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SOME P R O P E R T I E S OF T H E DISCRIMINANT 
MATRICES OF A LINEAR ASSOCIATIVE 

ALGEBRA* 

BY R. F. RINEHART 

1. Introduction. Let A be a linear associative algebra over an 
algebraic field. Let d, e2, • • • , en be a basis for A and let £»•/*., 
(hjik = l,2, • • • , n), be the constants of multiplication corre­
sponding to this basis. The first and second discriminant mat­
rices of A, relative to this basis, are defined by 

Ti(A) = \\h(eres[ CrsiCij 
i, j = l 

T2(A) = \\h{eres / ,J CrsiC j 

II i , j = l 

where ti(eres) and fa{erea) are the first and second traces, respec­
tively, of eres. The first forms in terms of the constants of multi­
plication arise from the isomorphism between the first and sec­
ond matrices of the elements of A and the elements themselves. 
The second forms result from direct calculation of the traces of 
R(er)R(es) and S(er)S(es), R{ei) and S(ei) denoting, respectively, 
the first and second matrices of ei. The last forms of the dis­
criminant matrices show that each is symmetric. 

E. Noetherf and C. C. MacDuffeeJ discovered some of the 
interesting properties of these matrices, and shed new light on 
the particular case of the discriminant matrix of an algebraic 
equation. It is the purpose of this paper to develop additional 
properties of these matrices, and to interpret them in some fa­
miliar instances. 

Let A be subjected to a transformation of basis, of matrix M, 

7 J rH%j€j 
J = l 

(* 1,2, n: m = \mr, * 0 ) . 

* Presented to the Society, November 30, 1935. This paper, with proofs 
and details not included here, is on file as a doctoral thesis in the Library 
of the Ohio State University. 

f Mathematische Zeitschrift, vol. 30 (1929), p. 689. 
% Annals of Mathematics, (2), vol. 32 (1931), pp. 60-66; and Transactions 

of this Society, vol. 33 (1931), pp. 425-432. 



193&-] DISCRIMINANT MATRICES 571 

MacDufïee noted* that under such a transformation the dis­
criminant matrices are transformed by 

Tx = MT[MT, T2 = MTIMT, 

where MT denotes the transpose of M\ that is, these matrices 
are transformed in the same way as are the matrices of quad­
ratic forms. Thence he proved that, if A has a principal unit, 
either discriminant matrix may be reduced to a diagonal form, 
||grôrs||, by means of a transformation of basis which leaves the 
principal unit invariant. Further, for this normal basis the con­
stants of multiplication satisfy the cyclic relations 

(1) 0', p, r = 1, 2, n). 

As a consequence of (1) he proved that for every choice of basis 

(2) S(x)Ti = TiR(x), (i = 1, 2), 

for every element x of A. In a subsequent paper L. E. Bush f 
extended MacDufïee's results to a general associative algebra. 

2. Another Reduction to Normal Form. It is possible to derive 
the normal forms of the discriminant matrices of a general alge­
bra by a method essentially simpler than that of Bush. Since no 
reduction is necessary if A is nilpotent, let A be non-nilpotent. 
Then A is the sum of a semi-simple component B and its radi­
cal N, which may be zero. Let #i, • • • , ep, ep+i, • • • , en be 
such a basis for A that ep+i, • • • , en constitute a basis for N 
and ei, • • • , ep a basis for B, ei being the principal unit of B. 
Since both traces of a nilpotent element are zero, and since iV 
is invariant in A, 

(3) Ti(A) = 

U(ei) ti(e2) 

ti(e2) ti(e2
2) 

ti(ep) ti(epe2) 

0 0 

0 0 

ti(ep) 0 

ti(e2ep) 0 

o 

o 0 0 

* This property was earlier discovered by E. Noether, loc. cit. 
t This Bulletin, vol. 38 (1932), pp. 49-51. 
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(i = 1, 2). Since £i is idempotent and Fis non-modular, ti(e\) =^0, 
(i = 1, 2). Hence by a transformation of basis of A which leaves 
the basis of N unchanged and the principal unit of B invariant, 
Ti(A) [or 7^2C4)] can be reduced to a diagonal form ||gr8r*||, 
where g* = 0, (i>p). A manipulation of the associativity condi­
tions for this normal basis yields (1) from which (2) may be de­
rived.* From these relations we derive the following corollaries. 

COROLLARY 1. For every semi-simple algebra over the complex 
field, a basis can be so chosen that the first and second matrices of 
each element of the algebra are equal. 

COROLLARY 2. If A is a commutative semi-simple algebra over 
the complex field, a basis for A can be so chosen that the first and 
second matrices of each element of A are equal and symmetric. 

