

Origami ${ }^{6}$ Art, Education

Origami 6

Proceedings of the Sixth International
Meeting on Origami Science, Mathematics, and Education

Koryo Miura
Toshikazu Kawasaki
Tomohiro Tachi
Ryuhei Uehara
Robert J. Lang
Patsy Wang-Iverson
Editors

Library of Congress Cataloging-in-Publication Data

International Meeting of Origami Science, Mathematics, and Education (6th : 2014: Tokyo, Japan) Origami ${ }^{6}$ / Koryo Miura [and five others], editors. volumes cm
"International Conference on Origami Science and Technology ... Tokyo, Japan ... 2014"Introduction.

Includes bibliographical references and index.
Contents: Part 1. Mathematics of origami-Part 2. Origami in technology, science, art, design, history, and education.

ISBN 978-1-4704-1875-5 (alk. paper : v. 1)—ISBN 978-1-4704-1876-2 (alk. paper : v. 2)

1. Origami-Mathematics-Congresses. 2. Origami in education-Congresses. I. Miura, Koryo, 1930- editor. II. Title.

QA491.I55 2014
736'.982-dc23
2015027499

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center's RightsLink ${ }^{\circledR}$ service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.
(C) 2015 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
©
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Origami ${ }^{6}$ is dedicated to the memory of Klaus Peters (1937-2014), founder with Alice Peters of A K Peters, Ltd., publisher of Origami ${ }^{3}$, Origami ${ }^{4}$, and Origami ${ }^{5}$, among many other genre-crossing books. His vision informed and explored the relationships between mathematics and many other fields, not least of which is the mathemagical world of origami.

Contents

Part 1: Mathematics of Origami

Acknowledgments xiii
Introduction XV
I. Mathematics of Origami: Coloring
Coloring Connections with Counting Mountain-Valley Assignments Thomas C. Hull 3
Color Symmetry Approach to the Construction of Crystallographic Flat Origami
Ma. Louise Antonette N. De las Peñas, Eduard C. Taganap, and Teofina A. Rapanut 11
Symmetric Colorings of Polypolyhedra
sarah-marie belcastro and Thomas C. Hull 21
II. Mathematics of Origami: Constructibility
Geometric and Arithmetic Relations Concerning Origami Jordi Guàrdia and Eulàlia Tramuns 35
Abelian and Non-Abelian Numbers via 3D Origami
José Ignacio Royo Prieto and Eulàlia Tramuns 45
Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons
Fadoua Ghourabi, Tetsuo Ida, and Kazuko Takahashi 55
Equal Division on Any Polygon Side by Folding
Sy Chen 67
A Survey and Recent Results about Common Developments of Two or More Boxes
Ryuhei Uehara 77
Unfolding Simple Folds from Crease PatternsHugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and YukioFukui85

III. Mathematics of Origami: Rigid Foldability

Rigid Folding of Periodic Origami Tessellations
Tomohiro Tachi

Rigid Flattening of Polyhedra with Slits

Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi
Rigidly Foldable Origami Twists
Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell
Locked Rigid Origami with Multiple Degrees of Freedom Zachary Abel, Thomas C. Hull, and Tomohiro Tachi 131
Screw Algebra Based Kinematic and Static Modeling of Origami-Inspired Mechanisms
Ketao Zhang, Chen Qiu, and Jian S. Dai 139
Thick Rigidly Foldable Structures Realized by an Offset Panel Technique
Bryce J. Edmondson, Robert J. Lang, Michael R. Morgan, Spencer P. Magleby, and Larry L. Howell 149
Configuration Transformation and Mathematical Description of Manipulation of Origami Cartons
Jian S. Dai 163
IV. Mathematics of Origami: Design Algorithms
Filling a Hole in a Crease Pattern: Isometric Mapping from PrescribedBoundary FoldingErik D. Demaine and Jason S. Ku177
Spiderwebs, Tilings, and Flagstone Tessellations Robert J. Lang 189
Scaling Any Surface Down to Any Fraction
Erik D. Demaine, Martin L. Demaine, and Kayhan F. Qaiser 201
Characterization of Curved Creases and Rulings: Design and Analysis of LensTessellationsErik D. Demaine, Martin L. Demaine, David A. Huffman, DuksKoschitz, and Tomohiro Tachi209
Curve-Folding Polyhedra Skeletons through Smoothing Suryansh Chandra, Shajay Bhooshan, and Mustafa El-Sayed 231
Design Methods of Origami Tessellations for Triangular Spiral Multiple Tilings Takamichi Sushida, Akio Hizume, and Yoshikazu Yamagishi 241
A New Scheme to Describe Twist-Fold Tessellations Thomas R. Crain 253
Weaving a Uniformly Thick Sheet from Rectangles
Eli Davis, Erik D. Demaine, Martin L. Demaine, and Jennifer Ramseyer 265
Extruding Towers by Serially Grafting Prismoids Herng Yi Cheng 275
On Pleat Rearrangements in Pureland Tessellations
Goran Konjevod 293
Graph Paper for Polygon-Packed Origami Design
Robert J. Lang and Roger C. Alperin 305
A Method to Fold Generalized Bird Bases from a Given Quadrilateral Containing an Inscribed Circle
Toshikazu Kawasaki 319
Pentasia: An Aperiodic Origami Surface
Robert J. Lang and Barry Hayes 329
Base Design of a Snowflake Curve Model and Its Difficulties Ushio Ikegami 339
Two Calculations for Geodesic Modular Works Miyuki Kawamura 357
Index I-1
Part 2: Origami in Technology, Science, Art, Design, History, and Education
Acknowledgments xiii
Introduction XV
V. Origami in Technology and Science
Comparison of Compressive Properties of Periodic Non-flat Tessellations Yves Klett, Marc Grzeschik, and Peter Middendorf 371
Numerical Analysis of Origami Structures through Modified Frame Elements
Kazuko Fuchi, Philip R. Buskohl, James J. Joo, Gregory W. Reich, and Richard A. Vaia 385
A Study on Crash Energy Absorption Ability of Lightweight Structures with Truss Core Panel
Yang Yang, Xilu Zhao, Sunao Tokura, and Ichirou Hagiwara 397
Toward Optimization of Stiffness and Flexibility of Rigid, Flat-FoldableOrigami StructuresEvgueni T. Filipov, Tomohiro Tachi, and Glaucio H. Paulino409
Structural Engineering Applications of Morphing Sandwich Structures Joseph M. Gattas and Zhong You 421
Sound-Insulating Performance of Origami-Based Sandwich Trusscore Panels Sachiko Ishida, Hiroaki Morimura, and Ichiro Hagiwara 431
Thin-Walled Deployable Grid Structures Jonathan Ho and Zhong You 439
Deployable Linear Folded Stripe Structures Rupert Maleczek 447
Gravity and Friction-Driven Self-Organized Folding
Günther H. Filz, Georg Grasser, Johannes Ladinig, and Rupert Maleczek 459
Magnetic Self-Assembly of Three-Dimensional Microstructures Eiji Iwase and Isao Shimoyama 471
Folding Augmented: A Design Method to Integrate Structural Folding in Architecture
Pierluigi D’Acunto and Juan José Castellón González 479
Demands on an Adapted Design Process for Foldable Structures
Susanne Hoffmann, Martin Barej, Benedikt Günther, Martin Trautz, Burkhard Corves, and Jörg Feldhusen 489
Planning Motions for Shape-Memory Alloy Sheets
Mukulika Ghosh, Daniel Tomkins, Jory Denny, Samuel Rodriguez, Marco Morales, and Nancy M. Amato 501
Simple Flat Origami Exploration System with Random Folds Naoya Tsuruta, Jun Mitani, Yoshihiro Kanamori, and Yukio FUKUI 513
oricreate: Modeling Framework for Design and Manufacturing of Folded PlateStructuresRostislav Chudoba, Jan van der Woerd, and Josef Hegger 523
Rotational Erection System (RES): Origami Extended with Cuts Yoshinobu Miyamoto 537
Toward Engineering Biological Tissues by Directed Assembly and Origami
FoldingPhilipp J. Mehner, Tian Liu, Majid Bigdeli Karimi, Alyssa Brodeur,Juan Paniagua, Stephanie Giles, Patricia Richard, AntoniyaNemtserova, Sanwei Liu, Roger Alperin, Sangeeta Bhatia, Martin
Culpepper, Robert J. Lang, and Carol Livermore 545
Cosmological Origami: Properties of Cosmic-Web Components when aNon-stretchy Dark-Matter Sheet FoldsMark C. Neyrinck557

VI. Origami in Art, Design, and History

Modeling Vaults in Origami: A Bridge between Mathematics and Architecture Caterina Cumino, Emma Frigerio, Simona Gallina, Maria Luisa Spreafico, and Ursula Zich

