AMS / MAA \quad SPECTRUM

R.L. MOORE Mathematician \& Teacher

John Parker

An Imprint

K. L. Moore

Mathematician and Teacher

© 2005 by
The Educational Advancement Foundation

ISBN: 0-88385-550-X
Library of Congress Catalog Card Number: 2004113479

Current Printing (last digit): 10987654321

K. L. Moore

Mathematician and Teacher

John Parker

Published and Distributed by
The Mathematical Association of America

SPECTRUM SERIES

Published by
THE MATHEMATICAL ASSOCIATION OF AMERICA
Council on Publications
Roger Nelsen, Chair
Spectrum Editorial Board
Gerald L. Alexanderson, Editor
Robert Beezer Jeffrey L. Nunemacher
William Dunham Jean Pedersen
Michael Filaseta
Erica Flapan
Eleanor Lang Kendrick
Ellen Maycock
Russell L. Merris
J. D. Phillips, Jr.

Marvin Schaefer
Harvey J. Schmidt, Jr.
Sanford Segal
John E. Wetzel

The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, accessible expositions of old or new mathematical ideas, reprints and revisions of excellent out-of-print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathematics, mathematical amateurs, and researchers.

777 Mathematical Conversation Starters, by John dePillis
All the Math That's Fit to Print, by Keith Devlin
Carl Friedrich Gauss: Titan of Science, by G. Waldo Dunnington, with additional material by Jeremy Gray and Fritz-Egbert Dohse
The Changing Space of Geometry, edited by Chris Pritchard
Circles: A Mathematical View, by Dan Pedoe
Complex Numbers and Geometry, by Liang-shin Hahn
Cryptology, by Albrecht Beutelspacher
Five Hundred Mathematical Challenges, Edward J. Barbeau, Murray S. Klamkin, and William O. J. Moser
From Zero to Infinity, by Constance Reid
The Golden Section, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.

I Want to Be a Mathematician, by Paul R. Halmos
Journey into Geometries, by Marta Sved
JULIA: a life in mathematics, by Constance Reid
R. L. Moore: Mathematician and Teacher, by John Parker

The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics \& Its History, edited by Richard K. Guy and Robert E. Woodrow

Lure of the Integers, by Joe Roberts
Magic Tricks, Card Shuffling, and Dynamic Computer Memories: The Mathematics of the Perfect Shuffle, by S. Brent Morris
The Math Chat Book, by Frank Morgan
Mathematical Adventures for Students and Amateurs, edited by David Hayes and Tatiana Shubin. With the assistance of Gerald L. Alexanderson and Peter Ross
Mathematical Apocrypha, by Steven G. Krantz
Mathematical Carnival, by Martin Gardner
Mathematical Circles Vol I: In Mathematical Circles Quadrants I, II, III, IV, by Howard W. Eves

Mathematical Circles Vol II: Mathematical Circles Revisited and Mathematical Circles Squared, by Howard W. Eves

Mathematical Circles Vol III: Mathematical Circles Adieu and Return to Mathematical Circles, by Howard W. Eves

Mathematical Circus, by Martin Gardner
Mathematical Cranks, by Underwood Dudley
Mathematical Evolutions, edited by Abe Shenitzer and John Stillwell
Mathematical Fallacies, Flaws, and Flimflam, by Edward J. Barbeau
Mathematical Magic Show, by Martin Gardner
Mathematical Reminiscences, by Howard Eves
Mathematical Treks: From Surreal Numbers to Magic Circles, by Ivars Peterson
Mathematics: Queen and Servant of Science, by E.T. Bell
Memorabilia Mathematica, by Robert Edouard Moritz
Musings of the Masters: An Anthology of Mathematical Reflections, edited by Raymond G. Ayoub
New Mathematical Diversions, by Martin Gardner
Non-Euclidean Geometry, by H. S. M. Coxeter
Numerical Methods That Work, by Forman Acton
Numerology or What Pythagoras Wrought, by Underwood Dudley
Out of the Mouths of Mathematicians, by Rosemary Schmalz
Penrose Tiles to Trapdoor Ciphers ... and the Return of Dr. Matrix, by Martin Gardner
Polyominoes, by George Martin
Power Play, by Edward J. Barbeau
R. L. Moore: Mathematician and Teacher, by John Parker

The Random Walks of George Pólya, by Gerald L. Alexanderson
Remarkable Mathematicians, from Euler to von Neumann, by Ioan James
The Search for E. T. Bell, also known as John Taine, by Constance Reid
Shaping Space, edited by Marjorie Senechal and George Fleck
Sherlock Holmes in Babylon and Other Tales of Mathematical History, edited by Marlow Anderson, Victor Katz, and Robin Wilson
Student Research Projects in Calculus, by Marcus Cohen, Arthur Knoebel, Edward D. Gaughan, Douglas S. Kurtz, and David Pengelley
Symmetry, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.
The Trisectors, by Underwood Dudley
Twenty Years Before the Blackboard, by Michael Stueben with Diane Sandford
The Words of Mathematics, by Steven Schwartzman

Preface

Robert Lee Moore (1882-1974) was a towering figure in twentieth century mathematics, internationally recognized as founder of his own school of topology, which produced some of the most significant mathematicians in that field. The 50 students he guided to their PhDs can today claim 1,678 doctoral descendants. Many of them are still teaching courses in the style of their mentor, known universally as the Moore Method, which he devised. Its principal edicts virtually prohibit students from using textbooks during the learning process, call for only the briefest of lectures in class and demand no collaboration or conferring between classmates. ${ }^{1}$ It is in essence a Socratic method that encourages students to solve problems using their own skills of critical analysis and creativity. Moore summed it up in just eleven words: 'That student is taught the best who is told the least. ${ }^{2}$ A controversial figure, both for his style of teaching and his strong views, Moore was once described as a 'Mr. Chips with Attitude's. The attitude was an integral part of the method of his tuition to generations of students, and it also applied to the unique manner in which he discovered and developed mathematical talent among the young men and women he encountered during his 60-year teaching career. Moore was a born iconoclast, much given to challenging the status quo of academia and the conventional modes of scholarship of his time. With his snowy white hair immaculately combed, his piercing blue eyes always seeking exciting new proofs to complex problems, and

[^0]his well-muscled boxer's physique clad in dark three-piece suits and oldfashioned, hand-made, laced-up black boots, he was a commanding presence on the campus of The University of Texas for 49 years, encouraging and cajoling students in his deeply resonant voice into surpassing their own wildest dreams of mathematical attainment.

Therein lies a vital additional ingredient to his story. It will become evident in the ensuing pages that while the life of this mathematical pioneer is the central theme, there is also an unfolding drama, for such it is, that encompasses what may now be seen as the legacy of the man, and the implications of his work and teaching for mathematics and science in modern times, and for the future. Indeed, the Moore Method has, in recent times, attracted a growing revival of interest, partially because of the activities of former Moore students in places of higher learning throughout the United States of America, Europe, Asia and the Far East. In America, increased emphasis on $\mathrm{K}-12$ education starting in kindergarten through grade 12 following the 1996 review of the National Science Foundation, enshrined in its pamphlet Shaping the Future, has contributed to this resurgence.

These chapters, therefore, go beyond a mere biographical study and are intended through closer examination of his personal brand of discovery learning to suggest ideas and possibilities for rekindling mathematical interest and ability among the young. The relevancy of his work on present and future generations in this regard may be discovered by an understanding of the impact of his technique, gleaned from the contributions of those who studied with Moore, while at the same time forging an enlightening and authoritative profile of a man whose influence on the American mathematical community continued over six decades, and remains strong 25 years after his death. That insight, it will be seen, is drawn from some of the most famous mathematical names in America and Europe from the late 1890s onwards, first those who influenced Moore during his own studies, and later those highly respected scholars who had once been his students.

As to his own research, which again was world renowned, he was the first native-born American to become a Visiting Lecturer for the American Mathematical Society, of which he also became president. He published 65 papers and a book which is still referred to 70 years later and which has been the subject of literally hundreds of papers by other mathematicians around the globe. Equally fascinating as a sub-text to his story are the achievements of his students: three of them followed
him as president of the American Mathematical Society, three others became vice-president, and another served as secretary of the AMS for many years. Five served as president of the Mathematical Association of America and three, like Moore, became members of the National Academy of Sciences while most of the rest became highly respected and well published researchers and teachers in leading American universities.

