THE BAIRE ORDER OF THE FUNCTIONS CONTINUOUS ALMOST EVERYWHERE

R. D. MAULDIN

ABSTRACT. Let Φ be the family of all real-valued functions defined on the unit interval I which are continuous except for a set of Lebesgue measure zero. Let Φ_0 be Φ and for each ordinal α , let Φ_{α} be the family of all pointwise limits of sequences taken from $\bigcup_{\gamma<\alpha}\Phi_{\gamma}$. Then Φ_{ω_1} is the Baire family generated by Φ . It is proven here that if $0<\alpha<\omega_1$, then $\Phi_{\alpha}\neq\Phi_{\omega_1}$. The proof is based upon the construction of a Borel measurable function h from I onto the Hilbert cube Q such that if x is in Q, then $h^{-1}(x)$ is not a subset of an F_{α} set of Lebesgue measure zero.

If Φ is a family of real-valued functions defined on a set S, then the Baire family generated by Φ may be described as follows: Let $\Phi_0 = \Phi$ and for each ordinal $\alpha > 0$, let Φ_{α} be the family of all pointwise limits of sequences taken from $\bigcup_{\gamma < \alpha} \Phi_{\gamma}$. Of course, $\Phi_{\omega_1} = \Phi_{\omega_1 + 1}$, where ω_1 denotes the first uncountable ordinal and Φ_{ω_1} is the Baire family generated by Φ ; the family Φ_{ω_1} is the smallest subfamily of R^S containing Φ and which is closed under pointwise limits of sequences. The order of Φ is the first ordinal α such that $\Phi_{\alpha} = \Phi_{\alpha + 1}$.

Let C denote the family of all real-valued continuous functions on the unit interval I. It was first proven by Lebesgue that the order of C is ω_1 [1]. In 1924, Kuratowski [2] proved that if one relaxes the continuity condition by only requiring that the original functions be continuous except for a first category set, then the Baire order of this enlarged family is 1. In 1930, Kantorovitch [3] showed that if one requires that the original functions be continuous except for a set of Lebesgue measure zero, then the Baire order of this family is at least 2. Recently, the author generalized this result in the following fashion [4].

THEOREM. Let S be a complete separable metric space, let u be a σ -finite, complete Borel measure on S and let Φ be the family of all real-valued functions on S, whose set of points of discontinuity is of u-measure 0. Then (1) the order of Φ is 1 if and only if u is a purely atomic measure whose

Received by the editors December 16, 1972.

AMS (MOS) subject classifications (1970). Primary 28A05, 26A21; Secondary 04A15,

Key words and phrases. Lebesgue measure zero, Baire class α , universal function, Hilbert cube.

[©] American Mathematical Society 1973

set of atoms is dispersed and (2) if the order of Φ is not 1, the order of Φ is at least 3.

In this paper Φ will denote the family of all real-valued functions defined on the unit interval I which are continuous except for a set of Lebesgue measure zero. It is shown here that the Baire order of this family is ω_1 . The method of proof involves showing that there is a Borel measurable function h from I onto the Hilbert cube such that if x is a point of the Hilbert cube, then $h^{-1}(x)$ is not a subset of an F_{σ} set of Lebesgue measure 0. Of course, there is no such function h which is continuous or even an h such that $h^{-1}(x)$ is an F_{σ} set for each x. Thus, the function h is necessarily fairly complicated. We begin with a sequence of lemmas which are used to demonstrate the existence of one such function h. This function will be used to construct a transfinite sequence of "universal functions" $\{U_{\alpha}\}_{0<\alpha<\omega_1}$ [Theorem 2]. Finally, a diagonal type argument is applied to prove that the order of Φ is ω_1 [Theorem 4].

LEMMA 1. Let P be a perfect subset of the interval I such that if an open set U meets P, then $\lambda(P \cap U) > 0$. There is a double sequence $\{F_{np}\}_{n,p=1}^{\infty}$ of disjoint perfect subsets of P such that (1) each F_{np} is nowhere dense in P and if an open set U meets F_{np} , then $\lambda(U \cap F_{np}) > 0$, and (2) if n is a positive integer and U is a nonempty set open with respect to P, then there is some p such that F_{np} is a subset of U.

PROOF. Let $\{s_n\}_{n=1}^{\infty}$ be a countable base of nonempty open sets with respect to P.

