
Detecting Cache-based Side Channel Attacks using
Hardware Performance Counters

Facoltà di Ingegneria dell’informazione, informatica e statistica

Corso di Laurea Magistrale in Engineering in Computer Science

Candidate

Serena Ferracci
ID number 1649134

Thesis Advisor

Prof. Alessandro Pellegrini

Co-Advisor

Dr. Stefano Carnà

Academic Year 2018/2019

Thesis defended on 22/07/2019
in front of a Board of Examiners composed by:
Prof. Fiora Pirri (chairman)
Prof. Aris Anagnostopoulos
Prof. Febo Cincotti
Prof. Pierangelo Di Sanzio
Prof. Umberto Nanni
Prof. Alessandro Pellegrini
Prof. Aurelio Uncini

Detecting Cache-based Side Channel Attacks using Hardware Performance Coun-
ters
Master’s thesis. Sapienza – University of Rome

© 2019 Serena Ferracci. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: July 15, 2019
Author’s email: ferracci.1649134@studenti.uniroma1.it

mailto:ferracci.1649134@studenti.uniroma1.it

To you, always in my heart
To my family and friends

Acknowledgments

Vorrei ringraziare la mia famiglia che mi è sempre stata accanto e che mi ha permesso
di arrivare fin qui. Perché hanno gioito per tutti i traguardi che ho raggiunto e sono
stati la mia roccia nei momenti in cui ne avevo più bisogno.

Vorrei ringraziare tutti i miei amici e compagni di universita, in particolar
modo gli amici di sempre: Beatrice, Cristina, Felice e Raffaele. Per esserci sempre
nonostante la distanza che a volte ci separata o gli impegni che non ci permettono di
essere insieme il tempo che vorremmo. Perché hanno reso questo viaggio pieno di
sfide e difficoltà più sopportabile e divertente.

Un particolare ringraziamento va al mio relatore Alessandro Pellegrini e al co-
advisor/external-advisor/compagno di banco Stefano Carnà.
A Stefano che ha dovuto sopportare giornalmente tutti i miei problemi e le mie ansie,
ma per qualsiasi cosa c’è sempre stato. Per ogni melodrammatico "siamo pronti a
riavviare?" e per ogni volta che non funzionava più nulla perché io distrattamente
avevo dimenticato di modificare qualche dettaglio. Per le giornate intere passate
dentro il dipartimento fino a sera sperando di riuscire a trovare le miracolose metriche.
Per tutta la pazienza che ha avuto e per la gentilezza con cui mi ha spiegato più e
più volte le cose non mi entravano in testa. Per tutto questo e molto altro ancora,
grazie.
Al professor Pellegrini che ha accettato di essere il mio relatore senza sapere che
cosa lo aspettasse: le e-mail piene di ansia e le mie continue insicurezze. Per tutti i
discorsi di incoraggiamento che ha dovuto fare nel corso di questi mesi. Per tutte le
volte che ha cercato di farmi stare "serena". Per aver dovuto correggere ripetutamente
questa tesi scritta in un inglese improbabile. Per quel "Lei" che a fatica è riuscito a
diventare un "Tu". Ma soprattutto, per tutte le volte che c’era un problema e si è
fatto in quattro per risolverlo. Perché, dopo questi 5 anni, non pensavo che avrei
trovato un professore cosí disponibile e gentile, quindi grazie mille.

Contents

1 Introduction 1

2 Cache-based Side Channel Attacks 5
2.1 Optimizing Instruction Execution Latency 5

2.1.1 Instruction Pipelining . 6
2.1.2 Optimizing Data Access Latency: The Cache Hierarchy . . . 8

2.2 Side Channel Attacks . 8
2.2.1 Spectre . 9
2.2.2 Meltdown . 10
2.2.3 Foreshadow . 11

2.3 Attack Techniques . 12
2.3.1 Flush+Reload . 13
2.3.2 Evict+Time . 14
2.3.3 Prime+Probe . 14

3 Hardware Facilities to Measure Performance 17
3.1 Program Monitoring Counters . 18

3.1.1 Programmable PMC . 18
3.1.2 Offcore PMC . 19
3.1.3 Fixed PMC . 19
3.1.4 Global Registers . 20

3.2 Processor Event Based Sampling . 22

4 Hardware Performance Counters against Hardware Attacks 27
4.1 Side-channel Attacks Study . 27
4.2 Attack Techniques Study . 28
4.3 Attacks and Attack Techniques Profiling 29

4.3.1 Time Slots . 30
4.3.2 Cache Events . 32
4.3.3 TLB Events . 35

4.4 Metrics . 41
4.4.1 Cache Locality . 41
4.4.2 Cache - Working Set Relation 43
4.4.3 Experimental Classification Results 44
4.4.4 Automatic Classification . 49

4.5 Related Work . 51

Contents

5 Reference Implementation 55
5.1 Module Organization . 55
5.2 IOCTL commands . 56

5.2.1 PMCs Configuration . 57
5.2.2 Processes Management . 58
5.2.3 Data Retrieved and Post Processing 59

5.3 Hooking into the scheduler . 61
5.4 Handling PMC Overflow . 62
5.5 Overhead . 63

6 Conclusions and Future Work 67

1

Chapter 1

Introduction

The advancement of software forced the hardware to become increasingly more
efficient. An improvement in performance was achieved thanks to a number of
optimizations that have been introduced such as the use of caches, CPU pipelines,
out-of-order execution and speculative execution. The caches are components used by
the CPU to reduce the average cost to access data from the main memory, modern
CPUs have multiple levels of CPU caches, the Last Level Cache (LLC) is shared
between the cores, instead the others are shared only between the process running
on the same core . The CPU pipeline is a technique used in modern microprocessors
which allows to execute a certain number of instructions (depending on the pipeline)
in parallel in order to increase the instruction throughput. With the introduction of
out-of-order execution, instructions are not processed strictly in program order but
as soon as all required resources are available. In the end, with speculative execution,
CPUs use branch predictors to guess which instruction will be executed next, instead
of waiting for the result of the previous instructions.

However, the introduction of these optimizations has also exposed systems to
new families of attacks, called hardware-based attacks, some of the most famous
ones being Spectre, Meltdown and Foreshadow. Hardware-based attacks exploit
the previously described optimizations to get information from a victim applica-
tion. Specifically, the attacker can use the out-of-order execution or the speculative
execution to perform operations that in a strictly serialized context would not be
allowed, like accessing a memory area for which it has no permissions, or executing
(or forcing the victim to execute) a portion of the victim’s code that accesses private
information. Once the private information is loaded into the cache, the attacker can
exploit techniques such as Flush+Reload, Prime+Probe or Evict+Time, to retrieve
the information through a side channel.

Software patches have been introduced to try to mitigate these attacks. To
prevent cache state effects from spanning across process boundaries, it could be
sufficient to disable cache sharing. On a single threaded processor, this requires
flushing all caches upon every context switch. On a processor with simultaneous
multithreading, it also requires the logical processors to use separate logical caches,
statically allocated within the physical cache. Other approaches to cope with this

2 1. Introduction

type of attacks suggest to completely disable the CPU’s caching mechanism, or
disabling cache sharing only for specific processes (or specific code sections) marked
as sensitive. A different approach has been tried with the introduction of a Trusted
Execution Environment (TEE) that provides security features such as integrity of
applications executing within the TEE, isolated execution, along with confidentiality
of their assets. Trusted applications running in a TEE has access to the full power
of a device’s main processor and memory, while hardware isolation protects these
components from user-installed applications running in the main operating system.
Software and cryptography-based isolations inside the TEE protect the different
contained trusted applications from each other.

The software solutions proposed so far might not be fully suitable to prevent
cache-based side-channel attacks. This is because the solutions are tailored to all
known attacks they try to prevent, but at the same time more and more advanced at-
tacks are devised, that manage to bypass the introduced software patches. Moreover,
these software patches, in addition to not being optimal to limit the exploitability of
these attacks, typically add a non-minimal overhead to program execution. This
aspect cannot be overlooked, in fact a noticeable drop in performance has been
observed when these patches are applied.

In this thesis we explore the viability of a different methodology. Rather than
focusing on attack prevention or mitigation, we focus on detection. As we have
seen, software patches focus on the mitigation and prevention of these families of
attacks, while the methodology exposed focuses on detection. The proposal is based
on hardware facilities available on modern CPUs, which have been traditionally
exploited to profile the behavior of applications from a performance point of view.
This technology is based on the availability of Performance Monitoring Counters
(PMC), which allow to analyze the behavior of applications at runtime, at a very
reduced performance cost. This technology, that is usually used to monitor the
entire system or an application, is used to detect at runtime if an application is
trying to exploit one or more hardware-based attacks techniques named above. In
order to detect a possible attack, we define a set of aggregate metrics, that can be
evaluated at runtime, with reduced overhead. Based on the result of these metrics it
is determined with a certain degree of confidence if an attack is in progress or not
and what is the malicious application involved. If there is a high degree of confidence
that an application is executing a malicious code, it can be terminated. To define
these metrics used to monitor generic applications, two different approaches were
followed. First, we have extensively analyzed the attacks and techniques used to
carry out the attacks from a theoretical point of view. Then, both malicious and non
malicious applications have been extensively profiled. We also present a preliminary
implementation of this methodology based on a Linux Kernel module for Linux
operating systems running on x86-64 architectures.

The remainder of this thesis is organized as follows. Chapter 2 provides an
overview of optimization techniques introduced in order to speed up executions. The
advantages and the disadvantages implicated by the optimization and the families of
attacks that exploit them to read and/or write memory of the victim process are also

3

discussed. Chapter 3 presents the hardware facilities used to detect the described
attacks. Chapter 4 explains the methodology used to detect the attack techniques
presented and how PMCs can be used for this purpose. Chapter 5 describes a
possible implementation of the methodology. Finally, Chapter 6 concludes and sums
up this thesis and discusses some possible future works. It discloses how our proposal
can be enhanced for an extended support and possible directions for future work.

5

Chapter 2

Cache-based Side Channel
Attacks

Standard computing environments were designed so as to ensure that a process cannot
access the address space belonging to another process. Similarly, it is not possible
from user mode to access kernel memory. At the same time, a variety of optimization
strategies have been introduced over time to improve system performance, which
will be explained in detail in the section 2.1, such as caches, pipeline, out-of-order
execution and speculative execution. The caches are used to minimize latency to
access memory. The pipeline is useful to increase the instruction throughput. The
out-of-order execution, instead of enforcing a strict execution order of programs,
allows CPUs to reorder instructions. At the end, with speculative execution, CPUs
predict the outcome/target of branch instructions. These CPU optimizations have
been used to threaten the security guarantees traditionally offered to applications.
In particular side-channel attacks (which will be discussed in Section 2.2) allows
to bypass traditional memory-protection systems, allowing an attacker to steal
information from these applications or the operating system kernel. In general,
a side-channel attack is based on gaining information from the implementation
of a computer system, instead of weakness in the implemented algorithm itself.
The sources exploited to retrieve meaningful information are for example: power
consumption, timing information or even sound. The general classes of attacks which
are of interest for this thesis are:

• cache-base attacks, which are based on the attacker’s ability to monitor cache
accesses made by the victim in a shared physical system as in a virtualized
environment or a cloud service.

• timing attack: which are based on measuring how much time various operations
(such as reloads or flushes a cache line) take to perform.

2.1 Optimizing Instruction Execution Latency
Instruction latency is the number of processor clocks that an instruction must wait
for so that the resources necessary to it are available and therefore released from
previous instructions, in the case in which these were in use, or loaded from the

6 2. Cache-based Side Channel Attacks

memory. For example, an instruction which has a latency of x clocks will have its data
available for another instruction that many clocks after it starts its execution. The
factors that have contributed to increasing latency are varied. Those referenced by
the optimizations explained in the following section are: access to the main memory
for each data that must be used during execution and serialized execution which
also forces instructions that are ready to be executed (i.e. all resources necessary
for execution are available) to wait because there are instructions before them that
are awaiting their resources [27]. To try to mitigate this situation, optimizations
have been applied that have brought enormous advantages, but, unfortunately, they
have also exposed the system to new families of attacks. The most interesting
optimizations for the purpose of this thesis, such as the use of the pipeline and the
cache, will be illustrated in the following paragraphs.

2.1.1 Instruction Pipelining

Instruction pipelining is an optimization technique used in the design of modern
microprocessors, microcontrollers and CPUs to increase their instruction throughput
(the number of instructions that can be executed in a unit of time), parallelizing the
elaboration of more than one instruction [26].

Figure 2.1. Basic five-stage pipeline

A generic pipeline consists of at least 5 stages:

• Fetch: the CPU reads instruction from the memory address stored in the
program counter.

• Decode: the encoded instruction present in the instruction register is inter-
preted by the decoder.

• Execute: ALU operations are performed.

• Memory Access: if necessary, memory operands are read and written from/to
the memory.

• Write-back: computed/fetched value is written back to the register present in
the instructions.

2.1 Optimizing Instruction Execution Latency 7

The number of dependent steps varies with the machine architecture. Modern
pipelines have 7, 10 and even 20 stages. As the pipeline is made deeper (with a
greater number of dependent steps), a given step can be implemented with simpler
circuitry, which may let the processor clock run faster. Such pipelines may be called
superpipelines.

If a processor can fetch an instruction on every cycle, it is called to be fully
pipelined. Thus, if some instructions or condition require more execution time,
causing delays, that prevent fetching new instructions, the processor is not fully
pipelined.

Out-of-order Execution and Speculative Execution

Out-of-order execution is a technique that allows to optimize the use of all execution
units of a CPU core. Instead of processing instructions strictly in the sequential
program order, the execution is parallelized, thus the CPU executes instructions as
soon as all required resources are available [18].

Figure 2.2. In-order vs Out-of-order execution

Due to the fact that CPUs usually do not execute streams of linear instruction,
they have branch predictors that are used to obtain an educated guess of which
instruction will be executed next, this technique is called Speculative Execution.
Branch predictors try to determine, before the branch condition is actually evaluated,
which is the direction that will be taken or which is the address of the next instruction
to be executed before it is retrieved from memory, in case of indirect branch. If
the prediction was correct the execution continue. Otherwise, if the prediction was
incorrect, a rollback is performed in order to clear the reorder buffer and restart the
execution from the correct instruction. The out-of-order execution even if it has no
effect on memory, it leaves traces that can be exploited by an attacker.

