The Two-Phase Simplex Method – Tableau Format

Example 1: Consider the problem

 $\begin{array}{rll} \min z = & 4x_1 + x_2 + x_3 \\ {\rm s.t.} & 2x_1 + x_2 + 2x_3 & = & 4 \\ & 3x_1 + 3x_2 + x_3 & = & 3 \\ & x_1, x_2, x_3 & >= & 0 \end{array}$

There is no basic feasible solution apparent so we use the two-phase method. The artificial variables are y_1 and y_2 , one for each constraint of the original problem. The Phase I objective is min $w = y_1 + y_2$. The starting tableau (in nonstandard form) is:

BASIS	X 1	X ₂	X 3	y 1	y 2	RHS
y 1	2	1	2	1	0	4
y 2	3	3	1	0	1	3
(-z)	4	1	1	0	0	0
(-w)	0	0	0	1	1	0

We convert the tableau to standard form by zeroing out the coefficients of the basic variables in the *w*-row:

BASIS	X 1	X 2	X 3	y 1	y ₂	RHS	Min
							Ratio
y 1	2	1	2	1	0	4	2
y ₂	3	3	1	0	1	3	1
(-z)	4	1	1	0	0	0	
(-w)	-5	-4	-3	0	0	-7	

The coefficient of x_1 in the *w*-row is negative so we attempt to bring x_1 in to the basis. The minimum ratio test is $min\{4/2, 3/3\} = 1$ so y_2 leaves the basis. The pivot element is shaded.

BASIS	x ₁	X ₂	X3	y 1	y 2	RHS	Min Ratio
y 1	0	-1	1.33	1	-0.67	2	1.5
X 1	1	1	0.33	0	0.33	1	3
(-z)	0	-3	-0.33	0	-1.33	-4	
(-w)	0	1	-1.33	0	1.67	-2	

The coefficient of x_3 in the *w*-row is negative so we attempt to bring x_3 in to the basis. The minimum ratio test is min $\{2/(4/3), 1/(1/3)\} = 1.5$ so y_1 leaves the basis. The pivot element is shaded.

BASIS	X ₁	X ₂	X 3	y 1	y ₂	RHS
X3	0	-0.75	1	0.75	-0.5	1.5
X 1	1	1.25	0	-0.25	0.5	0.5
(-z)	0	-3.25	0	0.25	-1.5	-3.5
(-w)	0	0	0	1	1	0

All the coefficients in the *w*-row are nonnegative, w = 0, and there are no artificial variables in the basis, so we are done with Phase I. Phase II begins with the tableau shown below.

BASIS	x ₁	X ₂	X3	RHS	Min Ratio
X 3	0	-0.75	1	1.5	
X 1	1	1.25	0	0.5	0.4
(-z)	0	-3.25	0	-3.5	

The coefficient of x_2 in the *z*-row is negative so we attempt to bring x_2 in to the basis. The minimum ratio test is min $\{(1/2)/(5/4)\} = 2/5$ so x_1 leaves the basis. The pivot element is shaded.

BASIS	X ₁	X ₂	X 3	RHS
X 3	0.6	0	1	1.8
X2	0.8	1	0	0.4
(-z)	2.6	0	0	-2.2

All the coefficients in the *z*-row are nonnegative so we are done with Phase II. The optimum solution is x = (0, 0.4, 1.8) and z = 2.2.

Example 2: (This is the problem started in section on 10/02/03.) Consider the problem

 $\begin{array}{rll} \min z = & 2x_1 + 6x_2 + x_3 + x_4 \\ \mathrm{s.t.} & x_1 + 2x_2 & + & x_4 & = & 6 \\ & x_1 + 2x_2 + x_3 + & x_4 & = & 7 \\ & x_1 + 3x_2 - x_3 + 2x_4 & = & 7 \\ & x_1 + & x_2 + x_3 & = & 5 \\ & x_1, x_2, x_3, x_4 & >= & 0 \end{array}$

Again, there is no basic feasible solution apparent so we'll use the two-phase method. The artificial variables are y_1 , y_2 , y_3 , and y_4 , one for each constraint of the original problem. The Phase I objective is min $w = y_1 + y_2 + y_3 + y_4$. The starting tableau (in nonstandard form) is:

BASIS	X 1	X ₂	X3	X4	y 1	y ₂	y 3	y 4	RHS
y 1	1	2	0	1	1	0	0	0	6
y ₂	1	2	1	1	0	1	0	0	7
y 3	1	3	-1	2	0	0	1	0	7
y 4	1	1	1	0	0	0	0	1	5
(-z)	2	6	1	1	0	0	0	0	0
(-w)	0	0	0	0	1	1	1	1	0

