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TOPOLOGICALLY  COMPLETE  GROUPS

LAWRENCE G.  BROWN

Abstract. Topologically complete groups are characterized

by the existence of a compact subgroup such that the coset space is

topologically complete and metrizable. Coset spaces of topologi-

cally complete groups and extensions of one topologically complete

group by another are again topologically complete. The open map-

ping theorem is valid for topologically complete groups.

A space is topologically complete (in the sense of tech [3]) if it is homeo-

morphic to a dense Ga in a compact Hausdorff space. A metrizable space is

topologically complete if and only if it has a complete metric [3]. In

general, it is known that a Hausdorff space Xis paracompact and topologi-

cally complete if and only if it has a proper mapping (i.e., a closed mapping

with compact fibers) onto a complete metric space [5]. Another way to put

this is to say there is a continuous pseudo-metric ¿/such that every J-Cauchy

net has a subnet which converges in X. We will call such a d complete. A

topologically complete space is a Gö in any Hausdorff space in which it is

densely imbedded ([3], [4]).

For topological groups, the situation is simpler. If G is even locally

topologically complete, then it is necessarily paracompact and topologi-

cally complete, and has a compact subgroup AT such that G/K is metrizable

and topologically complete. K cannot necessarily be taken normal, even

if G is locally compact; but even so, topological completeness appears to

be a useful concept in the theory of topological groups. Extensions

of topologically complete groups by topologically complete groups are

topologically complete, and the open mapping theorem is valid for

topologically complete groups.

Theorem 1. If the topological group G is locally topologically complete,

then G is paracompact and topologically complete. This is so if and only if G

has a compact subgroup K such that G/K is metrizable and topologically

complete.
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Proof. Let U be a topologically complete open subset containing the

identity e. Let {^n} be a complete sequence of open covers of U [4]. Let

U„ be an element of #„ containing e. Then since {^„} is complete, any net

which is eventually in each Un has a cluster point. Now let {Vn} be a

sequence of symmetric neighborhoods of e such that (F„+1)2c Vn<^ U„.

Let K= D^Li yn- Clearly, K is a closed subgroup. Since {Vn} has the same

property as {Un}, it is immediate that K is compact. It is also easy to see

that {Vn} is a basis of neighborhoods of A: Suppose W were an open

neighborhood of K, and Vn<k IF for any n. For each n, choose xn e Vn— W.

Then {x„} has a cluster point x e K— W, a contradiction.

Thus G\K satisfies the first axiom of countability. Since K is compact,

this implies that G\K is metrizable: Let us call a neighborhood V of e

special if kVk~l= V for all k € K. Since A is compact, G has a special

neighborhood base at e. For V special, define V={(xK, yK) e GjKx

GjK.y e xVK). Since xVK=xKV, this definition makes sense, and the V's

define a uniformity consistent with the topology of GjK. Since V depends

only on VK, this uniformity is countably generated, and G/Ais metrizable.

Now since GjK is an open image of G, it follows (essentially from [6],

cf. [10]) that G¡K is locally topologically complete. Then (again from [6])

it follows that G¡K is topologically complete. Since Ais compact, the map

from G to GjK is proper, and G is topologically complete.   Q.E.D.

Corollary 1. If G is topologically complete and E is a Gs subset con-

taining e, then K can be taken so that K<^E.

Remarks. 1. K cannot necessarily be taken normal. For example, G

could be a nonmetrizable, locally compact, totally disconnected, topologi-

cally simple group (such exist); or G could be the semidirect product of an

uncountable torus with its full automorphism group (the latter with its

discrete topology). In these two locally compact examples, of course, G has

an open subgroup Gx such that K can be taken normal in Gx. If we drop

local compactness, we can obtain connected examples: Let K be a non-

metrizable, compact, connected group and G the semidirect product of

A'and C(K), where A acts on C(K) by translation.

