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THE BAIRE ORDER OF THE FUNCTIONS
CONTINUOUS ALMOST EVERYWHERE

R. D. MAULDIN

ABSTRACT. Let @ be the family of all real-valued functions
defined on the unit interval I which are continuous except for a
set of Lebesgue measure zero. Let @, be ® and for each ordinal «,
let @, be the family of all pointwise limits of sequences taken
from (Jy<a @,. Then @, is the Baire family generated by ®. It is
proven here that if 0<x<w,, then ®,#®,, . The proof is based
upon the construction of a Borel measurable function 4 from 7/
onto the Hilbert cube Q such that if x is in Q, then A~'(x) is not
a subset of an F; set of Lebesgue measure zero.

If @ is a family of real-valued functions defined on a set S, then the
Baire family generated by ® may be described as follows: Let ®y=®
and for each ordinal «>0, let ®, be the family of all pointwise limits of
sequences taken from | J,_, @,. Of course, @, =®,, ,,, where w, denotes
the first uncountable ordinal and ®@,, is the Baire family generated by @;
the family ®@,, is the smallest subfamily of RS containing ® and which is
closed under pointwise limits of sequences. The order of @ is the first
ordinal « such that ®,=®_, ,.

Let C denote the family of all real-valued continuous functions on the
unit interval /. It was first proven by Lebesgue that the order of C is
; [1]. In 1924, Kuratowski [2] proved that if one relaxes the continuity
condition by only requiring that the original functions be continuous
except for a first category set, then the Baire order of this enlarged family
is 1. In 1930, Kantorovitch [3] showed that if one requires that the original
functions be continuous except for a set of Lebesgue measure zero, then
the Baire order of this family is at least 2. Recently, the author generalized
this result in the following fashion [4].

THEOREM. Let S be a complete separable metric space, let u be a
o-finite, complete Borel measure on S and let ® be the family of all real-
valued functions on S, whose set of points of discontinuity is of u-measure 0.
Then (1) the order of @ is 1 if and only if u is a purely atomic measure whose
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set of atoms is dispersed and (2) if the order of ® is not 1, the order of ® is
at least 3.

In this paper ® will denote the family of all real-valued functions de-
fined on the unit interval J which are continuous except for a set of
Lebesgue measure zero. It is shown here that the Baire order of this
family is ;. The method of proof involves showing that there is a Borel
measurable function 4 from I onto the Hilbert cube such that if x is a point
of the Hilbert cube, then A~(x) is not a subset of an F, set of Lebesgue
measure 0. Of course, there is no such function 2 which is continuous
or even an A such that A~1(x) is an F, set for each x. Thus, the function A
is necessarily fairly complicated. We begin with a sequence of lemmas
which are used to demonstrate the existence of one such function A.
This function will be used to construct a transfinite sequence of “universal
functions” {U,}o_s<w, [Theorem 2]. Finally, a diagonal type argument is
applied to prove that the order of @ is w, [Theorem 4].

LeMMA 1. Let P be a perfect subset of the interval I such that if an open
set U meets P, then A(PNU)>0. There is a double sequence {F,,}y 1
of disjoint perfect subsets of P such that (1) each F,, is nowhere dense in P
and if an open set U meets F,,, then M\UNF,,)>0, and (2) if nis a positive
integer and U is a nonempty set open with respect to P, then there is some
p such that F,, is a subset of U.

Proor. Let {s,}7_, be a countable base of nonempty open sets with
respect to P.

Let K;;, be a perfect set lying in s, Ns;=s; such that K;; is nowhere
dense in P and if an open set U intersects K;;, then A(Ky; "U)>0. For
each positive integer n and integer p, 1=p=n+1, let K,,,, be &, if
Sp1Ns,=2, and, if 5,,,Ns,# & let K, ,,, be a perfect set lying in
Sp41NS, such that (1) K, , is nowhere dense in P, (2) X,,,, , is disjoint
from (Ur; Ujp1 KoV (U K,y 5) (2 union from 1 to 0 is taken to be
empty) and (3) if an open set U intersects K, ,, then A(K,,; ,NU)>0.

For each p, let F;,=K,,. For each positive integer pair n, p, let F,,,; ,
be the first term of the sequence {K,,},_, which follows F,, and which is
nonempty.

It follows that the double sequence {F,, ;}; »—: has the required proper-
ties.

Now let {F(,.,)}n.»=1 be a double sequence which has the properties
listed in Lemma 1, where P is the interval [0, 1].