Thus, apart from his personal contribution, Moore had a profound influence on American mathematics and the teaching thereof. Given that the presidencies run for two years, his former students were at the helm of one or another of the two major mathematical organizations in the US for a third of the second half of the twentieth century. In 1938 Moore had his photograph taken for his presidency of the AMS and the photographer suggested that he might airbrush from the print a wart on his subject's face. 'Warts and all,' replied Moore. And thus, in this account, I have followed the same guidance. This then is the extraordinary story of R.L. Moore and how he developed the Moore Method, which was bigger than the man (with all his faults and idiosyncrasies), how it equipped its beneficiaries to excel in fields of excellence other than mathematics, and how it has been modified to meet the educational requirements of today. John W. Green, Principal Research Biostatistician at Dupont, says: 'I attribute whatever measure of success I've had as an industrial statistician to the training and experience that I received working under R.L. Moore. There certainly have been other influences in my life, but what I gained and regained with Dr. Moore has had a very profound influence on many of the decisions I've made and how I conduct myself. ${ }^{\prime}$ There were, however, elements of Moore's teaching that drew criticism and on occasion antagonism from observers and students alike. Some were simply not suited to his style, or the man himself, and psychological bruising was not uncommon. On the one hand, he showed immense patience and dedication, while on the other he could be unflinchingly blunt in rejecting students he either disliked or excluded because he felt they had too much knowledge for his classes, where the entry standard was a virgin mind, untainted by earlier exposure to the work Moore would propose in his courses. There were

[^1]personal beliefs and attitudes, too, born out of his Southern upbringing, that caused dissent and argument in his classroom, much of it deliberately inspired by himself as part of his pedagogical experiments. In the main, however, Moore is remembered as a teacher of mathematics with honest affection and appreciation for the manner in which he drew from his students latent talent, even from a number who had no intention of becoming mathematicians but eventually went on to become leaders in their fields. An example of that spirit is engendered in a note written to him by one of his students, John Mohat, who saw a passage in a work of fiction that he felt summed up exactly the way Robert Lee Moore, through his style and ideas, fired up their creative talents. The passage came from John Steinbeck's East of Eden, which Mohat sent to Moore shortly before Moore retired at the age of 86:
'Sometimes a kind of glory lights up in the mind of a man. It happens to nearly everyone. You can feel it growing or preparing like a fuse burning toward dynamite. It is a feeling in the stomach, a delight of the nerves, of the forearms ... A man may have lived all of his life in the gray, and the land and trees of him dark and somber. The events, even the important ones, may have trooped by faceless and pale. And thenthe glory ... Then a man pours outward, a torrent of him and yet he is not diminished. And I guess a man's importance in the world can be measured by the quality and the number of his glories. It is a lonely thing but it relates us to the world. It is the mother of all creativeness, and it sets each man separate from all other men.'

Contents

Preface vii
Acknowledgements xiii
1: Roots and Influences (1882-1897) I
2: Of Richest Promise (1897-1902) 19
3: On to Chicago (1903) 39
4: A Veritable Hothouse (1903-1905) 57
5: Uneasy Progress (1905-1908) 73
6: A Settling Experience (1908-1916) 91
7: Back to Texas (1916-1920) 109
\mathcal{E} : A Rewarding Decade (1920-1930) 125
9: A Change of Direction (1930-1932) 143
10: Politics and Persuasion (1933-1938) 161
11: Moore the Teacher: A New Era (1939-1944) 177
12: Blacklisted! (1943) 193
13: Class of '45 (1945) 207
14: Clash of the Titans (1944-1950) 225
15: His Female Students 241
16: Moore's Calculus (1945-1969) 257
17: Changing Times (1953-1960) 275
18: Axiomatics Continued: (1953-1965) 293
19: The Final Years (1965-1969) 313
Appendix 1: The Moore Genealogy Project 333
Appendix 2: The PhD Students of R.L. Moore 339
Appendix 3: Publications of Robert Lee Moore 359
Appendix 4: Descriptions of Courses 365
Bibliography 367
Photo Credits 373
Index 379

Acknowledgements

The author wishes to express his thanks to the many people who gave of their time and energy to help bring this project to its conclusion, by way of interviews, correspondence, other written or recorded materials and guidance. There is a special thank you to be recorded for the staff of the Archives of American Mathematics at the Center for American History at The University of Texas at Austin and Ralph Elder, Assistant Director for University Archives and Facilities, for their invaluable assistance in tracing the voluminous documents examined for this work. Mention must also be made of the tireless and considerable efforts of Mr. Harry Lucas, Jr. and his team at the Educational Advancement Foundation, Austin, combining their activities with The Legacy of R.L. Moore Project, and Dr. Albert Lewis for the invaluable contribution of his personal knowledge, guidance and encouragement.

Much, however, is owed to one of the most stalwart figures and prime movers of the Project and a tireless contributor to its aims and objects, the late Dr. Ben Fitzpatrick. Harry Lucas recruited Ben Fitzpatrick to the Moore Project in 1996, and he became Lucas's main liaison contact with the mathematics community as foundation work began, and thereafter in all aspects of the project. He was especially successful in instigating and collating a substantial archive of Oral History for The Legacy of R.L. Moore Collection now housed at the Archives of American Mathematics at the Center for American History, The University of Texas at Austin.

Other tape-recordings and transcripts from this archive include those conducted by Douglas Forbes, for his 1971 dissertation: The Texas System: R.L. Moore Original Edition. Tape-recorded contributions consulted by the author include those by R.D. Anderson, Steve Armentrout, Joanne Baker, Mrs. B.J. Ball, Lida Barrett, Mary Bing, Ed Burgess, Howard Cook, J.L. Cornette, Jerome Dancis, James Dorroh, W. Eaton, J.W. Green, M.E. Hamstrom, F. Burton Jones, I.W. Lewis, Lee

Mahavier, Jean Mahavier, W.S. Mahavier, Ted Mahavier, E.E. Moise, John Neuberger, James Ochoa, Coke Reed, G.M. Reed, M.E. Rudin, Carol Schumacher, Beauregard Stubblefield, Frank Vandiver, John Worrell, and Gail Young.

Bibliography

Albers, D., and C. Reid, An interview with Mary Ellen Rudin, in More Mathematical People, D. Albers, G. Alexanderson, C. Reid (eds.), Harcourt Brace Jovanovich, Boston, 1990, pp. 283-303.
Albert, A.A., Leonard Eugene Dickson 1874-1954, Bull. Amer. Math. Soc. 61 (1955), 331-346.
_, A Survey of Training and Research Potential in the Mathematical Sciences, Final Report, February 1957; University of Chicago.
Anderson, R.D., 'I Led Three Mathematical Lives', MER Newsletter, (MER Forum, Fall 1998), pp. 3-11.
__ and C.E. Burgess, R H Bing: October 20, 1914-April 28, 1986, Notices Amer. Math. Soc. 33 (4) (1986), 595-596.
Archibald, R.C., A Semicentennial History of the American Mathematical Society 1888-1938, American Mathematical Society, 1938.
——, Material Concerning James Joseph Sylvester, August 1944, New York, Schuman.
__ et al., Benjamin Peirce, Amer. Math. Monthly 32 (1925), 1-30.
Backlund, U., and L. Persson, Moore's teaching method, Normat 41 (1996), 145-149.
Bernays, P., David Hilbert, in Encyclopedia of Philosophy III, New York, 1967, pp. 496-504.
Bing, R H, et al., (1976, January 24). Remarks at The University of Texas, Austin Mathematics Awards, Honoring the Memory of Professor Robert Lee Moore and Professor Hubert Stanley Wall.
Birkhoff, G.D., Eliakim Hastings Moore (1862-1932), Amer. Acad. Arts and Sci. 69 (1934), 527-528.
Bliss, G.A., Eliakim Hastings Moore, Bull. Amer. Math. Soc. $2^{\text {nd }}$ ser. 39 (1933), 831-838.
-, The scientific work of Eliakim Hastings Moore, Bull. Amer. Math. Soc. 40 (1934), 501-514.
__, Oskar Bolza - In Memoriam, Bull. Amer. Math. Soc. 50 (1944), 478-489.
——, G.A. Bliss, Autobiographical Notes, Amer. Math. Monthly 59 (1952), 595-606.
and L.E. Dickson, A Biographical Memoir of Eliakim Hastings Moore, National Academy of Sciences, 1939.
Bolza, O., Heinrich Maschke: His Life and Work, Bull. Amer. Math. Soc. 15 (1908), 85-95.

Browder, F.E. (ed.), The mathematical heritage of Henri Poincaré. Part 1, American Mathematical Society, Providence, RI, 1983.