There are, however, conditions under which AT can be taken normal. We

call G a PM-group if, for any sequence {Vn} of neighborhoods of e, there

is a sequence {V'n} of neighborhoods of e such that V'n<zVn and {V'„}

generates a group topology. (Since it is easy to take V'„ symmetric and

(V'v+iY^V'n, the key requirement is that, for any xeG and any n,

xF^'c V'„ for m large enough.) If G is a FM-group, then A can be taken

normal. In [2], we will show that G is a FM-group if G modulo its center is

weakly separable. A group is weakly separable if it is the union of countably

many left translates of each neighborhood of the identity.
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2. It is easy to find a metric for G\K which corresponds to the uni-

formity introduced above. Let ¿be a continuous left-invariant pseudo-

metric on G which is right invariant under K, and such that each Vn

is a ¿/-neighborhood of 1 (such exist since K is compact). Then define

d(xK,yK)=iní{d(xk1,yk2):k1,k2eK}. d is the desired metric on GjK,

and G is represented as a group of isometries of (GjK, d). The kernel, C,

is the largest compact normal subgroup contained in K, and the topology

of GjC agrees with the isometry-group topology (i.e., the pointwise

topology on GjK).

It is natural to ask when GjKis complete with respect to d. In other words,

if {xx} is a net in G such that x~xxß is eventually in each Vn, when can we

say that {xx} has a cluster point? For this, we need a lemma.

Lemma 1. Let Kbe a compact subgroup of G such that G\K is metrizable,

and let {Vn} be a basis of neighborhoods of K. If{xx] is a universal net in G

(i.e., a net corresponding to a maximal filter) such that x~xxß is eventually in

each Vn, then {xx} is left Cauchy. A similar result holds for right Cauchyness.

Proof. For any special neighborhood V of e, there is x e G such that

x„ is eventually in xVK. Since K is compact, we can write Kcz (JLi Vkt for

some rc/s in K. Since {xa} is universal, there is an i such that xx is eventually

in xV- Vki—xV^k—xkiV2. Thus x~1xß is eventually in F4. Since F4 can be

arbitrarily small, {xj is left Cauchy.

The answer to the above question is now clear.

Corollary 2. If G has a compact subgroup K such that GjK is metri-

zable, then G, the completion of G in the two-sided uniformity, is topologi-

cally complete.

Proof. GjK is also metrizable : If {K„} is an open neighborhood base of

K'mG and V.n = GC\V'n for V'n open in G, then V'n<=- P„. If IF is a neighbor-

hood of K in G, then for some n, W^> Vn. Hence W^> V'n. Since K is com-

pact and G regular, K has arbitrarily small closed neighborhoods. Hence

{¥'„} is a neighborhood base for K in G.

Now if {xa} is a net in G such that, for each n, x„rxf and xax^"1 are

eventually in V'n, then, by Lemma 1, any universal subnet is two-sided

Cauchy and hence converges. From this, it is easy to construct either a

complete sequence of open covers or a complete pseudo-metric for

G.    Q.E.D.

Corollary 3. If G has a compact subgroup K such that GjK is metri-

zable, then G is topologically complete if and only if G is complete in

its two-sided uniformity.
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Proof. All that remains is to show that topological completeness

implies two-sided completeness. The proof of this is the same as in the

metrizable case: G is a dense Gó in G, which is second category. Hence

G=GG-1=G (see [8, Exercises P, Q, pp. 211-212]).

Corollary 4.   (i)<=>(ii)<=>(iii), and (i)'<=>(ii)'<=>(iii)'.

(i) G is topologically complete and left complete.

(ii) G has a left-invariant, complete pseudo-metric.

(iii) There is a sequence {Vn) of neighborhoods of e such that any net {xa}

for which x~lXß is eventually in each Vn has a cluster point.

(i)' G is topologically complete.

(ii)' There is a left-invariant pseudo-metric d such that, if d'(x,y)=

d(x,y)+d(x~1,y~1), then d' is a complete pseudo-metric for G.

(iii)' There is a sequence {Vn) of neighborhoods of e such that any net

{xa}for which x~1x/j and x^xj1 are eventually in each Vn has a cluster point.

Topological completeness in the sense of Cech adds nothing new to the

theory of topological vector spaces. In fact:

Corollary 5. If G is a topologically complete topological vector space

over the reals, or over a local field k, then G is metrizable.

Proof. In the real case, this is clear since G has no compact subgroups.

In general, since k is weakly separable, we can choose the K„'s so that they

define a vector space topology (cf. [2]). A will then be a subspace. Since k is

not compact and any one dimensional subspace of Ais closed and homeo-

morphic to k, K must be trivial.

Theorem 2. If H is a closed subgroup ofG, and either: (i) G is topologi-

cally complete, or (ii) G has a compact subgroup A such that GjK is metri-

zable and G\H is locally topologically complete, then G\H isparacompact and

topologically complete.

