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THE CIRCLE METHOD AND BOUNDS

FOR L-FUNCTIONS—III:

t-ASPECT SUBCONVEXITY FOR GL(3) L-FUNCTIONS

RITABRATA MUNSHI

1. Introduction

Let π be a Hecke-Maass cusp form of type (ν1, ν2) for SL(3,Z). Let the normal-
ized Fourier coefficients of π be given by λ(m1,m2) (so that λ(1, 1) = 1). The Lang-
lands parameters (α1, α2, α3) associated with π are defined as α1 = −ν1 − 2ν2 + 1,
α2 = −ν1+ ν2, and α3 = 2ν1 + ν2− 1. The Ramanujan-Selberg conjecture predicts
that Re(αi) = 0. From the work of Jacquet and Shalika [6], we (at least) know that
|Re(αi)| < 1

2 . The L-series associated with π is given by

L(s, π) =

∞∑
n=1

λ(1, n)n−s

in the domain σ = Re(s) > 1. This extends to an entire function and satisfies a
functional equation. More precisely there is an associated gamma factor given by

γ(s, π) =
3∏

i=1

π− s
2Γ

(
s− αi

2

)
,

so that

γ(s, π)L(s, π) = γ(1− s, π̃)L(1− s, π̃).

Here π̃ is the dual form having Langlands parameters (−α3,−α2,−α1). The con-
vexity principle implies that L(1/2 + it, π) �π (1 + |t|)3/4—the convexity bound.
The purpose of this paper is to prove the following.

Theorem 1. Let π be a Hecke-Maass cusp form for SL(3,Z). Then we have

L
(
1
2 + it, π

)
�π,ε (1 + |t|) 3

4−
1
16+ε.

A similar subconvex bound, with the same exponent, is known for the symmetric
square lifts of SL(2,Z) forms (or self-dual forms for SL(3,Z)) due to the work of Li
[7]. Other subconvexity results in the case of degree three L-functions in different
aspects can be found in [1], [9], [10], [11], and [13]. The subconvex bound in the
t-aspect was first established by Weyl [15] for degree one L-functions, and by Good
[3] for degree two L-functions. This paper settles the problem for degree three
L-functions.

Received by the editors March 31, 2014.
2010 Mathematics Subject Classification. Primary 11F66, 11M41; Secondary 11F55.
Key words and phrases. Subconvexity, GL(3) Maass forms, twists.

c©2015 American Mathematical Society

913

http://www.ams.org/jams/
http://www.ams.org/jams/
http://dx.doi.org/10.1090/jams/843


914 RITABRATA MUNSHI

Like the two previous papers [12] and [13], with the same title, we will yet again
demonstrate the power of the circle method in the context of subconvexity. In the
present situation Kloosterman’s version of the circle method works best. Let

δ(n) =

{
1 if n = 0;

0 otherwise.

Then for any real number Q, we have

δ(n) = 2 Re

∫ 1

0

∑∑�

1≤q≤Q<a≤q+Q

1

aq
e

(
nā

q
− nx

aq

)
dx(1)

for n ∈ Z (and e(z) = e2πiz). The 	 on the sum indicates that the sum over a is
restricted by the condition (a, q) = 1, and also ā stands for the multiplicative inverse
of a modulo q. (For a proof of this formula see [5].) There are well understood
drawbacks in this form of circle method. However, in our treatment these do not
create any problem. After an application of the Poisson summation formula, we
will be able to write a in terms of the dual frequency (see (16) in Subsection 3.1),
and hence we do not need to execute the complete character sum over a. After
that we will only need the fact that a � Q. (The notation α � A means that
there exists absolute constants 0 < c1 < c2 such that c1A < |α| < c2A.) The
main advantage of the above version of the circle method is the explicit form of the
weight function e(−nx/aq), which will be helpful for estimating the exponential
integrals in Section 4.

Suppose t > 2; then by the approximate functional equation we have

L
(
1
2 + it, π

)
� tε sup

N≤t3/2+ε

|S(N)|
N1/2

+ t−2012,(2)

where S(N) is a sum of type

S(N) :=
∞∑

n=1

λ(1, n)n−itV
( n
N

)

for some smooth function V (allowed to depend on t) supported in [1, 2] and sat-
isfying V (j)(x) �j 1. (In this paper the notation α � A will mean that there is a
constant c such that |α| ≤ cA. The dependence of the constant on the automorphic
form π, and ε, when occurring, will be ignored.) Hence to establish subconvexity
we need to show cancellation in the sum S(N) for N roughly of size t3/2. We can
and shall further normalize V , for convenience, so that

∫
V (y)dy = 1.

We apply (1) directly to S(N) as a device for separation of the oscillation of the
Fourier coefficients λ(1, n) and n−it. This by itself does not seem very effective, and
as in [13] we need a conductor lowering mechanism. For this purpose we introduce
an extra integral, namely

S(N) =
1

K

∫
R

V
( v

K

) ∞∑∑
n,m=1
n=m

λ(1, n)m−it
( n
m

)iv
V
( n
N

)
U
(m
N

)
dv,

where tε < K < t is a parameter which will be chosen optimally later, and U is a
smooth function supported in [1/2, 5/2], with U(x) = 1 for x ∈ [1, 2] and U (j) �j 1.
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For n,m ∈ [N, 2N ], the integral

1

K

∫
R

V
( v

K

)( n
m

)iv
dv

is small if |n−m| � Ntε/K. This step is the most crucial “trick” in this paper. The
reader should realize that this is the analytic analogue of the arithmetic condition
M1|(n − m) that we had in [13]. There we used this to replace δ(n − m) by
δ((n−m)/M1), and hence the optimal choice of the size of the modulus in the circle
method reduced from N1/2 (where n,m � N) to (N/M1)

1/2. Here also it reduces
the optimal size of the modulus in the circle method from N1/2 to (N/K)1/2. This
is probably not completely obvious at this stage, but it should become clear later.

So the “natural choice” for Q in (1) to detect the event n−m = 0 is

Q =

(
N

K

)1/2

,(3)

and we get

S(N) = S+(N) + S−(N),

where

S±(N) =
1

K

∫ 1

0

∫
R

V
( v

K

) ∑∑�

1≤q≤Q<a≤q+Q

1

aq
(4)

×
∞∑∑

n,m=1

λ(1, n)nivm−i(t+v)e

(
± (n−m)ā

q
∓ (n−m)x

aq

)

× V
( n
N

)
U
(m
N

)
dvdx.

In the rest of the paper we will analyze S+(N) (the same analysis holds for
S−(N)), with Q as in (3), using summation formulas and the stationary phase
method. We will take

t11/8 < N < t3/2+ε, and
t6/5

N3/5
≤ K < min

{
t2−ε

N
,N1/3

}
.(5)

The optimal choice of K, as we will see at the end, is given by K = max{N1/4, t6/5/
N3/5}. With this choice of K we will establish the following bound.

Proposition 1. We have

S+(N) �
{
t1/2+εN5/8 if t24/17 < N � t3/2+ε;

t11/10+εN1/5 if t11/8 < N ≤ t24/17.
(6)

The same bound holds for S−(N), and consequently, for S(N). For N ≤ t11/8

the trivial bound S(N) � Ntε, which follows from Lemma 2 (i.e., Ramanujan
bound on average) of Section 2, is sufficient for our purpose. Clearly Theorem 1
follows from (2) and (6) (after a short computation). In the rest of the paper we
will prove the proposition.

Let us now briefly explain the steps in the proof. Temporarily assume the
Ramanujan conjecture λ(1, n) � nε. This is not very serious, as at any step
where it is required one can use the Cauchy inequality and use the Ramanujan
bound on average, i.e., Lemma 2. The circle method has been used to separate the
sums on n and m, and we have arrived at (4). Trivially estimating the sum we
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get S(N) � N2+ε. (For simplicity assume that N = t3/2 and q � Q.) So we are
required to save N (and a little more) in a sum of the form∫ 2K

K

∑
q�Q

∑�

Q<a≤q+Q

∑
n�N

λ(1, n)nive

(
nā

q
− nx

aq

) ∑
m�N

m−i(t+v)e

(
−mā

q
+

mx

aq

)
dv.

