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Preamble
Mitchell Feigenbaum passed away on June 30, 2019. His
profound discoveries opened a new page in mathematics
and physics, in their fascinating intertwining. Volumes can
be already written on this subject. In the notes below we
give a brief retrospective of the impact of Feigenbaum’s
ideas on (mostly) mathematics, flavored with some per-
sonal recollections.

Mitchell Feigenbaum:
Naturphilosoph and a Friend

Konstantin Khanin and Yakov Sinai
About 45 years ago Mitchell Feigenbaum made a beautiful
mathematical discovery. So beautiful and unexpected that
for a while, manymathematicians refused to believe it. His
discovery attracted a lot of public attention. It is quite rare
when a mathematical discovery fascinates the general pub-
lic. In the last 50 years, we can remember only two other
stories: Wiles’s proof of Fermat’s Last Theorem and Perel-
man’s solution to the Poincaré conjecture. With time, the
public interest heated by Mitchell’s enigmatic personality
cooled down. But the mathematical importance of Feigen-
baum’s work has only increased. In these short notes we
will try to reflect on the background of Mitchell’s discovery,
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and recall the story of its early days (the late 1970s and the
early 1980s). We shall also try to remember howMitchell’s
many visits to the Soviet Union in the 1980s and the begin-
ning of the 1990s resulted in our friendship which lasted
almost 40 years.
Beginning. The idea of the Renormalization Group (RG)
originated from condensed matter physics and statistical
mechanics in the 1960s. It was a major breakthrough
made in the context of the theory of phase transitions
and critical phenomena. Initially developed in works by
M. Fisher, L. Kadanoff, V. Pokrovsky, and A. Patashinsky
centered around the ideas of scaling invariance at the point
of phase transition. Later, in work by K. Wilson, it became
a powerful tool in the study of critical phenomena. This
later development brought forward the fundamental ideas
of universality, and later in the early 1970s ideas of confor-
mal invariance proposed by A. Polyakov. There is a huge
physical literature dedicated to RG, but we are not going to
go any further in this direction. However, it is important
to mention that 50 years after the creation of RG theory
there are very few rigorous mathematical results confirm-
ing it. It turns out that this extremely general and concep-
tual theory has proved elusive tomathematical approaches.
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While two beautiful theories, namely 2D conformal field
theory and the theory of SLE, allowed for a lot of progress
in describing the limiting objects, so-called fixed points
of RG, proving convergence to such limits remains out of
reach at present except for a very few concrete models. Any
progress in this direction would be a great achievement.
It is worth noting that one of the 2010 Fields Medals was
awarded to S. Smirnov for a proof of convergence for the
2D Ising model and the critical percolation model on the
planar triangular lattice.

Forgetting for a moment about mathematical rigor, one
can formulate the main renormalization principle in an
extremely general form. So general, that it can probably
apply not only to physical and mathematical systems, but
possibly also to complex systems of another nature, such
as biological and social. Suppose by varying a parameter or
parameters, a complex system passes through a dramatic
change in its structural behavior (phase transition). Then
for parameters corresponding to a point of transition, the
system will exhibit certain scale invariant behavior. More-
over, very often this scaling invariant behavior has strong
universality features. The above principle is formulated
(intentionally) so generally and vaguely that many scien-
tists may say that it makes no sense. We shall argue though
that it has a value as an ideology, as a possible language
and a way to structure our thinking about very complex
phenomena.

Back to physics, by the mid 1970s the RG became a
mainstream part of theoretical physics. Whenever a physi-
cist would see a universal scaling behavior, she or hewould
think about the RG. The above sentence summarizes the
historical physical background of the discovery made by
Mitchell. The mathematical background was also very fer-
tile. The theory of dynamical systems was very active and
on the rise. In the 1960s and the beginning of the 1970s
three major theories were developed and made their way
into the wider mathematical community: the KAM the-
ory dealing with elliptic dynamics (A. N. Kolmogorov, V.
Arnold, J. Moser), the theory of uniformly hyperbolic sys-
tems (S. Smale, D. Anosov, Ya. Sinai, to name a few),
and the thermodynamic formalism and the theory of SRB
measures (Ya. Sinai, D. Ruelle, R. Bowen). It was real-
ized that very simple deterministic systems, like the logis-
tic family of maps 𝑓𝑎(𝑥) = 𝑎𝑥(1 − 𝑥), may exhibit very
complex chaotic dynamical behavior. The ideas of chaos
and dynamical chaos were becoming increasingly popular
among mathematicians and physicists alike. The old idea
of L. Landau to explain turbulence through a sequence of
well understood dynamical bifurcations was reincarnated
in the paper by D. Ruelle and F. Takens. One-dimensional
dynamics was on the rise, remaining largely topological
though. The rich dynamical behavior encoded by the

parameter dependence in the logistic family was studied.
In particular, the sequence of period-doubling bifurca-
tions for an increasing sequence of parameter values 𝑎𝑛
was looked at.

This is a very brief and incomplete description of the
scientific landscape in 1975 when Mitchell made his dis-
covery. It was really a discovery, an unexpected find. A
lot was said about Mitchell playing with a calculator to see
for himself what the bifurcation values of parameter 𝑎𝑛 are
for two different families of maps. He noticed that the ac-
cumulation rate looked the same. That was the moment
which determined all that followed. It was luck, of course.
One has to be in the right place at the right time. But one
also has to be able to recognize the importance of the dis-
covery. Not only to see how amazing it is, but also to put it
into the right context. We want to add that Feigenbaum’s
discovery was one of the first, probably the first, meaning-
ful and remarkable instance of what is now called exper-
imental mathematics. It is fitting that the discovery was
made byMitchell who was working at the Theoretical Divi-
sion of the Los Alamos National Lab. The group of young
brilliant researchers, such as David Campbell and Predrag
Cvitanović shared Feigenbaum’s excitement. From themo-
ment of discovery things moved fast. Predrag contributed
by suggesting the precise neat form of the fixed point equa-
tion. Soon the paper, describing the phenomenon and
providing the Renormalization Group explanation of it,
was ready.

