table 1, it is obvious that the data
base is far from complete. For example, the number of tests on
stringer stiffened and ring and stringer stiffened cylinders is
woefully inadequate. Additional tests are required to fill in gaps
in the data base and improve the buckling formulations recommended
in Bulletin 2U.

3. Analytical calibration of test results - There is a great need to
develop efficlent finite element methods which can consider the
effect of measured imperfections on buckling loads. Significant
progress in this regard 4is being made in Europe, particularly at
Imperial College in London. Earlier efforts were stymied by the
prohibitive expense of accurate analyses with available finite
element analysis programs. Recent progress in developing improved
finite element methods and computer programs offers significant
promise for the future. Successful calibration of analytical and
model test results will pave the way for future reliance on
analytical methods rather than expensive model tests.

4. Review of Bulletin 2U - Periodic review and updating of Bulletin 2U
must be undertaken in order to maintain it”s state-of-the-art
status. Problem areas encountered and reported by bulletin users
must be investigated and necessary changes {mplemented
expeditiously. Feedback from the user community will play an
important role in the future evolution of Bulletin 2U.
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TABLE 1 - SUMMARY OF BUCKLING TESTS (N STEEL CYLINDERS

Date No. Geometry 0’ Loads
Tests
R/t L/R (ksi)
INSTLFFENED
1933 21 139-990 1.0-24.7 25-46 | Axial Compression
1937 18 35-98 14.8-60 31-40 | Axial Compression
| 1977 10 42-124 2.6-5.8 50,94 | Axial Compression
[ 1978 13 23,34 4.3-59 36 Axfial Compression

1980 5 38-113 4.0-5.3 35-52 | Axial Compression

1981 2 150 0.58 37,47 Axial Compression

1981 13 460 2.0 30 Axial Compression
(with and without
openings)

1982 7 24 16 36,50 | Axial Tension &
External Pressure

1983 16 9-48 24-48 36,50 | Bending

1983 5 149,222 2.0-2.4 44,55 | Axial Compression
Bending

1985 66 16-40 6 35-43 Axial Compression
Bending, &
External Pressure




TABLE | - SUMMARY OF BUCKLING TESTS (N STEEL CYLINDERS (continued)

Date No. Geometry 0, Loads
Tests
R/t L/R (ksi)
RING STIFFENED

1976 41 250-500 0.05~1.24 29-79 Axial Compresslon

1978 32 500 0.09-1.08 40 Axial Compression
& External Pressure

1981 20 16-64 1-8 36,50 External Pressuce

1981 3 128,213 0.2,1.0 42 Axial Compression

1981 L] 150,250 0.33,1.0 36-47 Axial Compression

1982 8 312 0.8-3.4 50,80 | Axial Compression

1982 6 458 0.18 30 Eccentric Axial
Compression

1982 35 17-48 3-6 36,50 Axlal Tenslon &
External Pressure

1983 22 150,300 0.1-0.4 50 Axial Compresslon
& External Pressure

1983 2 228 0.38 50 External Pressure

1983 33 23-47 1.7=3.5 37-52 Axial Compression
& External Pressure

1983 30 2347 1.7-3.5 36,50 Axial Compression
& External Pressure

1983 5 267 0.15 54 Aclal Compreaslon
& External Pressure

1986 4 300 0.2 47 Axial Compression
& External Pressure

STRINGER STIFFENED

1981 6 190 0.41,1.125 50 Axlal Gompression
Eccentric Axial
Compression

1981 14 200-360 0.40-1.56 41-49 | Axial Compression

1981 2 95,272 1.33,1.56 33,44 Axial Compression

1983 12 190 0.4-1.2 45 Axial Compresslion
& FExternal Pressure

RING AND STRINGER STIFFENED

1981 1 196 1.11 36 Axial Compression

1983 44 190-500 0.2-1.0 50,80 | Axial Compression
& External Pressure

1986 5 300-500 0.8-1.0 54-57 Axial Compression
& External Pressure

1 300 0.1 52 External Pressure
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FIGURE 1. EXAMPLE TENSION LEG PLATFORM
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MODES COVERED IN BULLETIN 2U
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stub; 67,114
thinwalled; 13,14
tubular; 113,114,119,135,141,291

complex trajectory: 245

computer program:
nonlinear; 49

concept:

effective width; 196,197




connection:
beam-to-column; 192
gusset plate; 191,193

converge: 51,125

coordinate:
cylindrical; 139
orthogonal curvilinear; 125

cracking; 175,239
crippling: 192

critical:
buckling pressure; 262
length; 261
pressure; 264
ring spacing; 261

crookedness; 115
initial; 115

curve:
load-shortening; 57

CSA: 205,208,222

cylinder: 113,125,266,287,280,330,331
buckling of; 261
conoidal; 125
Nat; 125
moderately long; 313
paraboloidal; 125
ring and stringer stiffened; 287,209,332
ring-stiffened; 125,259 261,275,287,
329,332
short; 310
spheroidal; 125
stiffened; 40,259,264,266,287
stiffened steel; 327
stringer stiffened; 287332
unstiffened; 259,261,287,332
vertical; 109

cylindrical:
skirt; 308
structure; 327

359

database: 275

deformation:
global; 106
shear; 149,154

dent:
dented region; 105,109

denting: 109,265
bending damages; 80
rig; 109
test; 277

diaphragm: 233

differential equation: 126
first-order; 126

dimple: 259
DIN: 222
distortion: 71

dome:

one-off; 51
single layer; 49
shallow; 49

dynamic:
instability; 13,20
non-linear response; 167
response; 17

earthquake: 19,163
Mexico; 163
Mexico city; 176
1978 Miyagi-ken Oki; 176
motion; 175
U.S.-Japan Cooperative Research
Program; 175