The sum over m has “conductor” Qt � N1/2t/K1/2. Roughly speaking the conduc-
tor takes into account both the arithmetic modulus, which is q, and the amplitude
of oscillation in the analytic weight function, which is of size t. Note that both
m−i(t+v) and m−it have the same amplitude if |v| � t1−ε. So the extra oscillating
term, namely m−iv, which we are inserting is not hurting us here. On the other
hand, when K is large, the arithmetic modulus is small. So the overall conductor in
the sum over m is reduced. Applying the Poisson summation (and “executing”the
sum over a) we are able to save N/(Qt)1/2 × Q1/2 = N/t1/2. Of course, to this
end we need the second derivative bound for the resulting exponential integral. In
fact, we need to use the stationary phase method. Observe that the saving so far
is independent of K. Now we need to save t1/2 in a sum of the form∫ 2K

K

∑
q�Q

∑
(m,q)=1

|m|�Qt/N

(
(t+ v)aq

(x−ma)

)−i(t+v) ∑
n�N

λ(1, n)e

(
nm

q

)
nive

(
−nx

aq

)
dv,

where a is the unique multiplicative inverse of m modulo q in the range (Q, q+Q].
Consider the sum over n, which involves the Fourier coefficients, and has con-

ductor (QK)3. Observe that larger values of K are taking us to a worse situation.
But applying the Voronoi summation formula we are able to save N/(QK)3/2 =
N1/4/K3/4. To this end we need the Weil bound for Kloosterman sums and the
second derivative bound for certain exponential integrals that arise in the integral
transform resulting from Voronoi. Moreover we are able to save K1/2 in the integral
over v (see Section 4). We now need to save K1/4t1/8 in a sum of the form

∑
n�N1/2K3/2

λ(n, 1)
∑∑

q�Q, (m,q)=1
|m|�qt/N

S(m̄, n; q)

∫ K

−K

n−iτg(q,m, τ )dτ,

where the function g is of size O(1) but highly oscillatory. It is basically a product
of a smooth bump function and(

N

q3

)−iτ (
− (t+ τ )q

Nm

)−i(t+τ)

.

The role of the v integral and the parameter K is not yet clear. At this moment it
seems to be hurting us more than helping.

The next step involves taking Cauchy to get rid of the Fourier coefficients, but
this process also squares the amount we need to save. So now we are faced with
the task of saving K1/2t1/4 in a sum which roughly looks like

∑
n�N1/2K3/2

∣∣∣ ∑∑
q�Q

|m|�Qt/N
(m,q)=1

S(m̄, n; q)

∫ K

−K

n−iτg(q,m, τ )dτ
∣∣∣2.
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One should note that we need to save K1/2t1/4 together with the square root
saving in the Kloosterman sum and K1/2 saving in the integral (which is the second
derivative bound). The idea is to open the absolute square and execute the sum
over n using the Poisson summation. The resulting diagonal contribution or the
zero frequency contribution is satisfactory for our purpose if

the number of terms inside the absolute value =
Q2t

N
> K1/2t1/4

or equivalently t1/2 > K. On the other hand, by the Poisson we make a saving
(ignoring the zero frequency) of size N1/2K3/2/QK1/2 = K3/2, as the length of
the sum is N1/2K3/2 and the conductor is of size Q2K = N . This is where we are
getting help from the parameter K. The conductor is independent of K, but the
length of the sum increases with K. So effectively we have a drop in the conductor
of the sum. So the contribution of the non-zero frequencies is satisfactory if

K3/2 > K1/2t1/4

or K > t1/4. In particular, by choosing K in the range t1/4 < K < t1/2 we can get
a bound which breaks the convexity barrier.

We conclude this section with a heuristic argument. We want to bound

S =
∑

n�t3/2

λ(1, n)nit.

Consider the function n �→ χ(n)niv, where χ varies over all characters of conductor
≤ Q and v � K. These functions (if one discretizes v naturally) span a vector space
of dimension ≈ Q2K = t3/2. Hence one expects to write the function n �→ nit as
a linear combination of the above set of functions. A priori it is not clear how
to actually do so, but the formula (19) of Lemma 6 amounts to a formula of this
general nature. We have thus written S in terms of∑

n�t3/2

λ(1, n)χ(n)niv.

Now we apply the functional equation for the L-function L(1/2 − iv, π ⊗ χ). The
sum gets dualized to a sum of length (QK)3/t3/2 (which is the range of summation
in Lemma 7). It is, of course, essential, for this strategy to work, that this dual
length is shorter than the original length, i.e.,

(QK)3/t3/2 < t3/2.

Since Q = t3/4/K1/2 the inequality boils down to the requirement K < t1/2. One
should realize that we are trading an L-function of conductor t3 for a family of L-
functions of conductor (QK)3, and this is beneficial only when the above inequality
holds. It is also worth observing that—for this exact reason—the degree 3 L-
function is the limit of the method (assuming we restrict to twisting only by GL(1)).
Indeed for the L-function of degree r one will need K < t2−r/2, which is not possible
for r ≥ 4.

2. GL(3) Voronoi summation formula and stationary phase method

2.1. Voronoi type summation formula for SL(3,Z). Suppose π is a Maass
form of type (ν1, ν2) for SL3(Z), which is an eigenfunction of all the Hecke operators
with Fourier coefficients λ(n1, n2), normalized so that λ(1, 1) = 1. Since we shall
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work entirely at the level of L-functions, we simply refer to Goldfeld’s book [2]
for details regarding automorphic forms on higher rank groups. In this subsection
we recall two important results—a summation formula for the Fourier coefficients
twisted by additive characters and a bound on the average size of the Fourier
coefficients—which will play a vital role in our analysis.

Let g be a compactly supported smooth function on (0,∞), and let g̃(s) =∫∞
0

g(x)xs−1dx be its Mellin transform. For σ > −1 + max{−Re(α1),−Re(α2),
−Re(α3)} and  = 0, 1 define

γ�(s) :=
π−3s− 3

2

2

Γ
(
1+s+α1+�

2

)
Γ
(
1+s+α2+�

2

)
Γ
(
1+s+α3+�

2

)
Γ
(−s−α1+�

2

)
Γ
(−s−α2+�

2

)
Γ
(−s−α3+�

2

) ,

set γ±(s) = γ0(s)∓ iγ1(s), and let

G±(y) =
1

2πi

∫
(σ)

y−sγ±(s)g̃(−s)ds.(7)

The following Voronoi type summation formula (see [7], [8]) will play a crucial role
in our analysis. Recall the definition of the Kloosterman sum,

S(a, b; c) =
∑�

α mod c

e

(
aα+ bα

c

)
,

where ᾱ denotes the multiplicative inverse of α mod c.

Lemma 1. Let g be a compactly supported smooth function on (0,∞), and we have

∞∑
n=1

λ(1, n)e

(
an

q

)
g(n) =q

∑
±

∑
n1|q

∞∑
n2=1

λ(n2, n1)

n1n2
S(ā,±n2; q/n1)G±

(
n2
1n2

q3

)
,

(8)

where (a, q) = 1 and ā denotes the multiplicative inverse of a mod q.

We need to study the behavior of the gamma factor γ±(s) more closely, especially
for s restricted in vertical strips. Using the Stirling formula we can pull out the
oscillatory part, and the remaining part satisfies a “scaling property.” Indeed for
s = − 1

2 + iτ with |τ | � tε, we apply Stirling’s formula to get

γ±

(
−1

2
+ iτ

)
=

(
|τ |
eπ

)3iτ

Φ±(τ ), where Φ′
± (τ ) � 1

|τ | .(9)

The following lemma, which gives the Ramanujan conjecture on average, is also
well-known. It follows from standard properties of the Rankin-Selberg L-function.

