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Abstract

While the adoption of machine learning in many applied contexts has been growing
rapidly in the last decade, there remain challenges to use it in certain industrial
settings. The main reason is the clash between established historical procedures
with the uncertainty and lack of transparency of a machine learning pipeline’s
decision process. Another reason is that the input needed to feed a traditional
machine learning model does not fit the available type or quality of available
data. Most industrial databases have not been developed for statistical analysis
but to comply with the regulatory requirements and to perform administrative
tasks. In particular, non-numerical or symbolic features are common as it is a
versatile way of recording events of interest. Examples of such data are textual
documents, sequence of log-events or DNA sequences. The exponential number
of possible patterns typically dominates the complexity associated with learning
relevant information from symbols.

This thesis’s applicative framework and primary motivation is to design effi-
cient, human-readable and computationally tractable methods for predictive main-
tenance on the french train fleet. To that end, we propose to go beyond standard
approaches by using a combination of traditional machine learning algorithms with
pattern mining techniques to allow human experts to understand and interact with
the algorithmic layer of the predictive maintenance pipeline. This thesis’s main
objective is to tackle these issues by proposing approaches that can be generally
applied to a symbolic sequence of data with a human-readable output and trained
at a reasonable computational cost. To that end, we begin by constructing a
complete machine learning pipeline solution for predictive maintenance on a large
fleet of rail vehicles that can be computed at a reasonable cost and provides valu-
able insight on the underlying symbol dynamic of the degradation process. As
a second contribution, we propose a new method for symbolic data set based on
a Bayesian generative model for patterns that can increases score accuracy in an
interpretable fashion for any symbolic data set. As a third contribution, we in-
troduce a new progressive mining method based on local complexities to obtain
sharper statistical bounds on the pattern frequency. Finally, a new and general
stochastic optimization method based on alternative sampling is proposed. This
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method can be applied to the specific use case of Bayesian learning through the
Variational Inference setting. In this instance, we provide theoretical and empirical
proof of the superiority of this approach compared to the most advanced methods.
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Chapter 1

Scope and motivation of thesis

1.1 Context of thesis

General context. While the adoption of machine learning in many applied con-
texts has been growing rapidly in the last decade, there remain challenges to use
it in certain industrial settings. The main reason is the clash between established
historical procedures with the uncertainty and lack of transparency of a machine
learning pipeline’s decision process. Another reason is that the data standards
needed to feed a traditional machine learning model do not fit the available type
or quality of available data. Most industrial databases have not been developed
for statistical analysis but to comply with the regulatory requirements and to per-
form administrative tasks. In particular, non-numerical or symbolic features are
common as it is a versatile way of recording events of interest. Examples of such
data are textual documents, sequence of log-events or DNA sequences. This the-
sis’s main objective is to tackle these issues by proposing approaches that can be
generally applied to a symbolic sequence of data with a human-readable output
and trained at a reasonable computational cost.

Predictive maintenance for the French Fleet of Trains. This thesis is
sponsored by the Société Nationale des Chemins de fer Français (SNCF), liter-
ally French National Railway Company, the state-owned railway company which
operates all French railway traffic in France. Each day in France, 15000 trains
operate. Paris urban area alone counts 3.2 million travelers a day and 60000 stops
at train stations. SNCF have to deal with a context of increasing mass transit: in
the last ten years, the number of travels in Paris increased by 30%. This context
puts increasing pressure on the railway network and calls for a more automated
approach toward maintenance. In the last few years, SNCF developed an alerting
system based on carefully constructed rules from experts. Even though successful,

13



14 CHAPTER 1. SCOPE AND MOTIVATION OF THESIS

Figure 1.1: A rail vehicle is a complex electromechanical system composed of
several subsystems. The figure shows the transformer (left) and engine block
(right) subsystems. Each of them is composed of many components that emits
time-stamped log events or error codes (et) at different times t. A breakdown or
anomaly Y S

t at time t can be linked to a specific subsystem S.

this approach is time-consuming and does not allow for automatic discovery of
new rules that are not already known. Moreover, a set of rules designed by this
method is specific to a class of vehicle and cannot be applied to new equipment.

1.2 Motivations

The task of predictive maintenance aims to anticipate critical failures of a large
industrial system to plan early and cost-effective interventions. The method for
preventing the critical failure of a component during exploitation was historically
based on preventive maintenance. Knowing the average lifetime or law of deterio-
ration of the component, repairs are planned to reduce the chance of unanticipated
equipment failures. It is a step forward from reactive maintenance, which will only
replace and maintain equipment in case of observed failure. Predictive mainte-
nance is a broad term for performing equipment maintenance based on observed
or recorded signs of deterioration. More precisely, it is a maintenance strategy
that monitors the health condition of machinery in real-time and makes an opti-
mal maintenance decision. Even though predictive maintenance leads to greater
availability and reduced costs, it needs much more time, effort and resources to be
performed. A high level of skills is required to collect, model, and interpret the
data and reorganize the maintenance process.



1.2. MOTIVATIONS 15

Predictive maintenance for rolling stocks. This thesis’s primary goal is to
construct an end-to-end rolling stocks predictive maintenance solution from data
collection to prediction. Trains are complex electromechanical systems that use
many interconnected components to offer short and secured travel for passengers
and ought to be energy-efficient. In France, a good covering of the territory implies
exposition to the possibly harsh environment (regarding the topology of the tracks,
weather) and is thus exposed to high failure rates. The case for predictive main-
tenance is particularly crucial in this context since the impact of a rolling stock
failure generally has global consequences on the entire railway system. Because
the train operates on a highly interconnected network, any malfunction leads to
the complete immobilization of the train and propagates delays to a large por-
tion of the transportation network. In that regard, the railway system makes a
particularly relevant case for the added value of a predictive maintenance system.

In the context of SNCF, one of the challenges was to identify a set of relevant
features that can inform about the deterioration state of the train. The sequence
of a particular set of events, the sequences of error codes, was identified to be
especially informative. Error codes are time-stamped strings of text emitted at
regular or irregular intervals by a train’s specific system. The emission of a par-
ticular type of code corresponds to a (sometime arcane) manufacturer’s rule. For
instance, on the train door’s system, a code emission can correspond to the cross-
ing of a threshold for the door’s DC motor voltage response. Note that there is a
slight abuse of language in the use of the term error code since an error code does
not necessarily inform on a malfunction but can indicate the nominal functioning
of a system. One of the main advantages of this pattern is that expert uses it for a
posteriori diagnostics of a failure. When a specific train breaks down, it is sent to
the maintenance factory for inspection. To determine the cause of the breakdown,
the logs are pulled down from the systems and analyzed by the maintainer. The
expert search for specific patterns and known recurrences of error codes in these
codes to track the malfunction’s root cause. We underline that this procedure is
a widely used in practice for predictive maintenance in industrial context beyond
the railway domain such as the automobile industry (Sung et al., 2020), manufac-
turing processes (Gutschi et al., 2019) or anomaly detection on various IT systems
(Wang et al., 2017a; Wang, Vo, and Ni, 2015; Zhang et al., 2016).

Machine learning for symbolic data. Most of our daily tasks such as speech,
reading, or episodic memory usage, rely on symbolic rather than numerical data.
What fundamentally differentiates symbolic from numerical data is the ordering
property. For instance, there is a natural way to compare two physical measure-
ments of an electrical signal but none to compare two symbols. This type of data
is ubiquitous in broad range of domains such biology with DNA and RNA tran-
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scription (Schölkopf, Tsuda, and Vert, 2004; Aubin-Frankowski and Vert, 2020),
chemistry for molecular structure prediction and classification (Elton et al., 2018),
graph analysis (Mansha et al., 2016; Shang et al., 2017; Zheng et al., 2013), and in
music theory to extract patterns that have the same harmonic function (Rompré,
Biskri, and Meunier, 2017).

In general, symbolic data are not suitable for most of the machine learning
algorithms as a common hypothesis made in machine learning theory is that the
d-dimensional feature vector is a random variable valued in Rd. A first approach
is to consider kernel methods (Kung, 2014) which extends the use of common
machine learning techniques to non-numerical data. More precisely, it relies on
choosing a kernel function that maps the symbols data in a structured space. The
principal drawbacks of kernel methods are the difficulty to interpret the results,
which is a requirement for a predictive solution to be used in an industrial context.
A second approach consists of transforming the process to a numerical one by ag-
gregating (by counting or considering some statistics) the events one a chosen time
windows and has been widely used for Anomaly Detection (He et al., 2016; Bogo-
jeski et al., 2020; Aggarwal et al., 2018; Laredo et al., 2019). Even though popular
(Basora, Olive, and Dubot, 2019), classification based solely on this construction
is often unable to capture critical patterns of events that can be highly relevant
in predictive maintenance. More crucially, it does not directly provide explainable
output in terms of sets of log event or patterns.
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density is compared with the true occurrence of an anomaly yt8 .

1.3 Background

This section formally introduces predictive maintenance as a statistical regression
based on symbolic data. The pattern mining task is then presented and refor-
mulated as a Bayesian inference problem. Finally, the stochastic optimization
procedure is described with a highlight on variance reduction methods.

1.3.1 Symbolic time series for predictive maintenance

As mentioned, symbolic data play a crucial role in predictive maintenance thanks
to their versatility and historical use by the maintainers. Formally, the errors
codes are a finite dictionary or set E = (c1, . . . , cd) of size d. At a time t ∈ R+,
an event can be emitted by the subsystem Si. The subsystem identifier define the
block of component involved (such as the Engine Block) as well as the train and
vehicle identifier. Finally, the feature space must be enriched by information that
are correlated with the underlying degradation process (see chapter 2). In our ap-
plication and in general it will generally consists of a real vector in RK . Example
of such context is, for instance, the number of kilometers since last maintenance,
weather data or additional context information at the time of the error code emis-
sion. We denote XS

t = E × RK the description space the subsystem S at time t
with E = P(E) being the set of all subsets of E. At time t ∈ R+ we can observe
the occurrence of a breakdown Y S

t ∈ {0, 1} on the subsystem S. The goal of any
predictive maintenance algorithm is to compute the regression function at each
time t defined as

RS
t (y) = P[Y S

t = y|(XS
t0

)t0≤t], (1.1)
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where y ∈ {0, 1} denotes a set of malfunction. Figure C.2 illustrates the construc-
tion of such function. At time (t1, . . . , t6) the error codes (et1 , . . . , et6) are emitted
and enriched to produce (xt1 , . . . , xt6). At t7, the regression function estimates
the probability of occurrence of a breakdown on the subsystem S for each time
in the future. A broad range of techniques based on stochastic process model
(Guan, Tang, and Xu, 2016; Chen et al., 2016; Cha and Pulcini, 2016), kernel
methods (Kung, 2014) or deep learning approaches (Guo et al., 2017; Liu et al.,
2018; Karpat et al., 2020) can be used to model such regression function. As
mentioned, all these methods suffer for poor explainability and are incompatible
with established maintenance processes which are based on pattern of codes. The
goal is thus to constructed model based on small sets of codes that occur shortly
and specifically before failures, which is a challenging task. Finding these combi-
nations of codes is typically intractable due to the exponential number of possible
patterns. It is thus necessary to resort the class of pattern mining techniques
(Agrawal, Imielinski, and Swami, 1993).

1.3.2 Background on pattern mining

The Data Mining domain stems from the need for computational tools to extract
useful information from large databases collected by administrations and indus-
tries. These databases are typically large records of numerous variables or features
primarily constructed for administrative tasks such as accounting and regulatory
compliance.

Deterministic approaches. The seminal work of (Agrawal, Imielinski, and
Swami, 1993) on Frequent Itemset Mining (FIM) for basket analysis sparked in-
terest as it offers a tractable procedure to tackle a real-world problem with vast
commercial application. The problem posed was to find with a given level of
precision, the association or patterns of common products that were bought to-
gether based on a database of purchases. Given a number d of possible articles to
purchase, and a database of receipts, the complexity associated with querying the
database to find the number of time each pattern of products were bought together,
or support, is in O(2d). The computation of such patterns is thus intractable even
for a moderate-sized dictionary of itemsets. The proposed solution was to exploit
the antimonoticity of the set of patterns E : for two patterns x, y ∈ E , if x derives
from y in the sense that x ⊆ y then the support of y is no greater than the sup-
port of x. Setting a minimum support threshold µ ∈ [0, 1], an algorithm can mine
the support of the itemsets in a breadth-first search fashion (Zuse, 1972; Moore,
1959) by generating new pattern candidates at each step and halt the tree explo-
ration whenever it encounters a pattern with support less to µ. This procedure
constitutes the apriori algorithm (Agrawal and Srikant, 1994) and has been a
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significant milestone for Data Mining related tasks. Even though apriori is an
efficient algorithm when the average size of patterns present in the database is
not too large (Hegland, 2007), it has several drawbacks. First, it requires multiple
scans of the database for each evaluated pattern, and the need for computing a
new set of patterns to test during the procedure leads to an exponential memory
complexity of O(2d). Improvements over the apriori algorithm such as eclat
(Zaki, May-June/2000) proposes depth-search algorithm with a vertical data for-
mat which alleviate the need for multiple queries of the database. A different
strategy for FIM has been taken by Han et al. (2004) called fp-tree. The au-
thors use a tree structure to encode the sorted set of transactions which allow for
only two scans of the database. Crucially, the tree structure avoids generating un-
necessary itemsets, leading to a much more memory-efficient procedure compared
to apriori (Fournier-Viger et al., 2017). The cp-tree (Tanbeer et al., 2008)
algorithm extends fp-tree by only requiring one scan of the database, reducing
by a factor N the computational requirements.
We stress that FIM is the starting point of various techniques related to data min-
ing tasks. For instance, Association Rule Mining (ARM) (Agrawal and Srikant,
1994; Zaki and Hsiao, 2005) considers the problem of finding rules between item-
sets at a given confidence level. For two patterns x, y ∈ E , the goal is to mine
rules x→ y such that the support s(x∨y) and confidence measure c(x, y) = s(x∨y)

s(x)

are no greater than two threshold µ, ν ∈ [0, 1]. The confidence measure inform
about the co-occurrence of two patterns while taking into account their frequency
in the database. Episode Rule Mining (Mannila, Toivonen, and Verkamo, 1997;
Zimmermann, 2014) consider the problem of finding the rules of the form x → y
that appears regularly in an user-defined window. There has been numerous ap-
plications in anomaly and fraud detection (Qin and Hwang, 2004; Su, 2010; Wang
et al., 2017b), sensor analysis (Li et al., 2017a), traffic data (Fournier-Viger et
al., 2017) and in the medical field (Patnaik, Sastry, and Unnikrishnan, 2008).
The Periodic Pattern Mining problem’s goal is to extract patterns that repeat
themselves over the transactions of the database (Venkatesh et al., 2016) and is
commonly used for biomedical application (Zhang et al., 2007) and temporal se-
quence analysis (Sirisha, Shashi, and Raju, 2014). An original approach was taken
by Vreeken, van Leeuwen, and Siebes (2010) by searching for the set of patterns
that compresses best the database without loss. The resulting KRIMP algorithm
first perform a FIM before using the Minimum Description Length principle to
summarize the database. Finally, the Progressive Pattern Mining tasks consists
of performing FIM on a properly sized subset of the database to approximate the
support uniformly at a given level of confidence (Riondato and Upfal, 2015). We
mention other methods that derive from FIM such as Sub-graph mining (San-
thi and Padmaja, 2015), Discriminative Pattern Mining (Hämäläinen and Webb,
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2019) and Sequential Pattern Mining (Fournier-Viger et al., 2017).

Bayesian approaches. The methods mentioned can successfully extract the
pattern from a large database with efficient memory usage but still have a time
exponential computational complexity for low support threshold µ since the prob-
lem has been shown to be np-hard (Yang, 2004). Additionally, these models do not
assume any stochasticity on the underlying process generating the database. In
contrast, in the vast majority of cases, the transactions can be viewed as the result
of an underlying but unknown generative process. As a result, no probabilistic
confidence interval can be derived to assess the results’ statistical significance.

Generative models have been proposed to perform various FIM tasks to ad-
dress these fundamental issues. The multivariate tree distribution model (Hegland,
2007) fit a probability distribution on the

(
d
2

)
pairwise items and a tree structure

on the attributes. Fowkes and Sutton (2016) use a Bayesian Network Model to
model the transaction database. Since the inference requires solving for the in-
tractable weight covering problem (Korte and Vygen, 2006), the authors used a
greedy approximation to infer interesting itemsets. Pavlov, Mannila, and Smyth
(2003) empirically compare several generative models such as the independence
model (Hegland, 2007), the multivariate tree distribution model (Chow and Liu,
1968), and the Mixture model in the equivalent framework of sparse binary dataset
querying. Notably, the use of these probabilistic approaches goes beyond FIM and
can serve as a tool to derive convergence bound for apriori-like algorithms (Heg-
land, 2007). Note that these approaches are closely related to the MDL principle
(Vreeken, van Leeuwen, and Siebes, 2010) since the entropy of a probability model
define the maximum lossless compression achievable by any compression algorithm
(we refer the interested reader to (Friedman, Geiger, and Goldszmidt, 1997; Lam
and Bacchus, 1994)).

Mode inference. Contrary to the deterministic approach, the probabilistic meth-
ods rely on the assumption that the database D is the outcome of a stochastic
process. This assumption opens up the possibility for applying common statistical
tools to infer the set of frequent itemsets. The common goal of all these methods
is to find for every pattern x the probability distribution of the support p(x|z,D).
Given the generative model, finding a closed formula to compute s(x) can be dif-
ficult and often involves intractable enumeration of all possible patterns (Fowkes
and Sutton, 2016). Considering simpler models such as mixture models (Hegland,
2007) solve this issue and permit to control the complexity of this computation by
the choice of the number of components in the mixture distribution. Under this
representation the task of extracting the most frequent pattern becomes a Bayesian
optimization task. The next sections formally describe the technical framework of
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Figure 1.3: Variational inference. Left: The variational distribution qλ (orange)
parametrized by λ and the true posterior distribution p(z|x) (green). Right: The
Variational Inference procedure consists of finding the optimal λ∗, starting from
λ0 to minimize the Kullback–Leibler divergence between the true posterior and
the variational distribution (represented as dashed line).

such inference and strategies to speed up the procedure.

1.3.3 Background on Bayesian statistics

In this section, we introduce the Bayesian statistics framework and basic notations.
Let (Ω,A,P) be a probability space, (E, ‖.‖) be a vector space equipped with the
distance d and the induced norm ‖.‖ and consider a random variableX : (Ω,A) −→
(E,B(E)). In the Bayesian setting, the parameter space Z is equipped with a
measure Π on T such that (Z, T ,Π) is a probability space and X is distributed
according to a parametric model Pz from the parametric family of distribution P =
{Pz : z ∈ Z}. In most cases, Z is a subset of an Euclidean space and applications
often consider the d-dimensional real case Z ⊂ Rd. In addition, assume that for
every z in Z, the measures Pz and Π admit a density function such that

dPz = p(.|z)dµ

dΠ = πdν,
(1.2)

where µ, ν are σ-finite measures on respectively B(E) and T . Then, the likelihood
function z 7→ p(z|x) such that p(z|x) = p(x|z)π(z) is a density with respect to
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the product measure µ ⊗ ν. The difference with the frequentist point of view is
that the parameter z is itself a random variable distributed according to the prior
distribution π and, conditionnaly on the data x, has the following distribution

p(z|x) =
p(x|z)π(z)∫

p(x|z)π(z)dν(z)
. (1.3)

The Bayesian inference setting thus depends on the ability to simulate z from
Equation C.3. Computing p(z|x) requires evaluating the prior predictive distri-
bution and thus integrating over all latent variables which lead to intractable
computation (except in the prior conjugate case) even for simple models (Gelman
et al., 2013). A common approach is to use methods such as Gibbs Sampling,
Monte Carlo Markov Chain or Hamilton Monte Carlo (Betancourt, 2018; Homan
and Gelman, 2014; Brooks et al., 2011) which rely solely on the unnormalized
posterior distribution (freeing us from the need to compute p(y)) and the abil-
ity to sample from the posterior. These methods are consistent but associated
with heavy computation, high sensitivity to hyperparameters and potential slow
to converge to the true target distribution.

Variational inference

The posterior distribution in Equation C.3 can be exactly computed under some
condition on the prior distribution when closed-form is available (Gelman et al.,
2013). For most of the applications, such condition is not fulfilled, and one needs
to resort to either asymptotically exact procedure or rely on approximation. One
approximation approach that became the prominent framework for approximate
Bayesian computation is Variational Inference (VI). It relies on building a proxy
for the posterior distribution parametrized by a variational family distribution
Q = {λ : λ ∈ Λ}. In this method, a metric is chosen so that the distance between
the true target distribution p and the variational distribution q is minimized. A
common choice is the Kullback–Leibler (KL) divergence. Denoting x the data, z
the latent variable space and p(z|x) the likelihood, and qλ the variational distribu-
tion parametrized by λ, variational inference consists of a minimization problem
(Saul, Jaakkola, and Jordan, 1996)

qλ∗ = argmin
qλ∈Q

KL
(
qλ(z)‖p(z|x)

)
, (1.4)

with KL
(
qλ(z)‖p(z|x)

)
= Eq[log qλ(x) − log p(z|x)] the Kullback–Leibler di-

vergence. Even though KL remain the most used metric, other measures on the
distribution space have been investigated (Ambrogioni et al., 2018). The reason
for the popularity of such techniques is the fact that KL divergence can be linked
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Figure 1.4: A typical stochastic optimization process composed of two steps; sim-
ulation (yellow) and optimization (green). The simulation phase produces a sim-
ulation of the stochastic system or interaction withthe environment, as well as
unbiased estimators of the gradient (adapted from (Mohamed et al., 2020)).

to the Evidence Lower Bound (ELBO) that does not depend on the posterior
distribution (Saul, Jaakkola, and Jordan, 1996)

log p(y) = ELBO(λ) + KL
(
qλ(z)‖p(z|x)

)
, (1.5)

where the ELBO is defined as

ELBO(λ) = Ez∼qλ
[
log p(z, x)− log qλ(z)

]
. (1.6)

Since the marginal likelihood p(y) does not depend on the parameters z, it
follows that maximizing the ELBO with respect to qλ leads to find the best ap-
proximation of p(z|x) for the Kullback–Leibler (KL) divergence. Intuitively, this
procedure minimizes the information loss subsequent to the replacement of the
likelihood by qλ but other distances can be used (Ambrogioni et al., 2018).

In practice, the distribution class Q is chosen in a distribution family that can
be easily sampled from. A common choice is to pick from the normal distribution
family Q = {N (µ,Σ) |(µ, σ) ∈ RK ×MK×K} with MK×K the space of symmetric
positive-definite matrix on RK×K . In this instance, performing VI consists of
finding the optimal set of parameters (µ∗,Σ∗) such that equation C.6 is minimized.

Again, there is generally no closed formula for computing the ELBO or its
gradient and one must rely on a Stochastic Optimization (Bottou, Curtis, and
Nocedal, 2018) to perform this task. With this method, the minimization is car-
ried by performing a Stochastic Gradient Descent (SGD) procedure on the ELBO
objective function.
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1.3.4 Stochastic optimization

One of the most prominent optimization problem in modern statistics consists
of finding the root of an objective function which is an expectation of a random
variable (Bottou, Curtis, and Nocedal, 2018). This problem has vast and known
applications in Machine Learning (Bottou, Curtis, and Nocedal, 2018; Sutton and
Barto, 2018; Gelman et al., 2013; Simsekli et al., 2019) but also in Finance for sen-
sitivity analysis (Pagès, 2018; Glasserman, 2013), transport network management
CITE and Supply Chain. Given a µ-distributed random variable X : Ω −→ E on
the probability space (Ω,A,P), the general Stochastic Optimization problem reads
as minimizing the following objective function

f(λ) = E
[
F (X,λ)

]
=

∫
E

F (x,λ)µ(dx),
(1.7)

with respect to λ ∈ RK where F : E×RK −→ R is a real function in L1 (Ω,A,P).
Under the regularity condition that f is continuous differentiable (or a least that
a sub-gradient can be computed), this problem can be solved by finding the points
where the gradient g = ∇λf(λ) vanishes since λ∗ ∈ argmin{gλ = 0}.
This problem can interpreted as optimizing a cost or loss function F with respect
to λ with a noisy interference distributed according to µ. In Machine Learning
applications (such as training a neural network), F represents the expected loss of
a model parameterized by λ for a training set distributed according to µ. In this
case, it has been shown that finding the optimal set of parameters λ∗ is NP-hard
even for a simple binary classification model (Feldman et al., 2012). More gener-
ally, the main difficulty in finding a solution to C.7 is that it involves computing
a potentially high dimensional expectation which is prohibitively expensive. Even
when the distribution is known, there is typically no closed-form available for com-
puting the gradient. Nowadays, quadrature methods (Leader, 2004) to compute
integral at given accuracy is feasible only for dimension up to ten or twenty which
make it unusable for most modern application. Additionally, in most frameworks
such as statistical learning, the distribution µ is unknown and only samples from
the distribution µ are available.

Alternative sampling for the mean estimator.

Alternative sampling has been introdcuded to accelerate stochastic optimization
procedures. Finding an approximation for the optimization problem in C.7 cru-
cially depends on the ability to compute efficiently a sample dependent approxi-
mation of the expectation.
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Monte Carlo Randomized Quasi Monte Carlo Optimal Quantization

Figure 1.5: Monte Carlo (left), Randomized Monte Carlo (center) and Optimal
Quantization with the associated Voronoi Cells (right), for a sampling sizeN = 200
of the bivariate normal distribution N (0, I2). (Dib, 2020)

Monte Carlo. The most commonly used numerical procedure to approximate
the expectation in C.7 is based on the Law of Large Number. It relies on replac-
ing the expectation with an empirical mean estimator. Let (X1, . . . , Xn) be an
i.i.d. sequence of µX-distributed random variable, F any measurable real valued
function, and consider the following Monte-Carlo estimator

IMC
n =

1

n

n∑
i=1

F (Xi). (1.8)

By the Strong Law of Large Numbers, IMC
n converges towards E

[
F (X)

]
µ-almost surely

and, provided that F (X) ∈ L2 (Ω,A,P), at a rate of O(n−
1
2 ) with quadratic error

‖IMC
n − E

[
F (X)

]
‖L2(Ω,A,P) =

VF (X)√
n

. (1.9)

The Monte-Carlo method relies only on the ability to draw from distribution µ at
reasonable cost. In addition, the Central Limit Theorem can be used to produce
asymptotic confidence interval.

Quasi Monte-Carlo. Methods have been designed to improve on the conver-
gence rate, mostly by considering alternative sampling methods for generating
(X1, . . . , Xn). The most widely used are the Quasi Monte Carlo methods (Dick,
Kuo, and Sloan, 2013). Theese methods are based on generating sequences of
pseudo-random numbers that mimic the statistical properties of a target i.i.d. se-
quence of samples. More precisely, let X be a random variable which admits a
density ψ with respect to the d-dimensional Lebesgue measure and consider an
uniformly distributed random variable U ∼ U([0, 1]d). Then, the random variable
ψ−1(U) is distributed according to X and for every measurable function H we have
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that E
[
H(X)

]
= E

[
H ◦ ψ−1(U)

]
. A low-discrepancy sequence u = (u1, . . . ,un),

with (ui)
n
i=1 valued in the d-dimensional hypercube [0, 1]d, is produced and eval-

uated through the inverse density probability distribution function ψ−1 (Pagès,
2018). Since u converges weakly towards the Lebesgue measure on [0, 1]d, the
following holds for the QMC estimator

IQMC
n =

1

n

n∑
i=1

F ◦ ψ−1(ui)

−−−→
n→∞

E
[
F (X)

]
.

(1.10)

Intuitively, if (u1, . . . ,un) is similar to the realization of an i.i.d. sequence of
an uniformly distributed random variable, the sequence (ψ−1(u1), . . . , ψ−1(un))
will be similar to the target i.i.d. set of samples (X1, . . . , Xn). The quality of such
approximation is controled by the star discrepancy measure which is defined as the
`∞ distance between the cumulative distribution of the empirical and Lebesgue
measure

D∗n (u1, . . . ,un) = sup
b∈[0,1]d

∣∣∣∣∣∣ 1n
n∑
i=1

1{u∈[0,b]} − λd([0, b])

∣∣∣∣∣∣ . (1.11)

For the a sequence u whose, the Hlawka-Koksma inequality (Koksma, 1942;
Hlawka, 1961) states that the approximation error of C.10 is upper bounded by its
discrepancy measure for h with finite variation. Since there are several sequences
u which exhibit a discrepancy measure such that

D∗n (u1, . . . ,un) ≤ cd
(log n)d−1

n
, (1.12)

the QMC estimator IQMC
n can thus achieve much better convergence rate than the

MC estimator IMC
n of equation C.9. There exists several methods to compute such

low-discrepancy sequences such as Halton, Faure or Sobol sequences. We also men-
tion that a stochastic version of the QMC method exists, the Randomized Quasi
Monte Carlo (RQMC), which is obtained by carefully introducing randomness in
the sequence u (Owen, 2008; Gerber, 2015). The RQMC estimator is obtained
as previously by mean averaging the produced sequence. Contrary to IQMC

n , the
produced estimator is unbiased and has recently been shown to achieve a O(n−1)
rate of integration under square integrability hypothesis (Gerber, 2015).

Stochastic Gradient Descent

The SGD methods introduced by (Robbins and Monro, 1951) was specifically
designed as a first-order stochastic zero-search procedure for a noisy objective
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function. This class of algorithms and its variants (Polyak and Juditsky, 1992;
Kingma and Ba, 2015; Duchi, Hazan, and Singer, 2011a; McMahan and Streeter,
2010) gained rapid attention due to its simplicity and broad range of applications.
In modern problems, it relates to numerous application in statistics and machine
learning (“Stochastic Approximation Approach to Stochastic Programming”; Bot-
tou and Le Cun, 2005). The original Gradient Descent method (Cauchy, 1847;
Hadamard, 1908; Rumelhart, Hinton, and Williams, 1985) uses a gradient esti-
mate to recursively updates λ at time t as following

λt+1 = λt − αt∇λf(λt). (1.13)

In the setting described in C.7 we do not have access to the total expectation
f(λ) but only a noisy estimator. The gist of the stochastic gradient descent method
is to replace the true gradient with its estimator, resulting in

λt+1 = λt − αtg(λt). (1.14)

The choice of the learning rate αt is crucial as it control how large the updates
can be. A set of sufficient conditions known as Robbins-Monro conditions ensure
that the procedure C.14 convergences if the decreasing update schedule is such that∑∞

t=1 αt =∞ and
∑∞

t=1 α
2
t <∞. The choice of the learning rate is challenging by

iteself and influences greatly the rate of convergence (Bottou, Curtis, and Nocedal,
2018). A simple choice consists of taking αt = cta for a real power a and c some
real constant. Modern methods uses adaptive learning rates for tuning the learning
rate such as AdaDelta (Zeiler, 2012), AdaGrad (Duchi, Hazan, and Singer, 2011b)
or Adam (Kingma and Ba, 2015). Theoretical guarantee on the rate of convergence
can be obtained giving some regularity assumption on f . For instance, assuming
smoothness and strong-convexity, Bottou, Curtis, and Nocedal (2018) show that
the error f(λt)− f(λ∗) = ε is in O(t−1).

Gradient variance. If two gradient estimators are available at the same com-
putational cost, the one with lower variance should generally be preferred since the
convergence of Stochastic Optimization methods crucially depend on the variance.
Most of these optimization procedures rely on gradient descent optimization over
the parameters associated with the variational family and subsequently depending
heavily on the `2(RK) (with K the number of variational parameters) norm of
the expected gradient (Bottou, Curtis, and Nocedal, 2018; Domke, 2019). Low
variance of the gradient estimators allows for taking larger steps in the parame-
ter space and result in faster convergence if the induced bias can be satisfyingly
controlled. Several methods have been used to reduce gradient variance such as
filtering (Miller et al., 2017; Roeder, Wu, and Duvenaud, 2017) control variate
(Geffner and Domke, 2018) or alternative sampling (Tran, Nott, and Kohn, 2017;
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Ruiz, Titsias, and Blei, 2016; Buchholz, Wenzel, and Mandt, 2018). These meth-
ods generally suffer from several drawbacks. First, it commonly requires restraining
assumptions on the variational distribution. For instance, QMCVI is only valid for
distribution with invertible density function. Second, most of the time, the the-
oretical guarantee on the solution’s goodness is not properly established. Finally
is that it often involves a complex computation framework and can be challenging
to implement.
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1.4 Contributions
Pattern based learning applied to predictive maintenance. We propose
an extensive overview of the field of predictive maintenance with a highlight over
predictive maintenance recent advances in the context of the railway industry.
This use case has is particularly challenging; the industrial system of railway spans
across a vast territory with various environments and involves complex heteroge-
neous and interconnected systems. The second contribution consists of designing
an industrial prediction pipeline to tackle the predictive maintenance problem in
an industrial context. To overcome computational complexity that comes with
a high number of possible hyperparameters, we design a two-sample test based
method to prune the tree of operations to perform. Various algorithms and sets of
hyperparameters are tested and compared on the two classes of french train fleet
over a two year period.

Bayesian generative model for pattern mining. We develop methods us-
ing a Bayesian Generative Model for Pattern Mining and show superiority over
the traditional deterministic methods on various tasks. First, we show that the
set of frequent itemsets can be efficiently mined using Stochastic Approximation
methods. We propose a Bayesian approach with a variational inference scheme to
obtain the space of frequent itemsets with high accuracy.

Second, we use a Bayesian Mixture Model to infer with a low computational
cost the discriminative itemsets (Hämäläinen and Webb, 2019) with empirical
proof of the general use of such discriminative patterns by considering them as
features for the classification task. This results in a method that can extract an
interpretable set of attributes and significantly improve any classifier. Moreover,
the Bayesian generative model allows for computing the posterior distribution and
estimating the confidence intervals. Finally, additional expert-knowledge can be
naturally introduced in the model via the choice of prior (Gelman et al., 2013).
This method is applied to the predictive maintenance task and significantly im-
proves the classification score in an interpretable fashion.

Part of this work corresponds to the paper (Dib et al., 2021) published
in 29th IEEE European Signal Processing Conference (EUSIPCO) pro-
ceedings.
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Local rademacher complexity for infrequent pattern mining. The pro-
gressive sampling task consists of computing the size of the subset of the database
n needed to obtain an estimation of any frequency at precision ε ∈ [0, 1] with prob-
ability at least 1−δ. It thus relates to bounding an empirical process generated by
an unknown distribution indexed on a finite functional space (Boucheron, Lugosi,
and Massart, 2013).

Existing methods use (global) Rademacher averages to mine frequent or top-k
itemsets, which is appropriate, as we do not require sharp bounds on low-frequency
itemsets. Notably, Riondato and Upfal, 2015 uses an analytical counting argument
to get a loose bound on the global empirical Rademacher average. In the same
fashion, Pellegrina et al., 2020 followed this path by using a Monte-Carlo approx-
imation strategy to get sharper bound at the cost of additional computation.

This work marks the first use of localized Rademacher complexity to the low-
frequency pattern mining problem. We show that localized Rademacher averages
are sufficient to obtain relative confidence interval estimates on pattern frequencies,
as well as other interestingness measures, such as the lift, confidence, or odds ratio,
whereas previous techniques fail to do so for low-frequency patterns.

Our methods rely on standard tools in the pattern mining domain, such as
closed pattern families, antimonotonicity, and Monte-Carlo Rademacher averages,
as well as new techniques we introduce to address the problem-specific computa-
tional challenges arising from evaluating the localized Rademacher average. The
performance of our approach is empirically demonstrated on real-world datasets,
wherein exhibit fast convergence rates for the considered subclass of patterns,
sharply contrasting existing work.

This work corresponds to the preprint (Cousins* and Dib*, 2021)1 sub-
mitted to the IEEE International Conference on Data Mining
(ICDM 2021).

Alternative sampling for stochastic optimization. We develop an new ap-
proach for Stochastic Optimization technique based on Optimal Quantizer (OQ)
(Graf and Luschgy, 2000; Pagès, 2018). We show that using OQ produces an
optimal gradient-free gradient estimate at the cost of introducing asymptotically
decaying bias with a theoretical guarantee. The method is applied to the Bayesian
Learning setting for Evidence Lower Bound (ELBO) maximization and show that
using the Quantized Variational Inference framework leads to fast convergence for
both score function and the reparametrized gradient estimator at a comparable
computational cost than traditional Monte Carlo Variational Inference. Subse-
quently, we propose a Richardson extrapolation type method (Richardson and

1equal contributions.
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Glazebrook, 1911; Pagès, 2007) to improve the asymptotic bound and reduce the
produced bias. Two new algorithms, qvi and rqvi, are evaluated on several
large scale experiments and exhibit superior performance compared state-of-the-
art methods (Miller et al., 2017; Buchholz, Wenzel, and Mandt, 2018).

Part of this work corresponds to the paper (Dib, 2020) published in
Advances in Neural Information Processing Systems 33 Proceedings
(NeurIPS 2020).

1.5 Outline of the thesis
• Part II: Anomaly detection for rolling stock maintenance.

– Chapter 2: A systematic review of predictive maintenance.

– Chapter 3: Pattern extraction for anomaly detection for rolling stock
maintenance. This chapter describes the approach taken to tackle the
complex issue of predictive maintenance on the French fleet of high-
speed train.

• Part III: Pattern Mining.

– Chapter 4: Probabilistic view for pattern extraction problem. A Bayesian
approach to the famous itemset mining problem is described with vari-
ous experiments.

– Chapter 5: Localized complexity for progressive sampling. This section
describes the use of localized Rademacher Averages to tackle the pro-
gressive mining problem. We show how this method can lead to faster
pattern mining with theoretical guarantee.

• Part IV: Optimal Quantization for stochastic optimization.

– Chapter 6: Background on optimal quantization. We give theoretical
background on Voronoi Tesselation and propose to use this alternative
sampling for stochastic optimization. Theoretical results on the quality
of the approximation are developed.

– Chapter 7: Quantized Variational Inference. We introduce a new algo-
rithm for ELBO maximization. We show that thanks to the variance
free gradient, this method outperforms the state-of-the-art on various
real-world experiments, including the case of the bayesian pattern ex-
traction problem.
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Anomaly detection for rolling stock
maintenance
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Chapter 2

Predictive maintenance: a selective
review

Once an operator has ensured his system’s nominal functioning to perform a task,
he has to assure the continuity of the exploitation. Most of our industrial tools have
to operate during extended periods and often in a non-ideal environment, exposing
them to aging or external damaging. In that sense, maintenance is defined as
the procedure by which a degraded system is regenerated to a satisfying level of
functioning. Hence, the first step towards completing a maintenance task is the
measure of the state system and Predictive Maintenance (PM) is the domain of
statistics which aim to detect this degraded state.
This chapter aims to make the reader familiar with the basic element of Predictive
Maintenance. Additionally, this chapter positions this thesis’s work in the broad
field of anomaly detection for industrial systems. Section 2.1 presents the main
strategies deployed for maintenance depending. Section 2.2 gives a broad view
of the data used for PM, the associated physical measures, and some literature
examples. The rest of the chapter is devoted to present the different classes of
models in section 2.4, the possible output or target of the pipeline in section 2.3
and some commonly used metrics in section 2.5.