But mathematics was not yet ready to accept it. It was
rejected at least twice until Joel Lebowitz published Feigen-
baum’s seminal paper in his Journal of Statistical Physics.
Mitchell told us a story of his conversation with Jurgen
Moser back then. Feigenbaum was still completely un-
known in the mathematical community. He said some-
thing about period-doubling bifurcations for families of
maps. Yes, it is a well-known bifurcation, Moser replied.
Feigenbaum: “But I am studying sequences, in fact, infi-
nite sequences of such bifurcations.” Moser: “Well, it is
interesting, but not so surprising.” Feigenbaum: “But I
found that bifurcations accumulate with the same expo-
nential rate for different families.” Moser: “What? Metri-
cal invariant? This is impossible.” The idea was still alien
for mathematicians outside of a narrow group of mathe-
matical physicists familiar with RG ideas. This story re-
minds us of the history of the Belousov-Zhabotinsky reac-
tion. Belousovmade his discovery of oscillatory regimes in
chemistry in 1951. It took him almost 10 years to publish
his results. The typical referee report would say: it is well
known that time-periodic oscillatory regimes in chemistry
are impossible. Finally, the paper appeared in 1959 in a
nonrefereed conference proceedings.
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The discovery was fascinating and soon became very
popular. Journalists were writing about universality in
chaos, onset of chaos, universal route to chaos, etc. Exper-
imentalists and numericists were finding more and more
examples of physical systems exhibiting universality pre-
dicted by Feigenbaum’s theory. While the theory is essen-
tially one-dimensional, it was observed in many dissipa-
tive systems described by the finite-dimensional differen-
tial equations, and even infinite-dimensional PDEs. On
the mathematical side O. Lanford started his program on
rigorous computer-assisted proofs of the existence of hy-
perbolic fixed points for renormalization. P. Collet, J.-P.
Eckmann, and H. Koch extended the theory to the multi-
dimensional dissipative case. In a joint paper with E. Vul,
we constructed the thermodynamic formalism describing
universal metrical properties of the Feigenbaum attractor.
One should also mention the papers by M. Feigenbaum,
L. Kadanoff, and S. Shenker and by D. Rand, S. Ostlund,
J. Sethna, and E. Siggia where renormalization was stud-
ied in the context of critical circle maps. R. MacKay in
his thesis applied a renormalization approach to invari-
ant curves for area-preserving twist maps of the cylinder.
The case of smooth invariant curves corresponds to the
KAM regime. The most interesting was the case of critical
invariant curves where MacKay numerically constructed a
highly nontrivial fixed point. Rigorous computer-assisted
results on the existence and the hyperbolicity of MacKay’s
fixed point were only obtained much later by H. Koch. It
is interesting to say a few words about the connection be-
tween the KAM theory and the renormalization. The first
global result on the linearization of smooth circle diffeo-
morphisms with a typical irrational rotation number was
proved by M. Herman around the time when Feigenbaum
discovered the universality of renormalization. In fact, the
linearization result can be viewed as a statement of con-
vergence to the trivial renormalization fixed point given by
linear maps with slope 1. Here one can point at a parallel
between the trivial linear fixed point of renormalization
in dynamics, and trivial Gaussian fixed points in statisti-
cal mechanics. In fact, the linear fixed point is trivial, but
a global convergence to it is a highly nontrivial result of
Herman’s theory. It is worth mentioning that local con-
vergence was proved much earlier by V. Arnold (KAM-type
result). We discuss local vs global convergence of renor-
malization below.

The Feigenbaum theory is based on a construction of
a fixed point of the period-doubling transformation, and
the proof that the linear operator corresponding to the lin-
earization of this nonlinear transformation at the critical
point has only one essential unstable eigenvalue—the fa-
mous Feigenbaum constant 4.6692..., and the rest of the
spectrum lies inside the open unit disk. The construction

of the hyperbolic fixed point proves local universality of
the period-doubling phenomenon. At the same time, it
was clear from numerical experiments that the universality
is, in fact, a much more general and more global phenom-
enon. Mathematical results in this direction only came
much later, in the 1990s. The beautiful and highly non-
trivial theory was developed in the papers by D. Sullivan,
C. McMullen, and M. Lyubich. In fact, their results deal
with a much more general setting than the case consid-
ered by Feigenbaum. A point of accumulation of period-
doubling bifurcations is the simplest instance of infinitely
renormalizable maps. Roughly, it is a situation where one
can precisely describe the combinatorial properties of the
trajectory of the critical point. The map is supposed to be
unimodal, that is, with a unique critical point (maximum)
of order 𝛼 (𝛼 = 2 in the Feigenbaum case). The combina-
torial information specifies, in particular, the sequence of
times 𝑡𝑛 when the trajectory returns closest to the critical
point. In the Feigenbaum case 𝑡𝑛 = 2𝑛. But one can con-
sider a more general situation when 𝑡𝑛 = ∏𝑛

𝑖=1 𝑘𝑖, where
the sequence {𝑘𝑖, 1 ≤ 𝑘𝑖 < ∞} characterizes different com-
binatorial types. The sequence of renormalization 𝑅𝑛(𝑓)
can be naturally defined for any infinitely renormalizable
unimodal map 𝑓. One of the main results of the renormal-
ization theory for unimodal maps can be formulated the
following way. Assume that 𝑓 and 𝑔 are two analytic infin-
itely renormalizable unimodal maps of the same combi-
natorial type, and with critical points of the same order
𝛼 = 2𝑙, 𝑙 ∈ ℕ. Then, the sequence of renormalization
converges exponentially, namely ‖𝑅𝑛(𝑓) − 𝑅𝑛(𝑔)‖ → 0 as
𝑛 → ∞ exponentially fast.