8 2. Cache-based Side Channel Attacks

2.1.2 Optimizing Data Access Latency: The Cache Hierarchy

Figure 2.3. Cache Levels

As explained in the previous sections, CPUs are increasingly capable of running
and executing larger amounts of instructions in a given time, so the time needed to
access data from main memory cannot prevent programs from fully benefiting from
this capability. In order to speed-up memory accesses and the Memory Management
Unit (MMU), the CPU contains small memory buffers, called caches, that store
frequently used data. CPU caches hide slow memory access latencies by storing
frequently used data in smaller and faster internal memory buffers. Modern CPUs
have multiple levels of caches [5]. The first level is divided in a first level instruction
cache and a first-level data cache (L1D). The second level cache (L2) cache is shared
by instructions and data. There is an L1 and a L2 in each core. All physical cores
are connect to a shared last-level cache (LLC) via a ring connection [11].

When the processor needs to read or write a location in memory, it first checks
for a corresponding entry in the cache. The cache checks for the contents of the
requested memory location in the cache lines that might contain that address. The
check is carried out starting from the first level of the cache. If the processor detects
that the memory location is in the cache, then a cache hit has occurred and the
access time to that data is small. However, if the processor does not find the memory
location in the first level of the cache, it will pass the control to a cache controller,
that is a hardware block that can automatically move code and data from main
memory to the cache memory and back, the controller will look in the second level
of the cache, thus continuing to the last level. In case of not even the last level
contains the requested information, then a cache error has occurred, the processor
must recover the data from the memory and the access will be slow.

2.2 Side Channel Attacks

At a high level, each cache side-channel attack consists of a pre-attack portion, in
which important architecture or runtime specific information is gathered; and then
an active portion which uses that information to monitor memory accesses of a
victim process. The active portion of existing state-of-the-art attacks itself consists
of three phases: an initialization phase, a waiting phase, and a measurement phase.
The initialization phase prepares the cache in some way; the waiting phase gives the
victim process a possibility to access the target address; and then the measurement
phase executes a timed operation to establish whether the cache state has changed

2.2 Side Channel Attacks 9

in a way that implies an access to the target address has taken place [6].

Specifics of the initialization and measurement phases vary by attack. Some attack
implementations decide the length of the waiting phase trying to balance accuracy
and resolution, shorter waiting phases give more precise information concerning
the timing of victim memory accesses, but may increase the relative overhead of
the initialization and measurement phases, which may make it more likely that a
victim access could be missed by occurring outside of one of the measured intervals.
The attacks generally rely on common techniques extrapolate the secret called:
Flush+Reload [32][7], Evict+Time [8] and Prime+Probe [24] [6][19]. The techniques
just mentioned are exploited by more elaborated attacks such as Spectre [15][21][16],
Meltdown [17] and Foreshadow [31][29]. The most significant difference between
them is how the secret is loaded form the memory to the cache.

2.2.1 Spectre

There are three Spectre variants, each of which exploits a different component
present in the system. The first two variants take advantage of speculative execution.
The first focuses on conditional branches: the attacker mistrains the CPU’s branch
predictor to mispredict the direction of a branch, causing the CPU to temporarily
violate program semantics by executing code that would not have been executed
otherwise. Instead, the second focuses on indirect branches: the attacker chooses
a gadget, a sequence of machine instructions typically ends in a return instruction
located in the memory of a program and/or shared library code, from the victim’s
address space and influences the victim to speculatively execute the gadget.

Figure 2.4. Gadget Spectre Attack

The one shown in the Figure 2.4 is an example of the gadget that can be exploited
by this attack.

Suppose that the variable x con be controlled by the attackers. In order to
prevent a buffer overflow, the gadget contains an if statement whose purpose is
to verify that the value of x is lower than the maximum array size. The attack,
therefore, consists in reading potentially secret data from the process address space.
First, during the initial mistraining phase, the attacker invokes the gadget with
valid inputs, thus training the branch predictor to expect the if condition to be true.
Subsequently, during the attacker recalls the gadget with a value of x greater than
the maximum size of array1. Instead of waiting for the determination of the result
of the branch, the branch predictor guess that the if condition is true and that it
already executes speculative instructions that evaluate array2 [array1 [x] * 4096]
using the x passed by the attacker. At this point, array2 loads the data into the

10 2. Cache-based Side Channel Attacks

cache in an address that depends on array1[x]. The address is multiplied by 4096 so
that accesses go to different cache lines.

Unlike Return-oriented Programming1 (ROP), the attacker does not rely on a
vulnerability in the victim code. Instead, the attacker mistrains the Branch Target
Buffer (BTB) so that when there is an indirect branch instruction the address
returned by the predictor is that of the gadget, resulting in speculative execution of
the gadget code. The third variant is slightly different from the previous ones because
it uses the Return Stack Buffer (RSB) to perform the attack: the return address
value in the RSB is different from the return address value in the software stack,
leading the program to misspeculate to the address in the RSB. If this misspeculation
can be triggered intentionally by an attacker, he can force a process to execute
arbitrary code. Based on how RSB is implemented, the attacker can: overflow
or underfill RSB due to limited size, pollute the RSB directly or use RSB across
execution context (after a context switch a thread finds in the RSB the addresses of
the previous scheduled thread).

2.2.2 Meltdown

It exploits a condition of competition, inherent in the design of many modern CPUs.
This occurs between memory access and privilege control during instruction pro-
cessing. Furthermore, combined with a side cache channel attack, this vulnerability
allows a process to ignore normal privilege checks that prevent a malicious process
from accessing data belonging to the operating system and other running processes.
The vulnerability allows an unauthorized process to read data from any address
mapped to the memory space of the current process. Because instruction pipelining
is in the processors involved, data from an unauthorized address will almost always
be temporarily cached while running out of service, from which data can be recovered.
This is possible even if the original read instruction fails raising an exception, as it
happens in the example shown in the Figure 2.5

Figure 2.5. Example Meltdown Attack

This situation can be managed in two ways. The attacker can fork the attacking
application before accessing the invalid memory location that terminates the process,
and access only the invalid memory location in the child process. It is also possible to

1ROP is an attack that allows an attacker to to induce arbitrary behavior in a vulnerable
program, throughput a sequence of machine instructions that are already present in the memory of
the victim process.

2.2 Side Channel Attacks 11

install a signal handler that will be executed if a certain exception occurs. Otherwise,
the attacker can use a different approach to deal with exceptions that is prevent them
from being raised. If an exception arise within the transaction, the architectural
state is restored and the program execution continues without interferences.

2.2.3 Foreshadow

The vulnerability is a speculative execution attack on Intel processors that may
result in the disclosure of sensitive information stored in personal computers and
third-party clouds. There are two versions: the first version (Foreshadow) targets
data from Intel Software Guard Extensions (SGX) enclaves, a private region of
memory defined at user-level or operating system code; and the second version
(Foreshadow-NG) targets virtual machines (VMs), hypervisors (VMM), operating
systems (OS) kernel memory, and System Management Mode2 (SMM) memory.

The basic Foreshadow attack, which can be divided into three distinct phases,
extracts a single byte from an SGX enclave. In Phase I of the attack, plain text
enclave data is cached. Next, in Phase II the attacker dereferences the enclave
secret and loads a secret-dependent oracle buffer entry into the cache, speculatively
executing the transient instruction sequence. Finally, Phase III acts as the receiving
end of the Flush+Reload technique (or one of the other techniques explained below)
and reloads the oracle buffer slots to establish the secret byte.

Figure 2.6. i386 Paging Scheme

Foreshadow-OS exploits the features of the paging scheme (shown in Figure 2.6).
The scheme is characterized by levels, the level of interest is Page Table. Each entry
of this level stores a frame number and optional status bits as can be seen in Figure
2.7:

2SMM is an operating mode with high privileges that operated outside the view of other software
including the OS.

12 2. Cache-based Side Channel Attacks

Figure 2.7. Page Table Entry

The bit, which will be exploited by the attack, is the present bit. Present bit is
set if a particular page we are looking for is present, it is equal to 0 if the page is
absent. If we try to access a page that is not present, an error is generated, that is
called page fault.

An unprivileged adversary with user space code execution controls the virtual
address input to the first page table walk. Such adversaries can cause a page fault,
for example by clearing the present bit or setting one of the reserved bits in a
page table entry (PTE). These page faults cause the virtual to physical address
translation process to abort immediately and are accordingly referred to as terminal
faults (from this the Foreshadow attack is also known as L1 Terminal Fault attack).
The terminal faults can be carried out by simply waiting for the OS to clear the
PTE present bit in some PTE entry when swapping a page out of memory to disk.
At this point, transient out-of-order instructions can be used to read any cached
contents located at the physical address pointed by the PTE entry.

Finally, with Foreshadow-VMM a malicious guest virtual machine has control
over the first address mapping and can thus trigger terminal faults directly by
clearing the present bit in the guest page table. Since terminal fault behavior skips
the host address translation step and immediately passes the guest physical address
to the L1 cache, such adversaries can transiently read any cached physical memory
on the system, including memory belonging to other VMs or the hypervisor itself.

2.3 Attack Techniques

After executing one of the attacks shown in the previous section the secret information,
which was in the victim’s memory area, was cached. The attacker must retrieve
the information from the cache so that he can read the secret. This operation is
carried out by applying one of the techniques described in the following paragraphs,
which exploit the vulnerabilities introduced by the optimizations of the system. The
various possibilities, in which an attacker can prepare the attack in order to load

2.3 Attack Techniques 13

the wanted information in the cache, can be very different between them. Instead
these techniques used to retrieve information from the cache all have aspects in
common, the most obvious being that all techniques must monitor the cache in
one way or another. To do this, as part of the attack preparation, the malicious
application should perform two operations. First, it should allocate an oracle buffer
of 256 slots, each measuring 4 KiB in size (in order to avoid false positives from
unintentionally activating the processor’s cache line prefetcher). Moreover, the
attacker must perform a bunch of tests on the cache by monitoring the access time
of a cache line both when the wanted data is in cache and when it must be retrieved
from the main memory. At the end of this tests, based on the results obtained, the
attacker defines a threshold that will then be used in the course of attack techniques
to understand if the cache line monitored was used or not by the victim application.
Based on the technique used, the threshold obtained is exploited differently.

• Flush. The attacker measures the time to flush a cache line and if the time is
greater than the threshold, it can establish that this cache line was used by
the victim application.

• Reload. The attacker measures the time to reload a cache line and if the time
is lower than the threshold, it can establish that this cache line was used by
the victim application.

• Evict+Time. The attacker measures the time to execute the victim after flush
the cache, so if the execution time is greater than the threshold, it can establish
that the victim access the cache.

2.3.1 Flush+Reload

To use Flush+Reload technique the attacker and the victim need to share the both
the cache hierarchy and the memory pages. The technique consists of 3 phases:

• The memory area of interest is flushed from the cache hierarchy.

• The attacker waits to allow the victim to access the cache line.

• The attacker reloads the memory line, while measuring the latency to load it.

The time needed to perform the reload operation is compared to a predetermined
threshold. Loads shorter than the threshold are presumed to be served from the
cache, indicating that the victim process accesses the memory line after the flush
operation. Otherwise, loads longer than the threshold are presumed to be served
from the memory, indicating no access to the memory line.

Flush+Flush

A variant of Flush+Reload is the Flush+Flush technique. Flush+Flush is a faster
and stealthier alternative to existing cache attacks that also has fewer side effects
on the cache. In contrast with the technique described above, it does not perform
any memory accesses.

14 2. Cache-based Side Channel Attacks

The technique consists of only one phase, that is executed in an endless loop.
It is the execution of the cflush instruction on a chosen shared memory line. The
attacker execute the cflush instruction and measures its execution time. Based on
the execution time, the attacker decides whether the memory line has been cached or
not. Since the attacker does not load any memory line into the cache, the execution
time reveals whether some other process has loaded it. At the same time, cflush
evicts the cache lines for the next loop round of the attack.

2.3.2 Evict+Time

The Evict+Time technique consists of three steps.

• The victim program is executed and the attacker measures the execution time.

• The attacker evicts3 a random line in the cache.

• The attacker measures the execution time of the victim again.

The times obtained by the two executions of the same program (one before the
eviction and the other after) are compared. If the execution time of the second
execution is greater than the first, the cache line was probably accessed during the
execution. The attacker needs to predetermined a threshold (computed as described
in the in the introduction of the section) to decide if the difference between the two
execution times is large enough.

2.3.3 Prime+Probe

The Prime+Probe technique is divided into two phases. The attacker, in the prime
phase, accesses enough cache lines from the cache set to completely fill the cache
set with its own data. Later, in the measurement phase (called probe), the attacker
reloads the same data it accessed previously, this time observing how much time
this operation took. If the victim did not access a line of the chosen cache set, the
execution time of the reload operation will be lower than the predefined threshold.
Instead, if the victim accessed a line of the chosen cache set, a portion of the
attacker’s data will be no longer cached, causing the execution time of the reload
operation to be greater than the predefined threshold because there is a cache miss.
Thus, a high execution time implies the victim accessed data in the chosen cache
set during the waiting phase. During the probe phase, the attacker reloads his data,
being this operation equivalent to the prime phase, can be used as a prime phase
for the next cycle of the attack.

Prime+Abort

A variant of Prime+Probe is the Prime+Abort technique. This technique can only
be used on a specific type of system, namely the transactional memory system. This
system tries to simplify parallel programming by grouping read and write operations
and executing them as a single operation. Transactional memory is like database

3Evict: Access memory until a given address is no longer cached.

2.3 Attack Techniques 15

transactions in which all accesses to shared memory and their effects are committed
or discarded together. All threads can enter the critical section at the same time. If
there are conflicts in accessing shared data, the threads try to access the data again
or are interrupted without updating the data. Therefore, transactional memory
is also called unblocked synchronization. A transactional memory system must
preserve the following properties: atomicity, consistency, isolation [10].

In this technique the attacker needs to finds an eviction set (virtual addresses
that have the same physical set index). It involves the same prime phase as a
typical prime+probe attack, except that it opens a Transactional Synchronization
Extensions4 (TSX) transaction first. Once the prime phase is completed, the attack
simply waits for an abort. Since the attacker hold an entire cache set in the write set
of his transaction, any access to a different cache line in that set by another process
will necessarily evict one of his cache lines and cause his transaction to abort. Thus
upon receiving an abort, the attacker can conclude that some other program has
accessed an address in the target cache set. For this attack, there is no need to find
a timing threshold.

4Transactional Synchronization Extensions is an extension to the x86 instruction set architecture
(ISA) that adds hardware transactional memory support, speeding up execution of multi-threaded
software through lock elision [33].