35
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Figure 2.1: Evolution of a degradation process Zt (black line), the feature vectors
X1
t , X

2
t (blue) and the binary health status Yt. The system is considered in its

functioning state (orange) if the health process remain beyond the threshold zf .
At the time τf , the degradation process cross the threshold and the system enters
a deteriorated state (red).

2.1 Typology of Predictive Maintenance

Every industrial system undergoes a process of degradation that leads, if not ad-
dressed, to the asset’s failure and unavailability. Thus, it is crucial to control,
adjust, repair, maintain, and upgrade the system throughout its lifetime. There
several possible strategies to maintain a certain level of availability; each requires
its own skill sets and has different associated costs.

The status of a system can be modeled by considering degradation process Zt
that reflect the true state of the component at each time t. It can be directly ob-
served in some instances as, for example, when considering the wearing growth of
a wheel but is actually hidden in the vast majority of use cases. Typically, the ob-
served quantities are a set of covariates linked to the degradation process through
a complex mapping. These covariates can be any measurement identified as infor-
mative on the asset’s health status, such as physical measurement (temperature,
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Figure 2.2: Evolution of a degradation processes Zt for different maintenance
strategies; reactive (black), preventive (blue) and predictive (green) maintenance.
The reactive maintenance strategy lead to an extended period of unavailability
of the asset (red area) while preventive maintenance avoid breakdown at the cost
of unneeded regeneration. The preventive maintenance strategy regenerate the
system at the right time, before breakdown, and constitutes the ideal scenario.

electrical current, particle count), environment variables such as weather condi-
tion, or historical events as the time since the last maintenance operation. The
health state Zt degrades during operation and will eventually reach a threshold zf
at time τf . From this point, the asset is in a failure state and needs intervention
to be regenerated. Figure 2.1 shows an example of evolution of covariates Xt and
degradation process Zt. The goal of any predictive maintenance strategy is to
minimize the unavailable time of an asset (red area).

The goal of predictive maintenance is to minimize the costs associated with
this degradation phenomenon. To that end, predictive maintenance policies can
be categorized into three main strategies. In the following, we formally introduce
these maintenance strategies and give concrete examples of usage.
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Reactive Maintenance The simplest alerting event that can be taken to trigger
maintenance is the breakdown itself. Let (Ω,A,P) be a probability space and a
filtration A = ∪∞t=0At such that the application Zt : Ω −→ R is a measurable
real random variable representing the degradation process of a system indexed by
continuous-time t ∈ R+ and zf a threshold indicating if the system is considered
malfunctioning. Additionally, we denote Xt : Ω −→ Rd a set of random covariates
forming the feature space.

Reactive Maintenance (RM) consists of carrying maintenance at the time of
failure

τf = inf
{
t ∈ R+ | Zt < zf

}
.

Since 1{τf≤t} is At-measureable, the random time τf is thus a stopping time.
This strategy has the advantage of requiring only the knowledge of the breakdown
set of events

{
ω ∈ Ω | Zt(ω) < zf

}
and not the complete degradation process or

feature space. However, this approach is usually economically nonviable since it
leads to an unprogrammed shutdown of the system and induces costs associated
with its unavailability. To illustrate this drawback, take the example of rolling
stock in the railway transport sector. An unplanned breakdown means to block
an entire portion of the railway network leading to the delay of a large number
of other vehicles. This time delay can propagate to numerous vehicles on the
network, even if they are far away from the initial malfunctioning train (Corman
and Kecman, 2018).

Figure 2.2 shows that this strategy (black line) leads to unavailability of the
equipment that is typically associated with high costs.

Preventive Maintenance Another maintenance strategy consists of periodi-
cally regenerating some key component of the system. The period Tp of that
procedure is typically based on some statistics computed on historical data such
as the mean (or better, the median) of the historical time before breakdown. Us-
ing previous notation, this quantity corresponds to the expectation of the stopping
Tp = E

[
τf
]
. It is a very common strategy since the average lifetime of a compo-

nent is usually provided by the technical specifications. This average lifetime can
be biased by the fact this quantity is often estimated in a controlled environment
designed by the constructor to reflect the real condition of use.
An important aspect (and sometimes overlooked) is that Preventive Maintenance
can be the best strategy in the case of degradation without aging. Considering
such system is equivalent to making the assumption that the degradation process
at time t is independent of the past, or memory-less. Formally, the degradation
process Zt is independent of At0 for t0 < t and so does the stopping time. In
that case, the information about the past is irrelevant to the future state of the
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system. This case is not hypothetical even tough memory-less processes are un-
common; some part of the railroad such as the railroad switches are composed
of Hadfield steel (which is extremely robust) and can be considered to obey to a
degradation without aging process (Gertsbakh, 2013; González-González, Praga-
Alejo, and Cantú-Sifuentes, 2016).
This approach is actually efficient (depending on the concentration of the time of
failure around its mean) but can lead to regenerate the system a long time before
it becomes necessary (Calixto, 2016).

Figure 2.2 illustrates the preventive maintenance strategy (blue line) which
regenerate the equipment several time during exploitation even though it is not
necessary.

Predictive Maintenance Predictive maintenance comes naturally as the strat-
egy that uses all the information available before a time of prediction t to accurately
predict τf . Giving an event ω ∈ Ω, providing that there is enough time between
the prediction and τf (ω) to intervene, it is possible to optimally repair before the
breakdown. The goal of the learning procedure is to find a measurable function
f ∗ such that for any time t and a loss function L : R2 −→ R

f ∗ = argmin
f∈F

E
[
L(f(X0:t), Z0:t), τf )

]
, (2.1)

with the functional F is often in some parametric function class of model (we
defer to section 2.4 for details). If reactive maintenance is too late and preventive
maintenance too soon, then predictive maintenance is optimal in the sense that it
would lead to the best availability of the system at a minimal cost. Even though
exhaustive, this approach presents several challenges. One has to construct the
feature space Xt ∈ Rd and collect the data. This is actually the most time-
demanding step as most of the data available needs to be engineered so that it can
be linked to the system functioning. Moreover, the model has to be chosen to take
into account the dynamic of the past data which poses a computational complexity
problem. Additionally, that degradation process Zt is often only observed through
the set of events generated by τf which is (hopefully) a rare event target (Lei
et al., 2018). Finally, establishing a metric that reflects the economic utility of a
maintenance plan is challenging and must be carefully designed and coded in the
pipeline’s model (Si et al., 2011).

Figure 2.2 gives an example the predictive maintenance approach (green line)
which regenerates the equipment just before crossing the failure threshold zf . At
fixed maintenance costs, this can be considered as the optimal time to intervene.
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2.2 Typology of data used in Predictive Mainte-
nance

This section is devoted to giving an extensive (but not exhaustive) overview of the
data used for Predictive Maintenance. Given the (potentially unobserved) degra-
dation’s process Zt at time t, the first step of any statistical learning is to identify
a set of relevant random variables Xt ∈ Rd that are covariates of the health state
of the system at time t. Some of these variables can be internal as, for instance,
an electrical current, or external such as the weather (Jalili Hassankiadeh, 2011;
Li et al., 2019). An ideal feature space is both complete and pairwise-independent
in the sense of giving information about any relevant physical measurement linked
to the degradation process and nonredundant. Careful consideration of any rele-
vant source of data is a crucial part of establishing any machine learning solution
(see Table 2.2 for examples of the physical properties of a system that can be
measured).

Vibration The vibration of a physical system is its movement around an equi-
librium position (or rest position). It is associated with a periodic signal with
characteristics linked to the state of the system. For instance, the frequency of
this signal is related to the fundamental modes of the object. In a controlled en-
vironment (excluding external perturbations), any degradation of this signal from
its normal behavior can be interpreted as a degradation of the system.
Vibration analysis may be the most common data collection techniques due to
the availability of the sensor and the historical use of such data (Renwick and
Babson, 1985). This can be used for assessing all king of physical variation in a
component. However, interpreting this signal typically requires some additional
knowledge about the system to identify relevant features (Wu et al., 2007; Ugechi
et al., 2009).
Vibration analysis is commonly used for assessment of roller bearing defauts (Al-
Ghamd and Mba, 2006; Khadersab and Shivakumar, 2018; Malla and Panigrahi,
2019; Dyer and Stewart, 1978) but has been applied to larger components such in-
dustrial pumps (Amihai et al., 2018), automobile gearboxes (Praveenkumar et al.,
2014) or computer numerical control (Luo et al., 2019).
Vibrations can be collected through accelerometer data to be used for fault detec-
tion. Nunez, Jamshidi, and Wang (2019) use a Pareto model to map the health
state of railway tracks based on an evaluation of the acceleration profile of the
train wheel. Ma et al. (2019) proposes a track detection system based on train
recorded vibrations and a CNN-LSTM architecture ((Ma et al., 2019)[Table 1]) to
assess the condition of the railway tracks.
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Acoustic Analysis The acoustic analysis consists of directly observe and mea-
sure the sound wave of a system. If air sound pattern is taken as reference,
deterioration can be signaled through the change in the property of this wave.
Everyday life offers numerous accounts of fault diagnostic based on sound waves.
For instance, a small crack in a plate will produce a distinctive sound when gently
tapped. The advantage over direct vibration analysis of the vibration is that a
sensor can be installed to monitor and detect any deviation from the normal ag-
gregated pattern of all systems, even when there are not physically connected.
Acoustic analysis is used for any degradation that will induce degradation in the
sound wave signal, such as hidden flaws in metallic structure (Liggan and Lyons,
2011), lathe system (Garg et al., 2015), robot swarms (Tarapore, Christensen, and
Timmis, 2017), Heating Ventilation and Air conditioning systems (Srinivasan et
al., 2017) or electrical motors (Grandhi and Krishna Prakash, 2021).

Another approach is to use an acoustic source tuned on a specific frequency
(corresponding to the fundamental mode of the studied system) and analyze the
reflected signal. This method is used in (Kocbek and Gabrys, 2019; Jiang et al.,
2019) to spot structural deterioration of rail tracks.

Imaging The use of images is especially developed in the field of predictive main-
tenance due to the low cost of high-quality camera sensors and the versatility of its
usage. In the railway industry, it has been historically used in maintenance cen-
ters to quickly evaluate any structural damage on some parts of the rail vehicles.
Combining simple feature extraction methods (such as edge detection) and pat-
tern recognition algorithm can lead to interpretable and well-performing anomaly
detection pipelines (Lu, Liu, and Shen, 2018). Thermal Imaging, a method that
measures the temperature of a body remotely and provides the thermal image of
the entire component or machinery, has also been widely used for a long time to
detect mechanical or electrical problems that cause temperature anomalies (Pathi-
rathna et al., 2018; Meola, 2007). Thermal Imaging has been successfully utilized
for several condition monitoring applications such as civil structures [(Grinzato et
al., 2002; Clark, McCann, and Forde, 2003; Meola, 2007), inspection of electrical
equipment (Jadin and Taib, 2012), monitoring of plastic deformations (Badulescu
et al., 2011), evaluation of fatigue damages in materials (Luong, 1998; Pastor et al.,
2008; Bagavathiappan et al., 2013) and inspection of machineries (Bagavathiappan
et al., 2013) like rotating machinery (Janssens et al., 2015). In the railway sector,
Karakose and Yaman (2020) use two thermal cameras to monitor the pantograph
and rail health state on each trip. The same Fuzzy-logic based model is then used
to evaluate the health system of each system and perform fault diagnosis. We
mention that the use of data from Optical sensors is in active development, and
many other devices are considered in the railway sector such as optical fibers (Tam
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et al., 2018).

Symbolic data A very common source of data consists of a process of symbolic
data. Examples of such processes are a database of documents or log sequences
produced by some components that are common in predictive maintenance since
logging is still considered the most versatile way of recording events of interest
(He et al., 2016; Bogojeski et al., 2020). These types of processes are particularly
challenging since the common binary operations are not defined and that there
is no natural order on E, thus making most machine learning models unusable.
Several solutions exist to give a structure to these types of sets. A first approach
is to transform the process to a numerical one by aggregating (e.g. counting or
considering some statistics) the events on a chosen time windows (see Figure 3.3).
Another one is to consider an embedding by a kernel in a well-structured feature
space allowing to apply a broad range of classical machine learning techniques
(Kung, 2014). Finally, one can consider the set E = P(E). This set is the set of
patterns on E on which it is possible to apply pattern mining techniques (Agrawal,
Imielinski, and Swami, 1993).
In the predictive maintenance domain, most of the studies focus on aggregation and
finding a satisfactory embedding. Heidarysafa et al. (2018) uses a classical word
embedding layer with a Multi Layer Perceptron and Long Short Term Memory
network to detect railway tracks failures. Another study (Kauschke, Fürnkranz,
and Janssen, 2016) takes the log events as input, combined with a simple Decision
Tree, to predict railway car breakdown. Seep recognition techniques have recently
been applied to automatically analyze incident report a posteriori in order to enrich
the feature space or give an interpretation on a particular prediction (Heidarysafa
et al., 2018). The kernel approach is considered in (Li et al., 2019), where the
authors used a Multiple Kernel Learning model on maintenance log historical data
of the Sydney Trains database.

Industrial data sets We stress that most of the data used in the literature
are not produced by real functioning industrial systems but are rather collected
in a laboratory environment in which a component is tested in isolation or during
stress tests (Amruthnath and Gupta, 2018). Mostly for confidentiality issues and
difficulties associated with communicating specific expert knowledge, it is difficult
to acquire public real-world data for academic purposes. Table 2.3 lists the most
publicly available data used in literature.
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2.3 Model Output

We recall that, at time t, the degradation process Zt informs of the system’s health
status. This degradation process may be directly observed. For example, in (Xu
et al., 2018) the degradation process corresponds to the wearing of train wheels.
However, in most situations, the true degradation process is modeled or completely
unobserved. In this case, the only data available is the failure date τf (ω) (or the
date at which the system does not meet specific performance criteria).

Remaining Useful Life The Remaining Useful Life (RUL) (Si et al., 2011) (or
Time To Failure (TTF) in the broad domain of anomaly detection) is defined as
the time remaining to the failure of a critical component. GivingXt be the feature
vector, let Yt = the binary health status of the system at time t ∈ R+ indicating
if the system is failling and define the failure time as τf = mint

{
t ∈ R+ | Yt = 1

}
.

For any time t0, the Remaining Useful Life is defined as

R(t0) = τf − t0. (2.2)

If we denote At the filtration σ({Zt0}t0≤t), then the failure time τf and the RUL
are At-measurable random variables. The process of failure is often an equivocal
concept since one needs to define the state of failure of the system. In the case
where the operator have access to a measure of health of the system Zt at any time
t ∈ R+ he can rely on an expert based threshold zf to determine if the system is
malfunctioning. In this case, the binary process of failure is the random variable
Yt = 1{Zt≤zf}.

The RUL is commonly used since it can be easily interpreted but one should
keep in mind that the expected value of the RUL is most of the time insufficient
in industrial context (Saxena et al., 2010). In general, the RUL will be given with
a level of confidence corresponding to percentiles of the probability distribution of
τf . Several use cases are presented in (Daniyan et al., 2020) and we refer to Table
2.1 for references in the context of railway transport.

Failure indicator Apart from the degradation process itself, a commonly used
output is the binary failure Yt at time t ∈ R+. We remind that this binary
variable is the indicator function of the usability of the system. Its corresponds
to the binary classification framework where, given covariates (X1, . . . , Xn) and a
test set (Y1, . . . , Yn), one wants to find a {0, 1}-valued function that minimizes a
loss with respect to true binary failure indicator.
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2.4 Models

Once the space of features has been carefully described and the system monitored,
one needs to choose a function class that modelizes the dependence between the
degradation process and the feature space.

In this section, we describe the most commonly used model for Predictive
Maintenance. Our goal is to exhibit the links and differences between these types
of models, state their advantages and limitations, and give literature use cases.

A common distinction is made between a physical model of deterioration (also
referred as the model-based approach) and a statistical approach (or data-based
inference) (Si et al., 2011). Model-based failure methods rely on the physics of the
underlying degradation process to predict the onset of failures, while data-driven
approaches attempt to derive models directly from the collected data.

The area of Model-driven prognostics deals with predicting the degradation
process of critical components by explicitly choosing a physical model of the
degradation phenomenon, usually a set of differential equations. Experts typically
choose this approach as it requires some layer of understanding of the phenom-
ena involved in the degradation process. For large interconnected systems, this
approach may be infeasible but will generally more explicitly exhibit a variable’s
influence over the deterioration process. For instance, Nappi et al. (2020) design
a purely model-based approach by deriving a set of differential equations (Nappi
et al., 2020)[Equation 1] to be solved to estimate the normal behavior of a railway
wheel system. Fu et al. (2019) construct a model-based solution to simulate the
degradation process of a bogie component. The system is modeled by a Complex
Network Model in which the probability of failure is evaluated through a walk
upon the induced graph structure ((Fu et al., 2019)[Figure 3].

The data-driven approach constructs a model primarily based on the collected
training data with modeling tools commonly used by the artificial intelligence
community: temporal prediction series, trend analysis techniques, Artificial Neural
Network, Neuro-fuzzy Systems, Hidden Markov Model or commonly used machine
learning algorithm (Zhang, Yang, and Wang, 2019). Contrary to the first, this
approach would not typically require in-depth knowledge of the phenomena, but
intensive work on the data collection and preparation needs to be performed.

Some approaches try to take the best of both worlds by proposing hybrid
models. As an illustration, we refer to the work of Wang, Bu, and He, 2020 in which
the authors design a model-based sample generator to simulate the degradation
process of a power equipment plant and use the generated data to train a Long
Short Term Memory based neural network for failure detection (for more details,
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see (Wang, Bu, and He, 2020)[Figure 1]).
Typically, the model-based approach requires to perform numerous study on

test bench to establish to establish a set of physical equations that describe the
behavior of the system. It can be particularly interesting for a component that is
widely used and for which a physical response model has been established, but is
very costly to develop for a new asset or complex systems that are composed of
many interdependent parts. Moreover, there is little use for production databases
that are typically available in large volume in a industrial system. Thus, for its
versatility and use of already available data, the data-driven approach is the proem-
inent framework of predictive maintenance (Mosallam, Medjaher, and Zerhouni,
2015). For these reasons, we only focus on the data-driven methods.

2.4.1 Data-driven model based on machine learning meth-
ods

In this section, we detail the data-driven approaches for the RUL and Binary
Failure estimation, focusing on standard machine learning models. Since most of
them are well-known and have been extensively documented, we restrict ourselves
to reviewing interesting applications.

Statistical models Tree-based algorithms such as Support Vector Machine (SVM),
Decision Tree (DT) or Gradient Boosting Model (GBM) are commonly used in
practice thanks to the low computational resources needed to train them and their
overall relatively good performance on a broad range of real use case. Moreover,
they can be easily interpreted by analyzing the tree structure (Zien et al., 2009)
or through indirect methods such as the Shapley value (Lipovetsky and Conklin,
2001; Štrumbelj and Kononenko, 2014). Allah Bukhsh et al. (2019) build a model
based on three Tree-based models to evaluate the failure probability of railway
switches based on regular visual inspection data and maintenance logs. When la-
beled data is unavailable, a common approach is to use traditional unsupervised
learning techniques such as PCA, Hierarchical clustering, K-Means. A simple use
case is given by the work of Amruthnath and Gupta, 2018 where K-means cluster-
ing is used to evaluate an industrial fan’s state. Table 2.1 gives a view of the recent
application of such techniques to predictive maintenance in the railway sector.

Artificial Neural Network In (Ugechi et al., 2009), the authors use vibration
data as an input to a Multi Layer Perceptron to classy vibration’s data to predict
faulty centrifugal pumps. Wu et al. (2007) construct an ANN based decision
system for the rotating equipment to infer the distribution of the time before
breakdown. Liu et al. (2018) used a Generative Adversarial Network to perform
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unsupervised classification on rotatory machines under several types of regimes.
Guo et al. (2017) proposed a recurrent neural network to estimate the Remaining
Useful Life on rolling bearings but only compared it with a self-organizing map-
based method. As mentionned in section 2.2, image data has been long used for
predictive maintenance. Convolutional Neural Network (Bengio, Goodfellow, and
Courville, 2017) are thus suitable architectures to extract interesting patterns.
For instance, Chen et al. (2017) proposes a CNN-based architecture to detect
surface default of catenary fasteners. CNN need not to be used on image data and
it became common to see one dimensional CNN applied to numerical temporal
signals (Karpat et al., 2020)

Wavelet transform Wavelet transform is a way of decomposing a signal and
finding a typical component related to a specific behavior. It is based on a wavelet
series used to define the orthonormal basis for a Hilbert space. (Chiementin,
Bolaers, and Dron, 2007) proposed the early detection technique based on adap-
tive wavelet for fatigue damage measurement on the inner and outer race of ball
bearings. A procedure was designed for analyzing signals using this wavelet. The
method seemed to improve fault detection in the presence of noise also. Jiang et al.
(2019) used wavelet transformation of a vibration signal delivered by a dedicated
measurement tool for railway track in an ablation study. The authors showed that
transformation applied to the source data improved prediction compared to the
raw signal.

Yang et al. (2008) proposed and validated a new wavelet-based adaptive filter
for CM of wind turbines. Conventionally vibration measurement and lubrication
oil analysis were used as CM systems in wind turbines. However, both these
methods suffered from some drawbacks as the former method required high hard-
ware costs, and the latter could not detect electrical abnormalities in the turbine
generator and electrical system. The wind turbine’s power energy was used as
an indicator of wind turbine condition as wavelet-based adaptive filter extracts
the power energy at prescribed fault-related frequencies with both varying and
constant rotational speeds.

2.4.2 Data-driven model based on processes

Stochastic processes

The degradation process is inherently the result of a complex stochastic dynamical
system due to the great variability and uncertainty associated with the measure-
ment of such a state. A natural idea is to use simplistic instances of the class of
stochastic processes to capture the dynamic of the Remaining Useful Life. One of
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the most simple to consider is the Wiener process

dZt = µdt+ σdWt, (2.3)

where Wt is the Brownian motion at time t and µ, σ the drift and diffusion co-
efficients. The main advantage of such a model is that he is very well studied,
particularly in the finance sector (Rolski et al., 2009), and that the time to failure
can be analytically computed or closely approximated. In the context of RUL es-
timation, it was considered in several studies recent studies (Guan, Tang, and Xu,
2016; Lorton, Fouladirad, and Grall, 2013; Nicolai, Dekker, and Van Noortwijk,
2007). Even though easy to use, this model has some fundamental drawbacks.
For one, the degradation process is monotonically decreasing where Winner pro-
cesses can only be parametrized to drift in expectation. At time t and s < t, the
value of the Winner process Wt will be independent on the event in the filtration
Ft = σ(W1, . . . ,Ws) as it is a markovian process. Hence it can only model degra-
dation without aging. Finally, Winner processes are path continuous and cannot
account for sudden jumps that often occur when considering a system’s physical
degradation.
Gamma processes fix most of the issues raised by Wiener processes since they are
monotonic and can be inhomogeneous, taking into account past temporal evolu-
tion. Gamma processes are popular models to describe a monotonic degradation
process as in wear processes or fatigue crack propagation. We refer to (Cha and
Pulcini, 2016; Crowder and Lawless, 2007; Huynh et al., 2012; Liao and Elsayed,
2006) for use in the context of Predictive Maintenance and to (van Noortwijk,
2009) for a complete review of the Gamma Process and its properties.

Hidden Markov model

A Hidden Markov Model is composed of two discrete-time stochastic processes, a
hidden Markov chain (Zn)n≥0, which is unobservable and represents the real state
of the deterioration, and an observable process (Yn)n≥0, which is the observed con-
dition information from monitoring and tests (we confer to section B for a detailed
and technical introduction).
Hidden Markov Model based approaches are particularly suitable for predictive
maintenance in an industrial context since they can model the latent state, which
represents the machine’s health condition. Zhao et al. (2019) use a constrained left
to right Hidden Markov Model to estimate the Remaining Useful Life of the nasa
engine degradation data. HMM has been used to model industrial process in a
discrete event system using different structure of Markov automate for the hidden
state (Robles et al., 2013), Diesel Engine (Simões et al., 2017), lubricating oil for
engine with Remaining Useful Life prediction (Du, Wu, and Makis, 2017), vehi-
cle maintenance (Kamlu and Laxmi, 2019), bearing condition evaluation (Cartella
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et al., 2012) and online condition assesment (Lee, Li, and Ni, 2010). In the more
broad domain of anomaly detection, Chen et al. (2016) use discrete observations
of known sequences of online behavior to detect intrusions and Song et al. (2009)
propose a nonparametric HMM that extends traditional HMM to structured and
non-Gaussian continuous distributions (via kernel embedding) and derives a kernel
spectral algorithm for learning.

In all of the above examples, the hidden state is chosen to be an unknown degra-
dation state. However, basic Hidden Markov Model models suffer from the fact
that the state duration of any hidden non absorbing state is geometric. To over-
come this, the semi-Markov processes were developed independently by (D’Amico,
Janssen, and Manca, 2009; Serfozo, 1972). HSMM is traditionally defined by
allowing the unobserved state process to be a semi-Markov chain (Wang et al.,
2014) and used, for instance, in speech recognition or equipment health diagnos-
tics and prognostics. In the context of predictive maintenance, it has been shown
(Tobon-Mejia et al., 2011; Medjaher, Tobon-Mejia, and Zerhouni, 2012) to effec-
tively estimate the Remaining Useful Life by using the the duration time random
variable. An extended summarize of different duration model classes has been
made by Yu (2010) . Most state duration models used in the literature are non-
parametric discrete distributions (Yu and Kobayashi, 2006; Yu and Kobayashi,
2003; Wang et al., 2014) Hidden semi-Markov models enjoy the versatility of the
HMM and the possibility to represent temporal structures in the signal but are
the difficulty to infer the optimal parameters (Wang et al., 2014).

2.5 Metrics

This section presents several used metrics emphasizing the framework in which each
one should be considered. The evaluation of a Predictive Maintenance solution
raises several challenges. Most of them are associated with the industrial context,
which imposes additional constraints on exploitation. For instance, in the case of
railway transport, a prediction made just a few hours before the breakdown will
usually not be useful since this information cannot be used to reduce maintenance
cost since there is not enough time to prevent maintenance shutdown of the system.
Another aspect is that an online algorithm providing risk estimation for failure
would rarely predict on real-time data but rather with a time delay. A metric for
PM should also accommodate practical aspects such as safety, cost efficiency, and
mission priority (Saxena et al., 2010).



2.5. METRICS 49

Regression

Let us define the the point-wise error E(t) at each time t ∈ R+

E(t) = R(t)− R̂(t). (2.4)

The error E(t) is a random variable representing, for a specific set of test
data, the difference between the true and estimated RUL. Given a time horizon
T ∈ R+, it is more interesting to consider the scaled version of this error on the
total duration since large absolute true Remaining Useful Life can produce a large
error. Thus the introduction of a Relative Error (Medjaher, Tobon-Mejia, and
Zerhouni, 2012)

RE =
1

T

T∑
t=1

∣∣∣∣ E(t)

R(t)

∣∣∣∣ . (2.5)

Medjaher, Tobon-Mejia, and Zerhouni, 2012 develop an accuracy metric for RUL
estimation, first proposed by Vachtsevanos and Vachtsevanos, 2006, is discussed.
It writes

Accuracy =
1

T

T∑
t=1

e−
|R(t)−R̂(t)|α

R(t) , (2.6)

for α ∈ [0, 1]. This measure is similar to the Relative Error but is easy to interpret:
a prediction is considered acceptable if its accuracy is close to one and not if the
accuracy is close to zero.

Classification

The metrics used in the classification framework introduced in section 2.3 are
commonly used in machine learning where we consider a predictor f̂ . The True
Positive (TP) and True Negative (TN) measures correspond respectively to the
number of correctly classified samples and the number of sequences incorrectly
classified when compared to the true Failure indicator function. These two types
of error are not very informative by themselves since we could design a simple
algorithm that would return 1 for each test example and reach a TP measure of 1
(similarly, we could reach a minimal TN measure). It is more fruitful to introduce
the following quantities.

TPR =
TP

TP + FN
,

TNR =
TN

TP + FN
.

(2.7)
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In some case, the predictor f̂ will output a probability vector instead of a
binary vector. Let us consider a probability threshold p such that the predictor
will output one if P(f̂(X) = 1) > p. In this case, at any level p, we have that

TPR(p) =

∫ ∞
p

f̂1(x),

TNR(p) =

∫ ∞
p

f̂0(x),

(2.8)

with f̂1 and f̂0 being respectively the density function associated with output
one and zero. The Receiver Operating Characteristic (ROC) curve is defined as
the graph of the following function

ROC: [0, 1] −→ [0, 1]2

p 7−→ (TPR(p),TPN(p)).
(2.9)

A good classifier will be above the bisector of the identity function representing
the random classifier (properly weighted if the class is imbalanced). We refer to
(Bradley, 1997) for details and proofs.
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Table 2.2: Physical measurement of the system state for each category of source
data.

Category Parameter
Vibrations Imbalance, Eccentricity, Misalignment of couplings and bearings,

Resonance problems, Mechanical looseness/weakness, Rubbing,
Bent shafts, Shaft cracks, Worn or damaged gears and bear-
ings, Defective/misadjusted drive belts and chains, Sleeve-bearing
problems, Turbulence, Turbine/fan blade defects.

Thermal Temperature, heat flux, heat dissipation
Electrical Voltage, current, resistance, inductance, capacitance, charge, po-

larization, electric field, frequency power, noise level, impedance,
Mechanical looseness, corroded electrical connection.

Mechanical Length, area, volume, velocity or acceleration, mass flow, force,
torque, stress, strain, density, stiffness, strength, acoustic in-
tensity, power, acoustic spectral distribution, angular, direction,
pressure.

Chemical Species concentration, gradient, re-activity, mess, molecular
weight

Humidity Relative humidity, absolute humidity
Optical Intensity, phase, wavelength, polarization, reflection, transmit-

tance, refraction index, distance, vibration, amplitude and fre-
quency

Magnetic Magnetic field, flux density, magnetic moment, permeability, di-
rection, distance, position, flow

Acoustic Bearing inspection, Steam trap inspection, Integrity of seals, pipe
systems and large walk-in boxes, Pump cavitations, Compressor
valve analysis, Electrical arcing

Oil Analysis Particle count, Water content, Viscosity, Additive content, Acid
or base number, Flashpoint
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Table 2.3: Popular public datasets for Anomaly Detection.





Chapter 3

Predictive Maintenance: the case of
the French train fleet

This chapter presents a practical approach to implement predictive maintenance in
the French train fleet’s industrial context. We mainly focus on tackling the issues
that bar from in-production use of these techniques. We build a complete and
ready to be industrialized system to signal probable breakdown on rail vehicle to
improve the availability and safety of the rail transportation network. To provide
the best possible result and allow for easy use on other transportation systems, we
implement a computational pipeline that includes state of the art preprocessing
and prediction model techniques. Subsequently, we propose a method to reduce
the computational cost associated with executing this pipeline. The method is
applied on two large fleets of train and showed superior results to best-known
expert techniques for early anomaly detection.

This chapter is organized as follows. Section 3.1 presents the general problem
and the most relevant related work. Section 3.3 describes the data used and
the feature and target space construction along with the complete computational
pipeline used for prediction. In Section 3.4 we introduce a method to prune the
computational tree of calculation quickly. Finally, Section 3.5.1 presents the study
results along with pattern mining extraction for interpretability.

3.1 Introduction

The use of machine learning techniques for predictive maintenance in industrial
contexts has proven to be a fertile approach in various application areas (Carvalho
et al., 2019). Studies, as well as several proofs-of-concept, have demonstrated
the potential of this approach in improving the safety, reliability and efficiency of
a transportation system (Kocbek and Gabrys, 2019; Allah Bukhsh et al., 2019;

57
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Nappi et al., 2020). As of today, this potential remains largely untapped due to
the youthfulness of new modes of data governance. Data from different sources
were siloed in the past, with each source flowing into its own database in isolation
from the others. This led to analyses based mainly on technical expertise and
the implementation of specific rules and maintenance procedures. Conversely, the
power of modern predictive maintenance systems relies on the cross-referencing of
numerous data sources to enrich the space of variables and increase their predictive
power.

The equipment engineering team at SNCF recently set up a tool to detect up-
stream failures based on the fault codes transmitted by the rolling stock. Although
promising, this new form of maintenance, which we could describe as predictive,
is still far from replacing the historical model that consists of mixed operation of
corrective and planned maintenance (see chapter 2). And for good reason, un-
derstanding and then translating abnormal behavior into an algorithm requires
considerable expert time. In addition, a project called "zero LGV faults" aimed
at limiting the risk of line failures on high speed rolling stock (line stops, speed
restrictions, incidents) have been launched. In this context, both entities see the
emergence of automatic learning techniques as an opportunity to accelerate the
construction of these rules capable of anticipating breakdowns.

The development of an automated pipeline for predictive maintenance comes
with several difficulties when they are considered for industrial production. One
of the main drawbacks is the scarcity of the target signal (Ran et al., 2019). In-
deed, the average number of failures per day is (fortunately) low, so the number of
relevant signals (in the sense of helpful in predicting a failure) is rare with regard
to the total number of signals produced. Hence, the generalization error may be
heavily impacted. Moreover, this target is the result of different types of readings;
some failures will be automatically transmitted while others depend on an opera-
tor’s report. Thus, the time of occurrence of a failure and its type are potentially
imprecise, and the quality of the target data is inhomogeneous. Second, the out-
put of the predictive model needs to be compatible with the previous maintenance
approach. At SNCF, the maintenance procedure is a well-established process with
precise guidelines that need to be followed to ensure passenger security and train
availability. Hence, an operator needs to understand the output of any algorithm to
link any predicted anomaly to a subsystem of the vehicle. Finally, most traditional
methods cannot be efficiently used and tested on a large-scale system (Carvalho
et al., 2019). Constructing the feature and target space, testing and maintaining
the machine learning solution, requires introducing many hyper-parameters (Can-
izo et al., 2017). Finding a good set of these hyper-parameters comes with a heavy
computational price.

The high impact and high costs potentially associated with system failure led



3.1. INTRODUCTION 59

to extended research in system monitoring and fault detection (Carvalho et al.,
2019). Research on model-based failure detection relying on the underlying physi-
cal degradation process recently trimmed back in favor of a data-driven approach
which aims to apply generic statistical models from condition monitoring (Ran
et al., 2019). However, authentic physics-based models are difficult to build for
some components and systems because equipment dynamic response and damage
propagation processes are very complex.

In the data-driven area, variety of statistical approaches have been developed
including regressive models (Medjaher, Tobon-Mejia, and Zerhouni, 2012; Kocbek
and Gabrys, 2019; Jiang et al., 2019) and state space (Bayesian Network, Hidden
Markov Models, etc.) models (Mercier, Meier-Hirmer, and Roussignol, 2012; Zhao
et al., 2019) or Deep Neural Networks (Chen et al., 2017; Heidarysafa et al., 2018).
Yan, Koç, and Lee (2004) performed a logistic regression to establish performance
model of an elevator’s door, and the remaining life is estimated using ARMA
model based on historical data. ANN are used in two fashion: in classification
to predict trends and system failure and in regression, commonly with feedback
connection, to model dynamical processes and give an expectation of Remaining
Useful Life (Laredo et al., 2019). A prediction of the health of a roller bearing by
modelisation of the vibration root mean square value was developed by Laredo et
al. (2019). On the same topic, Gebraeel and Lawley (2008) performed ball bearing
remaining life prediction by using the output of the ANN as a condition monitoring
measurement. A great variety of applications continue to emerge: generalized
ANN that can deal with multiple measurement inputs (Tian, 2012), integration of
failure and suspension data to improve accuracy ANN-based time series prediction
to deal with insufficient data Tian, Wong, and Safaei (2010). Adding a feedback
loop to an ANN allows accounting for the past input to influence the new network
output opening up the use of Recurrent Neural Networks (Lipton, Berkowitz, and
Elkan, 2015). In the railway domain, de Bruin, Verbert, and Babuska (2017) used
a recurrent neural network to predict the condition of railway tracks. Tian and
Zuo (2010) also developed a recurrent ANN-based time series prediction method
to deal with situations where sufficient faulty events are not available. Aggarwal
et al. (2018) utilized Long Short Term Memory to forecast the damage propagation
trend of rotating machinery to both predict failure and the RUL.

Fitting expert knowledge to machine learning modern problems is a well-known
issue in practical application. The term black box means that it is very difficult or
even impossible to have physical explanations of the networks’ outputs. Besides,
as models grow in size, training can be challenging. For example, how many hid-
den layers should be included and the number of processing nodes used for each
layer are difficult questions for model developers. Garga et al. (2001) proposed
a hybrid reasoning method for prognostics. A feed-forward neural network was
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trained using explicit domain knowledge to get a parsimonious representation in
this approach. A Dynamic Bayesian network (Murphy, 2012), also called belief
network, is a directed graphical model of stochastic processes that enables users
to monitor and update the system as time proceeds. A Bayesian network is a
field-proven tool for modelisation in domains with uncertainty (Sakib and Wuest,
2018). Their graphical representation, showing the conditional independencies be-
tween variables, is easy to understand for humans experts. As historical example,
Sheppard and Kaufman (2005) used Bayesian networks for prognosis systems. The
authors construct a Bayesian Belief network incorporating information on instru-
ment uncertainty, knowledge about false indication and failure probability. Then,
to acknowledge change over time, the prognosis is performed by using a dynamic
bayesian network. In the prognostic model developed by Gebraeel et al. (2005), the
Bayesian approach is employed to update the prior distributions for estimation of
subsequent failure times. Dong and Yang (2008) investigated a DBN-based model
to predict remaining life for drill-bits. The authors built a DBN-based model
and corresponding inference algorithms. A prognosis procedure based on parti-
cle filtering algorithms is used to predict RUL of the drill-bits of vertical drilling
machine.