The analyticity requirement can be relaxed. But basi-
cally all existing rigorous results assume that the order of
a critical point is given by an even integer. At the same
time it is largely believed and confirmed by numerical stud-
ies that the above result on exponential convergence of
renormalization should remain true for any order 𝛼 > 1.
Proving such a result is probably the most important open
problem in a general area around the Feigenbaum univer-
sality. The nature of the problem is similar for all 𝛼 > 1
and can be described in the following way. Consider a part
of the trajectory of the critical point in a small neighbor-
hood of the critical point. The order of points in the past
and in the future is determined by the combinatorial type.
The metrical properties are defined by ratios of lengths of
small intervals formed by the trajectory. The dynamics act-
ing on these ratios/scalings consists of one instance of ap-
plying the map |𝑥|𝛼 and then many iterates far away from
the critical point. The first step results in 𝑂(1) changes of
the scalings, and other iterates distort them only slightly.
From this, one can determine new scalings correspond-
ing to extending the trajectory to the future times. The
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description above is certainly too simplistic since in real-
ity one has to take into account the distortions from a se-
quence of times when a trajectory comes back relatively
close to the critical point. However one can see traces of
universality here. Namely, the process we describe above
does not use any information about the initial map apart
from its combinatorial type and the order of the critical
point. The main problem is to show that for a given infin-
itely renormalizable combinatorial type there exists only
one set of scalings compatible with a given order of the
critical point. In other words, the metrical properties of
trajectories are extremely rigid.

The ideas of renormalization and universality pio-
neered by Mitchell Feigenbaum were hugely influential in
dynamics. These ideas have really transformed and revo-
lutionized the way we think about many dynamical prob-
lems. It is fair to say that renormalization became one
of the most powerful methods of analyzing the asymp-
totic properties of dynamical systems, especially in the low-
dimensional case. The convergence of renormalization is
still a highly nontrivial problem. However, the big differ-
ence between renormalization in the dynamical systems
setting and in statistical mechanics is that in many cases
the dynamical renormalization theory can be developed
rigorously. More examples of such rigorous development
are discussed by M. Lyubich.
Back in the USSR. We turn now to more personal mem-
ories. It was probably in 1982 when Mitchell came to
visit Moscow for the first time. The world was very differ-
ent then. The Soviet Union looked super-stable, no one
would have predicted its total collapse in less than 10 years.
The visit was organized by the Landau Institute which was
at its prime. It was an unbelievable group of physicists
and mathematicians with very broad interests covering the
whole of theoretical and mathematical physics. The atmo-
sphere was extremely inspiring and creative. There was no
pressure other than to do good research. Plus no grant
applications, no committee meetings. Lots of intellectual
freedom—it was really a paradise for young intellectuals.
And young we were. A memorable talk of Sasha Migdal
in 2004 at the meeting dedicated to Mitchell’s 60th birth-
day at Rockefeller University gave a good description of
the atmosphere at the Landau Institute at that time. The
title of the talk—“Paradise Lost”—speaks for itself. Need-
less to say, Mitchell with his finely tuned soul felt very
much at home in such an atmosphere. Many friendships
which started then lasted for many years: L. Bunimovich,
A. Migdal, A. Polyakov, to name a few. Endless discussions
with topics ranging from literature, to history, to music.
And science, of course. It was rewarding for everybody, in-
cluding Mitchell, of course.

His next visit was in 1984 during the traditional Landau-
Nordita meetings. This time Mitchell was part of the
Nordita team which also included his close friend Predrag
Cvitanović. It was awonderfulmeetingwith great personal
interaction. Lots of drinks, lots of laughter, lots of deep
late-night conversations. As Predrag wrote in his notes
about the visit, Mitchell’s diet was centered around caviar
and champagne. This was for breakfast, most likely vodka
was added in the evening. Mitchell had a very sharp eye.
Once he noticed that in the local grocery store all the food
was wrapped in paper rather than plastic. He immediately
came to a conclusion that either all plastic is going to a
military use, or there is no plastic at all. Several years later
he was remembering this observation at the first sign of
the unavoidable collapse of the Soviet Empire. Of course
it was much before the modern times of “paper or plastic.”

Then it was the next visit, perhaps in 1985, when one
of us (KK) joined Mitchell on a very memorable three-day
visit to Leningrad. Visits to the Hermitage Museum are al-
ways special, but going together withMitchell made it even
more unique. Wewent to LOMI (Leningrad’s Branch of the
Mathematical Institute) where Mitchell gave a talk. L. Fad-
deev, who was the director of LOMI, showed with great
pride a beautiful grand piano which belonged to the Insti-
tute. Of course, Mitchell and Ludvig Faddeev both were
great music lovers, and had much to talk about.

Next time we met in New York in December 1988. It
was at a wonderful conference “Frontiers in Mathematics”
organized by Joel Lebowitz and Peter Lax at the New York
Academy of Sciences. Then it was a remarkable series of
five(!) Soviet-USA conferences on chaos. The first (1989),
the third (1991), and the fifth (1993) were organized in
Woods Hole by David Campbell, Ken Ford, and Mitchell.
The second (1990) and the forth (1992) were in the Soviet
Union in Tarusa and Kiev. Well, by the time of the meet-
ing, Kiev was already the capital of independent Ukraine.
One of us (KK) was not able to participate in the last meet-
ing at Woods Hall in 1993. Instead, a greeting message
was sent to the participants which said that the series of
meetings would be discontinued since it had achieved, in
fact overachieved, its main purpose and goal: creating full
and complete chaos in the Soviet Union. It took almost 25
years longer to achieve the same in theUSA. The first of this
series of meetings was really an amazing gathering of al-
most all leading experts in nonlinear dynamics and chaos
theory, both mathematicians and physicists. The journal
Chaoswas the offspring of thismeeting. RemarkablyDavid
Campbell, who founded it, served as the Editor-in-Chief of
Chaos for 25 years.

