
ON THE HOMOLOGICAL DIMENSION OF CERTAIN IDEALS

R. E. MacRAE

1. Introduction. We present two closely related results connecting

homological dimension theory and the ideal theory of noetherian

rings. The first, Proposition 4.1, asserts that the only ideals of finite

homological dimension in a local ring whose associated prime ideals

all have grade one are of the form aR:bR. The second, Proposition

4.3, asserts that if R is a noetherian integral domain, then all such

ideals are even projective. The discerning reader will immediately ob-

serve that the latter proposition suffices to imply unique factorization

in regular local rings. Indeed, our results are to some extent an

elaboration of an unpublished proof of unique factorization in regular

local rings by Kaplansky. The reader will note that the devices in-

volved in the proof are different from those used by Auslander, Buchs-

baum and Nagata in their classic proof of unique factorization as

given, for example, in [4].

Of the two propositions outlined above, the assumption in the

second that the ring is a domain is to be considered a defect. If we

could drop this hypothesis, the first proposition would be superfluous.

Indeed, we know of devices whereby it may be dropped for rings of

codimension at most three. For larger codimensions, however, the

question is quite open.

By way of extension of the above pair of propositions, M. Auslander

has shown and will publish elsewhere a proof of the fact that if R is a

noetherian integrally closed domain and A is a finitely generated,

reflexive (A = Horn (Horn (A, R), R)) i?-module of finite homological

dimension and whose endomorphism ring is projective, then A is it-

self projective.

2. On finitely, freely related projective ideals. In this section we

present a criterion, due to Kaplansky, under which a projective ideal

is principal.

Definition 2.1. An i?-module A is said to be finitely, freely related

if there exists a finite set Fo, ■ ■ ■ , Fn oí finitely generated free R-

modules and homomorphisms such that the sequence 0—>Fn—> • • •

—>Fo—>A—->0 is exact.

Lemma 2.2. If R is any commutative ring and A is a projective,

finitely, freely related R-module, then there exists a finitely generated
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free R-module, F, such that A® F is free.

Proof. Let 0—>F„—> • • • —>F0—>A—»0 be an exact sequence of the

type whose existence is guaranteed by the above definition. If n = 0,

then A is free and finitely generated so we are done. For w>0 con-

sider 0->F„-> • • • ->Fi->A-*0 where 0->K^>F0->A-+0. Now F„
=K®A since A is projective. Further, an induction on the length of

the exact sequence gives us a finitely generated free P-module, G,

such that K®G is free and finitely generated. Hence F0®G

^(G@K) ®A and we are done.

Proposition 2.3 (Kaplansky). If I is a projective, finitely, freely

related ideal of R not consisting entirely of zero divisors, then I is prin-

cipal and generated by a nondivisor of zero.

Proof. By Lemma 2.2 above, I®R® ■ ■ ■ ®R^R® ■ ■ ■ ®R. By

Lemma 1 of [3], there is an element a of the total quotient ring of R

such that I = aR. However, a is thus in I, so I is principal. We should

observe that although Lemma 1 of [3] is stated for domains it is

valid, by the same proof, for nondomains when the modules involved

contain nondivisors of zero.

3. A stability criterion for grade. We show here that under suitably

restrictive hypotheses the grade of a prime ideal remains invariant

under localization. For a definition of grade see the appendix.

Proposition 3.1. Let R be a noetherian ring, A a finitely generated

R-module, P a prime ideal belonging to the null submodule of A and S

a multiplicative subset of R disjoint from both P and the annihilator of

A. If dh(A) < oo, then gr(P) = gr(Ps).

Proof. Since the annihilator of A is contained in P we have

gr(P)i£gr(Ps) ^gr(Pp) (see Lemma A3). Thus it suffices to show

that gr(P) =gr(Pj>). Let, now, I be an ideal contained in P and gener-

ated by a maximal i?-sequence in P. We may then find a prime ideal

Q such that Q contains P and belongs to I. One easily sees (Lemma

A3, again) that the grade of Q is stable under localization. Hence

gr(P)=gr(PQ) = gr(<2Q). Now, by Proposition A4 and the remarks

immediately preceding, we have gr(PQ) ^dhRQ(AQ) ^gr(Ço). Combin-

ing these inequalities with the equality above yields gr(P) =gr(Pq)

= dhRQ(AQ). We may combine these equalities with the following

inequalities, gr(PQ) ^gr(Pp) ¿dhRp(AP) ^dhRQ(AQ) and thus find

that gr (P) =gr (Pq) =gr (Pp) which completes the proof.

