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THE BAIRE  ORDER  OF THE FUNCTIONS
CONTINUOUS  ALMOST EVERYWHERE

R.   d.   MAULDIN

Abstract. Let í> be the family of all real-valued functions

defined on the unit interval / which are continuous except for a

set of Lebesgue measure zero. Let <J>0 be <I> and for each ordinal a,

let <S>a be the family of all pointwise limits of sequences taken

from {Jy<x ÍV Then <Dm is the Baire family generated by O. It is

proven here that if 0<a<co1, then O^i^ . The proof is based

upon the construction of a Borel measurable function h from /

onto the Hubert cube Q such that if x is in Q, then h^ix) is not

a subset of an F„ set of Lebesgue measure zero.

If O is a family of real-valued functions defined on a set S, then the

Baire family generated by O may be described as follows: Let O0=O

and for each ordinal <x>0, let Oa be the family of all pointwise limits of

sequences taken from \Jy<x î>r Of course, ^o^^V+i* where mx denotes

the first uncountable ordinal and 4> is the Baire family generated by O;

the family O^, is the smallest subfamily of Rs containing O and which is

closed under pointwise limits of sequences. The order of O is the first

ordinal a such that 0>X=Q>X+X.

Let C denote the family of all real-valued continuous functions on the

unit interval I. It was first proven by Lebesgue that the order of C is

cox [1]. In 1924, Kuratowski [2] proved that if one relaxes the continuity

condition by only requiring that the original functions be continuous

except for a first category set, then the Baire order of this enlarged family

is 1. In 1930, Kantorovitch [3] showed that if one requires that the original

functions be continuous except for a set of Lebesgue measure zero, then

the Baire order of this family is at least 2. Recently, the author generalized

this result in the following fashion [4].

Theorem. Let S be a complete separable metric space, let u be a

a-finite, complete Borel measure on S and let O be the family of all real-

valued functions on S, whose set of points of discontinuity is of u-measure 0.

Then (1) the order of$> is 1 if and only ifu is a purely atomic measure whose
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set of atoms is dispersed and (2) if the order o/O is not 1, the order o/O is

at least 3.

In this paper O will denote the family of all real-valued functions de-

fined on the unit interval / which are continuous except for a set of

Lebesgue measure zero. It is shown here that the Baire order of this

family is œx. The method of proof involves showing that there is a Borel

measurable function h from / onto the Hubert cube such that if x is a point

of the Hubert cube, then h_1(x) is not a subset of an Fa set of Lebesgue

measure 0. Of course, there is no such function h which is continuous

or even an h such that hr1(x) is an F„ set for each x. Thus, the function h

is necessarily fairly complicated. We begin with a sequence of lemmas

which are used to demonstrate the existence of one such function h.

This function will be used to construct a transfinite sequence of "universal

functions" {U0i}0<cl<OJ [Theorem 2]. Finally, a diagonal type argument is

applied to prove that the order of O is a>x [Theorem 4].

Lemma 1. Let P be aperfect subset of the interval I such that if an open

set U meets P, then A(Fnt/)>0. There is a double sequence {Fnv}n,v=x

of disjoint perfect subsets of P such that (I) each Fnv is nowhere dense in P

and if an open set U meets Fnj), then 2(t/nFKJ))>0, and (2) ifn is a positive

integer and U is a nonempty set open with respect to P, then there is some

p such that Fnp is a subset of U.

Proof. Let {sn}™=x be a countable base of nonempty open sets with

respect to P.

Let Kxx be a perfect set lying in sxnsx=Si such that K1X is nowhere

dense in F and if an open set U intersects Kxx, then X(Kxxr\U)>0. For

each positive integer n and integer p, l^p=n+l, let Kn+Xp be 0, if

sn+xrisp= 0, and, if sn+xr\sp^ 0 let Kn+Xj> be a perfect set lying in

j„+1nij such that (1) Kn+i „ is nowhere dense in P, (2) Kn+X v is disjoint

from (0?=! U»=i Kra)V(\JÏ~î Kn+X A (a union from 1 to 0 is taken to be

empty) and (3) if an open set U intersects Kn+X P, then X(Kn+x 3,ni/)>0.

For each p, let FXi,=KBJ). For each positive integer pair n, p, let Fn+X v

be the first term of the sequence {Kap}f=P which follows Fnp and which is

nonempty.

It follows that the double sequence {Fn„}™ri=i has the required proper-

ties.

Now let {F(nÈj>)}n,P=x be a double sequence which has the properties

listed in Lemma 1, where F is the interval [0, 1].