Lemma 2. We have ∑∑
n2
1n2≤x

|λ(n1, n2)|2 � x1+ε,

where the implied constant depends on the form π and ε.
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2.2. Stationary phase method. We will need estimates for exponential integrals
of the form

I =

∫ b

a

g(x)e(f(x))dx,(10)

where f and g are smooth real valued functions. First we recall an easy estimate.
Suppose in the range of the integral we have |f ′(x)| ≥ B and f (j)(x) � B1+ε for
j ≥ 2. Suppose Supp(g) ⊂ (a, b) and g(j)(x) �a,b,j 1. Then by making the change
of variable u = f(x) we get

I =

∫ f(b)

f(a)

g(f−1(u))

f ′(f−1(u))
e(u)du.

By applying integration by parts j times we get

I �a,b,j,ε B
−j+ε.

This will be used at several places to show that certain exponential integrals are
negligibly small in the absence of the stationary phase.

In case there is a single stationary phase point, then the integral has an asymp-
totic expansion. A sharp version of this stationary phase method, which can be
found in [4], will be useful for our purpose. The estimates are in terms of parameters
Θf , Ωf � (b− a) and Ωg, for which the derivatives satisfy

f (i)(x) � Θf/Ω
i
f , g(j)(x) � 1/Ωj

g.(11)

For the second assertion we will moreover require

f (2)(x) � Θf/Ω
2
f .(12)

Lemma 3. Suppose f and g are smooth real valued satisfying (11) for i = 2, 3 and
j = 0, 1, 2. Suppose g(a) = g(b) = 0.

(1) Suppose f ′ and f ′′ do not vanish in [a, b]. Let Λ = min[a,b] |f ′(x)|. Then we
have

I � Θf

Ω2
fΛ

3

(
1 +

Ωf

Ωg
+

Ω2
f

Ω2
g

Λ

Θf/Ωf

)
.

(2) Suppose f ′ changes sign from negative to positive at the unique point x0 ∈
(a, b). Let κ = min{b− x0, x0 − a}. Further suppose (11) holds for i = 4 and (12)
holds. Then we have

I =
g(x0)e(f(x0) + 1/8)√

f ′′(x0)
+O

(
Ω4

f

Θ2
fκ

3
+

Ωf

Θ
3/2
f

+
Ω3

f

Θ
3/2
f Ω2

g

)
.

Finally we recall the second derivative bound for exponential integrals in two
variables. Let

I(2) =

∫ b

a

∫ d

c

g(x, y)e(f(x, y))dydx,(13)
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where f and g are smooth real valued functions. First suppose g = 1, and we have
positive parameters r1 and r2 such that in the rectangle [a, b]× [c, d] we have

f (2,0)(x, y)�r21, f (0,2)(x, y)�r22, f (2,0)(x, y)f (0,2)(x, y)−
[
f (1,1)(x, y)

]2
�r21r

2
2,

(14)

where f (i,j)(x, y) = ∂i+j

∂xi∂yj f(x, y) and the implied constants are absolute. Then we

have (see [14])

I(2) �
1

r1r2
.

To extend this result to smooth g with Supp(g) ⊂ (a, b)×(c, d), we apply integration
by parts once in each variable. To state the result we define the total variation of
g to be

var(g) :=

∫ b

a

∫ d

c

∣∣∣∣ ∂2

∂x∂y
g(x, y)

∣∣∣∣ dydx.
Lemma 4. Suppose f , g, r1, and r2 are as above satisfying the condition (14).
Then we have

I(2) �
var(g)

r1r2
with an absolute implied constant.

2.3. An integral. Let W be a smooth real valued function with Supp(W ) ⊂
[a, b] ⊂ (0,∞). Suppose W (j)(x) �a,b,j 1. Consider the exponential integral

W †(r, s) =

∫ ∞

0

W (x)e(−rx)xs−1dx,(15)

where r ∈ R and s = σ + iβ ∈ C. In particular, W †(r, 1) is the Fourier transform
of W and W †(0, s) is the Mellin transform of W . The integral is of the form (10)
with

g(x) = W (x)xσ−1 and f(x) = −rx+
1

2π
β log x.

Then

f ′(x) = −r +
1

2π

β

x
and f (j)(x) = (−1)j−1(j − 1)!

1

2π

β

xj

for j ≥ 2. The unique stationary point is given by

x0 =
β

2πr
,

and we can write

f ′(x) =
β

2π

(
1

x
− 1

x0

)
= r
(x0

x
− 1
)
.

Suppose a, b, and σ are fixed and we are interested in the dependence of the integral
on β and r. If x0 /∈ [a/2, 2b], then in the support of the integral, i.e., W (x) �= 0,
we have |f ′(x)| � max{|β|, |r|} and |f (j)(x)| �j |β|, where the implied constants
depend on a, b, and σ. So in this case W †(r, s) �j min{|β|−j , |r|−j}, where again
the implied constant depends on a, b, and σ. On the other hand, if x0 ∈ [a/2, 2b],
then using the second statement of Lemma 3 (with Θf = |β| and Ωf = Ωg = 1) we
get

W †(r, s) =
g(x0)e(f(x0) + 1/8)√

f ′′(x0)
+O
(
|β|−3/2

)
.
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The error term can also be written as O(|r|−3/2), as x0 ∈ [a/2, 2b] implies that
|r| � |β|. Note that for β > 0 we need to take conjugate so that the conditions of
the lemma are satisfied. Also we note that the above asymptotic holds regardless
of the location of x0. For the following statement we take

√
−1 = eπi/2.

Lemma 5. Let W be a smooth real valued function with Supp(W ) ⊂ [a, b] ⊂ (0,∞)
and W (j)(x) �a,b,j 1. Let r ∈ R and s = σ + iβ ∈ C. We have

W †(r, s) =

√
2πe(1/8)√

−β
W

(
β

2πr

)(
β

2πr

)σ (
β

2πer

)iβ

+O
(
min{|β|−3/2, |r|−3/2}

)
,

where the implied constant depends on a, b, and σ. We also have

W †(r, s) = Oa,b,σ,j

(
min

{(
1 + |β|
|r|

)j

,

(
1 + |r|
|β|

)j
})

.

3. Application of summation formula

3.1. Applying Poisson summation. For simplicity let us assume that t > 2.
First we will apply the Poisson summation formula on the sum over m in (4), i.e.,

∞∑
m=1

m−i(t+v)e

(
−mā

q

)
e

(
mx

aq

)
U
(m
N

)
.

Breaking the sum into congruence classes modulo q we get∑
α mod q

e

(
−αā

q

)∑
m∈Z

(α+mq)−i(t+v)e

(
(α+mq)x

aq

)
U

(
α+mq

N

)
.

Then applying the Poisson we obtain∑
α mod q

e

(
−αā

q

)∑
m∈Z

∫
R

(α+ yq)−i(t+v)e

(
(α+ yq)x

aq

)
U

(
α+ yq

N

)
e(−my)dy.

Making the change of variable (α+yq)/N �→ u and executing the resulting complete
character sum we arrive at

N1−i(t+v)
∑
m∈Z

m≡ā mod q

∫
R

U (u)u−i(t+v)e

(
N(x−ma)

aq
u

)
du.(16)

The above integral, in the notation of Subsection 2.3 is

U† (N(aq)−1(ma− x), 1− i(t+ v)
)
.(17)

Recall that a � (N/K)1/2, and by our choice (see (5)) K < t2−ε/N . So |N(aq)−1

(ma− x)| � q−1N |m| if m �= 0, and |N(aq)−1(ma− x)| � q−1(NK)1/2 if m = 0.
Applying the second statement of Lemma 5 it follows that the contribution of the
zero frequency m = 0 (which occurs only for q = 1 due to the condition (m, q) = 1)
in (16) is negligibly small, and also the contribution of the tail |m| � qt1+ε/N is
negligibly small. We only need to consider m with 1 ≤ |m| � qt1+ε/N , which in
turn implies that we only need to focus on q which are in the range

N/t1+ε � q ≤ Q = (N/K)1/2.