4. On grade one, grade unmixed ideals. Before stating our main

results we make a few motivating remarks. In a noetherian ring an
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ideal having the property that each of its prime ideals has grade one

is said to be grade one, grade unmixed. An example of such an ideal

is one generated by a nondivisor of zero. More generally if a is a non-

divisor of zero and b is any element of R not in aR, then the ideal of

residual quotients aR:bR is also grade one, grade unmixed since its

prime ideals are among those which belong to aR. Our first result

asserts that under certain conditions all grade one, grade unmixed

ideals are of this form.

Proposition 4.1. Let Rbe a noetherian ring and I a grade one, grade

unmixed ideal of R. If I is finitely freely resolvable, then (i) there exists

an element b, in the radical of II~l (where I_1 = HomÄ(7, R)) but not

in any of the prime ideals belonging to I and (ii) for any such b, there

exists an element a in I such that I = aR:bnRfor some n.

Proof. For the first part of the result we note that if ^/(II~l) is

contained in the union of the prime ideals belonging to I then, by a

standard argument, it is contained in one of them, say P. By Proposi-

tion 3.1 we may assume (by localizing) that R is local and P is its

maximal ideal. Since dh(R/I) ¿gr(P) (see [l]) and gr(P) = l, it is

clear that in this case / is both projective and noninvertible which is

certainly impossible. Pick now any element b in ^/(II-1) but not in

any of the prime ideals of I. Consider the multiplicative set

S= {1, b, b2, ■ ■ • , bn, ■ • • }. It is clear that the extension, Is, of /

to the quotient ring Rs is i?s-projective and finitely, freely resolvable.

Hence by Proposition 2.3 it is i?s-principal. Thus there is an element

a, in I such that bnI^aR for some n, i.e., I^aR:bnR. Now the fact

that b is not in any of the prime ideals of I implies that aR:bnR^I.

Hence I = aR : bnR and we are done.

For our second main result the following useful lemma is crucial.

Lemma 4.2 (Nagata). If R is an integral domain and b, a is an R-

sequence in some proper ideal of R, then a+bx generates a prime ideal

in the polynomial ring R[x].

Proof. Suppose f(x)g(x) = h(x)(a+bx) for appropriate f(x), g(x)

and h(x) in R[x]. We must show that either/(x) or g(x) is a multiple

of a+bx. By the so-called Generalized Euclidean Algorithm bmf(x)

= q(x)(a+bx)+c and b"g(x) =r(x)(a+bx)+d where m and n are

integers, q(x) and r(x) are in R[x] and c and d are in R, all appropri-

ately chosen. Hence

bm+nh(x)(a + bx) = [q(x)r(x)(a + bx) + q(x)d + r(x)c](a + bx) + cd.

Thus cd = 0. Since R is an integral domain, either c or d vanishes; let

us say c = 0. Hence bmf(x) =q(x)(a+bx). By an easy application of
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the assumption that b, a forms an P-sequence we find that q(x)

= bqx(x) for some gi(x) in R[x]. Hence bm~1f(x)=q1(x)(a + bx). Con-

tinuing in this way we obtain, finally,/(x) =qm(x)(a-\-bx).

Proposition 4.3. Let R be a noetherian integral domain and I a

grade one, grade unmixed ideal of R. If I has finite homological dimen-

sion, then I is projective.

