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THE EXTENSION OF MEASURABLE FUNCTIONS

R. M. SHORTT

Abstract. Say a measurable space (KVÄ) has the extension property (resp. the

extension property in the restricted sense) if for every measurable space ( X,$* ) and

every subset A of X (resp. subset A of X with X\A singleton), each function/:

A —• Y measurable for ^(A) = {B n A: B e S) may be extended to a measurable

function g: X — Y A countably generated and separated ( Y,^) has the extension

property if and only if it is a standard space, i.e. it is isomorphic to a Borel subset of

the real line. The discrete space ( Y,2y ) has the extension property in the restricted

sense if and only if the cardinality of Y is not two-valued measurable.

We shall use the following notation and terminology: if (A\S) is a measurable

space, and A c X, let $(A) = (B C\ A: B € S}. A measurable space (X,%) is

separable if $ is countably generated and separated (contains singletons); ( X,*Jb) is

standard if there is a complete separable (i.e. Polish) metric on X for which 9>

becomes the associated Borel o-algebra; equivalently, (A",^) is isomorphic with

some Borel subset of the real numbers.

The extension problem. Let there be given

( 1 ) measurable spaces ( X, S ) and ( Y, u.$> ),

(2) a subset A of X, and

(3) a function/: A -» Y, measurable from *>(A) to ®.

We ask whether there is an immeasurable g: X —> Y extending /(i.e. g(a) = f(a) for

a e A ). Say that a measurable space ( Y, $ ) has the extension property if such an

extension exists for each (X,$), A and / as above. If an extension exists whenever

X\A is a singleton set, then (Y,%) has the extension property in the restricted sense.

What seem to have been the first positive results for this problem were obtained

by von Alexits [1] and Sierpiñski [8] in the case of real functions on subsets of Polish

spaces; here, particular attention was paid to the Baire class of /and g. It is a small

step from their results to the following characterization of separable spaces with the

extension property:

Theorem 1. Among separable spaces, those (Y,%) having the extension property are

precisely the standard spaces.

Proof. To prove the extension property for standard spaces, obtain an extension

for functions assuming finitely many values and pass to the limit (cf. exercise 13, p.

260 of Cohn [2]); alternatively, derive the result from 2.3 Lemma 1 of Lehmann [4].
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For the converse, the well-known method of Marczewski [5] and the separability

of ( X,9>) allow us to consider X asa subset of the unit interval [0,1] with © = &( X)

and & the Borel a-algebra of [0,1], Let /: X -» X be the identity function. If now /

has an S-measurable extension g: I -* X, then X = (x: g(x) = x) is a Borel subset

of [0,1]. Thus ( X,<&) is a standard space.   Q.E.D.

Let y be a nonempty set and let d be the metric on Y defined by the rule

d(x,y) = 1 for x =*= y and d(x,x) = 0. Then (Y,d) becomes a complete metric space

under the discrete topology and has the power set 2Y as its Borel o-algebra. We have

not solved the problem of extensions in the case where the "target" space Y is

complete, but not separable. For example, we do not know if (R,2R) has the

extension property, where R is the real line.

Recall that a cardinal number k is measurable if whenever a set X has cardinality

k, there is a measure a on (X,2X) such that a{x) = 0 for all x g A'and pX = 1; k is

two-valued measurable if in addition a may be chosen so as to assume only the values

0 and 1.

According to Ulam [9, p. 146], two-valued measurable cardinals must be extremely

large (strongly inaccessible); still larger according to A. Tarski [3]. D. Scott [7]

showed that Gôdel's axiom of constructibility V = L implies nonexistence of any

two-valued measurable cardinals. Apparently it is as yet an open problem whether it

is consistent with Zermelo-Fraenkel set theory that any two-valued measurable

cardinals exist. In any case the next result shows that essentially all measurable

spaces of the form (X,2X) have the extension property in the restricted sense.

Theorem 2. Let X be a set with cardinality k > 0. Then (X,2X) has the extension

property in the restricted sense if and only if k is not two-valued measurable.

Proof. Suppose that k is two-valued measurable and let u be a nontrivial

0-1 measure on (^,2^). Define Y = X U {/>}, where p is a new pointy £ X and set

S = {B U (p): B c X, uB = 1} U {£: B c X, pB = 0); then S(A') = 2X, and the

identity function /: X -* X is S (A-)-measurable. Suppose that g: Y -» X is an

^-measurable extension of/; then g'\g(p)) = (p,g(p))£%, a contradiction.

Assume now that (Y,%) is a measurable space with A c Y and Y\ A = (p) and

suppose/is a measurable function from (A,%(A)) to (A\2*) with no S-measurable

extension g: Y -» X. Then (p) <£ £ and for each B g %(A), either B U (p) g S or

B g §>, but not both. Define a measure u on (A,S(A)) by the rule uB = 1 if

B U (p) g S and pB = 0 if B g S. Then f(a) is a 0-1 measure on (X,2X) with

/(/i)(X) = 1; furthermore./(fiX^} = 0: if not, then there is an x e A" with/(ixX*}

= ju/"'(.x) = 1; then g(p) = x defines an ^-measurable extension of /: if S C X

x g 5, then g-'(S) =/"'(S) U{/>) and/i/-'(S)= 1, so that /"'(S) U {/?} g S; if

x € S, then g"'(5) = /"'(S) and nf'l(S) = 0, so that fl(S) g S. Since no such

extension exists, f(p) is a nontrivial 0-1 measure on (X,2X) and the cardinality of X

is two-valued measurable.   Q.E.D.

Since measurable cardinals are weakly inaccessible [9], the continuum hypothesis

implies that the cardinal of the continuum is not measurable, and the generalized

continuum hypothesis implies that measurable cardinals are strongly inaccessible
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and hence extraordinarily large. So one can assume that cardinalities of spaces

arising in analysis are all nonmeasurable.

The separability character of a metric space X is the smallest cardinality of a base

for the topology of X. A Limited type of extension is possible for complete spaces

with nonmeasurable separability character.

Theorem 3. Let (Y,c>,P) be a finite measure space, A c Y and f: A -» X a Borel

measurable function from (A, S (A)) to a complete metric space X with nonmeasurable

separability character. Then there is an S-measurable g: Y —> X such that

P*{xeA:f(x)*g(x)) = 0.

Proof. Consider P* asa measure on (A,S (A)) and its image/(P*) on X. By a

theorem of Marczewski and Sikorski [6, Theorem III], there is a closed subset F oi X

which is separable and is such that f(P*)(F)=f(P*)(X) = P*(A). Let /0 be /

restricted to f'\F) with range Fand use Theorem 1 to extend/0 to an S-measurable

g: Y-*F. Then {x&A: f(x)*g(x))cA\f-](F), which has P*-measure P*(A)-

P*f~\F) = P*(A)-f(P*)(F) = 0.    Q.E.D.
Acknowledgments are due R. M. Dudley, who suggested the problem and inspired

the subsequent research, also to D. Cohn and D. Allinger for their helpful remarks.
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