- (ed.), The mathematical heritage of Henri Poincaré. Part 2, Providence, RI, 1983.
Brown, J., My experiences with the Various Texas Styles of Teaching, in the R.L. Moore Legacy Collection, Archives of American Mathematics, Center for American History, The University of Texas at Austin, (1996, April 30).
Brown, M., The mathematical work of R H Bing, Proceedings of the 1987 Topology Conference, Birmingham, AL, 1987, Topology Proc. 12 (1) (1987), 1-25.
Butler, L.J., George David Birkhoff, American National Biography 2 (Oxford, 1999), 813-814.

Chalice, D., How to teach a class by the modified Moore method, Amer. Math. Monthly 102 (1995), 317-321.
Clark, David, R.L. Moore and the Learning Curve, prepared for The Legacy of R.L. Moore Project, February 2001.

Cohen, D.W., A modified Moore method for teaching undergraduate mathematics, Amer. Math. Monthly 89 (1982), 473-474, 487-490.
Dancis, Jerome, and Neil Davidson, The Texas method and the small group discovery method (1970); the authors are both professors at the University of Maryland.
Dantzig, T., Henri Poincaré: critic of crisis: reflections on his universe of discourse, Scribner's, New York, 1954.
Davis, P.J., Otto E. Neugebauer: Reminiscences and Appreciation, Amer. Math. Monthly 101 (1994), 129-131.
Dickson, L.E., Eliakim Hastings Moore, Science 77 (1933), 79-80.
Eyles, J., The importance of R.L. Moore's calculus class, in the R.L. Moore Legacy Collection, Archives of American Mathematics, Center for American History, The University of Texas at Austin.
Fitzpatrick, B., Some aspects of the work and influence of R.L. Moore, in Handbook of the History of General Topology, C. Aull and R. Lowen (eds.), Kluwer Academic, Dordrecht, Boston, 1997, pp. 41-61.
Forbes, D.R., The Texas System: R.L. Moore's Original Edition, PhD thesis, University of Wisconsin, 1971.
Foster, J.A., M. Barnett, K. Van Houten, and L. Sheneman, Informal methods: teaching program derivation via the Moore method.

Frantz, J.B., The Forty-Acre Follies, Texas Monthly Press, Austin, 1983, pp. 111-122.

Gilman, D.C., The Launching of a University and Other Papers, Dodd, Mead and Co, New York, 1906.
Greenwood, R.E., Papers 1937-1993, Archives of American Mathematics, Center for American History, The University of Texas at Austin.
-_, The kinship of E.H. Moore and R.L. Moore, Historia Mathematica 4 (1977), 153-155.

Halmos, P.R., What is teaching? Amer. Math. Monthly 101 (1994), 848-855.
-_, How to Teach in I Want to be a Mathematician, Springer-Verlag, New York, 1985, pp. 253-265.

- and E.E. Moise, The problem of learning how to teach, Amer. Math. Monthly 82 (1975), 466-474.
Halsted, G.B., The Betweenness Assumptions, Amer. Math. Monthly 9 (1902), 98-101.
———Biography. Professor Felix Klein, Amer. Math. Monthly 1 (1894), 416-420.
Jackson, A., Mary Ellen Rudin, in Profiles of Women in Mathematics: The Emmy Noether Lectures, Association for Women in Mathematics, College Park, MD, 1984.
Jones, F. Burton, Some glimpses of the early years, in The Work of Mary Ellen Rudin: Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin Held in Madison, Wisconsin, June 26-29, 1991, Tall, F.D. (ed.), New York, 1993, pp. xi-xii.
- The Beginning of Topology in the United States and the Moore School, in Handbook of the History of General Topology, Volume 1, Kluwer Academic Publishers, Dordrecht, Boston, 1997, pp. 97-103.
——, The Moore Method, Amer. Math. Monthly 84 (1997), 273-277.
——, R H Bing, Proceedings of the 1987 Topology Conference, Birmingham, AL, 1987, Topology Proc. 12 (1) (1987), 181-186.
——_and E.E. Floyd, Gordon T. Whyburn 1904-1969, Bull. Amer. Math. Soc. 77 (1971), 57-72.
Lehmer, D.H., Harry Schultz Vandiver, Bull. Amer. Math. Soc. 80 (1974), 817-818.

Lewis, A.C., R.L. Moore entry in the Dictionary of Scientific Biography, vol. 18. Charles Scribner's Sons, New York, 1990, pp. 651-653.
-_, Reform and Tradition in Mathematics Education: The Example of R.L. Moore, Manuscript April 1998; Revised 1999.
__ - The building of The University of Texas mathematics faculty, 1883-1938, in A Century of Mathematics in America - Part II, Peter Duren, (ed.), American Mathematical Society, Providence, RI, 1989, pp. 205-239.

Mac Lane, S., Jobs in the 1930s and the views of George D. Birkhoff, Math. Intelligencer 16 (1994), 9-10.
Mahavier, Lee, On Three Crucial Elements of Texas-style Teaching as Shown to be Successful in the Secondary Mathematics Classroom, paper prepared for The Legacy of R.L. Moore Project, 1999.
Mahavier, W.S., What is the Moore Method?, Primus 9 (2) (1999), 339-354.
Mahavier, W.T., A gentler discovery method (the modified Moore method), College Teaching 45 (1997), 132-135.
——, Interactive Numerical Analysis, Creative Math Teaching 3, 1-2.
Moise, E.E., Activity and motivation in mathematics, Amer. Math. Monthly 72 (1965), 407-412.

Monna, A.F., Oswald Veblen, Math. Intelligencer 16 (1994), 50-51.
Montgomery, D., Oswald Veblen, Obituary, Bull. Amer. Math. Soc. 69 (1963), 26-36.
Moore, R.L., Papers, 1889-1979, Archives of American Mathematics, Center for American History, The University of Texas at Austin.

- Letter to Miss Hamstrom, published in A Century of Mathematics, American Mathematical Society, Providence, RI, 1996, pp. 295-300.
Murray, M.A.M., Women Becoming Mathematicians, MIT Press, Cambridge, MA, 2000.
Nemeth, L., The two Bolyais, The New Hungarian Quarterly 1 (1960).
Neuenschwander, E., Studies in the history of complex function theory. II. Interactions among the French school, Riemann and Weierstrass, Bull. Amer. Math. Soc. 5 (1981), 87-105.
Nyikos, P., F. Burton Jones's contributions to the normal Moore space problem, in Topology Conference, Greensboro, NC, 1979, Greensboro, NC, 1980, 27-38.
Ormes, N., A Beginner's Guide to the Moore Method, paper prepared for The Legacy of R.L. Moore Project, 1999.
Parker, G.E., Getting More from Moore, Primus, 2 (September 1992), 235-246.
Parshall, Karen Hunger, America's First School of Mathematical Research: James Joseph Sylvester at The Johns Hopkins University 1876-1883, Arch. Hist. Exact Sci. 38 (1988), 153-196.
__, Eliakim Hastings Moore and the Founding of a Mathematical Community in America 1892-1902, Annals of Sciences 41 (1984), 313-333.
-_, Eliakim Hastings Moore, American National Biography 15 (Oxford, 1999), 748-749.
___ and D.E. Rowe, The Emergence of the American Mathematical Research Community 1876-1900: J.J. Sylvester, Felix Klein, and E.H. Moore, American Mathematical Society and London Mathematical Society, Providence, RI and London, 1994.

Phillips, R., Reminiscences about the 1930s, Math. Intelligencer 16 (3) (1994), 6-8.
Reid, C., Hilbert/Courant, Springer, New York, 1986.
Reid, W.T., Oskar Bolza, in Dictionary of American Biography Supplement Three 1941-45, Scribner, New York, 1973, pp. 86-87.
Renz, P., The Moore Method: What Discovery Learning Is and How It Works, FOCUS: Newsletter of the Mathematical Association of America. (August/September, 1999), 6, 8.
Rogers, J.T., Jr., F. Burton Jones (1910-1999): an appreciation, Proceedings of the 1999 Topology and Dynamics Conference, Salt Lake City, UT, Topology Proc. 24 (1999), 2-14.
Rowe, D.E. and J. MacCleary (eds.), The History of Modern Mathematics, two volumes, Academic Press, Inc., Boston, 1989.
——, David Hilbert on Poincaré, Klein, and the world of mathematics, Math. Intelligencer 8 (1986), 75-77.
Singh, S., R H Bing (1914-1986): a tribute, Special volume in honor of R H Bing (1914-1986), Topology Appl. 24 (1-3) (1986), 5-8.
, R H Bing: A study of his life, in R H Bing: Collected Papers Vol. 1, American Mathematical Society, Providence, RI, 1988, pp. 3-18.
S. Armentrout, and R.J. Daverman (eds.), 2 H Bing: Collected Papers (2 Vols), American Mathematical Society, Providence, RI, 1988.
Smith, D.E., Heinrich Maschke, in Dictionary of American Biography XII, Scribner, New York, 1933, pp. 356-357.
Sneddon, N.I., Kazimierz Kuratowski Hon. F.R.S.E., in Yearbook of the Royal Society of Edinburgh Session 1980-81, 1982, pp. 40-47.
Starbird, M., Mary Ellen Rudin as advisor and geometer, in The Work of Mary Ellen Rudin: Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin Held in Madison, Wisconsin, June 26-29, 1991, Tall, F.D. (ed.), New York, 1993, pp. 114-118.
-_, R H Bing's human and mathematical vitality, in Handbook of the history of general topology, Vol. 2, San Antonio, TX, 1993, Dordrecht, 1998, pp. 453-466.
Storr, R.J., Harper's University: The Beginnings, University of Chicago Press, Chicago and London, 1966.
Tall, F.D. (ed.), The Work of Mary Ellen Rudin: Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin Held in Madison, Wisconsin, June 26-29, 1991, New York, 1993.

