Elements of Homology Theory

V. V. Prasolov

Graduate Studies
in Mathematics
Volume 81

Elements of

 Homology TheoryThis page intentionally left blank

Elements of Homology Theory

V. V. Prasolov

Graduate Studies
in Mathematics
Volume 8I

Editorial Board

David Cox (Chair)
Walter Craig
N. V. Ivanov
Steven G. Krantz

В. В. Прасолов
 ЭЛЕМЕНТЫ ТЕОРИИ ГОМОЛОГИЙ

МЦНМО, Москва, 2005
This work was originally published in Russian by MЦНMO under the title "Элементы теории гомологий" (c) 2005. The present translation was created under license for the American Mathematical Society and is published by permission.

Translated from the Russian by Olga Sipacheva
2000 Mathematics Subject Classification. Primary 55-01.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-81

```
Library of Congress Cataloging-in-Publication Data
    Prasolov, V. V. (Viktor Vasil'evich)
    [Elementy teorii gomologii. English]
    Elements of homology theory / V. V. Prasolov.
        p. cm. - (Graduate studies in mathematics ; v. 81)
    Includes bibliographical references and index.
    ISBN-13: 978-0-8218-3812-9 (alk. paper)
    ISBN-10:0-8218-3812-1 (alk. paper)
    1. Homology theory. I. Title.
QA612.3.P73 2007
514'.23-dc22
```

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2007 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
$@$ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface vii
Notation ix
Chapter 1. Simplicial Homology 1
§1. Definition and Some Properties 1
§2. Invariance of Homology 6
§3. Relative Homology 12
§4. Cohomology and Universal Coefficient Theorem 21
§5. Calculations 35
§6. The Euler Characteristic and the Lefschetz Theorem 51
Chapter 2. Cohomology Rings 59
§1. Multiplication in Cohomology 59
§2. Homology and Cohomology of Manifolds 69
§3. The Künneth Theorem 95
Chapter 3. Applications of Simplicial Homology 111
§1. Homology and Homotopy 111
§2. Characteristic Classes 131
§3. Group Actions 173
§4. Steenrod Squares 184
Chapter 4. Singular Homology 195
§1. Basic Definitions and Properties 195
§2. The Poincaré and Lefschetz Isomorphisms for Topological Manifolds 227
§3. Characteristic Classes: Continuation 252
Chapter 5. Cech Cohomology and de Rham Cohomology 263
§1. Sheaf Cohomology 263
§2. De Rham Cohomology 275
§3. The de Rham Theorem 289
Chapter 6. Miscellany 301
§1. The Alexander Polynomial 301
§2. The Arf Invariant 317
§3. Embeddings and Immersions 325
§4. Complex Manifolds 339
§5. Lie Groups and \boldsymbol{H}-Spaces 344
Hints and Solutions 365
Bibliography 403
Index 411

Preface

This book is a natural continuation of the author's earlier book Elements of Combinatorial and Differential Topology (American Mathematical Society, Providence, RI, 2006), which we refer to as Part I here. (A corrected Russian version of Part I is available at http://www.mccme.ru/prasolov.)

In Chapter 1, we define simplicial homology and cohomology and give many examples of their calculations and applications. At this point, the book diverges from standard modern courses in algebraic topology, which usually begin with introducing singular homology. Simplicial homology has a simpler and more natural definition. Moreover, it is simplicial homology that is usually involved in calculations. For this reason, we introduce singular homology near the end of the book and use it only when it is indeed necessary, mainly in studying topological manifolds.

Homology and cohomology groups with arbitrary coefficients are expressed in terms of integral homology by means of the functors Tor and Ext. The properties of these functors are very important for homology theory, so we discuss them in detail.

We first prove the Poincaré duality theorem for simplicial (co)homology. This proof applies only to smooth (to be more precise, triangulable) manifolds. There is no triangularization theorem for topological manifolds, and the proof of the Poincare duality theorem for them uses, of necessity, singular (co)homology. This proof is given in Chapter 4 ; it is very cumbersome.

Chapter 2 considers an important algebraic structure on cohomology, the cup product of Kolmogorov and Alexander. It is particularly useful in the case of manifolds. Multiplication in cohomology is related to many topological invariants of manifolds, such as the intersection form and signature.

One possible approach to constructing multiplication in cohomology is based on a theorem of Künneth, which expresses the (co)homology of $X \times Y$ in terms of those of X and Y and is of independent interest.

Chapter 3 is devoted to various applications of (simplicial) homology and cohomology. Many of them are related to obstruction theory. One of such applications is the construction of the characteristic classes of vector bundles. Other approaches to constructing characteristic classes (namely, the universal bundle and axiomatic approaches) are also discussed. Then, we consider the (co)homological properties of spaces with actions of groups; we construct transfers and Smith's exact sequences. We conclude the chapter with constructing Steenrod squares, which generalize multiplication in cohomology.

In Chapter 4, we define singular (co)homology and describe some of its applications; in particular, we obtain certain properties of characteristic classes. (Technically, it is more convenient to prove them by using singular cohomology, although the assertions themselves can be stated for simplicial cohomology.)

Chapter 5 considers yet another approach to constructing cohomology theory, namely, Čech cohomology and de Rham cohomology, which are closely related to each other. For the de Rham cohomology, we prove the Poincaré duality theorem. Then, we carry over the construction of de Rham, which was originally introduced for smooth manifolds, to arbitrary simplicial complexes.

The final Chapter 6 is devoted to various applications of homology theory, largely to the topology of manifolds. We begin with a detailed account of the Alexander polynomials, which we construct by using the homology of cyclic coverings; the Arf invariant is also considered. Then, we prove the strong Whitney embedding theorem. We also give a formula for calculating the Chern classes of complete intersections and discuss some homological properties of Lie groups and H-spaces.