Let K_{11} be a perfect set lying in $s_1 \cap s_1 = s_1$ such that K_{11} is nowhere dense in P and if an open set U intersects K_{11} , then $\lambda(K_{11} \cap U) > 0$. For each positive integer n and integer p, $1 \le p \le n+1$, let $K_{n+1 p}$ be \emptyset , if $s_{n+1} \cap s_p = \emptyset$, and, if $s_{n+1} \cap s_p \ne \emptyset$ let $K_{n+1 p}$ be a perfect set lying in $s_{n+1} \cap s_p$ such that (1) $K_{n+1 p}$ is nowhere dense in P, (2) $K_{n+1 p}$ is disjoint from $(\bigcup_{r=1}^n \bigcup_{q=1}^r K_{rq}) \cup (\bigcup_{i=1}^{p-1} K_{n+1 i})$ (a union from 1 to 0 is taken to be empty) and (3) if an open set U intersects $K_{n+1 p}$, then $\lambda(K_{n+1 p} \cap U) > 0$.

For each p, let $F_{1p} = K_{pp}$. For each positive integer pair n, p, let $F_{n+1 p}$ be the first term of the sequence $\{K_{qp}\}_{q=p}^{\infty}$ which follows F_{np} and which is nonempty.

It follows that the double sequence $\{F_{n,p}\}_{p,n=1}^{\infty}$ has the required properties.

Now let $\{F_{(n,p)}\}_{n,p=1}^{\infty}$ be a double sequence which has the properties listed in Lemma 1, where P is the interval [0, 1].

By repeated application of Lemma 1, we have

LEMMA 2. There is a system of sets $\{F_{(n_1,n_2,\dots,n_{2k})}\}$, where (n_1,\dots,n_{2k}) ranges over the family of all finite sequences of positive integers of even

length such that if $(n_1, n_2, \dots, n_{2k-1}, n_{2k})$ is such a sequence, then the double sequence $\{F_{(n_1, n_2, \dots, n_{2k-1}, n_{2k}, n, p)}\}_{n, p=1}^{\infty}$ has the properties listed in Lemma 1 with respect to the set $\{F_{(n_1, n_2, \dots, n_{2k-1}, n_{2k})}\}$.

Let W_n be the family $\{F_{(n,p)}\}_{p=1}^{\infty}$ for each n, and for each finite sequence of positive integers (n_1, \dots, n_k) , let $W_{(n_1, \dots, n_k)}$ be the family

$$\{F_{(n_1,i_1,n_2,i_2,\cdots,n_k,i_k)}\}$$

where (i_1, \dots, i_k) ranges over all k-tuples of positive integers. Let T_{n_1, \dots, n_k} be the union of all the sets in the family $W_{(n_1, \dots, n_k)}$.

Notice that these families have the following three properties:

- (1) If $(m_1, \dots, m_k) \neq (n_1, \dots, n_k)$, then $T_{(n_1, \dots, n_k)}$ and $T_{(m_1, \dots, m_k)}$ are disjoint;
- (2) Each set in $W_{(n_1,\dots,n_k,n_{k+1})}$ is a subset of some set in $W_{(n_1,\dots,n_k)}$; and
- (3) If $F \in W_{(n_1,\dots,n_k)}$, n is a positive integer, and U is an open set which meets F, then there is some set in the family $W_{(n_1,\dots,n_k,n)}$ which is a subset of U.
- LEMMA 3. Let $\{n_k\}_{k=1}^{\infty}$ be a sequence of positive integers. The intersection of the monotonically decreasing sequence $\{T_{(n_1,\dots,n_k)}\}_{k=1}^{\infty}$ is not a subset of an F_{σ} set of measure 0.

PROOF. For each n, let A_n be a closed set of Lebesgue measure 0. Since T_{n_1} is dense in the interval I, it follows that there is some set F_{n_1,k_1} which does not intersect A_1 .

Since $\lambda(F_{(n_1,k_1)})>0$ and $\lambda(A_2)=0$, there is an open set which meets F_{n_1,k_1} which does not intersect A_2 . It follows from property (3) that there is a set $F_{(n_1,k_1,n_2,k_2)}$ which is a subset of $F_{(n_1,k_1)}$ and does not meet A_2 .

Continuing this process, we obtain a monotonically decreasing sequence $\{F_{(n_1,k_1,\dots,n_p,k_p)}\}_{p=1}^{\infty}$ such that for each p, $F_{(n_1,k_1,\dots,n_p,k_p)}$ does not intersect A_p . The nonempty intersection of this sequence of sets is a subset of $\bigcap_{k=1}^{\infty} T_{(n_1,\dots,n_k)}$ which does not intersect $\bigcup_{n=1}^{\infty} A_n$. This completes the proof of Lemma 3.

For each k, let $H_k = \bigcup T_{n_1,\dots,n_k}$, where the union is taken over all k-tuples of positive integers. Let $H = \bigcap_{k=1}^{\infty} H_k$. The set H is an $F_{\sigma\delta}$ set.

