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FAMILIES OF MUTUALLY COMPLEMENTARY
TOPOLOGIES

B. A. ANDERSON1

Abstract. Several lattices of topologies on an infinite set are

considered and bounds are given for the sup of the set of cardinals d

such that there is a family of d mutually complementary topologies.

Large classes of N<rtopologies are shown to have No-complements,

and an example is given to prove that complementation is not, in

general, a very selective topological operation.

1. Introduction. An example was given in [l ] of three mutually

TVcomplementary topologies on a denumerable set and the question

was raised as to how many mutually 7Vcomplementary topologies an

infinite set can carry. In [2] it was shown that every infinite set

carries a collection of three mutually 7Vcomplementary topologies.

If L is a nonempty complete lattice, let us define the complementary

width of L (see [3, p. 98]), w*(L), to be the sup of the set of cardinals

d such that L has a family of d mutually complementary elements.

One result of this paper is that if X is an infinite set and L is one of

several important lattices of topologies on X, then |^"j ^w*(L)

^2|jr|. Schnare [8] has considered the problem of determining the

cardinality of the set of complements for any topology in the lattice of

all topologies on a set.

It is known [lO] that the lattice of Ti topologies on an infinite set is

not complemented. Recently several papers [l], [2], [lO], [ll] have

dealt with the question of what 7\ topologies have 7i-complements.

Some of the results of [2] can be carried over to another noncom-

plemented lattice of topologies; namely, the lattice of No-topologies.

This is done by showing that the complements exhibited in [2] are

actually Fréchet topologies.

Lastly, an example is given to show how topologically undiscerning

complementation is. It turns out that one topology can be comple-

mentary to topologies whose local properties of most points are com-

pletely arbitrary.
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If X is an infinite set, 2 will denote the lattice of all topologies on X,

II the lattice of principal topologies on X, A the lattice of Pi topol-

ogies on X, Ao the lattice of N0-topologies on X and Ac the lattice of

topologies such that every countable set is closed.

The author wishes to thank the referee for several suggestions which

have helped to streamline the paper.

2. Mutually complementary topologies. Let us show that \X\

¿w*(A) ¿2ixK Then it will be easy to suitably modify the construc-

tion to get the same result for 2, II, A0 and Ac. We begin with a set-

theoretic result which says, intuitively, that if F is a set such that

| Y\ = d ^ N0, then Y can be split into halves d ways such that if x in Y

and a particular splitting of Fare given, then there is a unique z in Y

such that x and z are in the same half of the particular splitting of Y,

but in different halves for every other splitting. The following nota-

tion will prove helpful. Suppose Y is the union of nonempty pairwise

disjoint sets F„0 and Yai- For each x in Y, let Fat(I) be the "half" of Y

that contains x and let Ya¡(.X) be the other "half" of Y.

Lemma 1. Suppose Y and 12 are sets, each of cardinal d ^ X0- For each

a in Í2, there exist nonempty pairwise disjoint sets Fa0 and Yai whose

union is Y such that if a in fl and x in Y are given, then there is a z in Y

such that

Ujn(n{Fww:fleo- {«}}) = {*}.

Proof. Let IF be a set with cardinal d and suppose F is the set of all

functions from W into {0, 1}. Then | p| = 2d. There is a subset S of P

that allows us to split F in the required ways.

Suppose Si = {/£ F: |/_1( {1} ) I is finite}, where we interpret zero

as a finite cardinal, and So is defined similarly with respect to 0. If

S = So^JSi, then since So and Si may be considered as coordinatizing

the finite subsets of W, it is clear that \S\ =d. If fES and wEW,

define /„ to be that element of F which agrees with f at w and dis-

agrees with/ everywhere else. Certainly iifES then fwES.

Now, for each w in W, split S into "halves" by the definition

Smi= {fES:f(w) = *};       ¿ = 0,1.

Our choice of 5 insures that none of these sets is empty. If / in 5 and w

in W are given, then / belongs to one and only one of Sw0 and Sw\.