Folding Perspectives: Joys and Uses of 3D Anamorphic Origami Yves Klett 583
Master Peace: An Evolution of Monumental Origami Kevin Box and Robert J. Lang 601
Wearable Metal Origami
Tine De Ruysser 613
Crowdsourcing Origami Sculptures
Jeannine Mosely 625
On the Aesthetics of Folding and Technology: Scale, Dimensionality, and Materiality
Matthew Gardiner 635
Computational Problems Related to Paper Crane in the Edo Period Jun Maekawa 647
Mitate and Origami
Koshiro Hatori 657
VII. Origami in Education
The Kindergarten Origametria Program
Miri Golan and John Oberman 669
Area and Optimization Problems
Emma Frigerio and Maria Luisa Spreafico 679
Mathematics and Art through the Cuboctahedron Shi-Pui Kwan 689
Origami-Inspired Deductive Threads in Pre-geometry Arnold Tubis 699
Using Paper Folding to Solve Problems in School Geometry
Yanping Huang and Peng-Yee Lee 713
Using Origami to Enrich Mathematical Understanding of Self Similarity and Fractals
Ali Bahmani, Kiumars Sharif, and Andrew Hudson 723
Using the Fujimoto Approximation Technique to Teach Chaos Theory to High School Students
Leon Poladian 735
Index I-1

Acknowledgments

There are many people and organizations to thank for making it possible to present you, the reader, with this two-volume set of Origami ${ }^{6}$. The publication of Origami ${ }^{6}$ is made possible through their efforts over several years. First came the creation of committees to plan for and raise funds for the 6th International Meeting on Origami Science, Mathematics, and Education (6OSME), which took place August 11-13, 2014, in Tokyo, Japan. The Organizing Committee managed the details-from small to large of making the meeting a reality: Ichiro Hagiwara, Yuko Adachi, Yan Chen, Koshiro Hatori, Takashi Hojyo, Sachiko Ishida, Kaori Kuribayashi-Shigetomi, Hideo Komatsu, Jason Ku, Jun Maekawa, Yuji Matsumoto, Jun Mitani, Seiji Nishikawa, Yoshio Tsuda, and Makoto Yamaguchi. The Program Committee members (including the Origami ${ }^{6}$ editors) helped to shape the vision for the meeting: Roger Alperin, Hideaki Azuma, Erik D. Demaine, Martin L. Demaine, Emma Frigerio, Tomoko Fuse, Koshiro Hatori, Thomas C. Hull, Yves Klett, Kaori Kuribayashi-Shigetomi, Jun Maekawa(who edited the book of program and abstracts), Yoshinobu Miyamoto, Kazuya Saito, Koichi Tateishi, Arnold Tubis, and Zhong You. Supporting organizations provided time and financial support to help defray the cost of the meeting and to ensure participants took away memorable and positive experiences from the event: Tokyo-Shiki Co., Origami House, Miura-ori lab, Gabriella \& Paul Rosenbaum Foundation, Toyo Corporation, Takeo Co., Kawakami Sangyo Co., Heiwa Paper Co., Maeda Corporation, Noiz Architects, Asahi Press, and Issey Miyake. Special thanks go to Gabriella \& Paul Rosenbaum Foundation for providing scholarships to students and to Japan Origami Academic Society and Origami House (Makoto Yamaguchi, Eiko Matsuura, and Satoshi Kamiya) for their extraordinary efforts to ensure that the meeting proceeded smoothly.

The executive managers for 6OSME were Seiji Nishikawa and Tomohiro Tachi, who oversaw the event's smooth operation. Robert J. Lang and Patsy Wang-Iverson served as the international driving forces. Kiyoko Yoshizawa and Koji Miyazaki managed the origami exhibitions, old and new. Koshiro Hatori, Jason Ku, and Anne Lavin oversaw hospitality, including planning field trips for meeting participants. Masami Isoda and Masahiko Sakamoto offered participants an opportunity to observe a ninth grade public lesson in mathematics at the Junior High School attached to Tsukuba University in Otsuka, Japan.

Reviewers played a crucial role in ensuring the meeting offered high-quality experiences. They reviewed the abstracts submitted for consideration for presentation, and then they reviewed the manuscripts submitted for publication in Origami ${ }^{6}$, offering detailed suggestions for improvement and then re-reviewing many manuscripts. A large number of individuals offered their services as reviewers, and we thank them for their time and commitment to the work: Hugo Akitaya,

Roger Alperin, Byoungkwon An, Richard Askey, Martin Barej, Alex Bateman, Alessandro Beber, sarah-marie belcastro, Mark Bolitho, Landen Bowen, Suryansh Chandra, Yan Chen, Herng Yi Cheng, Rostislav Chudoba, Keenan Crane, Erik D. Demaine, Martin L. Demaine, Peter Engel, Evgueni Filipov, Robin Flatland, Haruaki Fukuda, Matthew Gardiner, Ilan Garibi, Robert Geretschläger, Koshiro Hatori, Barry Hayes, Susanne Hoffmann, Takashi Horiyama, Larry Howell, Thomas C. Hull, Ushio Ikegami, Sachiko Ishida, Miyuki Kawamura, Martin Kilian, Yves Klett, Goran Konjevod, Jason Ku, Kaori Kuribayashi-Shigetomi, Anna Lubiw, Jun Maekawa, Spencer Magleby, Rupert Maleczek, Yoshinobu Miyamoto, Koji Miyazaki, Jeannine Mosely, Jun-Hee Na, Chris Palmer, Marian Palumbo, Rachel Philpott, Helmut Pottmann, Katherine Riley, Kazuya Saito, Saadya Sternberg, Cynthia Sung, Motoi Tachibana, Koichi Tateishi, Minoru Taya, Naoya Tsuruta, Emiko Tsutsumi, Arnold Tubis, Naohiko Watanabe, Michael Winckler, and Zhong You.

We thank the American Mathematical Society (AMS) for their unstinting support and publishing of Origami ${ }^{6}$, in particular Sergei Gelfand for keeping us focused and on track, Teresa Levy for her beautiful artwork, Peter Sykes and Denise Wood for their marketing prowess, and Michael Haggett for pulling it all together. Lastly, we are indebted to Charlotte Byrnes for agreeing to undertake the chore of improving the books you hold in your hands.

Koryo Miura
Toshikazu Kawasaki
Tomohiro Tachi
Ryuhei Uehara
Robert J. Lang
Patsy Wang-Iverson

Introduction

The apparently disparate fields of origami (the Japanese art of paper-folding), mathematics, science, technology, design, and education have made tenuous connections with each other throughout recorded history, but they became firmly linked in 1989, with the First International Conference on Origami Science and Technology, organized by Humiaki Huzita and held in Ferrara, Italy. The outcome of that meeting was a book Huzita 91. That first conference, which brought together practitioners in origami, mathematicians, scientists, technologists, engineers, and educators, set the course for a series of meetings and subsequent proceedings books, in Otsu, Japan in 1994 Miura 97; Asilomar, California, USA in 2001 Hull 02; Pasadena, California, USA in 2006 Lang 09; Singapore in 2010 Wang-Iverson et al. 11; and, most recently, in Tokyo, Japan in 2014. Over a hundred papers were presented by speakers from 30 countries at that conference, spanning topics ranging from the mathematical fundamentals of origami to algorithms for origami design, applications in architecture, deployable structures, microfabrication, and the use of folding in teaching and pedagogy. With each year, the breadth, diversity, and depth of work in the field have grown. It has resulted in collaborations between scientists and artists, engineers and teachers, in numerous structures, mechanisms, devices, and artworks, and, most tangibly, in the collection of papers in the book you are holding right now.

Each Origami in Science, Mathematics, and Education (OSME) conference has grown in size and breadth, reflecting the many connections between the world of folding and diverse other fields. Traditionally, the art of origami has been one of great restriction: a single sheet of paper (usually), formed by folding only, with no cuts (again, usually). Yet, this restrictive rule set not only gave rise to vast variety in artistic forms, but the techniques that artists discovered to create their forms have turned out to have applications across technology. In addition, as the power of folding came to the attention of scientists, mathematicians, and technologists, they, in turn, brought powerful tools-abstraction, analysis, optimization, computation - to the world of folding, giving rise not just to new artworks but to new engineering applications that better the human condition. With the combination of geometric precision and physical tangibility that folding provides, it continues to serve as an educational tool, with ripple effects that extend far beyond the narrow province of paper alone.

As with previous volumes in this series, this book presents a cross section of the latest developments in the marriage between origami and scientific and technological fields. Those developments grow and expand, and there is no greater evidence of that growth than the fact that this work is now in two printed volumes.

Part 1 focuses on some of the deepest connections between origami and other fields: the mathematics of origami, whose roots go back well beyond the OSME phenomenon with developments on solving algebraic equations using origami back in the mid-twentieth century, and still older explorations of the mathematical properties of folded surfaces. Modern investigations form a rich and vibrant field; new results presented here include work on constructability, connections to graph theory and coloring, and a host of design algorithms that bring in concepts from twoand three-dimensional geometry. The mathematical underpinnings of folding and their implications remain a source of active exploration, as you will see in the many papers in this work.

Part 2 focuses on the connections between origami and more applied areas of science: engineering, physics, architecture, industrial design, and even other artistic fields that go well beyond the usual folded paper. When origami enters other fields, the medium changes: applications of origami use polymers, metals, textiles, and more as the folding medium, and they call for new developments in algorithms, manufacturing techniques, computational tools, and process development. In addition, the applications of origami are often informed and influenced by the deep roots of historical folding, and you will find history, design, and art among the rich mélange of interdisciplinary work explored in this volume. While origami can call upon highly abstruse mathematical concepts, it also can play a powerful role as a classroom tool at all educational levels, even the elementary grades. A number of papers explore and demonstrate the utility of origami as a pedagogical tool in mathematical education.