Mitchell’s wife Gunilla was an important part of his
life. Almost immediately and very naturally she became
a close friend. Gunilla was a talented artist, and Mitchell
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always proudly showed her latest paintings. There were
manymore get-togethers, mostly in their Manhattan apart-
ment, sometimes in nearby restaurants. We remember
many long conversations on different topics, as well as
sometimes fierce arguments. Mitchell was an opinionated
person, but you always had a feeling that he heard what
you had to say.

Watching David Campbell and Mitchell together was
great fun. They were very close, almost brothers, often
arguing, always deeply feeling for each other. For us,
Mitchell and David represented the best qualities of Amer-
ican intelligentsia. Although our life paths were very differ-
ent, we had so much in common, so many things which
attracted us to each other. It is always important to remem-
ber how universal the values which bring us together are.

Mitchell was a singular point. He lived a life of a thinker.
He certainly needed moments of being alone. But he also
loved life and loved his friends. He was deep and broad
at the same time. A Renaissance man, one can say. Sadly,
there are fewer and fewer people with such qualities. Are
they becoming extinct? Mitchell will be always remem-
bered and missed dearly.

Konstantin Khanin Yakov Sinai

Renormalization Ideas in
Dynamics: How Feigenbaum’s
Discovery Changed the World

Mikhail Lyubich
Feigenbaum’s discovery. In the mid 1970s, Feigenbaum
accidentally made a curious observation. Using a hand cal-
culator, he entertained himself by iterating simplest possi-
ble nonlinear maps: quadratic polynomials

𝑓𝑎 ∶ 𝑥 ↦ 𝑎𝑥(1 − 𝑥)

Mikhail Lyubich is a professor of mathematics at Stony Brook University and
the director of the Institute for Math Sciences at Stony Brook. His email address
is mlyubich@math.stonybrook.edu.

Figure 1. Renormalization telescope.

on the interval [0, 1]. He observed that for small 𝑎 > 0, al-
most all orbits converge to an attracting fixed point. Then
at some parameter 𝑎1, the doubling bifurcation happens,
making almost all orbits converge to an attracting cycle of
period 2. This persists for some interval of parameters, un-
til the next doubling bifurcation occurs, making almost all
orbits converge to an attracting cycle of period 4, etc. This
cascade of doubling bifurcation parameters (𝑎𝑛) converges
to a certain parameter 𝑎𝐹 , called now the Feigenbaum point.
Feigenbaumnoticed that the convergence happens rapidly,
namely exponentially fast with rate 𝜆 = 4.6.... He took no-
tice of this number.

Sometime later he played the same game with a similar
family 𝑔𝑏 ∶ 𝑥 ↦ 𝑏 sin 𝑥 and observed a similar cascade
of bifurcations (𝑏𝑛) converging exponentially fast to some
parameter 𝑏𝐹 . He looked at the rate and was struck to dis-
cover that it was the same: 𝜆 = 4.6.... He immediately
realized that there should be a deep reason behind this
seeming coincidence (see [F]).

Ideas coming from physics (quantum field theory and
statistical mechanics) helped him to reveal the underlying
mechanism for this universality phenomenon.1 It is called
renormalization, a machinery relating various scales of a
family of dynamical systems. It has become a powerful
tool of the dynamical system theory, radically changing
the course of its further development, particularly in the
low-dimensional world.
General idea of renormalization. We will give a very gen-
eral idea of renormalization in dynamics. Let us consider
a dynamical system 𝑓 ∶ 𝕏 99K 𝕏 of a certain class 𝒬. To
understand its small-scale structure, let us select a piece
𝑋1 ⊂ 𝕏 and consider the first return map 𝑓1 ∶ 𝑋1 99K 𝑋1.
If we are lucky and careful, this return map may belong to
the original class𝒬, so wemay try to compare the newmap
𝑓1 to the original map 𝑓. To this end, we rescale the small
piece 𝑋1 to the “original size” by some change of variable
ℎ1 ∶ 𝑋1 99K 𝕏1 (which may or may not be linear). Conju-
gating 𝑓1 by ℎ1, we obtain a newmap𝑅𝑓 ∶ 𝕏1 99K 𝕏1 called
the renormalization of 𝑓. This map describes the dynamics
of 𝑓 in scale 𝑋1.

1About at the same time, Coullet and Tresser [TC] realized that there is a simi-
lar Universality phenomenon in the dynamical space: e.g., the postcritical sets
of the Feigenbaum maps 𝑓𝑎𝐹 and 𝑔𝑏𝐹 have the same Hausdorff dimension.
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It may happen that the map 𝑅𝑓 is again renormalizable
in the same sense, yielding the second renormalization 𝑅2𝑓 ∶
𝕏2 99K 𝕏2, which is the rescaled return map 𝑓2 ∶ 𝑋2 99K 𝑋2
in a smaller scale 𝑋2 ⊂ 𝑋1. It describes the dynamics of 𝑓
in that scale.

With some luck, we can continue this process many
times yielding a sequence of renormalizations 𝑅𝑛𝑓 in a
nest of scales. It may even happen that this sequence is in-
finite, giving us a description of the dynamics in all scales.
In this case, the original map is called infinitely renormaliz-
able.