A industrial machine learning pipeline is a complex sequence of computation-
ally expansive operations and typically involves many steps. Each of theses steps is
associated with some user-defined variables that control how the data are cleaned
and filtered, the feature and target space constructed or how the final prediction
model learns. We call parameters all the variables of the computational pipeline
that are directly used by the final model to make a prediction (such as the regres-
sion coefficients in a Linear Regression model) and hyperparameters the ones that
are involved in the prediction only through the training (such as a filter parameter
or the learning rate of a gradient descent procedure) (Murphy, 2012). Sometimes
overlooked, the choice of hyperparameters is crucial and can greatly affect the
model performance (Van Rijn and Hutter, 2017).
Traditional approaches aims at inferring an approximation of the best set of hy-
perparameters with respect to the model score on a validation data set. Naive
approaches purely based on grid-search are computationally intractable since the
number of evaluation grows exponentially with the number of hyperparameters
(Bergstra et al., 2011). Bergstra and Bengio (2012) show that selecting at random
the hyperparameters to evaluate outperform the extensive grid-search approach.
A more refined approach proposed by Li et al. (2017b) allows for setting a given
level of computational resource to be allocated to search an approximation of the
best hyperparameters by iteratively dropping some portion of the search space.
Bayesian optimization approaches build a bayesian probabilistic model to map the
output of the pipeline to the hyperparameter space (Pe’er, 2005; Shahriari et al.,
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2015). Derived from this approach, efficient algorithms such as FABOLAS (Klein
et al., 2017) can efficiently and at given computational cost identifies the most
promising hyperparameters by careful balancing of evaluation and exploration of
the promising hyperparameters. This method has the main drawback of requir-
ing surrogate model to map the hyperparameters to the output of the prediction
pipeline which is often arbitrarily chosen and itself costly to estimate (Mendoza
et al., 2016).

One must keep in mind that most of the mentioned above and within Chapter
2 studies are not performed on real in-production systems but rather on a public
and conveniently preprocessed dataset. The consequence is that computational
costs and limitations are rarely addressed. As mentioned, the industrial process
of implementing such a machine learning approach involves a large number of
parameters to adjust a optimize on (Thomas et al., 2016). Moreover, most of
these approaches do not question the compatibility between the model’s output
and the well-established maintenance process.

In this work, we propose a complete pipeline solution for predictive mainte-
nance from data identification and selection, preprocessing and modeling in this
work. Our method is used on real-world systems during exploitation at a rea-
sonable computational cost. To prune the computational tree and identify a set
of hyperparameter, we use a non parametric two-sample test approach based on
the Maximum Mean Discrepancy measure on the labeled training data set to au-
tomatically prune the hyperparameter space. This approach is efficient (Gretton
et al., 2008), does not involve the choice of a mapping between the space of hyper-
parameters and the output and straightforward to implement. The constructed
prediction pipeline has a superior predictive power than expert-knowledge rules
and can be easily exported on different classes of components (such as railway
tracks, overhead lines, etc).
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3.2 Problem Description

Each day, the SNCF operates 15,000 trains over 35,000 kilometers of rail network.
As a result, the rail stocks evolve in very diverse operation’s environments. Ad-
ditionally, the fleet of vehicles comes from various class of trains that have been
in function for various amount of time. This great variability poses challenges
to construct a predictive maintenance solution. For this reason, the perimeter
of the study has been reduced to two types of trains, namely NAT and High-
speed trains, during a controlled period over which special events (such as extreme
weather condition or infrequent breakdown events) have been carefully analyzed
and taken into account. As mentioned in chapter 2, designing a machine learning
pipeline for predictive maintenance tasks is by itself a challenge. For this study,
we follow the design process described in section 2.2. The first step is to identify
and collect variables that are linked to the degradation process. Numerous data
sources were considered to tackle this problem. Joint work with technical experts
and operational maintainers allowed the construction of a feature space as a func-
tion of data considered to be sufficiently linked with the degradation process. The
following summarizes this step of feature and target construction.

3.2.1 NAT

The Class Z 50000 railway vehicles also known as Nouvelle Automotrice Transilien
(NAT) (which stands for New Self-Propelled Transilien) is a multiple unit electric
regional trains built by Bombardier that operates in Paris and its suburbs since
2009.

Error Codes

Error codes consist of time-stamped signals provided by TrainTracer, a software
for collecting and processing data on onboard equipment. According to rules to
which the end-user does not have access, these codes are produced during events
deemed relevant by the manufacturer (exceeding the threshold of an electrical
signal, malfunction) according to rules to which the end-user does not have access.

The collected database contains 6069329 code events distributed in a dictionary
of code Σ of size |Σ| = 754 over a period spanning from 2014-01-01 to 2015-05-
27. Each error code is associated with a particular event and identifiable through
a correspondence table. For example, table 3.1 shows the meaning of the ten
most frequent codes. The codes have simple regularities that reflect the normal
operation of the system. Figure 3.2a shows the number of codes issued as a function
of time over several aggregation periods. It shows a sustained activity around peak
hours (7h-9h and 18h-19h) due to more intensive operation. Similarly, the time
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Figure 3.1: Calendar of error codes emissions of NAT train class over the studied
period. The number of events is lower during the weekend since it is typically a
period of reduced service (except during holidays). The number of codes tend to
increase during winter as the weather condition is a known factor of deterioration.
Moreover, the number of error codes (and anomalies) tends to increase over the
year due to the aging of the train fleet.

distribution by day of the week shows stable activity on weekdays and reduced
activity on Saturdays and Sundays. The monthly time distribution is not more
surprising: our entry set contains the first six months of 2015, so we find more
events over this period. The number of codes seems to increase in winter. This may
be due to a higher number of particular events and the use of components that are
inactive during the rest of the year (heating) or less active (anti-skid/anti-scratch).
Since we only have a single winter history, it is not possible to draw any further
conclusions. Several updates to the onboard system have resulted in changes in
the type and number of codes issued.

Breakdowns

The target variable for the NAT class was constructed upon the history of signaling.
A signal is an event logged either by the train operator, maintenance technicians or
automatically produced by onboard system for critical detected anomalies. Since
a signal is not necessarily linked to a breakdown, these signals need to be linked
to maintenance reports. Each time a train is inspected, whereas it is a planned or
an unplanned operation, a report is produced. A report consists of free text and
structured information and summarizes the state of the equipment and the possible
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Figure 3.2: Temporal distribution for error codes (top) and constructed breakdown
events (bottom) within a day (upper left), month (upper right), week (bottom left)
and year (bottom right).

operation performed. To make this information suitable for machine learning, each
maintenance operation is associated with specific equipment that corresponds to
a specific system or function of the rail vehicle. Moreover, this classification of the
report into a class of equipment allows for targeting critical failure. For instance,
an engine failure leads to complete immobilization of the train, whereas air con-
ditioning only impacts the passenger’s comfort. Table 3.2 report the breakdown
classes identified that constitutes the multi-class target event variable. Finally,
these signal events are enriched by various table to precisely identify the localiza-
tion of the signaling (not only the position on the network but the direction of
traffic), the specific vehicle of the train impacted and the history of the equipment
(age of the component, last intervention, etc).
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Table 3.1: The top-10 most common error codes with meaning.

Error Code Wording
8025 RightDoor closing(GDIR E99)
8425 RightDoor closing(GDIR E99)
16111 Def. camera 2
20071 Zone balise 2
20070 Zone balise 1
20052 LT Autorisation open RD
20058 LT Autorisation open LD
20053 LT Autorisation dev right
16110 Def. camera 1
20059 LT Autorisation dev left

Table 3.2: Type of breakdowns.

Class System
B Cashiering / Boiler Room
C Body Lining
D Interior Fittings
E Running Gear
F Power Device / Drive Train
G Drive Train Control / Brakes
H Auxiliary Equipment
J Safety and Monitoring Equipment
K Lighting
L Air Conditioning
M Other Equipment
N Door
P Passenger information and operating assistance systems
Q Hydraulic and pneumatic equipment
R Brakes (brake system / components)
S Interconnections
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3.2.2 High Speed Train fleet

The French High Speed Train fleet is a class of vehicles that travels at speeds
around 300 km/h on a dedicated rail system that allows short inter-city travel
time. As for the NAT fleet, we based our analysis on the onboard log system and
the history of recorded breakdown events over a period of two years that spans
from 2017-10-01 to 2019-10-01.

Error Codes

MyTrainData (MTD) collects events recorded by rail vehicles during operations
managed by the Equipment Department. Each event is emitted by a train system
(door, engine block, onboard computer, etc.) by a command control unit. An
event contains an error code that as well as a context code that provides geograph-
ical and technical information about the state of the train at the time of code
emission. In addition, various databases are needed to identify the type of train,
position it on the railway network. The extracted data covers 18 months from
2017-10-01 to 2019-10-01. The collected data consists of various files, tables, and
reports from several databases for a total volume of approximately one terabyte
of data. To analyse the degradation process and the influence of the covariate,
it is needed to gather all the information available about a system at a specific
time. As mentioned, these data are scattered through various departments, are
of heterogeneous quality and have not been designed to be crossed. For instance,
it is important to exclude from the analysis the period of maintenance. During
maintenance, the onboard system can fire events that are not useful for predictive
maintenance in operation. The solution found was to list and geolocalise all main-
tenance centers and filter out any events that have been emitted in these areas.
Another example is the need to identify the exact type of train that operates.
Indeed, a train is composed of a heterogeneous class of railroad car, which can
have specific behavior. Analysis should thus include a reference to the class of
railroad cars that have emitted an error code. To that end, specific databases has
been used to extract the rail plan of each trip and recover the composition of each
train. Numerous database crossing similar to that was performed to enrich the
state features. These enriched events can then be used to look at different use
cases, focus on particular series, and find the maximum number of explanatory
elements for failures. At the end of this process, all the information available at
each time of the lifetime of the subsystem are gathered to create the feature space.
It may factor environment variables such as railway characteristics on which the
rail vehicle operates at the time considered, or weather conditions. It also includes
system information such as the age (in terms of exploitation time) or a particular
state variable called context code. For instance, some context code gives the speed
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of the train measured as the radial speed of the vehicle wheel. This information
can be decisive to identify a malfunction; if a code of the door subsystem indicates
an open position while the context code indicates that the train is in motion, it is
considered as a critical safety risk and a malfunction of the door system.

Breakdowns

All breakdowns that occur on high-speed trains are subject to an intervention by a
maintenance operator who establishes an Intervention Report (CRI). Apart from
breakdown events, regular planned maintenance operations are carried out to track
for early signs of deterioration of the rail vehicle and similarly logged in an IR.
During a preventive operation, not all the subsystem is inspected. For instance,
our database accounts for almost 2500 preventive operations per train set over two
years. Among those interventions are only about twenty operation where the doors
are looked at (approximately every month) and about ten where the Engine Block
are looked at (approximately every six months). Over the studied period and for
the class of train selected, we collected 400 thousands intervention reports which
amounts to approximately fifty per month and per train set. Among them, there
are about two IR per month and per train that concern the doors (including one
breakdown) and five that relate to the Engine Block (including between three and
four breakdowns per month per train set). The first step was to determine which
IR can be considered as indicative of failures on a subsystem with experts. The
second was to reconstruct the life of a specific subsystem over the period. Since
2011, about thirty train sets have been broken down and then reassembled to create
new ones. Thus, the subsystems can have been on several train over a period of
time. Finally, each subsystem was associated to multiples time series indicative
of various environmental and historical information about the component, such
as journeys made and the number of kilometers traveled (accumulated) each day
or the time since the last maintenance operation. Once all these databases are
crossed, we finally obtain a consistent historical view of each subsystem.
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3.3 Construction of a production machine learning
pipeline for predictive maintenance

In this section, we describe the process of construction a complete algorithmic
pipeline for predictive maintenance. As described in chapter 2 and the introduc-
tion, several challenges are associated with such construction at each step of the
process. For an industrial application, one has to test multiple possibilities in order
to find the best pipeline to put in production. Moreover, for this work to be used
in slightly different context (such as predictive maintenance on railtrack), the pro-
cess must be sufficiently general to be adapted. The design of this pipeline is thus
complex and involved several exchanges and collaboration with expert-knowledge
to be suitable. In the following we brush out the main steps of the produced algo-
rithmic solution. The construction of the pipeline brokes down into three phases;
the import and cleaning, the windowing phase and the prediction step.

Data preparation. The data preparation step includes, app art from the im-
porting and cleaning steps, the preprocessing phase. The preprocessing consists of
constructing the feature space by adding or removing variables and filtering data.

Most error codes are issued at regular intervals, without signaling a noteworthy
event. This can be a signal to open a door, start, stop or the inconsequential
activation of a command. Therefor periodic signals in the signal do not indicate the
occurrence of a fault. Figure 3.8 shows the median time between two transmissions
for the twenty most frequent codes in a box diagram. For instance, half of the 20064
codes are transmitted every five minutes. Several filter have been designed to take
into account the fact that some code are not necessarily linked to a malfunction.
For instance, the Gaussian filter apply a rule to delete every emission that is outside
a time bandwidth of t× σ for t ∈ [0, 1]. Simpler filter such as quantile filtering or
by the top-k most relevant codes are considered. All these case are parameter of
the production pipeline with the goal of finding the most suitable

Window aggregation. The prediction procedure uses event logs, which are
time-stamped error codes et taken from a dictionary E of d distinct codes. These
events are collected and processed by onboard equipment according to dedicated
rules to which the end-user does not have access. These codes are produced during
events deemed relevant by the manufacturer (for instance exceeding the threshold
of an electrical signal or a malfunction).

Procedures that make use of log events are particularly challenging since there
is no natural order or distance on the space of symbols, thus making most machine
learning models unsuitable. This issue can be overcome by kernel methods (Kung,
2014) but these approaches are difficult to interpret, which is a requirement for a
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Figure 3.3: Temporal aggregation of log-events (et1 , . . . , et6) over sliding win-
dows (T1, T2, T3). In red, events that occur in the period Ta before yt7 are con-
sidered anomalous and labeled l = 1. The aggregation produces the itemsets
x1 = {et1 , et2 , et3}, x2 = {et2 , et3}, x3 = {et4 , et5 , et6} and the labels l1 = 0, l2 = 0
and l3 = 1. The goal is to correctly predict the labels li from the itemsets xi.

predictive solution to be used in an industrial context. Another common strategy
consists in transforming the prediction task into a binary classification task. In
a nutshell, the signal is aggregated over sliding temporal windows (possibly over-
lapping) of fixed size. Features are simply the set of collected events within the
window (called itemsets). For a given user-defined threshold period Ta > 0, a
window is considered as anomalous (label “1”) if it contains codes emitted in the
period Ta before a failure, and normal (label “0”) otherwise. This aggregation pro-
cedure is schematically illustrated on Figure 3.3. Even though popular (Basora,
Olive, and Dubot, 2019), classification based solely on this construction is often
unable to capture critical patterns of events that can be highly relevant in PM.

There is several variation of the process illustrated in Figure 3.3. A window
aggregation procedure is associated with multiple parameter that will lead to differ-
ent feature construction; mainly, a window size, an overlap parameter (can be set
to zero for purely consecutive windows) and a time range anomaly Ta. Moreover,
the choice of the aggregation function greatly influence the model performance.
The simplest aggregation function consists of a binary indication indicating the
presence or absence of a certain code type. A more involved solution considers a
statistic on the count of error code (count, distance to a mean count, mean inter
emission time for specific code in a window, etc).

Prediction. The definition of the training and test set is itself a challenge in
the framework of predictive maintenance. Classical train-test split will consider
random sub sampling of the training data set. However, the sequentially of the
signal is lost by such split. To take this effect in account a time split is considered;
the training data consists of the signal over an uninterrupted period reflecting the
normal condition of exploitation. Finally, we also consider a train-test split by rail
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Figure 3.4: Simplified computational pipeline used for prediction. Each step, from
preprocessing to end prediction, involves multiple hyper parameters to fit.

vehicle; the algorithm is trained on a subset of the available rail vehicle and tested
on data from never seen vehicles. A typical experiment will output the result
for each split strategy and the performance difference is valuable information to
evaluate the true performance of the model. To tackle the imbalance problem, we
consider various under sampling and over sampling methods, including implemen-
tations of both traditional new methods such as random sampling or the cluster
centroid method (Santoso et al., 2017) but also SMOTE (Synthetic Minority Over-
sampling Technique) (Chawla et al., 2002) and the Instance Hardness Threshold
approach (Smith, Martinez, and Giraud-Carrier, 2014). Finally, the statistical
algorithm is set and a grid search of the model hyperparameter is performed.
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Figure 3.5: p-value of the statistical test as a function of the window size. Upper
left: Random Split is the random assignment of the binary target. Upper right:
comparison performed on two negatively labeled subsets. Lower left: comparison
performed on two positively labeled subsets. Lower right: comparing the set of
samples labeled positively and the set labeled negatively (the threshold in red
corresponds to the level of rejection of the statistical test at 5 %)

.

At each step, the choice of parameters affects the overall performance of the
model. Figure 3.4 shows the set of adjustable parameters of an experiment.

3.4 A two sample test for pipeline pruning

The tree of computation described in the previous section spans a large number of
hyperparameters. Exploring even a portion of this hyperparameter space through
grid search approaches (Bergstra and Bengio, 2012) requires an great amount of
computational power in term of parallel threads and memory requirements. In
this section, we propose to exploit the binary nature of the target output to design
a pruning criteria based on a measure of the statistical distance between the two
classes of the target.

Let (Ω,A,P) be a probability space and consider X the set of input variables
and Y the binary output, such as (X, Y ) ∈ X×Y . We denote P the join probability
distribution on σ(X × Y). The goal is to determine whether the distributions
associated with each target class are different. More precisely, if we call P0

X and
P1
X the distributions associated respectively with the versions of the conditional

expectation on G0 = σ(Y = 0) and G1 = σ(Y = 1) we wonder if we can reject the
hypothesis P0

X = P1
X . Answering this question comes down to perform a statistical
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test on the samples from each class and relates to the well studied two-sample test
problem (Gretton et al., 2008).

In the following, we present the formal framework of the Maximum Mean Dis-
crepancy method (Smola et al., 2007; Muandet et al., 2017).

3.4.1 Maximum mean discrepancy

Formalism Let P and Q be two distributions on X . The laws are unknown, but
we have the realizations of the law P and m realizations of the law Q such that Q
tel que {xi}ni=1 ∼ P and

{
yj
}m
j=1
∼ Q and the null hypothesis such as

H0 : P = Q,
H1 : P 6= Q.

Definition 1 (MMD). Let P and Q be two distributions and H a functional
element space defined on X and with real values. The MMD of P and Q is defined
by

MMD(P,Q) := sup
f∈F

[
EPf(X)− EQf(Y)

]
(3.1)

Under the null hypothesis we have indeed MMD(P,Q) = 0 for any H). The
question is to determine under which conditions on H the reciprocal proposition is
true, ie the necessary condition such as MMD .(P,Q;F ) = 0 ssi .P = Q). We can
demonstrate (Jitkrittum et al., 2016) that equivalence holds in the case where H
is a Hilbert space with a reproducible kernel. It is shown that in this framework,
maximization comes down, after choosing the kernel, to the computation of a
standard.

Definition 2 (RHKS). Let H be a Hilbert space of functions defined on X and
with real values. A kfunction : X × X → R is a Reproducible Core of H and H
a Hilbert to Reproducible Core space if k satisfies the following conditions

∀x ∈ X , k(·, x) ∈ H,
∀x ∈ X ,∀f ∈ H, 〈f, k(·, x)〉H = f(x).

The kernel thus allows the evaluation of a function by the calculation of a scalar
product. In particular,

k(x, y) = 〈k(·, x), k(·, y)〉H (3.2)

And for any function f, g ∈ H

|f(x)− g(x)| =
∣∣δx(f − g)

∣∣ ≤ λx‖f − g‖H ∀f, g ∈ H. (3.3)
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If we note H′ the topological dual of H, the Reitz representation theorem
applied to EP[. ∈ H′ allows to simplify the equation (1) and to demonstrate the
existence and uniqueness of an element µP ∈ H such as

µ : M(X) −→ H
P 7−→ µP =

∫
k(·,x)dP(x)

(3.4)

EX∼P[f(X)] = 〈f, µP〉 , f ∈ H.

The equation (1) is simplified by using (3.4.1) and allows to obtain the evalu-
ation of the MMD by the standard defined on H.

Theorem 1. Let P and Q be two distributions and H a functional element space
defined on X and with real values. The MMD of P and Q is

MMD2(P,Q,H) =
∥∥µP − µQ

∥∥2

H (3.5)

The equation (3.5) is used to derive an empirical evaluation of the MMD.
Let {xi}ni=1 ∼ P and

{
yj
}m
j=1
∼ Q)

M̂MD
2

u(P,Q) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k
(
xi, xj

)
+

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k
(
yi, yj

)
(3.6)

− 2

nm

n∑
i=1

m∑
j=1

k
(
xi, yj

)
(3.7)

3.4.2 Pruning algorithm

Each instanciation of the pipeline produces a label sequence of P distributed sam-
ples Dn = (xi, yi) at the preprocessing step. This dataset is used as input for
the remaining part of the computational tree until a predictor f̂ and a predicted
output f̂(xi) = ŷi for each sample i is produced. The gist of the method consists
of discarding any computational branch that does not meet the requirement in
term of statistical differences between P0 and P1. In other word, any hyperparam-
eter set that does not produce a sufficiently dissimilar positively and negatively
dataset is discarded. The discarded experiment correspond to feature and target
space construction with low predictive power.

The first test to apply the kernel two-sample test is the choice of the functional
space H that can be reduced to the choice of a kernel (which uniquely determines
H). This kernel only requires to induce a bijection of the operator µ in Equation
3.4 whose existence and uniqueness is guaranteed by the Riesz theorem (Sripe-
rumbudur et al., 2010). In this case, the kernel is said to be characteristic. The
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most commonly used characteristic kernel is the Gaussian kernel which as been
empirically demonstrated to produce tests with high statistical power (Muandet
et al., 2017). In all experiment, we chose the bandwidth parameter to fixed at the
median of the euclidean distance of the sample and the p-value threshold of reject
at p0 = 5%.

To validate the approach, the statistical test on the computational pipeline
described in section 3.3 using the SNCF datasets (see Table 3.3) and a varying
window size hyperparamter. We apply the kernel two-sample test with P0 = P and
P1 = Q. Two compute the p-value from the sample data, we use the permutation
method described in (Gretton et al., 2009). The figure 3.5 shows the result of
the statistical test with respect to the window size (see section 3.3) in four cases;
when considering only the positive label, the negative label, when the dataset is
randomly shuffled and with the true dataset. In all of the three first cases, the
null hypothesis cannot be rejected at p0. On the contrary, in the case where the
statistical test is performed between the labeled samples, the null hypothesis can
be rejected at 5%.
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Figure 3.6: Regression function for unitary error codes in the framework of binary
classification.
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Figure 3.7: Error code regression function in the framework of multi-class classi-
fication. The failure classes are those described in the table 3.2. We observe that
some anomalies have more dependency to individual occurrence of codes than
other.

3.5 Experimental results

This section presents the result obtained by the predictive pipeline on two types of
fleet and several subsystem for various algorithms with hyperparameter analysis.
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NAT TGV BM TGV Doors
Instances 6069329 233060 134352
Fleet 158 91 170
T (months) 14 24 24
|Σ| 555 198 73
K 0 102 102

|E| 12 1 1
Target Size 11256 6447 4341
Regression
Binary Class.
MultiLabel Class. × ×

Table 3.3: Characteristics of Rolling Stock SNCF data sets. Is reported for each
use case the period of study T , the size of the dictionnary of error codes |Σ|,
the number of external and internal contextual variable K, the number of target
or type of breakdowns |E| and the number of critical anomaly reported over the
period.

3.5.1 Prediction pipeline results

Use cases. The study focuses on three use cases using the data from two fleet
of trains described in section 3.2. For each case, we construct a state timeline by
crossing several databases to include internal and external variables (see section
3.3) for each subsystem at every time. It can include contextual data at time t such
as instantaneous speed and acceleration, binary state of some component of the
train or internal data such as the historical use of the subsystem (in term of age and
number of kilometers traveled), the history of maintenance at the time considered
or instantaneous measures on the component considered. Additionally, we built a
referential using GPS tracking data at wach time to include very precise exogenous
information as, for instance, the characteristics of the rail tracks on which the train
circulates or the weather condition (using Meteo France API service) at each time
t. The characteristics of the three studied data sets is described in table 3.3.

Setup. Each instance of the prediction pipeline, also referred as experience, pro-
duces a dataset and a prediction. For each experiment, the models’ hyperparam-
eters are grid-search optimized. The main metric used to compare models is the
AUC (area under the curve) of the ROC curve, which quantifies the ability of
the model to detect if there is a signal in the data and to distinguish itself from
a random model (this score is 0.5 for a random model, and 1 for a perfect ideal
model). The higher the AUC on the test set, the more relevant the predictions.
We also track the maximum precision, recall and F1 scores calculated on the test
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set. These scores are computed according to the failure classification threshold
computed on the training set. The higher the F1 score compared to the failure
rates on the test set, the more valid the predictions are. This score is used to
compare the models and to evaluate their business performance. As benchmark,
we also use My Train Data Alerts (MTDA), which is an alerting system based on
expert knowledge that has been developed over the years.

The procedure is parallelized across multiple threads and we implement a
breadth-first schedule to run the pipeline tree described in section 3.3. By ex-
ecuting according to this strategy, duplicated operations are reduced and, most
importantly, the memory requirement is lower. The space of computation is pruned
using the two-sample test pruning method described in section 3.4; The p-value
is set to 5% and every experiment that does not pass the threshold is halted and
canceled.

The data processing, pipeline and scheduler are implemented using Python 3.7
and runs on AWS Instances with 8 core Xeon Platinum 8000 @ 2.5 Ghz. For the
frequent itemset mining, we use the FP-growth algorithm for the exact frequent
itemset mining leveraging the extensive SPMF library (Fournier Viger et al., 2016)
originally wrote in java.

Comparaison of multiple algorithms. The table 3.4 report, for all use case,
the best result over all the hyperparameters of the pipeline described in section 3.3
for specific aggregated window sizes. We remind that the error codes and context
logs are aggregate on the consecutive periods of sizes ω. We excluded the days
where the car was out of service for maintenance or test. Hence, we consider only
consecutive days of service. Besides, several temporal features are added. For
instance, ω = [1] represents a single day of usage whereas ω = [1, 7] represents the
concatenation of the two data set obtained by the windowing method described in
section 3.3. This approach allow for capturing information that may only exist in
longer sequence at the cost of doubling the size of the feature space.

For the NAT use case, table 3.4 shows the superiority of Random Forest over
the other models for the default experiment for an area under the curve of 0.65 .
The cross-validated AUC score shows a slightly higher value at 0.66 and is also the
fastest to train. For the Engine Block and Doors use case the best model scores at
an AUC of 0.74 and 0.75 respectively. These scores are similar or better than the
expert based system of rules constructed of the year by the maintenance team. The
F1 score of each model, for the test sample, is always higher than the rate of CRIs
among these data. The F1 score is the harmonic mean of the rate of predicted CRIs
and the accuracy of those predictions. Thus, an F1 score greater than the CRI
rates indicates that we will detect CRI-potential trains more efficiently compared
to random detection. One way to exploit these predictions would be to prioritize
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maintenance operations on trains for which a CRI is predicted. On the other
hand, the prediction probabilities are also exploitable. For some anomalies in the
Reliability database, the corresponding CRI probabilities are among the highest.
For instance, the chance that, on 10-07-19, the engine block of train number 236
breaks down the next day is among the highest with 3.49% of one-day probabilities.
Furthermore, the reliability database shows an anomaly for this EB on 11-07-19. In
addition, there were no MTDA alerts raised for this EB between 08-07-19 and 10-
07-19. Therefore, the prediction probabilities can be associated with the MTBA
alerts to detect the anomalies of a TGV train set. Similarly, the study of the
most incidentogenic explanatory variables in our models can be used to enrich the
equations of the BAT alerts.

Using a sampling strategy to correct for the class imbalance problem improves
AUC of every use case for almost all algorithm. For instance, the best AUC for
the TGV Engine Block data set is 0.70 without correction and 0.75 with sampling
correction. The method used is found to not impact signifantively the metric scores
on all experiments; either over or under sampling with any method is equivalent in
term of model performance. Though, it is not inn term of computational resource
and number of parameter to adjust. Hence, the random under sampling method
is used on all experiment for every use case.

Variable dependence In the following, we apply the ’Top-N first’ filter to select
the N most frequent codes and evaluate the effect of adding less frequent codes
and increasing the window size. Precisely, for each N, we compute different 5x
cross-validated metrics (precision, recall, macro, F1) for a set of window sizes. The
results are presented in the form of a heat map in Figure 3.10. Notably, it shows
an improvement of the area under the curve when increasing the dimension of
the variable space. The maximum is reached for a window of twelve hours over
all dimensions. We note a significant and constant improvement of the prediction
value as a function of the size of the sequences. Nevertheless, this effect is probably
due to the mechanical effect of the number of positive sequences relative to the
number of negative sequences on the test set.

3.5.2 Pattern regression analysis

We consider the framework of the supervised classification. Let Y ∈ {0, 1} and
X ∈ Rd and Dn = {(xi, yi)}ni=1 the training dataset. In the following, the entries
may represent the number of occurrences of a default code on a sequence of a
given size, the sum of the times of appearance in the sequence or another form of
aggregation along with contextual data. The target associated with each vector
obtained will be, with few exceptions, the appearance of a failure in a given time
interval around the sequence as described in section 3.3
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A central random variable is the so-called regression function defined as follow.

Definition 3 (Regression function). . Let (X×Y ,F = σ(X×Y),P) be a measured
space, x ∈ Rd we call regression function

ri(x) = P[Y = i|X = x]. (3.8)

In the classification framework we will note rk(x) the regression function in
Y = k. This function will be frequently used to assess the relevance of the extracted
patterns. For instance, an important question is to evaluate whether codes alone
had explanatory power. To that end, we only look at the presence or absence of
a pattern of code in the sequences constructed by the methodology described in
the section 3.3. Therefore, for a dictionary of error codes size d = |Σ|, there is 2d

possible pattern and X = {0, 1}d.
The figure 3.6 shows the relative frequency of isolated error codes. Formally,

we compute r(xi) with xi = {0, ..., 1, ..., 0} (the vector everywhere null except on
its i-th component) and each point represents the frequency of occurrence in the
healthy sequences (labelled as Y = 0) versus the frequency of occurrence in the
faulty sequences (labelled as Y = 1). A point on the bisector y = x indicates
that the pattern x is non discriminating between healthy and faulty sequences. It
shows that codes taken alone have a limited explanatory power for NAT use case.
Hence it is necessary to consider associations of pattern to hope to capture the
signal linked to a breakdown. In the same fashion, figure 3.7 plots the relative
frequencies for each type of breakdowns reported.

Pattern extraction for explainability We perform a pattern extraction by a
type a priori algorithm which searches for frequent closed items of support greater
than a threshold µ ≥ 0 (Agrawal and Srikant, 1994). The sequences are divided
into two classes according to the method described in 3.3 then the patterns are
extracted for different values of µ and a maximum length of the pattern. We then
compare these patterns by calculating their support on each class. In all, several
thousands of patterns have been extracted by this method. Figures 3.9 show the
result of this search. Among all these patterns, we are only interested in those that
best discriminate the two positive sequences from the negative ones. We extract
the patterns farthest from the bisector (f(x) = x) on [0, 1] in order to submit them
to the business expertise to evaluate their relevance.
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Figure 3.8: Boxen plot of the time to anomaly for the most frequent error codes
(left), context codes (middle) and patterns (right) aggregated on one day time
window (see section 3.3) for the high speed train use case. On each plot, the left
figure gives the distribution of the time to anomaly with respect to the considered
event and the right figure the frequency of occurrence in the whole data set.
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Figure 3.9: Support on each class of patterns extracted by algorithm a priori
(Agrawal and Srikant, 1994) for µ = 1% and µ = 4% and patterns of different
sizes for the Engine Block (up), TGV Doors (middle), NAT (bottom) dataset
(see Table 3.4. Each black point is a pattern of codes with size representing the
length of the pattern. Patterns that are in the upper half of the figure are the
patterns that appears mostly near breakdowns events and pattern that are in the
bottom half of the bisector (red dotted line) are the one appear in period without
breakdowns..
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Chapter 4

Bayesian Feature Discovery for
Predictive Maintenance

This chapter corresponds to the paper (Dib et al., 2021) published in
29th IEEE European Signal Processing Conference (EUSIPCO) pro-
ceedings.

Abstract: This paper considers predictive maintenance, which is the task of
predicting rare and anomalous events (typically, system failures) using event logs
data, which are series of time-stamped symbolic codes emitted at regular or irreg-
ular intervals by a monitored system. Our objective is to find small sets of codes
(called itemsets or patterns) that occur shortly before failures. Current predic-
tion methods either produce patterns at a high computational cost or resort to
kernel approaches which are often difficult to interpret. We introduce Bayesian
Pattern Feature Discovery (bpfd), a new generic algorithm for pattern discovery.
Our method, based on a pattern mining technique, produces informative and ex-
plainable features and is computationally efficient. The performance of bpfd is
highlighted on real-world data sets, showing that enriching the feature space with
the discovered patterns improves significantly the prediction power of a broad
range of predictors and offers useful insight on the predictive maintenance task.

Key Words: Bayesian learning, pattern mining, predictive maintenance, varia-
tional inference.
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time
× × × ×× ×
et1 et2et3 et4et5et6

Ta yt7

T1

T2

T3

Time To Anomaly

Figure 4.1: Temporal aggregation of log-events (et1 , . . . , et6) over sliding win-
dows (T1, T2, T3). In red, events that occur in the period Ta before yt7 are con-
sidered anomalous and labeled l = 1. The aggregation produces the itemsets
x1 = {et1 , et2 , et3}, x2 = {et2 , et3}, x3 = {et4 , et5 , et6} and the labels l1 = 0, l2 = 0
and l3 = 1. The goal is to correctly predict the labels li from the itemsets xi.

4.1 Introduction

Predictive Maintenance (PM) aims to anticipate critical failures of large indus-
trial systems to plan early and cost-effective interventions. Since maintenance can
amount from 15% to 70% of the total operational cost (Bevilacqua and Braglia,
2000), PM is an important task to study, with far-reaching applications for the
maintenance management of a number of industrial structures: transportation
network (Ghofrani et al., 2018), power equipment (Koukoura et al., 2017), factory
plant (Kolokas et al., 2018). Many fault-predicting procedures are based on event
logs that provide information on the monitored system’s health status. Event logs
typically consist of event codes emitted at regular or irregular intervals. Formally,
such data can be seen as temporal point processes of symbols taken from a finite
dictionary. In that context, PM essentially amounts to identifying characteristic
sequences (or patterns) of symbols that occur shortly before failures. The manage-
ment of a railway fleet illustrates particularly well the importance of PM. SNCF,
France’s main railway company, uses event logs to predict failures of the train door
system, one of the most critical equipments of its rolling stock. Any malfunction
leads to the complete immobilization of the train and propagates delays to a large
portion of the transportation network.

This work’s main driver is to design an interpretable and efficient machine
learning pipeline to detect potential occurrences of breakdowns of rolling stocks.

The prediction procedure uses event logs, which are time-stamped error codes
et taken from a dictionary E of d distinct codes. These events are collected and
processed by on-board equipment according to dedicated rules to which the end-
user does not have access. These codes are produced during events deemed relevant
by the manufacturer (for instance exceeding the threshold of an electrical signal
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or a malfunction).

Procedures that make use of log events are particularly challenging since there
is no natural order or distance on the space of symbols, thus making most machine
learning models unsuitable. This issue can be overcome by kernel methods (Kung,
2014) but these approaches are difficult to interpret, which is a requirement for a
predictive solution to be used in an industrial context. Another common strategy
consists in transforming the prediction task into a binary classification task. In
a nutshell, the signal is aggregated over sliding temporal windows (possibly over-
lapping) of fixed size. Features are simply the set of collected events within the
window (called itemsets). For a given user-defined threshold period Ta > 0, a
window is considered as anomalous (label “1”) if it contains codes emitted in the
period Ta before a failure, and normal (label “0”) otherwise. This aggregation pro-
cedure is schematically illustrated on Figure 4.1. Even though popular (Basora,
Olive, and Dubot, 2019), classification based solely on this construction is often
unable to capture critical patterns of events that can be highly relevant in PM.

To tackle this issue, one can resort to methods from the related domains of
Frequent Itemset Mining (FIM) and Discriminative Pattern Mining (DPM). FIM
is the task of finding the most common patterns of a set in an exponentially
large class of all possible combinations (Agrawal, Imielinski, and Swami, 1993). A
famous application is the shopper recommendation problem, where the goal is to
find the most common products that are bought together. DPM aims at searching
for the set of patterns that best differentiate two subsets of a data set in the sense
that a pattern occurs significantly more frequently in one of the classes. This
framework has many applications such as consumer behavior analysis, RNA and
DNA gene expression, subgraph mining, and anomaly detection. Generally, DPM
algorithms start with a FIM step, where the most frequent itemsets are identified,
then compute a statistical test for each itemset to determine if its presence is
significantly different between two subsets (Hämäläinen and Webb, 2019). This
often leads to an exponential number of statistical tests to perform and make many
DPM methods computationally intensive.

In this work, we propose a Bayesian approach to explore the space of frequent
itemsets in an efficient way. More precisely, we use a Bayesian Mixture Model to
infer with a low computational cost the both frequent and discriminative itemsets.
Also, we offer empirical proof of the general use of such discriminative patterns
by considering them as features for the PM task. This results in a method that
can extract an interpretable set of attributes and significantly improve any PM
algorithm. Moreover, the Bayesian generative model allows for computing the
posterior distribution and estimating the confidence intervals. Finally, additional
expert-knowledge can be naturally introduced in the model via the choice of prior
(Gelman et al., 2013).To the extent of our knowledge (and as pointed in (Hämäläi-
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Figure 4.2: An example data set of events D = D0∪D1. Row corresponds to items
in E = (e1, . . . , e9) and columns to n = 20 samples. A blue colored area indicates
that the item is present in the sample column considered. In this data set, the
pattern x = {e7, e8} in E seems to be nondiscriminative since s0(x) = s1(x). On
the contrary, the pattern z = {e3, e4, e5} appears to be specific to the positive class
l = 1.

nen and Webb, 2019)), it is the first Bayesian approach towards DPM, and there
has been no investigation of using pattern discovery methods based on discriminant
pattern to the Predictive Maintenance task.

In Section 4.2, the basic concepts of FIM are introduced. Section 4.3 presents
our approach to the DPM problem and application to signals of log events. The
experiments are described and commented in Section 4.4.

4.2 Background
This Section introduces the concepts and main approaches of FIM and DPM.

4.2.1 Frequent Itemset Mining

Let E = (e1, . . . , ed) the base dictionary of events and E = P(E) the collection
of all 2d possible patterns on E. The windowing procedure described in Fig. 4.1
transforms the sequence of log events into a database D = {(xi, li)ni=1} of elements
of E × {0, 1} with the binary variable l indicating if a breakdown event occurred
soon after the code emission. Note that the set E can be identified with the
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Table 4.1: Contengency table for a pattern E and a database D = D0 ∪ D1 to
compute pF .

x xc Size
D1 s1(x) |D1| − s1(x) |D1|
D0 s0(x) |D0| − s0(x) |D0|

Column totals s(x) n− s(x) n

d-dimensional hypercube X = {0, 1}d, leading to the equivalence with the binary
representation described in Fig. 4.2. We also denote D0 (respect D1) the samples
in D associated with the target value l = 0 (respect l = 1) so that D = D0 ∪ D1.