As is often the case in the academic milieu, the most exciting and novel developments take place at the edges of existing fields, where disparate and unexpected bodies of knowledge mix and interact-illustrated elegantly here by the interdisciplinary applications of origami.

Origami ${ }^{6}$ contains a unique collection of papers accessible to a wide audience, including those interested in art, design, history, and education and researchers interested in the connections between origami and science, technology, engineering, and mathematics. We hope you will enjoy the works in these two volumes, both for their own interest and as harbingers (and perhaps triggers) of more exciting developments to come.

The Editors of Origami ${ }^{6}$:
Koryo Miura
Toshikazu Kawasaki
Tomohiro Tachi
Ryuhei Uehara
Robert J. Lang
Patsy Wang-Iverson

Bibliography

[Huzita 91] Humiaki Huzita (editor). Proceedings of the First International Meeting of Origami Science and Technology. Padova, Italy: Dipartimento di Fisica dell'Università di Padova, 1991.
[Miura 97] Koryo Miura (editor). Origami Science and Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami. Shiga, Japan: Seian University of Art and Design, 1997.
[Hull 02] Thomas Hull (editor). Origami ${ }^{3}$: Proceedings of the Third International Meeting of Origami Science, Mathematics, and Education. Natick, MA: A K Peters, 2002. MR 1955754 (2003h:00017)
[Lang 09] Robert J. Lang (editor). In Origami ${ }^{4}$: Fourth International Meeting of Origami Science, Mathematics, and Education. Natick, MA: A K Peters, 2009. MR2590567(2010h:00025)
[Wang-Iverson et al. 11] Patsy Wang-Iverson, Robert J. Lang, and Mark Yim (editors). Origami ${ }^{5}$: Fifth International Meeting of Origami Science, Mathematics, and Education. Boca Raton, FL: A K Peters/CRC Press, 2011. MR 2866909 (2012h:00044)

Index

1×5 rectangle, 267
H-invariant partitions of $G, 17$
$\pi, 654$
n-fold axioms, 46
n-fold symmetry, 284
1-fold axioms, 45
1-skeleta, 22
1/5 net, 362
" 2 Fold Santa", 517
2-3 tower, 47
2-fold axioms, 46
$2.5 \mathrm{D}, 371$
2.5D tessellations, 371

2DPlot, 576
3D folding axioms, 46
3D microstructures, 471
3 D moves, 46
3DPlot, 576
3OSME, 177, 689
3R serial chain, 144
4-approximation algorithm, 293
4-flap, 507
5OSME, 689
6OSME, 242
A Simple Lion, 663
AA School of Architecture, 238
AA Visiting School Bangalore, 238
ABAQUS, 533, 550
Abelian, 46
Abelian extension, 50
accordion models, 619
accumulation points, 340
acrylic sheet, 155
action of labeling, 513
action origami, 150, 164
Action Script, 517
active, 333
active paths, 334
acute triangles, 197, 201
acute triangulation, 197, 202
adapted design process, 490
adaptive origami structural design, 391
adhesive tape, 493
adjacency configuration matrix, 167
adjacency matrix, 163
adjoint transformation, 167
adjoint transformation matrix, 146
Adobe Illustrator, 540
advanced lightweight construction, 371
aesthetics, 643
affine transformation, 587
AFOSR, 394
Air Force Office of Scientific Research, 130, 149, 554
Air Vase, 538
airbag folding, 201
Akari Origami, 693
Akella, S., 164
"Akira Yoshizawa" style, 636
Alameda County, 297
Albers, Josef, 537
Alfred P. Sloan Foundation, 557
algebraic numbers, 46
algorithm, 388
alignments, 46, 513
all-layers, 86
Allen, Mark, 634
Alperin, R. C., 35, 515
Alperin-Lang multi-fold operation, 57
alpha-numeric symbol, 253
alternating sum of angles, 88
aluminum or plastic, 238
Amato, N. M., 164
An, Byoungkwon, 207
anam-ori, 584
anamorphic, 584
anamorphosis, 584
Ananas pattern, 640
angle section, 539
angle sequence, 4
angular defect, 287
angular momentum, 564
angular velocity, 102
animation, 164
anisotropic composite materials, 371
anisotropic torque, 471
annulus, 277

ANSYS Parametric Design Language, 550
antiferroelectric model, 8
antipodal dodecahedral edges, 23
antipodal point, 53
anto, 120
aperiodic, 189
aperiodic patterns, 329
aperiodic tilings, 267, 329
Araki, Yoshiaki, 82
Archimedean, 329
Archimedean solid, 696
Archimedean tilings, 11, 197
Archimedes, 45, 655
architectural design, 139
architectural-scale, 232
architecture, 571
arclength, 212
area, 680
area formulae, 699
argument formula, 58
arithmetic classification, 35
arithmetic equivalence, 35
artmimetics, 139
Ascher, U., 164
Associación Mexicana de Cultura AC, 501
AutoCAD, 575
AutoLISP, 576
automatic folding, 164
automation, 55
axes, 23
axial, 305
axial contours, 307
axial folds, 307
axial force, 102
axial-like creases, 305
axiomatization, 35, 48
axioms, 36
axis of symmetry, 680
axis-aligned pleats, 294
axis-parallel creases, 305
axis-shift method, 150
balance distance, 505
Balkcom, D. J., 164, 503
band, 23, 362
band coloring, 24
Bao Bao, 636
barcodes, 597
barrel vaults, 571
Barreto, Paulo Taborda, 11, 189
barycentric coordinates, 530
base, 277
base mesh, 233
basket-weave pattern, 257
Bateman, Alex, 11, 189, 201, 241
Bauhaus, 537
Bauhaus school, 640
belcastro, s. m., 163