The book contains many problems (with solutions) and exercises. The problems are based on the materials of topology seminars for second-year students held by the author at the Independent University of Moscow in 2003.

The basic notation, as well as theorems and other assertions, of Part I are mostly used without explanations; in some cases, we give references to the corresponding places in Part I.

This work was financially supported by the Russian Foundation for Basic Research (project nos. 05-01-01012a, 05-01-02805-NTsNIL_a, and 05-01-02806-NTsNIL_a).

Notation

$H_{k}(X ; G)$, the k-dimensional homology group of X with coefficients in G;
$H^{k}(X ; G)$, the k-dimensional cohomology group of X with coefficients in G;
$\operatorname{Hom}(A, B)$, the group of homomorphisms $A \rightarrow B$;
$A \otimes B$, the tensor product of the Abelian groups A and B;
$\operatorname{Tor}(A, B)$, see p. 29 ;
$\operatorname{Ext}(A, B)$, see p. 29;
Coker α, the cokernel of the homomorphism α (see p. 15);
$\left[M^{n}\right]$, the fundamental class of the manifold M^{n};
$\chi(X)$, the Euler characteristic of X;
$\Lambda(f)$, the Lefschetz number of the map f;
$\sigma\left(M^{4 n}\right)$, the signature of the manifold $M^{4 n}$;
ε^{k}, the k-dimensional trivial vector bundle;
$w_{k}(\xi)$, the k th Stiefel-Whitney class of the bundle ξ;
$c_{k}(\xi)$, the k th Chern class of the bundle ξ;
$p_{k}(\xi)$, the k th Pontryagin class of the bundle ξ;
Sq^{i}, the Steenrod square.