17

Chapter 3

Hardware Facilities to Measure
Performance

To detect the attacks described above, we propose a methodology which is based on
the Intel Performance Monitoring Units (PMUs). The most common implementation
of these units is represented by Performance Monitor Counters (PMCs), introduced
in the Intel Pentium processor. The purpose of the PMCs is to monitor a hardware
event, i.e. to gather more or less detailed information on the event. Examples
of hardware events are the occurrence of a write operation in memory, a cache
miss or the fact that a conditional branch in the execution flow of the program
has been taken. The events that can be monitored by this support depend on the
available processor architectural family, this is due to the fact that the generation of
a hardware event is physically triggered by data paths or control signals implemented
in the actual control unit of the CPU, which is often subject to partial or complete
re-implementation across different families of processing units. In the literature
on hardware profiling, this extremely low-level information is often referred to as
micro-architectural events. The benefit of relying on micro-architectural events is
that they can be extremely optimized, and they can work at the speed of the CPU.
Special registers called model-specific registers (MSR) are used to set and manage
PMCs. A MSR is one of several control registers in the x86 instruction set used for
debugging, program execution trace and computer performance monitoring. To read
and write to these registers the rdmsr and wrmsr instructions are used respectively.
Being privileged instructions, they can only be executed in kernel mode.

To reach the goal of this thesis, this support is used differently, namely used
to monitor hardware events that might be proven effective to detect a suspicious
behavior in order to determine with a certain probability whether the suspected
program is malicious or not. The data useful to understand if a program must
be considered suspect or not are extrapolated from the metrics depending on the
combined information collected by the PMCs.

18 3. Hardware Facilities to Measure Performance

3.1 Program Monitoring Counters

There are different types of counters that can be programmed to monitor a different
set of events. Those that have been used and that will be analyzed in the following
sections are: Programmable PMC, Fixed PMC and Offcore PMC.

3.1.1 Programmable PMC

Programmable PMCs are so defined because it is possible to choose the events to
monitor using these PMCs. The configuration and management of these PMCs
involve the use of two MSRs: IA32_PMCx and IA32_PERFEVTSELx. The first is
the register that the support uses to count the number of times that the monitored
event occurred. The register has a size of 64 bits and once it reaches its maximum
value, it starts counting back from 0, moreover it can be written as well as read.
The second register, shown in Figure 3.1, is used to manage the PMC.

Figure 3.1. Layout of IA32_PERFEVTSELx MSRs

The register fields that can be set in order to decide what and how to monitor
are the following:

• Event Select and Unit Mask. They are used together to select the event to be
monitored. The first one select the event logic unit to monitor an hardware
event and the second qualifies the condition that the selected event logic unit
detects.

• User Mode and OS Mode. If set, they define at which privilege levels (1, 2 and
3 in case user mode is set and 0 in case OS mode is set) the selected event
logic unit detects.

• APIC interrupt enable. Since the PMCs have a finite dimension, after a certain
amount of time they will overflow and start counting again from 0. If this bit
is set, the logical processor generates an exception when a PMC overflow.

• Enable Counters. If set, the performance count for the selected event is enabled;
if it is clear, the corresponding counter is disabled.

3.1 Program Monitoring Counters 19

3.1.2 Offcore PMC

Uncore is a term used by Intel to describe the functions of a microprocessor that
are not in the core, but which must be closely connected to it in order to achieve
high performance [9]. In order to monitor these functions, specific events have
been introduced, the uncore events. Unfortunately, in the processor family used,
these events are not available, but have been replaced by the offcore events that
can be managed through Offcore PMCs. There are two Offcore PMCs that can
be activated on each CPU and not four like the Programmable PMCs. Unlike
Programmable PMCs, these require programming an extra offcore register that holds
filtering information. So to program an Offcore PMC two MSRs must be configured:
IA32_PERFEVTSELx and MSR_OFFCORE_RSP_x. Within the event field and
the mask field of the first MRS, one of the pairs of values shown in 3.2 is inserted.

Figure 3.2. Off-Core Response Event Encoding

These values do not indicate a real event to be monitored, but warn the support
that one of the two Offcore PMCs must be used and that the event to be monitored
is indicated in the second MSR, MSR_OFFCORE_RSP_x. The register is divided
into three portion: Bits 15:0 specifies the request type of a transaction request to
the uncore, bits 30:16 specifies the response of the uncore subsystem and bits 37:31
specifies snoop response information. To properly program this extra register, at
least one request type bit and a valid response type pattern must be set. Otherwise,
the event count reported will be zero. It is allowed and useful to set multiple request
and response type bits in order to obtain various categories of off-core response events.
If the Offcore PMC is activated on IA32_PERFEVTSELx (where x is between 0 and
4), the result is reported in the paired performance monitoring counter (IA32_PMCx
MSR).

3.1.3 Fixed PMC

There are some events that are monitored by the system more frequently than others.
To avoid having to program PMCs every time there is a need to monitor one of
these events, Fixed-function performance counters (Fixed PMCs) have been made
available. Three Fixed PMCs per thread are available.

Programming the fixed-function performance counters does not involve any of
the IA32_PERFEVTSELx MSRs, and does not require specifying any event masks
because, as the name suggests, the event monitored by the Fixed PMC cannot be
changed. The only register used to program the Fixed PMCs is MSR_PERF_-
FIXED_CTR_CTRL (in Figure 3.3) that provides multiple sets of 4-bit fields; each
4-bit field controls the operation of a fixed-function performance counter:

20 3. Hardware Facilities to Measure Performance

Figure 3.3. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

• Enable. When bit 0 is set, the counting is enabled in the corresponding fixed
function performance counter to be incremented when the target condition,
associated with the architecture performance event, occurs at ring 0. When
bit 1 is set, the counting is enabled in the corresponding performance counter
of the function to be incremented when the target condition, associated with
the architecture performance event, occurs on a ring greater than 0. Writing 0
on both bits, the performance counters stop counting. By setting both the bit
0 and the bit 1, the counter increases independently of the privilege levels.

• PMI. If set, the logical processor generates an exception through its local APIC
on overflow condition of the respective fixed-function counter.

The result of a performance monitoring event is reported in the paired perfor-
mance monitoring counter the MSR_PERF_FIXED_CTRx (where x is the ID
of the PMC). Unlike normal PMCs, it is not possible to decide the event to be
monitored. Each Fixed PMC has its own event, as shown in Table 3.1:

FIXED_CTR0 INSTR_RETIRED_ANY This event counts the number of
instructions that retire execution.

FIXED_CTR1 CPU_CLK_UNHALTED
THREAD_ANY

This event counts the number of
core cycles while the logical
processor is not in a halt state.

FIXED_CTR2 CPU_CLK_UNHALTED
REF_TSC

This event counts the number of
reference cycles at the TSC rate
when the core is not in a halt state
and not in a TM stop-clock state.

Table 3.1. Fixed-Function Performance Counter and Pre-defined Performance Events

3.1.4 Global Registers

In addition to the specific registers for each PMC, global registers were also present.
These registers are used to have in a single register an overview of the status of
all the PMCs and to be able to manage them more efficiently, for example to turn
off or to activate all the PMCs, once configured, it is possible to write only on the

3.1 Program Monitoring Counters 21

global register and it is not necessary to write to the individual PMC registers. So,
to enable a generic PMC, it is not enough to configure the IA32_PERFEVTSELx
MSR for Offcore and Programmable PMCs and MSR_PERF_FIXED_CTR_CTRL
for Fixed PMCs, it must also be set the corresponding bit in the IA32_PERF_-
GLOBAL_CTRL register, shown in Figure 3.4.

Figure 3.4. Layout of IA32_PERF_GLOBAL_CTRL MSR

For each PMCs that can be activated there is a bit within the MSR. If the bit is
equal to 1 and the paired PMC has been configured correctly, then the corresponding
monitoring activity will be active, otherwise the PMC will be turned off. This is
because the processor performs an AND operation between the enable bit present
on the register of the single PMC and the enable bit present in the global register.

In order to manage and to have an overview of the PMCs state, it is possible to
use two dedicated registers named: IA32_PERF_GLOBAL_STATUS, in Figure
3.5, and IA32_PERF_GLOBAL_STATUS_RESET, in Figure 3.6.

Figure 3.5. Layout of IA32_PERF_GLOBAL_STATUS MSR

IA32_PERF_GLOBAL_STATUS is a read-only register. The first N bits
(where N represents the number of available PMCs) represent the state of the
corresponding PMC. If the PMCx overflows at least once, the x bits is equal to 1,
otherwise it is equal to 0, the registry does not record the overflow number. The same
policy is followed for 32nd - 34th bits that represent the Fixed Counters. Another
important bit is the 62th bit: reports if the PEBS records have exceeded the defined
threshold.

22 3. Hardware Facilities to Measure Performance

Figure 3.6. Layout of IA32_PERF_GLOBAL_STATUS_RESET MSR

IA32_PERF_GLOBAL_STATUS_RESET is complementary to IA32_PERF_-
GLOBAL_STATUS. The bits are associated to the same components, but unlike
the previous one which is read-only, this registry provides bit fields to clear the
IA32_PERF_GLOBAL_STATUS indicators.

3.2 Processor Event Based Sampling

A further support of the Intel CPUs, which extends the functionality of the PMCs, is
Precise Event-Based Sampling (PEBS) support. It introduces the precise events that
can be monitored through PMCs. Unfortunately not all events that are supported by
PMCs can be studied using PEBS. PEBS provides a new hardware-based mechanisms
that automatically saves the processor context when the counter overflows. This
solution, called PEBS assist, is implemented at the firmware level, and it avoids
any code interruption to gather extra processor information related to the event
itselfâĂŤno hardware interrupt is required to save the CPU context, which can
be therefore inspected at a later time. PEBS relies on the use of standard meters
(PMCs) to function. To activate PEBS on one or more PMCs it is necessary to
configure the register shown in Figure 3.7.

Figure 3.7. Layout of IA32_PEBS_ENABLE MSR

Once one of the PMCs for which PEBS has been configured reaches its maximum
value, a hardware interrupt is triggered. At this point, PEBS assist is in charge of

3.2 Processor Event Based Sampling 23

collecting information regarding the event that caused the interrupt. The information
is packed and saved in a structure called PEBS record (shown in Figure 3.8).

Figure 3.8. PEBS Record Format for 6th Generation Intel CPUs

Some fields of interest of PEBS record are:

• Applicable Counter indicates which counters triggered the generation of the
PEBS record. This allows software to correlate the PEBS record entry properly
with the instruction that caused the event, even when multiple counters are
configured to generate PEBS records and multiple bits are set in the field.

• Load/Store Data Linear Address in case of a load operation, contains the linear
address of the source, instead, in case of store operation, contains the linear
address of the destination. This field is meaningless in case of other events.

• Data Source/Store Status contains three piece of information, as can be seen
from Table 3.2:

Field Bits Description

Source 3:0 The encoded value indicates the origin of the data
obtained by the load instruction

STLB_MISS 4 0: The load did not miss the STLB5 (hit DTLB or STLB)
1: The load missed the STLB

Lock 5 0: The load was not part of a locked transaction
1: The load was part of a locked transaction.

Reserved 63:6 Reserved

Table 3.2. Layout of Data Source

• Latency value contains the latency in cycles to service the load. This field is
not meaningful when precise store is enabled and will be zero in that case.

• Eventing IP contains the address of the retired instruction that triggered the
PEBS assist.

24 3. Hardware Facilities to Measure Performance

• TSC provides a time line annotation for each PEBS record entry.

This record represents the basic element of the PEBS buffer. The PEBS buffer
is allocated by software and can have a variable size, but should be allocated from a
non-paged pool6, and marked accessed and dirty. This buffer is located in the Debug
store (DS) area. The DS area presents the structure shown in Figure 3.9.

Figure 3.9. PEBS Programming Environment

The DS Buffer Management Area is the data structure in memory to support
capturing PEBS records for precise events:

• PEBS Buffer Base. It is the linear address of the first record of the PEBS
buffer.

• PEBS Index. At the beginning, this field is equal to PEBS Buffer Base because
it identifies the next record to be written when a new interrupt is fired. During
the execution, the address is increased by the size of the PEBS record (in this
case C8H), until the maximum buffer size is reached.

• PEBS Absolute Maximum. It is the address of the last PEBS record that can
be written. The processor will stop writing PEBS records when PEBS Index
equals PEBS Absolute Maximum.

6The non-paged pool cannot be paged in and out of physical memory, it is always present.

3.2 Processor Event Based Sampling 25

• PEBS Interrupt Threshold. It contains the address of one of the PEBS records.
When PEBS Index equals PEBS Interrupt Threshold an interrupt is fired.
This interrupt can be distinguished from interrupts caused by PMCs thanks to
the use of the register in Figure 3.5, IA32_PERF_GLOBAL_STATUS. For
the interrupt caused by the PEBS buffer overflow there is a specific bit that is
set, 62th bit. Normally, this interrupt is used to notify that the PEBS buffer
is nearly full.

• PEBS CounterX Reset As mentioned in section 3.1.1, after an overflow the
PMC start to count again from 0. Using this field, it is possible to choose the
restart value of the corresponding PMC.

27

Chapter 4

Hardware Performance
Counters against Hardware
Attacks

The described PMU support is used to monitor the entire system or a single
application at runtime. It is usually used through user space programs that allow to
select the high-level events to be monitored so as to have information regarding the
use of internal resources by single applications. In this chapter, we describe how it
is possible to use the same support to detect suspicious behavior within the system.
Specifically, the purpose is to understand whether some process is performing a
side-channel attack or not.

The PMU support allows to monitor a high number of events. Nevertheless it
offers a limited number of PMCs that can be activated on a single core. With the
goal to minimize the number of false positives, we have studied the possible events
that can be monitored and the attacks, to identify which are the most useful and
most significant events for the purpose.

A side-channel attack, as seen in the detailed description of the previous chapters,
can be divided into two phases. The first phase is that of preparation, in which the
secret information which the attacker wants to obtain must be loaded into the cache.
The second phase is that of "extraction", i.e. the information must be read from
the cache and moved to an area of memory accessible to the attacker. The latter
is realized by exploiting one of the attack techniques described in the Section 2.3.
We have studied both phases, so as to identify the events that distinguish a system
under attack from a normal execution. To do this, each attack strategy was broken
down into operations that correspond to an event that can be monitored. Once this
was done, the events that undergo the greatest change were chosen to detect the
system as being under attack.