Furthermore,/« belongs to the same "w-half" of 5 as/, but if vEW

— {w}, then/w and/ are in different "u-halves". Moreover, it is clear

that fw is the only element of 5 with this property. Since there exist

one-to-one mappings between 5 and Y and between W and Í2, the

lemma follows.
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It is easy to see that this is the best possible result. For suppose

|fi| >d but the conclusion still holds. Pick x in Y and define the

function <px:Q,—*Y by letting <px(a) be the unique z in Y that is the

same "a-half of Y as x, but in the other "half" of Y, for any ß in

fl— {a]. It is obvious that <px is one-to-one. This contradicts the

supposition on the cardinality of Í2.

Lemma 2. Suppose X is an infinite set. Then X carries a family of

\X\  mutually Ti-complementary topologies. That is,  \x\ âw*(A).

Proof. Express X as the union of | X\ pairwise disjoint subsets, all

with the same cardinal as X and index these subsets by Y. Thus,

X = \J{Xy:yEY}. For each y in Y, express Xv as the union of \X\

pairwise disjoint subsets, all with the same cardinal as X and index

these sets by fi. Thus Xy = \J {Xy,a:aEü}■ In each Xv,a, pick \X\

pairwise disjoint denumerable sets, {Ev,a,ß'.ßE(u— {a])].U can also

be used to split Y, and therefore X into halves as in Lemma 1.

Now, if y Gö, make the following definitions.

Ayo = U{Ey,y,a:yEYyo, aE(tt-{y})},

Ayi = [)\Ev,y,a:yEYn,aE(n-{y])],
Byo = \J{Xs:yEYyo],
Byi = \J{Xy:yEYyi],
Ey = \J{Ey.a,y:yEY,aE(a-{y])].

Then

(1) ByoVJByi = X,ByaC\Byi = 0,
(2) AyoEByo, AyiEByi,
(3) (AyoVAyi)nEy = 0,

and if 7 9áp, then

(4) AyoC\Ep9±0,AyiC\Ep?i0,
(5) (AyOyJAyi)r\(ApoVApi)=0,
(6) Eyr\Ep = 0.

Suppose xEX but xEEyVJAyo^JAyi. There is a unique y in F such

that xEXy and therefore by Lemma 1, there is a unique v in Y asso-

ciated with y and y. We make the definition

Cxy = {x} U (U{Ev,a,y:a E (Q - [y])])-

Define Ty to be the topology generated by cofinite subsets of By0 and

Byi, singletons in Ey and

{CXy\X   (£    Ey   \J   AyO   U   Ayi\ .

Since Byo and Byi are disjoint sets whose union is X, it is clear that

Ty is a T\ topology. Notice that every 7\-open set intersects Ey and

that every 7"7-open set containing a point of Ayo (Ay-¡) is cofinite in

Byo (Byi).



1971] FAMILIES OF MUTUALLY COMPLEMENTARY TOPOLOGIES 365

Lemma 2 will be verified if it can be shown that for any two dis-

tinct elements 7 and p of Í2, P7 and T„ are Pi-complements. This

means that sup{ Ty, Tp\ must be discrete and inf { P7, Tp\ must be

the cofinite topology. If xEX, then there is a unique y such that

xEXy and yEYyir\Ypj, i, j = 0, 1. First we show that {x} E

sup j T7, T„}. If xEEy^JEp, this is clear, since these sets are isolated in

their respective topologies. If xE(Ayi — Ep), then by (5), xEEp^JAp0

VJApi. Hence Cxpr\Byi = {x}. If xE(Ap,—Ey), then by (5), x££E7

*UAyo^JAyi and it follows that CxyC\Bpj = {x}. Finally, if x

E(Ey\JEçSJAyi\JApj), then CxpC\Czy= \x\.
Suppose now that UETyC\Tp and Utí0. We have noted previ-

ously that such a U must intersect Ey and Ep. Pick x such that xEU

(~\Ey. If xEApi, then U contains a cofinite subset of Bpi. Lemma 1 im-

plies that each "half" of a splitting of F contains points in both

"halves" of any other splitting. Thus, any cofinite subset of Bpi must

contain points in Ay0 and Ayi. Hence U contains cofinite subsets of

Byo and P7i and U is cofinite in X. If xEAPi, then by (6), xE(E?

