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from what appears to be direct translation from French. The authors are 
blameless in this, in my view, but Springer should be ashamed not to have 
done a decent job of copyediting.) In the face of the importance of the 
subject matter, it has been surprising how difficult it has continued to be 
to make one's initial foray into Riemannian geometry. While there may 
be no royal road to geometry, this book offers at least some clear signposts 
to readers. But its terseness leaves them to walk a great many lonesome 
valleys by themselves. 
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Teichmüller theory often reminds me of a mathematical foundling. It 
first appeared, albeit in a different guise, in the attempt by Friedrich Schot-
tky to prove that Riemann surfaces (qua algebraic curves) can be uni-
formized (parametrized) by meromorphic functions defined in plane do­
mains. According to Felix Klein, Weierstrass, as Schottky's thesis advisor, 
rejected this (quite correct) argument and removed it from the thesis. So 
Teichmüller theory was almost stillborn. It explicitly appears first in the 
work of Klein's collaborator, Robert Fricke. The theory was discovered 
anew by Oswald Teichmüller around 1940 and reached maturity around 
1960 under the tender care of Lars Ahlfors, Lipman Bers and their students 
following pioneering work of Ernie Rauch. 

Almost immediately the theory found a series of foster parents. First, 
algebraic geometers took us, the noble but isolated practitioners of this 
iconoclastic discipline, under their mightly wings. We learned the joys of 
providing lemmas solving partial differential and integral equations and 



BOOK REVIEWS 163 

various other nuts and bolts results. These served to render provable such 
theorems as "The ?%#$! functor is representable." After Mumford, Knud-
sen, Gieseker et al. proved that the moduli space of stable curves is a pro­
jective algebraic variety, we were given two weeks notice and severance 
pay. 

Fortunately, our role as homeless waifs was to be short-lived. Having 
toiled in the field of mostly hyperbolic surfaces, we had also extended our 
labors to hyperbolic 3-manifolds or, in our language, to Kleinian groups.1 

A new foster home was waiting in the wings. For Bill Thurston, having fin­
ished foliating higher dimensional spaces, had started studying hyperbolic 
surfaces and 3-manifolds. After him, followed the children of topology. 
Here again a foreign language was used to express results, some of which 
we were told were our own. 

Then came the merger of complex analysis and dynamical systems, mod­
elled on the theory of Kleinian groups and lead by Douady, Hubbard, Sul­
livan and Thurston. And behold, they needed a deformation theory. So 
Teichmüller theory, like Lazarus, again rose to assist Sullivan in showing 
that iteration of rational functions leads to no wandering domains. It pro­
vided, as a byproduct proved at various times and levels by Mane, Sad 
and Sullivan [16], Sullivan and Thurston [19] and Bers and Royden [8], 
the main theorem on extending holomorphic families of motions. This 
most astounding of theorems is now called the X-lemma. 

The past thirty years have been kind to Teichmüller theory. Applica­
tions have arisen in a wide variety of mathematical areas and it seemed 
to have developed a stable clientele. Then, in the mid 1980s, some of 
us started receiving strange calls from physicists. They seem to need 
Teichmüller theory too.2 The Teichmüller space seems to play a central 
role in string theory. It was also the model for the moduli theory of Yang-
Mills fields. So we might conclude, as I. M. Gelfand remarked to Lipman 
Bers, that Teichmüller theory has tenure in physics. 

Soon it may be appropriate for me to say what Teichmüller theory is 
all about. First let me place it in the mathematical firmament. Bers once 
called it the higher theory ofRiemann surfaces. I never quite understood 
that comment. I can only speak—forgive me, I mean write—as a prac­
titioner. To work in Teichmüller theory is to work in an active classical 
discipline which lies at an intellectual crossroads for contemporary mathe­
matics and high-energy physics. We don't seem to be at a loss for problems 
important either for internal structure or application to external areas. 