However, this small-scale description is topological at
best, unless we have some uniform geometric control of all
the renormalizations. Such control, called a priori bounds,
amounts to precompactness of the family of renormaliza-
tions 𝑅𝑛𝑓 in 𝒬. To prove such a priori bounds is usually a
difficult technical problem. But it is rewarding as we gain
uniform geometric control of the original system in all scales.

But the renormalization program is even more ambi-
tious. It suggests that under some favorable circumstances
theremay exist a renormalization fixed point 𝑓∗ ∈ 𝒬, 𝑅𝑓∗ = 𝑓∗.
Such a map is homogeneous in all scales, and hence self-
similar. This conjecture does not come from anywhere ex-
cept physical intuition originated in the statistical mechan-
ics and quantum field theory. This explains why physicists
(Feigenbaum, Coullet, Tresser, Cvitanović, Kadanoff,...)
were a driving force in the initial stages of the renormal-
ization theory.

In fact, physical intuition, accompanied with computer
experiments, suggested even more: that this fixed point
𝑓∗ is hyperbolic under the renormalization, in the usual
dynamical sense. This means that there exist two trans-
verse manifolds, stable manifold 𝒲𝑠 and unstable mani-
fold 𝒲ᵆ, with the following properties:
•𝒲𝑠 is forward invariant under𝑅 and the orbits𝑅𝑛𝑓 in𝒲𝑠

converge to 𝑓∗ exponentially fast. (This manifold consists
of infinitely renormalizable maps.)
• 𝒲ᵆ is backward invariant under 𝑅 and the orbits 𝑅−𝑛 in
𝒲ᵆ converge to 𝑓∗ exponentially fast. Moreover, the unsta-
ble manifold is finite-dimensional, with dimension equal
to the number of “essential” parameters in our space 𝒬.

Thus, the small-scale structure of any infinitely renor-
malizable map 𝑓 ∈ 𝒲𝑠 coincides (up to an exponentially
small error) with the fixed point 𝑓∗. In particular, all these
maps are asymptotically self-similar. This phenomenon is
called the dynamical universal self-similarity of the maps of
our class.

On the other hand, the unstable manifold 𝒲ᵆ repre-
sents a nontrivial finite-parameter family of maps invari-
ant under 𝑅−1. If it is one-dimensional, then the bifurca-
tion locus in this family contains a rescaled copy of itself
(in an appropriate coordinate), representing parameter self-
similarity.

Figure 2. Renormalization picture behind self-similarity,
rigidity, and universality.

In the presence of some extra structure, the parame-
ter self-similarity also becomes universal. Namely, imag-
ine that certain topologically defined classes form a
codimension-one lamination ℒ in the space 𝒬 invariant
under the renormalization. Then any one-parameter fam-
ily ℱ = (𝑓𝜆) of maps in 𝒬 which transversely intersects𝒲𝑠

(at some parameter 𝜆∗) will be related to𝒲ᵆ via the holo-
nomy 𝛾 along ℒ. This makes the bifurcation loci in ℱ and
𝒲ᵆ homeomorphic.

Moreover, for general dynamical reasons, 𝛾 is asymptoti-
cally conformal at 𝜆∗, making those bifurcation loci (asymp-
totically) conformally equivalent near the corresponding
points, 𝜆∗ and 𝑓∗. This is the parameter universality we have
alluded to above.

In practical terms, if you observe self-similarity of the
bifurcation picture of some family of dynamical systems
(e.g., the quadratic family), then quite likely it is gener-
ated by some renormalization mechanism. Feigenbaum’s
original observation gave the first glimpse into this funda-
mental phenomenon.
Mathematics that came out of it.
Doubling renormalization. The specific scheme respon-
sible for the Feigenbaum discovery is the period doubling
renormalization in the space of unimodal maps with qua-
dratic criticality (i.e., intervalmaps with a single nondegen-
erate critical point, which we place at 0). If such a map has
a periodic interval 𝐼1 ∋ 0 of period two, then 𝑓2 | 𝐼1 is also
a unimodal map. Rescaling 𝐼1 back to the unit size defines
a renormalization transformation 𝑅 in the space 𝒰 of uni-
modal maps. If a map is infinitely renormalizable, then it
possesses a nest of intervals 𝐼1 ⊃ 𝐼2 ⊃ 𝐼3 ⊃ ⋯ of periods
2𝑛, representing various renormalization scales. In this sit-
uation, the renormalization conjecture suggests that there
exists an infinitely renormalizablemap 𝑓∗ such that 𝑓2𝑛∗ | 𝐼𝑛
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are obtained one from another via scaling by a certain fac-
tor 𝜌 = −2.7.... Moreover, for any infinitely renormaliz-
able map 𝑓, the scaling of the corresponding renormaliza-
tion intervals will asymptotically be the same, and such
maps form a codimension-one submanifold 𝒲𝑠 in 𝒰. In
the transverse direction to 𝒲𝑠, there is a one-dimension
unstable manifold𝒲ᵆ on which 𝑅 acts (in an appropriate
coordinate) as a scaling by some factor 𝜆 = 4.6.... The same
scaling rate is observed in any one-parameter family of uni-
modal maps transverse to𝒲𝑠, e.g., in the quadratic family.
It is the universal rate originally observed by Feigenbaum.