Bellairs Workshop, 116, 138
bend lines, 180
bend points, 180
bend resistance, 466
bending, 389
bends mountain, 220
bends valley, 220
Bennett linkage, 150
Bern, Marshall, 4, 11, 283, 306
Between the Folds, 602
bevel Conway operator, 234
bi-3 pyramids, 22
bi-5 pyramids, 22
Biedl, T., 78
Big-Little-Big (BLB) Angle Theorem, 196
Big-Little-Big Lemma, 4
bijection, 7
bilateral symmetry, 313
binary expansions, 741
binary folds, 67
binary $n \times m$ matrix, 299
binormal, 211
biomimetic, 545
bipartite graph, 268
bipartite tournament, 300
biplanars, 275
bird and trap, 507
bird base, 319
bisection property, 215
bisector, 38, 47, 194
bistable compliant mechanisms, 409
Blintzed Frog Base, 608
block matrix, 386
boats, 518
border vertex, 87
boundary condition, 450
Boundary First (Automated Draping Method), 462
Boundary First (Manual Draping Method), 462
boundary mapping, 179
bounded-frequency set cover, 303
Bowen, L. A., 163
box pleating, 305, 346
box-pleating absorber, 347
box-pleating river, 347
boxes, 77
breadth-first, 82
Bricard linkage, 150
British Origami Society, 24
bronze, 601
bronze castings, 297
Brunton, James, 735
buckling, 375, 402, 637
buckling strength, 382
Burago, Ju. D., 202
burlap, 465
Burnside's Lemma, 25
business card origami, 693
business cards, 627, 693, 731
by-chance, 643
by-code, 634
by-hand, 643
CAD, 231
CAD drawing, 623
CAD modeling, 572
CAD/CAM data, 236
California, 297
Cannella, F., 171
capabilities, 36
Capilla en Valleaceron, 480
carboxymethylcellulose sodium (CMCS), 552
cardboard, 109, 131, 165, 426, 439, 493
cardboard boxes, 109
cardinality, 300
Cartesian coordinate system, 58
Cartesian equation, 50
carton motion sequence, 164
cast concrete, 238
Cauchy's theorem, 109
caustics, 558
central, 52
central polygon, 121, 194
centroid normal, 110
centroids, 648
ceramic, 604
ceramic clay, 601
ceramic mold, 604
chamfer Conway operator, 234
Chan, Grace, 634
chaos, 736
chaos theory, 735
chaotic, 347
chaotic sequences, 738
Chapman-Bell, P., 571
characteristic aspect ratio, 314
characteristic length, 314
Chatani, Masahiro, 537
Chefchis, Damon, 609
Chen, Elsa, 633
Chevron, 501
child's model, 265
chirality, 632
chromium, 473
circle, 719
circle packing, 177
circle-river method, 305, 513
circuit boards, 159
circumcenter, 52
circumradius, 51
clearance holes, 154
cloister heads, 571
cloister vaults, 571
closed chain system, 164
closed walk, 90
closed-loop linkage, 165
closed-loop mechanisms, 140
CMY, Inc., 609
cognitive apprenticeship, 735
collagen, 545
collapse deformation, 402
collapsible maps/atlases, 201
collapsing, 275
collide, 111
collision avoidance, 170
collision-detection library, 506
collisions, 92, 112, 204
color, 13
color changes, 177
color class, 23
color symmetry, 11
color symmetry theory, 11
colorings, 21
Columbus Cube, 689, 728
combinatorial optimization, 302
combinatorics of flat origami, 3
commutativity, 103
comparison view, 660
compass, 36
compass and straightedge, 45
compatibility matrix, 411
complete reflection paths, 90
complex conjugation, 37, 45
complex fold, 85
complexity, 301
compliant mechanisms, 139
composite map, 163
composite sheet, 268
composition and decomposition, 677
compression resistance, 466
compressive, 378
compressive modulus, 380
compressive properties, 371
compressive strengths, 376
compressive testing, 372
computation time, 64
computational biology, 164
computational design, 241
computational origami, 55, 640
computer algebra, 53
computer numerically controlled (CNC)
machining, 606
computer search, 22
concave side, 211
concave tree curve, 342
conchoid of Nicomedes, 41
conclusion, 61
concrete, 541
concrete shells, 523
conductive, 614
conductive ink, 616
cone free, 214
cone ruling, 213
cone sections, 594
configuration control points, 164
configuration space, 131, 502
congruence, 699, 713
conics, 36
conjunction, 61
connected components, 277
connection segments, 449
connectivity matrix, 164
Connelly, Robert, 109
consecutive equal angles, 9
Consorzio La Venaria Reale, 581
constant stiffness, 387
constrained optimization problem, 525
constrained optimizations, 331
constraint solving problem, 55
constraints, 56, 331, 419
constructible numbers, 35
constructible points, 35
construction, 37
construction axiom, 35
construction of points with points, 39
constructors, 342
contact segments, 448
continued fraction, 241
continuous blooming, 109
contractive, 178
convergent, 244
convex mesh, 231
convex polyhedron, 77
convex prismatoids, 287
convex side, 211
Conway surface, 329
Conway, John H., 329
copper, 616
core stresses, 421
correct geometric terminology, 671
cosmetics, 163
cosmological simulation, 557
Cosmosphere, 357
counting, 3
Crane, 663
crash analysis, 397
crash energy absorption, 397
crash load, 406
Cray XC30, 82
crease, 212
Crease Bridge, 423
crease pattern, $3,11,85,98,212,241,339$, 684
crease pattern optimization, 533
crease point, 212
critical, 178
critical value, 136
crossing-diagonals method, 67
crossover gadget, 283
crowdsource, 626
crystallographic flat origami, 11
crystallographic group, 11
crystallographic origamis, 189
cube, 158
cubic Bezier curves, 234
cubic equations, 45
cubic roots, 37,45
cuboctahedral, 21
cuboctahedron, 689
cubohemioctahedron, 696
cuboidal type, 165
curvature, 211, 502, 575
curved, 211
curved creases, 209
curved folds, 373
curved polyhedron, 233
curved shell structures, 422
curved shells, 422
curved surfaces, 231
curved web, 443
curved-foldable, 231
curved-folded geometry, 234
curved-folded sheet metal, 601
curves, $35,58,335$
cut length, 112
cut patterns, 233
cutaways, 444
cuts, 537, 608, 653
cutting, 109
cycle, 295
cyclic, 49
cyclic origami number, 53
cyclic polygon, 46
Cyclic Polygon Axioms, 46
cyclotomic field, 50
cylinders, 571
cylindrical algebraic decomposition, 61
cylindrical Miura-ori, 105
cylindrical surfaces, 98
Cypress Waters, 609
cystamine dichloride (CYS), 552
dart, 329
decagons, 22
decomposition, 14
deformation, 382
degree, 21
degree-4 vertex, 4, 119
degrees of freedom (DOFs), 386, 502
Deleuze, Gilles, 635
Demaine, Erik D., 116, 138, 164, 194, 306, 640
Demaine, Martin, 77, 640
dense, 307
dents, 335
deployable, 490
deployable structures, 119, 150, 448
depth-first, 82
derived surface, 233
design algorithms, 513
"Design and the Elastic Mind", 640
design methods, 479
design optimization, 389
Designer Origami, 637
Deutsche Forschungsgemeinschaft, 534
developability, 533
developability constraints, 232
developable folded shell structure, 459
developable surfaces, 213, 231, 459, 479, 571
developments, 79
DFW airport, 610
diagrid method, 454
diaminobutane (DAB), 552
Diaz, Alejandro R., 409
Digital Baroque, 635
digital enlargement, 606
digitally produced geometry, 232
dihedral angle, 48, 98, 119, 132
Diophantine equation, 307
direct investment casting, 604
directed edges, 300
directed graph, 153, 300
directional cosines, 386
directrices, 47
disconnected, 110
discovery through experimentation, 670
discrete optimization, 293
discretized mesh, 235
disequalities, 61
disk packing, 306
disk-packing method, 109
display stands, 159
dissection, 692
distance condition, 339
distinct, 80
divergent series, 632
divide-and-conquer, 334
dollar bills, 272
dot products, 113, 135
double curved synclastic surface, 97
double flip, 201
double packable solid, 79
double pleat, 191
double-leaf partition, 433
doubly periodic, 310
"drafting", 604
drill books, 164
Drop Beam, 422
dual graph, 190
dual graph vertices, 197
dual tiling, 12
duality, 30, 102
Dubey, V. N., 164
dynamic analysis software LS-DYNA, 397
eastern type, 573
edge angle, 422
edge colorings, 22
edge molecules, 331
edge transitive, 21
edge-weighted tree graphs, 305
Edison, Christine, 731
education, 679
educational, 632
efficiency, 331
EFRI, 138
EFRI-ODISSEI, 9, 117, 130, 138, 554
eggbox tessellation, 593
Egyptian pyramid, 681
eigenmodes, 409
eigenvalue analyses, 413
eigenvalues, 389
"eight-sided square", 608
Eisenstein's rule, 48
Ela, Jed, 272
elastic material, 138
elastic properties, 409
elastic torque, 472
elastomer, 504
Elastomeric Origami, 638
electroforming, 614
element stiffness matrices, 386
Elias, Neal, 305
embroidery machine, 613
emergent mechanisms, 139
enclosed sandwich lemma, 205
EnDURO ICE130 paper, 375
energies of different eigenmodes, 417
Engel, Peter, 640
Enthought Tool Suite, 525
Eos, 55
Eos functions, 58
epoxy, 552
Epps, Gregory, 640
EPSRC, 171
equalities, 61
equilateral triangle, 131, 329
equilibrium matrix, 411
equivalent, 38
equivalent mechanism, 163
equivalent revolute joint, 144
equivalent-mechanism, 139
error estimation, 694
Eternit, 466
Euclid, 38
Euclidean compass, 36
Euclidean distance, 177, 505
Euclidean geometry, 704
Euclidean planar geometry, 700
Euler characteristic, 104
Euler, Leonhard, 655
Eulerian position, 558
Eulerian space, 557

European Commission, 146
exclusive-or arithmetic, 168
expansive, 178
Exploratory Research Space at RWTH
Aachen, 498
extension, 37
extra-curricular mathematics curriculum, 724
extrusion, 335
extrusion origami, 275
extrusion vector, 235
eyeglass telescope lens, 201
fabric tape, 155
fabricated steel, 601
fabrication, 601
fabrication methods, 462
face, 212
face sheets, 372
face stresses, 421
facet flipping, 132
facets, 152
factor, 47
factory class, 527
failure mode, 382
feedback arc set, 300
feedback arc set problem, 300
feedback arc set problem in bipartite tournaments, 293
Felix, Rene P., 11
fiber bundles, 460
fiber cement, 460
Fibonacci numbers, 241
Fibonacci tornados, 241
field, 37
field operations, 47
figure of merit, 307, 331
filament, 560
finite element (FE) methods, 371
finite sequence, 737
First Night Worcester, 626
first-order language, 56
fish base, 321
Five Intersecting Edge-dented Tetrahedra, 26
Five Intersecting Nonconvex Hexahedra, 26
Five Intersecting Tetrahedra, 21
flagstone facets, 190
flagstone tessellations, 190
flagstone vertex construction, 194
flanges, 335
flapping bird, 150
flaps, 111
Flash, 517
flat folds, 3
flat origami, 11, 86
flat-foldability, 307, 533
flat-foldable, 3, 86, 119, 163
flat-foldable crease pattern, 12
flat-foldable origami pattern, 439
flatten, 109
Flickr, 293
Flight of Folds, 607
Flower Tower, 730
foci, 47
fold angles, 98
fold bend modeling, 413
fold core structures, 107
fold elements, 413
fold operation, 56
fold-and-cut problem, 177, 307
fold-angle multiplier, 12, 149
foldability, 638
foldable furniture, 109
foldable metals, 601
foldable structures, 139, 461, 490
foldcores, 421
folded core, 97, 371
folded crease, 212
folded face, 212
folded form, 98, 190
folded piece of paper, 212
folded plate structures, 635
folded sandwich structures (FSSs), 422
folded semicreases, 212
folded semivertices, 212
folded stripes, 447
folded vertex, 212
folded-plate, 479
folded-plate elements, 523
folded-plate structures, 523
folding, 479
folding angles, 132
folding direction, 515
folding grid structure, 444
Folding in Architecture, 635
Folding Planes, 606
folding sequence, 85
Folds of Life, 675
force-induced folding, 459
foreshortening, 584
four intersecting bi-3-pyramids without base edges, 27
four-layer-thick weave, 270
fractal, 339, 626, 723
fraction, 69
fractional dimension, 632
Fragile Beasts 2014 workshop, 238
frame elements, 385
frame model, 394, 418
Free Form, 635
free stripes, 456
Freeform Origami, 105, 492, 640
Frenet-Serret formulas, 212
Freudenthal, Hans, 740
friction, 459