Taylor, A.E., A study of Maurice Fréchet I, Arch. Hist. Exact Sci. 27 (1982), 233-295.

- A study of Maurice Fréchet II, Arch. Hist. Exact Sci. 34 (1985), 279-380.

Toepell, M., On the origins of David Hilbert's Grundlagen der Geometrie, Arch. Hist. Exact Sci. 35 (4) (1986), 329-344.
Traylor, D.R., Creative Teaching: The Heritage of R.L. Moore, University of Houston, 1972.
Vandiver, H.S., Some of my recollections of George David Birkhoff, J. Math. Anal. Appl. 7 (1963), 271-283.
Veblen, O., and J.W. Young, Projective Geometry, vol. 1, Ginn and Co, Boston, 1910.

Weyl, H., Obituary: David Hilbert. 1862-1943, Obituary Notices of Fellows of the Royal Society of London 4 (1944), 547-553.
--, David Hilbert and his mathematical work, Bull. Amer. Math. Soc. 50 (1944), 612-654.

Whyburn, G.T., Dynamic topology, Amer. Math. Monthly 77 (1970), 556-570.
Whyburn, L.S., Student-oriented teaching - the Moore method, Amer. Math. Monthly 77 (1970), 351-359.
—_, A visit with E.H. Moore, The Proceedings of the 1979 Topology Conference, Topology Proc. 4 (1) (1980), 279-283.
_ _ Letters from the R.L. Moore Papers, Proceedings of the 1977 Topology Conference I, Topology Proc. 2 (1) (1977), 323-338.
———, R H Bing 1949-50, Proceedings of the 1987 Topology Conference, Birmingham, AL, 1987, Topology Proc. 12 (1) (1987), 177-180.
Wilder, R.L., Axiomatics and the development of creative talent, in The Axiomatic Method with Special Reference to Geometry and Physics, L. Henken, P. Suppes, and A. Tarski (eds.), North-Holland, 1959, pp. 474-488.
——, Robert Lee Moore 1882-1974, Bull. Amer. Math. Soc. 82 (1976), 417-427.
-_, Material and method, Undergraduate Research in Mathematics, a Report of a Conference, Carleton College, Northfield, Minnesota, June 16 to 23, 1961, Edited by Kenneth O. May and Seymour Schuster, pp. 9-27.

- The mathematical work of R.L. Moore: its background, nature, and influence, Arch. Hist. Exact Sci. 26 (1982), 73-97.
Young, G.S., Being a student of R.L. Moore, 1938-42, in A Century of Mathematics Meetings, American Mathematical Society, Providence, RI, 1996, pp. 285-293.
Young, S.W., Christmas in Big Lake, reminiscences of his class with R.L. Moore, prepared for The Legacy of R.L. Moore Project, in the R.L. Moore Legacy Collection, Archives of American Mathematics, Center for American History, The University of Texas at Austin.
Zitarelli, David, The Origin and Early Impact of the Moore Method, Amer. Math. Monthly 111 (6) (2004), 465-486.

Photo Credits

Moore at age ten, p. 1. August 1893. Photographer: Webster, 239 Main St., Dallas, TX. Source: R.L. Moore Legacy Collection in the Archives of American Mathematics, Center for American History, The University of Texas at Austin [DI01195].

Moore's parents, Charles and Louisa Ann, p. 4. Ca. 1900. Photographer: Schreiber \& O'Bannon, Dallas, TX. Source: R.L. Moore Legacy Collection in the AAM [DI00614].

Robert Lee as a toddler, p. 6. Undated. Photographer: Unknown, donated by Louis A. Beecherl, member of the Board of Regents of the University of Texas, 1987-1993. Source: R. L. Moore Papers in the AAM [DI01255].

Moore's feed store, p. 7. Undated. Source: R.L. Moore Legacy Collection [DI01250].

Young Master Moore, p. 13. Undated. Photographer: J. H. Webster, Dallas, TX. Source: R.L. Moore Papers in the AAM [DI01245].

Moore and unknown person in cap and gown, p. 17. Ca. 1900. Source: R.L. Moore Legacy Collection in the AAM [DI00615].
R.L. with his sister, Caroline Louisa Moore, p. 19. December 1898. Source: R.L. Moore Papers in the AAM [DI01253].

James Joseph Sylvester, p. 22. Undated. Photographer: unknown.
G. B. Halsted, p. 25. Undated. Source: R.L. Moore Papers in the AAM [DI00783].

David Hilbert, p. 35. Undated. Photographer: unknown (German postcard). Source: R.L. Moore Papers in the AAM [DI01233].
"Bobby" Moore, p. 39. Ca. 1900. Photographer: unknown, donated by Emily Cutrer. Source: R.L. Moore Papers in the AAM [DI01248].
Eliakim Hastings Moore, p. 49. Undated. Source: On EAF website. From: Archibald, R.C. (1938), A Semicentennial History of the American Mathematical Society, 1888-1938, American Mathematical Society, New York.
L.E. Dickson, p. 53. Undated. Photographer: Root. Source: R.L. Moore Legacy Collection in the AAM [DI01234].
Mister Robert Lee Moore, p. 57. Undated. Photographer: Schreiber \& O'Bannon, Dallas, TX. Source: R. L. Moore Papers in the AAM [DI01199].

Heinrich Maschke, p. 59. Source: www-gap.dcs.st-and.ac.uk/ ~history/PictDisplay/Maschke.html.

Oskar Bolza, p. 62. Source: www-gap.dcs.st-and.ac.uk/ ~history/PictDisplay/Bolza.html.
E.H. Moore and R.L. Moore in Chicago, p. 73. Ca. 1905. Source: R.L. Moore Papers in the AAM [DI01400].

Oswald Veblen, p. 77. Source: On EAF website. From: Archibald, R.C. (1938), A Semicentennial History of the American Mathematical Society, 1888-1938, American Mathematical Society, New York.
R.L. Moore, relaxing at home, p. 87. Undated. Source: R.L. Moore Papers in the AAM [DI01252].
R.L. and his uncle, James Willard Moore, p. 91. Ca. 1911. Photographer: Kresge's Photo-Studio, Cleveland, OH. Source: R. L. Moore Papers in the AAM [DI01246].

Margaret MacLellan Key Moore, p. 94. November 18, 1918. Taken in Philadelphia. Source: R.L. Moore Papers in the AAM [DI01249].
John R. Kline, p. 97. Source: On EAF website. From: Pitcher, E. (1988), A History of the Second Fifty Years, American Mathematical Society, 1939-1988. American Mathematical Society, Providence.

Moore at his desk, p. 109. October 1930. Source: R.L. Moore Legacy Collection [DI01387].

Milton Brockett Porter, p. 113. Undated. Source: R.L. Moore Papers in the AAM [DI01389].

Harry Yandell Benedict, p. 118. Ca. 1927. Photographer: Dan E. McCaskill, University Studio, Austin, TX. Source: Prints and Photographs Collection, Center for American History, The University of Texas at Austin [DI01379].

Paul Mason Batchelder, p. 121. Undated. Source: UT Office of Public Affairs Records, Center for American History, The University of Texas at Austin [DI01394].
R.L. Moore walking down Guadalupe Street in Austin, p. 125. Ca. 1920. Photographer: Unknown, donated by Louis A. Beecherl. Source: R.L. Moore Legacy Collection in the AAM [DI01193].

Fall 1928: Back row, left to right: W. T. Reid, J. H. Roberts, C. M. Cleveland, Norman E. Rutt, and J. R. Dorrow; front row, left to right: Lucille Whyburn, G.T. Whyburn, R.L. Moore, R.G. Lubben, p. 129. Source: R.G. Lubben Papers in the AAM [DI01198].