4.1 Side-channel Attacks Study

First a theoretical analysis of the first phase of the attack was performed. To load
the cached secret information the attacker can implement different strategies. These

28 4. Hardware Performance Counters against Hardware Attacks

have been studied separately by splitting each of them into simpler operations. Each
operation was evaluated and tests were done to see what results could be obtained by
exploiting the corresponding events. The most significant operations that emerged
from this first analysis are:

• Mistrain the branch predictor

• RSB pollution

• Install a signal handler

However, not all of them are used during monitoring. The attacker needs out-of-
order execution or speculative execution in order to load the information in cache.
To achieve this purpose, considering the discussed attacks, the attacker can modify
directly the RSB or can mistrain the branch predictor. In the first case, the attacker
writes directly into the RSB the address he wants it to be executed the next time
the return statement is called. instead in the second case, the attacker mistrain
the predictor in such a way that if necessary (i.e. every time it has to load the
cached secret information), the predictor speculatively chooses the wrong branch.
RSB pollution is not a solution adopted often (also because the RSB can also be
modified indirectly) and the frequency with which it is written by the attacker is
far less than the frequency with which it is written by the processor during normal
execution. For these reasons it cannot be used as a metric. On the contrary, since
the attacker is forced to read one byte at a time from the victim’s memory, it can be
concluded that for each byte read the predictor branch must be mistrained, which
could produce a significant variation in the monitoring results of the system under
attack and during normal execution. Another technique that could be used is to
trigger an interrupt and execute the attack inside the interrupt handler, which must
have been previously installed. Not even this operation can be monitored for the
same reasons as the RSB pollution. The operation is performed only once, while
the system during normal execution executes it at a higher frequency. If we tried
to monitor RSB pollution and handler installation we would have too many false
positives.

4.2 Attack Techniques Study
There are several techniques for retrieving the secret information and moving it to a
memory location accessible by the attacker, but they all involve interaction with the
cache because that is where the data is located. For this reason in this part of the
study we focused on the events that affect the cache, namely:

• Reload cache lines

• Flush cache lines

• Aborted TSX transactions

In most attacking techniques, the attacker accesses the cache, so that the victim
application no longer finds the cached data and it is forced to reload it from memory,

4.3 Attacks and Attack Techniques Profiling 29

and then when it reloads the cache, measuring time of access, will be able to
understand if the data that is in the cache line has been loaded by the victim or not.
These two operations will cause an increase in the number of cache misses, the level
of the cache that will undergo the greatest variation will be identified during the
empirical analysis. Another operation that can be performed by the attacker instead
of the reload is the cflush operation. It is based on the same idea, that the victim
is forced to reload the desired data from memory. Once the victim’s data load has
been executed, the attacker will re-execute a cflush operation and based on the time
taken by cflush, he will understand if the data on the cache line has been loaded or
not. cflush is different from the reload because the cache is not accessed to perform
the operation. For this, the cflush must be monitored separately from the reload.
The prime + abort technique is based on TSX transactions. The attacker holds an
entire cache set in the write set of his transaction and waits until the victim accesses
the cache set causing an abort operation. For this reason, also the number of abort
operations increases if an attack, that exploits the aforementioned technique, is in
progress.

4.3 Attacks and Attack Techniques Profiling

In order to obtain empirical results we distinguished two classes of applications to
monitor: non-malicious and malicious applications. We analyzed multiple types of
non-malicious applications in order to simulate realistic system load conditions, in
particular:

• FireFox: while browsing and while playing a video.

• Gimp: a cross-platform image editor

• Document Viewr : showing and browsing files of different sizes (< 1 MB, ∼5
MB and > 25 MB)

• VLC, playing a video of 8.12 MB.

We retrieved the source code of the attack techniques described in Section 2.3:
Flush+Reload, Flush+Flush, Prime+Probe and Prime+Abort [30]. For the sake
of this testing phase, in the case of malicious applications, only the attacker is
monitored because in a realistic context the detection system does not know which
is the target of the attack. The disadvantage of doing this is that we have less
information on which infer. On the other hand, this widens the applicability of
our approach. These applications have been monitored, in order to evaluate and
choose the suitable metrics. The analyzed metrics are both the ones found during
the theoretical analysis, to prove or disprove their correctness and its usefulness,
and new metrics that during the monitoring could report interesting results for the
intended purpose.

Analyzing the events offered by the PMCs to monitor the operations highlighted
by the theoretical analysis, we discovered that it is possible to monitor the attack
techniques exploited by the attack, but not the attack itself. This is because the
attacks are based on out-of-order execution or on speculative execution, while the

30 4. Hardware Performance Counters against Hardware Attacks

events that can be monitored are triggered, in most cases, by retired instructions. A
retired instruction is an instruction that is completely executed, while the attacks,
based on the out-of-order execution or speculative execution, execute instructions that
would not be allowed in a serialized execution, and consequently these instructions
will not be retired, but a rollback will be performed.

Therefore the number of branch mispredictions and the instructions executed
in a speculative context cannot be monitored, while it is possible to explore how
attack techniques can read the secret information from the cache and this is why we
have focused on cache-related events.

4.3.1 Time Slots

Before deciding which events to monitor in order to understand an application’s
behavior and determine whether the application is performing a cache-based side
channel attack or is a non-malicious application, we must decide how often to collect
a sample. We need to divide the results into time slots because in this way it is
possible to get more information from the analysis of the application. In concrete
terms, there is the possibility that a non-malicious application has a flaw and
therefore executes malicious code, or a malicious application can have a preamble
and a conclusion that mitigate the values assumed by the chosen metrics. In these
cases, by studying the aggregated values assumed by the metrics we could have too
many false negatives, which is unacceptable. Instead, dividing the execution in time
slots it is possible to analyze the execution step by step and better understand the
purpose of the application.

To determine a suitableunit of time, the execution time is not used, rather we rely
on an event monitored by the PMCs. In particular, the event of interest is monitored
by FIXED_PMC1, and it is CPU_CLK_UNHALTED_THREAD_ANY.

Event Hex Description
CPU_CLK_UNHALTED
THREAD_ANY 0x30A Counts the number of core cycles while

the core is not in a halt state.

Table 4.1. Time Unit for Sampling

An interrupt is generated each time the FIXED_PMC1 reaches its maximum
value. Inside the interrupt handler the values assumed by the other PMCs are saved
and a sample is created. Eventually all the PMCs are restored so that they can start
counting again for the new sample. In order for the FIXED_PMC1 to generate an
interrupt at a predetermined time interval, it does not start counting from 0, like the
other PMCs. Before starting the monitoring phase, its counter is initialized with a
certain value. For example, if we want each 0xFFF (4095 in decimal) events counted
by FIXED_PMC1 to save a sample, the counter associated with FIXED_PMC1 is
initialized to ∼0xFFF (i.e. 0xFFFFFFFFF000) and it is reset to the same value
each time an interrupt is generated.

The width of the time slot used during the various tests performed, both to decide
which events were monitored and to assess whether, according to the metrics chosen,
an application was malicious or not, it was decided by evaluating the implications it

4.3 Attacks and Attack Techniques Profiling 31

would have on the monitoring results.
In the plots, which will be shown in the following sections, CPU_CLK_UN-

HALTED_THREAD_ANY has been placed on the x-axis. For each time interval,
the y values tells the number of times that event occurred.

In the case in which the samples are saved with a too low frequency, as in
Figure 4.1, we would have results similar to the aggregated values. The values would
give too general information on the execution of the application and we could not be
establish if the malicious code was injected into the application and if the application,
adding superfluous code at the beginning and at the end of the attack, mitigates the
metric values. Instead, if the samples are generated too frequently, as in Figure 4.3,
the information that a single sample contains is so specific that it does not give us
any significant information about the execution of the program. Consequently, the
results obtained by a malicious and a non-malicious application might be too similar
so as not to allow the distinction of the two.

The frequency chosen to monitor the applications is 7F or 6F, in case the execution
of an application is too short and with 7F frequency the samples collected will be
too few to allow a precise analysis. An example of applications monitored using
this frequency is shown in Figure 4.2, the collected samples provide an exhaustive
overview of the application behavior and using this frequency we are not overwhelmed
by unimportant information.

(a) Malicious Application (b) Non-Malicious Application

Figure 4.1. Tests performed at 10F Frequency (0xFFFFFFFFFF)

(a) Malicious Application (b) Non-Malicious Application

Figure 4.2. Tests performed at 6F Frequency (0xFFFFFF)

32 4. Hardware Performance Counters against Hardware Attacks

(a) Malicious Application (b) Non-Malicious Application

Figure 4.3. Tests performed at 3F Frequency (0xFFF)

4.3.2 Cache Events

The theoretical study showed that the area of interest, to study and to detect
cache-based side channel attacks, is the use of the cache. As seen in Section 2.1.2,
the cache is divided into levels, each with its own parameters. In particular, the
hierarchy, used by the microarchitecture of the machine on which the tests were
executed, is the one summarized in Table 4.2.

Level Capacity/
Associativity

Line Size
(bytes)

Fastest
Latency

Peak Bandwidth
(bytes/cyc)

Sustained Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB / 8 64 4 cycles
96 (2*32B Load
+ 1*32B Store) ∼81 Writeback

Instruction 32 KB / 8 64 N/A N/A N/A N/A
Second Level 256 KB / 4 64 12 cycles 64 ∼29 Writeback

Third Level
(Shared L3)

Up to 2MB
per core/Up
to 16 ways

64 44 cycles 32 ∼18 Writeback

Table 4.2. Cache Configuration of the Skylake Microarchitecture

The cache is divided into three levels, of which only the third level, the last
level cache (LLC), is inclusive, unlike the others that are exclusive. A cache level
is exclusive if one of the previous levels can contain an information exclusively, for
example the L2 cache contains only the cache lines written-back from L1. Instead, a
cache level is inclusive if it includes the contents of all previous levels. An inclusive
cache has both advantages and disadvantages. This type of cache is preferable with
regards to cache coherence, but containing redundant data (ie already contained in
other cache levels) causes a reduction in the global cache size [34].

Given the nature and behavior of the attack techniques we have set ourselves to
study, the levels of cache that are studied with particular attitudes are L1 and L3, or
LLC. We do not focus on L2 because by monitoring this level we would only obtain
information regarding performance. This level could be used to infer information
regarding the other two levels, in the event that the support does not make an event
available to obtain the desired information. For example, it is possible to obtain the
number of misses occurred in L1 through the number of direct requests made to L2,
because if a datum is not present in a cache level the data request is propagated to
the underlying levels. By studying only the behavior of L1 and L3, we can obtain

4.3 Attacks and Attack Techniques Profiling 33

information on the number of requests made to the cache and how many of these
cause access to the main memory. Through this information we can also get an idea
of the location of the application.

After these considerations, we have analyzed and tested the available events,
related to the cache, that provide useful information for our purpose.

We have selected the events that best represent the use of caches by malicious
and non-malicious applications. The selected events are shown in Table 4.3.

Event Hex Description
MEM_LOAD_RETIRED
L1_MISS 0x8D1 Counts retired load instructions with at

least one uop that missed in the L1 cache.

L1D_REPLACEMENT 0x151

Counts L1D data line replacements
including opportunistic replacements,
and replacements that require
stall-for-replace or block-for-replace.

MEM_LOAD_RETIRED
L3_MISS 0x20D1 Counts retired load instructions with at

least one uop that missed in the L3 cache.

Table 4.3. Monitored Events

Hit

The information provided by hits and misses are complementary, because for each
request only two outcomes are possible: hit or miss. However, we decided to
study the number of miss operations because it was the most significant of the two,
considering the operation of attack techniques, removing data from the cache and
forcing running applications (including the attacker) to retrieve data from main
memory, and considering the purpose of this study, to understand how aggressive an
application is to memory and therefore the impossibility of exploiting the principle
of locality.

Figure 4.4. Number of L3 Misses compared with number of L3 Hits

34 4. Hardware Performance Counters against Hardware Attacks

Furthermore, as shown Figure 4.4, the oscillations caused by misses are greater
than those caused by hits, thus favoring comparison and distinction between malicious
and non-malicious applications.

The same consideration was made for L1 and in fact from Figure 4.5 it is possible
to notice that similar results are obtained.

Figure 4.5. Number of L1 Misses compared with number of L1 Hits

Store and Load

The attack techniques focuses on reloading cached data several times to understand
if it was already present in the cache or not and and trying to steal information
owned by the victim application. Consequently, the operation that characterizes
this typology of techniques is precisely the load operation. Going to study the
frequency of this operation and the outcome, if it can find the data in cache or if
this must be recovered from the main memory, it is possible to make a distinction
between the various types of applications. The types we will focus on are those
that perform a large number of loads that cause access to main memory, such as
malicious applications but not only them, and those that are able to exploit the
principle of locality and then recover the data searched by the cache. It follows that
the number of stores made by these attacks is so limited that it does not create an
obvious fluctuation in the recorded data. This is why we decided to focus on the
load operation rather than the store operation.

Furthermore, the support used does not provide as many events with which to
monitor store operations in relation to the cache as those to monitor the loads.

I-cache

As Figure 4.2 shows, the first cache level is divided into the sections: data (D-cache)
and instruction (I-cache) sections. While the D-cache is accessed only for loads and
stores, the I-cache is accessed for each instruction. Using the I-cache, the events
return information related to the size and the structure of the executable. This
information is not relevant because the footprint of the executable is not a feature

4.3 Attacks and Attack Techniques Profiling 35

that can be used to distinguish malicious from non-malicious applications, since the
attack techniques that interest us target data and not instructions. Usually, these
types of attacks have a reduced structure since they do the same procedure several
times, but may also exist non-malicious applications which have the same reduced
structure because their operation requires it. Furthermore, the attack structure
may vary because a preamble and/or a conclusion may be added, which may be
necessary for the execution or to make the malicious application more similar to a
non-malicious one.

L1D Replacement

When a cache row is brought into the L1 cache, if the associated cache line is already
filled, the cached row must be evicted to make room for it. When the lines in active
use are evicted, a performance problem can derive from the continuous return of the
data in the cache. This event measures the number of rows replaced into the L1D, i.e.
the D-cache [4]. This event is monitored, for most of the attack techniques studied
invalidate one or more cache lines to be able to retrieve the secret information from
the victim application. This situation causes a decrease in the number of rows
replaced during application execution.

4.3.3 TLB Events

At this point we have all the interesting information regarding the use of caches, but
we still do not have a complete overview on the behavior of the application in order
to understand if the monitored application is malicious or not. Another useful aspect
to be analyzed is how the Translation Lookaside Buffer is used by this application.

The Translation Lookaside Buffer (TLB) is a buffer that the Memory Management
Unit (MMU) uses to speed up the translation of Virtual Addresses. The TLB has
a fixed number of Page Table elements and it is used to map Virtual Addresses to
Physical Addresses. The virtual memory is the space seen by a process and it can
be larger than physical memory. This space is catalogued in pages of predefined
size. Generally only some pages are loaded into physical memory in areas dependent
on the Page Replacement policy. The Page Table is used to keep track of where
virtual pages are loaded into physical memory. The TLB is a cache of the virtual to
physical address translation, i.e. only a subset of its content is stored [22].

To further improve performance, Intel implemented a split TLB architecture, as
shown in Figure 4.6, which separates the cache into two disjoint sets. The iTLB
handles translations for instruction fetches and the dTLB handles translations for
data fetches. In newer CPUs, Intel added a secondary cache called the STLB (Second
Level Translation Lookaside Buffer), which stores the evicted entries from the iTLB
or dTLB.