Fröbel (Froebel), Friedrich Wilhelm
August, 665, 675
frusta, 276
Fu, Te Jui, 602
Fuchi, Kazuko, 409
Fuchs-Tabachnikov relation, 217
Fujimoto technique, 740
Fujimoto's iterative approximation, 727
Fujimoto's method, 67, 735
Fujimoto, Shuzo, 11, 189, 201, 257, 538, 724
fundamental crease pattern, 102
fundamental region, 13, 102
Fuse, Tomoko, 689, 730
Gabriella \& Paul Rosenbaum Foundation, 11, 207
gadgets, 177, 229
Galois groups, 46
Galois Theory, 46
gaps, 156
Gardiner, Matthew, 613
Gardner, Martin, 202, 329
Garibi, Illan, 613
Gaskill, Tyson, 634
Gaussian curvature, 234
general bisection property, 216
general optimization framework, 533
generalized bird base (GBB), 319
generalized fish bases, 320
generating translations, 102
generating unit, 12
generators, 13
generic, 9
generic periodic crease patterns, 104
genetic algorithm, 466
Genuine Origami, 657
geodesic distance, 331
geodesic distance criterion, 332
geodesic spheres, 357
geodesic triangulation, 203
GeoGebra, 694
GeoGebra 5, 540
geometric equivalence, 35
geometric instruments, 35
geometric legitimacy, 51
geometric process, 35
geometrically equivalent, 38
geometry curriculum, 669
Geosphere, 358
Gjerde, Eric, 189, 202
glass blowers, 272
glass fibers, 523
glass-fiber reinforced plastic sheet, 427
global conditions, 4
global flat-foldability, 4, 12, 86
global reference frame, 386
global rigid foldability, 121
globally intersect, 86, 98
glue, 165
goal, 61
Golan, Miri, 679
golden ratio, 241, 728
Gordon and Betty Moore Foundation, 557
grafting, 275
graph paper, 306
graph rewriting, 92
graph rewriting problem, 56
graph theory, 5, 139, 165, 300
graph-coloring, 3
graphic statics, 481
graphical visualizer, 55
Grasshopper, 483, 640
gravitational torque, 472
gravity, 459
great circles, 357
grid based, 189
gridded paper, 253
Gröbner basis, 61
groin vaults, 571
ground set, 302
ground structure approach, 409
group $A_{5}, 23$
gurai-ori, 54
gusset molecule, 306
gymnasium for reasoning, 680
Haga's method, 72
Haga's theorem, 67
Hagopian, Matt, 634
hakai poetry, 658
half cube, 629
half-angle formula, 655
half-angle tangents, 121
Han, L., 164
hanging cloth reversed, 531
hara-kiri, 659
Harrison, Joycelyn, 394
Harunobu, Suzuki, 659
Hayes, Barry, 4, 11, 177, 272, 283, 306
heptagons, 55
hereditary connectivity, 164
hereditary manipulation, 167
Hero's Horse, 610
hex pleting, 306
hexagonal cells, 448
hexagonal lattice, 306
hexagonal network, 447
hexagonal star, 339
hexagons, 22
hexahedra, 22
Hidetoshi, Fukagawa, 654
Himuze, Akio, 241
hinge, 131, 444, 545, 550
hinge creases, 305
hinge line set, 310
hinge-based model, 105
hinged tiling method, 12
Hisarligil, Hakan, 697
HOAI, 490
Hoberman, Chuck, 158
hole, 100
hole problem, 177
homogeneous matrix, 98
Honda's fox, 608
honeycomb, 371
honeycomb cores, 447
honeycomb panel, 401, 431
Hope and Despair, 665
Horiyama, Takashi, 82
Hörn Bridge, 489
Hosoya, Haruo, 698
"hot pad", 272
House, 276
House on Turtle, 276
How to Fold It, 721
http://mars.wne.edu/~thull/rigidtet/ tet.html, 115
http://www.i-eos.org:8080/eos/tutorial, 56
http://www.math.ryukoku.ac.jp/~wwwyg/sushida/sushida_en.html, 242
hub, 538
Hudson, Andrew, 293
Huffman family, 230
Huffman's base, 140
Huffman, David A., 120, 202
Hull, Thomas C., 163, 727
Hulme, Max, 305
Husimi, K., 319
Huzita basic fold operations, 56
Huzita ori, 57
Huzita, H., 35, 55
Huzita-Justin axioms, 45
hydrogels, 545
hyper-cones, 181
hyper-redundant mechanism, 140
hyperbolas, 321
Hyperbolic Limit (opus 600), 583
hyperbolic paraboloid, 456
IBM, 501
icosahedral, 358
icosahedral symmetry, 361
icosidodecahedral, 21
icosidodecahedral rotational symmetry, 23
icosidodecahedral symmetry, 23
identity element, 13
identity transformation, 25
Igarashi, Takeo, 232
image, 12
imidazole buffer, 553
imperfections, 371
inchworm robots, 139
incidence relations, 58
incident cone ruling, 109
independent set, 301
indeterminate bar frame, 417
industrial automation, 163
inelastic deformation, 387
inequalities, 61
infinite, 37
infinite bouncing, 306
infinite perimeter, 339
infinite plane, 98
infinite sequences, 723
infinite weave, 265
infinitesimal folding, 101
infinitesimal folding motion, 101
injective, 190
injectivity (non-self-intersection), 307
Inscribed Angle Theorem, 245
inscribed circle, 321
insert member, 397
inside-out, 518
"inside-out" style, 602
instructions, 85
integrated closed-loop modules, 140
Intel, 501
interaction view, 660
interactive exploration system, 518
interactive system, 513
interdisciplinary adapted design process, 490
interior dual graph, 198
interior orthogonal dual graph, 198
interlacing, 265
intermediary states, 92
internal vertices, 87
intersecting conics, 47
intersection, 515
intersection axiom, 35
invariant, 13
inverse relationship, 739
inversions, 229
Iran's Revolution, 723
iron filings, 471
irregular tilings, 189
irrotational collapse, 561
irrotational regular-tetrahedral collapse, 563
Ising spin models, 9
Isler, Heinz, 531
iso, 120
iso-era, 19
isolating barriers, 334
isometric, 3, 212
isometric maps, 178
isometric transformation, 98
isometry, 177, 335
isosceles trapezoid, 63, 125
isosceles trapezoid twists, 124
isosceles triangles, 51, 63