Let \mathcal{N} denote the space of all irrational numbers between 0 and 1. Identify the space of all infinite sequences of positive integers with the space via the continued fraction expansion of the members of the space \mathcal{N} . If $Z \in \mathcal{N}$ let $[Z_1, Z_2, Z_3, \cdots]$ denote the sequence of integers appearing in the continued fraction expansion of Z.

LEMMA 4. There is a Borel measurable function f from H onto \mathcal{N} such that if $Z \in \mathcal{N}$, then $f^{-1}(Z)$ is not a subset of any F_{σ} set of Lebesgue measure 0.

PROOF. For each $x \in H$, there is only one sequence of positive integers $\{n_k\}_{k=1}^{\infty}$ such that $x \in \bigcap_{k=1}^{\infty} T_{(n_1, \dots, n_k)}$; let f(x) be the irrational numbers in $\mathcal N$ identified with this sequence. It follows from the preceding lemma that f maps H onto $\mathcal N$ and if $Z \in \mathcal N$, then $f^{-1}(Z)$ is not a subset of an F_{σ} set of measure 0.

For each k-tuple n_1, \dots, n_k , let $J_{(n_1, \dots, n_k)}$ $\{Z: Z_i = n_i, i = 1, 2, \dots, k\}$. The sets $J_{(n_1, \dots, n_k)}$ form an open base for the usual topology on the space \mathcal{N} .

We have

$$f^{-1}(J_{(n_1,\dots,n_k)}) = \bigcup_{Z \in \mathcal{N}} \left(\bigcap_{p=1}^{\infty} T_{(n_1,\dots,n_k,Z_1,\dots,Z_p)} \right).$$

Thus, $f^{-1}(J_{(n_1,\dots,n_k)})$ is an analytic set [5, p. 467]. It follows from Lusin's first separation theorem [5, p. 485] that f is Borel measurable (actually, $f^{-1}(U)$ is an $F_{\sigma\delta\sigma}$ set for each open set U).

We are now in a position to prove

THEOREM 1. There is a Borel measurable function h from the unit interval I onto the Hilbert cube I^{ω_0} such that if $x \in I^{\omega_0}$, then $f^{-1}(x)$ is not a subset of an F_{σ} set of Lebesgue measure 0.

PROOF. Let f be a function as described in Lemma 4. Let g be a con, tinuous function from \mathcal{N} onto the Hilbert cube [5, p. 440]. The composition, $g \circ f$, maps H onto the Hilbert cube and is Borel measurable. Let (g_1, g_2, g_3, \cdots) be the sequence of the natural projections of $g \circ f$. For each p, g_p is a Borel measurable function from H onto the interval I [5, p. 382]. For each p, let \tilde{g}_p be a Borel measurable extension g_p to all of I which maps into I. Let $h = (\tilde{g}_1, \tilde{g}_2, \tilde{g}_3, \cdots)$. The function h has the required properties.

Theorem 2. There exists a transfinite sequence of "universal functions" $\{U_{\alpha}\}_{0<\alpha<\omega_1}$ such that for each α , $0<\alpha<\omega_1$, we have

- (1) U_{α} is a Baire measurable function on $I \times I$ which maps into the unit interval I; and
- (2) if f is a function in Baire's class α which maps into I, then the set of all x such that $U_{\alpha}(x, y) = f(y)$, for every y in I, is not a subset of an F_{σ} set of Lebesgue measure zero.

The proof essentially follows the argument in [6, p. 133].

PROOF. Let $\{s_n\}_{n=1}^{\infty}$ be a countable dense subset of the positive part of the unit ball of the Banach space C(I).

Let

$$U_0(x, y) = s_n(y)$$
, if $x = 1/n$,
= 0, otherwise.

It can be easily verified that U_0 is a Borel measurable function on $I \times I$ and of course it maps into the interval I. Let $h=(h_1, h_2, h_3, \cdots)$ be a function from I onto the Hilbert cube having the properties described in Theorem 1.

For each ordinal α , $0 \leq \alpha < \omega_1$, let

$$U_{\alpha+1}(x, y) = \limsup_{p \to \infty} U_{\alpha}(h_n(x), y)$$

for each $(x, y) \in I \times I$; also, if α is a limit ordinal, let $\{\gamma_p\}_{p=1}^{\infty}$ be an increasing sequence of ordinals less than α which converges to α and let

$$U_{\alpha}(x, y) = \limsup_{p \to \infty} U_{\gamma_p}(h_p(x), y).$$

It may be proven by transfinite induction that the functions U_{α} , $0 < \alpha < \omega_1$, are Borel measurable and map into I.