This page intentionally left blank

Bibliography

[1] M. Adachi, Embeddings and Immersions (Providence, RI, Amer. Math. Soc., 1993).
[2] J. F. Adams, Lectures on Lie Groups (New York-Amsterdam, Benjamin, 1969).
[3] P. M. Akhmetiev, D. Repovš, and A. B. Skopenkov, "Embedding products of lowdimensional manifolds into \mathbb{R}^{n}," Topology Appl. 113, 7-12 (2001).
[4] J. W. Alexander, "A proof of the invariance of certain constants of analysis situs," Trans. Amer. Math. Soc. 16, 148-154 (1915).
[5] J. W. Alexander, "A proof and extension of the Jordan-Brouwer separation theorem," Trans. Amer. Math. Soc. 23, 333-349 (1922).
[6] J. W. Alexander, "On the connectivity ring of an abstract space," Ann. Math. 37, 419-421 (1936).
[7] F. Apéry, "La surface de Boy," Advan. Math. 61, 185-266 (1986).
[8] C. Arf, "Untersuchungen über quadratische Formen in Körpern der Characteristik 2," J. Reine Angew. Math. 183, 148-167 (1941).
[9] V. N. Aznar, "On the Chern classes and the Euler characteristic for nonsingular complete intersections," Proc. Amer. Math. Soc. 78, 143-148 (1980).
[10] M. G. Barratt and J. Milnor, "An example of anomalous singular homology," Proc. Amer. Math. Soc. 13, 293-297 (1962).
[11] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology (New York, Springer, 1989).
[12] G. E. Bredon, Sheaf Theory (New York, McGraw-Hill, 1967).
[13] G. E. Bredon, Introduction to Compact Transformation Groups (New York, Academic Press, 1972).
[14] L. E. J. Brouwer, "Sur le théorème de M. Jordan dans l'espace à n dimensions," C. R. Acad. Sci. Paris. 153, 542-544 (1911).
[15] L. E. J. Brouwer, "On looping coefficients," Proc. Akad. Wetensch. Amsterdam 15, 113-122 (1912).
[16] L. E. J. Brouwer, "Über Abbildungen von Mannigfaltigkeiten," Math. Ann. 71, 97-115 (1912).
[17] L. E. J. Brouwer, "Beweis des Invarianz des n-dimensionalen Gebietes," Math. Ann. 71, 305-313 (1912); 72, 55-56 (1912).
[18] L. E. J. Brouwer, "Beweis des Jordanschen Satzes für den n-dimensionalen Raum," Math. Ann. 71, 314-319 (1912).
[19] L. E. J. Brouwer, "Über Jordansche Mannigfaltigkeiten," Math. Ann. 71, 320-327 (1912).
[20] R. Brown, "Locally flat embeddings of topological manifolds," Ann. Math. 75, 331-341 (1962).
[21] E. Čech, "Multiplication on a complex," Ann. Math. 37, 681-697 (1936).
[22] B.-Y. Chen and K. Ogiue, "Some implications of the Euler-Poincaré characteristic for complete intersection manifolds," Proc. Amer. Math. Soc. 44, 1-8 (1974).
[23] S. S. Chern, Complex Manifolds (Recife, Instituto de Fisica e Matematica, Univ. Recife, 1959).
[24] R. Connelly, "A new proof of Brown's collaring theorem," Proc. Amer. Math. Soc. 27, 180-182 (1971).
[25] J. H. Conway, "An enumeration of knots and links, and some of their properties," in Computational Problems in Abstract Algebra (NY, Pergamon, 1970), pp. 229-244.
[26] J. H. Conway and C. McA. Gordon, "Knots and links in spatial graphs," J. Graph Theory 7, 445-453 (1983).
[27] R. H. Crowell and R. H. Fox, Introduction to Knot Theory (Boston, Mass., Ginn, 1963).
[28] M. L. Curtis and J. Dugundji, "A proof of de Rham's theorem," Fund. Math. 68, 265-268 (1970).
[29] H. E. Debrunner, "Helly type theorems derived from basic singular homology," Amer. Math. Monthly 77, 375-380 (1970).
[30] A. Dold, "A simple proof of the Jordan-Alexander complement theorem," Amer. Math. Monthly 100, 856-857 (1993).
[31] S. Eilenberg, "Cohomology and continuous mappings," Ann. Math. 41, 231-251 (1940).
[32] S. Eilenberg and S. MacLane, "Relations between homology and homotopy groups of spaces, I, II," Ann. Math. 46, 480-509 (1945); 51, 514-533 (1950).
[33] S. Eilenberg and S. MacLane, "Acyclic models," Amer. J. Math. 75, 189-199 (1953).
[34] S. Eilenberg and S. MacLane, "On the groups $H(\pi, n)$, I, II, III," Ann. Math. 58, 55-106 (1953); 60, 49-139, 513-557 (1954).
[35] S. Eilenberg and J. A. Zilber, "On products of complexes," Amer. J. Math. 75, 200-204 (1953).
[36] E. E. Floyd, "On periodic maps and the Euler characteristics of associated spaces," Trans. Amer. Math. Soc. 72, 138-147 (1952).
[37] A. T. Fomenko and D. B. Fuks, A Course in Homotopic Topology (Moscow, Nauka, 1989) [in Russian].
[38] R. H. Fox, "Free differential calculus. I. Derivation in the free group ring," Ann. Math. 57, 547-560 (1953).
[39] R. H. Fox, "Free differential calculus, II," Ann. Math. 59, 196-210 (1954).
[40] R. Godement, Topologie algébrique et théorie des faisceaux (Paris, Hermann, 1958).
[41] M. Greenberg, Lectures on Algebraic Topology (New York, Benjamin, 1967).
[42] W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature, and Cohomology, Vol. 1: De Rham Cohomology of Manifolds and Vector Bundles (New York, Academic Press, 1972).
[43] W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature, and Cohomology, Vol. 2: Lie Groups, Principal Bundles, and Characteristic Classes (New York, Academic Press, 1973).
[44] P. A. Griffiths and J. W. Morgan, Rational Homotopy Theory and Differential Forms (Boston, Mass., Birkhäuser, 1981).
[45] M. Gromov, "Volume and bounded cohomology," Publ. Math. IHES. 56, 5-100 (1982).
[46] W. Gysin, "Zur Homologie Theorie des Abbildungen und Faserungen von Mannigfaltigkeiten," Comm. Math. Helv. 14, 61-121 (1941).
[47] A. Hatcher, Algebraic Topology (Cambridge, Cambridge Univ. Press, 2002).
[48] E. Helly, "Über Mengen konvexer Körper mit gemeinschaftlichen Punkten," Jber. Deutsch. Math. Verein. 32, 175-176 (1923).
[49] E. Helly, "Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten," Monatsh. Math. Phys. 37, 281-302 (1930).
[50] P. J. Hilton and U. Tammbach, A Course in Homological Algebra (New York, Springer, 1971).
[51] F. Hirzebruch, Topological Methods in Algebraic Geometry (New York, Springer, 1966).