Israeli Ministry of Education, 66
iteration, 339, 738
iterative optimization-based method, 232
IUCr notation, 13
Iwamoto, Lisa, 479
Jackson, Paul, 293, 693, 728
Jacobian matrix, 143, 411
Japan Science and Technology Agency, 117, 138
Japan Society for the Promotion of Science Fellowship, 409
Japanese garden, 658
John Templeton Foundation, 557
Johnson-Zalgaller solids, 82
joint plane, 152
Joint Research Center for Science and Technology of Ryukoku University, 250
joints, 150, 502
Jones, J. Rees, 163
Joo, Takeno, 658
Joy of Origami, 657
JSPS Kakenhi, 250
JST Presto, 209
judgement fold, 514
Justin, Jacques, 35, 319
Justin-zuru, 319
kabuki, 659
Kanadehon Chūshingura, 659
karesansui-style garden, 658
Katahiro, Tatebe, 655
Kato, J., 164
Kawamura, Miyuki, 693
Kawasaki's Theorem, 12, 87, 112, 195, 560
Kawasaki, Toshikazu, 11, 189
Kawasaki-3D, 563
Kawumara, Kenneth, 693
Kazu, Watanabe, 649
Kefukigusa, 658
Kindergarten Origametria (KO) program (KOP), 669
kindergarten teachers (KTs), 669
kinematic chain, 141
kinematic mechanisms, 164
kinematic model, 137
kinematic origami, 150
kinematic pairs, 139
kinematic simulation, 105
kinematic structures, 139
kinematics, 102, 113, 150, 528
kinematics roadmap, 164
King Abdullah University of Science and
Technology, 501
kink, 212
kinked, 209
Kirigami, 537
kirigami, 139, 537
kite, 329
kite shape, 319
kite twists, 127
kite-dart tiling, 329
knot fold construction, 55
knot folds, 55
Koch's snowflake curve, 339
Koshiro, Hatori, 656
kozo, 297
Kressler, Joyce, 626
Kronecker-Weber, 50
Ku, Jason S., 194
Kunihiko, Kasahara, 657
Kutzbach criterion, 150
LaFosse, Michael G., 276
Lagrangian fluid-dynamics framework, 557
Lagrangian position, 557
Lagrangian space, 557
Lam, Tung, 87
laminar, 217
landmark, 513
Lang's nomenclature, 26
Lang, Robert J., 21, 35, 87, 120, 188, 201, 241, 515, 656, 689
Lantern Festival, 697
laser-scoring, 375
Latin cross, 507
LaValle, S. M., 164
LaVin, Anne, 633
Lawson, Denver, 24
layer ordering, 177
layer ordering graph, 153
LED lamp, 693
Lee, Josie, 696
Legendre-Cauchy, 48
lens tessellation, 209
Lie groups, 139
Lieb, 8
lightweight structures, 397
Lill's method, 46
Limaçon of Pascal, 41
limits, 732
Lin, P., 164
line and angle bisection, 700
line contact, 373
linear algebra, 587
linear folded parallel stripes, 453
linear programming, 301
linear-elastic structural model, 524
lines of force, 191
linkage folding, 164
linkage structures, 477
links, 139, 150, 163
Lion, 663
"Little Turtle", 493
Liu, H., 164
liver, 546
liver lobules, 546
local conditions, 4
local flat-foldability, 86
locally compliant folding, 386
locally flat-foldable crease patterns, 11
lock, 294
locked, 131
locked rigid origami, 131
locked state, 132
locking mechanism, 265
"locking" relations, 268
Lodz University of Technology, 239
logarithms, 632
logistic map, 735
lost wax process, 602
LP-rounding algorithm, 303
Lu, L., 164
Lubiw, A., 77, 306
lunettes, 571
Luth, Gregory P. and Associates, 608
Lynn, Greg, 479
M3V twist, 149
Mac OSX, 63
Machine Project gallery, 634
Madridejos, Sol, 480
Maehara, H., 202
Maekawa's Theorem, 4, 87, 195, 204
Maekawa, Jun, 316, 319, 657
Maekawa-zuru, 319
magnetic anisotropic torque, 472
magnetic field, 471
Magritte, René, 661
maieutic attitude, 684
major creases, 120, 374
Mancini, Francesco, 730
manifold, 167
manufacturing, 371
manufacturing data, 232
manufacturing imperfections, 377
manufacturing information, 236
map, 35
marked ruler, 45
Masao, Okamura, 657
Mason, M. T., 164, 503
mass, 564
mass-air-mass resonance frequency, 433
Master Peace, 601
masu box, 682
matching edge colorings, 25
Material First, 462
Material First Method, 468
Mathematica, 53, 56, 110, 137, 196, 315, $330,563,584$
mathematical concepts, 686
mathematics, 679
mathematics education, 699
mating conditions, 271
MATLAB, 186, 392
matrix operation model, 166
maximal module, 301
Maxwell, James Clerk, 190
Maya N-Cloth, 464
Maze Folding, 186, 201
McHarg, Hugh, 634
McLellan, Abigail Crawford, 207
McNeel Rhinoceros 3D, 483
mechanical, 371
mechanical flexibility, 104
mechanical performance, 372
mechanical properties, 372
mechanism, 139
medials (angle bisectors), 310
median binary method, 67
medians, 68
mediatrix, 46
Meguro, Toshiyuki, 305
membrane folds method, 151
Meng Zong, 659
Menger Sponge, 625
Menger, Karl, 626
merging, 206
mesh, 385
MeshLab, 576
meta-materials, $9,117,138,422$
metal, 97, 109, 131, 613
metal sculpture, 612
metalized folding textile (MFT), 615
metrically flat-foldable, 189, 307
Micro Electro Mechanical Systems
(MEMS), 636
micro-buckling, 378
micro-robotic systems, 139
MicroChem Corp., 552
micromachining, 471
middle school students, 724
Mihara, Linda Tomoko, 602
mild steel, 423
minimal polynomial, 53
minimize, 110
minimum feature size, 267
minimum flap width, 308
minor creases, 120, 375
mirror symmetry, 313, 677
mirror-symmetric origami graph paper, 314
Mirzakhani, Maryam, 724
Mitani, Jun, 87, 232
mitate, 513
Mitate of Meng Zong, 659
Mitchell, David, 689, 728
Miura fold, 547
Miura map fold, 7
Miura pattern, 640
Miura tessellations, 97
Miura, Koryo, 422, 639
Miura-ori, 7, 107, 158, 201, 373, 391, 409, 440, 491, 551, 584

Miura-ori cell, 411
Miura-ori fold pattern, 445
Miyake, Issey, 636
Miyamoto, Yoshinobu, 637
modal analysis, 389
modal energy levels, 389
modified truss model, 385
modular, 422, 489, 546, 625, 680, 728
modular origami, 320, 357
modular partition, 301
modularization, 523
modulars, 177
module, 301, 358
modulo-2 arithmetic, 168
modulus, 376
Mohr-Mascheroni, 39
Moksa, 186
mold-making, 604
molecules, 177, 259, 331
Momotani, Yoshihide, 11, 189
Money to Burn, 272
Moneywallet, 272
Montessori system, 670
monumental, 601
Mooser, Emanuel, 305
Moriwaki house, 664
morphing architecture, 159
morphing sandwich structures (MSSs), 422
morphing volumes, 157
Mosely, Jeannine, 693
Mōsō, 659
motion feasibility, 502
motion screws, 141
motion-planning, 164
motion-planning algorithm, 502
Motomu, Sakuma, 656
Mount Hōrai, 658
Mount Meru, 658
Mount Penglai, 658
Mount Shumi, 658
mountain fold, 119, 294
mountains, 98
MSC Nastran, 432
multi-axial bases, 177
multi-stable structures, 138
multi-vertex crease pattern, 89
multi-vertex origami, 89
multivariate polynomial equations, 56
multiweave, 302
Museum of Modern Art, 640
Museum of Saxon Folk Art, 664
Musmeci, Sergio, 480
MV-assignment, 3, 11
MySQL, 517

Nagasaki Naval Training Center, 647

National Group for Algebraic and Geometric Structures and Their Applications, 571, 679
National Organization for Development of Exceptional Talents, 723
National Science Foundation (NSF), 9, 117, $130,149,409,501,554$
National Science Foundation of China, 146
Natural Sciences and Engineering Research Council of Canada, 117
ND-Miura morphing shell geometry, 427
neck-wing interchangeability, 321
nejiri-ori, 538
neusis, 41
neusis construction, 45
newsprint, 272
Newton-Raphson method, 529
nickel, 472
Nishiwaki, Masami, 735
no twist, 296
node, 562
nomial kernel, 301
non-crossing embedding, 190
non-dense contour condition, 309
non-developable (ND) Miura pattern, 422
non-perfect matchings, 23
noncontractive, 178
nonconvex polygons, 82
noncritical, 178
nonexpansive, 177
nonflat manifold, 560
noninteger dimension, 339
nonisotropic core materials, 372
nonlinearity, 525
nonperiodic, 19
nonplanar meshes, 232
normal, 211
normal incidence mass law, 433
noshi, 665
not-all-equal clauses, 177
NP-complete, 293
NP-hard, 4, 12, 86, 303, 331
NP-hardness reduction, 177
NSF Expedition, 117, 138, 188, 207, 209, 265
NSF Graduate Fellowship, 138
NSF Graduate Research Fellowship, 409, 501
NSF ODISSEI, 188, 207, 209, 265
number theory, 45, 735
numerical simulation, 104
O'Rourke, J., 77
Oberman, Dr. John, 670
oblique coordinate system, 358
obstacle avoidance, 170
obstacle space, 502
octagonal tato, 48
octants, 629
ODISSEI, 138
offset joint method, 150
offset joint plane, 156
offset panel technique, 149
On-Line Encyclopedia of Integer Sequences, 8
"One Crease", 665
one degree of freedom, 110
one-degree-of-freedom folding motion, 242
one-fold axioms, 35
one-layer, 86
one-sheet, 276
one-straight-cut problem, 306
one-to-one, 601
online origami model database, 517
open linear folded stripes, 449
open question, 110
open type, 165
operative structural diagram, 483
optimality, 289
optimization, $64,293,389,409,524$
optimization method RSM, 400
optimization problems, 524, 680
Oracle/Sun, 501
orbit, 12, 21
orbit stabilizer theorem, 16
order, 277
orderings, 64
Oribotics, 639
Oricrete, 523
orientation, 213
orientation of fibers, 460
Origametria, 679
origami architecture, 537
origami as mathematical puzzle, 656
origami diagrams, 85
origami folding axioms, 45
origami geometry, 55
origami graph paper, 306
origami line graph, 5
origami numbers, 37,45
origami optimization, 411
Origami Powers of Ten, 637
origami sculptures, 601
Origami Simulation, 87
Origami Simulator, 87
origami stent graft, 201
Origami Tanteidan Newsletter, 657
origami tape, 57
origami tessellation, $6,371,388,562$
origami tissue, 546
origami towers, 241
origami twists, 119
origami-inspired mechanism, 139
"Origami-Installation", 491
origamist, 61
Origamizer, 329, 640