The proof that the functions U_{α} are "universal" and represent each appropriate function in Baire's class α on a "large" set proceeds by transfinite induction.

First, suppose f is in Baire's class 1 and f maps I into I. Consequently, there is a sequence (n_1, n_2, n_3, \cdots) of positive integers such that the sequence $\{s_{n_n}\}_{n=1}^{\infty}$ converges pointwise to f on I.

If $x \in h^{-1}(1/n_1, 1/n_2, 1/n_3, \cdots)$, then

$$U_1(x, y) = \limsup_{p \to \infty} U_0(h_p(x), y) = \limsup_{p \to \infty} s_{n_p}(y) = f(y),$$

for each y in I. Thus, the function U_1 has the second required property.

Now, suppose α is a limit ordinal, the functions U_{γ} , $0 < \gamma < \alpha$, have the required properties and f is a function in Baire's class α which maps I into I.

There is a sequence $\{f_p\}_{p=1}^{\infty}$ of functions, converging pointwise to f on I such that for each p, f_p is in Baire's class γ_p and f_p maps I into I.

For each p, let x_p be a number in I such that $U_{\gamma_p}(x, y) = f_p(y)$, for every y in I.

If $x \in h^{-1}(x_1, x_2, x_3, \dots)$, then $U_{\alpha}(x, y) = f(y)$, for each y in I and U_{α} has the required properties.

A similar argument can be given for the remaining functions $U_{\alpha+1}$.

In order to prove that the Baire order of Φ is ω_1 , we will employ a theorem which was published previously by the author:

THEOREM 3 [7]. If α is an ordinal, $0 < \alpha < \omega_1$, then a function f is in Φ_{α} if and only if there is a function g in Baire's class α such that the set $D = \{x: f(x) \neq g(x)\}$ is a subset of an F_{σ} set of measure zero.

We will now prove

THEOREM 4. The Baire order of Φ is ω_1 .

PROOF. Let α be an ordinal, $0 < \alpha < \omega_1$. Let U_{α} be a universal function having the properties stated in Theorem 2. Let $w(x) = \lim_{n \to \infty} (1 - U_{\alpha}(x, x))^n$. The function w is a Baire function which maps I into I and there is no x such that $w(x) = U_{\alpha}(x, x)$. Actually, w is the characteristic function of the set of all x such that $U_{\alpha}(x, x) = 0$.

Assume that $w \in \Phi_{\alpha}$. By Theorem 3, there is a function g in Baire's class α such that the set $D = \{x : w(x) \neq g(x)\}$ is a subset of an F_{α} set K of Lebesgue measure 0. It is assumed here that g maps into I (this is no restriction). By Theorem 2, there is some $x \in K'$ such that $U_{\alpha}(x, y) = g(y)$ for all g in G. In particular, G in G

Question. If $0 < \alpha < \omega_1$, is there a σ -ideal R_{α} of subsets of I of the first category which contains all the sets of Lebesgue measure 0 such that the family Φ of all functions which are continuous except for a set in this σ -ideal R_{α} has Baire order α ? See [7], for some relationships between the classes Φ_{α} and the classical Baire functions of class α .

REMARK. As mentioned in the first part of this paper the Baire order of the family of all real-valued functions on I which are continuous except for a first category set is 1. This fact together with the technique employed in this paper yield the following

THEOREM. There does not exist a Borel measurable function h from the unit interval I onto the Hilbert cube I^{ω_0} having the property that if $x \in I^{\omega_0}$, then $f^{-1}(x)$ is not a subset of a first category set.

REFERENCES

- 1. H. Lebesgue, Sur les fonctions représentable analytiquement, J. Math. (6) 1 (1905).
- 2. C. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de premiere categorie, Fund. Math. 5 (1924), 75-86.
- 3. L. V. Kantorovitch, Sur les suites des fonctions presque partout continues, Fund. Math. 17 (1930), 25-28.
- 4. R. D. Mauldin, On Borel measures and Baire's class 3, Proc. Amer. Math. Soc. 39 (1973), 308-312.
- 5. K. Kuratowski, *Topologie*, Vol. I, PWN, Warsaw, 1958; English transl., Academic Press, New York; PWN, Warsaw, 1966. MR 19, 873; 36 #840.
- 6. I. Natanson, Theory of functions of a real variable, GITTL, Moscow, 1950; English transl. of 1st ed., vol. 1, Ungar, New York, 1955. MR 12, 598; 16, 804.
- 7. R. D. Mauldin, σ-ideals and related Baire systems, Fund. Math. 71 (1971), 171–177. MR 45 #2107.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601