Shortly afterwards, similar universality phenomena
were observed for more general renormalization schemes
in the space of unimodal maps, with various periods.
Then experiments, physical and numerical, indicated that
this phenomenon (sometimes with the same scaling fac-
tors as in the unimodal setting) is also observed in
higher-dimensional situations, including real fluid mo-
tions. Gradually the universality was establishing itself as
a new world paradigm.
Proof of the renormalization conjecture. From the phys-
ical point of view, the unimodal story looked quite com-
plete: there was a coherent theory clearly explaining exper-
imental observations. However, the mathematical mecha-
nism behind this theory and its rigorous justification did
not look so obvious. In 1982, Lanford gave the first rig-
orous proof of the doubling renormalization conjecture,
relying heavily on rigorous computational estimates. Var-
ious pieces of the theory were then supplied, without
appealing to computers, by H. Epstein, J.-P. Eckmann,
K. Khanin, Ya. Sinai, and other people (see [VSK]).

At about the same time (in the early 1980s), similar
phenomena were observed in the holomorphic world. It
manifested itself by self-similar features of the Mandelbrot
set ℳ where one could observe little copies that were in-
distinguishable from ℳ itself (see Figure 3). A mathe-
matical justification for the existence of these copies was
given on a topological level by Douady and Hubbard in
the mid-1980s, and it was based upon an idea of quadratic-
like renormalization. It is a holomorphic counterpart of the
unimodal notion, where the underlying space 𝒬 consists
of holomorphic double branched coverings 𝑓 ∶ 𝑈 → 𝑉
from a smaller topological disk to a bigger one.

In his address to the Berkeley ICM (1986) Dennis Sul-
livan articulated that the holomorphic Douady-Hubbard
quadratic-like setting provides a natural mathematical
frame for the renormalization theory, supplying it with
a wealth of geometric structures and technical tools un-
available in the real world. He specifically outlined an
approach to the construction of the renormalization fixed
point 𝑓∗ and its stable manifold 𝒲𝑠 based upon Teich-
müller theory ideas (see [S, MvS]). Then Curt McMullen

Figure 3. Self-similarity of the Mandelbrot set in several
places. The lower-left corner corresponds to the classical
Feigenbaum parameter that initiated the whole story. The
upper-right corner corresponds to its close relative, the
golden mean Siegel parameter.

had an insight into the problem from the point of view
of hyperbolic 3D geometry, which allowed him to justify
that the renormalization orbits in the stable manifold con-
verge to the fixed point exponentially fast [McM]. The story
was completed in [L1] with a proof of the existence of the
1D unstable manifold 𝒲ᵆ transverse to 𝒲𝑠 which justi-
fied the parameter universality for any unimodal combi-
natorics. Several years later, the Sullivan-McMullen part of
the story was revisited by Artur Avila and the author with
ideas of Carathéodory metric and almost periodicity [AL].
Regular or stochastic theorem. The author went on to
prove the renormalization conjecture for all combinatorial
types simultaneously [L2]. This was a crucial piece of the
Regular or Stochastic Theorem asserting that for almost any
𝑐 ∈ [−2, 1/4], the quadratic polynomial is either regular
(i.e., almost all orbits on the invariant real interval ℐ𝑐 con-
verge to an attracting cycle) or stochastic (i.e., the behavior
of almost all orbits in ℐ𝑐 is governed by an absolutely con-
tinuous invariant measure). This gives a complete dynami-
cal picture in the real quadratic family from the probabilis-
tic viewpoint, and renormalization provided key insights
into the matter.
Impact on 1D holomorphic dynamics. A central prob-
lem of holomorphic dynamics is the MLC conjecture as-
serting that the Mandelbrot set ℳ is locally connected. If
true, it would supply us with a precise topological model
for this tremendously complex fractal set and would re-
solve another outstanding problem, the Fatou conjecture
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asserting that hyperbolic maps2 𝑓𝑐 ∶ 𝑧 ↦ 𝑧2 + 𝑐 are dense
in the Mandelbrot set.

Around 1990, Yoccoz made a breakthrough in the MLC
(related to an earlier work by B. Branner and J.-H. Hub-
bard) by proving that ℳ is locally connected at 𝑐 unless
𝑓𝑐 is infinitely renormalizable. This result tightly linked
the MLC conjecture to renormalization theory. Further ad-
vances in the MLC problem fit perfectly into the renormal-
ization worldview (see work by Lyubich, Shishikura, Kahn,
Cheraghi, and Dudko over the past 25 years).

But the impact of the renormalization ideas on holo-
morphic dynamics goes beyond the Douady-Hubbard
framework. Indeed several other renormalization themes
have been designed that give insight into self-similarity
of various parts of the Mandelbrot set (see Figure 3).
Siegel-Pacman renormalization theory, also originating in
physics, is responsible for the self-similarity near the
goldenmean point on themain cardioid (McMullen, Yam-
polsky, Dudko-Lyubich-Selinger; see [DLS] and references
therein), while the parabolic renormalization theory controls
the geometry of ℳ near the cusp and other parabolic
points (Lavaurs, Douady, Inou-Shishikura; see [IS] and ref-
erences therein).

Without a doubt, all these theories will play an impor-
tant role in the MLC story. And remarkably, they have al-
ready provided a key to other outstanding problems. For
instance, they were crucial for constructing examples of Ju-
lia sets of positive area (Buff-Cheritat, Avila-Lyubich).