[52] F. Hirzebruch, "Division algebras and topology," in H.-D. Ebbinghaus et al. Numbers (New York, Springer, 1991), pp. 281-302.
[53] F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphäre und Singularitäten (Berlin-New York, Springer, 1968).
[54] Homotopy theory of differential forms, Mathematics: Recent Publications in Foreign Science, 25 (Mir, Moscow, 1981) [in Russian].
[55] H. Hopf, "Über die Curvatura integra geschlossener Hyperflächen," Math. Ann. 95, 340-367 (1926).
[56] H. Hopf, "Vektorfelder in n-dimensionalen Mannigfaltigkeit," Math. Ann. 96, 225-250 (1927).
[57] H. Hopf, "A new proof of Lefschetz formula on invariant points," Proc. Nat. Acad. Sci. U.S.A. 14, 149-153 (1928).
[58] H. Hopf, "Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfäche," Math. Ann. 104, 639-665 (1931).
[59] H. Hopf, "Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n dimensionalen Sphäre," Comment. Math. Helv. 5, 39-54 (1933).
[60] H. Hopf, "Über die Abbildungen von Sphären auf Sphären niedriger Dimensionen," Fund. Math. 25, 427-440 (1935).
[61] H. Hopf, "Über die Topologie der Gruppen-Mannigfaltigleiten und ihre Verallgemeinerungen," Ann. Math. 13, 22-52 (1940).
[62] H. Hopf, "Ein topologischer Beitrag zur reelen Algebra," Comment. Math. Helv. 13, 219-239 (1941).
[63] Sze-tsen Hu, Homotopy Theory (New York-London, Academic Press, 1959).
[64] W. Hurewicz, "Homotopie- und Homologiegruppen," Proc. Akad. Wetensch. Amsterdam 38, 521-528 (1935).
[65] D. Husemoller, Fibre Bundles (New York, McGraw-Hill, 1966).
[66] B. Iversen, Cohomology of Sheaves (Berlin, Springer, 1986).
[67] D. M. Kan and G. W. Whitehead, "On the realizability of singular cohomology groups," Proc. Amer. Math. Soc. 12, 24-25 (1961).
[68] R. M. Kane, The Homology of Hopf Spaces (Amsterdam, North-Holland, 1988).
[69] L. H. Kauffman, "The Conway polynomial," Topology 20, 101-108 (1981).
[70] M. A. Kervaire and J. W. Milnor, "On 2-spheres in 4-manifolds," Proc. Nat. Acad. Sci. U.S.A. 47, 1651-1657 (1961).
[71] M. A. Kervaire and J. W. Milnor, "Groups of homotopy spheres, I," Ann. Math. 77, 504-537 (1963).
[72] A. Kolmogoroff, "Über die Dualität im Aufbau der kombinatorischen Topologie," Matem. Sb. 1, 97-102 (1936).
[73] A. Kolmogoroff, "Homologiering des Komplexes und des local-bikompakten Räumes," Matem. Sb. 1, 701-705 (1936).
[74] H. Künneth, "Über die Bettische Zahlen einer Produktmannigfaltigkeit," Math. Ann. 90, 65-85 (1923).
[75] H. Künneth, "Über die Torsionzahlen von Produktmannigfaltigkeiten," Math. Ann. 91, 125-134 (1924).
[76] H.-F. Lai, "On the topology of the even-dimensional complex quadrics," Proc. Amer. Math. Soc. 46, 419-425 (1974).
[77] S. Lefschetz, "Intersections and transformations of complexes and manifolds," Trans. Amer. Math. Soc. 28, 1-49 (1926).
[78] S. Lefschetz, Topology, New York, 1930.
[79] J. Levine, "An algebraic classification of some knots of codimension two," Comment. Math. Helv. 45, 185-198 (1970).
[80] A. Libgober, "Alexander polynomial of plane algebraic curves and cyclic multiple planes," Duke Math. J. 49, 833-851 (1982).
[81] W. B. Lickorish, An Introduction to Knot Theory (New York, Springer, 1997).
[82] S. MacLane, Homology (Berlin-New York, Springer, 1967).
[83] D. G. Malm, "A note on exact sequences," Proc. Amer. Math. Soc. 14, 637-639 (1963).
[84] W. Mayer, "Über abstrakte Topologie," Monatsh. Math. und Physik. 36, 1-42, 219-258 (1929).
[85] M. D. Meyerson, "Representing homology classes of closed orientable surfaces," Proc. Amer. Math. Soc. 61, 181-182 (1976).
[86] J. W. Milnor, "Construction of universal bundles, II," Ann. Math. 63, 430-436 (1956).
[87] J. W. Milnor, "On the immersions of n-manifolds in ($n+1$)-space," Comment. Math. Helv. 30, 275-284 (1956).
[88] J. W. Milnor, "On simply connected 4-manifolds," in Symposium internacional de topologia algebraica (México, UNAM, 1958), pp. 122-128.
[89] J. W. Milnor, "A procedure for killing the homotopy groups of differentiable manifolds," in Proc. Sympos. Pure Math., Vol. 3 (Providence, RI, Amer. Math. Soc., 1961), pp. 39-55.
[90] J. Milnor, Morse Theory (Princeton, NJ, Princeton Univ. Press, 1963).
[91] J. W. Milnor, "Microbundles. I," Topology, 3, suppl. 1, 53-81 (1964).
[92] J. Milnor and J. Stasheff, Characteristic Classes (Princeton, Princeton Univ. Press, 1979).
[93] M. Mimura and H. Toda, Topology of Lie groups (Providence, RI, Amer. Math. Soc., 1991).
[94] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory (New York-London, Harper \& Row, 1968).
[95] H. J. Munkholm, "Simplices of maximal volume in hyperbolic space, Gromov's norm, and Gromov's proof of Mostow's rigidity theorem (following Thurston)," in Topology Symposium (Siegen, 1979), Lecture Notes in Math. 788 (Berlin, Springer, 1980), pp. 109-124.
[96] J. R. Munkres, Elements of algebraic topology (Reading, Mass., Addison-Wesley, 1984).
[97] E. Noether, "Ableitung der Elementarteilertheorie aus der Gruppentheorie," Jahresbericht Deutschen Math. Verein. 34, 104 (1926).
[98] P. Olum, "Non-abelian cohomology and van Kampen's theorem," Ann. Math. 68, 658-668 (1958).
[99] G. F. Paechter, "On the groups $\pi_{r}\left(V_{m n}\right)$. I, II, III, IV, V," Quart. J. Math. Oxford, Ser. 27 (28), 249-265 (1956); 9 (33), 8-27 (1958); 10 (37), 17-37 (1959); 10 (40), 241-260 (1959); 11 (41), 1-16 (1960).
[100] H. O. Peitgen, "On the Lefschetz number for iterates of continuous mappings," Proc. Amer. Math. Soc. 54, 441-444 (1976).
[101] F. Pham, "Formules de Picard-Lefschetz généralisées et ramification des intégrales," Bull. Soc. Math. France. 93, 333-367 (1965).
[102] E. Pitcher, "Inequalities of critical point theory," Bull. Amer. Math. Soc. 64, 1-30 (1958).