The TLB provides us with information on the memory area used by an application.
Looking at a system in normal load conditions, if an application performs more
TLB misses than another application we can deduce that the first application will
use a larger memory area than the first. The misses are due to the loading of new
pages in the TLB or to the replacement of pages present in TLB, because there is
no more space to load a new one. Since the TLB is in common with other processes,

36 4. Hardware Performance Counters against Hardware Attacks

Figure 4.6. TLB Architecture

the replacement may be due to a saturation of the TLB caused by applications
other than the monitored one. During our analysis phase, this problem has been
investigated by trying to keep the system at a stable workload so that the disturbance
due to other applications was reduced to the minimum possible and repeating the
tests several times to confirm the results obtained.

Once the usefulness of the TLB was confirmed, we had to choose which operation
performed by the TLB would have been more appropriate for monitoring. The PMCs
support the monitoring of various types of events related to the TLB and therefore we
performed various tests in order to understand which event was the most appropriate.
After these tests, the chosen event is DTLB_LOAD_MISSES_STLB_HIT and in
the subsequent subsections the texts and the reasoning carried out that led to this
decision will be exposed.

Event Hex Description
DTLB_LOAD_MISSES
STLB_HIT 0x2008 Counts loads that miss DTLB (Data TLB)

and hit STLB (Second level TLB).

STLB

As described in the previous section, the TLB is divided into two levels. The first
decision to be made was which of the two levels to study to get more information on
the applications analyzed.

As we can see from Figure 4.7, the first level of the TLB has 128 entries for the
instructions and 64 entries for the data, while it has 1536 entries for the second level
of the TLB.

In addition to having a fairly high number of entries shared by instructions and
data, the STLB also provides a prefetching mechanism that tries to minimize the
number of misses, trying to detect strided behavior or relying on the past behavior
of the application, to improve the performance [25].

4.3 Attacks and Attack Techniques Profiling 37

Figure 4.7. TLB Parameters of the Skylake Microarchitecture

On the basis of this we can deduce that the samples obtained from events related
to the STLB do not contain information relevant to the analysis we are doing
and, moreover, could be altered due to the optimizations applied. In support of
the deduction we made, we conducted some tests, monitoring some malicious and
non-malicious applications, to examine the information that could be obtained from
events relating to the STLB, which were compared with those that could be obtained
by monitoring the first level of the TLB.

(a) Load Operation (b) Store Operation

Figure 4.8. STLB Event compared with dTLB Event

From the tests carried out and shown in Figure 4.8, it is possible to observe that
the oscillations caused by the events concerning the STLB are lower than those
caused by the events on the first level of the TLB. We can deduce that the area of
memory used by the application, malicious or non-malicious, is quite extensive in
order to cause a miss on the second level of the TLB. So we excluded the events
that had STLB as their subject because they did not provide enough information to
understand the behavior of the application.

iTLB

Once we have established that we are interested in the first TLB level we must
decide whether to use the data or instruction events, since the first level is divided
into two.

Some previous studies, like the one proposed in the Flush+Flush: A Fast and
Stealthy Cache Attack paper [7], use iTLB events (in particular the number of misses)
to gather information on the progress of the application. When, using the iTLB,

38 4. Hardware Performance Counters against Hardware Attacks

the events return information on the size of the executable because a new virtual to
physical translation is loaded in the iTLB if the translation is not already present
in the TLB. Thus, we would be able to distinguish an application with a lot of
instructions and one with few instruction through the oscillation of samples values.
Therefore these studies imply that there are not non-malicious applications with few
instructions and malicious applications with a lot of instructions. For this reason,
we excluded the events on iTLB.

dTLB

The dTLB event provides information on the amount of memory accessed by the
applications. If the number of TLB misses is low we can say that the application is
accessing a limited memory area and there is no need to cache new elements of the
Page Table in the TLB. Conversely, if there is a large number of TLB misses, the
application is accessing a large memory area and the elements of the Page Table
cached in the TLB are replaced frequently. It could be needed to reload an element of
the Page Table also if other applications, different from the one monitored, saturate
the TLB or if the TLB is explicitly flushed. Both these problems were analyzed to
see if they could cause a disturbance such as to distort the results.

• Noise: The tests were run trying to keep the system at a constant workload so
that even the number of replacements due to the execution of unmonitored
applications remained constant. Furthermore, the tests were run more than
once to limit the error.

• Direct flushes: During monitoring phase, the system could perform a direct
flush of the TLB thus causing a noticeable increase in misses within the TLB.
To understand if there were situations of this type, we monitored the events
described in Table 4.4 which give us information on the number of direct
flushes performed during monitoring.

Event Hex Description
TLB_FLUSH_DTLB
THREAD 0x1BD Counts the number of DTLB flush attempts of

the thread-specific entries.

ITLB_ITLB_FLUSH 0x1AE
Counts the number of flushes of the big or small
ITLB pages. Counting include both TLB Flush
and TLB Set Clear.

Table 4.4. Direct Flush Events

The results, shown in Figure 4.9, indicate that the number of direct TLB
flushes is so low as not to cause distortions in the results obtained by the other
events.

4.3 Attacks and Attack Techniques Profiling 39

Figure 4.9. Number of Flushes in iTLB and dTLB

In addition, all the tests shown were conducted both on the load and on the store
operation. Both operations found that dTLB offers more information to understand
the behavior of an application. However, as far as the dTLB event is concerned,
the data reported in Figure 4.10 showed that the load operations were causing a
greater oscillation and therefore showed more the difference between a malicious and
a non-malicious application.

Figure 4.10. Load operation compared to Store operation

This is also confirmed by the fact that the attacks and attack techniques we are
studying are based more on reading than writing. For example, each time the reload
operation is performed, the application reads a cache line. Once the operation of

40 4. Hardware Performance Counters against Hardware Attacks

interest was identified, we analyzed the events offered by PMC. The events that we
could monitor are three and are showed in Table 4.5:

Event Hex Description

DTLB_LOAD_MISS
CAUSES_A_WALK 0x108

Counts demand data loads that caused a page
walk of any page size (4K/2M/4M/1G). This
implies it missed in all TLB levels, but the walk
need not have completed.

DTLB_LOAD_MISS
WALK_COMPLETED 0xE08

Counts demand data loads that caused a
completed page walk of any page size (4K/2M/
4M/1G). This implies it missed in all TLB levels.
The page walk can end with or without a fault.

DTLB_LOAD_MISSES
STLB_HIT 0x2008 Counts loads that miss DTLB (Data TLB)

and hit STLB (Second level TLB).

Table 4.5. DTLB Events

As shown in Figure 4.11, the event that gives us a more complete overview of
the program behavior is DTLB_LOAD_MISSES_STLB_HIT because it is the one
that undergoes the greatest fluctuations. The other events, on the other hand, have
a frequency too low to allow us to make inferences about the results obtained, or
they are events too rare to be studied.

Figure 4.11. Possible monitorable events related to dTLB load

4.4 Metrics 41

4.4 Metrics

These events, taken individually, cannot be effectively compared because depending
on the application, they can provide different information about its behavior; for
example, a large number of L3 misses can be both an identification of a malicious
application or of un application accessin a large amount of data stored non locally
in memory. Therefore, aggregated metrics have been determined in order to obtain
meaningful results for the analysis we want to perform.

The established metrics are the following, which we shall discuss later in this
section.

1. MEM_LOAD_RETIRED_L3_MISS
L1D_REPLACEMENT 2. DTLB_LOAD_MISSES_STLB_HITS

MEM_LOAD_RETIRED_L1_MISS

4.4.1 Cache Locality

In the first metric, L3 miss indicates the number of times accessed data was not
found in the cache, that causing a load from memory. Consequently, the data
has been replaced with other data because the monitored application and other
applications concurrently running in the system access other data in memory, or
the cache has been invalidated and the application is forced to access main memory.
L1D Replacement indicates how many times the lines in the first level of the cache
have been replaced. In this way we try to differentiate the two scenarios described
above. The behavior of the application that we want to capture with this metric is
a remarkable use of main memory associated with a small number of replacements
in the first level of cache, which could indicate that the cache has been invalidated.

Figure 4.12. Malicious Application (Prime + Probe)

42 4. Hardware Performance Counters against Hardware Attacks

Figure 4.13. Non-Malicious Application (Gimp)

Figure 4.14. Non-Malicious Application: False Positive (Canneal)

Thus, a malicious application is identified by a high value of this metric. Un-
fortunately, only this metric is not enough to distinguish malicious applications
from non-malicious ones. Indeed, as shown in Figure 4.14, even a non-malicious
application can reach a high value and have a trend similar to that of a malicious
application. We can conclude that the metric represents a signal that the application
may be malicious, but we need an additional metric to minimize false positives.

4.4 Metrics 43

4.4.2 Cache - Working Set Relation

In the second metric introduced, L1 miss indicates the number of times accessed
data was not found in the first level of the cache and DTLB miss denotes how many
times the virtual to physical translation of the memory address was not found in the
first level of the TLB. So, if the value of this metric is greater than 1 we can guess
that, given the number of cache misses on the first level of the cache, the number of
misses on the TLB, and therefore the area of memory used, is greater. As a result,
the cache is used appropriately and the cache misses are due to an aggressive use of
memory. Conversely, if the metric has a value between 0 and 1, we have that the
number of misses on the first level of cache is greater than the number of misses
on the TLB. So we can assume that even if the application working set is limited
(therefore being able to exploit the principle of locality) the number of cache misses
is however high. The extreme case is obtained when the value approaches 0 and
therefore the misses on the TLB are rare because the application is concentrating the
access on a restricted area of memory, while the application is continuously forced
to retrieve data from lower cache levels or from the main memory.

(a) Malicious Application
(Prime+Probe)

(b) Non-Malicious Application (Gimp)

(c) Non-Malicious Application:
Correctly Classified (Canneal)

Figure 4.15. Second Metric Results:
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

As we can see from the examples shown in Figure 4.15, by introducing the second
metric it is possible to classify (Figure 4.15c) as non-malicious application which was
erroneously classified as malicious by using only the first metric (a false positive).

44 4. Hardware Performance Counters against Hardware Attacks

4.4.3 Experimental Classification Results

Several tests were run on malicious and non-malicious applications to assess the
accuracy and precision of the established metrics. The graphs from these experiments
are shown in Figures 4.16 and 4.17.

(a) Prime+Probe (b) Prime+Abort

(c) Flush+Reload (d) Flush+Flush

Figure 4.16. Malicious Applications Metrics Results:
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

By the results in Figure 4.16, we can see that in most cases malicious applications
have higher values for the first metric (the blue line) than the values for the second
metric (the orange line). This suggests that the memory area used during the
execution of the program is very limited, because the value of the second metric is
very close to 0, but that the application is forced to frequently access main memory.
This is reflected int the fact that replacements in the first level of cache correspond
to L3 misses, which is indicated by the fact that the value of the first metric is very
high (in some cases it approaches to 1).

The consideration just given cannot be applied to the case of Flush+Flush, which
generated results completely different from the others. This is because the discussed
metrics are based on the idea that this family of attacks and attack techniques
repeatedly access the cache, provoking many cache misses, in order to obtain the
secret information. Rather, Flush+Flush using cflush as the main operation reduces
significantly cache misses and cache accesses.

In the case of non-malicious applications (shown in Figure 4.17) the results of
the metrics are perfectly specular.

We can deduce, by observing that the second metric has a value considerably
greater than 1, that the number of TLB misses is greater than the number of

4.4 Metrics 45

(a) Small Document (b) Medium Document

(c) Big Document (d) Gimp

(e) FireFox (f) Video FireFox

(g) VLC

Figure 4.17. Non-Malicious Applications Metrics Results:
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

L1 misses. Thus, they succeed of exploiting the principle of locality despite the
estimated number of virtual to physical translations loaded in TLB is considerable.
Furthermore, the value acquired by the first metric deviates slightly from 0 in all
the tests that have been conducted. This implies that the number of L3 misses is
lower than that of L1D replacements. Consequently, applications are not forced to
access the main memory frequently, and the number of lines in the first cache level

46 4. Hardware Performance Counters against Hardware Attacks

is consistent, which suggests that the cache is not invalidated.

The tests conducted so far are on commonly used programs that have mixed
behaviors. We decided to conduct tests that focus on specific behaviors, which can
be adopted by various applications, so that these behaviors cannot be influenced
and mitigated by one another. For the class of CPU-bound application, we relied on
the Princeton Application Repository for Shared-Memory Computers (PARSEC), a
benchmark suite composed of multithreaded programs. The PARSEC distribution
consists of PARSEC packages and frameworks. The packages correspond to reference
programs, libraries and other essential components. Each package can be compiled
in different ways, as determined by a build configuration. The build configurations
contain information such as the functionality of the package to be enabled, the
compilers to be used and the way the package is to be optimized. PARSEC is
supplied with predefined inputs that can be used to execute benchmarks. The inputs
for each program have different characteristics such as the execution time and the
working set size [2]. The benchmarks from the PARSEC Benchmarks Suite are:

• Canneal: implements a Simulated Annealing (SA) algorithm using to simulate
some problems in chip design. SA belongs to the class of the local searches
algorithm which aim to find a local optimum over a big search space. This
application uses sophisticated lock free synchronization techniques and enforces
its execution via a cache aware design.

• Freqmine: uses an array-based version of the FP (Frequent Pattern-growth)
growth method for Frequent Item set Mining (FIMI). It is an Intel RMS
benchmark originally developed by Concordia University. freqmine has been
included in the PARSEC benchmark suite due to the increasing use of data
mining techniques.

• Splash-2x: is a benchmark that includes applications and kernels mainly in
the area of high performance computing (HPC). It has been widely used to
evaluate multiprocessors and their projects. The new version of Splash-2 is
called Splash-2x because it also has different input data sets on different scales.

As can be seen from the results shown in Figures 4.18 and 4.19, the combination
of the two metrics classifies the monitored applications as non-malicious. These
applications are intended to isolate specific behaviors and, in the particular case
of CPU-bound ones, to resemble as much as possible the attacks we are trying
to detect, which make intensive use of the cache. The similarity can be noted by
the values assumed by the second metric, which suggests that the number of TLB
misses is less than the number of L1 misses, which could represent a suspicious
behavior. However, when analyzing the second metric we can observe that the value
is constantly around zero. This result indicates that the applications are able to
exploit the locality principle, since the number of L3 misses is much lower than the
number of L1D replacements. In conclusion, the metrics chosen are valid even when
the system is subjected to a high workload.