The support of a pattern x ∈ E is defined as the number of samples of the
database in which any pattern greater (with respect to ⊆) than x appears. For-
mally,

s(x) =
1

n

n∑
i=1

1x∈{z∈E|xi⊆z}. (4.1)

In the same fashion, we denote sj(x) the support of the pattern x ∈ E in Dj. In
the context of predictive maintenance, s1(x) represents the number of times that
a pattern of events appears close to a breakdown. Given a threshold µ ∈ [0, 1], the
FIM task consists of finding the collection T H(E ,D, µ) of all frequent patterns in
E defined has having support greater or equal than µ. The computation of such a
collection is challenging since any algorithm has to explore a space size of |E| = 2d

elements and will exhibits exponential complexity O(n2d). The key for pruning
the set of possible patterns is the anti-monotonicity constraint which states that
every sub-pattern of a frequent pattern is frequent. This approach spans a class of
problems referred to as the Frequent Itemset Mining algorithms that can be used
to extract T H(E ,D, µ) at reasonable computational cost(Agrawal, Imielinski, and
Swami, 1993; Fournier Viger et al., 2016).

4.2.2 Discriminative Pattern

The classical DPM pattern procedure requires to perform a FIM procedure as
described in Section 4.2.1 to obtain T H(E ,D0, µ) and T H(E ,D1, µ) and compute
the contingency table (Hämäläinen and Webb, 2019). Table 4.1 describes the
complete contingency table for a pattern x ∈ E as the record of the support
of x and xc (which is the complementary pattern such that x ∪ xc = E) in D0

and D1. For instance, Fig. 4.2 displays the occurrence of each code in E in the
sample i aggregated over the window Ti. The pattern x = {e7, e8} produces a
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contingency table with s0(x) = s1(x). Since the data set D is the result of a
stochastic process, one needs to design a statistical test to evaluate the statistical
significance of the discrepancy between s0(x) and s1(x). The hypergeometric model
with a Fisher test is the most commonly used framework for finding statistically
significant pattern. Under the null hypothesis, the probability of observing the
contingency table associated with x with s1(x) = a is

pF (a) =

(|D1|
a

)( |D0|
s(x)−a

)(
n
s(x)

) . (4.2)

The p-value is then obtained as the probability of observing a contingency table
at least as extreme as the observed one. Since, in the worst case, a number of 2d

patterns must be considered, the probability of false discovery increases drastically
and requires corrections. This is the goal of recent work on DPM algorithm such
as LAMP and SPuManTe (Pellegrina, Riondato, and Vandin, 2019).

Nevertheless, all the above methods require the costly computation of T H(E ,D0, µ)
and T H(E ,D1, µ) and can be challenging to interpret as the choice of the threshold
for the p-value is a notoriously difficult problem that leads to misuses (Goodman,
2008).

4.3 Method

This Section introduces a new Bayesian approach for the DPM problem and its
application to the signal of log events.

4.3.1 Bayesian interference for pattern discovery

Once the signal of error codes has been processed according to the procedure de-
scribed in Fig. 4.1, we need to choose a generative model for the pattern database
D. We believe that a good trade-off is achieved between generality and complexity
with a model assuming that the training data set is the result of a Bayesian Mixture
Model (BMM) process with K mixture components (Pearson, 1894). This model
assumes conditional independence given the mixture class and that the database
is the result of sampling from multiple distributions pk. The final number of pa-
rameters to evaluate for a K Bayesian Mixture Model is K×d. We stress out that
the choice of K controls the complexity of the model. Taking the number of com-
ponents K to be large approximates the most exhaustive choice, which is the fully
correlated Bernoulli model with 2d parameters and is computationally intractable
for even a moderate dimension d. The simple case of K = 1 is the indepen-
dent and homogeneous Bernoulli model with i.i.d. samples. Simple combinatory
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calculus gives a support function which only depends on the length of the pat-
tern. Intuitively, it is similar to the experiment of throwing d identical coins with
probability θ0 and computing the probability of a given arrangement with given
a number of heads. The too simple previous model assumes interchangeability on
the elements ei, complete independence between them and a similar distribution
for all samples of the training data set. In the use case of DPM, this approach
has the advantage of allowing computation of any quantity of interest; one com-
putation is needed to infer the parameters and all conclusions can be drawn from
it by sampling the posterior predictive distribution. The following gives a formal
definition of the model.

Let X = (x1, . . . ,xn) be an i.i.d.sample of the pattern in the binary labeled
database D = {(xi, li)}ni=1 with xi = (xij)

d
j=1 elements of {0, 1}d and suppose the

underlying model is a BMM with K components. For k ∈ {1, . . . , K}, the k-ith
sampling distribution pk(xi|θk) depends only on the parameter θk = (θkj)

d
j=1.

Denoting λk the probability of sampling from the k-th component with
∑K

k=1 λk =
1, the global sampling distribution writes

p(xi|Θ,λ) =
K∑
h=1

λkpk(xi|θk), (4.3)

where Θ = (θk)Kk=1 and λ = (λk)
K
k=1). The conditional independence hypothesis

for each Bernoulli component applied to the mixture distribution pk leads to

pk(xi|θh) =
d∏
j=1

θ
xij
kj (1− θxijkj ).

Since it is unknown to which component k ∈ {1, . . . , K} a sample i belongs to,
it is needed to introduce the unobserved indicator wik defined by

wik =

{
1 if sample i drawn from the k-th component,
0 otherwise.

Knowing the mixture component parameter λ, the component indicator wi =
(wi1, . . . , wiK) for the sample i is thus distributed as Multin(λ). Finally, the joint
distribution is derived as

p(X,W|Θ,λ) = p(W|λ)p(X|W,Θ)

=
K∑
k=1

λk

n∏
i=1

pk(xi|θk)wik .
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The last step is to choose a proper prior distribution on the parameters. The
natural choice (Gelman et al., 2013) is to respectively set a Beta and Dirichlet
distribution for the mixture probability of occurrence Θ and the mixture parame-
ters vector λ. For a set of parameter Γ = (Θ,λ, K) associated with the Bayesian
Mixture ModelM is summarized as follow

λ|α ∼ Dirichlet (α) ,

wi|λ ∼ Multin(λ),

θkj|β,γ ∼ Beta(β,γ),

xij|θkj ∼ Bernoulli(θkj).

(4.4)

4.3.2 The bpfd algorithm

The bpfd algorithm is based on choosing the model described in Section 4.3.1
as a generative model for the samples D and computing the odd ratio support to
compare the patterns between classes. The steps are described in the following.

Preprocessing The first step is to transform the sequential data to a binary ma-
trix as described in Fig. 4.1. Note that any continuous feature can be transformed
into a multi-categorical feature.

Inference Set the hyperparameter α = ( 1
K
, . . . , 1

K
). An Expectation Minimiza-

tion (Dempster, Laird, and Rubin, 1977) procedure is performed on D0 and D1 to
infer the set of parameters Γ0 and Γ1 associated with the modelsM0 andM1.

Discriminant Pattern computation The discriminative power of a pattern
x ∈ E is evaluated through the odd ratio support

r(y) =
p(M1 | x)

p(M0 | x)
(4.5)

=
p(M1)

p(M0)
× p(x | Γ1)

p(x | Γ0)
. (4.6)

Classification The best discriminative patterns are then added to the original
training data set D and classification is performed.

The main advantage of this automatic feature extraction method is that it
can be applied to any data and will return new features that will often be easy
to interpret. The method does not require a threshold µ and can thus discover
patterns that the traditional approach would not explore. Additionally, since the
posterior sampling distribution can be simulated thanks to 4.4, the confidence
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interval on the value of r(y) can be directly obtained. Note that the potential
imbalance between the two classes is naturally taken into account by the prior
distribution effect (Gelman et al., 2013). Finally, the method is computationally
efficient since the EM algorithm converges rapidly to a local minimum of the log
posterior distribution.

4.3.3 Identifiability issue

The identifiability is a fundamental issue of mixture models of finite measures
that’s largely overlooked in the literature when statistical inference is performed
on such class of probability distributions. There’s two main identifiability problem.
the first arise from the invariance of the log-likelihood under any permutation of the
component also known as the Label Switching Phenomenon (LSP) and the second
from the non-uniqueness of the optimal solution given a dataset of samples. We
stress out that these issues are essential to tackle in order to obtain a relevant
inference.

Let TK be the set of permutation on the set (1, . . . , K). For τ = (τ1, . . . , τK) ∈
TK we define the corresponding permutations τθ =

(
θτ1 , . . . , θτK

)
,

τw =
(
wτ1 , . . . , wτK

)
and τz = (τz1 , . . . , τzn). A symmetric prior distribution (as

in the case of a non-informative prior) will be invariant under any permutation

∀τ ∈ TK , p(τθ, τw) = p(θ,w).

Given that p(θ,w|x) ∝ L(θ,w;x)p(θ,w), the posterior of the model is then
himself invariant under any permutation of the component, thus any Monte Carlo
Markov Chain (MCMC) method will switch between the different permutation of
the parameters and exhibitK! modes in his sample distribution. On multiple chain
sampling, this will likely result to a poor R̂ score (also known as Gelman-Rubin
score (Kucukelbir et al., 2015)) since the different chains will explore different area
of the parameter space.

4.4 Experiments
The bpfd was initially designed to tackle the problem of Discriminative Pattern
Mining for Predictive Maintenance on rail stock. Nevertheless, this approach is
general and can be applied to any supervised classification problem. To demon-
strate the validity and effectiveness of our approach and ensure full reproducibility,
we evaluate the bpfd algorithm on various widely used and publicly available1 data
sets as well as on the industrial Doors data set. In addition, the method is com-
pared across multiple classifiers against the Base Classifier (bc) and the popular

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Polynomial Feature (PF) approach (Kuhn and Johnson, 2019). The results are
reported in Table 4.3.

4.4.1 Setup

The bpfd algorithm presented in Section 4.3.2 and the Expectation-Minimization
procedure are implemented using the Tensorflow 2.4 and Python 3.8. The ex-
periments run on a Quad-core Intel i7 10th Gen @ 2.5 GHz. The source code
and complementary experiments, including additional classifiers and data sets, are
available online2 for reproducibility.

2https://github.com/amirdib/bpfd

https://github.com/amirdib/bpfd
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Table 4.3: Characteristic of the experimental datasets.

Name n d |D0|
|D1|

ijcnn1 91701 35 0.10
cod-rna 271617 17 0.5
a9a 32561 124 0.31

Doors 6349513 153 0.03

4.4.2 Experiments

Data sets The bpfd algorithm is tested on three public data sets commonly
used for benchmark: ijcnn1 consists of binarized maintenance data, cod-rna is a
table of labeled strains of RNA and a9a is a record of census data to predict income
of a household. The Doors data set has been provided by the French National
Railway Company and consists of a database of log-events emitted by 143 trains’
doors collected over twenty-four months. For each data set, the number of samples
n, the size of the base dictionary d = |E| and the class imbalance D0

D1
is reported

in Table 4.3.

Feature Discovery We consider the 10× cross-validated F1, Area Under the
Curve (AUC), Recall and Accuracy metrics to evaluate the improvement over the
classifiers reported in the result Table 4.2 with 70% − 30% train-test split. In
particular, the proposed approach improves the overall AUC score for almost all
data sets and classifiers considered. For instance, the ijcnn1 experiment exhibits
an AUC of 0.927 for the Extreme Gradient Boosting (XGB) classifier whereas the
vanilla approach scores at 0.769. On all data sets, the gain seems particularly
significant for the Recall metrics. It seems that the discriminating pattern mined
allows the classifier to be more sensitive. This is particularly important in the
Predictive Maintenance domain where false negatives are generally the most costly
type error that can be made.

Discriminative Patterns bpfd is compared with state-of-the-art SPuManTe
(Pellegrina, Riondato, and Vandin, 2019) test and retrieve most of the patterns
with comparable significance level. These patterns revealed to be very informa-
tive about the link between a breakdown and pattern of code emission as well as
explaining why a given algorithm would produce an incorrect prediction. As an
example, in the case of Doors fault prediction, the Base Classifier would typi-
cally raise the probability of breakdowns after a manual blocking of a door by the
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onboard personnel represented by the event em = {”Locking Door”}. Our ap-
proach shows that some patterns that indicate whether this blocking is intended
or not. For instance, the pattern x = {”Locking Door”, ”Unlocking Door”} is not
interpreted as an alert with bpfd as it is likely to be a handling error. More com-
plex events have been extracted and their relevance validated with maintenance
experts.

4.5 Conclusion
In this work, we introduced a new algorithm for DPM and derived a Feature Dis-
covery method to improve performance of any classifier in the supervised learning
framework. This method is tested on various real-world and production data. In
addition to the metric score improvement, our approach offers explainable insights
on the classification task. Some extensions of this work could include using the
bread-stick model to alleviate the need for a mixture parameter K. The present
framework can easily be extended to multi-categorical classification. We plan to
consider it in future work.





Chapter 5

Localized Pattern Mining

This chapter corresponds to the preprint (Cousins* and Dib*, 2021)1

submitted to the IEEE International Conference on Data Mining
(ICDM 2021).

Abstract: This paper considers the problem of finding the best sampling strat-
egy for pattern mining problems, which can be stated as computing the frequency
at which a pattern, or a set of events, occurs in a database. This problem is ubiq-
uitous in data mining, and is typically intractable due to the exponentially large
number of possible patterns that must be evaluated. Recent approaches use tradi-
tional tools from statistical learning theory to obtain uniform additive bounds on
these frequencies, which are effective for frequent patterns, but are generally un-
satisfying for infrequent patterns, which are typically the hardest to mine exactly.
In this work, we propose the first bound based on localized Rademacher averages
(LRAs) in the context of pattern mining. We show that localized Rademacher
averages are sufficient to obtain relative confidence interval estimates on pattern
frequencies, as well as other interestingness measures, such as the lift, confidence,
or odds ratio. In contrast, previous techniques fail to do so for low-frequency pat-
terns. Our methods rely on standard tools in the pattern mining repertoire, such
as closed pattern families, antimonotonicity, Monte-Carlo Rademacher averages,
and new techniques we introduce to address the problem-specific computational
challenges arising from evaluating the localized Rademacher average. The perfor-
mance of our approach is empirically demonstrated on real-world datasets, wherein
exhibit fast convergence rates for the considered subclass of patterns, sharply con-
trasting existing work.

1equal contributions.

101



102 CHAPTER 5. LOCALIZED PATTERN MINING

5.1 Introduction

Consider the independent observations of a stochastic process of events such as
random graphs, sentences, or DNA sequences. A most natural question to ask
is how many or which patterns of events occur with at least a given frequency.
Unfortunately, answering such questions requires to enumerate the exponential
number of possible association of events which is NP-hard (Yang, 2004). This is
known as the pattern mining task, and it is one of the most prominent problem in
Data Mining, with various application in a broad range of domains that span from
query database (Pavlov, Mannila, and Smyth, 2003), graph mining (Mansha et al.,
2016; Shang et al., 2017; Zheng et al., 2013), sequence mining (Sirisha, Shashi, and
Raju, 2014), anomaly detection (He et al., 2016; Bogojeski et al., 2020; Aggarwal
et al., 2018; Laredo et al., 2019).

Since the seminal work of (Agrawal, Imielinski, and Swami, 1993), most of
the proposed algorithms to tackle the frequency pattern mining task leverage the
anti-monoticity property, which can be stated as follows: any pattern is at most as
frequent as any pattern that contains it. Using a user-specified frequency threshold
µ in [0, 1], it is thus possible to prune the space of possible patterns in a breadth-
first search fashion by generating new pattern candidates at each step, and stop the
exploration whenever patterns with support less than µ is encountered. Although
efficient, these methods suffer from several limitations. For one, the requirement for
a frequency threshold bars from estimating the frequency of rare patterns. Second,
time and memory complexity can still be prohibitive, even for a high-frequency
threshold, when the number of samples in the database is large, as is often the
case in modern applications. Finally, deterministic pattern mining techniques do
not consider the fact that the database results from a random generative process.
Hence, it is not possible to obtain a confidence interval for the resulting mined
patterns.

Each of this limitation is overcome by sampling methods REF. In this setting,
one only considers a subset of size n of the pattern database to mine from and
compute a bound on the obtained frequencies. It leads to a relation between the
size of the subset and precision of the estimated frequencies with respect to the true
unknown frequency. Formally, the task consists of computing the size of the subset
of the database n needed to obtain an estimation of any frequency at precision
ε ∈ [0, 1] with probability at least 1− δ. It thus relates to bounding an empirical
process generated by an unknown distribution indexed on a finite functional space
(Boucheron, Lugosi, and Massart, 2013).
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(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

A001

(0, 0, 0)

e1 e2 e3 e4

t1 1 1 0 0
t2 1 1 0 1
t3 1 1 1 1
t4 1 0 1 0
t5 0 1 1 1

Figure 5.1: Lattice representation of X (left) and table view of a database from
a realisation ω (right). In the left figure, the red circle represents the subset
associated with the itemset (0, 0, 1) = {e3}. The right table gives that support of
this item is 3

5
.

5.1.1 Related work

This work uses tools and concepts from statistical learning theory to bound the
precision of estimated frequencies computed on a sample.

Stemming from the work of Agrawal and Srikant (1994), the frequent pattern
mining task consists of computing the frequency of a set of items, or patterns, that
appear in a database more than a certain threshold µ ∈ [0, 1]. The frequency s(x),
sometimes referred as support, of a pattern x is defined as the number of samples
of the database on which a pattern greater (with respect to ⊆) than x appears.
We stress that FIM is the starting point of various techniques related to data
mining tasks. For instance, Association Rule Mining (Agrawal and Srikant, 1994;
Zaki and Hsiao, 2005) considers the problem of finding rules between itemsets at
a given confidence level. For two patterns x, y ∈ E , the goal is to mine rules
x→ y such that the support s(x ∨ y) and confidence measure c(x, y) = s(x∨y)

s(x)
are

no greater than two threshold µ, ν ∈ [0, 1]. The confidence measure inform about
the co-occurrence of two patterns while taking into account their frequency in the
database.

From the problem of FIM quickly emerged the computation time in the high
dimensional case. One idea introduced and empirically tested by (“Efficient Al-
gorithms for Discovering Association Rules”) extracted FIS by sub-sampling the
database. Toivonen (1996) proposes a method using the Hoeffding bound (Hoeffd-
ing, 1963), wherein a sample size in bigO(

d ln 1
δ

ε2
) is sufficient to estimate all itemset

frequencies. (Zaki et al., 1998) showed that this method leads to a drastic reduc-
tion in computation time (by one order of magnitude) and memory requirement.
However, even though quick and straightforward to compute, this method does not
take account of the sparsity of the data, leading to very conservative estimation.
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Union Bound Rade. LRA
Analytic (Toivonen, 1996) AMIRA Bartlett / Oneto
Monte-Carlo N/A MCRapper This Work

Table 5.1: Summary of related literature and positioning of this work.

More refined bounds can be obtained by using distribution-dependent com-
plexity measures from statistical learning theory. Recent work (Riondato, 2014)
bounds the VC dimension by the D-index, which is an upper bound on the maxi-
mum transaction size, and shows that n ∈ bigO(

D ln 1
δ

ε2
) samples suffice.

With data-dependent bounds, the additive error ε is a function of the sample,
thus the sufficient sample size n cannot be explicitly computed a priori. At a
given level ε and for δ, the value of n cannot always be explicitly computed due to
the data-dependence of epsilon with the sample. This framework corresponds to
the progressive sampling method and roughly consists of drawing iteratively larger
samples, until the desired ε threshold is met.

Existing methods use (global) Rademacher averages to mine frequent or top-k
itemsets, which is appropriate, as we do not require sharp bounds on low-frequency
itemsets. In particular, (Riondato and Upfal, 2015) uses an analytical counting
argument to get a loose bound on the empirical Rademacher average, whereas
(Pellegrina et al., 2020) use a Monte-Carlo approximation strategy to get a sharp
bound, at the cost of additional computation. Moreover, in some settings like k-
mer frequency estimation, all patterns are low-frequency, but some are significantly
lower than others. This led to domain-specific methods to efficiently estimate
low-frequencies with biased window-based domain-specific estimators (Pellegrina,
Pizzi, and Vandin, 2020). In contrast, our method provides sharp frequency esti-
mates for both low and high-frequency patterns in generic pattern mining settings.

The classical notion of Rademacher complexities, which considers the entire
hypothesis functional space, only allow for establishing the slow rate bigO( 1√

n
)

although empirical studies reported fast rate in bigO( 1
n
). This fact was one of

the main driver for the localized Rademacher framework (Bartlett, Bousquet, and
Mendelson, 2005).



5.2. BACKGROUND 105

5.1.2 Contributions

This work marks the first use of localized Rademacher complexity to the low-
frequency pattern mining problem. We also introduce the Monte Carlo localized
Rademacher average, improving over existing analytic methods to more sharply
bound LRAs.

Computational challenges arise in both the Monte-Carlo (evaluating Monte-
Carlo RAs) and localization (computing fixed points involving localized RAs) as-
pects of this work. In particular, we present Algorithm 1 to efficiently compute
MC-LRAs, give applications to contrast pattern mining, and discuss and many
other settings where such bounds prove invaluable. We then formalize a target
task for low-frequency pattern mining, and present Algorithm 2, which uses pro-
gressive sampling to realize this objective efficiently, with applications to mining
importance measures with relative error guarantees. After tackling these issues, we
find that the natural combination of these ideas leads to sophisticated finite-sample
guarantees, with strong performance for low-frequency patterns.

Our experimental evaluation shows that localized methods soundly improve
over a Bennett Union bound approach (also appropriate for low-frequency estima-
tion), and that Monte Carlo LRAs improve over looser analytic LRA bounds. This
mirrors the well-known progress in the literature from Hoeffding-union bounds, to
loose analytic global Rademacher average pounds, to Monte Carlo Rademacher av-
erages; the difference is of course that the aforementioned techniques all produce
uniform estimation guarantees, whereas our methods produce better guarantees
for low-frequency estimation patterns, and are the suitable for relative pattern
frequency estimation objectives.

5.2 Background
This section introduces the necessary tools and concepts from the Data Mining
and Statistical Learning domain.

5.2.1 Pattern mining

Let E = (e1, . . . , ed) represents a list of items, P(E) = X be the set of all itemsets
or patterns, and D ∈ X⊗N the transaction database of size N . The support or
frequency s(t) of an itemset t ∈ X is defined as the number of times it appears on
the transaction database D divided by N .
Note that the set X is in bijection with the hypercube of dimension d, thus we
can set X = {0, 1}d. Additionally, consider the collection of set A = {At : t ∈ X}
with At = {z ∈ X : z ⊇ t} the set of all itemsets greater than t ∈ X with respect
to ⊇. We can define the functional space associated with this collection of events
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as F = {ft : t ∈ X} with ft = 1At . Figure 5.1 illustrates the case in which d = 3
with A001.
Given distribution P , the support s(t) of any itemset t ∈ X is defined as the
probability of the event At

s(t) = P (At)

= Pft.

In other words, the support of a pattern x ∈ E is defined as the number of samples
of the database in which any pattern greater (with respect to ⊆ than x appears.
The computation of such a collection is intractable since any algorithm will have
to evaluate the |E| = 2d elements and will thus exhibit exponential complexity
bigO(n2d). Instead, the sampling approach consists of computing these supports
only for a small subset of n� N and providing deviation bound for the true but
unknown support. This approach relates to the problem of estimating bound on
the suprema of empirical process (Boucheron, Lugosi, and Massart, 2013).

5.2.2 Suprema of an empirical process

This section presents the key tools of statistical learning theory and associated
results. The central quantity is the deviation process over the function class F .
For every function ft in F , the deviation from the true support can be expressed
as

SnF = sup
f∈F

∣∣∣P̂nf − Pf ∣∣∣ , (5.1)

where P̂n is the empirical counterpart of Pf for every function in F . The main
difficulty arises from the fact that this quantity depends on the unknown un-
derlying distribution P . Most modern approaches use Rademacher Complexities
(Boucheron, Lugosi, and Massart, 2013) as it generally leads to sharper bounds
and can be easily empirically evaluated.

Definition 4 (Rademacher Averages). Let σ1, . . . , σn be an i.i.d. sample of Rademacher
variables independent of the samples (x1, . . . , xn) and valued in {−1, 1} with equal
probability. Then, the (global) empirical Rademacher average complexity of F is
defined as

R̂n(F ,x) =
1

n

∣∣∣∣∣
n∑
i=1

sup
f∈F

σif(xi)

∣∣∣∣∣, (5.2)

and the global Rademacher average as RnF = E
[
R̂n(F ,x)

]
.
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Intuitively, Rademacher averages measure the richness of the functional family
by evaluating its ability to fit random noise σ. Moreover, the use of Rademacher
complexity to uniformly bound processes is a standard tool in statistical learning
thanks to famous Bousquet’s inequality (Boucheron, Lugosi, and Massart, 2013).
As a sub-Poisson, bound, we must first introduce the associated functions, used
throughout this paper to sharply bound probabilistic quantities.

Definition 5 (Poisson Fenchel-Legendre Dual and its Inverses).

φ(a) = (1 + a) log(1 + a)− a, a > −1

φ̂(a) = 1− exp
[
1 +W−1

(
a−1
e

)]
, ∀a ∈ [0, 1] : φ[−φ̂(a)] = a

φ̆(a) = exp
[
1 +W0

(
a−1
e

)]
− 1, ∀a ≥ 0 : φ[φ̄(a)] = a

(5.3)

Note that these functions are generally evaluated around 0, where φ(a) ≈ a2

2
,

thus φ̂(a) ≈ φ̆(a) ≈
√

2a. Given any x > 0, the following inequality holds with
probability 1− e−x (Boucheron, Lugosi, and Massart, 2013)

sup
f∈F

P̂nf − Pf ≤ 2Rn(F ,x) + νφ−1(
x

ν
), (5.4)

where ν = 2Rn(F ,x) + σ2. R̂n(F ,x) is typically in O( 1√
n
), as is the bound of

Equation 5.4. Note that The bound in equation 5.4 is considered over the whole
functional family. By considering only a fraction of the class Fr = {f ∈ F :
T (f) < r} that depend on the localization parameter r and a function T : F →
R it is possible to greatly improve this result and obtain fast rate in bigO( 1

n
)

under some mild conditions (Bartlett, Bousquet, and Mendelson, 2005) that are
straightforward to verify in the application context of pattern mining. There is
two main challenge toward this approach. The first one is to select a suitable
radius r∗ that can be obtained through a subroot function analysis. The second
is the constant factor that can make a bound obtained by such method vacuous.
These two challenges are overcome by the use of the Oneto’s (Oneto et al., 2015)
approach that we adapt to obtain a very sharp bound for the subset pattern mining
problem.

5.3 Localized Pattern Mining
This section begins by describing the theoretical results for localized pattern min-
ing. We then present the LocalMiner algorithm to bound the expected support
Pf in terms of the empirical support P̂ f for all f ∈ F , with applications to dis-
criminative pattern mining. Finally, we introduce the RLPS algorithm to derive
relative confidence intervals, which we use to bound interestingness measures.
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Figure 5.2: Illustration of piecewise ψ̂(r) for each function in F , for a toy database
generated by a homogeneous Bernoulli distribution with d = 4 and n = 100.

5.3.1 Localized empirical bound for pattern mining

At the heart of the localization method is the so-called r-star-localized family
(Bartlett, Bousquet, and Mendelson, 2005), defined as

Fr
.
=
{
αf
∣∣∣α ∈ [0, 1], f ∈ F , P

[
(αf)2

]
≤ r
}
. (5.5)

Star-localization has the effect of scaling down high-variance functions, thus uni-
form convergence within the localized class Fr yields sharper guarantees for low-
variance functions. More precisely, the Rademacher average of the localized class
R̂(Fr) is decreasing in r, with F1 = F . Unfortunately, since Pf is not known a
priori, we must approximate Fr with an empirically localized class F̂r. Following
Oneto, 2020, Equation 5.102, we define

F̂r
.
=

αf
∣∣∣∣∣∣α ∈ [0, 1], f ∈ F , P̂n

[
(αf)2

]
≤ 3r+5rφ̂

(
ln 4

δ

5nr

) . (5.6)

Since F̂r ⊆ Fr with high probability, considering the class F̂r allow to obtain
variance-sensitive bounds across F (Oneto et al., 2015). To that end, we need to
introduce the following quantities.

Definition 6. Let F be the functional family and F̂r the empirical star localized
class (5.6). For Rademacher trial count m, sample size n, and any δ ∈ [0, 1], define
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the following

ψ̂n(r)
.
= 2R̂n

(
F̂r,x

)
+ rφ̂

(
2 ln 3

δ

nr

)
, (5.7)

with r̂ .
= 3r+ 5rφ̂

(
ln 3
δ

5nr

)
and consider the fixed point r̂∗n such that r̂∗n = ψ̂n,m (r̂∗n).

For all K > 0, we set rU(K) to be the fixed point w.r.t. r of the following equation

√
rr̂∗n +

[
2
√
rr̂∗n + r

]
φ̆

(
1
n

ln 3
δ

2
√
rr̂∗n + r

)
=

r

K
. (5.8)

Note that using φ̆(u) ≈ 2
√
u, we can roughly understand the fixed point rU(K)

in two cases. The first one is when r̂∗n is large (and φ̆ negligible) leading to rU(K) ≈
K2r̂∗n. The second case correspond to the situation where r̂∗n is small (r̂∗n ≈ 0)
which result in rU(K) ≈ 4K2 ln 4

δ

n
. As these situations are mutually exclusive, we

take rU(K) ≈ K2(r̂∗n + 4
n

ln 4
δ
) to be our initial guess in solving this fixed-point

equation.
The fixed point r̂n exists as it can be shown that ψ̂n,m is sub-root (Oneto et

al., 2015). The behavior of the ψ̂n,m is displayed in figure 5.2. Note that the

Monte-Carlo correction term 2r̂φ̆

(
2 ln 4

δ

nmr̂

)
can be brought arbitrarily close to 0 by

raising the number of Monte-Carlo trials m, though it is rapidly dominated by the

Bousquet term rφ̂

(
2 ln 4

δ

nr

)
.

Lemma 1 (Frequency-Constrained MCLRA). Suppose upper and lower ERA bounds

R̂↓n(F ,x) ≤ R̂n(F ,x) ≤ R̂↑n(F ,x),

and consider

ψ̂↓↑n,m(r)
.
= 2R̂↓↑n

(
F̂r,x,σ

)
+ 2r̂φ̆

(
2 ln 4

δ

nmr̂

)
+ rφ̂

(
2 ln 4

δ

nr

)
,

with fixed points
r̂∗↓↑n,m,

which upper and lower bound the corresponding quantities for the MCLERA in
expectation.
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Let frequency threshold and truncated pattern family

µ↓
.
= R̂n(F̂r̂∗↓n,m ,x), F ′ .= {f ∈ F : P̂ f ≥ µ↓}.

For any sample and Rademacher variable σ, we bound the localized Monte-Carlo
ERA as

R̂n,m(F̂ ′r̂∗n,m ,x,σ) ≤ R̂n,m(F̂r̂∗n,m ,x,σ) ≤

1

m

m∑
i=1

max
(
R̂↓n,m(F̂r̂∗n,m ,x), R̂n,1(F̂ ′r̂∗n,1 ,x,σi)

)
.

Furthermore, in expectation we have

R̂n(F̂ ′r̂∗n,m ,x) ≤ R̂n(F̂r̂∗n,m ,x) ≤

Eσ
[
max

(
R̂↓n(F̂r̂∗n,m ,x), R̂n,1(F̂ ′r̂∗n,1 ,x,σ)

)]
.

Furthermore, with high probability, fixed points of ψ̂↑↓n,m approximately (precisely
in expectation?) sandwich those of ψ̂n,m as

r̂∗↓n,m / r̂∗n,m / r̂∗n,m.

We can now state the main theorem of this work that derives from (Oneto
et al., 2015), which offers fully empirical bounds for the supremum deviation for
mining a dataset of sample of size n.

Theorem 2 (Monte-Carlo Localization Bounds). Consider the fixed point rU(K)
of Definition 6. With probability at least 1− δ and for function f ∈ F we have

Pf ≥ sup
K>0

min

{
K

K + 1
P̂nf, P̂nf −

rU(K)

K

}
,

Pf ≤ inf
K>1

max

{
K

K − 1
P̂nf, P̂nf +

rU(K)

K

}
.

The bounds in Theorem 2 only contain empirical quantities although computing
R̂(F̂r) is generally intractable. The next subsection resolves this issue and presents
an efficient algorithm to compute the bounds.
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Algorithm 1: Localized Pattern Miner
Function LocalMiner(F , r0, x, m, δ):

Input: Pattern family F ⊆ {0, 1}d → {0, 1}, mining frequency
threshold r0, transaction database x ∈ {0, 1}d×n, Monte-Carlo
trial count m, confidence (1− δ)

Output: Localized bound rU(·) (see Theorem 2 and lemma 2)
FC ← ClosedPatterns(F ,x, r0)
σ ← Um×n(±1) . Draw Rademacher sequences

FP (i)← Pareto
{(
−
∑
f(x),

∣∣σi ·f(x)
∣∣) : f ∈ FC

}
Let r̂

.
= 3r+5rφ̂

(
ln 5
δ

5nr

)
∀r

ψ̂r0i (r)←
√
r0 ·min(r0, r̂

m+|1·σi|
2m

)

ψ̂i(r)← 2 max

(
ψ̂r0i (r), sup

f∈FP (i)

min

(
1,
√

r̂

P̂nf

)∣∣∣σ·f(x)
n

∣∣∣)
ψ̂(r)← 1

m

m∑
i=1

ψ̂i(r) + rφ̂

(
2 ln 5

δ

nr

)
+ 2r̂φ̆

(
2 ln 5

δ

nmr̂

)
r̂∗ ← r : r = ψ̂(r)

rU(K)← r :
√
rr̂∗ +

[
2
√
rr̂∗ + r

]
φ̆

(
ln 5
δ

n(2
√
rr̂∗+r)

)
= r

K

return rU(·) . Function rU(·) fully specifies the bound

5.3.2 Estimating itemset frequencies with LocalMiner

This section is devoted to the computational aspects of deriving localized bounds
for pattern mining. The procedure consists of a double fixed-point resolution.
First, we compute the function ψ̂n,m(·) and determine its unique fixed point. Then,
it is used to solve for the second fixed point rU(K). We now describe LocalMiner
(Algorithm 1), an efficient algorithm for the computation of ψ̂n,m(·) for pattern
mining tasks.
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Using the definitions of ψ̂n,m(r), F̂ , F̂r, and, letting r̂
.
= 3r+5rφ̂

(
ln 4
δ

5nr

)
for all

r and every function f in F , we define

ψ̂n,m(r, f)
.
= γ + R̂n({f},x,σ) min

1,

√
r̂

P̂nf

 . (5.9)

We then re-express ψ̂n,m(r) in terms of these quantities as

ψ̂n,m(r) = sup
f∈F

ψ̂n,m(r, f) + 2r̂φ̆

(
2 ln 4

δ

nmr̂

)
+ rφ̂

(
2 ln 4

δ

nr

)
(5.10)

= sup
f∈F

min

1,

√
r̂

P̂nf

∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣ (5.11)

+ 2r̂φ̆

(
2 ln 4

δ

nmr̂

)
+ rφ̂

(
2 ln 4

δ

nr

)
. (5.12)

This function has a unique fixed-point as φ̂ and φ̆ amount to small corrections,
and the remaining terms are piecewise curves consisting of parabolic and hori-
zontal linear segments. The piecewise behavior of ψ̂n,m(·) that is described by
Equation (5.10) is illustrated in Figure 5.2. It is easy to see that any f such that
(P̂nf,σ ·f(x)) is not Pareto-optimal REF can not realize the supremum of ψ̂n,m(·),
which further simplifies computing ψ̂n,m(·) and fixed points thereof.

Theorem 3 (Local Miner (Algorithm 1) Guarantees). Suppose x,
rU(·) ← LocalMiner(F ,X,m, δ), and take P̂n to be the empirical measure on
x. The conclusions of Theorem 2 then holds with P , P̂n, and rU(·).

A rich line of work explores the discriminative pattern mining task, where
the goal is not to estimate a set of frequent itemsets but rather to determine
whether two transaction databases are drawn from the same distribution, i.e.,
hypothesis testing for a statistically significant difference. Similar methods apply:
e.g., union bounds to control for multiple testing or permutation testing for the
maximum deviation between populations. Like the (global) Rademacher average,
the permutation test is inherently insensitive to low-frequency patterns due to
them being, in a sense, overpowered by high-frequency patterns. Algorithm 1 can
be applied immediately to this task and makes an interesting tradeoff in test power,
as it is inherently more sensitive to frequency differences on low frequency patterns
than unlocalized methods. Due to space constraints, we do not further explore the
topic here, but we note that Theorem 3, applied individually to 2 samples, allows
us to reject the null hypothesis if the bounds for any itemset are disjoint.
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Algorithm 2: Relative Localized Progressive Sampling
Function Rlps(F , X, m, α, ε, δ):

Input: Pattern family F ⊆ {0, 1}d → {0, 1}, transaction database
X ∈ {0, 1}d×m, Monte-Carlo trial count m, low-frequency
threshold α ∈ (0, 1], multiplicative error ε > 0, confidence
(1− δ)

Result: Sample x, relative guarantee ε, localized bound rU(·)
β ← 2; I ← 1 ∨ blogβ

d
2αε
c;n0 ← 1

αε
ln 2I

δ
. . Schedule

for i ∈ 1, . . . , I do
ni ← dn0β

ie
x← Uni(X) . Subsample ni transactions
rU(·)← LocalMiner(F ,x, n, δ

I
) . Get LRA bounds

K∗ ← K : K+1
K
rU(K) = α

if 1
K∗
≤ ε then

return x, 1
K∗

, rU(·)
end

end

5.3.3 Relative Frequency Estimation with Progressive Sam-
pling

We define a novel objective for low-frequency pattern mining which we term as
the α-ε-δ relative frequency estimation task. Frequency estimation is particularly
relevant in the context of low-frequency pattern mining. Formally, in an ε-δ relative
guarantee, the following bound holds with probability 1− δ

1
1+ε

P̂nf ≤ Pf ≤ 1
1−ε P̂nf, (5.13)

or equivalently, Pf ∈ [ 1
1∓ε ]P̂nf . This equation captures the ideal of sharper bounds

for low-frequency patterns. However, this target is too optimistic, as the sample
complexity of ε-relative estimation grows unboundedly as Pf → 0. To circumvent
this limitation we introduce the frequency threshold parameter α and define a α-
ε-δ relative estimator for a family of patterns F as any estimator that produces
some P̂n. In particular, given a threshold α in [0, 1], we require

P

 ⋂
f∈F :Pf≥α

Pf ∈ [ 1
1∓ε ]P̂nf

 ≥ 1− δ. (5.14)

Note that we consider the 1
1∓ε -relative error for convenience, but any other

standard relative error concept can be alternatively used with small changes to the
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algebra. As illustration, Figure 5.3 compares the different choice to be considered
in Lemma 2 for bounds involving various relative error concepts.