[103] A. Polombo, "Classes de Chern," Astérisque 58, 51-75 (1978).
[104] V. V. Prasolov, Problems and Theorems in Linear Algebra (Providence, RI, Amer. Math. Soc., 1994).
[105] V. V. Prasolov, Intuitive Topology (Providence, RI, Amer. Math. Soc., 1995).
[106] V. V. Prasolov, "The Seifert surface," in Mathematical Education, Ser. 3, No. 3 (Moscow, MTsNMO, 1999), pp. 116-126 [in Russian].
[107] V. V. Prasolov and A. B. Skopenkov, "The Ramsey theory of knots and links," in Mathematical Education, Ser. 3, No. 9 (Moscow, MTsNMO, 2005), pp. 108-115 [in Russian].
[108] V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-Manifolds (Providence, RI, Amer. Math. Soc., 1997).
[109] G. de Rham, "Sur l'analysis situs des variétés à n dimensions," J. Math. Pures et Appl., Ser. 9 10, 115-120 (1931).
[110] S. A. Robertson, "On transnormal manifolds," Topology 6, 117-123 (1967).
[111] V. A. Rokhlin, "Homotopy groups," Uspekhi Mat. Nauk 1 (5-6), 175-223 (1946).
[112] J. J. Rotman, An Introduction to Algebraic Topology (New York-Berlin, Springer, 1988).
[113] H. Samelson, "On Poincaré duality," J. Anal. Math. 14, 323-336 (1965).
[114] H. Samelson, "On de Rham's theorem," Topology 6, 427-432 (1967).
[115] R. Schön, "Acyclic models and excision," Proc. Amer. Math. Soc. 59, 167-168 (1976).
[116] J.-P. Serre, "Homologie singulière des espaces fibrés. Applications," Ann. of Math. 54, 425-505 (1951).
[117] J.-P. Serre, "Cohomologie modulo 2 des complexes d'Eulenberg-MacLane," Comment. Math. Helv. 27, 198-232 (1953).
[118] J.-P. Serre, "Groupes d'homotopie et classes de groupes abéliens," Ann. of Math. 28, 258-294 (1953).
[119] D. B. Shapiro, Composition of Quadratic Forms (Berlin-New York, Walter de Gruyter, 2000).
[120] M.-H. Shih, "A combinatorial Lefschetz fixed-point formula," J. Combin. Theory Ser. A 61, 123-129 (1992).
[121] I. Singer and J. Thorpe, Lecture Notes on Elementary Topology and Geometry (Glenview, Ill., Scott, Foresman, and Co., 1967).
[122] P. A. Smith, "Transformations of finite period, I," Ann. Math. 39, 127-164 (1938).
[123] E. H. Spanier, Algebraic Topology (New York, McGraw-Hill, 1966).
[124] E. B. Staples, "A short and elementary proof that a product of spheres is parallelizable if one of them is odd," Proc. Amer. Math. Soc. 18, 570-571 (1967).
[125] N. E. Steenrod, "Products of cocycles and extension of mappings," Ann. Math. 48, 290-320 (1947).
[126] N. E. Steenrod, "Cohomology invariants of mappings," Ann. Math. 50, 954-988 (1949).
[127] N. E. Steenrod, The Topology of Fibre Bundles (Princeton, NJ, Princeton Univ. Press, 1951).
[128] N. E. Steenrod, "Homology groups of symmetric groups and reduced power operations," Proc. Nat. Acad. Sci. U.S.A. 39, 213-223 (1953).
[129] N. E. Steenrod, "Cohomology operation derived from the symmetric group," Comm. Math. Helv. 31, 195-218 (1957).
[130] N. E. Steenrod, Cohomology Operations. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein (Princeton, NJ, Princeton Univ. Press, 1962).
[131] N. Steenrod and S. Eilenberg, Foundations of Algebraic Topology (Princeton, NJ, Princeton Univ. Press, 1952).
[132] E. Stiefel, "Richtungsfelder und Fernparallelismus in Mannigfaltigkeit," Comm. Math. Helv. 8, 3-51 (1936).
[133] E. Stiefel, "Über Richtungsfelder in den projektiven Räumen," Comm. Math. Helv. 13, 201-218 (1941).
[134] R. E. Stong, Notes on Cobordism Theory (Princeton, NJ, Princeton Univ. Press, 1968).
[135] D. Sullivan, "Infinitesimal computations in topology," Publ. Math. IHES. 47, 269-332 (1977).
[136] R. M. Switzer, Algebraic Topology - Homotopy and Homology (New York, Springer, 1975).
[137] R. Thom, "Espaces fibrés en spheres et carrés de Steenrod," Ann. Sci. École Norm. Super. 69, 109-181 (1952).
[138] R. Thom, "Les classes charactéristiques de Pontryagin des variétés triangulées," in Symposium internacional de topologia algebraica (México, UNAM, 1958), pp. 54-67.
[139] W. Thurston, The Geometry and Topology of 3-Manifolds (Princeton, NJ, Princeton Univ. Press, 1978).
[140] V. A. Vassiliev, Introduction to Topology (Providence, RI, Amer. Math. Soc., 2001).
[141] J. W. Vick, Homology Theory (New York, Academic Press, 1973).
[142] L. Vietoris, "Über die Homologiegruppen der Vereinigung zweier Komplexe," Monatsh. Math. Phys. 37, 159-162 (1930).
[143] Ph. L. Wadler, "On pairs of nonintersecting faces of cell complexes," Proc. Amer. Math. Soc. 51, 438-440 (1975).
[144] H. C. Wang, "The homology groups of the fibre-bundles over a sphere," Duke Math. J. 16, 33-38 (1949).
[145] Ch. A. Weibel, "History of homological algebra," in History of Topology, Ed. by I. M. James (Amsterdam, Elsevier, 1999), pp. 797-836.
[146] A. Weil, "Sur les theorems de de Rham," Comment. Math. Helv. 26, 119-145 (1952).
[147] O. Wells R., Jr., Differential Analysis on Complex Manifolds (Englewood Cliffs, NJ, Prentice-Hall, 1973).
[148] Sh. Weinberger, "Oliver's formula and Minkowski's theorem," in Algebraic and Geometric Topology (New Brunswick, NJ, 1983). Lecture Notes in Math., 1126 (Berlin, Springer, 1985), pp. 420-421.
[149] H. Whitney, "Sphere spaces," Proc. Nat. Acad. Sci. U.S.A. 21, 462-468 (1935).
[150] H. Whitney, "The maps of an n-complex into an n-sphere," Duke Math. J. 3, 51-55 (1937).
[151] H. Whitney, "On products in a complex," Ann. Math. 39, 397-432 (1938).
[152] H. Whitney, "The self-intersections of a smooth n-manifold in $2 n$-space," Ann. Math. 45, 220-246 (1944).
[153] H. Whitney, "The self-intersections of a smooth n-manifold in ($2 n+1$)-space," Ann. Math. 45, 247-293 (1944).
[154] H. Whitney, Geometric Integration Theory (Princeton, NJ, Princeton Univ. Press, 1957).
[155] Wen-Tsün Wu, "Classes caractéristiques et i-carrés d'une variété," C. R. Acad. Sci. Paris. 230, 508-511 (1950).