Gordon T. Whyburn, p. 133. Source: On EAF website. From: Pitcher, E. (1988), A History of the Second Fifty Years, American Mathematical Society, 1939-1988. American Mathematical Society, Providence.
R.L. Moore, p. 136. October 1930. Photographer: Jenson Studio, Austin, TX. Source: R.L. Moore Legacy Collection in the AAM [DI01386].

Taken at the Mathematical Association of America/American Mathematical Society/American Assocation for the Advancement of Science meetings in Cleveland Ohio, December 1930; left to right, disregarding row: Wilfrid Wilson, J. W. Alexander, W. L. Ayres, G. T. Whyburn, R. L. Wilder, P. M. Swingle, C. N. Reynolds, W. W. Flexner, R.L. Moore, T.C. Benton, K. Menger, S. Lefschetz, p. 139. Source: R.L. Moore Papers in the AAM [DI00785].
R.L. Moore in his office, p. 143. Ca. 1930s. Photographer: R.G. Lubben. Source: R.G. Lubben Papers in the AAM [DI01197].

Raymond L. Wilder, p. 146. Ca. 1965. Source: Mathematical Association of America Records in the AAM [DI01235].

Robert E. Greenwood, p. 149. November 1974. Source: R.L. Moore Legacy Collection in the AAM [DI01396].

Spring 1931: Karl Menger, Milton B. Porter, J. H. Roberts, and R. G. Lubben, p. 153. Source: R. G. Lubben Papers in the AAM [DI01381].
R.E. Basye and E.C. Klipple, p. 158. Ca. 1930s. Photographer: R.G. Lubben. Source: R.G. Lubben Papers in the AAM [DI01393].
R.L. Moore, p. 161. Ca. 1935. Photographer: R.G. Lubben. Source: R.G. Lubben Papers in the AAM [DI01384].

Possibly taken in the Moore home. Back row, left to right: R. E. Bayse, E. C. Klipple, F. Burton Jones; front row, left to right: C. W. Vickery, R. L. Moore, R. G. Lubben, p. 164. Ca. 1935. Source: R.G. Lubben Papers in the AAM [DI01191].
R.G. Lubben, C.W. Vickery and F.C. Biesele, p. 169. Ca. 1936. Source: R.G. Lubben Papers in the AAM [DI01383].
F. Burton Jones and R. G. Lubben, p. 173. Ca. 1930s. Source: R.G. Lubben Papers in the AAM [DI01380].

Moore at his desk, p. 177. 1935. Photographer: R.G. Lubben. Source: R.G. Lubben Papers in the AAM [DI01196].

Richard D. Anderson, p. 180. Ca. 1941. Courtesy Richard D. Anderson.
Gail S. Young, p. 183. Ca. 1940s. Source: R.L. Moore Legacy Collection in the AAM [DI01404].

Robert Sorgenfrey, Robert Swain, Bernadine Sorgenfrey, Mary Ruth Coleman, Walter Coleman, Harlan Cross Miller, p. 188. June 1941. Source: R.L. Moore Legacy Collection in the AAM [DI01397].
R.L. Moore during registration at UT, p. 193. September 1939. Photographer: Dr. H.F. Kuehne. Source: R.L. Moore Papers in the AAM [DI01192].

Moore walking down Congress Avenue in Austin, p. 198. Undated. Photographer: Unknown, donated by Louis A. Beecherl. Source: R.L. Moore Legacy Collection in the AAM [DI01194].

Moore at the chalkboard, p. 207. Undated. Source: UT Texas Student Publications Inc. Photographs, Center for American History, The University of Texas at Austin [DI01309].

R H Bing, p. 209. Ca. 1960s. Source: R H Bing Papers in the AAM [DI00787].
E.E. Moise, p. 212. Ca. 1967-1968. Photographer: Unknown, donated by MAA. Source: Mathematical Association of America Records in the AAM [DI01238].

Mary Ellen Estill, Lida Barrett, John Barrett and others, p. 215. Courtesy Lida Barrett.
R.L. Moore, p. 225. Ca. 1930s. Photographer: R.G. Lubben. Source: R.G. Lubben Papers in the AAM [DI01256].

Harry Schultz Vandiver, p. 228. Undated. Photographer: Walter Barnes Studio, Austin, TX. Source: Prints and Photographs Collection, Center for American History, The University of Texas at Austin [DI01391].

Hubert Stanley Wall, p. 236. Source: On EAF website. Taken from dust jacket of Wall's book Creative Mathematics. Credited to Walter Barnes Studio of Austin.

Moore in his office, p. 241. September 1963. Photographer: Benny Springer. Source: R.L. Moore Legacy Collection in the AAM [DI01399].

Mary-Elizabeth Hamstrom, p. 244. Undated. Courtesy MaryElizabeth Hamstrom.

Page 5 of the letter from R.L. Moore to Mary-Elizabeth Hamstrom, p. 247. 05/07/48. Source: R.L. Moore Legacy Collection in the AAM [DI01388].

Lida Barrett at a UT Roundup Dance, p. 251. Courtesy Lida Barrett.
Mary Ellen and Walter Rudin, p. 252. Source: Donald J. Albers, G.L. Alexanderson, and Constance Reid, More Mathematical People, Harcourt, Brace, Jovanovich, 1990.

Harlan Cross Miller, p. 255. Undated. Source: R.L. Moore Legacy Collection in the AAM [DI01243].

Moore in his office, p. 257. April 1966. Photographer: Paul Halmos. Source: R.L. Moore Papers in the AAM [DI01401].

Moore in his office with Michael Proffitt, p. 260. January 1970. Photographer: Paul Halmos. Source: R.L. Moore Papers in the AAM [DI00784].

A still from Challenge in the Classroom, p. 269. Film about the Moore Method made by the Mathematical Association of America.

Moore in his office, p. 275. September 1963. Photographer: Benny Springer. Source: R.L. Moore Legacy Collection in the AAM [DI01398].
R.L. and Margaret Moore in front of their home, p. 284. June 1954. Photographer: Fritz Key. Source: R.L. Moore Papers in the AAM [DI01385].

Moore on the UT campus, p. 293. 1969. Photographer: Homer G. Ellis. Source: R H Bing Papers in the AAM [DI00786].
H. J. Ettlinger, p. 299. Undated. Photographer: Daily Texan, staff photo. Source: UT Texas Student Publications Inc. Photographs in the AAM [DI01200].

Nell Elizabeth Kroeger (née Stevenson), p. 304. 1971. Photographer: Tom Ingram. Source: R.L. Moore Legacy Collection in the AAM. [DI01403]
R.L. Moore in class, p. 313. 1969. Photographer: Annette Calhoun. Source: Educational Advancement website.

Mary Ellen Rudin and Bruce Treybig, p. 321. 1971. Photographer: Tom Ingram. Source: R.L. Moore Legacy Collection in the AAM. [DI01402]
R. L. Moore Hall on the UT campus, p. 331. May 1973. Photographer: unknown. Source: Prints and Photographs Collection, Center for American History, The University of Texas at Austin. [DI01390]

Index

Adams, C. R., 169
African-American students, 12, 96, 287290, 294, 295, 339
Albert Report, 238
Alexander, J. W., 139
Alexandroff, P.S., 302
Algebra, 23, 32, 58, 80, 84, 93, 266
Algebraic geometry, 156
Algebraic topology, 140, 191, 341
American Association for the Advancement of Science (AAAS), 31, 139, 157, 164, 178
American Association of University Professors (AAUP), 194, 204, 205
American Mathematical Society (AMS), viii-ix, $33,53,62,65,80,87,95,114$, $135,144,157,165,168,172,220,233$
Anderson, Richard D., xiii, 102, 178-181, 182, 211, 213, 215-218, 220-222, 238, 280, 304, 347, 348
Archibald, R. C., 61, 74, 75
Archives of American Mathematics (AAM), xiii
Armendariz, Efraim, 343
Armentrout, Steve, xiii, 310, 350
Auburn University, 353
Axiomatics, 60, 145-146, 305; see also Logic and set theory
Ayres, W.L., 81, 102, 139, 339, 355
Baker, Blanche Joanne (née Monger), xiii, 352
Baker, H.L., 352
Bales, John, 356
Ball, B. J. (Joe), 243, 244, 280, 348
Ball, Gayle, 243, 244, 356
Ball, Margaret, 356
Barrett, J.H., 215, 355