Using Algorithm 1, we construct Algorithm 2 for the α-ε-δ relative frequency
estimation task. The goal of any progressive sampling algorithm is to design a
sampling schedule, ranging from optimistic minimal sample size to pessimistic
maximal sample size, such that the desired probabilistic bounds hold at all steps
of the schedule with probability at least 1 − δ. We first state a technical lemma
relating LRA to relative error guarantees and then proceed to derive an appropriate
sampling schedule.

Lemma 2 (Monte-Carlo Localization Bounds: Relative Error). Under the same
assumptions than Theorem 2, let α ∈ R+ and f ∈ F such that Pf ≥ α. Then

1. K
K+1

α ≥ rU(K) =⇒ Pf ≥ K
K+1

P̂nf ,

2. K
K−1

α ≥ rU(K) =⇒ Pf ≤ K
K−1

P̂nf .

Furthermore, suppose K such that α ≥ K+1
K
rU(K). Then

3. ε .
= 1

K2 =⇒ Pf ∈ K2

K2−1
P̂nf [1± ε],

4. ε .
= 1

K
=⇒ Pf ∈ P̂nf

[
1

1±ε

]
.

Due to the complexity of localized bounds, and the difficulty of bounding such
terms in the absence of any a priori knowledge, we use the following generic lower
bound on Bernoulli mean estimation

n↓(αε, δ
I
)
.
= ln(

I

δ
)

1

αε
(5.15)

≤ ln(
2I

δ
)

1

αε
. (5.16)

This bound is tight within constant factors for datasets containing only near-empty
transactions. For the upper bound, we use the standard Hoeffding-union bound
(Boucheron, Lugosi, and Massart, 2013)

n↑(αε, δ
I
) = ln(

2d+1I

δ
)

1

2α2ε2
(5.17)

≤ ln(
2I

δ
)

d

2α2ε2
. (5.18)

Note that the technique could be refined to instead use VC-theoretic bounds(Riondato
and Upfal, 2015) with a possible improvement of O(ln ln d) to O(ln lnD) terms at
the cost of having to evaluate the empirical VC dimension for application.
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Figure 5.3: Comparison of Various Relative Error Concepts.

The final step is to divine a sampling procedure to find the smallest n to
consider at a given precision requirement. We use a doubling (β = 2 geometric)
sampling schedule to interpolate between n↓ and n↑. As multiple rounds induce
multiple comparisons error, we take a union bound over the I iterations which
adds a ln ln d

αε
sample complexity factor.

Theorem 4 (Progressive Sampling (Algorithm 2) Guarantees). Suppose x, ε,
rU(·) ← Lrpm(F ,X,m, α, ε, δ) and take P̂n to be the empirical measure on x.
For all f in F such that Pf ≥ α the following holds with probability at least 1− δ,

P̂nf(1− ε) ≤ Pf ≤ P̂nf(1 + ε). (5.19)

In other words, P̂nF is an α-ε-δ relative frequency estimate of PF .

Proof. The result follows via the union bound over the guarantee of Algorithm 1
(Theorem 3) applied to each of its (up to) I applications, and the relative frequency
estimation guarantees of Lemma 2.

Note that this algorithm can immediately be used to compute α-ε-δ approx-
imations of many interestingness measures (c.f. Table 5.3) as long as all of the
relevant probabilities exceed the threshold α and support values have been es-
timated with sufficient accuracy. The Table 5.3 offers a brief overview of several
popular interesting measures. We highlight that relative estimation guarantees are
easily composed via products, ratios, and square roots, unlike additive estimates,
which can become large when divided.
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Table 5.2: Characteristics of the experimental datasets.

Name n d
Accidents 340183 468
Chess 3196 75

Connect 67557 129
pumsb 49046 2108
Retail 88162 14089

Mushroom 8416 119

5.4 Experimental Evaluation

Setup. The implementation is in python 3.7 and runs on [redacted for anonymity].
the full source code of each experiment is available at online2 for reproducibility.
We used the FP-growth algorithm for the exact frequent itemset mining, lever-
aging the extensive SPMF library (Fournier-Viger et al., 2017). We carry out
experiments on synthetic, standard and real-world datasets to demonstrate the
performance of the proposed method for progressive sampling. As a baseline, we
use the Hoeffding-Union bound (cu) and MC-Rapper, as the latter is considered
to be state of the art.

Unless otherwise noted, all experiments use the itemsets pattern family F .
=

{ft : t ∈ X}.

5.4.1 Comparative Analysis of statistical guarantees for sup-
port

In this first experiment (Figure 5.4), we compare Algorithm 1 to the Hoeffding-
union bound, and the Monte-Carlo empirical Rademacher average bound of Pel-
legrina et al. (2020) on several real-world datasets whose main characteristics are
displayed in Table 5.2. The competing approaches all yield uniform confidence
intervals, but our method yields sharper balance for low-frequency itemsets, so we
visualize all algorithm outputs as upper and lower bounds (y-axis) on true pattern
frequencies at a given empirical frequency (x-axis).

For comparison, we also contrast our algorithm with an empirical Bennett
union bound approach. Bennett’s inequality consists of a sub-Poisson inequality
for random variables of bounded range and variance. It performs similarly to Ho-
effding’s inequality when variance is maximal but yields much sharper confidence

2https://anonymous.4open.science/r/lra-pattern-mining-C5CF/

https://anonymous.4open.science/r/lra-pattern-mining-C5CF/


5.4. EXPERIMENTAL EVALUATION 117

0.00 0.25 0.50 0.75 1.00
Empirical Support

0.0

0.2

0.4

0.6

0.8

1.0

su
p

f
|P

nf
Pf

|

Accidents n=2000

0.00 0.25 0.50 0.75 1.00
Empirical Support

0.0

0.2

0.4

0.6

0.8

1.0
Retail n=2000

0.00 0.25 0.50 0.75 1.00
Empirical Support

0.0

0.2

0.4

0.6

0.8

1.0
Mushrooms n=2000

Hoeffding Bennett MCLRA Massart LRA McRapper True Support

Figure 5.4: Experimental comparison of upper and lower bounds (y-axis) given
empirical frequencies (x-axis), of our method (Algorithm 1) to existing work on
real-world datasets.

intervals when variance is small.
Additionally, our work makes two major leaps; the first is to use localized

Rademacher averages for the low-frequency pattern mining problems, and the sec-
ond is in using Monte-Carlo estimation to sharply bound LRAs. To assess their
impact in isolation, we contrast with a localized bound that uses a simple loose
upper bound on the appropriate empirical Rademacher averages instead of our
sharply estimated MC-LRA.

Setup In these experiments we take a conference parameter 1−δ = 1−10−3. We
plot estimated frequencies on the x-axis, and true frequencies on the y-axis, of all
closed itemsets. Due to the one-in-a-thousand error guarantee, we unsurprisingly
observe no bound violations in any experiment.

Results It is clear that the Hoeffding and Bennett bounds are always the worst
methods. Among the uniform bounds, we see that is uniformly the worst method,
and then we observe that MCRapper is at least as good, if not much better, in all
datasets.

Our method makes an interesting tradeoff, with clear superiority for low fre-
quency and medium frequency itemsets but weaker bounds after a dataset-dependent
frequency threshold is met. This is inherently the price to pay for increased sen-
sitivity to low-frequency itemsets, but we know that this deficit may be repaired
by applying both methods (with a union bound correction).

In the (high dimensional) retail dataset, the Bennett and Hoeffding bounds are
vacuous, and in the accident dataset, the Bennett bound is not vacuous, but it is
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dominated by the other bounds. However, while Bennett has not performed par-
ticularly well in the mushrooms dataset, there are ranges of low-variance function
for which it beats the uniform bounds.

The localized methods take this theme of improvement for low-functions and
develop it further. By avoiding the costly union bound, they can show strong
performance for low-frequency functions. In particular, our Monte-Carlo localized
bounds uniformly dominate (are always superior to) the analytic (Massart) local-
ized bounds for all datasets and all frequency ranges. Furthermore, for sufficiently
small empirical frequencies, both localized bounds always beat all uniform bounds,
including the state-of-the-art McRapper. Clearly, the frequency threshold below
which localized bones become superior is higher (better) for our Monte-Carlo lo-
calized bounds than for the analytic bounds.

The contrast between the analytic and Monte-Carlo bounds mirrors the im-
provement from AMIRA to MCRapper in the uniform (non-localized) case.

5.4.2 Progressive Sampling

In our final experiment (Figure 5.5), we visualize the execution of Algorithm 2. In
particular, we show how our localized bound evolves as a function of sample size,
by plotting our bounds at multiple sample sizes, and contrasting with the target ε-
δ relative guarantees. In particular, for each sample size, an ε-δ relative guarantee
is reached for all frequencies exceeding some α′, and the algorithm terminates once
α′ ≤ α.

The termination condition is equivalent to checking when the upper and lower
bounds are fully contained by the region between the α and 1

1∓ε lines.
We observe that the bounds (in particular the lower bound) for low-frequency

patterns improve faster than those for high-frequency patterns. Based on their
variance, the sample complexity of estimating low-frequency patterns should in-
deed be lower than the one when estimating high-frequency patterns, and this
behavior confirms that the proposed LRA-based method exhibits this behavior.
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Figure 5.5: Progressively generated upper and lower bounds on true pattern fre-
quencies with progressively doubling sampling sizes from Algorithm 2 on the Ac-
cidents dataset, with α = 0.1, ε = 0.25, and δ = 0.1. The low-frequency threshold
α is visualized as a dotted vertical line and the 1

1∓ε relative guarantee as dashed
diagonal lines around the true frequency line y = x. There is no ambiguity, as the
bound becomes sharper with each doubling iteration.

5.5 Conclusion

We re-examine the pattern mining setting with a focus on the often-overlooked
low-frequency patterns. We identify two key applications for low-frequency pattern
mining; namely that of contrast pattern mining and bounding interesting measures.
We introduce the α-ε-δ relative frequency estimation problem to formalize low-
frequency pattern estimation and develop sampling methods to efficiently perform
these tasks with small sample size.

We show that Local Rademacher Average (LRA) are an effective tool for low-
frequency pattern estimation, whereas previous work, which relied on global ERAs,
was only sufficient for ε-δ additive estimation. This work is of independent interest
beyond the pattern of mining setting, as it is, to our knowledge, the first to sharply
bound LRA This mirrors the improvement from analytic (Riondato and Upfal,
2015) to Monte-Carlo (Pellegrina et al., 2020) (global) ERAs in the pattern mining
setting.
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Support P (XY )
Confidence P (Y | X)

Lift/Interest P (Y |X)
P (Y )

or P (XY )
P (X)P (Y )

Jaccard P (XY )
P (X)+P (Y )−P (XY )

Certainty Factor P (Y |X)−P (Y )
1−P (Y )

Odds Ratio P (XY )P (X̄Ȳ )
P (XY )P (XY )

Yule’s Q P (XY )P (X̄Ȳ )−P (XȲ )P (X̄Y )
P (XY )P (XY )+P (XY )P (XY )

Yule’s Y
√
P (XY )P (X̄Ȳ )−

√
P (XȲ )P (X̄Y )√

P (XY )P (X̄Ȳ )+
√
P (XȲ )P (X̄Y )

Table 5.3: Several common interestingness measures.

We provide two algorithms: Algorithm 1 (local miner) shows how to compute
LRAs efficiently for finite pattern families, and Algorithm 2 uses progressive sam-
pling for the specific problem of α-ε-δ relative frequency estimation. These have
immediate applications in contrast to pattern mining and in interestingness mea-
sure mining, and we think that future work could extend our statistical ideas to
new application-specific quantities.

Our experiments confirm that localized Rademacher averages are an effective
tool for low-frequency pattern mining. It can be used to obtain variable-width
confidence intervals that are sharper for such low-frequency patterns than global
methods, which are bottlenecked by the necessarily larger confidence intervals for
high-frequency patterns. Furthermore, we see that our methods are competitive
with the state-of-the-art global methods and vastly improve the more simplistic
Bennett-union method for low-frequency pattern mining.

A straightforward extension of this work consists of applying our methods to
related pattern concepts, wherein new computational routines may be required to
bound LRAs (in particular the ψ̂n,m(·) function), i.e., with infinite pattern families
or utility pattern families, and to tasks with other objectives. Algorithm 1 provides
a generic recipe to obtain sharp bounds, and Algorithm 2, with minor changes (in
particular to the termination condition), is a powerful tool to dynamically adapt
sample consumption to the needs of a particular task.

While our methods soundly beat the state-of-the-art, we are under no delusions
about their efficiency in an absolute sense. This work marks the first application
of localized Rademacher averages in the pattern-mining setting, and we expect
subsequent research into LRAs to yield further improvements to our bounds. Fur-
thermore, the progressive sampling schedule of Algorithm 2 is likely suboptimal,
i.e., considers a schedule of sample sizes that is too optimistic on the low-end and
too pessimistic on the large end, but this is manifest only as suboptimal sample
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complexity in log log(·) terms. Future work could optimize further the computa-
tions performed by our algorithms. In particular, while we use standard techniques
in pattern mining to consider only the set of closed patterns, and perform most
computation on Pareto-optimal subsets, we note that McRapper (Pellegrina et
al., 2020) uses a branch-and-bound search to compute Monte-Carlo (global) ERA
without necessarily enumerating all closed patterns. Computing the fixed point r∗
is much more involved, as we effectively need to compute ERAs for many r-star-
localized families, but similar search methods would likely be applicable to our
framework to avoid enumerating closed patterns.





Part IV

Optimal Quantization for stochastic
optimization
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Chapter 6

Voronoi Tesselation for stochastic
optimization

This section is devoted to the use of quantization in the context of stochastic opti-
mization. The term himself takes his origin in the domain of signal processing. It
relates to finding a satisfactory (in term of information loss) finite approximation
of a continuous signal and has been the main tool for signal compression (Gersho
and Gray, 1992). The intuition behind considering that the redundancy of infor-
mation in a random object can be exploited through codebooks can be traced back
to (Shannon, 1951). In the context of probability, the term quantization histori-
cally referred (Graf and Luschgy, 2000) to the best approximation in the measure
space metricized by the Wasserstein distance of a Rd valued random variable X
by a random variable X̂ with finite support. This section presents the theoretical
foundations and methods for the construction of such quantizer.
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Figure 6.1: Quantization of an analog signal. A signal amplitude in volts, his
non uniform quantization (top) and the absolute value of the quantization error
produced (bottom).

6.1 The Voronoi partition

We first present the geometrical aspect of Optimal Quantizer as it relates to funda-
mental properties. Let (Ω,A,P) be a probability space, (E, ‖.‖) be a vector space
equipped with the distance d and the induced norm ‖.‖. The space of p-integreable
measure inM (E) is denoted Pp (E) and Lp (Ω,A,P) the quotient space (for the
equivalence relation defined by the P-a.s. equality) of probability distribution such
as

Lp (Ω,A,P) =

{
f measurable |

∫
E

‖f(x)‖pµ(dx) < +∞
}
.
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When considering a random variable X : (Ω,A) −→ (E,B(E)), the measure is
given by µ = P ◦X−1. We say that a measure π inM

(
B(E)⊗2

)
has marginals µ

and ν if for any borel set A ⊂ E, π(A× E) = µ(A) and π(E × A) = ν(A).
For x, y in E the line segment between x and y is defined as the set [x, y] such

as
[x, y] =

{
(1− t)x+ ty | 0 ≤ t ≤ 1

}
.

For any scalar λ ∈ R and set A ⊆ E we denote λA =
{
λa | a ∈ A

}
. In the same

fashion, given any real form L : E −→ R, LA =
{
Ta | a ∈ A

}
is the image of A

by the application L.
At the heart of OQ is the concept of Voronoi subset.

Definition 7. Let Γ ⊂ E be a finite bounded set of size n.

Voronoi diagram. For every xi in Γ, the Voronoi cell associated with xi is de-
fined as

V (xi,Γ) =
{
z ∈ E | ‖z − xi‖ = min

xj∈Γ
‖z − xj‖

}
,

and the Voronoi diagram of E associated with Γ

V(Γ) =
{
V (xi,Γ): xi ∈ Γ

}
.

Voronoi partition. A Voronoi partition V(Γ) = {W (xi,Γ)}ni=1 of E associated
with Γ is a borel set of E such as for all xi ∈ Γ

W (xi,Γ) ⊆ V (xi,Γ).

The borel sets V (xi,Γ) consists of the point that are the closest of xi for the
distance induced by ‖.‖. Note that the set of Voronoi partition associated with
a set of point Γ is clearly non empty as it contains the Voronoi diagram of Γ.
Moreover, it is not unique depending on the choice for the boundary points in
∂W (xi) = ¯W (xi) ∩ (E\W (xi)).

The geometry of the Voronoi cells are determined by the set of hyperplanes
separating a couple of Voronoi cell associated with xi and xj defined by

H(xi, xj) =
{
z ∈ E | ‖z − xi‖ ≤ min

xj∈Γ
‖z − xj‖

}
.

The Voronoi cells are then the intersection of all hyperplanes surrounding xi in
the sense that

V (xi,Γ) =
⋂
xj∈Γ

H(xi, xj).
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We can deduce from that characterization that the geometrical properties of
the cells will heavily depend on the regularity of the underlying norm. Figure 6.2
shows the Voronoi diagram generated by a set of points for different norm in the
real case E = R2.

More restrictive conditions on the norm are needed to obtain cells that are suf-
ficiently regular to have interesting property when measured. For instance, under
the hypothesis that the underlying norm is strictly convex it can be shown (Lugosi
and Wegkamp, 2004; Pagès, 2015) that the interior of the boundary ∂W (xi,Γ) is
empty. The following proposition establishes general results similar to Luschgy
and Pagès (2008) in the general case of vector space.

Proposition 1. Let Γ ⊂ E be a finite non empty bounded set of size n and for
each xi ∈ Γ the associated Voronoi cells V (xi,Γ) ⊂ E.

1. The Voronoi diagram V(Γ) is borel cover of E in the sense that⋃
xi∈Γ

V (xi,Γ) = E.

2. The Voronoi cells are star shaped relatively to their center i.e. for any ele-
ment x in V (xi,Γ), the segment joinging xi and x is in V (xi,Γ).

3. In the real case E = Rd and for the euclidean norm, the Voronoi cells are
convex polytopes.

We refer to Graf and Luschgy (2000)[Proposition 1.2] for the star-shaped prop-
erty (stated in the real case but essentially the same for a normed space E)
and to section 6.5.1 for the euclidean norm. In the former case, the separat-
ing plane between two points is the kernel of the continuous linear map ψ(z) =〈
xi − xj, z − 1

2
(xi + xj)

〉
which the middle hyperplane between xi and xj.

The figure 6.2 shows that the Voronoi cells associated with each points are
convex subsets of E = R2 for some `p

(
R2
)
norms.

A crucial property of Voronoi cells are their invariance property or the fact
that they are preserved under a certain type of transformation.

Proposition 2. Let Γ ⊂ E be a non empty finite bounded set of size n and
V (xi,Γ) the associated Voronoi cells for each xi ∈ Γ. Let T be a scaling function
with scaling factor c that is any application such as ‖Tx−T y‖ = c‖x−y‖. Then,
for all xi in Γ we have

V (Txi,T Γ) = TV (xi,Γ). (6.1)
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Figure 6.2: Voronoi diagram for a finite subset Γ ⊂ R2 with size n = 5 for the
`1

(
R2
)
norm (Manhattan distance, left), `2

(
R2
)
norm (Euclidean distance, center)

and `∞
(
R2
)
norm (Chebyshev distance, right). Each point x of R2 is colored by

it’s associated Voronoi cell. Notably, the Voronoi cells are star-shaped for all
considered distances (see Proposition 1), are convex polytopes in the euclidian
case and the separating sets are hyperplanes of R2.

Given a Voronoi diagram V(Γ), proposition 2 states that all the Voronoi dia-
gram of any scaled transformation of Γ is known. This property is of particular
interest when the Voronoi diagram is known up to a scaling function and is a key
element of the quantized variational inference procedure described in Chapter 7.

Proposition 3 (Geometric regularity (Graf and Luschgy, 2000)). Let E = Rd

equiped with a norm ‖.‖, a subset Γ of Rd and consider for each xi in Γ the
Voronoi cells V (Γ, xi) induced Γ as in definition 7. If the norm on Rd is strictly
convex or Rd is equipped with the `p

(
Rd
)
norm with 1 ≤ p ≤ ∞ , then for all xi

in Γ

λd(V (Γ, xi)) = 0, (6.2)

where λd is the Lesbeague measure on B(Rd).

Note that the conjecture made in (Graf and Luschgy, 2000, Conjecture 1.12)
that states that proposition 3 holds for any norm and any dimension has proven
to be false for any dimension d greater than three (Gao, 2005).

6.2 Optimal quantization for random variables

An quantifier is a Borel function E which is valued in a set with cardinal less or
equal to n such as X̂ = f(X). It is equivalent to say that a quantizer of X is a
σ(X)-measureable random variable with finite support less or equal to n. Since Ω
is an element of σ(X), any constant is a quantizer of X. Of course, we want to
find the quantizer that is a satisfactory approximation of X in a sense that will
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be made clear. Such good finite approximation is called a optimal quantizer. This
section is devoted to formalize this definition and explore the properties of this
object.

6.2.1 Projection on quantization grid

Constructing the optimal quantizer requires to find a set of point Γ ⊂ E, also
called quantization grid such as the minimum Lp (Ω,A,P) distance is attained.
The following shows how to explicitly construct such finite measure by the closest
projection of X ∈ Lp (Ω,A,P) with distribution µ onto a finite closed set of E. Let
Γ ⊂ E and V(Γ) an associated Voronoi diagram. Consider the closest projection
onto the Voronoi cells defined by

ΠΓ : E −→ E

z 7−→
∑N

i=1 xi1z∈V (Γ,xi).
(6.3)

The function ΠΓ is (E,B(E))-(R,B(R)) measurable so that the following ran-
dom projection of X onto the Voronoi cells is well defined

X̂Γ = ΠΓX

=
N∑
i=1

xi1X∈V (Γ,xi).
(6.4)

Note that X̂Γ is not unique in general as there is many Voronoi diagram as-
sociated with Γ. Since the Voronoi diagram depends only on the way that the
points on the boundary ∂V (Γ, xi) are associated, two quantization are µ-a.s. equal
whenever the µ(∂V (Γ, xi)) = 0 for all xi in Γ (see proposition 3 in the for the real
case).

The criteria to evaluate the quality of a quantizer of X is the distortion of µ
at level n.

Definition 8 (Optimal Quantizer). Let X : ((Ω,F)) −→ (E,B(E)) be a random
variable in Lp (Ω,A,P) with distribution µ and consider a finite subset Γ ⊂ E of
size n. The Lp (Ω,A,P) distortion function Dp,µ of µ at level n is defined by

Dp,µ : En −→ R+

Γ 7−→ E
[
minxi∈Γ‖X − xi‖p

] , (6.5)

and the quantization error function by

ep,µ = D
1
p
p,µ. (6.6)

The minimizer of en,µ(x) is called a Lp (Ω,A,P) optimal quantizer of µ at level
n.
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The existence of an optimal quantizer is established in (Graf, Luschgy, and
Pagès, 2007)[Proposition 1] for any Banach space E and E-valued radon measure
µ. The optimal quantizer is not unique in general. For an optimal quantizer
X̂Γ∗ of X at level n, each of the 2n permutation of elements of Γ∗ will produce
an optimal quantizer. If radial invariance of the probability density function is
assumed will result in an infinite number of the optimal quantizer. A result of
(Kieffer, 1982) proves uniqueness for log-concave probability density function in
the one dimensional real case (Pagès, 2018)[Theorem 5.3].

Note that for the projected quantizer 6.4, the Lp (Ω,A,P) norm of the pointwise
error is

‖X − X̂Γ‖Lp(Ω,A,P) = ep,µ(Γ). (6.7)

Example 1 (Optimal Quantizer at level 1). In the real case E = Rd, the quadratic
(p = 2) optimal quantization grid at level n = 1 is the element x of Rd that
minimizes ∥∥X − x∥∥

L2(Ω,A,P)
,

which is a strictly convex function admitting an unique solution x∗ = E [X], an
associated optimal quantization grid Γ∗ = {xx} and an optimal quantizer X̂Γ∗ =
ΠΓ∗ X.

6.2.2 Optimal tranport approach

This section aims to establish and make precise the close connection between
Optimal Quantizer and the optimal transport domain. This link has been recently
explored in (Liu and Pagès, 2020b) notably showing that there exist an integer n
such as that for quantization level N ≥ n Lp (Ω,A,P) quantization based distance
produces the same topology as the Wasserstein distance.

Definition 9 (Wasserstein distance). Let (E, ‖.‖) be a vector space equiped with
the norm ‖‖, µ, ν ∈ M (E) two probability measure on E and 1 ≤ p ≤ ∞]. We
define the Lp Wasserstein distance onM (E) such as

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
E×E

dp(x, y)dπ(x, y)

)1/p

, (6.8)

Where Π(µ, ν) is the set of joint probability measure on (E2,B(E)⊗2) with marginals
µ, ν.

The probability measure space M (E × E) endowed with this distance is a
metric (Villani, 2008) and that Wp(µ, ν) is finite whenever µ, ν ∈ Pp (E). Solving
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on the space of probability the measure Π relates to the optimal transport problem
when one search for an optimal transport plan to transfert the all the mass from µ
to ν with c(x, y) = ‖x − y‖p the cost associated with transporting an elementary
amount of mass from x to y. With this view, for any A,B ∈ B(E), the measure
π(A×B) represents the amount of mass transported from the region A to B. We
refer to Panaretos and Zemel (2019) for more theoretical results on the Wasserstein
distance.

The previous interpretation gives a natural way to define the optimal quantizer
of a random variable X ∈ Lp (Ω,A,P) with distribution µ as the closest projection
on the set of all measure with support at most n with respect to the Wasserstein
distance.

Definition 10. Let (E, ‖.‖) be a vector space equiped with the norm ‖.‖, µ ∈
M (E) a probability measure with p-th finite moment and n ∈ N the quantization
level. DenotingM (n) the space of probability measure with support at most n,
the optimal quantizer ν̂n of µ is defined by

ν̂n = argmin
ν∈M(K)

Wp(µ, ν). (6.9)

Taking for instance the empirical measure µ =
∑n

i δi, we can say that the
approximation in term of the Wasserstein can be as best as the level of distortion of
the optimal quantizer. The optimal quantizer can be rewritten as a finite weighted
sum of dirac measure

ν̂n =
n∑
i=1

wiδxi . (6.10)

This problem is known as the semi-discrete optimal transport problem (Peyré
and Cuturi, 2020) and linked with numerous applications in machine learning.
For instance, taking equal weights wi = 1

n
it corresponds to the k-means problem.

The equivalence between the quantizer in definition 10 and the one construction
in Equation 6.4 can be established by the following proposition.

Proposition 4. Let (Ω,A,P) be the propoability space, X ∈ Lp (Ω,A,P) and
consider X̂ a quantization at level n. The following equality holds

Wp(X̂,X) = ‖X − X̂‖Lp(Ω,A,P). (6.11)

Proof of this result can be found in (Graf and Luschgy, 2000)[proposition 4.3].
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Remark 1 (Equivalence with the random projection). Consider the following
quantization of X

ν̂n =
n∑
i=1

wiδxi . (6.12)

It follows from the definition 9 that

Wp(µ, ν) =
∑
j

wj inf
γ(x|yj)

∫
X
c
(
x, yj

)
γ
(
dx | yj

)
. (6.13)

It has been shown that for known weights, the optimal transport plan consists
of pushing all the mass in µ onto a set of Laguerre Cells (Peyré and Cuturi, 2020)
which are Voronoi cells with an additive constant factor,

Lj(g) =
{
x | ∀k, c

(
x, yj

)
− gj < c (x, yk)− gk

}
. (6.14)

Using the dual formulation it is possible to optimize jointly on the weights and
the transporation plan. In this case, the laguerre cells are Voronoi cells (g = 0)
and the optimal weights are given by

ŵj =

∫
Vj

ν(dx). (6.15)

6.2.3 Properties of the optimal quantizer

On of the main application of an optimal quantizer is to be used for numerical
integration. To that end, the optimal quantizer exhibits remarkeable properties
that makes it suitable for this task.

Proposition 5 (Stationnarity, Invariance). Let X : (Ω,F) −→ (E,B(E)) a ran-
dom variable in Lp (Ω,A,P) and X̂Γ∗ the associated optimal quantizer at level n
as in definition 8.

Invariance. For any scaling function T: E −→ E with scaling coefficient c as
defined in Proposition 2, consider transformation Y = TX. The optimal
quantization of Y at level n is given by

ŶT (Γ∗) = ΠT (Γ∗) Y. (6.16)

Stationnarity. The optimal quantizer has the stationnary property in the sense
that

E
[
X | X̂Γ∗

]
= X̂Γ∗ . (6.17)
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Univariate Optimal Quantization Random Quantization Optimal Quantization

Figure 6.3: Optimal quantization of the standard univariate normal distribution
X ∼ N (0, 1) at level n = 10 (left), random quantization (center) and optimal
quantization (right) of the bivariate standard normal distribution X ∼ N (0, I2).
For each point xi of the quantization grid Γ, the associated weight ωi = P

(
X̂Γ = xi

)
gives his relative importance (values are displayed in shades of red).

Cubature Formula. Given that the elements of the Voronoi diagram V(Γ∗) are
real convex cells in Rd and for any continuous fonction F : Rd −→ R

E
[
F
(
X̂N
)]

=
n∑
i=1

ωiF
(
xNi
)
. (6.18)

The invariance property stems from proposition 2 (see (Graf and Luschgy,
2000) for complete proof). Given an optimal quantizer of X, it allows one to
compute, at only the cost of evaluating a function, any optimal quantizer of the
form F (X) that can be obtained by shifting or scaling operations. This property
is key to the quantized gradient descent algorithm of section 7.2.2. Note that the
stationary property is a necessary but not sufficient condition for a quantizer to
be optimal. Other quantizers can have such property has the grid quantization
(Pagès, 2018)

The cubature formula makes optimal quantization suitable for numerical inte-
gration as one can easily substitute E

[
F (X)

]
with E

[
F (X̂Γ∗)

]
.
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Proposition 4 shows that the optimal quantizer will weakly converge towards
the true measure with respect to the quantization level, and Equation 6.7 gives
the pointwise error. In the case of numerical integration, a natural question to
ask in order to compare this method with other types of sampling is the rate of
convergence at which it occurs. Most of the results are base on Zador’s theorem
(Zador, 1982).

Theorem 5 ((Pagès, 2018)). Let X ∈ Lp+δR (P) for some δ > 0.

Sharp Rate. Let Pz(dξ) = ϕ(ξ) · λ(dξ) + ν(dξ), where ν ⊥ λ i.e. denotes the
singular part of Pz with respect to the Lebesgue measure λ on R. Then,

lim
n→+∞

n min
Γ⊂R,|Γ|6n

∥∥∥X − X̂Γ

∥∥∥
p

=
1

2p(p+ 1)

[∫
R
ϕ

1
1+pdλ

]1+ 1
p

. (6.19)

Non Asymptotic Upper-bound. Let δ > 0. There exists a real constant C1,p,δ ∈
(0,+∞) such that, for every R -valued random variable X and all n ≥ 1,

min
Γ⊂R,|Γ|6n

∥∥∥X − X̂Γ

∥∥∥
p
6 C1,p,δσδ+p(X)n−1, (6.20)

where, for r ∈ (0,+∞), σr(X) = mina∈R ‖X − a‖r < +∞.

Example 2 (Univariate standard normal distribution). Consider the real case
E = R equiped with the euclidian norm and X ∼ N (0, 1). The probability
measure associated is absolutely continuous with respect to the Lebesgue measure
with the log density probability density function

lnφ(x) = − ln(
√

2π)− x2

2
.

The probability density function φ is log-concave, and thus there exist a p
optimal quantization of X at any level n (Pagès, 2018)[Theorem 5.3]. The optimal
quantization grid of the standard normal distribution is represented in Figure 6.3
along with the induced Voronoi cells and weights.

Example 3 (from (Graf and Luschgy, 2007)). Let X = U([0, 1]d) and consider a
tesselation of [0, 1]d consisting of n = kd translates C1, . . . , Cn of the cube

[
0, 1

k

]d
.

Denote by ai the midpoint of Ci. Then Γ∗ = {a1, . . . , an} =
{

2i−1
2k

: i = 1, . . . , k
}d.
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6.3 Numerical Integration

A proeminent problem in analysis is the computation of the expectation of a
random variable

I = E
[
F (X)

]
, (6.21)

for F (X) in L1 (Ω,A,P) and a measurable function F : Rd −→ Rd. Even for
common probability distribution, there is typically no analytical form for this
quantity. Most of the techniques resort to numerical computation that provide and
good approximation and are asymptotically P-a.s. equal to the true expectation.

As we have seen in proposition 5 it is possible to compute such expectation
using the optimal quantizer X̂Γ∗ for a random variable with p-th finite moment
thanks to the cubature formula

IOQn = E
[
F
(
X̂N
)]

=
N∑
i=1

ωiF
(
xni
)
.

(6.22)

A natural idea is to replace the true expectation with its quantized counterpart.
This approximation has several advantages. Let (X1, . . . , Xn) be an i.i.d. sequence
of random variable defined on (Ω,A,P) and µX distributed. consider the following
Monte-Carlo estimator

IMC
n =

1

N

N∑
i=1

F (Xi). (6.23)

By the strong law of large number, IMC
n converges towards I almost surely,

and at a rate of O(n−
1
2 ) if F (X) ∈ L2 (Ω,A,P) with a quadratic error

‖IMC
n − E

[
F (X)

]
‖L2(Ω,A,P) =

VF (X)√
n

, (6.24)

and the MeanSquaredError in O(n−1). Proposition 4 establishes that the
estimator IOQn is closest to the true distribution with respect to the Wasserstein
distance. An additional and important point is that the OQ estimator does not
depend on any event ω in Ω which makes the OQ a variance free but biased
estimator. Thanks to proposition 4 it is possible to consider that its the optimal
choice among all such estimators.

The error bound is established in (Pagès, 2018)[section 5.2] and considers a
measurable Lipschitz function F : (Ω,F) −→ (Rd,B(Rd)) and F (X) ∈ Lp (Ω,A,P).
Then

‖F (X̂Γ∗)− F (X)‖L1(Ω,A,P) ≤ FLip‖X − X̂Γ∗‖Lp(Ω,A,P). (6.25)
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If F is differentiable, using the stationary property (see proposition 5) gives

|IOQn − E
[
F (X)

]
| ≤ 1

2
[∇F ]Lip‖X − X̂Γ∗‖L2(Ω,A,P). (6.26)

We refer to (Pagès, 2018)[proposition 5.2] for detailed proof. The error is thus
given by the distortion function of definition 8. The rate of convergence is obtained
by using Zador’s theorem (see Theorem 5) but can be improved by considering
more regularity on F . let α ∈ [0, 1], η ≥ 0, if F is continuously differentiable on
Rd with α-Hölder gradient and X ∈ L2+η

Rd (P), one has the following bound on the
Absolute Error (Pagès, 2015).∣∣EF (X)− EF

(
X̂Γ∗

) ∣∣ ≤ Cd,µ[∇F ]αN
− 1+α

d . (6.27)

The convergence rate obtained is the best finite approximation of X in the
sense of the Wasserstein distance (see Proposition 4).

6.4 Construction of the optimal quantizer
The main drawback of this method is the construction of an optimal quantizer. To
the best of our knowledge, no method using semi-discrete optimal transport has
been yet proposed. In the real case with E = Rd metrizes with euclidian norm for
the quadratic optimal quantizer (p = 2), the Loyd’s algorithm and its variants is
used (Lloyd, 1982).

The most used methods use the gradient of the distortion function. Let E = Rd

and consider a random variable X ∈ L2 (Ω,A,P) with known density function µ
and an initial random quantizer X̂Γ with Γ ⊂ Rd. In this case we know from Propo-
sition 3 that the boundary of the cells are P-megligeable and that the distortion
function is differentiable (Pagès, 2018)[Theorem 5.1] so that

∇Q2, N(x) = 2

[∫
Ci(ΓN )

(xi − ξ)PX(dξ)

]
i=1,...,N

. (6.28)

Stochastic Gradient Descent A simple zero-search algorithm can then be
used to find a good approximation of Γ∗. For each step k of the gradient descent
procedure, let Γ[k] be the n quantization grid and consider the following update
scheme

Γ[k+1] = Γ[k] − γn∇Γ[k]e2,µ

(
Γ[k]
)
, (6.29)

with an initial Γ[0] thant can be chosen randomly in the support of µ. When the ex-
pectation in not analytical or distribution unknown but i.i.d.samples (X1, . . . , Xn)
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Algorithm 3: Quantized Variational Inference.
Input: µ, Γ[0].
Result: Approximation of the optimal quantizer Γ∗, optimal weights ωi,

quantization error e2,µ(Γ∗).
while not converged do

for xi ∈ Γ do
ωi = µ

(
V (xi,Γ)

)
e2,µ(xi) = E

[
(X − xi)2

1X∈V (xi,Γ)

]
end
Γ[n+1] = Λ

(
Γ[n]
)

end

Figure 6.4: Randomized Loyd I procedure.

can be obtained, it is direct to obtain a stochastic version of this algorithm known
as the Competitive Learning Vector Quantization algorithm (see (Pagès, 2015) for
details and convergence proof).

Randomized Loyd I The original Loyd algorithm (Lloyd, 1982) describes a
fixed-point search strategy that leverages the stationary property (see proposition
5) on the normalized expectation of each cell. Consider the following quantity

Λi(Γ) =
E
[
X1X∈V (xi,Γ)

]
P
(
X ∈ V (xi,Γ)

) . (6.30)

At each step, the fixed point method writes

Γ[k+1] = Λ
(
Γ[k]
)
, (6.31)

until convergence. Note that the expectation can be directly replace with a
Monte Carlo estimator. It is shown in (Pagès, 2018) that this fix point search
decreases the quadratic function at each step. The solution to this fix point prob-
lem corresponds to the minimum of the distortion function in the sense that if
Γ = Λ (Γ) then ∇e2,µ(Γ) = 0. Algorithm 3 describes the complete procedure.
Note that the weights ωi and distortion values are computed as the algorithm
progresses with

ωi = µ
(
V (xi,Γ)

)
e2,µ(xi) = E

[
(X − xi)2

1X∈V (xi,Γ)

]
.