ECCS: 115,119,292,33
eigenvalue: 27,49,125,166

eigenvectors; 49



eight-node isoparametric shell el

elastic:
media; 155
support; 149

elephant foot buckle: 71
end restraint: |
energy contribution: 301

equation:
closed form; 40
critical stress; 261
differential; 150,151
first-order differential; 126
interaction; 77,287,280
non-conjugate; 246
static; 151

equilibrium:
bifurcation; 50
secondary path; 250
trajectory; 248

fabricated member: 65
finite difference:
approach; 265
principle; 113,116
finite element: 80,107,138,149,192,
197,245,333
formulation; 300
model; 142,316
non-linear shell analysis; 80
rigid-plastic; 266
two-dimensional; 196
first order moment: 75
floating offshore structure: 275
force-ductility ratio: 167
forced vibration: 19

foundation movement: 149

Fourier:
index number; 126
series; 125,246

fracture: 175,177
frame:
bending; 106
braced steel; 191
moment; 175
single story; 13,16

framework:
steel; 163

free vibration: 19
frequency: 152,153,155
full plastification: 75
function:
Airy stress; 28,302
displacement; 246
polynomial linear; 246
strain energy; 316
gable: 163
Gaussian curvature: 42,143
general collapse; 261
girder:
box; 233
steel box; 245
three-cell box; 253
global:
axis; 139
degrees of freedom; 269
grid system; 149
ground acceleration; 19

gusset plate:

connection; 191,193



Hartford Coliseum roof: 58
Hencky-von Mises curve: 291
hull structure: 329
IABSE (International Association of
Bridge and Structural Engineering):
233,245
Congress; 233,245
imperfection: 50,65,75,84,106,113,
263,273,276,288,291,326,333
initial; 17,79,195
local; 79
instability; 292
bay; 293
general; 293
interaction:
equation; 77
formula; 75
stability; 75
interactive effect: 259
interconnector; 222,227
1S: 208
ISl: 205
iteration: 125
jacket structure: 106
jump: 58
kinematic work-hardening rule: 165
knockdown factor: 84
lacing: 223
lip: 27

load-axial shortening curve: 55

load:
buckling; 47,192,195
carrying capacity; 233
collapse; 57
critical buckling; 75
deformation; 75,137,140
denting; 288
Euler buckling; 225
path; 1,23
scheme; 233
ultimate; 85,135

loading:
concentric; 194,197
critical; 13,154
eccentric; 145
lateral; 107
step; 13
system; 225
torsional; 261

lower boundary formulation: 333
manufacturing process: 113
material orthotropy: 254

matrix:
decomposed stiffness; 49
narrow strip; 256
secant stiffness; 83
tangent stiffness; 49
transfer technique; 149

membrane:
effect; 301
resistance; 39
stiffness; 262

method:
Adam's; 127
allowable stress; 140
elastic-plastic frame analysis; 164
finite strip; 233,237,245
Goldberg-Bogdanoff; 125
numerical; 50
numerical analysis; 165
numerical integration; 125
plastic hinge; 165
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predictor-corrector; 127
rational design; 192
Ritz; 281

Runge-Kutta process; 127
semi-empirical; 81
semi-energy; 27

Mexico City:
earthquake: 163,176

mises yield criterion: 139
Miyagi-ken Oki earthquake; 176
mode:
bifurcation; 49

buckling; 154,155,287 288

failure; 263

local; 17

primary local; 15

shell buckling; 288
model: 14,138,233,265

buckling; 14

finite element; 142,316

lumped mass; 166

plastic; 47

small-scale; 265
modelling: 13
moment-curvature: 117
moment-thrust-curvature: 118
mooring: 325
motion instrument: 163
Newton-Raphson iteration: 113,119
non compact: 206
nonlinearity: 288

numerical technique: 300

offshore:
installation; 325

structure; 105,329
oil rig: 265
out-of-straightness: 1,109,113,115,224

overload capacity: 55

buckle; 263
curved; 263
inter-stringer; 266

period:
natural; 166
predominant; [66

pipeline:

plastic:
buckle; 69
bulge; 69
flow rule; 165
hinge; 165,166,175
rotation; 177

plate:
buckling; 197
deck; 233
edge-stiffened; 27
flat structure; 329
orthotropic; 238
spliced; 191,193,197
stiffened; 264