This page intentionally left blank

Index

G-complex
regular, 174
simplicial, 173
G-space, 173
H-space, 358
$K(\pi, n)$ space, 122
S-equivalent matrices, 314
r-transnormal embedding, 56
action
effective, 177
free, 183
simplicial, 173
acyclic
functor, 103
model, 104
theorem, 104
simplicial complex, 6
support theorem, 7
admissible set, 231
Alexander
duality, 81
ideal, 308
polynomial, 308
in Conway's normalization, 315
theorem, 205
Alexander-Pontryagin duality, 271
Alexander-Whitney diagonal
approximation, 105, 214
algebra
Hopf, 361
connected, 361
Lie, 344
cohomology, 349
algebraically trivial map, 120
almost parallelizable manifold, 141
anticommutativity of cup product, 63
Arf
invariant
of a knot, 319
of a link, 320
of a quadratic form, 317
theorem, 318
associated sheaf, 265
attaching a handle, 312
augmentation, 6, 17
axiom
dimension, 203, 204
exactness, 203, 204
excision, 200, 203, 204
noncommutative, 224
homotopy, 203, 204
axiomatic approach to Stiefel-Whitney classes, 159
basis
of a free Abelian group, 4
of a module, 305
symplectic, 317
Betti numbers, 3
bi-invariant form, 348
bilinear map
nondegenerate, 109
of Abelian groups, 27
Bockstein homomorphism, 14, 92, 142
Borromean rings, 85
multidimensional, 87
Borsuk-Ulam theorem, 76
boundary, 2
homomorphism, 2
of a simplex, 1
braid
colored, 122
group, 123
bundle
associated with a divisor, 339
conjugate, 170
dual, 171
induced, 133
nonorientable, 143
orientable, 143
vector, 131
equivalent, 132
isomorphic, 132
smooth, 131
stably equivalent, 148
with structure group, 272
canonical
map, 9
vector bundle, 153
cap product, 70
Cartan formula, 189
Cartesian product of Abelian groups, 21
category, 103
with models, 103
Čech cohomology, 267, 268
cellular homology, 37, 210
centralizer, 351
chain, 2
complex, 4
free, 4
nonnegative, 4
ordered, 60
total, 60
homotopy, 5, 196
map, 4
relative, 12
with closed supports, 48
characteristic
class
Chern, 163
Chern of a complex manifold, 171
Euler, 144
Pontryagin, 172
Stiefel-Whitney, 141
Euler, 51, 90
of a pair, 55,182
Chern characteristic class, 163
of a complex manifold, 171
class
Chern, 163
of a complex manifold, 171
Euler, 144
fundamental, 36
cohomology, 125
Pontryagin, 172
primitive homology, 49