For over the complex field a normal basis may be so chosen 
that T(A) is scalar, whence (2) yields S(x) = R(x). If A is also 
commutative, then Cijk = Cjik and 

RT(x) = £T(x) = ^2 xi\\cr 7 j x% J 

/ j %i\ = R(x) = S(x). 

The existence of a normal basis can be applied to give a 
matric proof of the fact that a semi-simple algebra is the direct 
sum of simple algebras, and conversely. Let A be a semi-simple 
algebra with a proper invariant subalgebra B. Then if e\, • • • , ep, 
ev+\, - • - , en is a normal basis for A, and e\, • • • , ev the corre­
sponding basis for B, the first and second matrices of the basal 
elements are 

R(ed = 

R(eù = 

Rn{el) , 

0 ( 

Pi Qi 

0 Li 

Mil 

3 1 

) 

S(et) 

S(ei) = 

I SB(ei) 0 I 

M\ 0 | 

1 P\ 0 

Qi Li 

1 

) 

{iS p), 

(i > P)> 

where RB^I) and SB(ei) denote, respectively, the first and sec-

* It should be noted that the restriction on the field F is necessary only for 
the reduction to normal form; by direct verification it is easily seen that (2) 
holds for any basis, regardless of the nature of F. 
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ond matrices of ei, the representation being based on the algebra 
B only. Further, for this basis, 

TM) 
Ti(B) 

0 

0 

W 

where T\(B) and W are non-singular. Hence, applying (2), 

Af< = Af/ = 0, (i^p); Qi = Ql=0, (i>p)> 

By means of the cyclic relations we find further that Pi —PI = 0, 
(i>p). Hence 

R(x) = 
RB(X) 0 

0 Rc(x) 
SO) = 

SB(x) 0 

0 Sc(x) 

Obviously the'system of matrices Rc(x) [Sc(x)] is closed under 
addition and multiplication, and the Li [Li ] are linearly inde­
pendent. Hence the linear system (ep+i, • • • , en) is an algebra,* 
and therefore A =JB + C,f where B and C are semi-simple alge­
bras. This process can be continued with B and C in place of A, 
and so on, until A is decomposed into simple components. That 
the decomposition is unique may be proved as in Dickson's 
Algebren und ihre Zahlentheorie. 

The converse of this theorem is immediate from the stand­
point of the discriminant matrix. For the first discriminant 
matrix of a direct sum of algebras is the direct sum of the first 
discriminant matrices of the component algebras,% whence, if 
each component is simple, and non-null, each of the component 
matrices is non-singular, and therefore so is the direct sum. 

3. Equality of T\ and Ti. Since T\ and Ti are transformed 
cogrediently, their equality is an invariant property of A. If 
A is nilpotent, then T\(A) = T2(A) = 0 . Suppose then that A 
is non-nilpotent, with the basis £i, • • • , ePi • • • , eni where 
ep+i, - • • , en constitute a basis for the radical (if any), and 
ei, • • • , ep a basis for the semi-simple component of A. For this 

* Since A is semi-simple, it is equivalent to the algebra of its first [second] 
matrices. 

t - j - denotes direct sum. 
% MacDuffee, Annals of Mathematics, loc. cit. 
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basis Ti and T2 are in the form (2). Hence an obvious necessary 
condition that 7\ = T2 is 

(4) h(er) = h(er), (r = 1, 2, • • • , p). 

This condition is clearly sufficient, since (4) implies 

V V 

h(ere8) = 5D crsit\{e%) = 23 Crsih(ei) = h(eres). 

Now (4) implies that /i(x)=£2(X) for every x of -4, and con­
versely. Hence if x is any element of A, and if T\ = T2, then 
/i(x*) = t2{xl) for every i. By a theorem of Frobenius* this im­
plies that 

Si = si , (i = 1, 2, • • • , ») , 

>̂i and ^/ being the sum of the iih powers of the first and second 
characteristic roots, respectively, of x. By Newton's identities 
this implies that the first and second characteristic functions of 
x are equal. Conversely, if the characteristic functions of each 
element x are equal, then so are the two traces of x. 

THEOREM 1. The discriminant matrices are equal if, and only if, 
the characteristic f unctions of each element of the algebra are equal. 

If A is semi-simple, then T\(A) is non-singular and (2) may be 
written S(x) = TiR(x)TiI; hence, S(x) and R(x) being similar, 
the characteristic functions are equal. This proves the following 
corollary. 