It is hard to overestimate the influence that the renor-
malization ideas had on the development of the one-
dimensional dynamics, real and complex.
Other themes. To indicate the scope of the theory, let us
mention in conclusion several other themes greatly influ-
enced by renormalization ideas:
• Circle diffeomorphisms. This theme goes back to

Arnold’s classical work, followed up by M. Herman, J.-C.
Yoccoz, K. Khanin & Ya. Sinai, and many others. A general
renormalization picture was recently described by N. Gon-
charuk and M. Yampolsky [GY]. It also branched off to
the theory of piecewise circle diffeomorphisms with break
points (Khanin, Kocic, and others).
• Critical circle maps. Also initiated by physicists (Feigen-

baum, Kadanoff, Siggia,...), this renormalization picture
turns out to be closer to the unimodal renormalization
than to renormalization of circle diffeomorphisms. It has
been developed by G. Swiatek, M. Herman, E. De Faria,
W. de Melo, M. Yampolsky, and others. Now the theory is
complete; see [Y] and references therein.
• Interval exchange maps and Teichmüller flow. Another di-

rection branched off the renormalization theory of circle

2In this context, they can be defined as maps possessing an attracting cycle.

diffeomorphisms is the Rauzy renormalization for interval
exchange maps and its continuous counterpart, the Teich-
müller flow acting on the space of flat surfaces. It has been
flourishing in the past two decades, withmany remarkable
results by H. Masur, W. Veech, A. Zorich, M. Kontsevich,
G. Forni, C. McMullen, A. Avila, M. Viana, M. Mirzakhani,
A. Eskin, and many others; see [EMM].

• Schrödinger cocycles. This theory arose directly from
quantum mechanical spectral theory for the Schrödinger
operator with almost periodic potential. Mathematically,
it amounts to the study of SL(2, ℝ)-cocycles over circle
rotations. It has also experienced an explosive develop-
ment over the past two decades, with deep contributions
by A. Avila, R. Krikorian, S. Zhitomirskaya, J. Bourgain,
M. Goldstein, W. Schlag, and many others. A complete
global bifurcation picture, in the spirit of the aforemen-
tioned Regular or Stochastic Theorem, was described by
A. Avila [Av]. Renormalization of cocycles fibered over the
circle renormalization played a crucial role in this develop-
ment.
• Dissipative Hénon maps. This renormalization theory

has been developed in the work of H. Koch, S. van Strien,
C. Tresser, A. de Carvalho, M. Lyubich, M. Martens, and
other people as a two-dimensional perturbation of the uni-
modal renormalization theory. In this world the rigidity
and universality phenomena appear in a much more sub-
tle form than in the one-dimensional context; see [CLM].
• Conservative dynamics. This theory includes conserva-

tive Hénonmaps as well as Hamiltonian systems (with the
KAM theory fitting together well with the renormalization
framework). Though the evidence for universality is plen-
tiful, it is much more difficult to justify it rigorously, and
usually it needs substantial computer assistance. The work
by R. McKay, H. Koch, D. Gaidashev, among others, gives
a sample of this important area of research; see [K].

Mikhail Lyubich
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Feigenbaum’s Years at Cornell
and Rockefeller

Eric D. Siggia
There was a fruitful convergence of mathematics and
physics in the late 1970s and 1980s on the question of
how fluids pass from laminar to turbulent flow and in
particular if the transition is discrete. Mitchell’s singular
contribution anticipated this convergence but was not the
only antecedent. A decade prior, the physicists who were
drawn to this question, from both experiment and theory,
studied thermodynamic phase transitions, and the exact-
ing experimental techniques required to uncover the scal-
ing behavior around second-order critical points proved
very useful in the new study of nonequilibrium tran-
sitions ([Ah], https://digitalcommons.rockefeller
.edu/libchaber-laboratory/1/). On the theory side,
it’s fair to say that the subject of critical point scaling was
“solved” by Ken Wilson’s Renormalization Group 1969–
1971, and a certain number of us were looking for other
problems to solve.

A snapshot of the period was the program at the Physics
Institute at the University of California at Santa Barbara
in 1980–81. Mathematical physicists such as Ruelle and
Eckmann were attending, but there was also a strong con-
tingent from experimental physics. Equal time was given
to spatially extended systems that have not attracted any
mathematical attention. I mention this program since it
wasmy first extended exposure toMitchell, and suffice it to
say that he was not happy in the beach culture of Santa Bar-
bara. Our professional lives converged during this period.
With British mathematician David Rand, and two younger
colleagues, we worked out the onset of chaos in circle
maps with arbitrary winding number by renormalization
group methods [ÖRSS]. Completely independently, Leo
Kadanoff in Chicago and a student Scott Shenker (nowUC
Berkeley) with assistance from Mitchell did similar work
[FKS]. Shenker was later a postdoc with Mitchell and me
at Cornell and remains in awe of Mitchell’s aesthetics and
science.

The year after the Santa Barbara meeting, I invited
Mitchell to Cornell, to give a series of lectures on iter-
ated maps and period doubling. The Cornell physics de-
partment has a bipartite structure of two labs: one parti-
cle physics where Mitchell was a postdoc a decade prior,

Eric D. Siggia is the Viola Ward Brinning and Elbert Calhoun Brinning
Professor at Rockefeller University. His email address is siggiae@mail
.rockefeller.edu.

and the other condensed matter. Ken Wilson and Michael
Fisher bridged this institutional divide with famous results
in the 1970s and Mitchell was hired with super-laboratory
status, though his office was in condensed matter. There
he quickly noted the significance of my Cornell extension:
255-4669. Ithaca more than now was a village, and I can
recall lunches with Ken Wilson and numerous dinners at a
local Italian restaurant where rabbit was the specialty. Re-
lations with the campus community who were studying
turbulence in engineering contexts were correct but frosty.

Mitchell’s schedule did not accommodate morning
classes, nor did his work habits tolerate the divided atten-
tions required of university life. His obsession with work-
ing every subject from the ground up consumed a lot of
time, but it was more than many students could appreci-
ate. So by 1987, he was the Toyota Professor at Rockefeller
University in NYC where he moved with his extraordinary
Swedish born wife Gunilla who matched his aesthetics.
She had multiple artistic talents, but her paintings that
evolved through distinct phases were the most enduring
image I retain from their apartment at 450 E 63rd street.