By repeated application of Lemma 1, we have

Lemma 2. There is a system of sets {F(„ ,„ ,...„ >}, where (nx, • • • , n2k)

ranges over the family of all finite sequences of positive integers of even
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length such that if (nx, n2, • ■ ■ , n2k_x, n2k) is such a sequence, then the

double sequence {F(Bi,Bî.....Bst_iiBi|t,„,v)}n,v=i has the properties listed in

Lemma 1 with respect to the set {F(Bi.B¡¡,....Bst_1.„2k)}.

Let Wn be the family {F{n¡J>)}™=x for each n, and for each finite sequence

of positive integers (nx, • • • , nk), let W(n ,...,„ , be the family

l *(n1. ix. n2. £2. ■ ■ •. nk. ik) S

where (ix, • • ■ , ik) ranges over all ^-tuples of positive integers. Let FBi,...iBi

be the union of all the sets in the family WL ...,„».

Notice that these families have the following three properties:

(1) If (mx, ■■■ ,mk)j¿(«!,-•• ,nk), then T(ni....¡n¡¡) and T(ni,...,m¡¡y

are disjoint;

(2) Each set in fVln]¡,„.,Ut,UM} is a subset of some set in W7,^....,^,;

and

(3) IfFe W(„ ,...,„ ,, n is a positive integer, and i/isan open set which

meets F, then there is some set in the family W(n ,...,„ ,„> which is a subset

of U.

Lemma 3. Let {nk}k=x be a sequence of positive integers. The intersection

of the monotonically decreasing sequence {Tln _..._„ )}^=1 is not a subset of

an F„ set of measure 0.

Proof. For each n, let A„ be a closed set of Lebesgue measure 0.

Since FBi is dense in the interval /, it follows that there is some set F„i¡ki

which does not intersect Ax.

Since A(F(„ ¡k >)>0 and X(A2)=0, there is an open set which meets

F„ tk which does not intersect A2. It follows from property (3) that there

is a set F(B %k ,„^,kj which is a subset of F(„ jk , and does not meet A2.

Continuing this process, we obtain a monotonically decreasing se-

quence {F(ni,ki,...,„v,K)}™=x such that for each p, F(ni,kl.....np,kp) does not

intersect Ap. The nonempty intersection of this sequence of sets is a

subset of f)k=j 2"(B,,...,n ) which does not intersect (_)n=x A„. This completes

the proof of Lemma 3.

For each k, let Hk=\J Tni¡...t„k, where the union is taken over all

A>tuples of positive integers. Let H=f)k=x Hk. The set H is an Fa6 set.

Let Jf denote the space of all irrational numbers between 0 and 1.

Identify the space of all infinite sequences of positive integers with the

space via the continued fraction expansion of the members of the space

Jf. If Z g Jf let [ZT, Z2, Z3, • • •] denote the sequence of integers ap-

pearing in the continued fraction expansion of Z.

Lemma 4. There is a Borel measurable junction ffrom H onto Jf such

that ifZeJf, thenf~1(Z) is not a subset of any Fa set of Lebesgue measure 0.
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Proof. For each x e H, there is only one sequence of positive integers

{"k}k=i such that x e (~)k=i Tí«,.....«^; let/(x) be the irrational numbers

in AT identified with this sequence. It follows from the preceding lemma

that/maps H onto jV and if Z eJr, then/_1(Z) is not a subset of an F„

set of measure 0.

For each ¿-tuple nu ■ ■ ■ , nk, let J(ni,...,nk) {Z:Zt»nit i=l, 2, • ■ ■ , k}.

The sets/^  ... n > form an open base for the usual topology on the space

jr.
We have

/     Ctm.-•■,«*>) =   U   I Pi ̂ («l.•■■,«*.Zi,--,Z„) I-

Thus,/~1(/(lli... nj¡)) is an analytic set [5, p. 467]. It follows from Lusin's

first separation theorem [5, p. 485] that/is Borel measurable (actually,

/_1(C/) is an Faia set for each open set U).

We are now in a position to prove

Theorem 1. There is a Borel measurable function h from the unit

interval I onto the Hilbert cube Ia" such that if x e Iw°, thenf"1(x) is not a

subset of an Fa set of Lebesgue measure 0.

Proof. Let/be a function as described in Lemma 4. Let g be a con,

tinuous function from AT onto the Hilbert cube [5, p. 440]. The com-

position, g°f, maps H onto the Hilbert cube and is Borel measurable.

Let (gx, g2, g3, ■ ■ • ) be the sequence of the natural projections of g °f.