Origamizer algorithm, 199, 275
ORIPA, 87
orisue, 682
orizuru, 319
orizuru deformation theory, 319
Orndorff, Robert, 705
orthogonal creases, 87
orthogonal polygons, 78
Oru Oru, 657
osc, 306
osc-dp, 306
osc-ss, 306
osculating plane, 209
out neighbors, 301
over-constrained mechanisms, 150
overlapping, 284
p2 tiling, 77
packaging, 159, 163
Painted Pony, 602
Palmer, Chris K., 11, 189, 202, 613, 723
pandas, 518
panel bending modeling, 412
PanelingTools, 642
paper bags, 109
paper color, 297
papierfalten, 675
parabolas, 47
parallel lemma, 718
parallel lines, 716
parallel valley fold, 294
parallelo-hexagon, 266
parallelogram transformations, 537
parallelogram twist, 125
parallelograms, 7, 13, 70, 124, 587, 699
parametric variations, 234
parastichy pairs, 242
Parker, Ben, 207
partition, 13, 183
partition polygons, 183
parylene, 476, 545
path, 99
path isometry, 275
Pedreschi, Remo, 461
Pegasus, 607
penguins, 518
Penrose rhombus tiling, 336
Penrose tilings, 329
Penrose, Roger, 329
Pentagonal-knot, 58
pentagons, 22
Pentasia, 329
Pepakura Designer, 576
perfect bird base (PBB), 319
perfect center, 321
perfect hinges, 385
perfumery, 163
perimeter, 177
periodic boundary conditions, 388
periodic crease pattern, 102
periodic symmetry, 104
permalloy, 472
perpendicular, 47, 716
perpendicular lemma, 717
perpendicular lines, 700
perspective, 583
phosphate buffer, 552
PHP, 517
phyllotactic patterns, 241
phyllotaxis, 241
Piaget, J., 670
piano hinges, 444
piece of paper, 212
piecewise- $C^{2}, 212$
Piker, Daniel, 640
planar, 98
planar curve, 571
planar curved folds, 234
planar dual, 7
planar graph, 3, 212
planar neighborhood, 213
planar patches, 209
planar plate structures, 422
planar polygonal surfaces, 234
planar-quad (PQ) meshes, 232
planarization, 234
planarized polynedra, 232
plane crystallographic group, 12
plastic, 109
Plasticine, 670
Plasticity Theory, 483
Plate House, 422
Platonic, 329
Platonic solids, 689
pleat, 48, 204, 268, 293
pleat folds, 111
pleat pair, 278
pleat rearrangement, 293
pleat rearrangement minimization, 300
pleat splitting, 282
pleat tessellation, 294
pleat tessellation matrix, 299
pleat vectors, 191
pleated fabrics, 201
pleating, 613
Plücker ray coordinates, 143
point mapping, 63
Poisson effects, 417
poly(aspartic acid) (PAA), 549
poly(poly sebacate) (PPS), 549
polycaprolactone, 549
polycubes, 275
polygon, 179
polygon packing, 305
polygonal rivers, 306
polyhedra, 164, 329
polyhedral approximations, 276
polyhedral origami number, 54
polyhedral surfaces, 275
polyhedron, 233
polymer materials, 3
polynomial equalities, 62
polynomial equations, 58
polynomial-time, 177
polypolyhedra, 21
polysuccinimide (PSI), 549
pop-up stairs, 725
pop-up techniques, 537
Port Sunlight, 171
positive right frustum algorithm, 278
Post-Quinn, Alasdair, 633
potential energy, 530
Powers of Ten, 637
pre-geometry, 699
predicates, 61
premise, 61
Primak, Peg, 633
primal-dual algorithm, 303
primary school, 679
principal subject, 659
principle curvature frame, 221
prismatoids, 275
prismoid subdivision, 288
prismoid tower, 279
prismoids, 276
probabilistic method, 164
problem, 38
procedural methods, 232
Project Origami, 721
project-based learning model, 724
proper folding, 212
property attributes, 527
prover, 55
pseudo-inverse, 145
punctured plane, 243
pureland origami, 86
pureland tessellation, 293
pyramid, 51
Pythagorean closure, 36
Pythagorean origami, 36
Pythagorean Theorem, 652, 699
Python, 525
quadratic equation, 47,528
quadrilateral containing an inscribed circle (QIC), 319
quadrilateral twists, 123
quadrisecting, 112
quality control, 633
quantifier-free equalities, 62
quartic surface, 235
quotient graph, 302
radial sweep, 42
rainbow colorings, 23