Taking a dyadic subdivision we conclude the following.
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Lemma 6. Suppose N and K satisfy (5); then we have

S+(N) =
N

K

∑
N/t1+ε�C≤(N/K)1/2

C dyadic

S(N,C) +O(t−2012),(18)

where

S(N,C) =

∫ 1

0

∫
R

N−i(t+v)V
( v

K

) ∑
C<q≤2C

×
∑

(m,q)=1

1≤|m|�qt1+ε/N

1

aq
U†
(
N(ma− x)

aq
, 1− i(t+ v)

)
(19)

×
∞∑

n=1

λ(1, n)e

(
nm

q

)
nive

(
−nx

aq

)
V
( n
N

)
dvdx.

Here a = aQ(m, q) is the unique multiplicative inverse of m modulo q in the range
(Q, q +Q].

3.2. Applying Voronoi summation. Applying Lemma 1 we get
∞∑

n=1

λ(1, n)e

(
nm

q

)
nive

(
−nx

aq

)
V
( n
N

)
(20)

= qN iv
∑
±

∑
n1|q

∞∑
n2=1

λ(n2, n1)

n1n2
S(m̄,±n2; q/n1)I

(
n2
1n2

q3
,
x

aq

)
,

where

I(r, r′) =
1

2πi

∫
(σ)

(rN)−s γ±(s)V
†(Nr′,−s+ iv)ds.

(Here V † is as defined in Subsection 2.3.) Using the Stirling approximation we get
that

|γ±(s)| �π,σ 1 + |τ |3σ+3/2,(21)

where s = σ + iτ and σ ≥ −1/2. Also from the second statement of Lemma 5 we
get that

V †
(
Nx

aq
,−s+ iv

)
�σ,j min

{
1,

(
NK1/2

q|τ − v|

)j
}
.

Shifting the contour to σ = M (a large positive integer) and taking j = 3M +3 we
can make the integral in (20) negligibly small if n2

1n2 � N1/2K3/2tε. For smaller
values of n2

1n2 we move the contour to σ = −1/2, and obtain

I

(
n2
1n2

q3
,
x

aq

)
=

1

2π

(
n2
1n2N

q3

)1/2∑
J∈J

∫
R

(
n2
1n2N

q3

)−iτ

γ±

(
−1

2
+ iτ

)

× V †
(
Nx

aq
,
1

2
− iτ + iv

)
WJ(τ )dτ +O(t−20120).

Here J is a collection of O(log t) many real numbers in the interval [−(NK)1/2tε/C,
(NK)1/2tε/C], containing 0. For each J we have a smooth bump function (non-

negative real valued) WJ(x) satisfying x�W
(�)
J (x) �� 1 for all  ≥ 0. For J = 0 the
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functionW0(x) is supported in [−1, 1] and satisfies the stricter boundW
(�)
J (x) �� 1.

For each J > 0 (resp. J < 0) the function WJ(x) is supported in [J, 4J/3] (resp.
[4J/3, J ]). Finally we require that∑

J∈J

WJ (x) = 1, for x ∈ [−(NK)1/2tε/C, (NK)1/2tε/C].

In short the collection WJ is a smooth partition of unity. The precise definition of
the function or the collection will not be required.

Lemma 7. Let N and K satisfy (5), and suppose N/t1+ε � C � (N/K)1/2. We
have

S(N,C) =
N1/2−itK

2π

∑
±

∑
J∈J

∑∑
n2
1n2�N1/2K3/2tε

λ(n2, n1)

n
1/2
2

×
∑∑

C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

S(m̄,±n2; q/n1)

aq3/2
I�±(q,m, n2

1n2) +O(t−2012),

where

I
�
±(q,m, n) =

∫
R

(
nN

q3

)−iτ

γ±

(
−1

2
+ iτ

)
I
��(q,m, τ )WJ(τ )dτ,

and

I
��(q,m, τ ) =

∫ 1

0

∫
R

V (v)V †
(
Nx

aq
,
1

2
− iτ + iKv

)

× U†
(
N(ma− x)

aq
, 1− i(t+Kv)

)
dvdx.

In the next section we will analyze the integrals further.

4. Analysis of the integrals

The aim of this section is to prove Lemma 8 which gives a decomposition of
I��(q,m, τ ) for |τ | � K1/2t1+ε/N1/2.

4.1. Stationary phase analysis for V † and U†. We apply the first statement
of Lemma 5 to conclude that

U†
(
N(ma− x)

aq
, 1− i(t+Kv)

)
=eπi/4

(t+Kv)1/2 aq

(2π)1/2N(x−ma)
U

(
(t+Kv)aq

2πN(x−ma)

)

×
(

(t+Kv)aq

2πeN(x−ma)

)−i(t+Kv)

+O

(
1

t3/2

)
.
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The error term makes a contribution of size O
(
tε−3/2

)
toward I��(q,m, τ ), and we

get

I��(q,m, τ ) = c1
aq

N

∫ 1

0

∫
R

V (v)V †
(
Nx

aq
,
1

2
− iτ + iKv

)
(22)

× (t+Kv)1/2

(x−ma)
U

(
(t+Kv)aq

2πN(x−ma)

)

×
(

(t+Kv)aq

2πeN(x−ma)

)−i(t+Kv)

dvdx+O

(
tε

t3/2

)
for some constant c1, and an absolute implied constant.

Next we study the integral V † (Nx/aq, 1/2− iτ + iKv) using Lemma 5. We
have

V †
(
Nx

aq
,
1

2
− iτ + iKv

)
= e−πi/4 (aq)1/2

(2Nx)1/2
V

(
(Kv − τ )aq

2πNx

)(
(Kv − τ )aq

2πeNx

)i(Kv−τ)

+O

(
min

{( aq

Nx

)3/2
,

1

|τ −Kv|3/2

})
.

Hence up to a constant I��(q,m, τ ) is given by(aq
N

)3/2 ∫ 1

0

∫
R

V (v)
(t+Kv)1/2

x1/2(x−ma)
U

(
(t+Kv)aq

2πN(x−ma)

)
V

(
(Kv − τ )aq

2πNx

)

×
(

(t+Kv)aq

2πeN(x−ma)

)−i(t+Kv)(
(Kv − τ )aq

2πeNx

)i(Kv−τ)

× dvdx+O(E�� + tε−3/2),

where the error term is given by (since uU(u) � 1)

E�� =
1

t1/2

∫ 1

0

∫ 2

1

min

{( aq

Nx

)3/2
,

1

|τ −Kv|3/2

}
dvdx.

To estimate the error term we split the inner integral over v into pieces. Indeed the
first term in the integrand is smaller than the second term if and only if v lies in
the interval

τ

K
− Nx

aqK
< v <

τ

K
+

Nx

aqK
.

If |τ | ≥ 10K, this interval does not intersect [1, 2] unless Nx/aq � |τ |. In this case
we use the trivial bound O(1) for the inner integral over v. On the other hand, if
|τ | < 10K the inner integral is bounded by Nx/aqK. Hence the contribution of
the case where the first term in the integrand is smaller in E�� is bounded by

1

t1/2

∫ 1

0

( aq

Nx

)1/2 1

K
1|τ |<10Kdx+

1

t1/2

∫ 1

0

( aq

Nx

)1/2 1

|τ | 1|τ |≥10Kdx.

(Here 1s is the indicator function of the statement s; i.e., it takes the value 1 if the
statement s is true and vanishes otherwise.) This is dominated by

O

(
1

t1/2K3/2
min

{
1,

10K

|τ |

}
tε
)
.(23)
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Next we estimate the contribution of the case where the second term in the
integrand in E�� is smaller. This is given by

1

t1/2

∫ 1

0

∫ 2

1
|τ−Kv|>Nx/aq

1

|τ −Kv|3/2 dvdx � 1

t1/2

∫ 1

0

( aq

Nx

)1/2+ε
∫ 1

0

1

|τ −Kv|1−ε
dvdx

� tε
Q

t1/2N1/2

1

K
min

{
1,

10K

|τ |

}
.