1. What is Teichmüller theory and where did it come from? In the late 
1920s, Helmut Grötzsch [13] posed and solved an extremal problem for 
^°°-mappings between two rectangles. He asked for the diffeomorphism ƒ 
from one rectangle R\ to the other R2 which was the most nearly conformai 
map and, further, which mapped an ordered set ^ of vertices of R\ to an 

1 It was really Poincaré who named them. 
2The physicists seem to think that the study of Riemann surfaces forms a branch of 

algebraic geometry. To me it is indicative only of the fields of specialization of the people 
to whom they first spoke. 
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ordered set 2^ of vertices of R2. As measure of closeness to conformality 
he used the highly nonstandard sup norm Kf of the distortion (dilatation) 
Kf(z) of/. Using complex derivatives, 

Kf{z) ' lÂTÏÏï 
Modulo technical hypotheses, orientation-preserving mappings are called 
quasi-conformal if K(f), the <S?°° norm of Kf(z), is bounded. 

Grötzsch's solution presaged the whole theory of extremal length of 
curve families. The key step in the proof is to compare the (square of the) 
average length of the image of horizontal lines to the area of the image 
rectangle. This generalizes to various length-area comparisons that have 
pervaded conformai geometry ever since. In the mid 1930s, both Ahlfors 
and Lavrentiev used quasiconformal mappings in some of their analytic 
studies (in value distribution theory and partial differential equations, re­
spectively). 

Around that time, Teichmüller was reading Ahlfors' geometric studies 
of value distribution theory and wrote a few papers in the field. After 
Teichmüller moved from Göttingen to Berlin to work with Bieberbach, 
he became aware of the pioneering work of Max Schiffer on the seem­
ingly intractable Bieberbach conjecture.3 Schiffer had shown that a class 
of variations, of the conformai structure of domains, leads to quadratic 
differentials. In Schiffer's case this meant second-degree, first-order differ­
ential equations. Further, the trajectory structure of the differential equa­
tion played a major role in determining the nature of the boundaries of 
domains which appear as the images under mappings which are extremal. 

So Teichmüller merged these two ideas. In a series of papers,4 he first 
lay down the foundations of the theory of extremal quasiconformal map­
pings. He then proved that between any two compact Riemann surfaces 
of the same genus there is a unique mapping f0 in each homotopy class 
which minimizes K(f). In the literature, the existence and uniqueness 
statements are referred to as separate theorems—Teichmüller published 
them separately. The proof, especially the existence part, was considered 
quite controversial since virtually no one could read parts of it. 

Briefly stated in the case of most interest, Teichmüller started with a 
fixed compact Riemann surface -So of genus g which we assume greater 
than one to avoid elementary cases. A surface S together with a homeo-
morphism ƒ from £0 to S is called a marked surface (S, ƒ). Two marked 
surfaces (5,/) and (5", ƒ') are called equivalent if f'o f~l is homotopic to 
a conformai map from S to S'. The Teichmüller space (of genus g) is the 
space of equivalence classes of marked surfaces of genus g and is denoted 

3 In that circle of politicized mathematicians, reference to the work of Jewish mathemati­
cians was virtually never made. However, Schiffer's work, being on Bieberbach's conjecture, 
could be referenced. 

Bieberbach's conjecture is now, of course, the magic theorem of De Branges (see [9 or 
11]). 

4Teichmuller's papers are most easily found in his collected works [20]. 
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Tg. It carries the (topological) Teichmüller metric 

dT{S,S') = wf\ogKf 

where the infimum is taken over all homeomorphisms of S to S' in the 
homotopy class of ƒ' o f-l. 

In 1954, Ahfors [4] cleaned up Teichmüller's uniqueness proof and gave 
a new, technically awesome, proof that the extremal exists. Over the next 
few years, it became apparent that a central role in the deformation theory 
of Riemann surfaces is played by the solutions to the Beltrami equation 

(1) f2=/*(z)fz 

in C with ju measurable and djjadj^ < 1. / / is then called a Beltrami 
coefficient. The theorem which gives the solution might aptly be called the 
measurable Riemann mapping theorem; it was proved by Morrey [17] in 
1938. The theorem which is usually called the measurable Riemann map­
ping theorem is due to Ahlfors and Bers [5] in 1960. Their approach to the 
problem demonstrates that a normalized solution ƒ to Equation 1 depends 
analytically on those parameters on which ju depends on analytically. In 
most recent applications one needs more than just the points provided 
by Morrey's theorem. The analytic structure of the space of solutions is 
provided by the Ahlfors-Bers theorem. 