platform: 106,325
deep water drilling; 287
offshore production; 65
tension leg; 287,326,329

polynomial: 15

pontoon: 326,329

post-buckling: 27,28,65,206,113
cyclie; 175

post-collapse: 79



potential energy: 248,249
stationary; 249

prebuckling stage: 126,301
profiling rig: 67

program:
ADINA; 137,138
BASP; 191,193,196
BCAP; 119
DENTA; B1.88
DENTA-2; &8
DRAIN-2D; 176
FINAS; 265,273
MCTAP; 118

quadratic:
failure envelope; 289
form; 287,288

ratio:
ductility; 167
force-ductility; 167
slenderness; 55,77
width-to-thickness; 206

redundant: 55
reliability: 333
repairing: 135
residual:
: 278
dent depth: 277,278
response:
maximum; 167
non-linear; 167
rule:
isotropic hardening; 165
kinematic hardening; 165
SAA; 205
safety factor: 331

seismic:

force; 167
response; 19
shear:

coefficient; 163

shell: 39
buckling; 139
buckling mode; 288
circular; 325
composite; 39
concrete; 39
cylindrical; 84,259,265,129,329
equivalent orthotropic; 263
framed; 39
latticed; 39
longitudinally-stiffened; 265,266
of revolution; 125
orthogonally-stiffened; 265,266,329
orthotropic; 39
reticulated; 39
ring and stringer stiffened; 309
rigid-stiffened; 265,269
ring-stiffened; 266
sandwich; 39
slender; 292
stiffened; 39,42,263
stiffened cylindrical; 287
stringer-stiffened; 265,200
thin-walled; 275
unstiffened; 316
wooden; 39

shell-like structure: 39
spherical; 40
sinusoidal bending: 83
slenderness ratio: 77,153,154,222,225

modified; 205
non-dimensional; 65

solution:
closed form; 39
homogeneous; 127

lower bound; 80
nonhomogeneous; 127,129
trivial; 251
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specifications and codes: plain ring; 278,279

American Assuciation of State ring; 130
Highway and Transportation stringer; 263
Officials (AASHTO); 192,196
American Burean of Shipping stiffening:
(ABS); 325 effect; 299
American Institute of Steel ring; 125,278
Construction (AISC); 135,175,
176,205,222,223,227 stiffness: 55
American Iron and Steel Institute membrane; 262
(AISI); 115,119,287
American Petroleum Institute (API); straightness: 65
115,119,287
American Society of Civil strain: 246
Engineering (ASCE); 197,205,207 energy; 32,301
American Society of Mechanical residual; 67,71,117
Engineering (ASME); 333
Canadian Standards Association strength:
(CSA); 205,208,222 buckling; 81,191,326
European Convention for Con- column; 120
structional Steelwork (ECCS); formulation; 327
115,19,292 333 interaction; 71
German Buckling Specification post-buckling; 34
(DIN); 222 residual; 88,105,106,265,273
Indian Standard (IS); 208 residual structural; 80
Indian Standard Institution ultimate; 113,235
(IS1); 205 ultimate tensile; 192
Standards Association of
Australia (AS); 205,209 stress:
circumferential residual; 114
spherical bearing; 69 elastic buckling; 206,288,330
generalizgg; 165
SSRC: 49 hoop; 263
guide; 250 initial buckling; 254
multiple curve; 115,119 instability; 331
longitudinal residual; 114,120
stability: 325 plane; 139
analysis; 125 plastic; 164
criteria; 259 residual; 1,65,113,114,117,288 326
design; 329
interaction; 75 stress-strain curve: 114,117
loss; 243
tangent modulus: 55
stationary potential energy; 27 curve; 2
stiffener: 125,197,243 tank:
bridging; 135 elevated storage; 135

circumferencial; 259
longitudinal; 259 Target Safety Index: 327



theorem:
Stowell-llyushin; 34

L 3

Bernoulli-Euler; 149

finite difference principle; 113,116
inextensional; 307

plastic potential flow; 164
tangent modulus; 1
Timoshenko’s beam; 149
yield-hinge; 86

thin-walled construction: 233
threshold: 13

TLP Standard: 325
transmission tower: 135

T-ring: 276
stiffeners:278

truss: 278
space; 55,57

tube:
clamped; 87

dented; 80
eccentrically loaded; 89
manufactured steel; 65
normal-thick-walled; 87
simply supported; 87
steel; 105
thick-walled; 87
thin-walled; 87

tubular: 89
beam column; 77,105,106
bracing member; 177
circular; 79
column; 113,114,119,120,135,291
dented; 135
dented tubular column; 141
member; 79,106
section; 67
unstiffened; 80

ultimate failure path: 60

Uniform Building Code: 175
vessel: 275,287,325

vibration:
analysis; 125
forced; 19
free; 19
period of; 19

virtual work: 301,304
warping: 192
wave: 302
length; 40,254
number; 128
weld:

girth; 69
pattern; 227

whitmore's effective width concept: 192

working stress design: 331
work-harden: 164

yielding:
local; 69,264

yield moment: 2
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