4.4 Metrics 47

(a) Canneal (b) Freqmine

(c) Splash-2x

Figure 4.18. Results using simsmall as input;
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

(a) Canneal (b) Freqmine

(c) Splash-2x

Figure 4.19. Results using simlarge as input;
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

Finally, to make the tests performed on non-malicious applications more realistic,
a preamble and a conclusion were added to executables who implemented the

48 4. Hardware Performance Counters against Hardware Attacks

attack techniques. The addition of these two fragments is intended to mitigate the
oscillations caused by the attack techniques. This artifice could create problems if
aggregate metrics or an extremely basic sampling frequency were used, which are
on an informative level like aggregate metrics, as shown in the example shown in
Figure 4.20.

Figure 4.20. Example of malicious application with preamble and conclusion monitored at
low frequency

Because the values obtained from the metrics, are mitigated by parts of non-
malicious code, they may not undergo such a high variation so as to allow the
distinction between a malicious and a non-malicious application.

Instead, with the metrics and the chosen frequency we obtain the results shown
in Figure 4.21.

(a) Flush+Reload (b) Prime+Probe

(c) Prime+Abort

Figure 4.21. Results malicious application with preamble and conclusion;
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT

DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

4.4 Metrics 49

In the plots it is easy to distinguish non-malicious code, the preamble and the
conclusion, from the attack techniques. In conclusion we have no false negatives
due to mitigation. The tests were conducted on the three attack techniques that we
are able to monitor even without preamble and conclusion. Flush+Flush was not
included in the study because it has a different behavior and cannot be identified
with the chosen metrics.

4.4.4 Automatic Classification

Once we understand how distinguish malicious applications from non-malicious ones,
we found a method to automatically classify them. Doing so, we can avoid to analyze
each graph, but the number of false positives and the number of false negatives could
increase. Since the difference is given by the position of the two plotted metrics, we
compute the value of:

MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT
DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS

This value is computed for each sample, and if this value is below a certain
threshold then it can indicate suspicious behavior.

To determine this threshold, two results were evaluated, one to represent malicious
applications and one for non-malicious applications, which differed most from the
results obtained by the respective classes. So the two graphs considered are that
of Prime+Probe, in Figure 4.22, and that of Canneal using simsmall as input, in
Figure 4.23.

Figure 4.22. Prime+Probe

50 4. Hardware Performance Counters against Hardware Attacks

Figure 4.23. Canneal

In particular, for Prime+Probe the value was taken from the point where the
two graphs are closest, without considering the samples saved at the beginning
and at the end of the monitoring because those values could be due to a preamble
and a conclusion. The value was taken at about time 1000 and the value of
MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT is 0.356, while that of DTLB_LOAD_-
MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS is 0.097, so the result of the fraction
is 0.272. While as far as Canneal is concerned, the value was calculated at the point
where the graph most closely resembles those of malicious applications, i.e. where
the two curves intersect and change the relative position, thus around the time 110.
The value of MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT is 0.489 , while that of
DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS is 0.252, so the result of
the fraction is 0.515.

These results correspond to the most extreme results that can be obtained by
analyzing the tests performed, in fact all malicious applications have a value less
than or equal to that obtained by Prime+Probe and non-malicious applications have
a value greater than or equal to that obtained by Canneal.

Following this, we chose a threshold such that if the value obtained from the
fraction of the two metrics is less than this threshold then the behavior of the
application is considered as suspect, otherwise if the value is above the threshold it
is considered a signal of normal behavior.

However, we cannot classify as malicious any application that gets a value below
the threshold because the number of false positives could become too high. To
overcome this problem, we have devised a heuristic procedure which consists in
assigning a score to the behavior of the application. This score will vary during
execution as follows:

• increases the score by α in case the value obtained from the fraction of the

4.5 Related Work 51

two metrics is lower than the threshold

• decrement of ϕ (where ϕ could also be equal to α) the score if the value
obtained from the fraction of the two metrics is higher than the threshold

The score can take a value between 0 and maximum value. If the score reaches
maximum value then the application is classified as malicious, otherwise it is classified
as non-malicious. In this way the attacks are identified after a limited number of
samples and it is not necessary to examine the whole execution, while the non-
malicious applications should not be wrongly classified because the points in which
the application has a suspicious behavior, in most cases they are sporadic and distant
from each other so the score is diminished thanks to normal behavior before it
reaches the maximum value.

4.5 Related Work
There are other proposal in the literature that use PMCs to detect attacks, some of
which are discussed in this section. Unlike the study proposed in this thesis, the
other studies have more information available to understand if an attack is underway
or not. Some of them focus on a single attack technique, doing so there is the
possibility of being able to study the technique in more detail, monitoring specific
events of the technical one. This was not possible in the proposed methodology
because it was designed to detect the family of side-channel attacks and therefore
the events had to be as general as possible to understand most of the attacks while
limiting false positives at the same time. Another very important aspect is that most
proposal in the literature monitor both the execution of the attacker and that of
the victim. By doing this, it is possible to obtain more data to be analyzed because
the code executed by the victim, influenced by the execution of the attack, tends to
accentuate the frequency variations of the monitored events that are detected when
an application is under attack. On the other hand, this approach severely limits the
applicability of these results in the real environment.

The morks most similar to the methodology presented here are those reported
in the papers: Flush+Flush: A Fast and Stealthy Cache Attack [7] and NIGHTs-
WATCH: A Cache-Based Side-Channel Intrusion Detector using Hardware Perfor-
mance Counters [23], which we discuss in the following.

The idea presented in the paper Flush+Flush: A Fast and Stealthy Cache
Attack [7] is based on the usage of the perf Linux profiler. The tool is accessible
from command line and provides the possibility to use a number of parameters in
order to customize the profiling that the tool will have to perform. perf is powerful:
it can instrument CPU performance counters and can rely on other techniques
that allow you to perform a dynamic break of a kernel function so as to collect
debug information and performance data. Using this tool, it is possible to carry out
lightweight profiling. In [7], the authors profile both the attacker and the victim to
increase the accuracy of their results, since even from the execution of the victim
relevant information for the detection can be collected. The events monitored, listed
in Figure 4.24, range over all aspects of a program so as to have a better overview
of its behavior.

52 4. Hardware Performance Counters against Hardware Attacks

Figure 4.24. List of hardware performance events monitored

After selecting the events, they monitored the system under different conditions:
under normal conditions, under stress (for example loop reading and writing in
dynamically allocated 256MB arrays), running common applications, such as Twitter
or FireFox, and under attack. After which they compared the results obtained from
the different executions trying to understand which were the differences between a
system under attack and a normal execution. Finally they defined the metric shown
in Figure 4.25.

Figure 4.25. Detection Metrics

The parameters used correspond to:

• CACHE_MISSES : occur when a data is accessed after it has been flushed
from the Last Level Cache.

• CACHE_REFERENCES : occur when the cache is accessed regardless of
whether there is a hit or a miss.

• (ITLB_RA and ITLB_WA): the two counters are normalized using the number
of accesses to the TLB obtained from the sum of accesses in read mode and in
write mode.

• k: following the experiments the two thresholds, km and kr, are defined (one
for each metric) and if the value obtained exceeds the threshold then with a
certain degree of confidence it can be declared that the system is under attack.

Using these metrics it is possible to detect some of the side-channel attacks, but
not all of them. In fact, it is not possible to detect flush+flush due to the absence of
memory accesses from this attack. The same tried to use the event UNC_CBO_-
CACHE_LOOKUP, which counts the number of references to the cache, but the
quantity of false positives was not negligible. At the same time, we cover the same
malicious applications, although by using different (more general) metrics.

4.5 Related Work 53

The proposal presented in the paper NIGHTs-WATCH: A Cache-Based Side-
Channel Intrusion Detector using Hardware Performance Counters [23] tries to
combine the use of Machine Learning with Hardware Performance Counters in
order to detect Side-Channel attacks. To perform the profiling, the authors used a
tool called Performance API (PAPI). The PAPI project specifies a standard API
(Application Programming Interface) to access the hardware performance counters
available on most modern microprocessors. PAPI offers two interfaces to exploit the
underlying hardware counters; a simple and high level interface for the acquisition
of simple measurements and a completely programmable low level interface for users
with more sophisticated needs. PAPI can be divided into two levels of software.
The upper level consists of the API support functions and machine independent.
The lower level defines and exports a machine-independent interface for machine-
dependent functions and data structures. In this way, it provides portability across
different platforms [28].

Before performing the profiling, the authors had to decide which events to profile
and what to profile. Most of the selected events are related to the cache, in particular
the number of L1, L2 and L3 hits and misses and in addition there are also the
number of core cycles and the number of retired branch instructions that were
mispredicted by the processor. Unlike the methodology proposed in this thesis, also
in this paper, both the attacker and the victim are profiled, thus obtaining more
information from the results of the counters. The methodology used by them can be
divided into three parts: training, execution and detection.

In the training phase the Machine Learning Models conceived are trained using
a large number of already labeled samples. A sample is the set of results obtained
by monitoring through PAPI the events listed in the introduction of a system under
attack or not. The labels used for the classification are only two: Attack and No
Attack.

In the execution phase, the system is monitored, which may be under attack or
not, and new samples are run at runtime.

A the end, in the detection phase, the samples collected in the previous phase are
analyzed by the trained Machine Learning Models. Each model classifies the sample
into on of the two categories (Attack and No Attack) and through these results it is
determined whether the system is under attack or not.

The results reported were obtained under different load conditions of the system
and using different models. The accuracy of the classification depends on how well
the models used have been trained, while the overhead depends on the loading
conditions and the frequency with which the samples are collected. Furthermore, for
every possible attack scenario a new model must be devised, which must be trained
with appropriate samples, making the entire detection process quite expensive.
Moreover, the need for a training phase makes this proposal less suitable for possibly
new attacks and general applicability, which is one of the explicit goal of this thesis.

55

Chapter 5

Reference Implementation

As a reference implementation, we have developed a Linux Kernel Module for Linux
x86-64, which exploits the Program Monitoring Counters (PMCs) technology by
Intel. This module implements the methodology which we have discussed in the
previous Chapter.

Our implementation is compatible with the 6th, 7th and 8th generation of Intel
core processors, based respectively on the Skylake, Kaby Lake and Coffee Lake
microarchitectures. This is due to the fact that the module directly works on model-
specific registers (MSRs) which most of the time are specific for each processor
model and each processor has its own list of supported architectural performance
monitoring events.

The module has been designed to monitor the system in order to collect informa-
tion about different aspects of the behavior of a thread or a process. It is possible to
decide which events must be taken into consideration to generate statistics, which
are then used to decide whether some process should be considered as malicious or
not.

The Intel support used to acquire the information needed is implemented at the
firmware level. For this reason, the overhead that is added to program execution is
low.

We have carried out stress tests to study the capability of our reference imple-
mentation to detect hardware attacks, such as Meltdown, Specter and Foreshadow.
However, the use of the tool is not limited only to this purpose, in fact there are a
large number of events that can be monitored and a large number of options that can
be exploited. For example, the tool could be used to detect other types of attacks,
once appropriate strategy and the corresponding metrics to detect it are identified.

5.1 Module Organization

When the module is loaded, it performs the following operations:

• First of all, since MSRs are specific for each processor model, it checks whether
the current operating system is running on an Intel Fam and ensures that the
processor generation is compatible with the implementation. Once ensured that
the underlying system is supported, the module verifies that all the necessary

56 5. Reference Implementation

supports (PMC and PEBS) are available, and that the format of PEBS records
is consistent with the implementation.

• After disabling all the PMC (both fixed and programmable) that may have
remained set by a previous execution, the module setups and registers a new
Non-Maskable Interrupt7 (NMI) handler. The handler is employed to manage
any interrupt generated by the aforementioned support. Inside the interrupt
handler, controls are used to distinguish the possible sources.

• A new char device is created and registered in order to handle the interaction
between the kernel space and the user space through the ioctl commands. To
invoke ioctl commands of a device, the user-space program would open the
registered char device first, then send the appropriate ioctl() and any necessary
arguments.

• At the end, the module allocates the needed data structures for PEBS, such as
the debug store area and the pools of buffers to collect the PEBS samples and
the tasklet information. The structures will then be used to efficiently save
the samples, which otherwise would be lost or overwritten, useful for future
analysis or to generate statistics.

5.2 IOCTL commands

ioctl (input/output control) is a system call for device specific input/output control
operations that cannot be expressed through normal system calls [20]. The kernel is
designed to be extensible, and accepts extra modules called a device drivers. Device
drivers runs directly in kernel space and exposes through the ioctl interface a system
call that allows user space to communicate with it. Through this system call, the
device can offer an arbitrary number of functions (each with its unique identification
number), allowing the extension to be programmed without adding system calls to
the operating system. To call one of these functions, the user will use the system
call of the device and pass it 3 arguments: the file descriptor of the opened device
pseudofile, the identification number of the function and an argument, which is of
type unsigned long. In this way it is also possible to pass a pointer to any type of
data structure.

The ioctl operations, which we have implemented, can be divided into three
groups: configuration and control of the PMCs, management of the processes to be
profiled and presentation of the results obtained. To obtain the arguments of the
individual functions, a number of parameters have been defined, that are passed to
a command line utility which we have implemented as part of this work. This utility
directly interacts with the Kernel Module, to carry out the monitoring activities
which we have previously discussed.

7A Non-Maskable interrupt is a hardware interrupt that cannot be ignored by standard masking
techniques.

5.2 IOCTL commands 57

5.2.1 PMCs Configuration

The first operation to active our system is to configure the PMCs. Based on the
monitoring activities that must be performed, you can choose the configuration that
suits you best. The choices that can be made in order to have this configuration are
the following: the number of PMCs active on the single CPU and which with PEBS,
the mode (user and/or kernel) in which profiling must be active, the list of events
that must be monitored by the PMCs and, finally, the value from which they must
start to count the PMCs and the one to which they must be reset in case of overflow.

To indicate the number of active PMCs on each CPU, a hexadecimal value is
entered for each available CPU. This value is converted so as to have a sequence
of four bytes (one for PMC). If the x-th bit is 1, then the PMCx on that CPU
must be activated, otherwise if it is 0, then it will remain off. The number of PMCs
using PEBS and their monitoring mode are managed in a similar way. If a PMC
of a specific CPU is turned off, the values concerning PEBS and the monitoring
mode are ignored. Each PMC must be configured to monitor a particular event.
So, for each PMC, a hexadecimal value is passed, which will then be written to the
register IA32_PERFEVTSELx MSR (shown in Figure 3.1). The value is composed
of the Event Select and the Unit Mask, which are reported in Intel 64 and IA-32
Architectures Software Developer’s Manual [9]. Finally, it is possible to decide
the value from which the PMCs will start to count, and also the one from which
they would start counting again if they reach their maximum value. The default
value from which they start counting and with which they are reset is 0 and if not
specified otherwise it will be used. The start value is written to the register IA32_-
PMCx (described in the Section 3.1.1) before the PMCs are turned on. Instead, the
writing of the reset value is managed inside an interrupt handler8 which is activated
following an interrupt caused by the achievement of the maximum value of a PMC.
The information about the configuration of the PMCs (as used by the Kernel Module)
is saved inside a variable size array of metadata, defined as the configuration_t type.
The size is variable because there is a structure for each available CPU present on
the machine on which the code is running. The configuration_t is organized as in
Listing 5.1:

1 typedef struct{
2 int valid;
3 pmc_conf_t pmcs[MAX_PMC];
4 }configuration_t;

Listing 5.1. configuration_t structure

The first field, valid, is use for optimization reasons. If none of the PMCs on
this CPU must be activated, valid is equal to 0 and there is no need to analyze the
second field, pmcs. The pmcs fields is a fixed size array (the size is saved into the
MAX_PMC macro and is equal to the maximum number of PMCs available for a
single CPU), of pmc_conf_t structures, organized as in Listing 5.2.

