Sex Determination

- Most animal species are dioecious
 - 2 sexes with different gonads
 - Females: produce eggs in ovaries
 - Males: produce sperm in testes
- Exception
 - Hermaphrodites: have both types of gonads
- Many animals also differ in secondary traits

What Determines Sex?

- Individual differentiates into male or female
- Causes
 - Genetic factors (sex chromosomes)
 - occur at fertilization
 - Environmental factors
 - occur after fertilization

How Do Vertebrate Gonads Develop?

- Gonad differentiation
 - first morphological difference between males and females

 Gonads develop from intermediate mesoderm

Paired structures

What is a Bipotential Gonad?

- Indifferent gonad develops
 - 4-6 wks in human = "bipotential stage"
 - genital ridge forms next to developing kidney (mesonephric ridge)

Structure of the Indifferent Gonad

Sex cords form

- Columns of epithelial cells penetrate mesenchyme
- Primordial germ cells migrate from posterior endoderm
- Become surrounded by sex cords

What is the Fate of the Sex Cords?

- Initially in central area (medulla, medullary)
 - Will develop in male
 - Proliferate
- In outer area (cortex, cortical)
 - Develop in female
- Normally binary choice

Differentiation of the Gonad

- Into testes or ovaries
 - primary sex determination
 - does not involve

hormones

network of internal sex cords (at puberty: --> seminiferous tubules, Sertoli cells

new cortical sex cords cluster around each germ cell

Male Differentiation

- Male sex cords or testis cords proliferate and cortex becomes thick layer of extracellular matrix
- Male germ cells inhibited from entering meiosis
- Secrete factors causing cord cells to become Sertoli cells

Female Differentiation

- Female germ cells in cortex enter meiosis
- New sex cords form there and form clusters
- Germ cell becomes egg
- Cord cells become granulosa cells
- Surrounnding mesenchyme cells become thecal cells
- Thecal + granulosa = follicle

Male Ducts

- Provide exit for gametes
 - In males remnants of mesonephric kidney called
 Wolffian ducts
 - Differentiates into vas
 deferens and epididymis
- Supported by testosterone
 - Made by Leydig cells
 - Leydig cells come from mesenchyme

Female Ducts

- Also provide exit for gametes
 - In females, Mullerian duct part of gonad
 - Differentiates into uterus, oviducts and upper vagina
- Supported by estrogen
 - Destroyed in males by anti-Mullerian duct hormone

Secondary Sex Determination

- Determination of *non-gonadal* differences
 - Females: oviduct, uterus, cervix, mammary glands
 - Males: vas deferens, seminal vesicle, penis, prostate glands
 - Also, non reproductive traits such as body size, vocal cords, musculature, etc.
- Usually depends on primary sex determination

Secondary Sex Determination

- Experiment:
- Remove gonad of young rabbit fetus before differentiation

```
XX Rabbit -----> appears as female
```

- XY Rabbit -----> appears as female
- Female = default path of secondary sex determination

How is Primary Sex Determination Triggered?

• Chromosomes: XX or XY?

- What are the genes involved?
- Compare to model systems (Drosophila, C.elegans)

Testis Determining Factor

- XX and XXX are female
- XY and XXY are male
 - Must be a "testis determining factor on the Y chromosome"
 - Search for TDF
- Sex-reversed Females: XY
 - deletion of short arm of Y
- Sex-reversed Males: XX
 - addition of small piece from Y

SRY

SRY identified

- SRY = sex-determining region of the Y chromosome
- Encodes a 223 a.a. protein
- Transcriptional regulator of testes-specific genes
 - possible splicing factor
- Where is SRY expressed?

SRY Directs Male Development

- Experiments with mice and SRY:
 - Mouse Sry is expressed in the bipotential gonad of males
 - Disappears after testes differentiate
 - Transgenic mice
 - inject Sry into pronuclei of newly fertilized mice
 - find some "male" looking mice that are actually XX
 - Other genes are necessary for testes determining ability: even genes on autosomes!

Male Transgenic

Male Development Also Requires Sox9

- -Sox9 = autosomal gene required for testicular development
- Expressed in genital ridges of males only, and in Sertoli cells throughout life
- Conserved throughout vertebrates
- Sex-reversed males:
 - XX lacking SRY
 - have extra copy of Sox9
 - XX transgenic for Sox9 form testis
- Transcriptional regulator
 - e.g. activates AMH gene (anti-Mullerian hormone)
- Splicing regulator also

Male Development Also Requires SF1

- SF1 (steroidogenic factor 1)
 - Transcription factor
 - Necessary for bipotential gonad
 - Expression drops in XX gonad but persists in XY gonad
- Activates genes necessary for testosterone production (in Leydig cells) and AMH (in Sertoli cell)

Dax1 on X Antagonizes SRY and Sox9

- Expressed in genital ridges (in both sexes)
 - Stays on in developing ovary
 - Turned off in developing testes
- Gonadal dysgenesis female
 - XY but no deletion of Y
 - Instead an extra copy of Dax1
 Dax1 acts as anti-testis gene in females

Wnt4 May Be an Ovary-Determining Gene

- Expressed in bipotential genital ridge
 - Expression lost in XY gonads, maintained in XX gonads
 - Activates Wnt4
- XX wnt4-/- mice fail to develop ovaries and instead gonads make AMH
- XY humans with double wnt4 make extra DAX1 and ovary

Partial Model of Vertebrate Sex Determination