Note. If G is metrizable, this follows directly from [6]. This case was

erroneously stated to be an open question in [1].

Proof. In either case, K exists as in (ii). Let D be the double coset

space K\G¡H, with the quotient topology. It follows as in the proof of

Theorem 1 that D is metrizable: For Fa special neighborhood of e, define

V={(KxH, KyH) e DxD.ye KVxH). The V's define a metrizable uni-

formity on D. Since D is an open image of both G and G\H, it follows from

[6] that in either case, D is topologically complete. Since the mapping

from G\H to D is proper, GjH is paracompact and topologically complete.

Corollary 1. ¡f G is topologically complete and H is a closed G6 sub-

group, then GjH is metrizable.
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Proof. By Corollary 1.1, we can find K^H such that GjK is metri-

zable. Then GjH is a paracompact, open image of GjK and hence is

metrizable by Corollary 1.2(c) of [9].

Lemma 2. Let H be a closed subgroup of G such that H is topologically

complete and GjH locally topologically complete. If either

(1) H is normal,

(2) H is left-complete, or

(3) G is a PM-group,

then G has a compact subgroup K such that GjK is metrizable.

Proof. It is sufficient to find a sequence {Un} of neighborhoods of e in

G such that any net which is eventually in each U„ has a cluster point.

1. Let it : G-+GJH be the projection. Since GjH is locally topologically

complete, the proof of Theorem 1 shows that there is a sequence {Wn} of

neighborhoods of Tr(e) in GjH with the desired property. Let {Vn] be a

sequence of neighborhoods of e in //, as in Lemma 1. Let {Un} be a se-

quence of open symmetric neighborhoods of e in G such that (f/„+1)2c JJn,

^(^n)^ Wn, and UnnH<=- Vn. In case (3), we may assume also that, for

any x € G and any «, x£/mx_1c: u„ for m sufficiently large.

2. Let {xj be a net eventually in each Un. Then, replacing {x„} with a

subnet, we may assume tr(xx) converges to n(y) in GjH. Again replacing

{xa} with a subnet, we obtain xa=yjia, where ya-*y and hx e H. It is

sufficient to show that {hx} has a cluster point.

3. We show that yean betaken in f]n=i Un=r\Z.i Cl(î/„). (Itis clearly

permissible to replace y by any element of yH.) For each n, y g

Cl(Un+1H)<=-(Un+i)2-H<=Un-H. Therefore, we may write yhn=yn, with

yne Un, hn g H. We must show that {hn} has a cluster point. For m,

n>N+l, hrn\n=y-1yme(UNllfnH^VN. Therefore, in case (2), {/,„}

has a cluster point. Also yhnh~1y~1=yny~1 e U„-Um. In case (1), for n,

m^N+l, yhny-i-(yhmy-1)-1 e (UA+1)2r\H^VN. Thus by Lemma 1, if

{hß} is any universal subset of {hn}, {hß} is left Cauchy and {yh^-1} is right

Cauchy. It follows that {hß} is right Cauchy, hence two-sided Cauchy,

hence convergent. In case (3), for any N and for n, m large enough,

hji^ e(y-lUnUmy)C\H^UNC\H^VN. Again, Lemma 1 implies that

{hn} has a cluster point.

4. Now for any n, sincey g Un+1, yx is eventually in i/nil. Since xa is also

eventually in Un+1, hx eventually is in (i/„+1)2n//c: Vv. Therefore {hx} has

a cluster point.   Q.E.D.

Lemma 3. Let H be a closed subgroup of G such that H is topologically

complete and GjH locally topologically complete. If G has a compact sub-

group K such that GjK is metrizable, then G is topologically complete.
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Proof. By Corollary 1.3, it is enough to show G=G. By Theorem 2,

G\H is actually topologically complete. Now H is complete in its two-

sided uniformity and hence closed in G. Therefore, G\H has the same

topology as a quotient of G and as a subspace of GjH. Thus GjH is a

dense Gf in GjH, and hence G is a dense G6 in G. As in the proof of

Corollary 1.3, it now follows that G=G.

Theorem 3. Let H be a closed subgroup of G such that H is topologically

complete and GjH locally topologically complete. If either (1), (2), or (3) of

Lemma 2 is true, or

(4) there is a continuous local sect ion from G¡H to G, then G is topologi-

cally complete.

