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ON A RESULT OF OSBORN

G. P. WENE

Abstract. The structure of certain semiprimitive rings with involution « is

determined by imposing conditions on the set of »-symmetric elements and

limiting the number of orthogonal •-symmetric idempotents.

An associative ring R with unit such that 1/2 G R satisfies condition C(n)

if (i) R has an involution * such that each »-symmetric element í of R is

nilpotent or some (right) multiple of s is a nonzero *-symmetric idempotent

and (ii) R has a set of n nonzero, pairwise orthogonal, »-symmetric idempo-

tents whose sum is one and if {e?,}7Li is any set of such idempotents whose

sum is one, then m < n. We will determine the structure of all rings with

condition C(n).

A ring satisfying C(l) has exactly one nonzero »-symmetric idempotent,

the one of that ring. Hence each »-symmetric element is either nilpotent or

invertible. Osborn [4] catalogued these rings and showed that a semiprimitive

ring has C(l) iff R is one of

(i) a division ring,

(ii) a direct sum of two anti-isomorphic division rings with involution

interchanging the summands,

(iii) the 2 x 2 matrices over a field with the involution fixing only the scalar

matrices.

First we reduce to the case where R is semiprimitive. Then we collect some

of the facts to be used for our main result (Theorem 4). Since the results of

Lemma 1 and Lemma 2 are well known, their proofs are omitted.

Lemma 1. If each *-symmetric element s of R is either nilpotent or some

(right) multiple of s is a nonzero *-symmetric idempotent, then the Jacobson

radical of R, 3(R), is a *-invariant ideal in which every *-symmetric element is

nilpotent.

Lemma 2. If each *-symmetric element s of R is either nilpotent or some

(right) multiple of s is a nonzero *-symmetric idempotent, and ü E R/J(R) is

a symmetric element under the induced involution *', then ü is either nilpotent or

some (right) multiple ofüis a nonzero »'-symmetric idempotent.

Remark 1. Suppose R is a ring and for some a E R, a2 - a is nilpotent.

Then either a  is nilpotent or for some polynomial q(x) with integer
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coefficients e — aq(d) is a nonzero idempotent. Furthermore, the sum of the

coefficients of q(a) is one. This is Lemma 1.3.2 of Herstein [1].

Lemma 3. Suppose each »-symmetric element s of R is either nilpotent or some

(right) multiple of s is a nonzero »-symmetric idempotent and let ü be a

»'-symmetric idempotent of R/J(R). Then ü can be lifted to a »-symmetric

idempotent of R.

Proof. We may assume that u* = u. Since u2 — u is a »-symmetric

element in i(R ), it is nilpotent. Remark 1 tells us that there is a *-symmetric

idempotent e = uq(u). Since the sum of the coefficients of q(u) is one, ë = U.

Even more can be said about lifting *'-symmetric idempotents.

Theorem 1. Suppose each »-symmetric element s of R is either nilpotent or

some (right) multiple of s is a nonzero »-symmetric idempotent. Then if {«,}7=i

is a set of »'-symmetric, pairwise orthogonal idempotents in R/J(R), then there

exists a set {e¡}T=x of »-symmetric, pairwise orthogonal idempotents in R with

ê, = «,,

Proof. By Lemma 3, w, can be lifted to the »-symmetric idempotent ex and

w2 can be lifted to an idempotent /. Hence exf and fex are in J(R). In

particular, 1 — /<?, has an inverse in R and we may form

f' = (l-fexyxf(l-fex).

This is an idempotent of R and f'ex = 0. Multiplying by 1 - /<?, on the left,

we see that/' -/ E J(R).

Now put h = /' - <?,/'. Then exh = 0 = hex, h - u2E i(R) and h2 = h.

Since we can assume u* = u2, h* - u2 E J(R). Thus hh* - u2E i(R) and

ex(hh*) = (hh*)ex = 0. Now hh* is not nilpotent, but (hh*)2 - (hh*) E J(R),

so by Remark 1 some polynomial in hh* is a »-symmetric idempotent e2 and

e2 - hh* E J(R). Thus e2 — u2 E J(R) and exe2 = e2ex = 0 since e2 =

hh*q(hh*).

Suppose the first n - 1 elements of (w,}7Li have been lifted to a set of

{e^lZ] »-symmetric, pairwise orthogonal idempotents. By Lemma 3, we can

lift ün to an idempotent /„. Then (S/./e,)/, and /„2?!,1*?, are in J(R). In

particular, 1 - fn^2,"z\e¡ has an inverse in R. Set

Put hn = f'n — (S""^,)/,. As above we can construct a polynomial en in

hjx* such that en is a »-symmetric idempotent, en — un E J(R) and {e,}"_, is

a set of pairwise orthogonal »-symmetric idempotents.

Hence R has at least m »-symmetric, pairwise orthogonal idempotents.

The results of Lemma 1 through Theorem 1 are summarized in

Theorem 2. If R has C(n), then so does R/J(R).
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Proof. R/J(R) has at least n »'-symmetric pairwise orthogonal idempo-

tents that it inherits from R. By Theorem 1, it can have no more.

Remark 2. If a semiprimitive ring has C(l), then there is an idempotent

/ G R such that fRf is a division ring (equivalently fR is a minimal right ideal

R).

Remark 3. If R is a ring with involution whose symmetric elements are all

nilpotent, then R is a radical ring. This is Lemma 3 of Osborn [4].

Remark 4. If e is a nonzero idempotent of a ring R, then in the two-sided

Peirce decomposition of R relative to e,

R = eRe + eR(\ - e) + (I - e)Re + (1 - e)R(l - e)

the ring eRe is radical free if R is radical free.