This is again dominated by the bound given in (23). Also it follows from (5), and
the inequality |τ | � K1/2t1+ε/N1/2, that t � K3/2 max{1, |τ |/10K}. Hence

E�� + t−3/2+ε � 1

t1/2K3/2
min

{
1,

10K

|τ |

}
tε,

and we conclude that

I
��(q,m, τ ) = c2

(aq
N

)1/2 ∫ 1

0

∫
R

V (v)
(t+Kv)1/2aq

x1/2(x−ma)N
U

(
(t+Kv)aq

2πN(x−ma)

)
(24)

× V

(
(Kv − τ )aq

2πNx

)
×
(

(t+Kv)aq

2πeN(x−ma)

)−i(t+Kv)

×
(
(Kv − τ )aq

2πeNx

)i(Kv−τ)

dvdx(25)

+O

(
1

t1/2K3/2
min

{
1,

10K

|τ |

}
tε
)

for some absolute constant c2.

4.2. Integral over v. Now we will study the integral over v in (24). This term
vanishes unless m < 0. For x < 1/K we bound the integral trivially. Indeed, in this
case the weight function restricts the integral over v to a range of length N/K2aq.
(Recall that urU(u) �r 1 and urV (u) �r 1 for any r ∈ R.) So estimating trivially
we get

(aq
N

)1/2 ∫ 1/K

0

∫
R

V (v)
(t+Kv)1/2 aq

x1/2(x−ma)N
U

(
(t+Kv)aq

2πN(x−ma)

)
V

(
(Kv − τ )aq

2πNx

)
dvdx

(26)

� 1

t1/2 K5/2

(
N

aq

)1/2

.

Let us now take x ∈ [1/K, 1]. Temporarily we set

f(v) = − t+Kv

2π
log

(
(t+Kv)aq

2πeN(x−ma)

)
+

Kv − τ

2π
log

(
(Kv − τ )aq

2πeNx

)

and

g(v) =
t1/2(t+Kv)1/2 aq

N(x−ma)
V (v)U

(
(t+Kv)aq

2πN(x−ma)

)
V

(
(Kv − τ )aq

2πNx

)
.



926 RITABRATA MUNSHI

We are multiplying by an extra t1/2 to balance the size of the function. Then

f ′(v) = −K

2π
log

(
(t+Kv)x

(Kv − τ )(x−ma)

)
,

f (j)(v) = − (j − 1)!(−K)j

2π(t+Kv)j−1
+

(j − 1)!(−K)j

2π(Kv − τ )j−1
,

for j ≥ 2. The stationary phase is given by

v0 = − (t+ τ )x− τma

Kma
.

In the support of the integral we have

f (j) � Nx

aq

(
Kaq

Nx

)j

for j ≥ 2, and

g(j)(v) �
(
1 +

Kaq

Nx

)j

for j ≥ 0. Moreover we can write

f ′(v) =
K

2π
log

(
1 +

K(v0 − v)

(t+Kv)

)
− K

2π
log

(
1 +

K(v0 − v)

(Kv − τ )

)
.

In the support of the integral we have 0 ≤ Kv − τ � N/aq � K1/2t1+ε/N1/2 �
t3/4+ε (recall that t < N , K < t1/2, and N/t1+ε < q). It follows that if v0 /∈ [.5, 3]
then in the support of the integral we have

|f ′(v)| � K1−ε min

{
1,

Kaq

Nx

}
.

Applying the first statement of Lemma 3 with

Θf =
Nx

aq
, Ωf =

Nx

Kaq
, Ωg = min

{
1,

Nx

Kaq

}
, and Λ = K1−ε min

{
1,

Kaq

Nx

}
,

we obtain the bound∫
R

g(v)e(f(v))dv � Θf

Ω2
fΛ

3

(
1 +

Ωf

Ωg
+

Ω2
f

Ω2
g

Λ

Θf/Ωf

)
tε.(27)

On the other hand, if v0 ∈ [.5, 3] then applying the second part of Lemma 3 it
follows that

∫
R

g(v)e(f(v))dv =
g(v0)e(f(v0) + 1/8)√

f ′′(v0)
+O

((
Ω4

f

Θ2
f

+
Ωf

Θ
3/2
f

+
Ω3

f

Θ
3/2
f Ω2

g

)
tε

)
.

(28)

The bound from (27) and the error term of (28) together make a total contribution
of size

O

(
1

t1/2
N

aqK3
tε
)

(29)

in (24). We arrive at this through an explicit calculation (estimating the integral
over x trivially). If x ≤ Kaq/N , then Ωg = Ωf , and Λ = K1−ε. We find that the

error term in (28) is dominated by O((aq)1/2tε/K(Nx)1/2) and the bound in (27)
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is dominated by O(aqtε/NKx). Observe that as x > 1/K we have aq/NKx �
(aq)1/2/K(Nx)1/2. Hence the total contribution of this part is dominated by

tε
( aq
tN

)1/2 ∫ max{1/K,Kaq/N}

1/K

(aq)1/2

K(Nx)1/2
dx � tε

(aq)3/2

t1/2N3/2K1/2
.

This is dominated by (29) as aq � N/K. On the other hand, if x > Kaq/N ,
then Ωg = 1, and Λ = K1−ε/Ωf . So the error term in (28) is dominated by

O(N3/2tε/(K2aq)3/2) and the bound in (27) is dominated by O(N3tε/K5(aq)3).
Now the lower bound on K as given in (5) implies that N3/K5(aq)3 � N3/2tε/
(K2aq)3/2 for q > N/t1+ε. Hence the total contribution of this part is dominated by

tε
( aq
tN

)1/2 ∫ 1

0

N3/2

(K2aq)3/2
dx � tε

N

t1/2K3aq
.

Also the above term dominates the bound obtained in (26).

We conclude that( aq
tN

)1/2∫ 1

0

1

x1/2

∫
R

g(v)e(f(v))dv dx =
( aq
tN

)1/2 ∫ 1

1/K

1

x1/2

g(v0)e(f(v0) + 1/8)√
f ′′(v0)

dx

+O

(
1

t1/2
N

aqK3
tε
)
.

By explicit computation we get

f(v0) = − t+ τ

2π
log

(
−(t+ τ )q

2πeNm

)
, f ′′(v0) =

K2(ma)2

2π(t+ τ )(x−ma)x

and

g(v0) =
aq

N

(
−t(t+ τ )

ma(x−ma)

)1/2

V

(
τ

K
− (t+ τ )x

Kma

)
U

(
−(t+ τ )q

2πNm

)
V

(
−(t+ τ )q

2πNm

)
.

Plugging these in, and using the fact that U(y)V (y) = V (y), the leading term in
the above expression reduces to

c3
t+ τ

K

(
q

−mN

)3/2

V

(
− (t+ τ )q

2πNm

)(
− (t+ τ )q

2πeNm

)−i(t+τ) ∫ 1

1/K

V

(
τ

K
− (t+ τ )x

Kma

)
dx

for some absolute constant c3. We can now extend the integral to the range [0, 1]
at a cost of an error term which is dominated by the error term in (24).