By repeated application of Lemma 1, we have

LEMMA 2. There is a system of sets {F(,, .n,.....ny}> Where (ny, = = -, ny)
ranges over the family of all finite sequences of positive integers of even
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length such that if (ny, ny, -, Ny, Nyy) is such a sequence, then the
double sequence {F(,  n,....ny ,.ny.n.p)inp=1 has the properties listed in
Lemma 1 with respect to the set {F(y n,.....ny 1.0y}

Let W, be the family {F,,,}5-, for each n, and for each finite sequence
of positive integers (ny, = - -, 1), let Wi, ...,y be the family

{F(nl.il.nz.iz.m,nk.ik)}

where (i, * - - , i) ranges over all k-tuples of positive integers. Let T, .....,
be the union of all the sets in the family W, ...,

Notice that these families have the following three properties:

M) If (my, -, m)#(ny, -+ -, my), then Ty ny and Ty iy
are disjoint;

(2) Each set in Wi, ... .n,, ) I @ subset of some set in W, .
and

(3) If F€ Wi,,.....n,, nis a positive integer, and U is an open set which
meets F, then there is some set in the family W, ,....n,.,) Which is a subset
of U.

k

%)

-.n,‘);

,,,,,

LeMMA 3. Let {ny}y_, be a sequence of positive integers. The intersection
of the monotonically decreasing sequence {T,,.....n,}x-1 is not a subset of
an F, set of measure 0.

ProoF. For each n, let 4, be a closed set of Lebesgue measure 0.
Since T, is dense in the interval J, it follows that there is some set F,,
which does not intersect 4,.

Since A(F(,, .x))>0 and A(4;)=0, there is an open set which meets
F,,.x, which does not intersect 4,. It follows from property (3) that there
is a set F(, &, ,n,.k, Which is a subset of F(, ., and does not meet 4,.

Continuing this process, we obtain a monotonically decreasing se-
quence {F(n, k,.....n,.x,)} =1 Such that for each p, F, z,.... Ry, does not
intersect 4,. The nonempty intersection of this sequence of sets is a
subset of (Z; T(n,.....n, Which does not intersect ( J,—; 4,. This completes
the proof of Lemma 3.

For each k, let Hy={J T,,.....n,, Where the union is taken over all
k-tuples of positive integers. Let H=(";., H;. The set H is an F,; set.

Let /" denote the space of all irrational numbers between 0 and 1.
Identify the space of all infinite sequences of positive integers with the
space via the continued fraction expansion of the members of the space
N I ZeN let [Z,,Z,,Z;, -] denote the sequence of integers ap-
pearing in the continued fraction expansion of Z.

LemMA 4. There is a Borel measurable function f from H onto N~ such
thatif Ze N, thenf~X(Z) is not a subset of any F, set of Lebesgue measure 0.
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Proor. For each x € H, there is only one sequence of positive integers
{m}iz1 such that x € Mgy Tin,.....n,; let f(x) be the irrational numbers
in 4 identified with this sequence. It follows from the preceding lemma
that f maps H onto .#" and if Z € A", then f~(Z) is not a subset of an F,
set of measure 0.

For each k-tuple ny, - -+, m, let Joy,.....ny {Z:2Z;=n;, i=1,2,---,k}.
The sets J(,,,...,»,) form an open base for the usual topology on the space
N

We have

f—l(‘,(ﬂl,' . '.”k)) = U (ﬂ T(m,- s nk, 21, -,Zp)) .
Zey \P=1
Thus, f “Jimy.....ny) is an analytic set [S, p. 467]. It follows from Lusin’s
first separation theorem [5, p. 485] that fis Borel measurable (actually,
f7X(U) is an F,,, set for each open set U).
We are now in a position to prove

THEOREM 1. There is a Borel measurable function h from the unit
interval I onto the Hilbert cube I°° such that if x € I®°, then f~(x) is not a
subset of an F, set of Lebesgue measure 0.

Proor. Let fbe a function as described in Lemma 4. Let g be a con,
tinuous function from .#” onto the Hilbert cube [5, p. 440]. The com-
position, g o f, maps H onto the Hilbert cube and is Borel measurable.
Let (g, g2, &3, * - =) be the sequence of the natural projections of g o f.
For each p, g, is a Borel measurable function from H onto the interval 7
[5, p. 382). For each p, let §, be a Borel measurable extension g, to all of
I'whichmapsinto I. Let h=(£,, &5, &5, - - *). The function 4 has the required
properties.