8An interrupt handler, also known as an interrupt service routine or ISR, is a special block of
code associated with a specific interrupt condition.

58 5. Reference Implementation

1 typedef struct{
2 int valid;
3 uint64_t event;
4 uint64_t start_value;
5 uint64_t reset_value;
6 int user;
7 int kernel;
8 int enable_PEBS;
9 }pmc_conf_t;

Listing 5.2. pmc_conf_t structure

The valid filed has the same purpose as the one present in the configuration_t
structure, in such a way there is no need to analyze the further fields. The remaining
fields contain the basic information to configure the PMCs obtained as described at
the begin of this section.

Once the configuration has been established, it must be passed as parameter
to the Kernel Module. The Kernel Module and the command line utility share
the same header file and therefore the same configuration_t structure definition,
so the configuration can be passed without further changes or conversions. The
configuration can be used both to setup and to reset the selected PMCs. In order
to do this, there are two ioctl commands: SETUP_PMC and RESET_PMC. At
the end of the execution of one of these commands, the PMCs are not activated or
deactivated. In this way it is possible to change the configuration of a single PMC
without having to rewrite the entire configuration, and it is also possible to setup
and/or reset a PMC during the monitoring phase without having to turn off, and
then turn back on, the support and without altering the collected data.

5.2.2 Processes Management

According to the proposed methodology all the processes running in the system
are monitored simultaneously and for each of these processes the corresponding
data structures to store the collected samples will be allocated and will be managed
on context switch. However, for the sole purpose of being able to run the tests
necessary to choose the metrics and verify their goodness, the possibility of choosing
a single process to monitor was added. The registration of the process, that must be
monitored, can be while the application is running or it can be finalized before the
process starts to run. In the first case, an external application, like htop, is used
to retrieve the PID of the running process and it is passed to the main function
through the command line. Otherwise, it is possible to pass to the main function
the name of the application or the relative path9 of the executable and, if necessary,
the parameters that would be passed when the application or executable starts.

1 int pid = fork ();
2 if (pid == 0) {
3 ioctl(fd, ADD_TID , getpid ())

9A relative path is a way to specify the location of a directory or a file relative to the present
working directory (pwd) [3].

5.2 IOCTL commands 59

4 ioctl(fd, PID_PROFILER_ON)
5 execvp(name ,args);
6 return 0;
7 }
8 else {
9 waitpid(pid , NULL , 0);
10 }

Listing 5.3. Add an application to profile

As shown in Listing 5.3, once you pass this information to the command line
utility, the main function executes fork(). fork() creates a new process by duplicating
the calling process.The new process is called the child process. The calling process
is called the parent process [14]. The two processes are distinguished by the value
assumed by the variable pid. The child process adds the PID just followed in order
to be profiled and then activates the profiling. Finally it executes an exec(). The
exec() family of functions replaces the current process image with a new process
image [13]. In this way the child process will execute the application that was passed
from the command line. The parent process waits for the child to finish, otherwise
we would not know when it stop running and then when to retrieve the monitoring
results.

Both for the direct addition of the PID and the one made using the fork-exec
technique just described, the PID of the process to be monitored must be passed
from user space as parameter to an ioctl function, name ADD_PID. Once the PID
is register, it is possible to turn on and turn off the profiler using respectively the
PID_PROFILER_ON and PID_PROFILER_OFF functions.

5.2.3 Data Retrieved and Post Processing

Once the application is terminated and the monitoring operation is stopped, it is
possible to extract the obtained results.

If PEBS is active, the ioctl command used to retrieve the results is READ_-
BUFFER, that returns a buffer of variable size. The size is obtained before calling
the READ_BUFFER function, using the additional function SIZE_BUFFER. The
function returns an unsigned long containing the number of samples stored by PEBS
during the monitoring. The basic element of this buffer is the pebs_struct structure.
The structure is composed of the same fields as the record saved by the PEBS assist,
reported in Figure 3.8. The obtained buffer can be printed on screen or can be saved
on a .dat files for further analysis.

In Figure 5.1, an example of the usage of PEBS and its results are shown. In
this case, PEBS is used to collect information about the memory load operations
performed by a specific application. The monitoring is performed with different
values of start value and reset value. The results are the memory load operations
sampled by PEBS. The graph shown the frequency (start value and reset value) on
the abscissa and the ratio between the number of load operations sampled and the
number of actual load operations on the ordinate. The ratio represents the quality
of the support at different frequencies.

Instead, if PMCs are used as standard counters, the results can be retrieved

60 5. Reference Implementation

Figure 5.1. Graphic example obtained with PEBS

using the ioctl command named EVT_STATS. The function returns an array of
statistics structure (shown in Listing 5.4) of variable size.

1 struct statistics{
2 uint64_t fixed0;
3 uint64_t fixed1;
4 struct event_stat events[MAX_ID_PMC];
5 };

Listing 5.4. statistics structure

The first two field of the structure contain the number of events registered by
the two fixed PMCs (Fixed PMC0 and Fixed PMC1). To store the result of the
other PMCs (Programmable PMCs and Offcore PMCs), we define a new structure,
named event_stat, shown in Listing 5.5.

1 struct event_stat{
2 uint64_t event;
3 uint64_t stat;
4 };

Listing 5.5. event_stat structure

The structure reports the number of events counted by the PMC and which event
was monitored by it. This last field is not necessary for the Fixed PMCs because
they can monitor only one event.

In order to allocate an array of the correct size to contain the results, the main
function calls SIZE_STAT command before READ_BUFFER, that returns an
unsigned long containing the number of samples present in the buffer.

5.3 Hooking into the scheduler 61

We have used matplotlib.pyplot10, to plot the retrieved data. An example is
shown in Figure 5.2.

Figure 5.2. Graphic example obtained with PMCs

The plot shows the number of core cycles (Fixed PMC1) on the x axis and the
number of events counted by the single PMCs on the y axis.

5.3 Hooking into the scheduler
To manage the monitoring of applications at runtime, our Kernel Module must be
informed of what is the currently running application on a given CPU core. To
this end, we install a kretprobe post-handler (shown in Listing 5.6) hooked to the
function responsible of the context switch.

1 if (! profiled_on)
2 goto off;
3 start_monitoring(current ->pid)
4 enablePMCS ();
5 goto end;
6 off:
7 disablePMCS ();
8 end:
9 return 0;

Listing 5.6. Context Switch Post-Handler Kretprobe

The post-handler function, as the name suggests, is executed after the execution
of the context switch. It checks whether the profiler is turned on, picks process to

10matplotlib.pyplot is a state-based interface to matplotlib. It provides a lot of functionalities to
plot graphs and diagrams [12].

62 5. Reference Implementation

be monitored. If the profiler is not turned on all the PMCs (that could have been
previously activated) are disabled. Otherwise, we activate the PMCs.

5.4 Handling PMC Overflow
As mentioned, when a PMC reaches its maximum value, it overflows. If the APIC
interrupt enable bit (presented in Figure 3.1) is enabled, an interrupt is fired. Two
possibilities for handling the interrupt have been examined. The first possibility is to
modify the native linux Non-Maskable Interrupt (NMI) handler, since the interrupt
generated by the PMC is an NMI. The modified handler should check upon any
fired NMI whether it was generated by the PMCs or not. The second possibility is
to add a new entry to the Interrupt Descriptor Table (IDT), and associate it with
a custom handler triggered by the PMCs. We adopted this second solution, as it
is much cleaner. The interrupt descriptor table (IDT) links each interrupt with
a descriptor, from which the address of the routine used to service the request is
extracted by the firmware, as seen in the Figure 5.3.

Figure 5.3. Interrupt Descriptor Table

Each entry is referred as an interrupt vector. The interrupt vector is composed
by an offset and a selector. The selector is used to identify a segment descriptor,
which contains a pointer to the memory segment that holds the interrupt handler to
be executed. To determine the final starting address of the handler, the firmware
applies the offset contained in the interrupt vector to the base address stored in the
segment descriptor.

The handler installed by our module is used to collect the samples obtained

5.5 Overhead 63

during monitoring phase which will then have to be analyzed to understand the
behavior of the program. To set the sampling frequency, the chosen reset value is
negated and is written into the Fixed PMC1 registry, that counts the number of
core cycles (in this way, after a number of events equal to the reset value, it will
reach the maximum value). When the PMC1 Fixed reaches the maximum value,
the values of the active PMCs are saved in the data structure shown in Listing 5.4.
This structure is added to the Linked List which is returned to the user at the end
of the monitoring. At the end of the interrupt handler all the PMCs are reset to
zero to start a new sampling, while the Fixed PMC1 is set to reach its maximum
value after a number of events equal to the reset value.

5.5 Overhead
We calculated the overhead that is added to the application during monitoring. This
result is very important because if the overhead is too high, even if the methodology
is valid because it produces useful information, it could render the monitored
application unusable due to the delay that would be introduced.

Figure 5.4. Overhead Report

The data, shown in Figure 5.4, were collected by using the Phoronix Test Suite.
The Phoronix Test Suite is a complete test and benchmarking platform available
that provides an extensible framework so you can easily add new tests. The software
is designed to effectively perform qualitative and quantitative benchmarks in a clean,
reproducible and easy to use way. The Phoronix Test Suite can be used to simply
compare computer performance, which is the functionality for which we are using it,
or can be used within the organization for internal quality assurance, hardware and
software validation and continuous integration/performance management [1]. The

64 5. Reference Implementation

benchmarks from the Phoronix Test Suite, which we have used for our overhead
assessment, are:

• smallpt. The peculiarities of the SmallPT benchmark are its different workload
and the fact that it is written in less than 100 lines of C++ code. This
benchmark returns an image using a Monte Carlo algorithm and presents the
execution time (in seconds) as a response variable.

• sqlite. This is a simple benchmark of SQLite. This test measures the time
to perform a pre-defined number of insertions on an indexed database. The
database is implemented with a single database file. Access to the database is
done with file locking.

• compilebench. Compilebench tries to extend a filesystem by simulating some
of the disk I/O common in creating, compiling, stating, patching and reading
kernel trees. It indirectly measures the file systems performance regarding the
maintenance of directory locality as the disk fills up and directories age. The
test is configured to simulate the creation of 10 initial directories using the
make -j command, this is called makej mode. The I/O considered in the tests
are: initial create and compiler.

We have chosen these benchmarks to conduct tests that focus on various behaviors
that a malicious application or not can adopt. In particular we selected smallpt
because it is a CPU-Bound benchmark and therefore, given the nature of the ana-
lyzed attacks, their behavior was simulated. While the other three benchmarks use
different syscall11 profiles, forcing the application to make a substantial number of
context switches. Given the implementation of software patches, we should have an
influence on the performance of the considered applications.

These benchmarks were run in three different scenarios to evaluate the perfor-
mance of the module described with the software patches adopted by current systems
to prevent side channel attacks. The scenarios are as follows:

• Kernel 4.18, which has activated software patches to mitigate the attacks
discussed in this thesis, plotted with the label patch.

• Kernel 4.9, which does not provide for any countermeasure for side channel
attacks, plotted with the label nopatch.

• Kernel 4.9 with the addition of the kernel module just described, plotted with
the label monitor.

The results met our expectations and clearly show that the added overhead
of monitoring is minimal with respect to the scenario that does not involve any
countermeasure, and, above all, with respect to the added overhead of using patched
software.

11A syscall is the mechanism, used by a user-level or application-level process, to request a
kernel-level service from the operating system

5.5 Overhead 65

Benchmark Overhead Patch Overhead Monitor
smallpt 1.015x 1x
sqlite 1.872x 1.005x
initial create 2.215x 1.107x
compiler 2.086x 1.387x

Table 5.1. Overhead Results

Using the results shown in Table 5.1, we calculated the average overhead added
by both the software patches and the kernel module. There is an average increase of
1.796x in the application execution time when the pacthes software is active against
the 1,124x obtained from the monitoring carried out by the module.

In conclusion, it must be considered that once it has been established that an
application is not malicious, the monitoring for that particular application can be
switched off via the module, thus reducing the overall overhead. In contrast, software
patches are constantly active for all applications that are currently running in the
system.

67

Chapter 6

Conclusions and Future Work

In this thesis we presented a new methodology to detect hardware-based side channel
attack. The main idea of this proposal is to use hardware support provided by
Intel processors (Performance Monitoring Counters) to obtain information about
applications execution. The support is not used according to its original purpose,
which is to monitor the system to gather information on the resources usage, but
it is used to detect cache-based side channel attacks. The presented methodology
uses this support to get an overview of the behavior of monitored applications,
in particular focusing on how applications use the cache. We selected a group of
events to be monitored suitable for the intended purpose. However, these events
cannot be directly compared because they could represent different behaviors of
the monitored applications. For example, a high number of misses at the first
level of the cache can mean both that an application is trying to perform a side
channel attack and that the data processed by the non-malicious application does
not allow the exploitation of the locality principle because they occupy a large area
of memory. For this reason, the events were grouped together to obtain appropriate
metrics, so that it was possible to compare the results deriving from the monitoring
of different malicious and non-malicious applications. The metrics achieved by the
theoretical and empirical studies are MEM_LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT
and DTLB_LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS and they have led
to very promising results considering also that unlike other results in the literature,
it is not necessary to monitor the victims of the attacks. In this way, we are required
to collect less information, but in doing so we have a more realistic analysis given
that during a real attack we are not given to know who the victim is. To make the
detection of the attacks automatic and less dispensary, a procedure was designed
that examines the relationship of the two metrics. If the value is lower than an
automatically computed score, then a suspicious behavior is detected, otherwise the
application is considered non-malicious. To reduce the number of false positives,
the score is tuned at runtime accounting for suspicious execution patterns. If the
score exceeds a predetermined maximum value, then the application is classified
as malicious. The overhead introduced by this monitoring system is low, although
it depends on the frequency with which a new sample, containing the value of the
monitored metrics, is generated. To obtain a correct result, it is necessary to work at
a moderate frequency otherwise the samples will contain meaningless information. In

68 6. Conclusions and Future Work

case the of high frequency, a sample collects too few information and it is non possible
to distinguish a malicious application from a non-malicious one. Instead, in case of
low frequency, if the attack is mitigated through a preamble and/or a conclusion,
the number of false negative grows too much. The low overhead is certainly the
biggest difference with the software patches presented in the introduction of this
thesis and which are considered the de facto solution to side channel attacks. In
fact, software patches added such a high overhead to application execution also in
cases in which no attack at all is carried.