(6.32)
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6.5 Proofs

6.5.1 Proof of Proposition 1

Lemma 3. Let (E, ‖.‖) be a normed space and A a non empty subset. Let x ∈ E
and a ∈ A such as d(x,A) = ‖x− a‖. Then, for all z ∈ [x, a]

d(z, A) = ‖z − a‖. (6.33)

Proof. Let z ∈ [x, a]. Let t ∈ [0, 1] such as z = (1− t)x+ ta,. For all b ∈ A,,

‖z − a‖ = (1− t)‖x− a‖
≤ (1− t)‖x− b‖
= ‖(1− t)x− (1− t)b‖
= ‖(1− t)x+ ta− (1− t)b− ta‖
= ‖z − (1− t)b− ta‖
= ‖(1− t)z + tz − (1− t)b− ta‖
≤ (1− t)‖z − b‖+ t‖z − a‖,

(6.34)

so that reorganizing the last equation we get ‖z−a‖ ≤ ‖z−b‖, hence d(z, A) =
‖z − a‖.

Proof of proposition 1-(2). It is a direct consequence of applying Lemma 3 to the
complementary of each Voronoi cells with A = E \ (V (xi,Γ)

Lemma 4. Let
(
E, 〈·, ·〉

)
be a pre-Hilbert space. For all x, y ∈ E

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Proof of proposition 1-(3). Applying Lemma 4 to y = x−a for the separator space
we get

S(a, b) =
{
x ∈ Rd :

〈
a− b, x− 1

2
(a+ b)

〉
= 0
}
. (6.35)





Chapter 7

Quantized Variational Inference

This chapter corresponds to the paper (Dib, 2020) published in
Advances in Neural Information Processing Systems 33 Proceedings
(NeurIPS 2020).

Abstract: We present Quantized Variational Inference, a new algorithm for Ev-
idence Lower Bound maximization. We show how Optimal Voronoi Tesselation
produces variance free gradients for Evidence Lower Bound (ELBO) optimization
at the cost of introducing asymptotically decaying bias. Subsequently, we propose
a Richardson extrapolation type method to improve the asymptotic bound. We
show that using the Quantized Variational Inference framework leads to fast con-
vergence for both score function and the reparametrized gradient estimator at a
comparable computational cost. Finally, we propose several experiments to assess
the performance of our method and its limitations.

Key Words: variational inference, Bayesian learning, stochastic optimization,
optimal quantization.
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7.1 Introduction

Given data y and latent variables z, we consider a model p(y, z) representing our
view of the studied phenomenon through the choice of p(y|z) and p(z). The goal
of the Bayesian statistician is to find the best latent variable that fits the data,
hence the likelihood p(z|y). These quantities are linked by the bayes formula which
gives that p(z|y) = p(z)p(y|z)

p(y)
where p(y) is the prior predictive distribution (also

named marginal distribution or normalizing factor) which is a constant. Given
a variational distribution qλ, the following decomposition can be obtained (Saul,
Jaakkola, and Jordan, 1996)

log p(y) = E
z∼qλ

[
log

p(z, y)

qλ(z)

]
︸ ︷︷ ︸

ELBO(λ)

+ KL
(
qλ(z)‖p(z|y)

)︸ ︷︷ ︸
KL-divergence

. (7.1)

It follows that maximizing the ELBO with respect to qλ leads to find the best
approximation of p(z|y) for the Kullback–Leibler (KL) divergence. Intuitively,
this procedure minimizes the information loss subsequent to the replacement of
the likelihood by qλ but other distances can be used (Ambrogioni et al., 2018).

The reason for the popularity of such techniques is due to the fact that finding
a closed-form for p(z|y) requires to evaluate the prior predictive distribution and
thus to integrate over all latent variables which lead to intractable computation
(except in the prior conjugate case) even for simple models (Gelman et al., 2013).
A common approach is to use methods such as Gibbs Sampling, Monte Carlo
Markov Chain or Hamilton Monte Carlo (Betancourt, 2018; Homan and Gelman,
2014; Brooks et al., 2011) which rely solely on the unnormalized posterior distribu-
tion (freeing us from the need to compute p(y)) and the ability to sample from the
posterior. These methods are consistent but associated with heavy computation,
high sensitivity to hyperparameters and potential slow to converge to the true tar-
get distribution. On the other hand, optimization techniques such as Variational
Inference (VI) are generally cheaper to compute, tend to converge faster but are
often a crude estimate of the true posterior distribution. Recent work proposes to
combine these two strategies to allow for an explicit choice between accuracy and
computational time (Salimans, Kingma, and Welling, 2015).
Thanks to approaches such as Black Box Variational Inference (BBVI) (Ran-
ganath, Gerrish, and Blei, 2014; Kingma and Welling, 2014) (which opens the
possibility of the generic use of VI), Automatic Variational Inference (AVI) (Ku-
cukelbir et al., 2015) and modern computational libraries, Variational Inference
has become one of the most prominent framework for probabilistic inference ap-
proximation.
Most of these optimization procedures rely on gradient descent optimization over
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the parameters associated with the variational family and subsequently depending
heavily on the `2(RK) (with K the number of variational parameters) norm of
the expected gradient (Bottou, Curtis, and Nocedal, 2018; Domke, 2019). The
bias-variance decomposition gives

E|g|2`2 = trVg + |Eg|2`2 . (7.2)

Low variance of the gradient estimators allows for taking larger steps in the param-
eter space and result in faster convergence if the induced bias can be satisfyingly
controlled. Several methods have been used to reduce gradient variance such as
filtering (Miller et al., 2017; Roeder, Wu, and Duvenaud, 2017) control variate
(Geffner and Domke, 2018) or alternative sampling (Tran, Nott, and Kohn, 2017;
Ruiz, Titsias, and Blei, 2016; Buchholz, Wenzel, and Mandt, 2018).

In real-world applications, one would test a large combination of models and
hyperparameters associated with multiple preprocessing procedures. A common
practice for bayesian modeling on large datasets consists of using VI for model
selection before resorting to asymptotically exact sampling methods. More gener-
ally, VI is typically the first step towards more complex and demanding sampling.
In this work we propose to give more importance to parsimonious computation
than accuracy. Our approach is based upon embracing the fundamental bias in
resorting to VI approach and finding the best variance free estimator which pro-
duces the fastest gradient descent. This work proposes to use Optimal Quantizer
(OQ) (also called Optimal Voronoi Tesselation, see (Graf and Luschgy, 2007) for
an historical view) in place for the variational distribution. Given a finite subset
ΓN of Rd, the optimal quantizer at level N of a random variable Z ∈ LpRd(Ω,A,P)
on a probability space (Ω,A,P) is defined as the closest finite probability measure
on ΓN for the LpRd(Ω,A,P) distance. Hence, it is by construction the best finite
approximation of size N in the Lp (Ω,A,P) sense. Recent works have shown that,
given a regularity term α, the Absolute Error error induced by such quantization
is in O(N−

1+α
d ) (Lemaire, Montes, and Pagès, 2019; Pagès, 2018).



144 CHAPTER 7. QUANTIZED VARIATIONAL INFERENCE

Monte Carlo Randomized Quasi Monte Carlo Optimal Quantization

Figure 7.1: Monte Carlo (left), Randomized Monte Carlo (center) and Optimal
Quantization with the associated Voronoi Cells (right), for a sampling sizeN = 200
of the bivariate normal distribution N (0, I2).

Contribution. We show that: i) thanks to invariance under translation and
scaling our method can be applied to a large class of variational family at similar
computational cost; ii) even though biased our estimation is lower than the true
lower bound under some assumptions with know theoretical bounds, making it
relevant for quick evaluation of model; iii) our approach leads to competitive bias-
variance trade.

Organisation of the paper. Section 7.2 introduces the idea of using Optimal
Quantization for VI and shows how it can be considered as the optimal choice
among variance free gradients. Section 7.3 is devoted to the practical evaluation
of these methods and show their benefits and limitations. Due to space restrictions,
all theoretical proofs and derivations are in the supplementary materials.
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Algorithm 4: Monte Carlo Variational Inference.
Input: y, p(x, z), qλ0 .
Result: Optimal VI parameters λ∗.
while not converged do

Sample (Xλk
1 , . . . , Xλk

N ) ∼ qλk
Compute ĝNMC (λk) = 1

N

∑N
i=1∇λH(Xλk)

λk+1 = λk − αkĝNMC (λk)

end

7.2 Quantized Variational inference
In this Section, we present Quantized Variational Inference. We review tradi-
tional Monte Carlo Variational Inference in 7.2.1. Details of our algorithm along
with theoretical results are presented in 7.2.2. Finally, section 7.2.3 proposes an
implementation of Richardson extrapolation to reduce the produced bias.

7.2.1 Variational inference

Given a parameter family λ ∈ RK , exact estimation of equation 7.1 is possible in
the conjugate distribution case given some models when closed-forms are avalaible
(Blei, Kucukelbir, and McAuliffe, 2017; Winn and Bishop, 2005). Complex or
black box models require the use of minimum-search strategy such as Stochastic
Gradient Descent (SGD), provided that a suitable form for the gradient can be
found. Expressing z as a transformation over a random variable X ∼ q, which
holds all the stochasticity of z, such as z = hλ(X) allows for derivation under the
expectation. In this case, the gradient can be expressed as

∇λL(λ) = EX∼q[∇λ(log p
(
y, hλ(X)

)
− log q

(
hλ(X)

)
|λ︸ ︷︷ ︸

H(X,λ)

)],
(7.3)

clearing the way for optimization step since one only needs to compute the gra-
dient for a batch of samples and take the empirical expectation. This is known
as the reparametrization trick (Kingma, Salimans, and Welling, 2015) . In the
following, H(Xλ) denotes the stochastic function H(X,λ) with L(λ) = E[H(Xλ)]
when there is no ambiguity and gλ(X) = ∇H(Xλ) the stochastic gradient for the
ELBO maximization problem.
A typical MC procedure at step k samples from an i.i.d. sequence (Xλk

1 , . . . , Xλk
N ) ∼

qλk and computes L̂NMC(λk) = 1
N

∑N
i H(Xλk

i ) along with ĝNMC(λk) = 1
N

∑N
i ∇H(Xλk

i ).
Then, SGD scheme described in algorithm 4 can be used.
The convergence of the procedure typically depends on the expectation of the
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quadratic norm of E
[
ĝN
]
(Johnson and Zhang, 2013; Domke, 2019). Equation

7.2 shows that this method results in an MSE error of O(N−1) (by the Law Of
Large Number) as the estimator is unbiased. Various methods have already been
proposed to improve on this rate (Miller et al., 2017; Roeder, Wu, and Duvenaud,
2017; Geffner and Domke, 2018; Tran, Nott, and Kohn, 2017; Ruiz, Titsias, and
Blei, 2016) .
Our work considers the class of variance-free estimator and aims to find the best
candidate to improve on this bound, at the cost of introducing a systematic bias in
the evaluation which can be reduced using Richardson extrapolation (see section
7.2.2).

7.2.2 Optimal Quantization

In this section we consider the true ELBO L(λ) = E
[
H(Xλ)

]
and construct

an optimal quantizer XΓN ,λ of Xλ along with an ELBO estimator L̂NOQ(λ) =

E
[
H(XΓN ,λ)

]
, such as ‖Xλ −XΓN ,λ‖L2(Ω,A,P) is minimized.

Definition 11. Let ΓN = {x1, . . . , xN} ⊂ Rd be a subset of sizeN ,
(
Ci(Γ)

)
i=1,...,N

⊂
P(Rd) and

∀i ∈ {1, . . . , N} Ci(Γ) ⊂
{
ξ ∈ Rd, |ξ − xi| ≤ min

j 6=i

∣∣ξ − xj∣∣} , (7.4)

then
(
Ci(Γ)

)
i=1,...,N

is a Voronoi partition of Rd associated with the Voronoi Cells
Ci.

Let (Ω,A,P) be the probability space. For Xλ ∈ L2
Rd(Ω,A,P), Optimal Quan-

tization aims to find the best Γ ⊂ Rd of cordiality at most N in L2
Rd . To that end,

the optimal quantizer of Xλ is defined as the projection onto the closest Voronoi
cell induced by ΓN . Formally, if we consider the projection Π : Rd → Rd such as
Π(x) =

∑N
i=1 xi1(x)Ci(Γ), then

XΓN ,λ = Π(Xλ). (7.5)

The quantizer Γ∗N = (x1, . . . , xN) of Xλ at level N is quadratically optimal if it
minimizes the quadratic error ‖Xλ − XΓN ,λ‖L2(Ω,A,P) = E

[
min1≤i≤N

∣∣Xλ − xi
∣∣2].

The problem can be reformulated as finding the probability measure on the convex
subset of probability measure on ΓN that minimizes the L2

Rd(Ω,A,P) Wassertein
distance (Liu and Pagès, 2020a) .
For illustration, different sampling methods for the bivariate normal distribution
N (0, I2) are represented in Figure 7.1. It is shown that Randomized Quasi Monte
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Carlo produces more concentrated samples in the high density regions where Opti-
mal Quantizer accurately represents the probability distribution. Given a sample
from OQ, the associated weights P

(
XΓN ,λ = xi

)
gives his relative importance (val-

ues are displayed in shades of red).
Given N and Γ∗N , the error rate of such approximation is controlled by Zador’s

Theorem (Pagès, 2018; Pagès and Printems, 2003; Pagès, 2015)∥∥∥Xλ −XΓ∗N ,λ
∥∥∥

2
≤ O(N−

1
d ). (7.6)

The key property of the optimal quantizer lays in the simplicity of his cubature
formula. For every measurable function f such as f(X) ∈ L2

Rd(Ω,A,P)

E
[
f(XΓN ,λ)

]
=

N∑
i=1

P
(
XΓN ,λ = xi

)
f (xi) . (7.7)

This result opens the possibility for using Optimal Quantizer expectation E
[
f(XΓN ,λ)

]
as an approximation for the true expectation. As a deterministic characterization
of Xλ, equation 7.7 can be compared to its counterpart when one considers Quasi
Monte Carlo (QMC) sampling with Xλ

QMC obtained from evaluating a low discrep-
ancy sequence {u1, · · · ,uN} with the inverse cumulative function of distribution
Xλ. It results in a similar curbature formula but with equal normalized weights.
This method typically produces an absolute error in O( log(N)

N
). By considering rel-

evant weights on each sample, the optimal quantization improves the estimation
by a factor log(N).

Regularity. The precision of the approximation improves with regularity hy-
pothesis. For instance, let α ∈ [0, 1], η ≥ 0, if F is continuously differentiable on
Rd with α-Hölder gradient and X ∈ L2+η

Rd (P), one has the following bound on the
Absolute Error (Pagès, 2015)∣∣∣∣EF (X)− EF

(
X̂Γ
N

)∣∣∣∣ ≤ Cd,µ[∇F ]αN
− 1+α

d . (7.8)

Getting Optimal Quantization. The main drawback of Optimal Quantization
is the computational cost associated with constructing an optimal N-quantizer
XΓN ,λ compared to sampling from Xλ. Even though it is time-consuming in higher
dimensions, one must keep in mind that it can be built offline and that efficient
methods exist to approximate the optimal quantizer. For instance, K-means are
used to obtain such grid at a reasonable cost of O(N logN) (Gersho and Gray,
1991). Moreover, in the context of AVI with normal approximation, it is possible
to rely solely on D dimensional normal grid to perform optimization since every
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Algorithm 5: Quantized Variational Inference.
Input: y, p(x, z), qλ0 .
Result: Optimal Quantized VI parameters λ∗q.
while not converged do

Get (XΓN ,λk
1 , . . . , XΓN ,λk

N ) ∼ qλk , (wk1 , . . . , w
k
N)

Compute ĝNOQ (λk) = ∇λ

∑N
i=1 w

k
iH(XΓN ,λk

i )

λk+1 = λk − αkĝNOQ (λk)

end

normal distribution can be obtained by shifting and scaling. The same goes for
every distribution that can be determined by such transformation of a base random
variable. Note that the optimal grid for the normal distribution can be downloaded
for dimensions up to 10 (http://www.quantize.maths-fi.com/downloads).

Quantized Variational Inference. The curbature formula 7.7 is used to com-
pute the OQ expectation at a similar cost than regular MC estimation. Replacing
the MC term in equation 7.3 by its quantized counterpart is straightforward. The
quantized ELBO estimator is defined by

L̂NOQ(λ) =
N∑
i=1

ωiH
(
XΓ,λ
i

)
. (7.9)

A crucial point is that the quantized ELBO is always lower than the expected one
under the assumption of convex ELBO objective. This particular point justifies
the usefullness of the method for quick evalutation of model performance.

Proposition 6. Let Xλ ∈ L2
Rd(Ω,A,P) and XΓN ,λ the associated optimal quan-

tizer, under the hypothesis that H (Eq. 7.3) is a convex lipschitz function,

L̂NOQ(λ) ≤ L(λ). (7.10)

In fact, for proposition 8 to be true XΓN ,λ needs only to fulfill the stationnary
property which is defined by E

[
Xλ|XΓN ,λ

]
= XΓN ,λ. Intuitively, the stationnary

condition expresses the fact that the quantizer XΓN ,λ is the expected value under
the subset of events C ∈ A such as Π(Xλ) = XΓN ,λ. It can be shown that the
optimal quantizer has this property (Graf and Luschgy, 2000; Pagès, 1998) .
Computing the gradient in the same fashion leads to algorithm 5. An immediate
consequence of proposition 8 is that for λ∗q the optimal parameters estimated from
algorithm 5 and λ∗ the true optimum, we can state the following proposition

http://www.quantize.maths-fi.com/downloads
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Proposition 7. Let λ∗ = max
λ∈RK

L(λ) and λ∗q = max
λ∈RK

L̂NOQ(λ). Under the same

assumptions than proposition 8,

L(λ∗)− L̂NOQ(λ∗q) ≤ C
[
2‖Xλ∗ −XΓ,λ∗‖2 + ‖Xλ∗q −XΓ,λ∗q‖2

]
. (7.11)

The approximation error of the resulting estimation follows from the Zador the-
orem (Eq. 7.8) and is in O(N−

2(1+α)
d ) in term of MSE depending on the regularity

of H. The crucial implication of proposition 7 is that relative model performance
can be evaluated with our method. Poor relative true performance, provided that
the difference in terms of ELBO minimum sufficiently large in regard of the ap-
proximation error, produces poor relative performance with Quantized Variational
Inference.

Performing algorithm 5 implies finding the new optimal quantizer for XΓ,λk

at each step k. We highlight that the competitiveness of the method in terms
of computational time is due to the fact that optimal quantizer derived from the
base distribution PX can be used to obtain XΓ,λ when Xλ can be obtained through
scaling and shifting of X, since optimal quantization is preserved under these oper-
ations. For instance, in the case of BBVI with Gaussian distribution, we only need
the optimal grid XΓ of N (0, Id) and use XΓ,λ = µ+XΓΣ

1
2 (given Σ

1
2 the Cholesky

decomposition of Σ) to obtain the new optimal quantizer. The same goes for the
distributions in the exponential family. Details about the optimal quantization for
the gaussian case can be found in (Pagès and Printems, 2003). Thus, this method
applies to a large class of commonly used variational distributions.

The previous results imply that quantization is relevant only for d < 2(1 + α)
compared to MC sampling. However, numerous empirical studies have shown that
this bound may be overly pessimistic, even for a not so sparse class of function in
L2
Rd (Pagès, 2018). Going further, we can implement Richardson extrapolation to

improve on this bound.

7.2.3 Richardson Extrapolation

Richardson extrapolation (Richardson and Glazebrook, 1911) was originally used
for improving the precision of numerical integration. The extension to optimal
quantization was first introduced in (Pagès, 2018; Pagès, 2007) in the finance area
to bring an answer to expensive computation of some expectation E

[
f(XT )

]
for a

diffusion process Xt representing a basket of assets and f an option with maturity
T .
Richardson extrapolation leverages the stationary property of an optimal quantizer
through error expansion. We illustrate in the one-dimensional case. Let H be
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twice differential function with lipschiptz continuous second derivative. By Taylor’s
expansion

E
[
H(Xλ)

]
= E

[
H(XΓN ,λ)

]
+ E

[
H ′(XΓN ,λ)(Xλ −XΓN ,λ)

]
+ E

[
H ′′(XΓN ,λ)(Xλ −XΓN ,λ)2

]
+O(E

[
|Xλ −XΓN ,λ|3

]
).

Then, using the stationnary property, the first order term vanishes since

E
[
(Xλ −XΓN ,λ)

]
= E

[
E
[
(Xλ −XΓN ,λ)|XΓN ,λ

]]
= E

[
E
[
Xλ|XΓN ,λ

]
−XΓN ,λ

]
= 0.

Taking two optimal quantizer XΓN ,λ and XΓM ,λ of Xλ at level N,M with N ≥M
and using the fact that E

[
|Xλ −XΓN ,λ|3

]
= O(N−3) (Graf, Luschgy, and Pagès,

2008/ed), it is possible to eliminate the first order term by combining the two
estimators with a factor N2 and M2.

L(λ) =
N2L̂NOQ(λ)−M2L̂MOQ(λ)

N2 −M2
+O(N−1

(
N2 −M2

)−1
). (7.12)

We generally take N
M

= γ with γ ∈ [1, 2] due to additional computational cost.
For instance, taking N = 2M leads to O(N−3) in term of absolute error. Recent
results (Pagès, 2018; Lemaire, Montes, and Pagès, 2019) in higher dimension show
that the general error is O(N−

2
d (N

2
d−M 2

d )−1). Even though γ = 2 led to satisfying
results in our experiments, applying this method to VI can lead to computational
instability in higher dimensions and there is no straightforward method for finding
the optimal γ.

7.3 Experiments
To demonstrate the validity and effectiveness of our approach, we considered
Bayesian Linear Regression (BLR) on various dataset, a Poisson Generalized Lin-
ear Model (GLM) on the frisk data and a Bayesian Neural Network (BNN) on the
metro dataset. For qλ, we choose the standard Mean-Field variational approxima-
tion with Gaussian distributions.

Setup. Experiments are performed using python 3.8 with the computational li-
brary Tensorflow (Abadi et al., 2015). Adam (Kingma and Ba, 2015) optimizer
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Figure 7.2: Bayesian Linear Regression. Evolution of the ELBO (odd rows,
log scale) and expect gradient norm (even rows, log scale) during the optimization
procedure for datasets reported in Table 7.1 using Adam for MCVI (red), RQMCVI
(orange), QMCVI (green), QVI (blue), RQVI (light blue) as function of time.
Variance for MC estimator (red area) and RQMC (orange area) are obtained by
20 runs of each experiment.

is used with various learning rates α and default β1 = 0.9, β2 = 0.999 values rec-
ommended by the author. The benchmark algorithms comprises the traditionnal
MCVI described in algorithm 4, RQMC considered in (Buchholz, Wenzel, and
Mandt, 2018) and QMC. We underline that (Buchholz, Wenzel, and Mandt, 2018)
shows that RQMC outperforms state of the art control variate techniques such
as Hessian Vector Product (HPV) (Miller et al., 2017) in a similar setting. We
compare it with the implementation of algorithm 5 (QVI) and the Richardson
extrapolation RQVI. For all experiments we take a sample size N = 20. When
D ≤ 10, precomputed optimal quantizer available online 1 is used. The Optimal
Quantization is approximated in higher dimension using the R package muHVT.
The number of parameters K along with the number of samples for each dataset

1http://www.quantize.maths-fi.com/downloads

http://www.quantize.maths-fi.com/downloads
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is reported in Table 7.1. The complete documented source code to reproduce all
experiments is available on GitHub 2.

Table 7.1: Datasets used for the experiments along with the Relative Bias (RB)
at the end of execution for QVI and RQVI using the best learning rate.

Dataset Size K QVI RB RQVI RB
Boston 506 18 13% 7%
Fires 517 16 3% 1%

Life Expect. 2938 36 0.3% 0.04%
Frisk 96 70 6%
Metro 48204 60 5%

Bayesian Linear Regression. Figure 7.2 shows the evolution of the ELBO
along with the expected `2 norm of the gradient E|g|2`2 , both in log-scale. We see
that QVI converges faster than vanilla MCVI and the baseline on all datasets.
The gradient of both QVI and RQVI is lower than MCVI thanks to the absence
of variance. However, only QVI performs better than MCVI on all datasets. For
all learning rates α considered, the expected norm of the gradient is significatively
lower. In these examples, it appears that the gain obtained from using RQVI is
lost in the additional computation required for this method. We observe that us-
ing RQMC sampling reduces the gradient variance (odd rows) and improves the
convergence rate for all experiments.
In these experiments, the resulting bias after performing a complete Gradient De-
scent is relatively small compared to the starting value of the ELBO. The resulting
biases are reported in Table 7.1 and span from almost 0 for the Life Expectancy
dataset to 13% for the Boston dataset. The fact that L̂NOQ(λ) > L(λ) is a conse-
quence of proposition 7.

Poisson Generalized Linear Model. Similar results are obtained by QVI for
the GLM model on Frisk dataset (see Figure 7.3). QMCVI perform similarly
to QVI for all learning rates but produces a larger bias in the ELBO objective
function. As mentionned, RQVI can be computationnaly instable as the dimension
grows. Indeed, denoting γ = N

M
and ε = 2

D
, computing ELBO with Richardson

extrapolation leads to

L̂(λ) =
γεL̂NOQ(λ)− L̂MOQ(λ)

γε − 1
. (7.13)

2https://github.com/amirdib/quantized-variational-inference

https://github.com/amirdib/quantized-variational-inference
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Figure 7.3: Generalized Poisson Regression. Evolution of the ELBO in (first
row, in log scale) and expect gradient norm (second row, in log scale) during the
optimization procedure for the frisk datasets (see Table 7.1) using Adam for MCVI
(red), RQMCVI (orange), QMCVI (green), QVI (blue) as function of time. QVI
exhibits comparable performance to QMCVI for all selected learning rate α. We
use N = 20 sample for each experiments. Using QVI produces a relative bias of
6%.

For large D, even a small computational error between L̂NOQ(λ) and L̂MOQ(λ) can
produce a large error in the estimation of L̂(λ) which led to the failure of the
procedure.

Bayesian Neural Network. Finally, Bayesian Neural Network model is tested
against the baseline. It consists of a Multi Layer Perceptron composed of 30
ReLu activated neurons with normal prior on weights and Gamma hyperpriors on
means and variances. Inference is performed on the metro dataset. Similarly to the
other experiments, Figure 7.4 shows that QVI converges faster than the baseline
for all hyperparameters considered in only few epochs. Quantitatively, by taking
α = 7e−3 we can see that a stopping rule on the evolution of the parameters λk,
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Figure 7.4: Bayesian Neural Network. Evolution of the ELBO in (first row,
in log scale) and expect gradient norm (second row, in log scale) during the opti-
mization procedure for the metro datasets (see Table 7.1) using Adam for MCVI
(red), RQMCVI (orange), QMCVI (green), QVI (blue) as function of time. QVI
exhibits superior performance with all selected learning rate α. We use N = 20
sample for each experiments. Using QVI produces a relative bias of 10%.

the gradient descent procedure would terminate at t ≈ 100 seconds for QVI and
t ≈ 500 (seconds) for the MCVI algorithm.
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7.4 Conclusion
This work focuses on obtaining a variance-free estimator for the ELBO maximiza-
tion problem. To that end, we investigate the use of Optimal Quantization and
show that it can lead to faster convergence. Moreover, we provide a theoretical
guarantee on the bias and regarding its use as an evaluation tool for model selec-
tion.
The base QVI algorithm can be implemented with little effort in traditional VI
optimization package as one only needs to replace MC estimation with a weighted
sum.
Various extensions could be proposed, including a simple quantized control variate
using the optimal quantized to reduce variance or Multi-step Richardson extrapo-
lation (Frikha and Huang, 2015). In addition, this method could be applied more
broadly to any optimization scheme, where sampling has a central role, such as
normalizing flow or Variational Autoencoder. We plan to consider it in future
work.
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7.5 Broader Impact
Our work provides a method to speed up the convergence of any procedure in-
volving the computation of an expectation on a large distribution class. Such case
corresponds to a broad range of applications from probabilistic inference to pric-
ing of financial products (Pagès, 2018). More generally, we hope to introduce the
concept of optimal quantizer to the machine learning community and to convince
of the value of deterministic sampling in stochastic optimization procedures.

Reducing the computational cost associated with probabilistic inference allows
considering a broader range of models and hyperparameters. Improving goodness
of fit is the primary goal of any statistician and virtually impacts all aspects of
social life where such domain is applied. For instance, we chose to consider the sen-
sitive subject of the New York City Frisk and Search policy in the 1990s. In-depth
analysis of the results shows that minority groups are excessively targeted by such
measure even after controlling for precinct demographic and ethnic-specific crime
participation (Gelman, Fagan, and Kiss, 2007). This study gave a strong statis-
tical argument to be presented to the authorities for them to justify and amend
their policies.
Even though environmental benefits could be argued, we do not believe that such
benefits can be obtained through increased efficiency of a system due to the re-
bound effect.

In the paper, we stressed the benefit of using our approach to improve auto-
mated machine learning pipelines, which consider large classes of models to find
the best fit. This process can remove the practitioner from the modeling process,
overlook any ML model’s inherent biases, and ignore possible critical errors in
the prediction. We strongly encourage practitioners to follow standard practices
such as posterior predictive analysis and carefully examine the chosen model’s
underlying hypothesis.
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7.6 Appendix

7.6.1 ELBO derivation

Assumes that we have observations y, latent variables z and a model p(y, z) with
p the density fonction for the distribution y. By Bayes’ Theorem

p(z|y) =
p(y|z)p(z)

p(y)

=
p(y|z)p(z)∫
z
p(z, y)dz

.

Using the definition of KL divergence,

KL[qλ(z)‖p(z|y)] =

∫
z

qλ(z) log
qλ(z)

p(z|y)
dz

= −
∫
z

qλ(z) log
p(z|y)

qλ(z)
dz

= −
∫
z

qλ(z) log
p(z, y)

qλ(z)
dz +

∫
z

qλ(z) log p(y)dz

= −
∫
z

qλ(z) log
p(z, y)

qλ(z)
dz + log p(y)

∫
z

qλ(z)dz

= −L(λ) + log p(y).

Rearranging the terms gives equation (1).

7.6.2 Proofs

Let f(X) ∈ L2
Rd(Ω,A,P) and XΓN ,λ the the optimal quantizer of Xλ. The general

framework of our study can be stated as estimating the quantity

I = E
[
f(X)

]
. (7.14)

We define the MC and OQ estimators as

IMC =
1

N

N∑
i=1

f(Xi), (7.15)

IOQ =
N∑
i=1

P
(
XΓN ,λ = xi

)
︸ ︷︷ ︸

ωi

f (xi) . (7.16)
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It is direct to derive ‖I − IMC‖2 = O(N−
1
2 ). In the following we establish the

approximation error for the IOQ estimator.

In this part we demonstrates proposition 8 and proposition 7. The former is
particularly important since it establishes an asymptomatic bound on the error
produced by using QVI. When considering it along with proposition 8 justifies
QVI, for ranking models with it will produce true ranking provided that the rel-
ative difference in ELBO is lower than the quantization error. In the following
we formally demonstrate such result (thorough investigation of optimal quantizer
can be found in (Pagès, 2018; Pagès, 2015)). We begin with the definition of a
stationnary quantizer.

Definition 12. Let ΓN = {x1, . . . , xN} be a quantization scheme of Xλ. XΓN ,λ

is said to be stationary quantizer if the Voronoi partition induced by ΓN satisfies
P
(
X ∈ Ci(x)

)
> 0 ∀i ∈ {1, . . . , N} and

E
[
Xλ|XΓN ,λ

]
= XΓN ,λ.

One of the first question raised by using optimal quantization E
[
H(XΓN ,λ)

]
in

place for E
[
H(Xλ)

]
is the error produced by such substitution. Let us remind that

we denote L̂NOQ(λ) = E
[
H(XΓN ,λ)

]
the quantized ELBO estimator and L(λ) =

E
[
H(Xλ)

]
the true ELBO.

Lemma 5. Let Xλ ∈ L2
Rd(Ω,A,P) and a H a continuous lipschitz function with

Lipschitz constant C, we have∣∣∣L(λ)− L̂NOQ(λ)
∣∣∣ ≤ C

∥∥∥Xλ −XΓN ,λ
∥∥∥

2
.

Proof.∣∣∣∣E [H(Xλ)
]
− E

[
H(XΓN ,λ)

]∣∣∣∣ ≤ E

[
E
[∣∣∣H(Xλ)−H(XΓN ,λ)

∣∣∣ |XΓN ,λ

]]
(7.17)

≤ C
∥∥∥Xλ −XΓN ,λ

∥∥∥
1

≤ C
∥∥∥Xλ −XΓN ,λ

∥∥∥
2
. (7.18)

We use Jensen inequality in equation 7.17 and the monoticity of the Lp(Ω,A,P)
norm as a function of p in equation 7.18.
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Proposition 8. Let Xλ ∈ L2
Rd(Ω,A,P) and XΓN ,λ the associated optimal quan-

tizer, under the hypothesis that H is a convex lipschitz function,

L̂NOQ(λ) ≤ L(λ).

Proof.

L̂NOQ(λ) = E
[
H(XΓN ,λ)

]
= E

[
H

(
E
[
Xλ|XΓN ,λ

])]
(7.19)

≤ E
[
E
[
H(Xλ)|XΓN ,λ

]]
= E

[
H(Xλ)

]
(7.20)

= L(λ)

When we used Lemma 12 in equation 7.19 and the conditional Jensen inequality
to obtain 7.20.

Proposition 9. Let λ∗ = min
λ∈RK

L(λ) and λ∗q = min
λ∈RK

L̂NOQ(λ). Under the same

assumptions than proposition 8,

L(λ∗)− L̂NOQ(λ∗q) ≤ C
[
2‖Xλ∗ −XΓ,λ∗‖2 + ‖Xλ∗q −XΓ,λ∗q‖2

]
.

Proof. A immediate consequence of proposition 8 is that L̂NOQ(λ∗q) ≤ L(λ∗). Then,
we can write

L(λ∗)− L̂NOQ(λ∗q) = L(λ∗)− L̂NOQ(λ∗)

+ L̂NOQ(λ∗)− L(λ∗q)

+ L(λ∗q)− L̂NOQ(λ∗q)

≤ C‖Xλ∗ −XΓ,λ∗‖2

+ C‖Xλ∗q −XΓ,λ∗q‖2

+ C‖Xλ∗ −XΓ,λ∗‖2

Using Lemma 5 and noting that

L̂NOQ(λ∗)− L(λ∗q) ≤ L̂NOQ(λ∗)− L(λ∗),

proposition 7 follows.
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Finally, Zador’s theorem is used to derive non-asymptotic bound (see (Luschgy
and Pagès, 2008) for a complete proof).

Theorem 6 (Zador’s Theorem). Let Xλ ∈ L2
Rd(Ω,A,P) and XΓN ,λ the associated

optimal quantizer at level N , there exists a real constant Cd,p such that

∀N ≥ 1,
∥∥∥X − X̂Γx

∥∥∥
p
≤ Cd,pN

− 1
d

Where Cd,p dependens only d and p. This result can be vastly improved when
H exhibits more regularity. For instance, if H is an α hölderian function, we can
obtain a bound in O(N−

1+α
d ) (Pagès, 2015).

7.6.3 Experiments

Bayesian Linear Regression. We used three different real-world dataset, namely
Forests Fire, Boston housing datasets from the UCI repository (Dua and Graff,
2017) and Life Expectancy dataset from the Global Health Observatory repository.
The generative Bayesian Linear Gaussian Model used is as follow.

bi ∼ N
(
µβ, σβ

)
, intercepts

yi ∼ N
(
x>i bi, ε

)
, output

Let D be the dimension of the feature space. The dimension of the parameter
space for a gaussian variationnal distribution under the mean-field assumption is
K = 2D.

Poisson Generalized Linear Model. The frisk dataset is a record of stops and
searches practice on civilians in New York City for fifteen months in 1998−1999. It
contains information about locations, ethnicity and crime statistics for each area.
The question is whether these stops targeted particular groups after taking into
account population and crime rates in each group for a particular precinct.
We can trace back the use of Poisson Generalized Linear Model for this use case
to (Gelman, Fagan, and Kiss, 2007). The model writes as follow

µ ∼ N
(
0, 102

)
mean offset (7.21)

log σ2
α, log σ2

β ∼ N
(
0, 102

)
group variances (7.22)

αe ∼ N
(
0, σ2

α

)
ethnicity effect (7.23)

βp ∼ N
(

0, σ2
β

)
precinct effect (7.24)

log λep = µ+ αe + βp + logNep log rate (7.25)
Yep ∼ Poisson

(
λep
)

stops events (7.26)
(7.27)
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Yep denotes the number of frisk events for the ethnic group e in the precinct p.
Nep is the number of arrests for the ethnic group e in the precinct p. Hence, in
this model, αe and αp represents the ethnicity and precinct effect. The dataset
contains three ethnicities and thirty-two precinct, which therefore exhibits K = 70
variational parameters.

Bayesian Neural Network. The Bayesian Neural Network (BNN) consists of a
Multi Layer Perceptron (MLP) ψ of 30 ReLU activated neurons with normal prior
weights and inverse Gamma hyperprior on the mean and variance. Regression is
performed on the metro dataset.

α ∼ Gamma(1, 0.1) weights hyper prior (7.28)
τ ∼ Gamma(1, 0.1) group variances (7.29)

w ∼ N
(

0,
1

α

)
, neural network weights (7.30)

y ∼ N
(
ψ(w, x),

1

τ

)
output (7.31)

Thanks to open source libraries

This work and many others would have been impossible without free, open-source
computational frameworks and libraries. We particularly acknowledge Python 3
(Van Rossum and Drake, 2009), Tensorflow (Abadi et al., 2015), Numpy (Oliphant,
2006) and Matplotlib (Hunter, 2007).





Conclusion and perspectives

This thesis introduces new methods in the context of Data Mining and Bayesian
Learning, starting from the need to design human-readable and relevant methods
to study symbolic time series processes in the context of predictive maintenance.