Rockefeller University, founded in 1901, was a biomed-
ical research institute until 1954 when it became a univer-
sity with only graduate students and later broadened its
mandate to include physics, mostly theoretical, and phi-
losophy. There was nomandatory teaching, no defined du-
ties, and no need for grant support if the group was small.
So for Mitchell, this was nirvana. He was hired by the
then president Joshua Lederberg, who had the strongest
claim to polymath status among the founders of molecu-
lar genetics, and Mitchell witnessed the turbulent admin-
istration of David Baltimore. During this period, the fi-
nancial crisis of the 80s caused a retrenchment, and it was
decided to focus on biomedical research. Faculty in other
areas drifted away; the particle theorist A. Pais stayed and
became a noted historian of modern physics.

Rockefeller remained, however, a singular institution.
Only there could Mitchell Feigenbaum forge a distin-
guished career as an administrator. He did so with the aid
of the next president, TorstenWiesel, a neurobiologist who
uncovered the early steps of visual processing inmammals.
Torsten tried to interest Mitchell in animal experiments,
but wrote that Mitchell’s world was elsewhere. Faced with
the institutional disappearance of physics, Mitchell sold to
Wiesel and the trustees the then very novel idea of seeding
the university with a few physical scientists with nascent
interests in biology but above all a strong professional
grounding. The people he recruited, Albert Libchaber in
1996, me in 1997, and finally a junior hire, Marcelo Mag-
nasco, had all passed through nonlinear dynamics. (Lib-
chaber did the precision experiments confirming period
doubling in convection.) In retrospect, our common bond

MAY 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 765

https://digitalcommons.rockefeller.edu/libchaber-laboratory/1/1
https://digitalcommons.rockefeller.edu/libchaber-laboratory/1/1


was not that we were a clan, but rather those who left con-
ventional physics for nonlinear dynamics were more apt
to move again to biology. It’s fair to say none of us knew
much about biology. The hope for the “Center of Studies
in Physics and Biology” as expressed by Wiesel was to pro-
vide Rockefeller with a toehold in sciences outside of bi-
ology, particularly theory. It has become commonplace to
welcome quantitative methods in biology settings, but too
often the implicit motivation is high-level tech support,
not the intellectual direction, as envisioned by Mitchell
and Torsten.

Mitchell seized the right moment at Rockefeller to im-
plant physics (though his hope to include serious math-
ematics was never realized). His access to the administra-
tion died when Wiesel was replaced by Levine (who added
another physicist, Stan Leiber, with better biological cre-
dentials than the three first hires). Perhaps the strongest
institutional imprint of the Rockefeller center has been
the fellows program. These are three-year appointments
with no implicit attachment to any faculty and a mandate
to find an interesting project in the Rockefeller context.
Mitchell always participated in fellow interviews until he
became ill, though decisions were made by vote of the cen-
ter faculty and current fellows.

It’s fair to say that institutional interest in the physics
center was moribund by the turn of the millennium. As
Libchaber aptly expressed it, we were the “Jews of Rocke-
feller.” But life was good in the ghetto. At Mitchell’s ini-
tiative, residents of the center besides the fellows and itin-
erant visitors to New York grew to include a noted histo-
rian of psychiatry from Cornell, and a cultural anthropol-
ogist from Denmark with UN connections. We enjoyed
ourselves, gradually becoming more biological and forg-
ing collaborations with a subset of labs willing to entertain
our divergent and disruptive questions.

Mitchell had his 60th birthday in 2004 and celebrated
with typical aplomb by a two-day symposium at Rocke-
feller entitled “Numbers and Nature.” The cast of char-
acters was wide: Michael Berry, Leo Kadanoff, Sasha
Polyakov, and others from physics and astronomy, David
Ruelle, Yakov Sinai, and Dennis Sullivan from dynamical
systems and beyond, plus a leavening of humanists with
whom Michell had engaged in the past. The group co-
hered at this event; Mitchell was clearly the sun around
which it revolved, but he in no way dominated the pro-
ceedings. Rather I feel he just observed how the pieces fell
together. Mitchell could be arrogant and opinionated but
was always generous, enjoyed an argument, and never held
a grudge. His diverse circle of friends was a testimony to
his character and charisma, and their devotion was mani-
fest when he became ill.

Mitchell’s final major project was a book on optics,
more precisely, anamorphs and is aptly entitled Reflections
on a Tube. These are planar images viewed reflected in a
cylindricalmirror to recreate a recognized object. But what
is perceived is not the result of geometric optics since the
eye is not a pinhole camera. One has to compute the caus-
tics and the subtle way they influence cognition with addi-
tional connections made to the ophthalmology of vision.
A subject that appears arcane actually requires going to the
base of our visual processing machinery. The project be-
gan in 2006, but the final editorial work necessary for pub-
lication was not completed by Mitchell, and the task has
been assumed by a colleague who taught from the book.

Mitchell burned the candle of life from both ends with
full acceptance of the possible consequences. Smoking en-
hanced focus so he smoked. In his final year after the di-
agnosis of throat cancer, I saw more of him than any time
since our Cornell days. He was divorced from Gunilla by
then but they remained in contact. His friends inNewYork
and beyond saw him through the ordeal. He was ostensi-
bly cured of the cancer, but died from the collateral dam-
age of the treatment. It was an ordeal; Mitchell researched
his condition in typical fashion and would not readily
countenance mushy medical pronouncements. His voice
deteriorated which pained him, he was despondent and
sometimes defiant but never displayed the apathy of de-
pression. He was in a situation from which he could not
think his way out.

Wiesel wrote “Mitch Feigenbaum was a true ge-
nius and his presence as professor at the Rockefeller
University will always be part of its proud heritage.”
An oral history interview from August 2018 is pre-
served in https://digitalcommons.rockefeller.edu
/feigenbaum-laboratory/2/cd.

Eric D. Siggia
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