Rakugo, 658
random flat-foldable crease pattern, 9
random generation, 515
random SMA configurations, 504
randomized algorithms, 79
range of motion, 150
rank, 72
Rapidly-exploring Random Tree, 502
rational, 308
rationality, 312
Razani, Ramin, 537
reaction forces, 139
reality, 559
rearranged pleats, 302
reciprocal figure, 190
reconfigurable mechanisms, 97
rectangle, 70
rectangular grids, 294
rectangular tile, 140
rectangular twist, 124
recursive algorithms, 725
recursive functions, 732
reductio ad absurdum, 52
reflection, 194
reflection creases, 88
reflection path, 90
regular heptagon, 46,59
regular icosahedron, 358
regular origami number, 50
regular pentagons, 55
regular polygon, 46
regular polygon axioms, 46
regular polygon twists, 127
regular tetrahedra, 82
regular tetrahedron, 110
regularity, 61
Reiss, Sally, 724
relative rigid folding, 98
relatively prime, 308
Renzulli, Joseph, 724
Resch tessellations, 97
Resch's triangulated pattern, 105
Resch, Ron, 202, 231, 640
residues, 276
resin impregnation, 427
resistant-torque vector, 144
reverse Cuthill-McKee ordering, 388
reversible folding, 476
revolute joints, 163
RFEM, 533
"Rheinhafen-Bridge", 492
Rhino, 640
Rhino Shell, 422
Rhombonia, 336
rhombus, 124
ridge creases, 305
right coset, 15
right regular pyramid, 48
rigid flattening, 109
rigid foldability, 104, 119
rigid folding, 98
rigid motions, 265
rigid origami, $97,109,131,385,428,502$
rigid origami model, 92
rigid origami simulator, 105, 117
rigid origami software, 619
rigid panels, 131
rigid transformations, 103
rigid-foldable, 98,440
rigid-foldable origami, 409
rigid-panel origami, 149
rigidity, 109
rigidity extender, 503
Rigidity Theorem, 48
rigidly foldable origami, 150
rivers, 307
Robofold, 640
robot operation, 164
robotic fingers, 164
robotic origami, 164
robotics, 503
Rocks Cluster, 507
Rodrigues rotation formula, 247
Rohm, Fred, 608
Romberg's method, 655
Ron Resch tessellation, 199
roof, 277
roots facet, 99
roots of unity, 50
ropes, 493
rotational axes, 158
Rotational Erection System (RES), 537
rotational symmetry, 241, 533, 538, 578
rotational symmetry group, 21
Royal College of Art, 614
Ruffini-Horner scheme, 47
rule segments, 209
ruled hypersurface, 182
ruler, 36, 67
ruling lines, 335
rulings, 210
Runge-Kutta algorithm, 164
Ryuko Temple, 656
Ryukoku University Science and
Technology Fund, 250
Saijo-ryu, 651
Sales, Reamar Eileen, 11
Sancho, Juan Carlos, 480
sandwich, 371,421
sandwich panel, 97, 107, 447
sandwich panel cores, 119
Sangaku, 648
Sanpo Min no Kagen, 654
Saraf, Shubhangi, 202
Satoshi, Kamiya, 663
scale, 637
scalene trapezoid twists, 125
SCARA robot arm, 164
Schamp, Ray, 619
Schenck-Trebel 250 kN universal testing machine, 376
"science of matter", 636
screw algebra, 140
screw axis, 104
screw motion, 103
screw theory, 102, 139
Sea Turtle, 276
sector angle, 119
sectors, 283
Seiji, Nishikawa, 657
self-actuated folding, 547
self-assembly, 473
self-dual, 25
self-folding, 117, 138
self-folding membranes, 119
self-folding polymer, 9
self-folding robots, 503
self-intersections, 152, 177, 204, 560
self-locking, 424
self-organized folding, 461
self-organized folds, 459
self-similarity, 339
semikinks, 212
Sen, no Rikyū, 658
Senbazuru Orikata, 653
sensitivity factor, 473
seppuku, 659
sequence of layers, 37
sequences, 732
sequential assembly, 475
sequential method, 454
sequential quadratic programming, 392
sequential regularization, 164
serial chains, 165
set cover, 302
shape, 677
shape magnetic anisotropy, 471
shape memory, 639
shape memory alloys (SMAs), 501
shear stretching, 409
sheet-crossing, 560
shell structures, 635
Shigeyori, Matsue, 658
Shimanuki, H., 164
Shirakawa, Toshihiro, 82
short fibers, 460
shortest-path metric, 178
shrink-rotate algorithm, 189
side length of a cube, 45
SierpinsQube, 728
signed curvature, 213
Sihl, 375
silhouette, 198
silicon, 472
silicon dioxide, 473
silicone rubber, 604
silver rectangle, 316
similar triangles, 67
simple flat twist, 90, 201
simple fold, 85
simple walk, 90
simply-foldable, 86
simulation famework, 524
single crease fold, 98
single-leaf partition, 433
single-loop 8R linkage, 142
single-parameter vertices, 150
single-sheet folding, 329
single-vertex compatibility, 99
single-vertex origami, 86
sink, 113
sink fold, 335
six axioms, 713
six intersecing bi-5-pyramids without base edges, 27
sixth Huzita-Justin axiom, 514
Skeikh Lotfollah mosque, 712
SketchUp, 540
skew-symmetric matrix, 146
skunk (opus 47), 583
"sliver facets", 305
SLSQP, 526
SMA robot, 501
Smith, Howard, 634
smooth folding, 218
smoothed skeleton, 237
smoothly folded crease, 218
Snowflake Sponge, 627
snub dodecahedron, 357
soft state, 461
software, 432, 464, 483
solar arrays, 159
solar cells, 201
solar panels, 119, 159
solids, 677
solution, 38
solver, 55
some-layers, 86
Song, G., 164
sortable, 153
sound insulation, 431
sound transmission loss, 432
sound-insulating performance, 431
source model, 152
space frames, 635
spandex, 465
spanning, 99
sparse matrix, 388
spatial perception, 686
spatial visualization, 571, 728
sphere, 357
spherical 4R linkage, 141
spherical 6R linkage, 143
spherical kinematics theory, 150
spherical linkages, 165
spherical mechanisms, 150, 164
spherical motion, 143
spherical polygonal network, 357
spiderweb, 190
spiderweb condition, 190
split end, 182
split point, 182
split point image, 182
spot-welding, 398
sprues, 604
square, 67
square grid, 293, 306, 439
square ice model, 8
square roots, 37,45
square twist, 124, 253
square twist tessellations, 5
squares, 22
squash fold, 516
SQUIRREL, 146
stabilized testing, 372
stabilizer, 16
stainless steel, 606
Stamp, K., 171
stamp-folding, 3
Stanton, Timothy, 634
Star Unfolding, 606
Stargel, David, 394
steel, 399, 601
Steiner system, 670
stella octangula, 21
Stellated Cubocta, 331
stent grafts, 119, 139
step, 85
step sequence graph, 90
sterile shrouds, 119
sterling grid, 316
stickiness, 465
stiffness, 139, 371
stiffness behavior, 409
stiffness law, 433
stiffness matrix, 392
stitches, 617
straight skeleton, 109, 177, 305, 335
straight skeleton vertex contours (SSVCs), 309
stream, 558
strengths, 371
stretch resistance, 465
stretching, 389
strips, 265, 440
structural deformation, 410
structural formula, 259
structural logic, 482
student projects, 495
subfield, 37
subgoal, 63
subgroup, 15
subsidiary subject, 659
substitution view, 660
Sugaku Hyouri Ben, 653
sunflower seeds, 241
supercomputer, 82
supertile, 271
surface modeler, 576
surface normals, 214
surface tangent planes, 209
Surfer software, 576
Sweeney, Richard, 231
symmetric coloring, 21, 23
symmetric rigid folding, 102
symmetries, 13
symmetry, $515,546,563,571,586,717$
symmetry group, 102
symmetry group action, 21
systematic origami device design, 394
Tachi, Tomohiro, 120, 188, 316, 331
Tachi-Miura polyhedron, 439
Tachi-Miura polyhedron derived grid system, 440
Taiheiki, 659
Takakazu, Seki, 647
tangent, 211
Tangram, 680
tapered panel method, 152
tea ceremonies, 658
teaching, 491
technical design, 85
tectonic distinction, 482
Teitoku, Matsunaga, 658
Tel Aviv, 669
temporary shelters, 159
ten intersecing bi-3-pyramids without base edges, 27
tensegrity structures, 635
tensile loading, 417
tensile stretching, 409
tension, 190, 293
tent map, 741
tessellate, 138
tessellating, 613
tessellating folding patterns, 617
tessellating origami patterns, 619
tessellation, 97, 119, 177, 189, 241, 265, 489, 571, 583, 621
testing, 372
tetrahedral, 21
tetrahedral grid, 480
tetramonohedron, 77
textile concrete, 459
textile fabrics, 460,523
Textile Museum, 614
textile-flock foil laminates, 622
textile-metal laminate, 613
textile-mirror foil, 622
textile-plywood, 622
textile-reinforced concrete, 523
textiles, 613
Thalian origami, 36
The Fold: Leibniz and the Baroque, 635
The Treachery of Images, 661
thick panels, 97
thickness, 358, 444, 466
thickness accommodation, 150
three-coloring, 8
three-vertex color, 7
tile, 242,267
tiling, 77, 189, 241, 267
tiling theory, 242
Tiroler Wisenschaftsfonds, 456
tissue engineering, 545
tissue scaffold, 549
TMC foundry, 606
Tohoku University Library, 656
"Tomoko Fuse" style, 636
tool, 35
topological configuration, 164
topological disks, 179, 242
topological graph, 163
topology, 482
Tornado Alley, 609
torque, 471
torque equilibrium, 143
torsion, 211, 389, 448
torsion springs, 385
torus origami, 103
Toussaint, Godfried, 116, 138
tower, 50
Toyo Sanpo, 654
traditional fish base, 321
transcendental, 54
transformable mechanisms, 479
transitivity, 268
translation, 194
translation group, 13
translational surfaces, 234
transmission loss (TL), 431
trapezoids, 700
tree, 177
tree curve, 342
tree method, 177
tree theory, 329
tree-link multilink object, 164
Treemaker, 640
triangle twists, 123,131
triangles, 22
triangular spiral multiple tiling, 243
triangulated mesh origami, 131
triangulated surface, 48
trigonometric laws, 60
tripod decomposition, 628
trisection of an arbitrary angle, 45
trivial modules, 301
Trotec Speedy 400 flatbed plotter, 375
truss, 421
truss core panel, 397, 433
truss model, 105
truss network, 190
tsuru, 601
Tsuzuki, Sakuma, 651
tube, 507
tucking, 277
tucking molecules, 329
twist angle, 122
twist direction, 254
twist fold, 293
twist tessellation, 149
twist-fold tessellations, 253
twisting squares, 293
Two Piece Pyramid Puzzle, 730
two-vertex coloring, 4
Type-A, 122
Type-B, 122
Uehara, Ryuhei, 82
ukiyo-e, 659
unassigned creased pattern, 12
unbounded quadrilaterals, 319
uncreased, 213
unfold error, 236
unfolded, 119
uniaxial base theory, 305
uniaxial bases, 305
uniaxial box pleating (UBP), 306
uniaxial hex pleating (UHP), 306
uniaxial origami design, 306
uniform thickness, 265
Unilever Research, 171
Union Station, 626
unique ruling, 213
unit, 12
unit cell, 371
unit interactions, 257
unit of measure, 680
universal molecule, 177, 329
universal molecule construction, 186
unstabilized, 372
use-case classes, 525
valid, 180
valid mapping, 180
valid mountain-valley (MV) assignments, 3
validity checker, 506
valley fold, 119
valleys, 98
van Hiele model, 679
van Hiele, P., 670
vantage point, 277
vascular architecture, 546
vascular networks, 545
VDI 2221, 490
vectors, 62
Verrill, Helena, 11
Versnick, Paula, 517
vertex arrangement, 339
vertex molecules, 331
vertex orbits, 21
vertex-uniform twists, 122
vertices, 212, 300
vibro-acoustic computation, 434
vibro-acoustic finite element method, 431
virtual equivalence, 35
virtual revolute joint, 143
visible, 224
visible surface, 277
visual band colorings, 26
visual band edge colorings, 25
void, 558
volcano unfolding, 277
volume, 691
volume-controlled manipulation, 170
Voronoi diagram, 202
Vygotsky, Lev, 670
wall, 562
wallpaper group, 102
Wang, Crystal, 9
Wang-Iverson, Patsy, 705
Wantzel, Pierre, 45
Wasan, 647
Watanabe, T., 164
Waterbomb, 140, 373
Waterbomb tessellations, 97, 105
wax, 603
wearable pieces, 622
weave, 265
weave and star method, 19
Wechsler, Allan, 633
Wechsler, Martha, 633
Wechsler, Simon, 633
wedge vectors, 191
well-behavedness, 305
Wertheim, Margaret, 627
West, Mark, 461
western type, 573
whirlpool spirals, 241
White Bison, 602
"Wien Products", 467
"Wien Products" table, 459
Wieringa Roof, 336
WisWeb, 691
Wittgenstein, Ludwig, 661
woods, 371
workshop, 518
wrinkle, 399

Yamagata University Kojirakawa Library, 656
Yao, W., 164
Yasuaki, Aida, 651
yatsushi, 659
Yoshida, Masaaki, 11
Yoshimura crease pattern, 523
Yoshimura pattern, 105, 459, 495, 640
Yoshimura tessellations, 97
Yoshimura, Yoshimaru, 640
Yoshizawa's monkey, 608
Yoshizawa, Akira, 85
Young's modulus, 549
Young's modulus $E, 386$
Yuan, Liping, 202
Zaha Hadid Architects, 238
Zalgaller, V. A., 202
zebras, 518
Zel'dovich approximation, 557
Zen garden, 658
Zeno's Paradoxes, 723
zero-extension condition, 528
zero-Gaussian curvature, 234
zero-suppressed binary decision diagrams, 82
zero-thickness, 119
zero-thickness kinematic models, 149
zero-thickness panels, 149
zig-zag, 112, 283
zig-zag path, 7
zig-zag pattern, 81

Origami ${ }^{6}$ is a unique collection of papers illustrating the connections between origami and a wide range of fields. The papers compiled in this two-part set were presented at the 6th International Meeting on Origami Science, Mathematics and Education (10-13 August 2014, Tokyo, Japan). They display the creative melding of origami (or, more broadly, folding) with fields ranging from cell biology to space exploration, from education to kinematics, from abstract mathematical laws to the artistic and aesthetics of sculptural design.

This two-part book contains papers accessible to a wide audience, including those interested in art, design, history, and education and researchers interested in the connections between origami and science, technology, engineering, and mathematics. Part 2 focuses on the connections of origami to education and more applied areas of science: engineering, physics, architecture, industrial design, and other artistic fields that go well beyond the usual folded paper.