Part II: Anomaly detection for rolling stock maintenance

After a selective review of the anomaly detection domain with a highlight on the
railway industry in Chapter 2, we construct an industrial pipeline for the predictive
maintenance task with interpretable and human-readable output applied to a large
fleet for high-speed trains. This use case is particularly challenging; the industrial
system of railway spans across a vast territory with various environments and
involves complex heterogeneous and interconnected systems. We designing an
industrial prediction pipeline and propose a method to overcome computational
complexity that comes with a high number of possible hyperparameters based on
a two-sample test to prune the tree of operations to perform. Additionally, the
use of pattern extraction method on the temporal signal of error codes by using
tools from the Data Mining domain allows retrieving relevant and interpretable
patterns, or association of event codes, linked to a specific type of malfunction.
This approach provides an approach towards the automatic extraction of rules
that experts can directly understand. A possible continuation of this work could
be studying ways to transfer these learned rules to similar classes of systems on
which we do not have enough data to perform statistical analysis. To that end,
various methods in the domain of transfert learning and active learning offer an
exciting venue for future researches.

Part III: Pattern Mining

This part is devoted to the presentation of new methods in the Data Mining field.
Data Mining has become one of the most well-studied applied mathematics fields
thanks to the broad availability of data. Nevertheless, performing relevant tasks
on these high-dimensional databases is typically intractable. We tackle this issue
using two different approaches: the first uses models on the underlying process
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and the second consists of bounding the empirical estimator of a random variable
of interest.

Chapter 4 present a Bayesian Generative Model for the pattern mining and
discriminative pattern mining tasks. Notably, we first show that the set of fre-
quent itemsets can be efficiently mined using a stochastic approximation method
using variational inference scheme to obtain the space of frequent itemsets with
high accuracy. Second, we use a Bayesian Mixture Model to infer with a low com-
putational cost the discriminative itemsets opening the possibility of extracting
relevant information on binary labeled datasets. Finally, we present a method for
enriching the space of feature variable of any classifier, improving the metric score
on various public and industrial datasets.

Chapter 5 tackle the problem of deriving distribution independent bounds on
the support of itemsets. Estimating the frequencies of any pattern among the
exponential set of possible ones is one of the most fundamental problem in Data
Mining. Contrary to previous work that uses global complexity measure on un-
derlying empirical process generating the database, we introduce the first use of
local complexities for the task mining low-frequency itemsets. We show theo-
retically and empirically that our method outperforms asymptotically the most
recent approaches. Future work will consider the application of this method to
related pattern concepts, wherein new computational routines may be required to
bound local Rademacher averages with infinite pattern families or utility pattern
families, and to tasks with other objectives. The computational efficiency of the
introduced algorithms could be significantly improved by avoiding the enumeration
of all closed patterns by using instead branching approach (Pellegrina et al., 2020).
In addition, we believe that this method can be relevant to a broader range of
tasks where we can partially sample the database on which an algorithm performs
and need to evaluate the precision of the produced output.

Part IV: Optimal Quantization for stochastic optimization

Chapter 6 and 7 introduce a new method for variance reduction in stochastic
optimization. Stochastic optimization is one of the most prominent problems in
statistics and optimization and consists of minimizing the functional of a random
variable under expectation. The efficiency of any procedure that performs this
task will be highly dependent on the variance of the random variable hence the
multiplicity of work aiming at reducing the variance of the considered empirical
estimator. In this thesis, we took an entirely new approach toward this problem by
considering a variance-free estimator, namely the optimal quantizer. Even though
biased, it showed superiority over existing methods in terms of convergence speed in
the framework of Bayesian learning with a theoretical guarantee over the produced
biased.
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In Chapter 6 we developed a view of the construction of the optimal quantizer
with the tool of optimal transport. To the best of our knowledge, this approach has
not yet been explored to compute the optimal quantizer. One of the main draw-
back when using an optimal quantizer is the computational cost associated with
producing it. We believe that several approximation tools from optimal transport
can be used to perform this task efficiently.
Chapter 7 introduced Quantized Variational Inference, which is a competitive al-
gorithm for Variational Inference that can be utilized for any inference task in the
bayesian settings. Nevertheless, the Quantized Stochastic Approximation could be
applied to several domains such as Normalizing Flows, Reinforcement Learning,
Variational AutoEncoders and any tasks requiring a stochastic optimization step.
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Appendix A

A probabilistic point of view on
pattern mining

A priori-based algorithms are commonly used for finding interesting itemsets from
transaction databases. We can construct a model which explains from a probabilis-
tic perspective the main results of pattern mining with derived algorithm retrieve
itemsets with comparable quality. We can use this reformulation to construct a
bayesian probabilistic model for itemsets and to propose a method to significantly
reduce exact pattern extraction computation time with control of the error with
tight guarantee.

Computational methods for Knowledge Discovery from large Datasets (KDD)
aim to extract relevant information structure from a database. This process often
involves extracting a collection of interesting patterns T (Db,L, C) =

{
ρ ∈ L|C(ρ,Db)

}
from a language L given the data D where C is constraint function which encodes
our criteria of an interesting pattern (Mannila and Toivonen, 1997). Once the
problem description set, the computation of such collection can be challenging. If
you consider the problem of Frequent Itemset Mining (FIM), the language size is
of ‖L‖ = 2d where d is the size of the dictionary (or the number of different items
in the database). Even for D relatively small the estimation of each element in the
language is unfeasible. The key is to carefully consider constraints function C as it
can be exploited to dramatically reduce the number of computations to perform.

A.1 Background

Agrawal and Srikant (1994) developed the Apiori algorithm which was the the
first efficient procedure for FIM which consists of a breadth-first search algorithm
over the complete lattice on the associated powerset associated with the inclusion
relation leveraging the antimonoticity property of frequent itemsets. This approach

169
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although simple to implement is not optimal since it requires multiple scan of the
database and large quantity of memory. Moreover, the structure of the result is
himself somewhat redundant; the complete set of frequent itemsets can be gener-
ated from a more parsimonious structure on itemsets. One of such structure is the
set of closed itemsets which has the so-called lossless property. Simple apriori like
methods are dedicated to recover such sets (Lucchese, Orlando, and Perego, 2006;
Zaki and Hsiao, 2005; Cerf, 2010). To reduce the quantity of memory used (Zaki,
2000) proposes the Eclat which is a depth-first algorithm and avoid the costly
storage of all candidate itemsets of a given length. Eclat is much faster than
apriori and perform only one database scan by using a vertical representation of
the transaction data. A big leap in term of computation and memory efficiency
has been taken with the development of pattern-growth methods. The central idea
is to avoid the generation of unnecessary by using the projected database given an
itemsets to reduce the space to explore as the algorithm searches in larger item-
sets. FP-Growth (Han et al., 2004) and LCM (Uno, Kiyomi, and Arimura, 2004)
are two methods based on this principle and are the state of the art in term of
computation time for most datasets. An open-source and efficient implementation
of these algorithms is available in the SPMF library (Fournier Viger et al., 2016).

A.1.1 Itemset theory

Let T = (t1, . . . , tn) and E = (e1, . . . , ed) two sets. We denote E = P(E) and
T = P(T ) the supersets and R a binary relation between T and E (i.e. a subset
of T × E). In this framework, E represents the base dictionary of the patterns
and T the transactions in the database and the collection of elements of T × E
the transactions database. To formalize the concept of interesting itemsets, we
introduce the following two operators:

Definition 13 (Galois connection ). The left and right adjoin f ∗ and f∗ id a pair
of function such that for any E ′ ∈ E and T ′ ∈ T we have

f ∗ : E −→ T
E ′ 7−→ {e ∈ E ′|∀t ∈ T ′, tRe},

f∗ : T −→ E
T ′ 7−→ {t ∈ T ′|∀e ∈ E ′, tRe}.

The pair 〈f∗, f ∗〉 form a Galois connection (Davey and Priestley, 2002) over
the posets (E ,⊆) and (T ,⊆) induced by the binary relation R on T × E. In this
paper, we’re particularly interested in the FIM problem which can be defined,
given a support threshold µ ∈ [0, 1], as the search for an itemsets E ′ ∈ E which
appears with a frequency at least µ across the transaction database.
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Transactions Elements
t1 {e1, e3}
t2 {e2}
t3 {e1, e2}
t4 {e3}
t5 {e3}

(t1, e1) , (t1, e2)
(t2, e1) , (t2, e2) , (t2, e4)
(t3, e1) , (t3, e2) , (t3, e3) , (t3, e4)
(t4, e1) , (t4, e3)
(t5, e2) , (t5, e3) , (t5, e4)

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

Figure A.1: Different representation of the binary relation R for T = (t1, . . . , t4)
and E = (e1, . . . , e4).

Definition 14 (Frequency constraint). The support of E ′ ∈ E is the function
S : E → [0, 1] such as

s(E ′) =
|f ∗(E ′)|
|T |

.

Let µ ∈ [0, 1] the user-defined treshold, the frequent itemset constraint is a boolean
function s.a.

Cµ,s(E ′) = µ ≤ s(E ′).

The goal of FIM is to find all elements of E that regularly occur in a database
viewed as a binary relation R. A formal and general definition reads as follow.

Definition 15 (Frequent Itemset Mining). Let R a binary relation on T × E,
µ ∈ [0, 1], Cµ a constraint on E . A Frequent Itemset Mining (FIM) algorithm aims
to compute the set T H(R, Cµ,s) = {E ′ ∈ E ; Cµ,s(E ′) is true} ⊆ E .

A brute-force approach to this problem would lead to a prohibitively large
number of candidates itemsets to explore. More precisely, such algorithm will
have exponential complexity O(N2M). We stress that the length database itself
can be large and costly to access so that the computation of T H

(
R, Cµ,s

)
can be
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infeasible even for reasonable value of d. The key for pruning the set of possible
patterns is in the anti-monoticity property of the frequent itemset constraint, which
states that every sub-pattern of a Cµ,s frequent pattern is frequent:

Proposition 10 (Anti-monoticity). ∀A,B ∈ E , if A ⊆ B then Cµ,s(B)⇒ Cµ,s(A).

This simple property is at the hear of every algorithm used for pattern mining
for pruning the search space. The most notorious, the Apriori algorithm, starts
from the L1 set of 1-frequent itemsets and generate a set C2 composed of

(
2
|L1|

)
candidates derived from L1 (i.e. all the supersets of size 2 containing element
of L1). The support of the candidates itemsets C2 are then evaluated and we
construct L2 as the ones which achieve the Cµ,s criterion. At step k we evaluate
the set Ck of

(
k

|Lk−1|

)
candidates to construct Lk. The algorithm stops at step

K when CK+1 is found to be empty. The complexity of such algorithm depends
on the support treshold µ, the number of unidentical items M , the number of
transaction N and the typical length of the transactions. This last dependence
has a substantial effect over the maximum size of µ-frequent itemsets which imply
that more candidate itemsets need to be evaluated at each step. However, except
for weakly correlated items the set T H

(
R, Cµ,s

)
is very large even when using loss-

less form of itemsets. An common loss-less representation of the patterns consists
of the set of closed itemsets from which any frequent itemset can be retrieved
which is defined as follow:

Definition 16 (Closed itemset). LetR a binary relation on T×E, 〈f∗, f ∗〉 a Galois
connection over the posets (E ,⊆) and (T ⊆). The closure operator f = f∗f

∗ is
the galois closure operator over E . The set the set of all closed itemsets is defined
as T H

(
R, Cµ,closed

)
= {E ∈ E ; f(E) = E}.

A closed itemset is maximal in the sense that it’s support is strictly decreasing
with respect to the inclusion. More precisely, for any closed itemset A ∈ Cµ,closed

and an itemset B ∈ E s.a. A ⊂ B then s(B) < s(A).
Once T H

(
R, Cµ,s

)
has been computed an analysis of interest is the so-called

Association Rule Mining (ARM) introduced by (Agrawal, Imielinski, and Swami,
1993) for basket data analysis. Given a binary relationR the goal is to find couples
of itemsets that tend to co-occur.

Definition 17 (Association rule). Given a binary relation R ⊆ E ×O and X, Y E
two disjoint itemsets, an association rule X → Y is relation on itemsets that is
reflexive, antisymmetric. Additionnaly, we define the frequency and confidence
associated with such rule by
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f(X → Y ) =
|f ∗(X ∪ Y )|

M
,

c(X → Y ) =
|f ∗(X ∪ Y )|
|f ∗(X)|

.

For a given ν, µ ∈ [0, 1] The goal of ARM is to compute the set of item-
sets T H

(
R, Cµ,s

)
amir: Correct defined as the pair of itemset of frequency and

confidence respectively greater than µ and ν from the collection of all possible
association rules. We can immediately see that the rule X → Y is µ − frequent
iff the itemset X ∪ Y ∈ T H

(
R, Cµ,s

)
. Moreover, we can use the anti-monocity

property of the confidence function to prune the space of possible rules identically
to the support for FIM.

Proposition 11. Given X,X ′, and Y ∈ 2P , leX ⊆ X ′ ⊆ Y , we have c(X →
Y \X) ≤ c

(
X ′ → Y \X ′

)
.

Therefore, we can divine a simple way to perform ARM by performing FIM
then deriving all the association rules from T H

(
R, Cµ,s

)
using the previous remark.

There is a great variety of measure of interestingness other that the confidence
measure. Most of them are inspired by measure of correlation in statistics (“Inter-
estingness Measures for Data Mining”) and each one has it’s own implications in
term of which type of rule will be extracted.

A.1.2 The probabilistic framework for itemsets

We now turn to the probabilistic framework for pattern mining. The question of
a probabilistic framework was raised by the need to tackle the problem of Uncer-
tain Database Mining (UDM). In many application, the data are collected with
an uncertainty over the measurement that the user wants to acknowledge in the
pattern extraction.

The advantage of generative model are multiple. First, we’ll show that the
generative model is a good heuristic for several type of pattern mining problem.
Second, it’s the most parcemonious representation of the set of itemsets support.
For large datasets with dense itemsets the memory space needed to store and anal-
yse T H

(
R, Cµ,s

)
can be prohibitive (it can quickly reach few hundred Gb). In the

generative model framework the only memory needed is for storage of the param-
eters of the model (at most 2d parameters). Additionnaly, this representation is
more versatile as it allows for construction of more complex rules. Moreover, it’s
easy to introduce element from expert knowledge in the model by adopting, for
instance, a bayesian approach. Such account of prior information is difficult to im-
plement in the deterministic pattern mining algorithm. Using adapted techniques,
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it’s also fast to compute. Last but not least, this approach take into account the
uncertainty of a training dataset. Uncertainty from the ignorance of the true un-
derlying model generating the data and uncertainty as a consequence of the finite
sampling.

In the following we adapt the common notations in probability theory for pat-
tern extraction. Let (Ω,F) a measurable space, X = PE the set of all itemsets,
G = X an algebra on X , X : Ω → X a (F -G) measurable function, p be a prob-
ability distribution on X (i.e. p : X → [0, 1] and

∑
x∈X

p(x) = 1). We define the

probability distribution on (Ω,F) as

Definition 18.

P : F −→ [0, 1]
A 7−→ P(A) =

∑
ω∈A

p(X(ω)).

Hence (Ω,F ,P) define a probability space. From the pattern mining perspec-
tive, a specific transaction (ti, xi) ∈ T × E is viewed as a realization of X under
Pi and the entire transaction database of length n as the sampling model on

(Ω,Gn,P⊗n =
n∏
i=1

⊗Pi). For an event A ∈ F and sample (x1, . . . , xn) we can

compute empirical probability of A as

P̂n(A) =
1

N

∑
ω∈A

n∑
i=0

1{X(ω)=xi}. (A.1)

The convergence is governed by the strong law of large numbers, hence P̂A
converges almost surely towards P(A). We define the support of a pattern by the
function

sP : X −→ [0, 1]
t 7−→ sP(t) = P(At),

with At = {z ∈ X |t ⊆ z} the set of all itemsets greater than t (when there’s
no ambiguity, we’ll simply write s(t)). Notice the close analogy between this
definition and the traditional inverse empirical distribution for classic numerical
random variables. However the natural transitive, anti-symmetric and reflexive
relation of order on real line ≥ is replaced by the order relation on superset ⊆.
The previous support random variable has consistent properties expected from the
traditional support for a pattern

∀x, y ∈ X , x ⊆ y → s(y) ≤ s(x) (anti-monoticity).
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Moreover, following the close relation with the empirical distribution we have
the following proposition by using the fact that equality of two measures on
{At;∀t ∈ X} imply equality of the two measures on X

Proposition 12. Let P and Q two probability distribution on (Ω,G) and sP, sQ
their respective support functions, if sP = sQ then P = Q.

In other words, the support function carracterize the probability distribution.
We can then reformulate the apriori proposition

Proposition 13 (A Priori). let µ ∈ [0, 1] and T H
(
R, Cµ,s

)
= {x ∈ X ;µ ≤ s(x)}.

Then

∀x ⊆ y, y ∈ T H
(
R, Cµ,s

)
⇒ x ∈ T H

(
R, Cµ,s

)
.

This approach allows for interpretation of the KRIMP algorithm base on the
Minimum Description Length (MDL) principle

L(D) = min
H∈H

(L(H) + L(D|H)).

The principle is a formulation of the Occam’s razor rule. On an other hand Shan-
non definition of entropy states that for a probability distribution p : X → [0, 1]
there is an optimal length for each x that compress any sample of p. Conversly,
for a set of values x there is a distribution

P (x) = 2−L(x), L(x) = − log2 P (x).

From our perspective L(D,H) define a priori over the choice of the model H
and L(D|H) the sampling distribution given the model H.

L(D,H) = − logP (H)− log(P (D|H))

= − logP (H|D) + const.

In general MDL principle can be interpreted as a probabilistic model as demon-
strated by (Smith, Erickson, and Neudorfer, 2013) and seems to have no advantages
over the probabilistic approach.





Appendix B

Hidden Markov Model

Markov process models are a class of probability models used to study the evolution
of a stochastic system over time. Transition probabilities are used to identify
how a system evolves from one time to the next. In our case, a Markov chain
tries to characterize the system behavior over time, as described by the transition
probabilities matrix, emissions matrix, and the initial state probability. In the
following, we give a formal description of Hidden Markov Model.

Let (Ω,F ,P) the probability space, and let A be the state and U the hidden
space, (X1, . . . , Xn) a sequence of A-valued random variables, (U1, . . . , Ul) a se-
quence of U-valued random variables. We say that (X,U) =

(
(Xn, Un)

)
n≥1

is a
Hidden Markov Model on A× U with the following transition law:

P
(

(x, u),
(
x′, u′

))
= P

(
Xn+1 = x′, Un+1 = u′|Xn = x, Un = u

)
= ρ

(
u, u′

)
πu′
(
x, x′

)
,

(B.1)

where ρ and πu two transition probability on A and U. The Markov chain is
irreducible and recurrent positive. Thus, it converges to a stationary distribution.
In practice we have two type of Hidden Markov Model, namely the ergodic and
the left-to-right model. The most used one, the left-to-right Hidden Markov Model
consists for each hidden state si to be linked only to si or si+1. It is a sequential
view of the hidden states.

Definition 19. A Hidden Markov Model is defined by the tuple Λ = (A,B, π)
which as the following properties

• The state space S = {s1, s2, . . . sn} with qt ∈ S the state of the chain at time
t;

• The state of observations V = (v1, . . . , vM) and Ot ∈ V the observation at
time t;

177
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• An ergotic matrix A of transition to represent the probability transitions of
the hidden states:

aij = A(i, j) = P
(
qt+1 = sj|qt = si

)
∀i, j ∈ [1 . . . n]∀t ∈ [1 . . . T ]; (B.2)

• A probability matrix B of observations giving the probability bijof observing
vi in the state sj

bj(k) = P
(
Ot = vk|qt = sj

)
1 ≤ j ≤ n, 1 ≤ k ≤M ; (B.3)

• A probability vector π giving the initial probability of the chain state:

πi = P (q1 = si) 1 ≤ i ≤ n. (B.4)

Given an observations sample (O1, . . . , OT ) and a HMM parametrized by Λ =
(A,B, π) there is three fundamental questions that arise:

1. What’s the likelihood P(Ok|Λ) for a given sequence Ok ? It can straight-
fowardly be obtained by summing over the possible sequences:

P(O|Λ) =
∑
Q

P(O,Q|Λ) =
∑
Q

P(O|Q,Λ)P(Q|Λ). (B.5)

Using the markov property

P(O|Λ) =
∑

Q=q1,q2,w2rr

πq1bq1 (O1) aq1q2bq2 (O2) . . . aqT−1qT bqT (OT ) . (B.6)

This quantity is intractable at first sight with complexity in O(nT ). But
it is possible to compute P(O1:t+1|Λ) given P(O1:t|Λ) in O(n) so that the
evaluation of the likelihood can be evaluated in O(Tn2).

2. Given a sample of observations O, how do we find the most likely chain of a
hidden state producing such a sequence of observable states? Formally, we
are in search of a sequence Q that maximize the following quantity:

P(Q,O|Λ). (B.7)

This quantity can be easily obtained using a dynamic programming algorithm
(know as the Viterbi in this case) in O(Tn2).

3. How do we learn the Λ = (A,B, π) ? In this case, the simplest solution
consists of using Expectation Maximization procedure (Blume, 2002) taking
advantage of the fact that we know the optimal parameters given the latent
variable of the location of the chain in the hidden space.



Appendix C

Portée et motivation de la thèse

C.1 Contexte de la thèse

Contexte général Alors que l’adoption de l’apprentissage automatique dans de
nombreux contextes appliqués a connu une croissance rapide au cours de la dernière
décennie, il reste des défis à relever pour l’utiliser dans certains contextes indus-
triels. La principale raison est le conflit entre les procédures historiques établies et
l’incertitude et le manque de transparence du processus de décision d’une chaine
d’apprentissage automatique. Une autre raison est que les normes de données
nécessaires pour alimenter un modèle d’apprentissage automatique traditionnel
ne sont pas adaptées au type ou à la qualité des données disponibles. La plu-
part des bases de données industrielles n’ont pas été développées pour l’analyse
statistique mais pour se conformer aux exigences réglementaires et effectuer des
tâches administratives. En particulier, les variables non numériques ou symbol-
iques sont courantes car il s’agit d’un moyen polyvalent d’enregistrer des événe-
ments d’intérêt. Des exemples de telles données sont les documents textuels, les
séquences d’événements de journaux ou les séquences d’ADN. L’objectif principal
de cette thèse est de s’attaquer à ces problèmes en proposant des approches qui
peuvent être généralement appliquées à une séquence symbolique de données avec
une sortie lisible par l’homme et entraînées à un coût de calcul raisonnable.

Maintenance prédictive pour le parc de trains français. Cette thèse est
sponsorisée par la Compagnie Nationale des Chemins de Fer Français(SNCF),
l’entreprise ferroviaire publique qui exploite l’ensemble du trafic français en France.
Chaque jour en France, 15000 de trains circulent. La seule agglomération parisi-
enne compte 3, 2 millions de voyageurs par jour et 60000 d’arrêts dans les gares.
SNCF doivent faire face à un contexte d’augmentation des transports en commun
: au cours des dix dernières années, le nombre de voyages à Paris a augmenté
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Figure C.1: Un véhicule ferroviaire est un système électromécanique complexe
composé de plusieurs sous-systèmes. La figure montre les sous-systèmes du trans-
formateur (à gauche) et du bloc moteur (à droite). Chacun d’eux est composé de
nombreux éléments qui émettent des événements de journal horodatés ou des codes
d’erreur (et) à différents moments t. Une panne ou une anomalie Y S

t au temps t
peut être liée à un sous-système spécifique S.

de 30%. Ce contexte exerce une pression croissante sur le réseau ferroviaire et
nécessite une approche plus automatisée de la maintenance. Ces dernières années,
SNCF a développé un système d’alerte basé sur des règles soigneusement constru-
ites par des experts. Bien que réussie, cette approche prend beaucoup de temps et
ne permet pas la découverte automatique de nouvelles règles qui ne sont pas déjà
connues. De plus, un ensemble de règles conçu par cette méthode est spécifique à
une classe de véhicules et ne peut être appliqué à de nouveaux équipements.

C.2 Motivations

La tâche de maintenance prédictive vise à anticiper les défaillances critiques d’un
système industriel afin de planifier des interventions précoces et efficaces. La méth-
ode pour prévenir la défaillance critique d’un composant en cours d’exploitation
était historiquement basée sur la maintenance préventive. Connaissant la durée de
vie moyenne ou la loi de détérioration du composant, les réparations sont plani-
fiées afin de réduire les risques de défaillances imprévues de l’équipement. C’est un
progrès par rapport à la maintenance réactive, qui ne remplace et n’entretient les
équipements qu’en cas de défaillance observée. La maintenance prédictive est un
terme général désignant l’exécution de la maintenance des équipements en fonc-
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tion des signes de détérioration observés ou enregistrés. Plus précisément, il s’agit
d’une stratégie de maintenance qui surveille l’état de santé des machines en temps
réel et prend une décision de maintenance optimale. Même si la maintenance
prédictive entraîne une plus grande disponibilité et une réduction des coûts, elle
nécessite beaucoup plus de temps, d’efforts et de ressources pour être exécutée. Un
haut niveau de compétences est nécessaire pour collecter, modéliser et interpréter
les données et réorganiser le processus de maintenance. En réalité, le gestionnaire
industriel utilise CBM, RM et la maintenance prédictive.

Maintenance prédictive pour le matériel roulant. L’objectif principal de
cette thèse est de construire une solution de maintenance prédictive de bout en
bout pour le matériel roulant, de la collecte des données à la prédiction. Les trains
sont des systèmes électromécaniques complexes qui utilisent de nombreux com-
posants interconnectés pour offrir aux passagers des trajets courts et sécurisés et
qui doivent être économes en énergie. En France, une bonne couverture du terri-
toire implique une exposition à un environnement éventuellement difficile (concer-
nant la topologie des voies, les conditions météorologiques) et est donc exposée à
des taux de défaillance élevés. L’intérêt de la maintenance prédictive est partic-
ulièrement crucial dans ce contexte puisque l’impact d’une défaillance du matériel
roulant a généralement des conséquences globales sur l’ensemble du système fer-
roviaire. Comme le train fonctionne sur un réseau hautement interconnecté, toute
défaillance entraîne l’immobilisation complète du train et propage les retards à
une grande partie du réseau de transport. À cet égard, le système ferroviaire con-
stitue un cas particulièrement pertinent pour la valeur ajoutée d’un système de
maintenance prédictive.

Dans le contexte de SNCF, l’un des défis était d’identifier un ensemble de car-
actéristiques pertinentes pouvant informer sur l’état de détérioration du train. La
séquence d’un ensemble particulier d’événements, les séquences de codes d’erreur,
a été identifiée comme étant particulièrement informative. Les codes d’erreur sont
des chaînes de texte horodatées émises à intervalles réguliers ou irréguliers par
le système spécifique d’un train. L’émission d’un type particulier de code cor-
respond à une règle (parfois obscure) du fabricant. Par exemple, sur le système
de la porte du train, une émission de code peut correspondre au franchissement
d’un seuil de réponse de la tension du moteur CC de la porte. Notez qu’il y a
un léger abus de langage dans l’utilisation du terme code d’erreur puisqu’un code
d’erreur ne renseigne pas nécessairement sur un dysfonctionnement mais peut in-
diquer le fonctionnement nominal d’un système. L’un des principaux avantages
de ce modèle est que les experts l’utilisent pour a posteriori le diagnostic d’une
panne. Lorsqu’un train spécifique tombe en panne, il est envoyé à l’usine de main-
tenance pour être inspecté. Pour déterminer la cause de la panne, les journaux
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sont extraits des systèmes et analysés par le responsable de la maintenance. Celui-
ci recherche des patterns spécifiques et des récurrences connues de codes d’erreur
dans ces codes afin de retrouver la cause profonde de la panne. Nous soulignons que
cette procédure est largement utilisée en pratique pour la maintenance prédictive
dans des contextes industriels au-delà du domaine ferroviaire tels que l’industrie
automobile (Sung et al., 2020), les processus de fabrication (Gutschi et al., 2019)
ou la détection d’anomalies sur divers systèmes informatiques (Wang et al., 2017a;
Wang, Vo, and Ni, 2015; Zhang et al., 2016).

a société nationale des chemins de fer français a développé une plate-forme cen-
tralisée pour collecter et traiter les données en temps réel envoyées par le matériel
roulant à partir de l’unité informatique embarquée. Ces données comprennent des
séries chronologiques électriques, des journaux d’événements et l’état du système
conçu par des experts. Pour chaque voiture de chaque train du parc, l’espace des
caractéristiques est construit en collectant chaque journal d’événement horodaté
associé à un sous-système spécifique.

Dans le cas du trafic ferroviaire, les conséquences d’une panne de locomotive
ne se limitent pas à la machine affectée, mais se propagent à travers le réseau
ferroviaire et peuvent également affecter les transports publics.

Apprentissage machine pour les données symboliques. La plupart de nos
tâches quotidiennes, comme la parole, la lecture ou l’utilisation de la mémoire
épisodique, reposent sur des données symboliques plutôt que numériques. Ce qui
différencie fondamentalement les données symboliques des données numériques est
la propriété ordering. Par exemple, il existe un moyen naturel de comparer deux
mesures physiques d’un signal électrique mais aucun pour comparer deux symboles.
Ce type de données est omniprésent dans un large éventail de domaines tels que
la biologie avec la transcription de l’ADN et de l’ARN (Schölkopf, Tsuda, and
Vert, 2004; Aubin-Frankowski and Vert, 2020), la chimie pour la prédiction et la
classification des structures moléculaires (Elton et al., 2018), l’analyse de graphes
(Mansha et al., 2016; Shang et al., 2017; Zheng et al., 2013), et en théorie musicale
pour extraire les motifs qui ont la même fonction harmonique (Rompré, Biskri, and
Meunier, 2017).

En général, les données symboliques ne conviennent pas à la plupart des al-
gorithmes d’apprentissage automatique, car une hypothèse commune faite dans
la théorie de l’apprentissage automatique est que le vecteur de caractéristiques
d-dimensionnel est une variable aléatoire évaluée dans Rd. Une première ap-
proche consiste à considérer les méthodes à noyau (Kung, 2014) qui étendent
l’utilisation des techniques courantes d’apprentissage automatique aux données
non numériques. Plus précisément, elle repose sur le choix d’une fonction noyau
qui fait correspondre les données des symboles dans un espace structuré. Les
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principaux inconvénients des méthodes à noyau sont la difficulté d’interpréter les
résultats, ce qui est une exigence pour qu’une solution prédictive puisse être util-
isée dans un contexte industriel. Une deuxième approche consiste à transformer
le processus en un processus numérique en agrégeant (en comptant ou en consid-
érant certaines statistiques) les événements d’une fenêtre temporelle choisie et a
été largement utilisée pour la détection des anomalies : (He et al., 2016; Bogo-
jeski et al., 2020; Aggarwal et al., 2018; Laredo et al., 2019). Bien que populaire
(Basora, Olive, and Dubot, 2019), la classification basée uniquement sur cette con-
struction est souvent incapable de capturer les modèles critiques d’événements qui
peuvent être très pertinents dans la maintenance prédictive. Plus important en-
core, elle ne fournit pas directement de résultats explicables en termes d’ensembles
d’événements ou de patterns de journaux.

En général, une série chronologique brute ne peut pas être considérée comme
appropriée pour alimenter un algorithme d’apprentissage automatique pour plusieurs
raisons.Dans la théorie de la décision statistique, un vecteur de caractéristiques
est habituellement un vecteur de variables aléatoires à valeur réelle telles queX
Rm. Dans l’apprentissage supervisé, il existe une variable de sortie, dont le do-
maine dépend de l’application (par exemple, un ensemble fini de valeursY Cin
classification ou Rin régression) telle queXetY sont liées par une distribution in-
connuejointePr(X,Y)qui est approximée par une fonctionfstelle quef(X)→Y. La
fonction est choisie en fonction de l’hypothèse faite sur la distribution des données
etf est ajustée afin d’optimiser une fonction de perte(Y,f(X))pour pénaliser les er-
reurs de prédiction.Le vecteur de caractéristiques est censé être de faible dimension
afin d’éviter le phénomène de malédiction de la dimension qui affecte les perfor-
mances du fait que les instances sont situées dans un espace de caractéristiques
clairsemé [Hastie et al, 2009]. Hegger et al., 1998] discute de l’impact de la haute
dimensionnalité pour construire un espace de caractéristiques significatif à partir
de séries temporelles afin d’effectuer une analyse de séries temporelles : avec les
séries temporelles, la densité des vecteurs est faible et diminue exponentiellement
avec la dimension. Pour contrer cet effet, un nombre exponentiellement croissant
d’instances dans l’ensemble de données est nécessaire. En outre, la position rela-
tive d’une variable aléatoire dans le vecteur de caractéristiques n’est pas prise en
compte pour elle.

La société nationale des chemins de fer français a développé une plate-forme
centralisée pour collecter et traiter les données en temps réel envoyées par le
matériel roulant à partir de l’unité informatique embarquée. Ces données com-
prennent des séries chronologiques électriques, des journaux d’événements et l’état
du système conçu par des experts. Pour chaque voiture de chaque train de la flotte,
l’espace des caractéristiques est construit en collectant chaque journal d’événement
horodaté associé à un sous-système spécifique.
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Comme les réseaux ferroviaires sont de plus en plus fréquentés et dévelop-
pés, les exigences de disponibilité, d’amélioration de la qualité du service et de
fiabilité de l’infrastructure sont devenues plus critiques (de Bruin et al., 2017).
Avec la détérioration rapide due à l’utilisation intensive, les interventions de main-
tenance limitées en raison des réductions budgétaires et les demandes de service
croissantes, le besoin de maintenance de l’infrastructure augmente continuellement
(ERF,2013 ; Agence ferroviaire européenne, 2014). Par conséquent, les gestion-
naires d’infrastructure doivent prendre des décisions de maintenance avec pour
objectifs d’améliorer l’état des actifs, de dépenser un coût optimal et de maintenir
le réseau disponible.

Pour chaque sous-système d’une voiture donnée, l’espace cible est constitué des
rapports de maintenance, des pannes non planifiées et des rapports d’opérations
de maintenance préventive.
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Figure C.2: Regression function RS
t7

at time t7 (red line) given the events
(xt1 , . . . , xt6) on the subsystem S. At t7, the past events are used to produce
the density probability function of a breakdown appearing in the future. This
density is compared with the true occurrence of an anomaly yt8 .

C.3 Contexte

Cette section présente formellement la maintenance prédictive comme une régres-
sion statistique basée sur des données symboliques. La tâche d’exploration de mo-
tifs est ensuite présentée et reformulée comme un problème d’inférence bayésienne.
Enfin, la procédure d’optimisation stochastique est décrite en mettant l’accent sur
les méthodes de réduction de la variance.

Le cadre bayésien qui sera utilisé tout au long de cette thèse comme modèle
génératif pour la tâche d’exploration de motifs et comme cas d’utilisation pour le
problème d’optimisation stochastique.

C.3.1 Séries temporelles symboliques pour la maintenance
prédictive

Comme mentionné, les données symboliques jouent un rôle crucial dans la main-
tenance prédictive : leur polyvalence et leur utilisation historique par les main-
teneurs. Formellement, les codes d’erreurs sont un dictionnaire ou un ensemble
fini E = (c1, . . . , cd) de taille d. À un instant t ∈ R+, un événement peut être émis
par le sous-système Si. L’identifiant du sous-système définit le bloc de composant
impliqué (tel que le bloc moteur) ainsi que l’identifiant du train et du véhicule.
Enfin, l’espace des caractéristiques doit être enrichi par des informations qui sont
corrélées avec le processus de dégradation sous-jacent (voir le chapitre 2). Dans
notre application et en général, il sera généralement constitué d’un vecteur réel
dans RK . Un exemple d’un tel contexte est, par exemple, le nombre de kilomètres
depuis la dernière maintenance, les données météorologiques ou des informations
contextuelles supplémentaires au moment de l’émission du code d’erreur. Nous



186 APPENDIX C. PORTÉE ET MOTIVATION DE LA THÈSE

désignons XS
t = E ×RK l’espace de description du sous-système S au temps t avec

E = P(E) étant l’ensemble de tous les sous-ensembles de E. Au temps t ∈ R+ on
observe l’occurrence d’une panne Y S

t ∈ {0, 1} sur le sous-système S. L’objectif de
tout algorithme de maintenance prédictive est de calculer la fonction de régression
à chaque instant t définie par

RS
t (y) = P[Y S

t = y|(XS
t0

)t0≤t], (C.1)

où y ∈ {0, 1} dénote un ensemble de dysfonctionnements. La figure C.2 illus-
tre la construction d’une telle fonction. Au temps (t1, . . . , t6), les codes d’erreur
(et1 , . . . , et6) sont émis et enrichis pour produire (xt1 , . . . , xt6). À t7, la fonction
de régression estime la probabilité d’occurrence d’une panne sur le sous-système
S pour chaque instant dans le futur. Un large éventail de techniques basées sur le
modèle de processus stochastique (Guan, Tang, and Xu, 2016; Chen et al., 2016;
Cha and Pulcini, 2016), les méthodes à noyau (Kung, 2014) ou les approches
d’apprentissage profond (Guo et al., 2017; Liu et al., 2018; Karpat et al., 2020)
peuvent être utilisées pour modéliser une telle fonction de régression. Comme
mentionné, toutes ces méthodes souffrent d’une faible explicabilité et sont incom-
patibles avec les processus de maintenance établis qui sont basés sur le modèle des
codes. L’objectif est donc de construire un modèle basé sur de petits ensembles
de codes qui se produisent peu de temps et spécifiquement avant les défaillances,
ce qui est une tâche difficile. Trouver ces combinaisons de codes est généralement
intraitable en raison du nombre exponentiel de modèles possibles. Il est donc néces-
saire de recourir à la classe des techniques de pattern mining (Agrawal, Imielinski,
and Swami, 1993).

C.3.2 Contexte sur le pattern mining

Le domaine de l’exploration de données est né du besoin d’outils informatiques per-
mettant d’extraire des informations utiles de grandes bases de données collectées
par les administrations et les industries. Ces bases de données sont généralement
de grands enregistrements de nombreuses variables ou features principalement con-
struites pour des tâches administratives telles que la comptabilité et la conformité
réglementaire.