For each p, gP is a Borel measurable function from H onto the interval /

[5, p. 382]. For eachp, let gp be a Borel measurable extension gv to all of

/which maps into/. Leth = (gx,g2,g3, ■ ■ ■). The function A has the required

properties.

Theorem 2. There exists a transfinite sequence of "universal functions"

{Ua}0<x<io such that for each a, 0<a<a>i, we have

(1) Ux is a Baire measurable function on Ixl which maps into the unit

interval I; and

(2) if ' f is a function in Baire's class a which maps into I, then the set

of all x such that Ua(x,y)=f(y),for every y In I, is not a subset of an F„

set of Lebesgue measure zero.

The proof essentially follows the argument in [6, p. 133].

Proof.    Let {sn}™=1 be a countable dense subset of the positive part

of the unit ball of the Banach space C(I).

Let

U0(x,y) = sn(y),   ifx=l/n,

= 0, otherwise.
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It can be easily verified that C/0 is a Borel measurable function on Ixl

and of course it maps into the interval I. Let h = (hx, h2, h3, • • ■) be a

function from / onto the Hubert cube having the properties described

in Theorem 1.

For each ordinal a, 0_a<<o1, let

Ua+X(x, y) = lim sup Ua(h„(x), y)
p-*ao

for each (x,y) eIxl; also, if a is a limit ordinal, let {yP}p=x be an in-

creasing sequence of ordinals less than a which converges to a and let

Ux(x, y) = lim sup Uyp(hp(x), y).
2>-+0O

It may be proven by transfinite induction that the functions Ux, 0<oc<

œx, are Borel measurable and map into I.

The proof that the functions Ux are "universal" and represent each

appropriate function in Baire's class a on a "large" set proceeds by trans-

finite induction.

First, suppose/is in Baire's class 1 and/maps / into I. Consequently,

there is a sequence (nx, n2, n3, • • ■) of positive integers such that the

sequence {sn }p=x converges pointwise to/on I.

If xe/i-^l/«!, l/«2, l/«3, ■ ■ •), then

Ux(x, y) = lim sup U0(hp(x), y) = lim sup snt(y) = f(y),
J>-*CO J)-*00

for each y in /. Thus, the function Ux has the second required property.

Now, suppose a is a limit ordinal, the functions U7, 0<y<a, have the

required properties and / is a function in Baire's class a which maps /

into /.

There is a sequence {fP}P=x of functions, converging pointwise to /

on / such that for each p, fP is in Baire's class yP andfp maps / into I.

For each/7, let xp he a number in / such that Uy (x,y)=fp(y), for every

y in I.

If x e h~1(xx, x2, x3, ■ ■ ■ ), then Ux(x,y)=f(y), for each y in I and Ux

has the required properties.

A similar argument can be given for the remaining functions Ux+X.

In order to prove that the Baire order of O is wx, we will employ a

theorem which was published previously by the author:

Theorem 3 [7]. If a is an ordinal, 0<a<co1, then a function f is in

<5)x if and only if there is a function g in Baire's class a such that the set

D={x:f(x)^g(x)} is a subset of an Fa set of measure zero.
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We will now prove

Theorem 4.    The Baire order of 0 is Wj.

Proof. Let a be an ordinal, 0<oc<<o1. Let Ux be a universal function

having the properties stated in Theorem 2. Let w(x) = limn^aD(l — Ua(x,x))n.

The function w is a Baire function which maps / into / and there is no x

such that w(x)= Ux(x, x). Actually, w is the characteristic function of the

set of all x such that Ua(x, x)=0.

Assume that w eí>r By Theorem 3, there is a function g in Baire's

class a such that the set D = {x:w(x)j£g(x)} is a subset of an F„ set K of

Lebesgue measure 0. It is assumed here that g maps into / (this is no

restriction). By Theorem 2, there is some x e K' such that Ua(x, y)=g(y)

for all y in /. In particular, Ux(x, x)=g(x) = w(x), since xeK'. This

contradiction proves the theorem.

Question. If 0<a<co1, is there a cr-ideal Fca of subsets of / of the first

category which contains all the sets of Lebesgue measure 0 such that the

family O of all functions which are continuous except for a set in this

cr-ideal /?a has Baire order a? See [7], for some relationships between

the classes Oa and the classical Baire functions of class a.

Remark. As mentioned in the first part of this paper the Baire order

of the family of all real-valued functions on / which are continuous

except for a first category set is 1. This fact together with the technique

employed in this paper yield the following

Theorem. There does not exist a Borel measurable function h from the

unit interval I onto the Hilbert cube /w° having the property that ifxeT0",

thenf~1(x) is not a subset of a first category set.
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