Stiefel-Whitney, 141
of a manifold, 150
Thom, 237, 255
Wu, 259
closed form, 277
coboundary, 22
formula, 186
homomorphism, 267
cochain, 21, 266
difference, 117
relative, 23
with compact supports, 48
cocycle, 22
noncommutative, 222
cohomologous, 222
coefficient group, 203, 204
cofinal set, 266
cohomology
Čech, 267, 268
cross product, 106
de Rham, 277
fundamental class, 125
group, 22
Lie algebra, 349
noncommutative, 222, 274
operation, 127
reduced, 23
relative, 23
singular, 202
with compact supports, 48
with local coefficients, 136
cokernel, 15
collar theorem, 78,247
colored braid group, 122
commutator, 346
of vector fields, 276
subgroup, 112
complete intersection, 341
complex
chain, 4
Stiefel manifold, 162
vector bundle, 162
complexification, 172
conjugate bundle, 170
connected
Hopf algebra, 361
sum of manifolds, 336
connecting homomorphism, 12, 14
consistent family, 264
constant presheaf, 264
contravariant functor, 103
Conway polynomial, 316
coproduct, 360
covariant functor, 103
cross product, 106
cup product, 59, 62
cycle, 2
homologous, 3
degree of a map, 36
Dehn twist, 50
de Rham
cohomology, 277
theorem, 289
diagonal approximation, 105, 184, 214
Alexander-Whitney, 105, 214
difference cochain, 117
differential form
closed, 277
exact, 277
polynomial
on a complex, 296
on a simplex, 296
smooth, 296
dimension axiom, 203, 204
direct
limit, 265
product of vector bundles, 134
sum
of Abelian groups, 21
of bundles, 134
directed set, 264
of Abelian groups, 265
divisible group, 32
domain invariance theorem, 205
double point, 325
dual
bundle, 171
Stiefel-Whitney class, 149
duality
Alexander, 81
Alexander-Pontryagin, 271
Poincaré, 44
dunce hat, 115
effective action, 177
Eilenberg theorem, 117
Eilenberg-MacLane space, 122
Eilenberg-Zilber theorem, 213
element
regular, 353
singular, 353
elementary ideal, 307
embedding
r-transnormal, 56
transnormal, 56
equivalent
microbundles, 254
vector bundles, 132
equivariant map, 173
Euler
characteristic, 51, 90
of a pair, 55,182
class, 144
exact
form, 277
sequence
Mayer-Vietoris, 18
of a pair, 12
Smith, 181
split, 24
exactness axiom, 203, 204
excision
axiom, 200, 203, 204
noncommutative, 224
isomorphism, 12
theorem, 198
extraordinary (co)homology theory, 204
five lemma, 15
form
bi-invariant, 348
closed, 277
exact, 277
intersection, 88,260
left-invariant, 348
polynomial
on a complex, 296
on a simplex, 296
quadratic over $\mathbb{Z}_{2}, 317$
right-invariant, 348
Seifert, 304
smooth, 296
formula
Cartan, 189
coboundary, 186
of universal coefficients, 33
Thom, 257
Whitney, 147
Wu, 193
free
action, 183
chain complex, 4
functor, 103
module, 305
resolution of an Abelian group, 28
functor
acyclic, 103
contravariant, 103
covariant, 103
free, 103
fundamental class, 36
cohomology, 125
of a topological manifold, 232
with boundary, 249
generalized (co)homology theory, 204
germ, 265
Gromov norm, 221
group
cohomology, 22
reduced, 23
relative, 23
singular, 202
colored braid, 122
divisible, 32
free Abelian, 4
homology
of a chain complex, 4
singular, 196
Lie, 344
of braids, 123
of coefficients, 203, 204
periodic, 31
ring, 180
simplicial homology, 3
Smith homology, 181
Gysin sequence, 256
Helly's theorem, 208, 209
homologous cycles, 3
homology
cellular, 37, 210
disk, 183
group
of a chain complex, 4
simplicial, 3
Smith, 181
primitive class, 49
reduced, 17
relative, 12
sequence
for a triple, 15
of a pair, 12
singular, 196
sphere, 45, 81, 183
with closed supports, 48
homomorphism
Bockstein, 14, 92, 142
boundary, 2
connecting, 12, 14
Hurewicz, 112
of presheaves, 263
restriction, 263
transfer, 179
homotopic
trivializations, 133
vector fields, 133
homotopy
axiom, 203, 204
chain, 5,196
Hopf
algebra, 361
fibration, 219
invariant, 219
theorem, 337, 362

Hopf-Whitney theorem, 119
Hurewicz
homomorphism, 112
theorem, 113
hyperbolic manifold, 222
ideal
Alexander, 308
elementary, 307
induced bundle, 133
infinite
cyclic covering, 304
Grassmann manifold, 153
infinite-dimensional lens space, 123
injective resolution, 32
integral form, 280
intersection
complete, 341
form, 88,260
number, 42
invariance
of a boundary, 206
of a domain, 205
invariant
Arf
of a knot, 319
of a link, 320
of a quadratic form, 317
Hopf, 219
isomorphic vector bundles, 132
isomorphism
excision, 12
Lefschetz, 81
for topological manifolds, 250
of bundles with structure group, 273
Poincaré, 44
for de Rham cohomology, 285
for topological manifolds, 243
with local coefficients, 138
suspension, 20, 201
Thom, 238
Künneth theorem, 99
for relative homology, 215
for singular homology, 213
relative, 215
Kan-Whitehead theorem, 129
Kolmogorov-Alexander multiplication, 59
Lefschetz
fixed point theorem, 56
isomorphism, 81
for topological manifolds, 250
number, 56
left-invariant
form, 348
vector field, 346
lemma
on extension, 297
Poincaré, 283
lens space, 93
infinite-dimensional, 123
Leray-Hirsh theorem, 168
Lie
algebra, 344
group, 344
line bundle associated with a divisor, 339
linking number, 46, 83
local system of groups, 136
manifold
almost parallelizable, 141
Grassmann infinite, 153
hyperbolic, 222
parallelizable, 132, 260, 338
Schubert, 157
stably parallelizable, 156
Stiefel, 139 complex, 162
topological with boundary orientable, 248
map
algebraically trivial, 120
chain, 4
equivariant, 173
splitting, 167
Massey triple product, 84
matrix
presentation, 305
Seifert, 304
maximal torus, 351
Mayer-Vietoris sequence, 18, 200
for de Rham cohomology, 278
for de Rham cohomology with compact supports, 279
noncommutative, 224
relative, 20, 202
microbundle, 254
equivalent, 254
tangent, 254
Milnor theorem, 338
Minkowski theorem, 177
model, 103
acyclic, 104
module
finitely generated, 305
free, 305
Moore space, 128
morphism, 103
Morse inequality, 210
multidimensional Borromean rings, 87
multiplication, 358
Kolmogorov-Alexander, 59
natural transformation, 103
naturality
of cap product, 71
of Stiefel-Whitney classes, 146
noncommutative
cocycle, 222
cohomology, 222, 274
excision axiom, 224
Mayer-Vietoris sequence, 224
nondegenerate
bilinear map, 109
quadratic form over $\mathbb{Z}_{2}, 317$
nonnegative chain complex, 4
nonorientable bundle, 143
normal degree of an immersion, 335
normalizer, 351
number
Betti, 3
intersection, 42
Lefschetz, 56
linking, 46, 83
self-intersection, 326, 327
Stiefel-Whitney, 152
object of a category, 103
obstruction, 116
to extending sections, 138
ordered chain complex, 60
orientable
bundle, 143
topological manifold, 232
with boundary, 248
orientation
of a topological manifold, 232
with boundary, 248
system of groups, 136
oriented topological manifold, 232
parallelizable manifold, 132, 260, 338
partition of an integer, 158
periodic group, 31
Poincaré
duality, 44
isomorphism, 44
for de Rham cohomology, 285
for topological manifolds, 243
with local coefficients, 138
lemma, 283
theorem, 112
point
double, 325
self-intersection, 325
polynomial
Alexander, 308
in Conway's normalization, 315
Conway, 316
differential form
on a complex, 296
on a simplex, 296
Pontryagin
characteristic class, 172
theorem, 152
presentation matrix, 305
presheaf, 263
constant, 264
primitive homology class, 49
product
Massey triple, 84
of Abelian groups
Cartesian, 21
tensor, 27
tensor of chain complexes, 97
vector bundle, 132
projective
resolution, 32
projectivization of a vector bundle, 167
pullback, 133
quadratic form over $\mathbb{Z}_{2}, 317$
nondegenerate, 317
rank of a Lie group, 353
reduced
cohomology, 23
homology, 17
regular
G-complex, 174
element, 353
immersion, 325
relative
chain, 12
cochain, 23
cohomology, 23
homology, 12
Künneth theorem, 215
Mayer-Vietoris sequence, 20, 202
resolution
injective, 32
projective, 32
restriction homomorphism, 263
right-invariant form, 348
ring
Borromean, 85
group, 180
roots, 355
Schubert manifold, 157
section, 265
of a bundle, 131
zero, 132
Seifert
form, 304
knot, 310
matrix, 304
surface, 305
self-intersection
number, 326, 327
point, 325
sequence
exact of a pair, 12
Gysin, 256
Mayer-Vietoris, 18, 200
for de Rham cohomology, 278
for de Rham cohomology with
compact supports, 279
noncommutative, 224
relative, 20, 202
Smith exact, 181
set
admissible, 231
cofinal, 266
directed, 264
of Abelian groups, 265
sheaf, 264
associated with a presheaf, 265
generated by a presheaf, 265
signature
of a manifold, 90
of a product, 108
Thom theorem, 91
simplex
boundary, 1
singular, 195
simplicial
G-complex, 173
action, 173
complex acyclic, 6
homology group, 3
volume, 221
singular
cohomology, 202
element, 353
homology, 196
simplex, 195
skein relation, 316
skew-commutativity of cup product, 63
Smith
exact sequence, 181
homology group, 181
theorem, 183
smooth
differential form
on a complex, 296
on a simplex, 296
triangulation, 289
vector bundle, 131
space
$K(\pi, n), 122$
Eilenberg-MacLane, 122
lens, 93