Remark 5. Jacobson and Rickart [3] define a canonical involution » in R„

(the ring of n x n matrices over R) as an involution in R„ such that e* = ¿?,„

/ = 1, 2,..., n. If * is a canonical involution in Rn, then there is an

involution r -> r in R and invertible elements ¿5, G R such that ¿5, = ¿5, and

(2v*)* = ̂ sj~%ôieji-

Let R be a simple ring with the minimum condition for right ideals and

involution. Then R = A„, A a division ring. The involution is canonical except

when A is a field <ï>, n = 2m and x —> q~xx'q, where x' denotes the transpose

of x, q is the diagonal m X m matrix over $2 with nonzero entries a = (Lx ¿).

In this case we can regard R as Sm, where S = 3>2- If we introduce the

involution a —> ä = a~xa'a in d>2> then the given involution in R is canonical

with all 5,- = 1.

Lemma 4. Let R be a ring with C(n) and {ei}"=x a collection of pairwise

orthogonal nonzero * -symmetric idempotents such that S"=1e, = I. Then the

ring eiRiei has C(l).

Proof. Look at the ring e¡Re¡ in the two-sided Peirce decomposition of R

relative to e¡. This is a »-invariant subring of R and each »-element of e¡Re¡ is

either invertible in e¡Re¡ or nilpotent. That is, e¡Re¡ has C(l).

Lemma 5. Let R be a semiprimitive ring with C(n). Then R has the minimum

condition on the right ideals.

Proof. R = 02"=,^,/?, a direct sum of right R modules. But since e¡Re¡

has C(l) there is an / G e¡Re¡ such that/2 = /, ej¡ = f¡e¡ and each of fRf

and (e¡ - f)R(e¡ - f) is a division ring. Hence

* = e tifa* + (*,-/)*]
r-i

a finite direct sum of minimal right ideals.

Remark 6. It is well know that if a ring R with involution * has no proper

»-invariant ideals, then R is either a simple ring or R is a direct sum of two

simple rings with the involution interchanging the summands.
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Remark 7. Let A be an associative algebra over a field <D and suppose that

a is a nonnilpotent noninvertible algebraic element of A. Then there is an

idempotent e = akP(a), where P(a) lies in the subalgebra formally generated

by 1 and a, such that ake = ak for some integer k > 1. (See, for example, the

proof in Jacobson [2, p. 210, Proposition 1].)

Theorem 3. A simple ring R has C (n) iff it is a ring of n X n matrices over

(i) a division ring or over (ii) the 2 X 2 matrices over a field.

Proof. By Lemma 5, R has minimal right ideals. By Remark 5, R is a

matrix ring with canonical involution and hence one of the two rings listed.

The main result can now be stated.

Theorem 4. A ring R has property C (n) iff

(i) J(R) is a »-invariant ideal in which every »-symmetric element is nilpotent

and

(ii) R/J(R) is the direct sum of semiprimitive rings R^ where each R^ has

property C(n,), i = 1,2, . . . , k, and 2*=i«, = n.

Proof, (i) This is established in Lemma 1.

(ii) Theorem 2 shows that R/3(R) has C(n). By Lemma 5, R/J(R) has the

minimum condition on right ideals. Hence R/J(R) is the ring direct sum of

matrices M¡. Since R/J(R) has an involution », each M¡ is either fixed under

*' and hence satisfies C(n¡) for some n¡ or M¡ is mapped onto Mf and then

(M, © Mf) is fixed under *' and satisfies C(n¡) for some n¡ (Remark 6).

That any collection of such semiprimitive rings put together in this fashion

has the stated property is evident.

Corollary 1. Let R be an associative algebra with 1 over the field 0 not of

characteristic 2. If R has an involution » such that for each »-symmetric element

s of R there is a X(s) = X*(s) E $ and s2 — sX(s) is either nilpotent or

invertible, then R/J(R) has C(l) or C(2).

Proof. Pass to R/J(R) as in Lemma 2 and note that each »'-symmetric

element s of R/J(R) is either (i) invertible, (ii) nilpotent, or (iii) determines a

nonzero »'-symmetric idempotent e = skPs(s). R/J(R) can have at most two

nonzero pairwise orthogonal »'-symmetric idempotents whose sum is one.

Suppose otherwise. Let {e¡}3¡m,x be a set of »'-symmetric idempotents whose

sum is one. Then ex + 2e2 is a »'-symmetric element and [(ex + 2e2)2 - (ex +

2e2)X]k = 0 for some positive integer k. This last expression cannot be solved

for A.

Corollary 2. Let A be an associative algebraic algebra with 1 over the field

$ not of characteristic 2. Let A have an involution » and a set of n nonzero,

pairwise orthogonal, »-symmetric idempotents whose sum is one. Then A has

C(ri) iff for each set {e¡}™=x of such idempotents whose sum is one, m < n.

Proof. We only need to show that each »-symmetric element s of A is

nilpotent or some (right) multiple of j is a nonzero »-symmetric idempotent.

But this is true by Remark 7.
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Corollary 3. Let A be an associative algebraic algebra with 1 over the field

$ not of characteristic 2. If each nonnilpotent noninvertible »-symmetric element

is algebraic over 0, then any finite set of pairwise orthogonal »'-symmetric

idempotents in A/i(A) can be lifted to an orthogonal set of »-symmetric

idempotents of A.

Proof. By Remark 7, each »-symmetric element í is either nilpotent or

some (right) multiple of s is a nonzero »-symmetric idempotent. Then argue

as in Theorem 1.
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