Barrett, Lida K., 102, 215, 251, 339, 345, 355
Basye, Robert E., 158, 164, 344
Batchelder, Paul Mason, 121, 122
Beckenbach, Edwin F., 150, 227
Beecherl, Louis A., 373, 375, 376
Begle, Ed, 233, 341
Benedict, Harry Yandell, 27, 118, 195
Benedict Hall, 235, 276
Benton, T.C., 139
Betweenness assumptions, 35,36
Biesele, F. C., 169
Bing, Mary, xiii
Bing, R H, 130, 178, 208-211, 216, 218$220,280,290,291,302,303,320,329$, 330, 346, 355, 357
Biomathematics, 352
Biostatistics, 354
Birkhoff, George David, 53, 59, 83, 103, $110,122,157,164,169,170$
Blacks, see African-American students; racial segregation
Bledsoe, Woodrow W., 319-328
Bliss, Gilbert, 54, 55, 59, 64, 65, 110
Bôcher, Maxime, 119
Bolyai, János, 16, 26, 70
Bolza, Oskar, 44, 50-54, 58, 61, 62, 76, 103
Boner, C.P., 239, 276, 277
Boyd, J.R., 345
Brauer, Alfred, 231
Briles, David, 268-270
Buchanan, 183
Burgess, Cecil E., 181, 210, 280, 348
Burlington, Orville, 197
Bush, Vannevar, 171

Calculus, vii, 2, 55, 84, 127, 131, 133, 150, 257-274, 294, 310

Calhoun, John W., 195
Cantor, Georg, 246
Cantorean line, 113
Carter, J.M., 326
Carver, Wallace, 83
Cayley, Arthur, 23
Center for American History, 2
Challenge in the Classroom (film), vii, $115,258,269,309,316,317$
Chicago, the city, 45,46
Chicago Mathematical Congress (1893), 51
Chittenden, E.W., 103, 112, 300
'Christmas in Big Lake,' 307
Civil War, 3, 4, 5, 45
Clarkson, L.L., 289
Claytor, William Waldron Schieffelin, 96, 339
Cleveland, Clark M., 129, 138, 342
Coble, A. B., 169
Concerning Dean John R. Silber and the Proposed Dismissal of Professor R.L. Moore ('The Green Book'), 320, 326, 327, 328
Continuum Hypothesis, 80
Cook, David E., 353
Cook, Howard, 351
Cook, Katherine, 356
Cornette, James L., 352
Courant, Richard, 168.
Cowley, Don E., 270, 271
Craig, Homer V., 315
Crawley, Edwin Schofield, 97
Curtis, Otis F., 157
Dancis, Jerome, xiii, 216
Daus, Paul H., 218
Davidson, Neil, 216
Davis, J.C., 287
Davis, Roy D., 353
Deaton, E.I., 355-356
Decherd, Mary E., 37, 120
Dehn, M., 70, 87
Denjoy, Arnaud, 113
De Voto, Bernard, 194, 197, 200, 204, 205
Dewey, John, 41, 42, 48
Diaz, Joseph, 182
Dickson, Leonard Eugene, 20, 28, 29, 40, $50,53,54,59,65,116,357$
Differential geometry, 58, 163

Dodd, E. L., 129
Dorroh, Joe L., xiii, 129, 138, 343
Dos Passos, John, 200
Dresden, Arnold, 172
Driskill Hotel, 12
Duhamel's Theorem, 95
Duke University, 342, 347
Dyer, Eldon, 250, 280, 349
Eaton, William T., xiii, 218
Edmondson, Don E., 290
Educational Advancement Foundation, xiii, 332
Eilenberg, Samuel, 192
Einstein, Albert, 163, 228
Eisenhart, Katherine (Mrs. Luther Pfahler), 25
Elder, Ralph, xiii
Emory University, 350, 353
Encyclopedia Britannica, 349
Erwin, Frank, 327
Estill, Mary Ellen see Rudin, Mary Ellen (née Estill)
Ettlinger, Hyman Joseph, 95, 120, 164, 227, 228, 278, 282, 285, 290, 295, 296, 299, 314, 319, 323-325, 329, 330
Ettlinger, Martin, 164, 228, 355
Eyles, J., 2
Fermat's Last Theorem, 231
Fine, Henry Burchard, 25, 82
Finite intersection property, 302
Fisher, George Egbert, 97
Fitzpatrick, Ben, xiii, 103, 227, 303, 355
Fleissner, William, 348
Flexner, W. W., 139
Fogwell, T. W., 326
Forbes, Douglas, xiii, 199, 211, 329
Foster, Mary
see Spencer, Mary (née Foster)
Foundations of Geometry see Grundlagen der Geometrie (Hilbert, D.)

Foundations of Point Set Theory (Moore, R.L.), 126, 136, 141, 144, 154

Fox, Don, 356
Frantz, B. Joe, 3, 8, 30, 37, 105, 117, 118, 148, 196, 314
Fréchet, Maurice, 98
Fry, Thornton C., 165, 166, 169

Function theory, 50, 51, 131
Gauss, C.F., 16
Gehman, Harry, 102, 339
Geometry, 23, 29, 33, 63, 81, 84, 85
analytic, vii, 264, 365
see also Moore, Robert Lee: and geometry
axioms, 66, 105
Euclidean, 26, 43, 62
Non-Euclidean, 16, 24, 26 29, 43, 50
summer course, 353, 354
Gleason, Andrew, 102, 340
Golightly, George, 356
Gordon, Cameron, 218
Goucher College, 341
Green Book, The, see Concerning Dean
John R. Silber and the Proposed Dismissal of Professor R. L. Moore
Green, John W., ix, xiii, 273, 274, 354
Greenwood, Robert, 27, 148-150, 231, 232, 237, 238, 355
Group theory, 50, 58, 62
Grover, Blanche Bennet, 120
Grundlagen der Geometrie (Hilbert, D.), 33, 60, 61
Guy, W.T., 298, 323, 343
Hackerman, Norman, 266, 267, 319, 328
Hallet, G. H., Jr., 99, 114, 340
Hallet, George Hervey, 97, 99, 100
Halmos, Paul, 369, 377, 378
Halsted, George Bruce, 10, 12-16, 21, 24, $28,30,31-44,51,52,67,68,82,87$, 88, 92, 324
see also Moore, Robert Lee: correspondence
Hamilton, O.H., 355, 356
Hamstrom, Mary-Elizabeth, 244, 245, 249253, 280, 340, 341, 349
Harper, William Rainey, 45-50, 92
Harvard University, 347
Heine-Borel theorem, 66, 67, 247-248
Hellinger, Ernst, 235
Hensley, Elmer Lee, 355
Henderson, George W., 295, 351
Hilbert, David, 19, 32-35, 40, 51, 60, 61 axioms, $34-36,87,88,102,104$
Hinrichsen, John W., 353
Hinstead, Ralph E., 355
Hocking, John, 191, 346

Houston, Raymond, 356
Hunt, Walker, 289
Huntington, E.V., 79
Illinois Institute for Technology, 350
Indecomposable continua, 221, 295
Institute for Advanced Study in Princeton, $74,163,221,347$
Invariant theory, 24, 51
Iowa State University, 352, 353
Jackson, Robert E., 355
Jacob, Tom, 356
Janiszewski, Zygmund, 340
Johnson, Raymond, 290, 291
Jones, F. Burton, 103, 104, 150-155, 163, $164,173,174,182,188,189,216,239$, 242, 303, 344, 349
Jones, Steven, 355
Jordan (simple closed) curve, $75,79,105$, 112