THEOREM 2. There exists a transfinite sequence of “‘universal functions™
{Ulo<a<w, SUch that for each o, 0<a<w,, we have

(1) U, is a Baire measurable function on IxI which maps into the unit
interval I; and

(2) if f is a function in Baire’s class o which maps into I, then the set
of all x such that U,(x, y)=f(y), for every y in I, is not a subset of an F,
set of Lebesgue measure zero.

The proof essentially follows the argument in [6, p. 133].
Proor. Let {s,}>, be a countable dense subset of the positive part
of the unit ball of the Banach space C(/).
Let
Uo(x’)’) = sn(y)’ if x = l/n’
=0, otherwise.
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It can be easily verified that U, is a Borel measurable function on 7x 7
and of course it maps into the interval I. Let A= (h,, hy, hy, - - *) be a
function from I onto the Hilbert cube having the properties described
in Theorem 1.

For each ordinal «, 0Sa<w,, let

Un+l(x’ ,V) = hm Sl.lp Ua(hn(x), y)
P> 0

for each (x, y) e IXI; also, if « is a limit ordinal, let {y,};>, be an in-
creasing sequence of ordinals less than « which converges to « and let

U (x, y) = lim sup U, (h,(x), y).
Pp—* 0

It may be proven by transfinite induction that the functions U,, 0<a<
w,, are Borel measurable and map into I.

The proof that the functions U, are “universal” and represent each
appropriate function in Baire’s class « on a ““large” set proceeds by trans-
finite induction.

First, suppose f'is in Baire’s class 1 and f maps I into . Consequently,
there is a sequence (ny, ny, ng, - - +) of positive integers such that the
sequence {s, },_, converges pointwise to f on /.

If x € h=1(1/ny, 1/ny, 1/ng, - - +), then

Ux(x, y) = lim sup Uy(h,(x), y) = lim sup s,,(y) = f(»),
p—* 0 P+

for each y in I. Thus, the function U, has the second required property.

Now, suppose « is a limit ordinal, the functions U,, 0<y <a, have the
required properties and f is a function in Baire’s class « which maps 7
into I.

There is a sequence {f,};_, of functions, converging pointwise to f
on I such that for each p, f, is in Baire’s class y, and f, maps I into /.

For each p, let x, be a number in 7 such that U, (x, y)=f,(y), for every
yinl

If x € h7(x,, X3, X3, * * * ), then U,(x, y)=f(y), for each y in [ and U,
has the required properties.

A similar argument can be given for the remaining functions U,.,.

In order to prove that the Baire order of ® is w,, we will employ a
theorem which was published previously by the author:

THEOREM 3 [7]. If « is an ordinal, 0<a<w,, then a function f is in
®, if and only if there is a function g in Baire’s class o such that the set
D={x:f(x)#g(x)} is a subset of an F, set of measure zero.
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We will now prove
THEOREM 4. The Baire order of ® is w,.

ProOF. Let « be an ordinal, 0<a<w,. Let U, be a universal function
having the properties stated in Theorem 2. Let w(x)=lim,,_, ., (1 — U,(x,x))".
The function w is a Baire function which maps I into I and there is no x
such that w(x)=U,(x, x). Actually, w is the characteristic function of the
set of all x such that U,(x, x)=0.

Assume that w € ®,. By Theorem 3, there is a function g in Baire’s
class « such that the set D={x:w(x)#£g(x)} is a subset of an F, set K of
Lebesgue measure 0. It is assumed here that g maps into I (this is no
restriction). By Theorem 2, there is some x € K’ such that U,(x, y)=g(y)
for all y in I. In particular, U,(x, x)=g(x)=w(x), since x € K’. This
contradiction proves the theorem.

Question. If 0<a<wy, is there a g-ideal R, of subsets of I of the first
category which contains all the sets of Lebesgue measure 0 such that the
family @ of all functions which are continuous except for a set in this
o-ideal R, has Baire order «? See [7], for some relationships between
the classes @, and the classical Baire functions of class «.

REMARK. As mentioned in the first part of this paper the Baire order
of the family of all real-valued functions on I which are continuous
except for a first category set is 1. This fact together with the technique
employed in this paper yield the following

THEOREM. There does not exist a Borel measurable function h from the
unit interval I onto the Hilbert cube I“° having the property that if x € I'°,
then f~1(x) is not a subset of a first category set.
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