We have already planned several improvements for the future version of this
methodology:

• Processor Event Based Sampling: events were monitored using standard sam-
pling offered by PMCs, but PEBS could also be used to detect cache-based
side-channel attacks. As already mentioned in Section 3.7, PEBS also provides
additional information that could be very useful for analyzing the behavior of
the monitored application. In particular, given that the methodology aims to
study the use of the cache by monitored applications, the PEBS record fields
can be exploited to obtain more precise information regarding load and store
operations, such as the linear address of the source of the load, or linear address
of the destination of the store. Furthermore, through the PEBS, Data Source/-
Store Status record field, it is possible to know if a given load operation caused
a TLB miss or not. Therefore there is no need to infer information through
the number of events counted by DTLB_LOAD_MISSES_STLB_HIT, but
it is possible to obtain more precise information.

• more precise time window: the time window in the exposed methodology is
determined using the Fixed PMC1. This PMC monitors the event CPU_-
CLK_UNHALTED_THREAD_ANY, that counts the number of core cycles
while the core is not in a halt state. We plan to introduce a time window based
on the real execution time of the monitored application and an automatic
management of it. The execution time would constitute a more precise sampling
unit, less subject to errors. A time window that is managed automatically may
be preferable to intensify the observation during a specific execution period
and keep it as low as possible in other situations so as to further decrease the
overhead added while monitoring. Two limit values should be determined to
manage the time window, so that the monitoring frequency is never too hich
or too low.

• Compatibility: it would be interesting to explore other microarchitectures,
different from the one studied in this thesis. Each microarchitecture has its
own set of events that can be monitored, so the obtainable metrics could
be different from those identified and analyzed in Section 4.25. It would be
possible to determine if there are metrics, which were not feasible on the
considered microarchitecture, more suitable for the purpose given and then
assess whether it is possible to further increase the accuracy.

• Dynamic monitoring: currently it is possible to monitor up to four events,
excluding the Fixed PMCs. We plan to design a mechanism that, based on

69

the execution of the application, determines at runtime which are the most
appropriate events to monitor in order to understand if the application is
malicious or not. This mechanism would further improve the accuracy, because
we could identify specific metrics (or even dynamic ones) for a single type of
attack and we will no longer have to look for the common factor among all
the attacks. Therefore, thanks to this optimization, it could be useful to study
Flush + Flush and find metrics that adapt to its peculiarities that distinguish
it from other applications.

71

List of Figures

2.1 Basic five-stage pipeline . 6
2.2 In-order vs Out-of-order execution 7
2.3 Cache Levels . 8
2.4 Gadget Spectre Attack . 9
2.5 Example Meltdown Attack . 10
2.6 i386 Paging Scheme . 11
2.7 Page Table Entry . 12

3.1 Layout of IA32_PERFEVTSELx MSRs 18
3.2 Off-Core Response Event Encoding 19
3.3 Layout of MSR_PERF_FIXED_CTR_CTRL MSR 20
3.4 Layout of IA32_PERF_GLOBAL_CTRL MSR 21
3.5 Layout of IA32_PERF_GLOBAL_STATUS MSR 21
3.6 Layout of IA32_PERF_GLOBAL_STATUS_RESET MSR 22
3.7 Layout of IA32_PEBS_ENABLE MSR 22
3.8 PEBS Record Format for 6th Generation Intel CPUs 23
3.9 PEBS Programming Environment 24

4.1 Tests performed at 10F Frequency (0xFFFFFFFFFF) 31
4.2 Tests performed at 6F Frequency (0xFFFFFF) 31
4.3 Tests performed at 3F Frequency (0xFFF) 32
4.4 Number of L3 Misses compared with number of L3 Hits 33
4.5 Number of L1 Misses compared with number of L1 Hits 34
4.6 TLB Architecture . 36
4.7 TLB Parameters of the Skylake Microarchitecture 37
4.8 STLB Event compared with dTLB Event 37
4.9 Number of Flushes in iTLB and dTLB 39
4.10 Load operation compared to Store operation 39
4.11 Possible monitorable events related to dTLB load 40
4.12 Malicious Application (Prime + Probe) 41
4.13 Non-Malicious Application (Gimp) 42
4.14 Non-Malicious Application: False Positive (Canneal) 42
4.15 Second Metric Results: MEM_LOAD_RETIRED_L3_MISS/L1D_-

REPLACEMENT DTLB_LOAD_MISSES_STLB_HITS/MEM_-
LOAD_RETIRED_L1_MISS . 43

72 List of Figures

4.16 Malicious Applications Metrics Results: MEM_LOAD_RETIRED_-
L3_MISS/L1D_REPLACEMENT DTLB_LOAD_MISSES_STLB_-
HITS/MEM_LOAD_RETIRED_L1_MISS 44

4.17 Non-Malicious Applications Metrics Results: MEM_LOAD_RE-
TIRED_L3_MISS/L1D_REPLACEMENT DTLB_LOAD_MISSES_-
STLB_HITS/MEM_LOAD_RETIRED_L1_MISS 45

4.18 Results using simsmall as input; MEM_LOAD_RETIRED_L3_-
MISS/L1D_REPLACEMENT DTLB_LOAD_MISSES_STLB_-
HITS/MEM_LOAD_RETIRED_L1_MISS 47

4.19 Results using simlarge as input; MEM_LOAD_RETIRED_L3_-
MISS/L1D_REPLACEMENT DTLB_LOAD_MISSES_STLB_-
HITS/MEM_LOAD_RETIRED_L1_MISS 47

4.20 Example of malicious application with preamble and conclusion mon-
itored at low frequency . 48

4.21 Results malicious application with preamble and conclusion; MEM_-
LOAD_RETIRED_L3_MISS/L1D_REPLACEMENT DTLB_-
LOAD_MISSES_STLB_HITS/MEM_LOAD_RETIRED_L1_MISS 48

4.22 Prime+Probe . 49
4.23 Canneal . 50
4.24 List of hardware performance events monitored 52
4.25 Detection Metrics . 52

5.1 Graphic example obtained with PEBS 60
5.2 Graphic example obtained with PMCs 61
5.3 Interrupt Descriptor Table . 62
5.4 Overhead Report . 63

73

Listings

5.1 configuration_t structure . 57
5.2 pmc_conf_t structure . 58
5.3 Add an application to profile . 58
5.4 statistics structure . 60
5.5 event_stat structure . 60
5.6 Context Switch Post-Handler Kretprobe 61

75

Bibliography

[1] Openbenchmarking. Accessed: 2019-07-09. Available from: https://
openbenchmarking.org/.

[2] The parsec benchmark suite. Accessed: 2019-06-28. Available from: https:
//parsec.cs.princeton.edu/documentation.htm.

[3] Linux.com | the source for linux information, absolute path vs relative path
in linux/unix (July 21, 2017). Accessed: 2019-06-05. Available from: https:
//www.linux.com/blog/absolute-path-vs-relative-path-linuxunix.

[4] Admin. L1d replacement percentage. Accessed: 2019-
06-27. Available from: https://software.intel.com/en-us/
vtune-amplifier-help-l1d-replacement-percentage.

[5] Dinis, N. Cache why level it. In Proceedings of the 3rd Internal Conference on
Computer Architecture, Universidade do Minho (2002).

[6] Disselkoen, C., Kohlbrenner, D., Porter, L., and Tullsen, D. Prime+
abort: A timer-free high-precision l3 cache attack using intel {TSX}. In 26th
{USENIX} Security Symposium ({USENIX} Security 17), pp. 51–67 (2017).

[7] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+ flush:
a fast and stealthy cache attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pp. 279–299. Springer
(2016).

[8] Gruss, D., Spreitzer, R., and Mangard, S. Cache template attacks:
Automating attacks on inclusive last-level caches. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pp. 897–912 (2015).

[9] Guide, P. Intel® 64 and ia-32 architectures software developerâĂŹs manual.
Volume 3B: System programming Guide, Part, 2 (2011).

[10] IBM. Transactional memory. Accessed: 2019-05-31. Available from:
http://web.archive.org/web/20080207010024/http://www.808multimedia.
com/winnt/kernel.htm.

[11] Intel, R. Intel® 64 and ia-32 architectures optimization reference manual.
Intel Corporation, Sept, (2014).

https://openbenchmarking.org/
https://openbenchmarking.org/
https://parsec.cs.princeton.edu/documentation.htm
https://parsec.cs.princeton.edu/documentation.htm
https://www.linux.com/blog/absolute-path-vs-relative-path-linuxunix
https://www.linux.com/blog/absolute-path-vs-relative-path-linuxunix
https://software.intel.com/en-us/vtune-amplifier-help-l1d-replacement-percentage
https://software.intel.com/en-us/vtune-amplifier-help-l1d-replacement-percentage
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

76 Bibliography

[12] John Hunter, D. D. and Eric Firing, M. D. matplotlib (2012). Accessed:
2019-06-04. Available from: https://matplotlib.org/api/pyplot_api.html.

[13] Kerrisk, M. Exec (2017). Accessed: 2019-06-05. Available from: http:
//man7.org/linux/man-pages/man3/exec.3.htm.

[14] Kerrisk, M. Fork (2017). Accessed: 2019-06-05. Available from: http:
//man7.org/linux/man-pages/man2/fork.2.html.

[15] Kocher, P., et al. Spectre attacks: Exploiting speculative execution. arXiv
preprint arXiv:1801.01203, (2018).

[16] Koruyeh, E. M., Khasawneh, K. N., Song, C., and Abu-Ghazaleh,
N. Spectre returns! speculation attacks using the return stack buffer. In 12th
{USENIX} Workshop on Offensive Technologies ({WOOT} 18) (2018).

[17] Lipp, M., et al. Meltdown. arXiv preprint arXiv:1801.01207, (2018).

[18] Lipp, M., et al. Meltdown: Reading kernel memory from user space. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pp. 973–990 (2018).

[19] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-level cache
side-channel attacks are practical. In 2015 IEEE Symposium on Security and
Privacy, pp. 605–622. IEEE (2015).

[20] Madieu, J. Linux Device Drivers Development: Develop customized drivers
for embedded Linux (October 20, 2017).

[21] Maisuradze, G. and Rossow, C. ret2spec: Speculative execution using
return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2109–2122. ACM (2018).

[22] Mittal, S. A survey of techniques for architecting tlbs. Concurrency and
Computation: Practice and Experience, 29 (2017), e4061.

[23] Mushtaq, M., Akram, A., Bhatti, M. K., Chaudhry, M., Lapotre, V.,
and Gogniat, G. Nights-watch: A cache-based side-channel intrusion detector
using hardware performance counters. In Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Privacy, p. 1.
ACM (2018).

[24] Mushtaq, M., Akram, A., Bhatti, M. K., Rais, R. N. B., Lapotre, V.,
and Gogniat, G. Run-time detection of prime + probe side-channel attack
on aes encryption algorithm. In 2018 Global Information Infrastructure and
Networking Symposium (GIIS), pp. 1–5. IEEE (2018).

[25] Sarda, P., Motwani, G., and Patil, D. Evaluation of tlb prefetching
techniques. Downloaded on Mar, 20 (2009), 1.

[26] Software, I. Understanding the instruction pipeline. Accessed:
2019-05-31. Available from: https://techdecoded.intel.io/resources/
understanding-the-instruction-pipeline/#gs.fwcnbj.

https://matplotlib.org/api/pyplot_api.html
http://man7.org/linux/man-pages/man3/exec.3.htm
http://man7.org/linux/man-pages/man3/exec.3.htm
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
https://techdecoded.intel.io/resources/understanding-the-instruction-pipeline/#gs.fwcnbj
https://techdecoded.intel.io/resources/understanding-the-instruction-pipeline/#gs.fwcnbj

Bibliography 77

[27] Software, I. Measuring instruction latency and throughput (2008). Accessed:
2019-05-31. Available from: https://software.intel.com/en-us/articles/
measuring-instruction-latency-and-throughput.

[28] Terpstra, D., Jagode, H., You, H., and Dongarra, J. Performance
application programming interface (2010). Accessed: 2019-06-06. Available
from: https://icl.utk.edu/papi/overview/index.html.

[29] Van Bulck, J., et al. Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 991–1008 (2018).

[30] VUSec. xlate. https://github.com/vusec/xlate (Aug 17, 2018).

[31] Weisse, O., et al. Foreshadow-ng: Breaking the virtual memory abstraction
with transient out-of-order execution. Tech. rep., Technical report (2018).

[32] Yarom, Y. and Falkner, K. Flush+ reload: a high resolution, low noise, l3
cache side-channel attack. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pp. 719–732 (2014).

[33] Yoo, R. M., Hughes, C. J., Lai, K., and Rajwar, R. Performance evalu-
ation of intel® transactional synchronization extensions for high-performance
computing. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, p. 19. ACM (2013).

[34] Zheng, Y., Davis, B. T., and Jordan, M. Performance evaluation of
exclusive cache hierarchies. In IEEE International Symposium on-ISPASS
Performance Analysis of Systems and Software, 2004, pp. 89–96. IEEE (2004).

https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
https://icl.utk.edu/papi/overview/index.html
https://github.com/vusec/xlate

	Introduction
	Cache-based Side Channel Attacks
	Optimizing Instruction Execution Latency
	Instruction Pipelining
	Optimizing Data Access Latency: The Cache Hierarchy

	Side Channel Attacks
	Spectre
	Meltdown
	Foreshadow

	Attack Techniques
	Flush+Reload
	Evict+Time
	Prime+Probe

	Hardware Facilities to Measure Performance
	Program Monitoring Counters
	Programmable PMC
	Offcore PMC
	Fixed PMC
	Global Registers

	Processor Event Based Sampling

	Hardware Performance Counters against Hardware Attacks
	Side-channel Attacks Study
	Attack Techniques Study
	Attacks and Attack Techniques Profiling
	Time Slots
	Cache Events
	TLB Events

	Metrics
	Cache Locality
	Cache - Working Set Relation
	Experimental Classification Results
	Automatic Classification

	Related Work

	Reference Implementation
	Module Organization
	IOCTL commands
	PMCs Configuration
	Processes Management
	Data Retrieved and Post Processing

	Hooking into the scheduler
	Handling PMC Overflow
	Overhead

	Conclusions and Future Work