Now we will summarize the main output of this section. Set

B(C, τ ) =
1

t1/2K3/2
min

{
1,

10K

|τ |

}
+

1

t1/2K5/2

N1/2

C
.(30)

Note that ∫ + (NK)1/2

C tε

− (NK)1/2

C tε
B(C, τ )dτ � tε

t1/2K1/2

{
1 +

N

C2K3/2

}
.(31)



928 RITABRATA MUNSHI

Lemma 8. Suppose C ≤ q ≤ 2C, with N/t1+ε � C ≤ (N/K)1/2, and N , K
satisfy (5). Suppose t > 2 and |τ | � K1/2t1+ε/N1/2. We have

I
��(q,m, τ ) = J1(q,m, τ ) + J2(q,m, τ ),

where

J1(q,m, τ ) =
c4

(t+ τ )1/2 K

(
− (t+ τ )q

2πeNm

)3/2−i(t+τ)

× V

(
− (t+ τ )q

2πNm

)∫ 1

0

V

(
τ

K
− (t+ τ )x

Kma

)
dx

for some absolute constant c4 and

J2(q,m, τ ) := I
��(q,m, τ )− J1(q,m, τ ) = O (B(C, τ )tε) ,

with B(C, τ ) as defined in (30).

Consequently from Lemma 7 we derive the following decomposition for S(N,C).

Lemma 9. We have

S(N,C) =
∑
J∈J

{S1,J (N,C) + S2,J (N,C)}+O(t−2012),

where

S�,J(N,C) =
N1/2−itK

2π

∑
±

∑∑
n2
1n2�N1/2K3/2tε

λ(n2, n1)

n
1/2
2

×
∑∑

C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

S(m̄,±n2; q/n1)

aq3/2
I�,J,±(q,m, n2

1n2),

and

I�,J,±(q,m, n) =

∫
R

(
nN

q3

)−iτ

γ±

(
−1

2
+ iτ

)
J�(q,m, τ )WJ(τ )dτ

with J�(q,m, τ ) as defined in Lemma 8.

5. Application of Cauchy inequality and Poisson summation—I

In this section we will estimate

S2(N,C) :=
∑
J∈J

S2,J (N,C).

In this case we will not need any cancellation in the integral over τ .
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5.1. Applying Cauchy inequality and Poisson summation. Taking a dyadic
segmentation, and using the bound |γ±

(
− 1

2 + iτ
)
| � 1, we get

S2(N,C) ≤ tεN1/2K

∫ + (NK)1/2

C tε

− (NK)1/2

C tε

∑
±

∑
1≤L�N1/2K3/2tε

dyadic

∑∑
n1,n2

|λ(n2, n1)|
n
1/2
2

U

(
n2
1n2

L

)

×
∣∣∣ ∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

S(m̄,±n2; q/n1)

aq3/2−3iτ
J2(q,m, τ )

∣∣∣dτ.

(Recall that U(x) = 1 for x ∈ [1, 2].) Next we apply Cauchy and Lemma 2 to get

S2(N,C)�tεN1/2K

∫ + (NK)1/2

C tε

− (NK)1/2

C tε

∑
±

∑
1≤L�N1/2K3/2tε

dyadic

L1/2 [S2,±(N,C,L, τ )]1/2 dτ,

(32)

where

S2,±(N,C,L, τ ) =
∑∑
n1,n2

1

n2
U

(
n2
1n2

L

)

×
∣∣∣ ∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

S(m̄,±n2; q/n1)

aq3/2−3iτ
J2(q,m, τ )

∣∣∣2.

For notational simplicity let us only consider S2,+(N,C,L, τ ). Opening the ab-
solute square and interchanging the order of summations we arrive at the following
expression for S2,+(N,C,L, τ ):∑

n1≤2C

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

∑∑
C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

× 1

aa′q3/2−3iτq′3/2+3iτ
J2(q,m, τ )J2(q′,m′, τ ) T,

where, temporarily,

T =
∑
n2

1

n2
U

(
n2
1n2

L

)
S(m̄, n2; q/n1)S(m̄

′, n2; q
′/n1).

Let q̂ = q/n1 and q̂′ = q′/n1. Breaking the sum modulo q̂q̂′ we get

T =
∑

β mod q̂q̂′

S(m̄, β; q̂)S(m̄′, β; q̂′)
∑
n2∈Z

1

β + n2q̂q̂′
U

(
n2
1(β + n2q̂q̂

′)

L

)
.

Applying the Poisson summation formula we have

T =
∑

β mod q̂q̂′

S(m̄, β; q̂)S(m̄′, β; q̂′)
∑
n2∈Z

∫
R

1

β + yq̂q̂′
U

(
n2
1(β + yq̂q̂′)

L

)
e(−n2y)dy.
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Making the change of variables n2
1(β + yq̂q̂′)/L �→ w it follows that

T =
n2
1

qq′

∑
n2∈Z

⎡
⎣ ∑
β mod q̂q̂′

S(m̄, β; q̂)S(m̄′, β; q̂′)e

(
βn2

q̂q̂′

)⎤⎦∫
R

1

w
U (w) e

(
−n2Lw

qq′

)
dw.

The integral is arbitrarily small if |n2| � C2tε/L. (Recall that a, a′ � (N/K)1/2.)

Lemma 10. The sum S2,+(N,C,L, τ ) is dominated by the sum

K

NC5
B(C, τ )2

∑
n1≤2C

n2
1

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

∑∑
C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

×
∑

|n2|�C2tε/L

|C|+O(t−2012),

where B(C, τ ) is as given in Lemma 8 (and defined in (30)) and

C =
∑

β mod q̂q̂′

S(m̄, β; q̂)S(m̄′, β; q̂′)e

(
βn2

q̂q̂′

)
.

We have already encountered the character sum C in [13], where we have proved
the following.

Lemma 11. We have

C � q̂q̂′(q̂, q̂′, n2).

Moreover for n2 = 0 we get that C = 0 unless q̂ = q̂′, in which case we get

C � q̂2(q̂,m−m′).

For the sake of completeness we include the proof here. Let p be a prime, q̂ = pjr
and q̂′ = pkr′ with p � rr′. The p-part of C is given by

Cp =
∑

β mod pj+k

S(mr, βr̄; pj)S(m′r′, βr̄′; pk)e

(
βrr′n2

pj+k

)
.

Opening the Kloosterman sums we get

Cp =
∑� ∑�

α mod pj

α′ mod pk

e

(
αmr

pj
+

α′m′r′

pk

) ∑
β mod pj+k

e

(
βrαpk + βr′α′pj + βrr′n2

pj+k

)

= pj+k
∑�

α mod pj

∑�

α′ mod pk

rαpk+r′α′pj+rr′n2≡0 mod pj+k

e

(
αmr

pj
+

α′m′r′

pk

)
.

The last sum vanishes unless (pj , pk)|n2, and in this case we get that

Cp � pj+k(pj , pk) � pj+k(pj , pk, n2).

The first part of the lemma follows. Notice that for n2 = 0, the congruence has no
solutions unless j = k, and we conclude the second statement of the lemma.
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5.2. Bounding S2(N,C). Let us first consider the contribution of the zero fre-
quency n2 = 0 in S2,+(N,C,L, τ ). This we will denote by S�

2,+(N,C,L, τ ). Apply-
ing the second statement of Lemma 11, and Lemma 10, we have

S�
2,+(N,C,L, τ ) � K

NC5
B(C, τ )2

∑
n1≤2C

{
C5t

n2
1N

+
C5t2

n1N2

}
tε,

where the first term on the right hand side is the diagonal (i.e., m = m′) contri-
bution and the other term is the off-diagonal contribution. Since we are assuming
that N > t, the diagonal term dominates and we get

S�
2,+(N,C,L, τ ) � Kt

N2
B(C, τ )2tε.

Next consider the contribution of the non-zero frequencies n2 �= 0 in

S2,+(N,C,L, τ ). This we will denote by S�
2,+(N,C,L, τ ). Using the first state-

ment of Lemma 11 we have

S�
2,+(N,C,L, τ ) � K

NC3
B(C, τ )2

∑
n1≤2C

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

×
∑∑

C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

∑
1≤|n2|�C2tε/L

(q, n2)

� K

NC3
B(C, τ )2

∑
n1≤2C

(
C

n1

)2 (
Ct

N

)2
C2

L
tε�Kt2C3

N3L
B(C, τ )2tε.