Moore, 128
split exact sequence, 24
splitting map, 167
stably
equivalent vector bundles, 148
parallelizable manifold, 156
Steenrod square, 188
Steenrod's five lemma, 15
Steenrod-Eilenberg axioms, 203, 204
Stiefel
manifold, 139
complex, 162
theorem, 260
Stiefel-Hopf theorem, 109
Stiefel-Whitney
class
characteristic, 141
dual, 149
of a manifold, 150
total, 149
number, 152
Stokes theorem, 281
strong Whitney embedding theorem, 325
sum
connected of manifolds, 336
direct
of Abelian groups, 21
of bundles, 134
Whitney, 134
support of a chain, 6
suspension isomorphism, 20, 201
symplectic basis, 317
tangent microbundle, 254
tensor product
of Abelian groups, 27
of chain complexes, 97
theorem
acyclic model, 104
acyclic support, 7
Alexander, 205
Arf, 318
Borsuk-Ulam, 76
chain homotopy, 5
collar for smooth manifolds, 78
de Rham, 289
simplicial, 299
domain invariance, 205
Eilenberg, 117
Eilenberg-Zilber, 213
excision, 198
Helly's, 208, 209
Hopf, 337, 362
Hopf-Whitney, 119
Hurewicz, 113
Künneth, 99
for relative homology, 215
for singular homology, 213
relative, 215
Kan-Whitehead, 129
Lefschetz
fixed point, 56
isomorphism, 81
Leray-Hirsh, 168
Milnor, 338
Minkowski, 177
on a collar, 247
on acyclic
models, 104
supports, 7
on domain invariance, 205
Poincaré, 112
Pontryagin, 152
Smith, 183
Stiefel, 260
Stiefel-Hopf, 109
Stokes, 281
Thom, 257
signature, 91
Whitney
duality, 149
strong embedding, 325
Wu, 259
Thom
class, 237, 255
formula, 257
isomorphism, 238
theorem, 257
signature, 91
topological
generator, 350
manifold
orientable, 232
oriented, 232
with boundary orientable, 248
torsion subgroup, 44
torus, 345
maximal, 351
total
chain complex, 60
Stiefel-Whitney class, 149
transfer homomorphism, 179
transition function, 272
transnormal embedding, 56
transversality, 73
triple
homology sequence, 15
Massey product, 84
trivial vector bundle, 132
universal coefficient
formulas, 33
theorem, 33

vector

bundle, 131
canonical, 153
complex, 162
equivalent, 132
isomorphic, 132
product, 132
smooth, 131
stably equivalent, 148
trivial, 132
field
homotopic, 133
left-invariant, 346

Whitney
formula, 147
sum, 134
theorem
duality, 149
strong embedding, 325
trick, 329

Wu

class, 259
formula, 193
theorem, 259
zero section, 132

Titles in This Series

84 Charalambos D. Aliprantis and Rabee Tourky, Cones and order, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
82 Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash-Moser theorem (translated by Stephen S. Wilson), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002 group, 2001

dimension, 2000

21 John B. Conway, A course in operator theory, 2000 tools for every mathematician, 1997 algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology,
 with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area.
The book contains many problems; almost all of them are provided with hints or complete solutions.