COROLLARY. If A is semi-simple, Ti(A) = T2(A).'\ 

By a further elementary analysis, which is omitted here, it 
may be shown tha t : The equality of Ti(A) and T2(A), when A is 
neither semi-simple nor nilpotent, depends only on the multiplica­
tive relations existing between the radical of A and any semi-simple 
component B of A. In particular, if N is commutative with B, 
then Ti(A) is equal to T2(A). 

C. C. MacDuffeeJ defined p(a) to be the maximum number of 
linearly independent linear relations among the first matrices 
R(e{) [S(e{) ] of an algebra, and proved that p is equal to the 

* G. Frobenius, Journal für Mathematik, vol. 51 (1856), pp. 209-271. 
t Proved by MacDuffee by manipulation of the cyclic relations. 
t This Bulletin, vol. 35 (1929), pp. 344-349. 
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order of the maximal zero subalgebra Z, such that ZA = 0, and cr 
is equal to the order of a similar algebra W, such that A W = 0. 
By a long but elementary analysis omitted here, the following 
theorem can be proved. 

THEOREM 2. If A is a non-nilpotent algebra with a commutative 
radical N, a necessary and sufficient condition that p=a is that 
h(u) =fa(u), where u is any principal idempotent of A. 

COROLLARY. If A is non-nilpotent and has a commutative radi­
cal^ and if T\(A) = Tz(A), then p=a. 

It can be shown by examples that the condition t\(u) =/2(^) 
is in general neither necessary nor sufficient, if N is not com­
mutative. 

4. The Discriminant Matrix of an Algebraic Equation. We 
shall now consider two applications of the foregoing theory to 
the case of the commutative algebra generated by an algebraic 
equation. Let 

(5) ƒ ( » = xn + dn-xx»-1 + • • • + a0 = 0 

be an equation with coefficients in a field F. Let A be the ring 
consisting of all polynomials with coefficients in F, reduced 
modulo ƒ(#)» or> what is the same thing, the algebra generated 
by an element x, whose minimum equation is (5). For the cus­
tomary basis 1, x, x2, • • • , xn~1

1 the discriminant matrix of A is* 

I So Si ' • • sn_i f 

I' $n—1 $n ' ' ' $2n—2 ' ' 

where Si is the sum of the ith. powers of the roots of (5), s0 being 
defined to be n. 

If we form the equality (2) and equate corresponding ele­
ments of the resulting matrices, discarding the immediate iden­
tities, we obtain 

n—1 

— X a,iSi+j = Sn+j, (j = 0, 1, • • • , n — 2), 
i=0 

* MacDuffee, Annals of Mathematics, loc. cit. 
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which are Newton's identities for sk, (k = n, n + 1, • • • , 2w —2). 
Again, if we form S(x2)T=TR(x2), we get the additional iden­
tity for s2n-i- Similarly, if (2) is applied with x3, x4, • • • , all the 
Newtonian identities for s&, (k^n) are obtained. Conversely, 
Newton's identities for k^n imply that S(x)T=TR(x). Thus 
(2) may be considered as an extension of Newton's identities to 
a general algebra. 

The second application has to do with the following theorem. 

BORCHARDT-JACOBI THEOREM. Iff(x) = 0 is an algebraic equa­
tion with real coefficients, the number of its distinct roots is equal 
to the rank of the discriminant matrix, and the number of its dis­
tinct real roots is equal to the signature of this matrix* 

We shall outline a proof of the first half of this theorem, using 
the discriminant matrix from the standpoint of linear algebra. 
Let 

(6) /(*) = n (* - <*i)n = o 
t = i 

be an algebraic equation with the distinct roots «i, • • • , am. 
Let m<n and let A be the algebra defined by ƒ(x) = 0.f If we 
define P(x) =YL2=SX ~~a^ »the elements of the set of polynomials 

(7) P(x), xP(x), • • • , an--m--1P(aO, 

are linearly independent and each one (hence any linear com­
bination of them) is nilpotent. It is easily seen that any nil-
potent polynomial must contain the factor P(V), and conse­
quently the set (7) is a maximal such set and therefore consti­
tutes a basis for the radical of A. Hence the discriminant matrix 
of A is of nullity n — m, that is, of rank m. If m = n, it can be 
shown that there are no nilpotent elements, and hence no radical 
in A, whence the rank of the discriminant matrix is n. 

ASHLAND COLLEGE, 

ASHLAND, OHIO 

* A. Loewy, Ostwald's Klassiker der exakten Wissenschaften, No. 143, 
pp. 50-63. 

f The ground field F is here taken to be the complex field. The same proof, 
with only slight modifications, can be carried through if F is considered to be 
any subfield of the complex field. 