Kelley, John L., 155
Kelley, 'Spider,' 85
Kilgore, H.M., 171
Kirby, Robion, 349
Klein, Felix, 49, 50, 51, 62
Kline, John R., 96, 97, 101, 102, 112-114, 130, 221, 339, 342, 349
Kline Sphere Problem, 219
Klipple, Edmund, 138, 158, 164, 343
Knaster, Bronislaw, 138, 346
Kroeger, Nell Elizabeth (née Stevenson), 304, 355
Kuratowski, C., 134, 303
Lamar University, 352
Lane, Ralph, 314, 351-352
Lax, Peter, 235, 343
Lefschetz, Solomon, 139, 140, 155, 156, 163, 191, 342
Legacy of R.L. Moore Project, xiii, 103, 163, 272, 332
LeMaistre, Charles, 328, 329
Lennes, N. J., 63, 67, 78, 79
Levi-Civita, T., 168
Lewis, Albert C., xiii, 42, 315
Lindemann, L. A., 171
Lobachevsky, Nikolai, 26, 27
Logic and set theory, $25,54,58,79,80,98$, $100,105,110,137,138,173,297,298$
see also Axiomatics
Loomis, Lynn, 325
Los Alamos National Laboratory, 272
Louisiana State University, 347
Lovelace, Randy, 301
Lowell, James Russell, 21
Lubben, Renke G., 129, 135, 153, 164, 169,
173, 190, 314, 315, 323, 325, 341
Lucas, Harry, Jr., xiii, 103, 332, 356
McAuley, Louis, 155
McClendon, James W., 356
MacDonald, Malcolm, 319, 320
McShane, E. J., 342
Mahavier, Jean, xiv, 356
Mahavier, Lee, xiii
Mahavier, Ted, xiv
Mahavier, William S., 263, 265, 310, 350
Malcolmson, Waldemar, 2, 8, 9, 10, 11
Marconi, Guglielmo, 171
Marshall High School (Texas), 40, 41
Mars Viking Project, 301-302
Maschke, Heinrich, 51, 52, 54, 58, 59, 61, 76, 103
Mathematical Association of America (MAA), 139, 178, 208, 220, 233
Mathematical Reviews, 154, 169, 170
Mauldin, R.D., 320
Mayes, Vivienne M., 290
Mazurkiewicz, Stefan, 295
Measure theory course, 297-298, 365
Menger, Karl, 139, 153
Miller, Harlan C., 188, 242, 255, 345
Mohat, John T., x, 350
Moise, Edwin E., 178, 181, 210-214, 220, 221, 233, 280, 288, 295, 310, 311, 346
Monger, Blanche Joanne see Baker, Blanche Joanne (née Monger)
Montgomery, Deane, 74, 82, 102, 340
Moore, Charles Jonathan (RLM's father), 4, 5, 8, 85
Moore, Eliakim Hastings, 20, 28, 29, 35, $36,40,44,48,49,50-61,66,67,74$, $76,79,88,92,116,117,141$
Moore, James Willard (RLM's uncle), 91
Moore, Louisa Anne (RLM's mother), 3, 4, 5, 8
Moore, Margaret MacLellan (RLM's wife), 93, 94, 284, 330

Moore Genealogy Project, 333-337
Moore Method, vii, viii, ix, 2, 56, 110, 132, 181, 188, 285
characteristics of, 100, 127, 147
criticisms of, 126-127, 150, 214, 232, 250, 271
curriculum, 365-366
experienced by RLM's students, 99, 151-153, 181-191, 211-214, 234235, 250-257, 273-274, 305-307
and grades, 213
influence on education, $216,233,302$, 331-332
origin, $98,107,258-259,317$
used and modified by others, 114-115, 154, 155, 188, 216, 232-233, 235-236, 288, 303, 308, 310-311
see also calculus
Moore, Robert Lee
algebra, 266, 366
and American Mathematical Society, 55, 74, 104, 110, 136, 139
presidency, viii, $52,155,156,167$, 178, 195
Visiting Lectureship, viii, 74, 139
and analysis, 60
ancestry, 3-8, 175, 333-337
and anti-Semitism, 163, 164, 214
appearance, viii, $85,269,271,294,316$
attitudes and beliefs, ix, x, 17, 42, 54, $59,76,77,84,89,115,130,132$, 157-159, 162, 167, 170-172, 179, 187, 201-204, 217, 232-234, 237, 260, 295, 296, 304, 317
boxing, interest in, 85,86
and calculus, 127, 131, 150, 258-268, 365
Challenge in the Classroom (film), vii, $115,258,269,309,316,317$
character, 150, 179, 202, 259
correspondence
with G.D. Birkhoff, 139, 140, 157
with G.B. Halsted, 10, 17, 38, 40$44,55,68,69,71,77,82,104$, 105
with Mary-Elizabeth Hamstrom, 245, 246-249
with J.R. Kline, 101, 221
with Mary Spencer (née Foster), 255
with Oswald Veblen, 79, 86, 95
death, 330
diary, $12,15,17,31,32,40,41,44,65$, 76, 77, 78
and differential invariants, 61
dissertation: Sets of Metrical Hypotheses for Geometry, 75
and driving, 213
education, 14,32
elementary, 2, 8-10, 55, 233
influence on, 54, 233, 286, 294, 331 see also Moore Method
University of Chicago, 44, 45, 46, 47, 50, 52, 54
University of Texas, 12-17, 115
and genealogy, 3, 5, 333-337
and geometry, $16,26,29,60,61,75$
see also Moore, Robert Lee: and topology
and guns, 229, 318, 319
Halsted, G. B., relationship with, 15 , $16,17,20,21$
Lefschetz, Solomon, relationship with, 191, 192
Legacy Project, xiii, 103, 272, 332
M.A. students, 232, 356, 357
malaria, effect of, 76, 77, 84
marriage, 94
Marshall High School (Texas), teaching post at, 40,41
Moore, E.H., relationship with, 54, 55, 56
National Academy of Sciences, election to, 190
PhD students, i , viii, ix, 144, 145, 178, 231, 232, 314, 330, 339-357
politics, 162, 165, 166, 171, 187, 194, 198, 199
productivity, $84,95,104,114,126$, $144,174,178,231,285$
publications, $52,61,89$,
articles and papers, $87,89,95,104$, $110,112-114,126,128,144$, 174, 175
Foundations of Point Set Theory, 126, 136, 141, 144, 154
On the Foundations of Plane Analysis Situs, 105, 110
race prejudice, 244, 287-290 see also Moore, Robert Lee: and anti-Semitism
and religion, 42, 43

Report on Continuous Curves from the Viewpoint of Analysis Situs (Moore, R.L.), 128
reputation, 12, 65, 105, 130, 259
research, viii, $2,20,51,55,110,111$, 126, 231, 366
retirement, 276-285, 296, 319-324, 329
Science Mobilization Bill, opposition to, 171,172
sense of humor, 224, 273, 317
Socrates, compared with, 146, 305, 326
and students
female, 242, 243
recruitment of, 128-130, 147-148, $150,183,259,305$
relationship with, $41,52,100,102$, 103, 136, 149, 150, 179, 215, 216, 218, 234, 300
see also Moore, Robert Lee: M.A. students; Moore, Robert Lee: PhD students
teaching posts
Marshall High School (Texas), 40, 41
University of Tennessee, Knoxville, $76,80,82,84$
Princeton University, $82,83,84$
Northwestern University, Evanston, 91, 92, 93, 95
University of Pennsylvania, 96, 100, 114
University of Texas at Austin, 12, $66,98,115,117$
teaching style, vii, $2,10,54,55,99$, $100,106,111,115,116,137,185$, 186, 217, 250, 257-274, 299, 305
see also Moore Method
thesis, $67,78,86,87,88$
and topology, 79, 98, 103, 104, 110, $111-113,144,151,366$
training scientists, ix, 153, 174, 259, $265,268,272,273,295,300-302$, 356
Vandiver, Harry Schultz, relationship with, 226-231
Veblen, Oswald
correspondence with, $79,86,95$
relationship with, $61,62,74,75$
Wall, H.S., relationship with, 236, 237
women, attitude toward, 242
Moore School, 110, 163, 178, 300, 330
Moore spaces, 153, 154, 331, 344, 352
Moreman, Douglas, 356
Morse, Marston, 169
Mullikin, Anna M., 106, 107, 114, 184, 242, 340, 349

National Academy of Sciences, ix, 126, 140, 190, 217
National Aeronautics and Space Administration (NASA), 301
National Science Foundation, viii, 238, 300, 332
Neuberger, John, xiv, 235, 272
Neugebauer, Otto, 168, 170
Newton, Hubert Anson, 48, 49
Normal Moore space problem, 344
Northwestern University, 92, 93, 95, 235
Ochoa, James, xiv
O'Connor, Joel L., 354
O'Daniel, W. Lee 'Pappy', 195-197
Office of Naval Research, 295
Ohio University, 351
On the Foundations of Plane Analysis
Situs (Moore, R.L.), 105, 110
Osgood, William Fogg, 119
Osserman, Robert, 295
Painter, T.S., 204, 276
Parshall, Karen Hunger, 21, 52, 53, 58
Pearson, Bennie J., 246-248, 350
Peirce, Benjamin, 23, 24, 25
Peirce, Charles, 25, 41
Pennsylvania State University, University Park, 350
Poincaré, Henri, 68, 70, 145
Point set theory, 105, 112, 113, 131, 137, 153, 173
Polish School, 128, 138
Pons asinorum, 308
Porcelli, Pasquale, 235
Porter, Milton Brockett, 27, 113, 118, 127, 153
Pound, Patricia, 356
Princeton University, 21, 64, 74, 82-85, 92, 122, 156, 163
Proffitt, Michael H., 260, 354
Proportional Representation League, 340
Pseudo arcs, 221, 295, 346, 352