^JAPoVJA„i), and U must contain a cofinite subset of Cxp. But there is

a y such that Cxp contains £„,7,P. Therefore, there is aj,j = 0, 1, such

that CxpC\Ayi is infinite. This means that U contains a cofinite subset

of Byj and hence contains points of Ap0 and ^4Pi and must contain

cofinite subsets of B„o and B„\.

One more fact about the topologies defined in Lemma 2 will prove

useful. Recall that Fréchet topologies are those topologies with the

property that a point is in the closure of a set iff there is a sequence in

the set converging to the point.

Lemma 3.  The topologies defined in Lemma 2 are Fréchet topologies.

Proof. Consider the topology Ty as defined in Lemma 2. Suppose

G is an infinite subset of X and yECl(G)—G. We wish to exhibit a

sequence in G that P7-converges to y.

Clearly y££P7. If yEAyi, choose a sequence of distinct points in

G(~\Byi. Any such sequence must converge to y since every P7-open

set containing y must contain a cofinite subset of Byi. If yEAyoOAyi,

choose a sequence of distinct points in Gf\Cyy. Any such sequence

must converge to y since every P7-open set containing y must contain

a cofinite subset of Cyy.

Theorem 1. Suppose X is an infinite set and L is one of the lattices

2, II, A or A0. Then \ X\ ¿w*(L) ¿2lxl. If X is uncountable, this in-

equality is also true for Ac.
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Proof. The upper bound on w*(L) is easily obtained since X has

2|X| subsets and the complementation conditions force each topology

in a family of mutually complementary topologies to contain sets not

in any other topology of the family. In the case of IT, this upper bound

is no restriction at all, since X has only 2|jr| principal topologies [8].

This is also true of A0, if X has cardinal at least c [7].

Lemma 2 established the lower bound for A. A simple modification

of the definition of Ty in Lemma 2 will give us the result for 2.

Merely change "cofinite subsets of Byo and Byi" to uBy0 and 5Tl". The

argument of Lemma 2 now shows that if y^p, then inf {Ty, Tp] is

the indiscrete topology. Note also that the modified Ty's clearly have

the property that each point is contained in a minimal open set.

Thus [9, Theorem 2.3] each modified Ty is a principal topology and

the theorem is proved for IT. Theorem 1 of [7] states that a topology is

an No-topology iff every nonclosed set contains a countably infinite

subset with an accumulation point lying outside the set. Clearly

every Fréchet 7\ topology is an N0-topology. Therefore, Lemmas 2

and 3 show that | X | ^ w* (A0).

Finally, suppose X is uncountable. Change the construction of

Lemma 2 by choosing {EUia,ß:ßE(&— {a})} to be a family of pair-

wise disjoint uncountable sets, modify the definition of Ty to read

"cocountable subsets of By0 and Byi", and the result follows for Ac.

Clearly we can extend this technique to higher cardinals.

3. Complementation in A0. It has been shown [7] that the lattice of

Ko-topologies on an infinite set is not complemented. It is easy to ex-

tend a result of [2 ] to show that large classes of No-topologies have

No-complements. Call a topological space X splittable iff X contains an

infinite family of pairwise disjoint open sets. Call X a DN-space iff

each point in X has at least one net in its complement that converges

to it and whose range is a discrete subspace of X. If N is the set of

isolated points in X, call (X — CIA7) the open kernel of X. Now The-

orem 1 of [2] states that if (X, T) is a 7Vspace whose open kernel is

empty or a splittable ZW-space, then T has a 7Vcomplement T' that

is compact on cofinite subsets of X.