Given any quasiconformal mapping ƒ from S to Sf, we may compute 
partial derivatives with respect to a local coordinate z. Then jUf := f2/fz is 
a ( -1 , l)-form on S and jUf may be lifted to a Beltrami coefficient ju on the 
upper half plane U. // can be extended to C by reflection (set it equal to 
zero on R). The symmetry in ju leads to a symmetry in the solution to the 
Beltrami equation w2 = JLLWZ in C. The group G of deck transformations 
for the covering n : U —• S is conjugated by w into another group of 
real Möbius transformations G'. U —• UjG' is the holomorphic universal 
covering of S'. 

The last paragraph gives the fastest way to define Teichmüller space 
(modulo proving the Ahlfors-Bers theorem), but does not directly display 
the complex analytic structure of the space.5 This method was developed 
by Ahlfors to define the Teichmüller space; the derivation of the complex 
structure of the space of moduli then required a deep computation [3]. 

Bers [6] then developed a sly trick which simultaneously gave the com­
plex structure of Teichmüller space and led to a vast new area of research 
in complex analysis. The whole idea can be stated so simply that we 
give it in detail in the next few sentences. Reflecting //ƒ is the only non-
holomorphic operation hence the only obstruction in getting holomorphic 
dependence, of the solutions to the Beltrami equation, on the functions jUf 
in the unit ball in the J2?00 ( -1 , l)-forms on S. Instead just extend //ƒ to 
the lower half-plane L by the zero function!! The solution to the Beltrami 
equation is then a univalent function in L and its Schwarzian derivative 
is a holomorphic quadratic differential co for G. w then conjugates G into 
a group of Möbius transformations G' with complex entries. Functions of 

5The reflection used to extend JXJ to C is anti-holomorphic and destroys complex analytic 
dependence of w(z) on jUf. 
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these entries or, more traditionally, of the quadratic differentials serve as 
coordinates on T(S). The coordinates depend on the choice of basepoint 
but are holomorphically related. This embedding of T(S) in the quadratic 
differentials for G is called the Bers embedding. 

2. The available literature. Now we can actually distinguish between 
the more or less available books and lecture notes on Teichmiiller the­
ory. In 1964, Bers [7] produced lecture notes at ETH which focused on 
the groundwork for his embedding. In 1980, I wrote a Springer Lecture 
Note [1] which proves a number of the basic theorems concerning the 
real analytic structure of Teichmiiller space. It was designed to bridge the 
gulf between the topologists, who were getting interested in the theory at 
that time, and the complex analysts who had developed it. It included 
a description of the Fenchel-Nielsen approach to Teichmiiller theory via 
hyperbolic structures on surfaces. Bers' Teichmiiller theoretic approach 
to the Nielsen-Thurston classification of surface diffeomorphisms and a 
few minor results on group actions on Teichmiiller space. In the Soviet 
Union, Krushkal' and his collaborators have produced a few specialized 
monographs on aspects of quasiconformal mappings and Riemann sur­
faces (see e.g. [2]) which have many applications to Teichmiiller theory 
but are not centrally concerned with it. A similar comment is valid for 
StrebeFs Quadratic Differentials [18]. 

Until 1987, there were no other books available on the subject. Then 
three appeared almost simultaneously. Fred Gardiner's Teichmiiller the­
ory and quadratic differentials [12] and Olli Lehto's Univalent functions 
and Teichmiiller spaces [15] have already been reviewed in these pages by 
Irwin Kra [14] and Clifford Earle [10] respectively. Gardiner's book is a 
monograph in the sense that it takes as a starting point the relationship 
between length-area arguments and quadratic differentials and develops a 
great deal of the theory from this viewpoint. It is an embodiment of the 
Teichmiiller methodology. Lehto's book is mainly devoted to the complex 
analysis which grows out of the fact that Bers' embedding produces univa­
lent functions in a fashion which is at once classic in style but with much 
new content. 