Approches déterministes. Les travaux précurseurs de (Agrawal, Imielinski,
and Swami, 1993) sur le Frequent Itemset Mining (FIM) pour l’analyse de paniers
ont suscité l’intérêt car ils offrent une procédure traçable pour aborder un problème
du monde réel avec une vaste application commerciale. Le problème posé était
de trouver avec un niveau de précision donné, l’association ou les patterns de
produits communs qui ont été achetés ensemble à partir d’une base de données
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d’achats. Étant donné un nombre d d’articles possibles à acheter, et une base de
données de reçus, la complexité associée à l’interrogation de la base de données
pour trouver le nombre de fois où chaque motif de produits a été acheté ensemble,
ou support, est en O(2d). Le calcul de tels motifs est donc intraitable même pour
un dictionnaire d’itemsets de taille modérée. La solution proposée consistait à
exploiter la antimonoticité de l’ensemble de motifs E : pour deux motifs x, y ∈ E ,
si x dérive de y dans le sens que x ⊆ y alors le support de y n’est pas plus
grand que le support de x. En fixant un seuil de support minimal µ ∈ [0, 1], un
algorithme peut extraire le support des ensembles d’éléments à la manière d’une
recherche en largeur (Zuse, 1972; Moore, 1959) en générant de nouveaux motifs
candidats à chaque étape et arrêter l’exploration de l’arbre dès qu’il rencontre
un motif avec un support inférieur à µ. Cette procédure constitue l’algorithme
apriori (Agrawal and Srikant, 1994) et a constitué une étape importante pour
les tâches liées à l’exploration de données. Même si apriori est un algorithme
efficace lorsque la taille moyenne des motifs présents dans la base de données n’est
pas trop importante (Hegland, 2007), il présente plusieurs inconvénients. Tout
d’abord, elle nécessite de multiples balayages de la base de données pour chaque
motif évalué, et la nécessité de calculer un nouvel ensemble de motifs à tester
pendant la procédure entraîne une complexité mémoire exponentielle de O(2d).
Des améliorations par rapport à l’algorithme apriori telles que eclat (Zaki, May-
June/2000) propose un algorithme de recherche en profondeur avec un format de
données vertical qui allège le besoin de requêtes multiples de la base de données.
Une stratégie différente pour FIM a été adoptée par Han et al. (2004) appelée
fp-tree. Les auteurs utilisent une structure arborescente pour coder l’ensemble
trié des transactions, ce qui permet de n’effectuer que deux balayages de la base
de données. De manière cruciale, la structure arborescente évite de générer des
itemsets inutiles, ce qui conduit à une procédure beaucoup plus efficace en termes
de mémoire par rapport à apriori (Fournier-Viger et al., 2017). Le cp-tree
(Tanbeer et al., 2008) étend l’algorithme fp-tree en ne nécessitant qu’un seul
balayage de la base de données, ce qui réduit d’un facteur N les besoins en calcul.
Nous soulignons que FIM est le point de départ de diverses techniques liées aux
tâches d’exploration de données. Par exemple, Association Rule Mining (ARM)
(Agrawal and Srikant, 1994; Zaki and Hsiao, 2005) considère le problème de la
recherche de règles entre itemsets à un niveau de confiance donné. Pour deux
motifs x, y ∈ E , le but est de trouver des règles x → y telles que le support
s(x ∨ y) et la mesure de confiance c(x, y) = s(x∨y)

s(x)
ne sont pas supérieurs à deux

seuils µ, ν ∈ [0, 1]. La mesure de confiance informe sur la co-occurrence de deux
motifs en tenant compte de leur fréquence dans la base de données. Episode Rule
Mining (Mannila, Toivonen, and Verkamo, 1997; Zimmermann, 2014) considère le
problème de trouver les règles de la forme x → y qui apparaissent régulièrement
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dans une fenêtre définie par l’utilisateur. Les applications sont nombreuses dans
la détection d’anomalies et de fraudes (Qin and Hwang, 2004; Su, 2010; Wang et
al., 2017b), l’analyse de capteurs (Li et al., 2017a), les données de trafic (Fournier-
Viger et al., 2017) et dans le domaine médical (Patnaik, Sastry, and Unnikrishnan,
2008). L’objectif du problème de Periodic Pattern Mining est d’extraire les motifs
qui se répètent au fil des transactions de la base de données (Venkatesh et al.,
2016) et est couramment utilisé pour les applications biomédicales (Zhang et al.,
2007) et l’analyse des séquences temporelles (Sirisha, Shashi, and Raju, 2014). Une
approche originale a été adoptée par Vreeken, van Leeuwen, and Siebes (2010) en
recherchant l’ensemble de motifs qui compresse le mieux la base de données sans
perte. L’algorithme KRIMP résultant effectue d’abord un FIM avant d’utiliser le
principe Minimum Description Length pour résumer la base de données. Enfin, les
tâches de l’exploration progressive de motifs consistent à effectuer un FIM sur un
sous-ensemble correctement dimensionné de la base de données afin d’approcher
le support de manière uniforme à un niveau de confiance donné : (Riondato and
Upfal, 2015). Nous mentionnons d’autres méthodes qui dérivent de FIM telles que
l’exploration de sous-graphes (Santhi and Padmaja, 2015), l’exploration de motifs
discriminatifs (Hämäläinen and Webb, 2019) et l’exploration de motifs séquentiels
(Fournier-Viger et al., 2017).

Approches bayésiennes. Les méthodes mentionnées peuvent extraire avec suc-
cès le motif d’une grande base de données avec une utilisation efficace de la mé-
moire, mais ont toujours une complexité de calcul exponentielle en temps pour un
seuil de soutien faible µ, car il a été démontré que le problème est np-dur (Yang,
2004). De plus, ces modèles ne supposent aucune stochasticité sur le processus
sous-jacent générant la base de données. En revanche, dans la grande majorité
des cas, les transactions peuvent être considérées comme le résultat d’un processus
génératif sous-jacent mais inconnu. Par conséquent, aucun intervalle de confiance
probabiliste ne peut être dérivé pour évaluer la signification statistique des résul-
tats.

Des modèles génératifs ont été proposés pour effectuer diverses FIM tâches
afin de résoudre ces problèmes fondamentaux. Le modèle de distribution arbores-
cent multivarié (Hegland, 2007) ajuste une distribution de probabilité sur les

(
d
2

)
éléments par paire et une structure arborescente sur les attributs. Fowkes and
Sutton (2016) utilisent un modèle de réseau bayésien pour modéliser la base de
données des transactions. Comme l’inférence nécessite la résolution de l’intraitable
problème de couverture de poids (Korte and Vygen, 2006), les auteurs ont util-
isé une approximation gloutonne pour inférer les itemsets intéressants. Pavlov,
Mannila, and Smyth (2003) comparent empiriquement plusieurs modèles générat-
ifs tels que le modèle d’indépendance (Hegland, 2007), le modèle de distribution
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arborescent multivarié (Chow and Liu, 1968) et le modèle de mélange dans le cadre
équivalent de l’interrogation d’ensembles de données binaires clairsemés. Notam-
ment, l’utilisation de ces approches probabilistes va au-delà de FIM et peut servir
d’outil pour dériver des limites de convergence pour les algorithmes de type apri-
ori (Hegland, 2007). Notez que ces approches sont étroitement liées au principe
MDL (Vreeken, van Leeuwen, and Siebes, 2010) puisque l’entropie d’un modèle
de probabilité définit la compression sans perte maximale réalisable par tout al-
gorithme de compression (nous renvoyons le lecteur intéressé à (Friedman, Geiger,
and Goldszmidt, 1997; Lam and Bacchus, 1994)).

Mode d’inférence. Contrairement à l’approche déterministe, les méthodes prob-
abilistes reposent sur l’hypothèse que la base de données D est le résultat d’un
processus stochastique. Cette hypothèse ouvre la possibilité d’appliquer des out-
ils statistiques courants pour inférer l’ensemble des items fréquents. L’objectif
commun de toutes ces méthodes est de trouver pour chaque motif x la distribu-
tion de probabilité du support p(x|z,D). Étant donné le modèle génératif, trou-
ver une formule fermée pour calculer s(x) peut s’avérer difficile et implique sou-
vent une énumération intraitable de tous les motifs possibles (Fowkes and Sutton,
2016). En considérant des modèles plus simples tels que mixture models (Hegland,
2007) résout ce problème et permet de contrôler la complexité de ce calcul par
le choix du nombre de composantes dans la distribution du mélange. Sous cette
représentation, la tâche d’extraction du motif le plus fréquent devient une tâche
d’optimisation bayesienne. Les prochaines sections décrivent formellement le cadre
technique de cette inférence et les stratégies permettant d’accélérer la procédure.

C.3.3 Contexte des statistiques bayésiennes

Dans cette section, nous présentons le cadre des statistiques bayésiennes et les
notations de base. Soit (Ω,A,P) un espace de probabilité, (E, ‖.‖) un espace
vectoriel équipé de la distance d et de la norme induite ‖.‖ et considérons une
variable aléatoire X : (Ω,A) −→ (E,B(E)). Dans le cadre bayésien, l’espace des
paramètres Z est équipé d’une mesure Π sur T telle que (Z, T ,Π) est un espace
de probabilité et X est distribué selon un modèle paramétrique Pz de la famille
paramétrique de distribution P = {Pz : z ∈ Z}. Dans la plupart des cas, Z est un
sous-ensemble d’un espace euclidien et les applications considèrent souvent le cas
réel -dimensionnel Z ⊂ Rd. En outre, supposons que pour chaque z dans Z, les
mesures Pz et Π admettent une fonction de densité telle que

dPz = p(.|z)dµ

dΠ = πdν,
(C.2)
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Figure C.3: Variational inference. Left: The variational distribution qλ (orange)
parametrized by λ and the true posterior distribution p(z|x) (green). Right: The
Variational Inference procedure consists of finding the optimal λ∗, starting from
λ0 to minimize the Kullback–Leibler divergence between the true posterior and
the variational distribution (represented as dashed line).

où µ, ν sont des mesures σ-fini sur respectivement B(E) et T . Alors, la fonction de
vraisemblance z 7→ p(z|x) telle que p(z|x) = p(x|z)π(z) est une densité par rapport
à la mesure produit µ⊗ ν. La différence avec le point de vue fréquentiste est que
le paramètre z est lui-même une variable aléatoire distribuée selon la distribution
prioritaire π et, conditionnellement aux données x, a la distribution suivante

p(z|x) =
p(x|z)π(z)∫

p(x|z)π(z)dν(z)
. (C.3)

Le cadre de l’inférence bayésienne dépend donc de la capacité à simuler z à
partir de l’équation C.3. Le calcul de p(z|x) nécessite l’évaluation de la distribution
prédictive antérieure et donc d’intégrer sur toutes les variables latentes, ce qui
conduit à un calcul intraitable (sauf dans le cas du conjugué antérieur) même
pour les modèles simples (Gelman et al., 2013). Une approche courante consiste
à utiliser des méthodes telles que Gibbs Sampling, Monte Carlo Markov Chain ou
Hamilton Monte Carlo (Betancourt, 2018; Homan and Gelman, 2014; Brooks et
al., 2011) qui s’appuient uniquement sur la distribution postérieure non normalisée
(nous libérant du besoin de calculer p(y)) et sur la capacité à échantillonner à partir
de la postérieure. Ces méthodes sont cohérentes mais associées à un calcul lourd,
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une sensibilité élevée aux hyperparamètres et une lenteur potentielle à converger
vers la vraie distribution cible.

Inférence variationnelle

La distribution postérieure dans l’équation C.3 peut être calculée exactement sous
certaines conditions sur la distribution antérieure lorsque la forme fermée est
disponible (Gelman et al., 2013). Pour la plupart des applications, cette condition
n’est pas remplie et il faut recourir à une procédure asymptotiquement exacte ou
s’appuyer sur une approximation. Une approche d’approximation qui est devenue
le cadre principal du calcul bayésien approximatif est Variational Inference (VI).
Elle repose sur la construction d’une approximation de la distribution postérieure
paramétrée par une famille variationnelle distribution Q = {λ : λ ∈ Λ}.

Dans cette méthode, une métrique est choisie de sorte que la distance entre
la vraie distribution cible p et la distribution variationnelle q soit minimisée. Un
choix courant est la divergence Kullback–Leibler (KL). En désignant x les données,
z l’espace des variables latentes et p(z|x) la vraisemblance, et qλ la distribution
variationnelle paramétrée par λ, l’inférence variationnelle consiste en un problème
de minimisation : (Saul, Jaakkola, and Jordan, 1996)

qλ∗ = argmin
qλ∈Q

KL
(
qλ(z)‖p(z|x)

)
, (C.4)

avec KL
(
qλ(z)‖p(z|x)

)
= Eq[log qλ(x)−log p(z|x)] la divergence Kullback–Leibler.

Même si KL reste la métrique la plus utilisée, d’autres mesures sur l’espace de dis-
tribution ont été étudiées (Ambrogioni et al., 2018). La raison de la popularité de
ces techniques est le fait que la divergence KL peut être liée à la Evidence Lower
Bound (ELBO) qui ne dépend pas de la distribution postérieure (Saul, Jaakkola,
and Jordan, 1996).

log p(y) = ELBO(λ) + KL
(
qλ(z)‖p(z|x)

)
, (C.5)

où le ELBO est défini comme suit

ELBO(λ) = Ez∼qλ
[
log p(z, x)− log qλ(z)

]
. (C.6)

Puisque la vraisemblance marginale p(y) ne dépend pas des paramètres z, il
s’ensuit que la maximisation de la ELBO par rapport à qλ conduit à trouver la
meilleure approximation de p(z|x) pour la divergence Kullback–Leibler (KL). In-
tuitivement, cette procédure minimise la perte d’information consécutive au rem-
placement de la vraisemblance par qλ mais d’autres distances peuvent être utilisées
(Ambrogioni et al., 2018).



192 APPENDIX C. PORTÉE ET MOTIVATION DE LA THÈSE

System output

�k

Input parameter

Stochastic gradient

�k+1

�∇ F(�,�)

F(�,�)
SYSTEM OR ENVIRONMENT

OPTIMISATION STEP

Figure C.4: Un processus d’optimisation stochastique typique composé de deux
étapes : la simulation (jaune) et l’optimisation (vert). La première étape produit
La phase de simulation produit une simulation du système stochastique ou de
l’interaction avec l’environnement, ainsi que des estimateurs sans biais du gradient
(adapté de (Mohamed et al., 2020))

En pratique, la classe de distribution Q est choisie dans une famille de distri-
bution qui peut être facilement échantillonnée. Un choix courant consiste à choisir
dans la famille de distribution normale Q = N (µ,Σ) |(µ, σ)RK × MK×K} avec
MK×K l’espace des matrices symétriques à définition positive sur RK×K . Dans ce
cas, l’exécution de VI consiste à trouver l’ensemble optimal de paramètres (µ∗,Σ∗)
tel que l’équation C.6 soit minimisée.

Là encore, il n’existe généralement pas de formule fermée pour calculer le ELBO
ou son gradient et il faut s’en remettre à une méthode d’optimisation stochastique
(Bottou, Curtis, and Nocedal, 2018) pour effectuer cette tâche. Avec cette méth-
ode, la minimisation est effectuée en réalisant une Stochastic Gradient Descent
(SGD) procédure sur la ELBO fonction objectif.

C.3.4 Optimisation tochastique

L’un des problèmes d’optimisation les plus importants de la statistique moderne
consiste à trouver la racine d’une fonction objectif qui est une espérance d’une
variable aléatoire (Bottou, Curtis, and Nocedal, 2018). Ce problème a des ap-
plications vastes et connues en apprentissage automatique (Bottou, Curtis, and
Nocedal, 2018; Sutton and Barto, 2018; Gelman et al., 2013; Simsekli et al., 2019)
mais aussi en finance pour l’analyse de sensibilité (Pagès, 2018; Glasserman, 2013),
la gestion des réseaux de transport CITE et la chaîne logistique. Étant donné une
µ-distributed variable aléatoire X : Ω −→ E sur l’espace de probabilité (Ω,A,P),
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le problème général d’optimisation stochastique se lit comme suit

argmin
λ∈RK

f(λ) = E
[
F (X,λ)

]
=

∫
E

F (x,λ)µ(dx),
(C.7)

où F : E × RK −→ R est une fonction réelle dans le L1 (Ω,A,P). Sous la condi-
tion de régularité que f est différentiable continue (ou a leat qu’un sous-gradient
peut être calculé), ce problème peut être résolu en trouvant les points où le gra-
dient g = ∇λf(λ) disparaît puisque λ∗ ∈ argmin{g = 0}. N- Nouvelle ligne
Ce problème peut être interprété comme l’optimisation d’une cost ou loss func-
tion F par rapport à λ avec une interférence bruyante distribuée selon µ. Dans
les applications d’apprentissage automatique (comme l’entraînement d’un réseau
neuronal), F représente la loss attendue d’un modèle paramétré par λ pour un en-
semble d’entraînement distribué selon µ. Dans ce cas, il a été montré que trouver
l’ensemble optimal de paramètres λ∗ est NP-hard même pour un modèle de clas-
sification binaire simple (Feldman et al., 2012). Plus généralement, la principale
difficulté pour trouver une solution à C.7 est qu’elle implique le calcul d’une es-
pérance potentiellement de haute dimension, ce qui est prohibitif. Même lorsque la
distribution est connue, il n’existe généralement pas de forme fermée pour calculer
le gradient. De nos jours, les méthodes de quadrature (Leader, 2004) pour calculer
l’intégrale à une précision donnée ne sont réalisables que pour une dimension allant
jusqu’à dix ou vingt, ce qui les rend inutilisables pour la plupart des applications
modernes. De plus, dans la plupart des cadres tels que l’apprentissage statistique,
la distribution µ est inconnue et seuls des échantillons de la distribution µ sont
disponibles.

Même lorsque la distribution est connue, équation C.7, il n’existe généralement
pas de forme fermée pour calculer le gradient car cela nécessite une dérivation sous
l’attente d’un espace de paramètres potentiellement de haute dimension.

Échantillonnage alternatif pour l’estimateur de la moyenne.

L’échantillonnage alternatif a été introduit pour accélérer les procédures d’optimisation
stochastique. La recherche d’une approximation pour le problème d’optimisation
dans C.7 dépend essentiellement de la capacité à calculer efficacement une approx-
imation de l’espérance dépendant de l’échantillon.

Monte Carlo. La procédure numérique la plus couramment utilisée pour ap-
proximer l’espérance dans C.7 est basée sur la Law of Large Number. Elle repose
sur le remplacement de l’espérance par un estimateur de moyenne empirique. Soit
(X1, . . . , Xn) une séquence i.i.d. de variables aléatoires distribuées µX , F toute
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Monte Carlo Randomized Quasi Monte Carlo Optimal Quantization

Figure C.5: Monte Carlo (gauche), Monte Carlo aléatoire (centre) et Quantifi-
cation optimale avec les cellules de Voronoï associées (droite), pour une taille
d’échantillonnage N = 200 de la distribution normale bivariée N (0, I2). (Dib,
2020)

fonction mesurable à valeur réelle, et considérons l’estimateur Monte-Carlo suiv-
ant

IMC
n =

1

n

n∑
i=1

F (Xi). (C.8)

Par la loi forte des grands nombres, IMC
n converge vers E

[
F (X)

]
µ-almost surely

et, à condition que F (X) ∈ L2 (Ω,A,P), à un taux de O(n−
1
2 ) avec une erreur

quadratique

‖IMC
n − E

[
F (X)

]
‖L2(Ω,A,P) =

VF (X)√
n

. (C.9)

La méthode de Monte-Carlo repose uniquement sur la possibilité de tirer de la
distribution µ à un coût raisonnable. En outre, le Central Limit Theorem peut
être utilisé pour produire un intervalle de confiance asymptotique.

Quasi Monte-Carlo. Des méthodes ont été conçues pour améliorer le taux
de convergence, principalement en considérant des méthodes d’échantillonnage
alternatives pour générer le (X1, . . . , Xn). Les plus utilisées sont les méthodes
Quasi Monte Carlo (Dick, Kuo, and Sloan, 2013). Ces méthodes sont basées sur
la génération de séquences de nombre pseudo-aléatoire qui imitent les propriétés
statistiques d’une séquence d’échantillons i.i.d. cible. Plus précisément, laissons
X être une variable aléatoire qui admet une densité ψ par rapport à la mesure
de Lebesgue de dimension d et considérons une variable aléatoire uniformément
distribuée U ∼ U([0, 1]d). Alors, la variable aléatoire ψ−1(U) est distribuée selon
X et pour toute fonction mesurable H on a que E

[
H(X)

]
= E

[
H ◦ ψ−1(U)

]
. Une

séquence low-discrepancy u = (u1, . . . ,un), avec (ui)
n
i=1 évaluée dans l’hypercube
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d-dimensionnel [0, 1]d, est produit et évalué par la fonction de distribution de prob-
abilité à densité inverse ψ−1 (Pagès, 2018). Puisque u converge faiblement vers la
mesure de Lebesgue sur [0, 1]d, ce qui suit s’applique à l’estimateur QMC.

IQMC
n =

1

n

n∑
i=1

F ◦ ψ−1(ui)

−−−→
n→∞

E
[
F (X)

]
.

(C.10)

Intuitivement, si (u1, . . . ,un) est similaire à la réalisation d’une séquence i.i.d.
d’une variable aléatoire uniformément distribuée, la séquence (ψ−1(u1), . . . , ψ−1(un))
sera similaire à l’ensemble i.i.d. d’échantillons cible (X1, . . . , Xn). La qualité d’une
telle approximation est contrôlée par la mesure de la disparité étoile qui est définie
comme la distance `∞ entre la distribution cumulative de la mesure empirique et
la mesure de Lebesgue

D∗n (u1, . . . ,un) = sup
b∈[0,1]d

∣∣∣∣∣∣ 1n
n∑
i=1

1{u∈[0,b]} − λd([0, b])

∣∣∣∣∣∣ . (C.11)

Pour la séquence u dont, l’inégalité de Hlawka-Koksma (Koksma, 1942; Hlawka,
1961) stipule que l’erreur d’approximation de C.10 est limitée supérieurement par
sa mesure de divergence pour h avec une variation finie. Puisqu’il existe plusieurs
séquences u qui présentent une mesure de divergence telle que

D∗n (u1, . . . ,un) ≤ cd
(log n)d−1

n
, (C.12)

l’estimateur QMC IQMC
n peut donc atteindre un bien meilleur taux de conver-

gence que l’estimateur MC IMC
n de l’équation C.9. Il existe plusieurs méthodes

pour calculer de telles séquences à faible écart telles que les séquences de Halton,
Faure ou Sobol. Nous mentionnons également qu’il existe une version stochas-
tique de la méthode QMC, la Randomized Quasi Monte Carlo (RQMC), qui est
obtenue en introduisant soigneusement le caractère aléatoire dans la séquence u
(Owen, 2008; Gerber, 2015). L’estimateur RQMC est obtenu comme précédem-
ment par moyenne de la séquence produite. Contrairement à l’estimateur IQMC

n ,
l’estimateur produit est sans biais et il a été récemment démontré qu’il atteint un
taux d’intégration O(n−1) sous l’hypothèse d’intégrabilité carrée (Gerber, 2015).

Descente de gradient stochastique

La méthode SGD introduite par (Robbins and Monro, 1951) a été spécifiquement
conçue comme une procédure stochastique de recherche zéro de premier ordre pour
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une fonction objectif bruyante. Cette classe d’algorithmes et ses variantes (Polyak
and Juditsky, 1992; Kingma and Ba, 2015; Duchi, Hazan, and Singer, 2011a;
McMahan and Streeter, 2010) ont rapidement attiré l’attention en raison de leur
simplicité et de leur large éventail d’applications. Dans les problèmes modernes,
elle se rapporte à de nombreuses applications en statistiques et en apprentissage
automatique (“Stochastic Approximation Approach to Stochastic Programming”;
Bottou and Le Cun, 2005). La méthode originale de descente de gradient (Cauchy,
1847; Hadamard, 1908; Rumelhart, Hinton, and Williams, 1985) utilise une esti-
mation du gradient pour mettre à jour de façon récursive λ au temps t comme
suit

λt+1 = λt − αt∇λf(λt). (C.13)

Dans le cadre décrit dans C.7, nous n’avons pas accès à l’espérance totale
f(λ) mais seulement à un estimateur bruité. L’essentiel de la méthode stochastic
gradient descent consiste à remplacer le gradient réel par son estimateur, ce qui
aboutit à

λt+1 = λt − αtg(λt). (C.14)

Le choix du taux d’apprentissage αt est crucial car il contrôle la taille des mises
à jour. Un ensemble de conditions suffisantes connues sous le nom de conditions
de Robbins-Monro assure que la procédure C.14 converge si le programme de mise
à jour décroissante est tel que

∑∞
t=1 αt = ∞ et

∑∞
t=1 α

2
t < ∞. Le choix du taux

d’apprentissage est en soi un défi et influence grandement le taux de convergence :
(Bottou, Curtis, and Nocedal, 2018). Un choix simple consiste à prendre αt = cta

pour une puissance réelle a et c une constante réelle. Les méthodes modernes
utilisent taux d’apprentissage adaptatif pour régler le taux d’apprentissage, comme
AdaDelta (Zeiler, 2012), AdaGrad (Duchi, Hazan, and Singer, 2011b) ou Adam
(Kingma and Ba, 2015). Une garantie théorique sur le taux de convergence peut
être obtenue en donnant une certaine hypothèse de régularité sur f . Par exemple,
en supposant la régularité et la forte convexité, Bottou, Curtis, and Nocedal (2018)
montrent que l’erreur f(λt)− f(λ∗) = ε est dans O(t−1).

Variance du gradient. Si deux estimateurs de gradient sont disponibles au
même coût de calcul, celui dont la variance est la plus faible doit généralement
être préféré car la convergence des méthodes d’optimisation stochastique dépend
crucialement de la variance. La plupart de ces procédures d’optimisation reposent
sur une optimisation par descente de gradient sur les paramètres associés à la
famille variationnelle et dépendent ensuite fortement de la norme `2(RK) (avec K
le nombre de paramètres variationnels) du gradient attendu (Bottou, Curtis, and
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Nocedal, 2018; Domke, 2019). Une faible variance des estimateurs de gradient per-
met de prendre de plus grands pas dans l’espace des paramètres et d’obtenir une
convergence plus rapide si le biais induit peut être contrôlé de manière satisfaisante.
Plusieurs méthodes ont été utilisées pour réduire la variance du gradient, comme le
filtrage (Miller et al., 2017; Roeder, Wu, and Duvenaud, 2017), la variante de con-
trôle (Geffner and Domke, 2018) ou l’échantillonnage alternatif (Tran, Nott, and
Kohn, 2017; Ruiz, Titsias, and Blei, 2016; Buchholz, Wenzel, and Mandt, 2018).
Ces méthodes souffrent généralement de plusieurs inconvénients. Premièrement,
elles nécessitent généralement des hypothèses restrictives sur la distribution vari-
ationnelle. Par exemple, QMCVI n’est valable que pour une distribution avec une
fonction de densité inversible. Ensuite, la plupart du temps, la garantie théorique
sur la bonté de la solution n’est pas correctement établie. Enfin, elle implique
souvent un cadre de calcul complexe et peut être difficile à mettre en œuvre.
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C.4 Contributions
L’apprentissage à base de motifs appliqué à la maintenance prédictive.
Nous proposons une vue d’ensemble du domaine de la maintenance prédictive en
mettant l’accent sur les avancées récentes de la maintenance prédictive dans le con-
texte de l’industrie ferroviaire. Ce cas d’utilisation est particulièrement difficile ; le
système industriel du chemin de fer s’étend sur un vaste territoire avec des environ-
nements variés et implique des systèmes complexes hétérogènes et interconnectés.
La deuxième contribution consiste à concevoir un pipeline de prédiction industriel
pour aborder le problème de la maintenance prédictive dans un contexte indus-
triel. Pour surmonter la complexité informatique qui découle d’un nombre élevé
d’hyperparamètres possibles, nous concevons une méthode basée sur un test à deux
échantillons pour élaguer l’arbre des opérations à effectuer. Divers algorithmes et
ensembles d’hyperparamètres sont testés et comparés sur les deux classes de la
flotte de trains français sur une période de deux ans.

Modèle génératif bayésien pour l’exploration de motifs . Nous dévelop-
pons des méthodes utilisant un modèle génératif bayésien pour l’exploration de mo-
tifs et montrons leur supériorité sur les méthodes déterministes traditionnelles pour
diverses tâches. Tout d’abord, nous montrons que l’ensemble des items fréquents
peut être extrait efficacement à l’aide de méthodes d’approximation stochastique.
Nous proposons une approche bayésienne avec un schéma d’inférence variationnelle
pour obtenir l’espace des items fréquents avec une grande précision.

Ensuite, nous utilisons un Bayesian Mixture Model pour déduire avec un faible
coût de calcul les itemsets discriminants (Hämäläinen and Webb, 2019) avec une
preuve empirique de l’utilisation générale de ces motifs discriminants en les consid-
érant comme des caractéristiques pour la tâche de classification. Il en résulte une
méthode capable d’extraire un ensemble d’attributs interprétables et d’améliorer
considérablement tout classificateur. En outre, le modèle génératif bayésien per-
met de calculer la distribution postérieure et d’estimer les intervalles de confiance.
Enfin, des connaissances expertes supplémentaires peuvent être naturellement in-
troduites dans le modèle via le choix des antériorités (Gelman et al., 2013). Cette
méthode est appliquée à la tâche de maintenance prédictive et améliore significa-
tivement le score de classification de manière interprétable.

Une partie de ce travail correspond à l’article (Dib et al., 2021) publié
dans 29th IEEE European Signal Processing Conference (EUSIPCO)
proceedings.
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Complexité locale de Rademacher pour l’exploration de motifs peu
fréquents. La tâche d’échantillonnage progressif consiste à calculer la taille du
sous-ensemble de la base de données n nécessaire pour obtenir une estimation de
toute fréquence à la précision ε ∈ [0, 1] avec une probabilité d’au moins 1 − δ. Il
s’agit donc de borner un processus empirique généré par une distribution inconnue
indexée sur un espace fonctionnel fini (Boucheron, Lugosi, and Massart, 2013).

Les méthodes existantes utilisent les moyennes de Rademacher (globales) pour
extraire les fréquents ou les top-k itemsets, ce qui est approprié, car nous n’avons
pas besoin de limites précises sur les itemsets à basse fréquence. Notamment,
Riondato and Upfal, 2015 utilise un argument de comptage analytique pour obtenir
une limite libre sur la moyenne empirique globale de Rademacher. De la même
manière, Pellegrina et al., 2020 a suivi cette voie en utilisant une stratégie d’approximation
de Monte-Carlo pour obtenir une limite plus nette au prix d’un calcul supplémen-
taire.

Ce travail marque la première utilisation de la complexité de Rademacher lo-
calisée au problème de l’exploration de motifs à basse fréquence. Nous montrons
que les moyennes de Rademacher localisées sont suffisantes pour obtenir des esti-
mations d’intervalles de confiance relatifs sur les fréquences des motifs, ainsi que
d’autres mesures d’intérêt, telles que le lift, le confidence, ou le odds ratio, alors que
les techniques précédentes n’y parviennent pas pour les motifs à basse fréquence.

Nos méthodes s’appuient sur des outils standard dans le domaine de l’exploration
de motifs, tels que les familles de motifs fermées, l’antimonotonicité et les moyennes
de Rademacher de Monte-Carlo, ainsi que sur de nouvelles techniques que nous
introduisons pour relever les défis informatiques spécifiques au problème découlant
de l’évaluation de la moyenne de Rademacher localisée. Les performances de notre
approche sont démontrées empiriquement sur des ensembles de données du monde
réel, dans lesquels nous présentons des taux de convergence rapides pour la sous-
classe de motifs considérée, ce qui contraste fortement avec les travaux existants.

Ce travail correspond au préprint (Cousins* and Dib*, 2021)1 soumis à
la IEEE International Conference on Data Mining
(ICDM 2021).

Échantillonnage alternatif pour l’optimisation stochastique. Nous dévelop-
pons une nouvelle approche pour la technique d’optimisation stochastique basée
sur Optimal Quantizer (OQ) (Graf and Luschgy, 2000; Pagès, 2018). Nous mon-
trons que l’utilisation de OQ produit une estimation optimale du gradient sans
gradient au prix de l’introduction d’un biais asymptotiquement décroissant avec
une garantie théorique. Nous appliquons la méthode au cadre de l’apprentissage

1contributions égales.
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bayésien pour la maximisation de Evidence Lower Bound (ELBO) et montrons
que l’utilisation du cadre d’inférence variationnelle quantifiée conduit à une con-
vergence rapide à la fois pour la fonction de score et l’estimateur de gradient
reparamétré à un coût de calcul comparable à celui de la méthode traditionnelle
Monte Carlo Variational Inference. Par la suite, nous proposons une méthode de
type extrapolation de Richardson (Richardson and Glazebrook, 1911; Pagès, 2007)
pour améliorer la borne asymptotique et réduire le biais produit. Deux nouveaux
algorithmes, qvi et rqvi, sont évalués sur plusieurs expériences à grande échelle
et présentent des performances supérieures par rapport aux méthodes de pointe
(Miller et al., 2017; Buchholz, Wenzel, and Mandt, 2018).

Une partie de ce travail correspond à l’article (Dib, 2020) publié dans
Advances in Neural Information Processing Systems 33 Proceedings
(NeurIPS 2020).

C.5 Outline de la thèse
• Part II: Anomaly detection for rolling stock maintenance.

– Chapitre 2 : Examen systématique de la maintenance prédictive.
– Chapitre 3 : Extraction de motifs pour la détection d’anomalies dans

le cadre de la maintenance du matériel roulant. Ce chapitre décrit
l’approche adoptée pour aborder la question complexe de la mainte-
nance prédictive sur le parc français de trains à grande vitesse.

• Part III: Pattern Mining.

– Chapitre 4 : Vue probabiliste pour le problème d’extraction de motifs.
Une approche bayésienne du problème d’extraction des itemset célèbres
est décrite avec diverses expériences.

– Chapitre 5 : Complexité localisée pour l’échantillonnage progressif. Ce
chapitre décrit l’utilisation des moyennes de Rademacher localisées pour
aborder le problème de l’extraction progressive. Nous montrons com-
ment cette méthode peut conduire à une extraction de motifs plus rapide
avec une garantie théorique.

• Part IV: Optimal Quantization for stochastic optimization.

– Chapitre 6 : Contexte de la quantification optimale. Nous donnons un
contexte théorique sur la Tesselation de Voronoï et proposons d’utiliser
cet échantillonnage alternatif pour l’optimisation stochastique. Des ré-
sultats théoriques sur la qualité de l’approximation sont développés.
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– Chapitre 7 : Inférence variationnelle quantifiée. Nous introduisons un
nouvel algorithme pour la maximisation d’ELBO. Nous montrons que
grâce au gradient sans variance, cette méthode surpasse l’état de l’art
sur diverses expériences du monde réel, notamment le cas du problème
d’extraction de motifs bayésiens.
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Titre: Apprentissage de motifs en grande dimension appliqué aux séries temporelles

Mots clés: Apprentissage automatique, serie temporelle, statistiques bayesiennes, detection
d’anomalie, quantization optimale, maintenance predictive.

Résumé: Bien que l’application des méth-
odes apprentissage automatique dans divers
contextes ait connu une croissance rapide au
cours de la dernière décennie, son utilisation
dans les environnements industriels reste prob-
lématique. La raison principale tient au con-
flit entre les procédures historiques établies et le
manque de transparence du processus de déci-
sion d’une chaîne d’apprentissage automatique.
Par ailleurs, la nature et la qualité des données
disponibles ne permet pas l’utilisation directe
des modèles d’apprentissage statistiques tradi-
tionnels. La plupart des bases de données indus-
trielles n’ont pas été construites dans l’objectif
de satisfaire aux standards du traitement au-
tomatique mais pour se conformer a des exi-
gences réglementaires et assister aux tâches ad-
ministratives. En particulier, les données non
numériques ou symboliques sont couramment
utilisées pour leur versatilité. Des exemples de
telles données sont les documents textuels, les
séries d’événements d’un ordinateur de bord ou
encore les séquences ADN.

La motivation première de cette thèse est
la conception d’approches humainement inter-
prétable pour la maintenance prédictive du parc
ferroviaire français. Nous proposons d’aller au-
delà des approches standards par l’utilisation

de méthodes associant techniques d’extraction
de motifs et approches statistiques pour la dé-
tection d’anomalie. Le contenu de cette thèse
trouve une application plus large dans n’importe
quel domaine d’application nécessitant le traite-
ment de séries temporelles symboliques.

La première contribution consiste en une
solution complète d’apprentissage automatique
pour la maintenance prédictive d’une large flotte
de trains. Comme seconde contribution, nous
proposons une nouvelle méthode pour les ensem-
bles de données symboliques basée sur un mod-
èle génératif bayésien qui permet l’amélioration
des métriques de références de façon inter-
prétable pour un ensemble de données symbol-
iques. Dans une troisième contribution, nous
introduisons une nouvelle méthode d’extraction
progressive basée sur les complexités locales
afin d’obtenir des intervals de confiance sur la
fréquence des motifs. Finalement, une nou-
velle méthode générale d’optimisation stochas-
tique basée sur un échantillonage alternatif est
proposé. Cette méthode s’applique au cas spé-
cifique de l’apprentissage bayésien dans le cadre
de l’inférence variationnelle. Dans ce cadre,
nous fournissons une preuve théorique et em-
pirique de la supériorité de cette approche par
rapport aux méthodes les plus avancées.



Title: High dimensional pattern learning applied to symbolic time-series

Keywords: Machine learning, temporal series, bayesian learning, anomaly detection, optimal
quantization, predictive maintenance.

Abstract: While the adoption of machine
learning in many applied contexts has been
growing rapidly in the last decade, there remain
challenges to use it in certain industrial settings.
The main reason is the clash between estab-
lished historical procedures with the uncertainty
and lack of transparency of a machine learning
pipeline’s decision process. Another reason is
that the input needed to feed a traditional ma-
chine learning model does not fit the available
type or quality of available data. Most indus-
trial databases have not been developed for sta-
tistical analysis but to comply with the regu-
latory requirements and to perform administra-
tive tasks. In particular, non-numerical or sym-
bolic features are common as it is a versatile
way of recording events of interest. Examples
of such data are textual documents, sequence of
log-events or DNA sequences. The exponential
number of possible patterns typically dominates
the complexity associated with learning relevant
information from symbols.

This thesis’s applicative framework and pri-
mary motivation is to design efficient, human-
readable and computationally tractable meth-
ods for predictive maintenance on the french
train fleet. To that end, we propose to go be-
yond standard approaches by using a combina-
tion of traditional machine learning algorithms

with pattern mining techniques to allow human
experts to understand and interact with the al-
gorithmic layer of the predictive maintenance
pipeline. This thesis’s main objective is to tackle
these issues by proposing approaches that can be
generally applied to a symbolic sequence of data
with a human-readable output and trained at
a reasonable computational cost. To that end,
we begin by constructing a complete machine
learning pipeline solution for predictive mainte-
nance on a large fleet of rail vehicles that can
be computed at a reasonable cost and provides
valuable insight on the underlying symbol dy-
namic of the degradation process. As a second
contribution, we propose a new method for sym-
bolic data set based on a Bayesian generative
model for patterns that can increases score ac-
curacy in an interpretable fashion for any sym-
bolic data set. As a third contribution, we in-
troduce a new progressive mining method based
on local complexities to obtain sharper statisti-
cal bounds on the pattern frequency. Finally, a
new and general stochastic optimization method
based on alternative sampling is proposed. This
method can be applied to the specific use case of
Bayesian learning through the Variational Infer-
ence setting. In this instance, we provide theo-
retical and empirical proof of the superiority of
this approach compared to the most advanced
methods.
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