We convert the tableau to standard form by zeroing out the coefficients of the basic variables in the *w*-row:

BASIS	X 1	X ₂	X3	X4	y 1	y 2	y 3	y 4	RHS	Min
										Ratio
y 1	1	2	0	1	1	0	0	0	6	6
y 2	1	2	1	1	0	1	0	0	7	7
y 3	1	3	-1	2	0	0	1	0	7	7
y 4	1	1	1	0	0	0	0	1	5	5
(-z)	2	6	1	1	0	0	0	0	0	
(-w)	-4	-8	-1	-4	0	0	0	0	-25	

The coefficient of x_1 in the *w*-row is negative so we attempt to bring x_1 in to the basis. The minimum ratio test indicates that y_4 should leave the basis. The pivot element is shaded.

BASIS	X 1	X ₂	X3	X 4	y 1	y 2	y 3	y 4	RHS	Min Ratio
y 1	0	1	-1	1	1	0	0	-1	1	1
y ₂	0	1	0	1	0	1	0	-1	2	2
y 3	0	2	-2	2	0	0	1	-1	2	1
X ₁	1	1	1	0	0	0	0	1	5	5
(-z)	0	4	-1	1	0	0	0	-2	-10	
(-w)	0	-4	3	-4	0	0	0	4	-5	

The coefficient of x_2 in the *w*-row is negative so we attempt to bring x_2 in to the basis. The minimum ratio test indicates that y_1 should leave the basis. The pivot element is shaded.

BASIS	x ₁	X ₂	X 3	X 4	y 1	y 2	y 3	y 4	RHS	Min Ratio
X ₂	0	1	-1	1	1	0	0	-1	1	
y 2	0	0	1	0	-1	1	0	0	1	1
y 3	0	0	0	0	-2	0	1	1	0	
x ₁	1	0	2	-1	-1	0	0	2	4	2
(-z)	0	0	3	-3	-4	0	0	2	-14	
(-w)	0	0	-1	0	4	0	0	0	-1	

The coefficient of x_3 in the *w*-row is negative so we attempt to bring x_3 in to the basis. The minimum ratio test indicates that y_2 should leave the basis. The pivot element is shaded.

BASIS	X 1	X2	X3	X4	y 1	y ₂	y 3	y 4	RHS
X ₂	0	1	0	1	0	1	0	-1	2
X 3	0	0	1	0	-1	1	0	0	1
y 3	0	0	0	0	-2	0	1	1	0
x ₁	1	0	0	-1	1	-2	0	2	2
(-z)	0	0	0	-3	-1	-3	0	2	-17
(-w)	0	0	0	0	3	1	0	0	0

All the coefficients in the *w*-row are nonnegative, w = 0, BUT there is artificial variable, y_3 , in the basis, so we are not quite done with Phase I.

Observe that $y_3 = 0$. Consider the matrix obtained by removing the columns corresponding to the artificial variables and w-row from the tableau (as we would do to start Phase II):

BASIS	X 1	X ₂	X3	X4	RHS
X ₂	0	1	0	1	2
X 3	0	0	1	0	1
y 3	0	0	0	0	0
X ₁	1	0	0	-1	2
(-z)	0	0	0	-3	-17

The shaded row is a zero vector. This indicates that the row associated with the artificial variable y_3 is not linearly independent of the other rows of the matrix. It is not too hard to discover that:

CONSTRAINT 1 + CONSTRAINT 2 – CONSTRAINT 4 = CONSTRAINT 3.

Thus, we can safely remove constraint 3 from the tableau without changing the feasible region. Phase II begins with the tableau shown below.

BASIS	X 1	X ₂	X 3	X4	RHS
X ₂	0	1	0	1	2
X 3	0	0	1	0	1
X 1	1	0	0	-1	2
(-z)	0	0	0	-3	-17

The coefficient of x_4 in the *z*-row is negative so we attempt to bring x_4 in to the basis. The minimum ratio test indicates that x_2 leaves the basis. The pivot element is shaded.

BASIS	X 1	X ₂	X3	X4	RHS
X ₂	0	1	0	1	2
X3	0	0	1	0	1
X4	1	1	0	0	4
(-z)	0	3	0	0	-11

All the coefficients in the *z*-row are nonnegative so we are done with Phase II. The optimum solution is x = (4, 0, 1, 2) and z = 11.