Subhashis Nag's book The complex analytic theory of Teichmiiller space 
is both less focused and more complete. It has quite little overlap with the 
other two books—then again, they have little in common with each other. 
For the Teichmiiller theory of compact surfaces (possibly missing a finite 
number of points), Nag's book is the most encyclopedic, however he often 
needs to refer to other sources for complete proofs. The main virtue of the 
book lies in its complete layout of the Bers program of Teichmiiller theory 
within the structure developed by Cliff Earle. Teichmiiller's theorem is 
not a central player in this.6 He shows that the complex structure of Te­
ichmiiller space which makes periods of abelian differentials holomorphic 

6This is a mixed blessing since it does not permit treatment of Royden's characterization 
of the holomorphic automorphism group of T(S) but this is given in detail in Gardiner's 
book. 



BOOK REVIEWS 167 

is identical to that given by Bers embedding—this ties TeichmüUer the­
ory to algebraic geometry. Deformations and boundaries of TeichmüUer 
spaces are studied as are the universal family and the universal properties 
of the TeichmüUer space. 

The book is clear and belongs on the bookshelf of anyone working in or 
near TeichmüUer theory. It is likely to be the standard basic reference for 
those aspects of the TeichmüUer theory of finite Riemann surfaces which 
are based on or proved using Bers' embedding. It is not light reading and 
occasionally sends the reader elsewhere for details. 

Since the book does not really cover the geometry of TeichmüUer space, 
it is clear that another book is still needed to cover such advanced topics as 
the Weil-Petersson and the Teichmüller-Royden geometries, the projective 
embedding of the compactified moduli space, the deeper theory of degen­
erate boundary groups, applications to various subjects such as rational 
billiard tables, minimal surfaces, etc. 

Nag has written the book I wouldn't dare attempt and has written it 
well. He is to be congratulated for a major service to the community. 
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The book being reviewed is designed for advanced graduate students 
and scholars who want up-to-date information about an important part 
of general topology. What this latter means is less than clear since the 
word "topology" is used differently from words like "algebra," "analysis," 
or "geometry" which also attempt to act as signposts for branches of math­
ematics. The Journal of Algebra publishes articles on groups, rings, and 
other parts of algebra. Most journals devoted to analysis have space for 
papers on real analysis, complex analysis, or differential equations, and 
similar statements can be made about geometry. This kind of integration 
contrasts with a de facto apartheid as far as topology is concerned. 

There are three journals widely circulated in the United States devoted 
to topology. The journal Topology publishes articles in algebraic topology. 
Topology and Applications (formerly The Journal of General Topology) and 
Topology Proceedings, on the other hand, contain almost exclusively arti­
cles on general or geometric topology. This latter journal is reserved for 
articles presented at the annual Spring Topology Conference with an at­
tendance of two to three hundred which only rarely attracts an algebraic 
topologist. There is nothing unusual about a conference attracting only 
specialists in a particular area, but often, in the case of topology, no qual­
ifying adjectives seem to be used to describe its real nature. Whatever the 
reason, there seems to be a topological Tower of Babel. 

There would seem to be three branches of the topological tree; indeed, 
until a few decades ago, there were about four—but what used to be called 
combinatorial topology is now, for the most part, subsumed under the title 
"graph theory" or absorbed into algebraic topology. At the center one finds 
geometric topology, the kind you describe to lay people who ask you to tell 
them what topologists do. While geometry is the study of properties of 
"objects" that remain invariant under rigid motions, topology is the study 
of properties that remain invariant under arbitrary one-one bicontinuous 
transformations. Geometric topologists generally confine their studies to 
spaces that resemble subspaces of Euclidean spaces or Hubert spaces at 
least locally, and they do regard topology as a generalization of geome­
try. Algebraic topologists cover a lot of the same territory while putting 
more emphasis on (locally) Euclidean spaces, often with richer structures. 