Proof. If II~1 = R we are done; so let us suppose 77-1 is a proper

ideal. We claim gr(77-1)=2. If not 77_1 is contained in some prime

ideal P which belongs to a principal ideal. Localizing at P gives us a

local ring whose maximal ideal has grade one. As in the first part of

the proof of the preceding proposition, this is impossible. By localiz-

ing at some proper prime ideal containing 77-1 we may assume R to

be a local ring and thus 7 finitely freely resolvable. Consider the

polynomial ring R [x ] and the extended ideal I* consisting of all poly-

nomials in P[x] having all of their coefficients in 7. We observe that

7* satisfies all of the hypotheses of the proposition relative to P[x]

and, further, that I* is not invertible in R[x]. By Lemma 4.2, 7*7*-1

contains an element p(x) which generates a prime ideal. Moreover,

the construction of p(x) is easily seen to preclude the possibility that

p(x) is contained in any of the prime ideals belonging to I* (these are,

after all, only the extensions of the prime ideals of 7 to P[x]). Hence

by the second part of Proposition 4.1, I* =f(x)R[x]:pn(x)R[x] for

some n and some/(x) in P[x]. But the primeness of p(x) implies that

f(x), pn(x) is an i?-sequence, i.e., 7* is generated by/(x) which thus

makes 7* invertible, which is a contradiction.

Corollary 4.4. If R is a noetherian domain and I is an ideal of

finite homological dimension generated by two elements, then dh(7) ^1.

Proof. Let I = aR + bR. The result follows from the proposition

above and the exact sequence 0—>aP:&P—>R®R—>aR+bR—»0.

Corollary 4.5. A regular local ring is a unique factorization domain.

Proof. By Theorem 1.10 of [l ] a regular local ring has finite global

dimension. Hence, by the Proposition 4.3, above, all the grade one

prime ideals of the ring are principal. This is easily seen to imply

unique factorization.

Appendix. In this section we present a quite short proof of a well-

known result of Rees. Unless otherwise stated, R will denote a

noetherian ring and A a finitely generated P-module which is non-

null.

Definition Al. A finite, ordered set ax, ■ ■ ■ , a„ of elements of a
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proper ideal, I, of R is said to be an A-sequence in I if a< is not a zero

divisor on the factor module A/aiA + • • • +û,_i^4 for i= 1, • • • , n.

(The case when i = 1 is interpreted to mean that ai is not a zero divi-

sor on A itself.) The integer n is called the length of the A -sequence

and the A -sequence is said to be maximal if I consists entirely of zero

divisors on A/aiA+ ■ • • +a„A.

It may be shown (see, for example [2 ]) that for a fixed I and A

any A -sequence in I can be extended to a maximal one and any two

maximal ones have the same length. This fact gives rise to the fol-

lowing

Definition A2. The common length of maximal A -sequences in I

is called the grade of I on A and is written gr(J, A). In keeping with

current terminology we write gr(I) when A=R and codh(^4) when R

is local and / is the maximal ideal.

The reader may easily supply for himself the proof of the following

lemma.

Lemma A3. Suppose S is a multiplicative set in R disjoint from both

I and the annihilator of A. Then gr(I, A) ^gr (Is, As) where Is and As

are the extensions relative to the quotient ring Rs.

In [l ] Auslander and Buchsbaum have shown if R is local and A

has finite homological dimension, then dh(.4) ^gr(M) where M is the

maximal ideal of R and dh(^4)=gr(M) if and only if M belongs to

the null submodule of A. Using this we may give a quite short proof

of the following well-known result of Rees.

Proposition A4. If P is a prime ideal which belongs to the null sub-

module of A, then gr(P)^dh(^4).

Proof. When dh(A) = œ, the assertion is vacuous so let us assume

that A has finite homological dimension. By Lemma A3, gr(P)

^gr(Pp). Further, it is well known that dhRp(AP) ^dhii(A). Now by

the observation immediately preceding this proposition we have

gr(Pp) = dhRp(AP). Hence, gr(P) ^dh(A).
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