The Two-Phase Simplex Method - Tableau Format

Example 1: Consider the problem

$$
\begin{array}{llll}
\min \mathrm{z}= & 4 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \\
\text { s.t. } & 2 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} & = & 4 \\
& 3 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} & = & 3 \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} & >= & 0
\end{array}
$$

There is no basic feasible solution apparent so we use the two-phase method. The artificial variables are y_{1} and y_{2}, one for each constraint of the original problem. The Phase I objective is min $w=y_{1}+y_{2}$. The starting tableau (in nonstandard form) is:

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	RHS
$\mathbf{y}_{\mathbf{1}}$	2	1	2	1	0	4
$\mathbf{y}_{\mathbf{2}}$	3	3	1	0	1	3
$(\mathbf{- z})$	4	1	1	0	0	0
$\mathbf{(- w)}$	0	0	0	1	1	0

We convert the tableau to standard form by zeroing out the coefficients of the basic variables in the w-row:

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{R H S}$	Min Ratio
$\mathbf{y}_{\mathbf{1}}$	2	1	2	1	0	4	2
$\mathbf{y}_{\mathbf{2}}$	3	3	1	0	1	3	1
$\mathbf{(- z)}$	4	1	1	0	0	0	
$(-\mathbf{w})$	-5	-4	-3	0	0	-7	

The coefficient of x_{1} in the w-row is negative so we attempt to bring x_{1} in to the basis. The minimum ratio test is $\min \{4 / 2,3 / 3\}=1$ so y_{2} leaves the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{R H S}$	Min Ratio
$\mathbf{y}_{\mathbf{1}}$	0	-1	1.33	1	-0.67	2	1.5
$\mathbf{x}_{\mathbf{1}}$	1	1	0.33	0	0.33	1	3
$\mathbf{(- z)}$	0	-3	-0.33	0	-1.33	-4	
$\mathbf{(- w)}$	0	1	-1.33	0	1.67	-2	

The coefficient of x_{3} in the w-row is negative so we attempt to bring x_{3} in to the basis. The minimum ratio test is $\min \{2 /(4 / 3), 1 /(1 / 3)\}=1.5$ so y_{1} leaves the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	RHS
$\mathbf{x}_{\mathbf{3}}$	0	-0.75	1	0.75	-0.5	1.5
$\mathbf{x}_{\mathbf{1}}$	1	1.25	0	-0.25	0.5	0.5
(\mathbf{z})	0	-3.25	0	0.25	-1.5	-3.5
$\mathbf{(- w)}$	0	0	0	1	1	0

All the coefficients in the w-row are nonnegative, $\mathrm{w}=0$, and there are no artificial variables in the basis, so we are done with Phase I. Phase II begins with the tableau shown below.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	RHS	Min Ratio
$\mathbf{x}_{\mathbf{3}}$	0	-0.75	1	1.5	
$\mathbf{x}_{\mathbf{1}}$	1	1.25	0	0.5	0.4
$\mathbf{(- z)}$	0	-3.25	0	-3.5	

The coefficient of x_{2} in the z-row is negative so we attempt to bring x_{2} in to the basis. The minimum ratio test is $\min \{(1 / 2) /(5 / 4)\}=2 / 5$ so x_{1} leaves the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	RHS
$\mathbf{x}_{\mathbf{3}}$	0.6	0	1	1.8
$\mathbf{x}_{\mathbf{2}}$	0.8	1	0	0.4
$\mathbf{(- z)}$	2.6	0	0	-2.2

All the coefficients in the z-row are nonnegative so we are done with Phase II. The optimum solution is $\mathrm{x}=(0,0.4,1.8)$ and $\mathrm{z}=2.2$.

Example 2: (This is the problem started in section on 10/02/03.) Consider the problem
$\min \mathrm{z}=2 \mathrm{x}_{1}+6 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}$
s.t. $x_{1}+2 x_{2}+x_{4}=6$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=7$
$\mathrm{x}_{1}+3 \mathrm{x}_{2}-\mathrm{x}_{3}+2 \mathrm{x}_{4}=7$
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=5$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \quad>=0$
Again, there is no basic feasible solution apparent so we'll use the two-phase method. The artificial variables are $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$, and y_{4}, one for each constraint of the original problem. The Phase I objective is min $w=y_{1}+y_{2}+y_{3}+y_{4}$. The starting tableau (in nonstandard form) is:

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	$\mathbf{R H S}$
$\mathbf{y}_{\mathbf{1}}$	1	2	0	1	1	0	0	0	6
$\mathbf{y}_{\mathbf{2}}$	1	2	1	1	0	1	0	0	7
$\mathbf{y}_{\mathbf{3}}$	1	3	-1	2	0	0	1	0	7
$\mathbf{y}_{\mathbf{4}}$	1	1	1	0	0	0	0	1	5
$\mathbf{(- z)}$	2	6	1	1	0	0	0	0	0
$\mathbf{(- w)}$	0	0	0	0	1	1	1	1	0

We convert the tableau to standard form by zeroing out the coefficients of the basic variables in the w-row:

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	RHS	Min Ratio
$\mathbf{y}_{\mathbf{1}}$	1	2	0	1	1	0	0	0	6	6
$\mathbf{y}_{\mathbf{2}}$	1	2	1	1	0	1	0	0	7	7
$\mathbf{y}_{\mathbf{3}}$	1	3	-1	2	0	0	1	0	7	7
$\mathbf{y}_{\mathbf{4}}$	1	1	1	0	0	0	0	1	5	5
$(-\mathbf{z})$	2	6	1	1	0	0	0	0	0	
$(-\mathbf{w})$	-4	-8	-1	-4	0	0	0	0	-25	

The coefficient of x_{1} in the w-row is negative so we attempt to bring x_{1} in to the basis. The minimum ratio test indicates that y_{4} should leave the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	RHS	Min Ratio
$\mathbf{y}_{\mathbf{1}}$	0	1	-1	1	1	0	0	-1	1	1
$\mathbf{y}_{\mathbf{2}}$	0	1	0	1	0	1	0	-1	2	2
$\mathbf{y}_{\mathbf{3}}$	0	2	-2	2	0	0	1	-1	2	1
$\mathbf{x}_{\mathbf{1}}$	1	1	1	0	0	0	0	1	5	5
$\mathbf{(- z)}$	0	4	-1	1	0	0	0	-2	-10	
$\mathbf{(- w)}$	0	-4	3	-4	0	0	0	4	-5	

The coefficient of x_{2} in the w-row is negative so we attempt to bring x_{2} in to the basis. The minimum ratio test indicates that y_{1} should leave the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	RHS	Min Ratio
$\mathbf{x}_{\mathbf{2}}$	0	1	-1	1	1	0	0	-1	1	
$\mathbf{y}_{\mathbf{2}}$	0	0	1	0	-1	1	0	0	1	1
$\mathbf{y}_{\mathbf{3}}$	0	0	0	0	-2	0	1	1	0	
$\mathbf{x}_{\mathbf{1}}$	1	0	2	-1	-1	0	0	2	4	2
$\mathbf{(- z)}$	0	0	3	-3	-4	0	0	2	-14	
$(-\mathbf{w})$	0	0	-1	0	4	0	0	0	-1	

The coefficient of x_{3} in the w-row is negative so we attempt to bring x_{3} in to the basis. The minimum ratio test indicates that y_{2} should leave the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	$\mathbf{R H S}$
$\mathbf{x}_{\mathbf{2}}$	0	1	0	1	0	1	0	-1	2
$\mathbf{x}_{\mathbf{3}}$	0	0	1	0	-1	1	0	0	1
$\mathbf{y}_{\mathbf{3}}$	0	0	0	0	-2	0	1	1	0
$\mathbf{x}_{\mathbf{1}}$	1	0	0	-1	1	-2	0	2	2
$\mathbf{(- z)}$	0	0	0	-3	-1	-3	0	2	-17
$\mathbf{(- w)}$	0	0	0	0	3	1	0	0	0

All the coefficients in the w-row are nonnegative, $\mathrm{w}=0$, BUT there is artificial variable, y_{3}, in the basis, so we are not quite done with Phase I.

Observe that $\mathrm{y}_{3}=0$. Consider the matrix obtained by removing the columns corresponding to the artificial variables and w-row from the tableau (as we would do to start Phase II):

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	RHS
$\mathbf{x}_{\mathbf{2}}$	0	1	0	1	2
$\mathbf{x}_{\mathbf{3}}$	0	0	1	0	1
$\mathbf{y}_{\mathbf{3}}$	0	0	0	0	0
$\mathbf{x}_{\mathbf{1}}$	1	0	0	-1	2
$\mathbf{(- z)}$	0	0	0	-3	-17

The shaded row is a zero vector. This indicates that the row associated with the artificial variable y_{3} is not linearly independent of the other rows of the matrix. It is not too hard to discover that:

CONSTRAINT 1 + CONSTRAINT 2 - CONSTRAINT 4 = CONSTRAINT 3.

Thus, we can safely remove constraint 3 from the tableau without changing the feasible region. Phase II begins with the tableau shown below.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	RHS
$\mathbf{x}_{\mathbf{2}}$	0	1	0	1	2
$\mathbf{x}_{\mathbf{3}}$	0	0	1	0	1
$\mathbf{x}_{\mathbf{1}}$	1	0	0	-1	2
$\mathbf{(- z)}$	0	0	0	-3	-17

The coefficient of x_{4} in the z-row is negative so we attempt to bring x_{4} in to the basis. The minimum ratio test indicates that x_{2} leaves the basis. The pivot element is shaded.

BASIS	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{R H S}$
$\mathbf{x}_{\mathbf{2}}$	0	1	0	1	2
$\mathbf{x}_{\mathbf{3}}$	0	0	1	0	1
$\mathbf{x}_{\mathbf{4}}$	1	1	0	0	4
$\mathbf{(- z)}$	0	3	0	0	-11

All the coefficients in the z-row are nonnegative so we are done with Phase II. The optimum solution is $x=(4,0,1,2)$ and $z=11$.