Substituting the above bounds (and the similar bounds for S2,−(N,C,L, τ )) in (32),
we get

S2(N,C) � tεN1/2K

∫ +
(NK)1/2

C tε

− (NK)1/2

C tε
B(C, τ )

×
∑
±

∑
1≤L�N1/2K3/2tε

dyadic

{
(tLK)1/2

N
+

tC3/2K1/2

N3/2

}
dτ

� tε
N1/2K1/2

t1/2

{
1 +

N

C2K3/2

}{
t1/2K5/4

N3/4
+

tC3/2K1/2

N3/2

}
.

The second inequality follows from (31). The product of the last two factors is
given by

t1/2K5/4

N3/4
+

tC3/2K1/2

N3/2
+

t1/2N1/4

C2K1/4
+

t

C1/2N1/2K
.

Using N/t1+ε � C ≤ (N/K)1/2, we see that the above sum is dominated by

tε
(
t1/2K5/4

N3/4
+

t

N3/4K1/4
+

t5/2

N7/4K1/4
+

t3/2

NK

)
.

The third term essentially dominates the second as N � t3/2+ε. Also the third
term dominates the fourth term as K > N/t4/3 (which follows from (5)). Hence
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we get

S2(N,C) � tε
{
K7/4

N1/4
+

t2K1/4

N5/4

}
.

Substituting this estimate in Lemma 9 and Lemma 6, we get that the contribution
of S2(N,C) to S+(N) is bounded by

tεN3/4

{
K3/4 +

t2

NK3/4

}
.(33)

6. Application of Cauchy inequality and Poisson summation—II

It remains to estimate S1,J (N,C). This is comparatively delicate as we need to
get a cancellation in the integral over τ for large J . For notational simplicity let
us only consider the case of positive J with J � tε. The same analysis holds for
negative J with −J � tε. For J of smaller size, the analysis is even simpler as
there is no need to get a cancellation in the τ integral.

6.1. Applying Cauchy inequality and Poisson summation. As before we
take dyadic segmentation, but keep the integral over τ inside the absolute value to
get

S1,J (N,C) ≤ N1/2K
∑
±

∑
1≤L�N1/2K3/2tε

dyadic

∑∑
n1,n2

|λ(n2, n1)|
n
1/2
2

U

(
n2
1n2

L

)

×
∣∣∣∫

R

(
n2
1n2N

)−iτ
γ±

(
−1

2
+ iτ

) ∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

× S(m̄,±n2; q/n1)

aq3/2−3iτ
J1(q,m, τ )WJ(τ )dτ

∣∣∣.
Applying Cauchy and Lemma 2, we conclude that

S1,J (N,C) � tεN1/2K
∑
±

∑
1≤L�N1/2K3/2tε

dyadic

L1/2 [S1,J,±(N,C,L)]
1/2

,(34)

where S1,J,±(N,C,L) is given by

∑∑
n1,n2

1

n2
U

(
n2
1n2

L

) ∣∣∣∫
R

(
n2
1n2N

)−iτ
γ±

(
−1

2
+ iτ

)

×
∑∑

C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

S(m̄,±n2; q/n1)

aq3/2−3iτ
J1(q,m, τ )WJ(τ )dτ

∣∣∣2.
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We will only consider S1,J,+(N,C,L). Opening the absolute square and inter-
changing the order of summations we arrive at

S1,J,+(N,C,L) =
∑

n1≤2C

∫∫
R2

(
n2
1N
)−i(τ−τ ′)

γ+

(
−1

2
+ iτ

)

× γ+

(
−1

2
+ iτ ′

)
WJ(τ )WJ(τ

′)

×
∑∑

C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

∑∑
C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

× 1

aa′q
3
2−3iτq′

3
2+3iτ ′ J1(q,m, τ )J1(q′,m′, τ ′) T dτdτ ′,

where (temporarily)

T =
∑
n2∈Z

n
−1−i(τ−τ ′)
2 U

(
n2
1n2

L

)
S(m̄, n2; q/n1)S(m̄

′, n2; q
′/n1).

Let q̂ = q/n1 and q̂′ = q′/n1. Breaking the sum modulo q̂q̂′ and applying the
Poisson summation we get

T =
∑

β mod q̂q̂′

S(m̄, β; q̂)S(m̄′, β; q̂′)

×
∑
n2∈Z

∫
R

(β + yq̂q̂′)−1−i(τ−τ ′)U

(
n2
1(β + yq̂q̂′)

L

)
e(−n2y)dy.

Making the change of variables n2
1(β + yq̂q̂′)/L �→ w it follows that

T =
n2
1

qq′

(
L

n2
1

)−i(τ−τ ′) ∑
n2∈Z

C U†
(
n2L

qq′
,−i(τ − τ ′)

)
,

where C is the same character sum that appears in Lemma 10, and the exponential
integral U† is as defined in Subsection 2.3. From the second statement of Lemma 5
we see that the integral is arbitrarily small if |n2| � C(NK)1/2tε/L. (Recall that
|τ − τ ′| � (NK)1/2tε/C and q, q′ ∼ C.)

Lemma 12. The sum S1,J,+(N,C,L) is dominated by the sum

K

NC5

∑
n1≤2C

n2
1

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

∑∑
C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

×
∑

|n2|�C(NK)1/2tε/L

|C||K|+O(t−2012),
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where C is as in Lemma 10, and

K =

∫∫
R2

γ+

(
−1

2
+ iτ

)
γ+

(
−1

2
+ iτ ′

)
(LN)−i(τ−τ ′)

q−3iτq′3iτ ′ WJ(τ )WJ(τ
′)

× J1(q,m, τ )J1(q′,m′, τ ′) U†
(
n2L

qq′
,−i(τ − τ ′)

)
dτdτ ′.

We already have a satisfactory bound for the character sum C. We only need to
estimate the exponential integral K. Using the explicit form of J1(q,m, τ ), as given
in Lemma 8, we get

K =
|c4|2
K2

∫∫
R2

γ+

(
−1

2
+iτ

)
γ+

(
−1

2
+ iτ ′

)
WJ (q,m, τ )WJ(q

′,m′, τ ′)
(LN)−i(τ−τ ′)

q−3iτq′3iτ ′

×
(
− (t+ τ )q

2πeNm

)−i(t+τ) (
− (t+ τ ′)q′

2πeNm′

)i(t+τ ′)

U†
(
n2L

qq′
,−i(τ − τ ′)

)
dτdτ ′,

where

WJ (q,m, τ ) = (t+ τ )−1/2WJ (τ )

(
− (t+ τ )q

2πeNm

)3/2

V

(
− (t+ τ )q

2πNm

)

×
∫ 1

0

V

(
τ

K
− (t+ τ )x

Kma

)
dx.

Since u3/2V (u) � 1, and |τ | � J � t1−ε, it follows that

∂

∂τ
WJ(q,m, τ ) � 1

t1/2|τ | .

The integral K. Let us first consider the integral

U†
(
n2L

qq′
,−i(τ − τ ′)

)
=

∫
R

U (w)w−i(τ−τ ′)−1e

(
−n2Lw

qq′

)
dw,

which appears in Lemma 12. We study this in the light of Lemma 5. For n2 = 0
the integral is negligibly small if |τ − τ ′| � tε. So in this case we get

K � N1/2tε

K3/2Ct
.