Purifoy, Jesse A., 354
Putnam, T.M., 28
R.L. Moore Oral History Project, 229, 263, 287
Racial segregation, 242, 286-289
Rainey, Homer P., 194, 196, 200-204
Ransom, H.H., 328
Reed, Coke, xiv
Reed, Dennis K., 352
Reed, G.M. (Mike), xiv, 303, 330, 331, 351
Reid, W.T., 129, 218, 355
Report on Continuous Curves from the Viewpoint of Analysis Situs (Moore, R.L.), 128

Reynolds, C.N., 139
Richter, Gary, 355
Riesz, Frigyes, 98, 113
Robbins, R.B., 166, 167
Roberts, John H., 129, 138, 153, 154, 342
Rockefeller, John D., 46, 47
Rogers, Jack W., 353
Rogers, Janet, 356
Rogers, Lorene, 356
Roitman, Judy, 348
Rowe, David E., 23, 58
Rudin, Mary Ellen (née Estill), 189, 210212, 215, 242, 252-254, 272, 280, 303, 321, 344, 347
Rudin, Walter, 252-254
Rudolph, Frederick, 47
Rutt, N.E., 102, 129, 339
Sandia, space program, 301, 302
Schmitt, Cooper D., 80, 81, 82
Schumaker, Carol, xiv
Schur, Friedrich, 36, 61
Schwartz, Hermann, 50
Schwatt, Isaac J., 97
Secker, Martin D., 353
Sierpiński, Wacław, 128, 134
Silber, John R., 320-330
Singh, Sukhijit (Suji), 218
Slye, John M., 280, 310, 349
Smith, Kermit, 356
Smith, Michel, 218
Socrates, 326, 327
Sorgenfrey, Robert H., 188, 345
Souslin's problem, 254
Spencer, Mary (née Foster), 254, 255
Spirals in the plane, 357

Splawa-Neyman, J., 298
Springer, Julius, 168
Starbird, Michael, 218
Statistics, 343, 354, 356
Steenrod, Norman, 155, 176, 192, 341
Stevenson, Nell Elizabeth
see Kroeger, Nell Elizabeth (née Stevenson)
Stewart, A.N., 289
Stiles, F. A., 326
Stocks, D. R., 355
Stone-Čech compactification, 342
Stone, Ormond, 48
Stone, Wilson, 268
Stubblefield, Beauregard, 191, 287, 288, 346
Swain, Robert L., 188, 344
Sweatt, Herman M., 289
Swingle, P.M., 139
Sylvester, James Joseph, 21, 22, 23, 41, 104

Tamarkin, J.D., 168, 170
Taylor, Thomas Ulvan, 27, 31
Texas A\&M University, 343, 344, 351
Texas Method, 98, 236
see also Moore Method
Texas Woman's University, 345
Theorems, 56, 188
proving, $2,99,114,121,187,190,217$, 235, 258, 271, 307
Topology, 58, 67, 128, 153, 173, 331
'Moore spaces', 153, 154, 300, 331
Traylor, D. R., 41, 59, 105, 329, 355
Treybig, June, 356
Treybig, L. Bruce, 321, 350
Trigonometry, 271
Tucker, D.H., 355
'Un-American Activities', 196
University of California, Santa Barbara, 341
University of Chicago, 40, 44-58, 62, 74, 92, 156
Department of Mathematics, 29, 48, 50, 58 foundation, 45, 47, 48 Mathematics Club, 56, 65
University of Houston, 350, 351
University of Illinois, Urbana-Champaign, 349

University of Michigan, Ann Arbor, 341, 347
University of Minnesota, Twin Cities, 350
University of Mississippi, 353
University of Missouri, Columbia, 351
University of Missouri, Kansas City, 350
University of Nebraska, Lincoln, 352
University of North Texas, 350
University of Pennsylvania, 96, 100, 102, $105,114,117,118,129,194,195,221$
University of Tennessee, Knoxville, 76, 80, 82, 84
University of Texas at Austin, 11, 26, 36, $37,38,40,85,102,276,277,317,318$, 329, 346
mathematics departments, $29,118,119$, $120,127,137,148,154,226,227$, 230, 238, 239, 276, 296, 314, 316, 323, 329, 330
student life, 12-14
University of Utah, 348, 352
University of Wisconsin, Madison, 346, 347
University of Wisconsin, Milwaukee, 351
Upper semi-continuous collections, 175, 221, 300
Urysohn, Pavel, 112
Vandiver, Frank, 228-230, 324
Vandiver, Harry Schultz, 64, 65, 120, 122, 123, 182, 205, 226-231
Van Doren, Kenneth, 356
Veblen, Oswald, 53, 59-95, 103-105, 110, 112, 163, 170
Vickery, Charles W., 138, 164, 169, 343
Vitali coverings, 297, 300
Vivian, Roxana Hayward, 96
Wall, Hubert Stanley, 120, 235, 236, 272, $285,295,296,314,325,326,329,356$, 357
Webb, Walter Prescott, 229
Webs, 357
Weierstrass, Karl, 49, 50, 52
Weyl, Hermann, 145
Whyburn, Gordon T., 128, 133, 134, 137, 138, 139, 156, 169, 178, 342
Whyburn, Lucille, 129, 134, 148, 149, 355
Whyburn, William M., 134, 345, 355
Wicke, Howard, 300, 302, 351

Wilder, Raymond L., 33, 79, 80, 89, 96, 104, 111, 128-132, 139, 144, 146, 153, $154,174,178,288,305,308,339,341$
Wilks, S. S., 356
Williams, Nick, 356
Williams, Robert, 355
Wilson, Thomas Woodrow, 82, 83
Wilson, Wilfrid, 139
Woodard, Dudley Weldon, 96
Worrell, John, xiv, 259, 266-268, 272, 297-
304, 309-310, 322, 328, 351

Young, Gail S., 179, 181-191, 221, 288, 345
Young, Sam W., 305-307
Younglove, James N., 351
Zentralblatt für Mathematik und ihre Grenzgebiete, 167-169
Zippin, Leo, 102, 340
Zitarelli, David E., 45, 372
Zoretti, L., 113

About the Author

British author John Parker has been a journalist and writer all his working life. He went straight from Kettering Grammar School to join Northampton Chronicle and Echo as a trainee reporter and remained in local newspapers in the UK until securing a position with the Nassau Daily Tribune in the Bahamas.

He later worked for Life magazine, New York, before returning to the UK to join the Daily Mirror, then one of Britain's foremost and highly respected daily newspapers as a sub-editor. Hometown beckoned again when at 30, he was appointed editor of Northamptonshire Evening Telegraph, the country's youngest evening newspaper editor at that time.

Towards the 1980s, he returned to Fleet Street, rejoining the Mirror Group to become night editor of the Daily Mirror and later deputy editor of the Sunday Mirror. Along with a number of other Mirror stalwarts, he resigned during the reign of Robert Maxwell to concentrate wholly on his writing. To date, he has published 30 books in hardback which have appeared in 64 editions in the UK and more than 40 international editions.

AMS / MAA $\operatorname{SPECTRUM}$

R. L. MOORE Mathematician \& Teacher

John Parker

R. L. Moore: Mathematician and Teacher presents a full and frank biography of a mathematician recognized as one of the principal figures in the 20th Century progression of the American school of point set topology. He was equally well known as creator of the Moore Method (no textbooks, no lectures, no conferring) in which there is a current and growing revival of interest and modified application under inquirybased learning projects in both the United States and the United Kingdom. Parker draws on oral history, with first-person recollections from many leading figures in the American mathematics community of the last half-century. The story embraces some of the most famous and influential mathematical names in America and Europe from the late 1900 s in what is undoubtedly a lively account of this controversial figure once described as 'Mr. Chips with Attitude.'

[^0]: ${ }^{1}$ Exceptions were Moore's calculus and analytic geometry courses in which textbooks were used for setting problems. His doctoral students were allowed to refer to textbooks mainly to ensure their theses were original.
 ${ }^{2}$ From Challenge in the Classroom, a documentary film on the life and work of R.L. Moore, produced for the Mathematical Association of American in 1966 (now re-issued as The Moore Method: A Documentary on R.L. Moore, in the MAA's publications division).
 ${ }^{3} \mathrm{~A}$ former Moore student, in conversation with the author.

[^1]: ${ }^{4}$ From Topology to Statistics: The Influence of R.L. Moore's Training on an Industrial Statistician, by John W. Green, Principal Research Biostatistician, Dupont, at the 4th Legacy of R.L. Moore Conference 3-5 May 2001.