It is easy to see, using an argument like that for Lemma 3, that T'

is Fréchet. In addition, if T is an No-topology, then T and T' are No-

complements.

It has been noted that Fréchet 7\ topologies are N0-topologies.

Remark 1. If T is a Fréchet Hausdorff topology, a locally compact

Hausdorff N0-topology or a symmetrizable Hausdorff topology, then

T has an N0-complement.
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Proof. Repeat the arguments of Corollaries 1, 2 and 3 of [2].

The ordinals through the first uncountable ordinal with the usual

order topology yield a compact Hausdorff topology that is not an

No-topology. Example 7.1 of [4] shows that a topology can be a com-

pact Hausdorff N0-topology and fail to be Fréchet. The example is the

one-point compactification of the space SI' of Isbell (see [6, p. 79]).

4. An example. It may be of some interest to note that the methods

of [2 ] also give one an easily pictured more elementary way of defin-

ing 2-complements for nice topologies than the all inclusive methods

of [9] or [12]. We illustrate the preceding statement (this is why

Theorem 2 is stated for cardinal c) and at the same time prove

Theorem 2. Every set of cardinal c carries a Pi topology T' such that

for any Pi topology S on a set X of cardinal c, T' has a Ti-complement

with a subspace homeomorphic to (X, S). Analogous statements hold in

2 and Ao.

Proof. Let (R2, T) be the plane and make the following definitions.

For each integer i,

(a) Ui={(x,y):i<x<i + l};Y = VUi,

(b) e¿ = (í + l/2, 0); £0= {ei'.i is even], Ex = {et'.i is odd},

(c) Si={(i + l/2,l/n):n^l}.

Also

(d) A 0 = U {Si : i is even} ; Ai = U {Si : i is odd},

(e) B0 = AoVJ[(Y-Ai)r\(VlUi:iisodd})],
Bi = AM[(Y-Ao)r\(U\Ui:iiseven})],

(f) D=Y-(AoVAiKJE0\JEi)={da:aEn},

(g) C,«Gß,
where Ca is defined as follows. If daED, then there is an i (a) such

that daEUi(a). Now i(a) is either even or odd, and we can think of

Ui(a) as being part of either the "even half" or "odd half" of Y. Let Ca

be the union of da and all e/s in the same half as da, except «¿(a). Let

(P| Y)' be the topology generated by

(i)   [x\,xEE0VJEi,

(ii) Bt, i = 0,1,
(iii) Ca, aE®,

(iv)  Cy, the cofinite topology on F.

Then, as in Lemma 2 of [2], (P| Y)' is a Pi-complement of P| Y. Since

Y is an open dense subset of (R2, T), Theorem 5 of [ll] assures us

that if V is the topology generated by

(v)   \x\,xER2-Y,
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(vi)  VVJF,   VE(T\ Y)' and  F cofinite in R2-Y,
then  T' is a T%- (N0-) complement of T.

Notice that we can modify T at points away from Eo^JEx and the

Si's and still have T' for a 7\- (N0-) complement. Specifically, suppose

5 is a 2V(N0-) topology on a set of cardinal c. Let A be a closed circular

disc entirely contained in the part of Z70 below the x-axis. Topologize

R2 with T-open sets in R2 — A and a copy of 5 in A. Clearly this

topology and T' are ZV (N0-) complements. If we omit (iv) from the

definition of (T\ Y)' and modify (vi) to

(vii)   VVJ(R2-Y), VE(T\ Y)',
we see that a similar result holds for 2.

It is clear from the construction that T' has 22" TVcomplements

(2C No-complements, since |A0| =2C if the base set has cardinal c [7,

Theorem 3]). It is known [8] that there are topologies in 2 with 2*

2-complements.

Finally, notice that T' is a 7Vcomplement for much stronger topol-

ogies on R2 than T, for example, the radial topology of [S].
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