Proof. All that remains is (4), the case where G is a bundle over G\H.

Since the product of two topologically complete spaces is topologically

complete, (4) implies that G is locally and hence globally topologically

complete.

We now turn to the open mapping theorem. If 77 : G-+H is a continuous

homomorphism, 77 is called almost open if Cl(77(i/)) is a neighborhood of

the identity, e, in H for each neighborhood U of the identity, e, in G.

By following the general plan of [1], we can prove:

Theorem 4. //" 77 : G—>-// is a continuous, almost open homomorphism,

and G is topologically complete, then 77 is open.

Lemma 4.    Theorem 4 is true if G is weakly separable.

Proof. We may assume H=C\(tt(G)). If K is a compact normal sub-

group of G such that G/Ais metrizable, then 77(A) is normal in H. -n induces

an almost open homomorphism of G\K to ///77(A), which is open by the

separable metric case of the open mapping theorem (Corollary 3.2 of [11],

cf. the second Remark in [1]). It follows that 77 is open. (We could, for

example, assume without loss of generality that 77 is 1-1. Then 77 induces a

homeomorphism of K onto 77(A) and a homeomorphism of GjK onto

///77(A). Hence 77 is a homeomorphism of G onto H (cf. [2]).)

Lemma 5. Let G and H be as in Theorem 4, 77 : G-+H a continuous homo-

morphism, K a compact subgroup of G such that GjK is metrizable, and{U„}

a basis of neighborhoods of K. Then tt is almost open if each CI(tt(U„)) is a

neighborhood of e.

Proof. It is sufficient to show that, if F is a neighborhood of e in G

and {xa} a net convergent to e in H, then some subnet of ixj is eventually

in Cl(7r(K)). By hypothesis, for each neighborhood W of e in G, xa is

eventually in C\{tt{W ° K))=C\{tt{W)) o 77(A). Hence, passing to asubnet,
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we may write xx=yxTr(ka), where ya is eventually in each Cl(n(W)) and

kx e A. Again passing to a subnet, we may assume kx—>-k. Since xa-+e and

y„r-e, clearly n(k)=e. Choose Wü such that W%<^ V. Then kx e W0o k,

eventually, and hence 77^) e tr(W0). Since >'a e Cl(7r( W0)) eventually, it is

clear that xa e C\(n(W0)) ° 77(H/0)cCl(7r(K)) eventually.

Now with the same notations and assumptions, ///77(A) is metrizable.

In fact, Cl(ir(Un)) is a neighborhood base for 77(A). We will say temporarily

that G0 is an s-subgroup of G if G0 is the closed subgroup generated by A

and countably many elements of G; similarly, H0 is an j-subgroup of H if

it is the closed subgroup generated by 77(A) and countably many elements of

H. The j-subgroups actually exhaust the class of weakly separable closed

subgroups containing A (respectively 77(A)), but all we will need is the fact

that they are weakly separable (cf. [2]).

Lemma 6. With the above notations and assumptions, if H=C\{tr{G)),

then for any s-subgroup H0 of H, there is an s-subgroup G0 of G such that 77

gives an open map of G0 onto H0.

Proof. We may assume Un=Un°K. Let Vn be the interior of

Cl(77(f/J), so that Vn=Vn o 77(A). Let /j://->///t7(A) be the projection.

Then since Hjir{K) is metrizable and p(H0) is separable, we may choose

a large enough s-subgroup Gx of G so that Cl(77(Gi))^G0, and

Cl(77(i7nriG1))=' VnnH0. Let//1=Cl(77(G1)).Justasin the proof ofLemma

2 of [1], we iterate this process and then apply the separable case (Lemma

4).
Proof of Theorem 4. We may assume that H=CI(tt(G)) and (for

simplicity) that 77 is 1-1. Then since 77 gives a homeomorphism of A onto

77(A), it is sufficient to show that 77 gives a homeomorphism of G/A

onto its image in ///77(A). This will imply that 77 is a homeomorphism onto

77(G) and, since G is complete in its two-sided uniformity, that tt(G) is

closed. Since ///77(A) is metrizable, we need only consider sequential con-

vergence in ///77(A), and Lemma 6 suffices to complete the proof.

Once Theorem 4 has been proved as stated, results in Chapter V of

[7] apply. These allow the hypothesis of both the open mapping and closed

graph theorems for topologically complete groups to be relaxed a little bit.
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