Now suppose n2 �= 0. In this case we apply the first statement of Lemma 5 to
deduce

U†
(
n2L

qq′
,−i(τ − τ ′)

)
=

c5
(τ ′ − τ )1/2

U

(
(τ ′ − τ )qq′

2πn2L

)(
(τ ′ − τ )qq′

2πen2L

)−i(τ−τ ′)

+O

(
min

{
1

|τ − τ ′|3/2 ,
C3

(|n2|L)3/2

})

for some constant c5 (which depends on the sign of n2). The contribution of the
error term toward K is bounded by

O

⎛
⎝ 1

K2t

2J∫∫
J

min

{
1

|τ − τ ′|3/2 ,
C3

(|n2|L)3/2

}
dτdτ ′

⎞
⎠ .
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Now we see that

1

K2t

∫∫
[J,2J]2

|τ−τ ′|≤|n2L|/C2

C3

(|n2|L)3/2
dτdτ ′ � C

K2t(|n2|L)1/2
J � 1

K3/2t

N1/2

(|n2|L)1/2
tε

(as J � (NK)1/2tε/C), and

1

K2t

∫∫
[J,2J]2

|τ−τ ′|>|n2L|/C2

1

|τ − τ ′|3/2 dτdτ
′ � 1

K2t

C

(|n2|L)1/2
∫∫

[J,2J]2

1

|τ − τ ′|1−ε
dτdτ ′

� C

K2t(|n2|L)1/2
Jtε � 1

K3/2t

N1/2

(|n2|L)1/2
tε.

We set

B�(C, 0) =
N1/2

K3/2Ct

and for n2 �= 0

B�(C, n2) =
1

K3/2t

N1/2

(|n2|L)1/2
.(35)

Then for q �= 0 (and C ≤ (N/K)1/2) we have∑
1≤|n2|�C(NK)1/2tε/L

(q, n2)B
�(C, n2) �

N

K3/2tL
tε.(36)

Now we consider the main term. We pull out the oscillation from the gamma
factors using (9). By Fourier inversion we write(

2πn2L

(τ ′ − τ )qq′

)1/2

U

(
(τ ′ − τ )qq′

2πn2L

)
=

∫
R

U†
(
r,
1

2

)
e

(
(τ ′ − τ )qq′

2πn2L
r

)
dr.

We conclude that (for some constant c6 depending on the sign of n2)

K =
c6
K2

(
qq′

|n2|L

)1/2 ∫
R

U†
(
r,
1

2

)∫∫
R2

g(τ, τ ′)e(f(τ, τ ′))dτdτ ′dr +O(B�(C, n2)t
ε),

(37)

where

2πf(τ, τ ′) = 3τ log
( τ

eπ

)
− 3τ ′ log

(
τ ′

eπ

)
− (τ − τ ′) logLN + 3τ log q − 3τ ′ log q′

− (t+ τ ) log

(
− (t+ τ )q

2πeNm

)
+ (t+ τ ′) log

(
− (t+ τ ′)q′

2πeNm′

)

− (τ − τ ′) log

(
(τ ′ − τ )qq′

2πen2L

)
+

(τ ′ − τ )qq′

n2L
r,

and

g(τ, τ ′) = Φ+ (τ )Φ+ (τ ′)WJ (q,m, τ )WJ(q
′,m′, τ ′).
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We will use Lemma 4 to analyze the double exponential integral over τ and τ ′.
Differentiating we get

2π
∂2

∂τ2
f(τ, τ ′) =

3

τ
− 1

t+ τ
+

1

τ ′ − τ
, 2π

∂2

∂τ ′2
f(τ, τ ′) = − 3

τ ′
+

1

t+ τ ′
+

1

τ ′ − τ
,

and

2π
∂2

∂τ ′∂τ
f(τ, τ ′) = − 1

τ ′ − τ
.

Also by explicit computation we get (using that J � t1−ε)

4π2

[
∂2

∂τ2
f(τ, τ ′)

∂2

∂τ ′2
f(τ, τ ′)−

(
∂2

∂τ ′∂τ
f(τ, τ ′)

)2
]
= − 6

ττ ′
+O

(
1

tJ

)
,

for τ , τ ′ such that g(τ, τ ′) �= 0. (Recall that SuppWJ ⊂ [J, 4J/3].) So the conditions
of the Lemma 4 hold with r1 = r2 = 1/J1/2. Next we need to compute the
total variation of the weight function g(τ, τ ′). Recall that Φ′

+(τ ) � |τ |−1 and

W ′
J(q,m, τ ) � t−1/2|τ |−1 (derivative with respect to τ ). It follows that var(g) �

t−1+ε. So from Lemma 4 we conclude that the double integral (over τ , τ ′) is bounded
by O

(
Jt−1+ε

)
. Then integrating trivially over r using the rapid decay of the Fourier

transform we get that the total contribution of the leading term in (37) to K is
bounded by

O

(
1

K2

C

(|n2|L)1/2
(NK)1/2

C
t−1+ε

)
= O(B�(C, n2)t

ε).

Lemma 13. We have

K � B�(C, n2)t
ε,

where B�(C, n2) is given by (35).

6.2. Bounding S1,J,±(N,C,L) and S1,J (N,C). From Lemmas 12 and 13, it fol-
lows that we need to estimate the sum

K

NC5

∑
n1≤2C

n2
1

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

∑∑
C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

∑
|n2|�C(NK)1/2tε/L

|C|B�(C, n2).

Let us first consider the contribution of the zero frequency n2 = 0. We denote this
by S�

1,J,+(N,C,L). Applying the second statement of Lemma 11, we have

S�
1,J,+(N,C,L) � K

NC5

N1/2

K3/2Ct

∑
n1≤2C

{
C5t

n2
1N

+
C5t2

n1N2

}
tε,

where the first term on the right hand side is the diagonal (i.e., m = m′) contri-
bution and the other term is the off-diagonal contribution. Since we are assuming
that N > t, the diagonal term dominates and we get

S�
1,J,+(N,C,L) � 1

N3/2K1/2C
tε � t

N5/2K1/2
tε.

(Recall that C > N/t1+ε.)
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Next consider the contribution of the non-zero frequencies n2 �=0 in S1,J,+(N,

C,L). This we will denote by S�
1,J,+(N,C,L). We have, using (36),

S�
1,J,+(N,C,L) � Ktε

NC3

∑
n1≤2C

∑∑
C<q≤2C, (m,q)=1

1≤|m|�qt1+ε/N
n1|q

×
∑∑

C<q′≤2C, (m′,q′)=1

1≤|m′|�q′t1+ε/N
n1|q′

∑
1≤|n2|�C(NK)1/2tε/L

(q, n2)B
�(C, n2)

� Ktε

NC3

∑
n1≤2C

(
C

n1

)2 (
Ct

N

)2
N

K3/2tL
� tC

N2K1/2L
tε.

We conclude that

S1,J,+(N,C,L) �
(

t

N5/2K1/2
+

tC

N2K1/2L

)
tε.

The same bound holds for S1,J,−(N,C,L).

Substituting the above bounds in (34) we get

S1,J (N,C) � tεN1/2K
∑
±

∑
1≤L�N1/2K3/2tε

dyadic

{
(tL)1/2

N5/4K1/4
+

(tC)1/2

NK1/4

}

� tε
{
K3/2t1/2

N1/2
+

K1/2t1/2

N1/4

}
.

The same bound holds for all values of J . Since there are O(log t) many J , we
can sum over them without worsening the bound, and so the same bound holds for
S1(N,C) :=

∑
J S1,J (N,C). Substituting this estimate in Lemma 6 we get that

the contribution of S1(N,C) to S+(N) is bounded by

tεN3/4

{
K1/2t1/2

N1/4
+

t1/2

K1/2

}
.(38)

Next we combine the bounds from (33) and (38) to get a bound for S+(N). But
observe that the first term of (38) dominates the first term of (33) asK < t2/N , and
it dominates the second term of (33) as K > (t2/N)3/5 (see (5)). So we conclude
that

S+(N) � tεN3/4t1/2
{
K1/2

N1/4
+

1

K1/2

}
.

The optimal choice for K is obtained by equating the terms inside the braces. This
is given by K = N1/4. We see that this choice satisfies the imposed condition (5)
on K if N > t24/17. In the range t11/8 < N < t24/17 we pick K = t6/5/N3/5. The
above bound boils down to

S+(N) �
{
t1/2+εN5/8 if t24/17 < N � t3/2+ε;

t11/10+εN1/5 if t11/8 < N ≤ t24/17.

This completes the proof of Proposition 1.
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