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ABSTRACT. Zelmanov's structure theory for prime Jordan algebras works

directly with semiprimitive algebras, and the results are extended to nonde-

generate algebras using properties of the free Jordan algebra. Here we show

how Amitsur's direct power trick of imbedding J in the algebra of all sequences

from J can be used to imbed any nondegenerate algebra J in a semiprimitive

J having exactly the same polynomial identities as J.

Throughout this paper we work with quadratic Jordan algebras J over an arbi-

trary ring of scalars ■$. Thus J has products

(0.1) x2    and    Uxy

quadratic in x and linear in y, behaving like the products xx and xyx in associative

algebras. We denote the linearization of these products by

(0.1') xoy    and    {xyz}

(behaving like xy + yx and xyz + zyx). A Jordan algebra is special if it is isomor-

phic to a subspace J C A of an associative algebra A closed under x2 = xx and

Uxy = xyx. Unlike Lie algebras, not all Jordan algebras are special: the archety-

pal exceptional algebra is the 27-dimensional split albert algebra of hermitian 3x3

matrices with entries in an octonion or Cayley algebra. Just as we can define a

new associative product a -u b = aub, we can define for any u in J a new Jordan

algebra, the u-homotope

(0.2) J«:     x<2'"' = Uxu,        U¡u)y = UxUuy.

An ideal I < J is a subspace invariant under inner and outer multiplication by J

(I2 C /, UiJ C /, and J o I c I, Ujl C I), and we have the usual results

about factor algebras J /I. We can also create algebras by scalar extension, forming

Jn = J (g)$ n for any <î>-algebra of scalars 0. The important special case 0 = "3>[T]

for a set T of indeterminates leads to the polynomial algebra

(0.3) J[T]=|all    J2Xer-entV"'teni0VXei...enej\

of all formal polynomials in the i's with coefficients from J.

We have notions of prime and primitive Jordan algebras as in the associative the-

ory: an algebra is semiprime or semiprimitive if it is a subdirect product of prime
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or primitive algebras. More important than semiprimeness is strong semiprimeness

or nondegeneracy, the absence of trivial elements z ^ 0 with Uz = 0. There are

Jordan radicals analogous to their associative counterparts. The Jacobson radical

Rad(J) is the smallest ideal whose factor is semiprimitive. The nil radicalWû(J) is

the largest nil ideal (all of its elements are nilpotent) and the smallest ideal whose

factor is nil-free (has no nil ideals). The degenerate (or lower, or McCrimmon) radi-

cal Deg( J) is the smallest ideal whose factor is nondegenerate (this is the "correct"

analogue of the semiprime = prime = Baer radical for associative algebras). We

always have inclusions

(0.4) Rad(J) D Nil(J) D Deg(J).

Zelmanov's Prime Dichotomy Theorem [1, 5.1, p. 322] asserts that any prime

Jordan algebra which can be imbedded in a semiprimitive algebra is either a ho-

momorphic image of a special algebra or is an albert algebra. This applies initially

to nil-free-algebras [5] (it can be slightly extended [2] to strictly-nil-free algebras)

where one has a semiprimitive scalar extension by

0.5 AmitSUR'S POLYNOMIAL SHRINKAGE [2, 4.1, p. 798, 4.5, p. 799]. The

Jacobson radical can be shrunk into the nil radical by polynomial extension: the

radical Ra,d(J[t}) of the polynomial algebra has the form I[t] for an ideal I of J

contained in the nil radical Nil(J). Thus if J has no nil ideals, then J[t] will have

no radical ideals.    D

In [6] the structure theory was extended to nondegenerate algebras using the

established structure of the nil-free algebras and the fact that for a universal free

algebra the nil and nondegenerate radicals coincide. It is natural to look for a

proof which reduces nondegenerate algebras directly to semiprimitive ones, instead

of having to pause halfway at the nil-free algebras.

In Zelmanov's Second Dichotomy Theorem [6, 4], describing those prime alge-

bras that are images of special algebras, certain results on Clifford identities are

established directly for semiprimitive algebras, and must then be extended to non-

degenerate algebras. This requires semiprimitive imbeddings which preserve Clifford

polynomial identities.

These motivate us to look for semiprimitive identity-preserving imbeddings. It

was recognized that scalar extensions are too restrictive, but it was asserted [2, p.

806] that "the only general methods known for imbedding a Jordan algebra in a

larger one are scalar extension and free product". In this paper we draw attention

to a useful imbedding method which was overlooked, despite being well-known in

associative P.I. theory (cf. [7, Theorem 1.6.21, p. 45]), namely imbedding J as

constant sequences in the sequence algebra or (countable) direct power

oo

Seq(J) = TT J = {all sequences (xi,x2,... ) with Xi e J
(0.6) y

under componentwise operations}.

(This is a special instance of the direct product YlieI Ji of algebras under compo-

nentwise operations). The map

JU "    I JU .  Jj » JL> ■  .   -   -   I
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imbeds J in Seq( J). The point of our paper will be to use sequences to shrink the

nil radical into the degenerate radical in the same way that polynomials shrink the

Jacobson radical into the nil radical.

1. Identities. In Jordan algebras the associative concept of polynomial iden-

tity splits into two concepts. A special or s-identity (s.i.) is a nonzero element

f(xi,..., xn) of the free Jordan algebra FJ(X) which vanishes on all special Jor-

dan algebras (equivalently, goes to zero in the free special Jordan algebra FSJ(X)

under the canonical homomorphism FJ(X) —> FSJ(X)). An algebra is a homo-

morphic image of a special algebra iff it satisfies all s-identities. A polynomial

identity (p.i.) is a nonzero element of the free algebra whose image is nonzero (in-

deed, has a monic leading term) in FSJ(X). A strict identity (str.p.i.) consists of

an identity f(xi,... ,xn) together with all its linearizations. We could avoid strict

identities by considering only multilinear identities.

We say J satisfies an identity f if f(xi,... ,xn) vanishes under all specializations

in J: f(ai,..., an) = 0 for all a¿ e J. J satisfies a strict identity / (/ and all its

linearizations vanish on J) iff it satisfies / strictly (all scalar extensions Jn continue

to satisfy /). It is important, but often overlooked, that it suffices if J[t] (0 = $[£])

satisfies / (see §4). If / is multilinear, or $ is a field with cardinality greater than

the degree of /, then / vanishes strictly as soon as it vanishes, but for finite fields

or general scalar rings <I> strictness is not automatic (think of the Boolean condition

x2 - x = 0).

In general, if J satisfies an identity (special, polynomial, or strict) so does any

subalgebra, homomorphic image, or direct power (e.g. sequence algebra). A scalar

extension Jq inherits all the strict identities of J. If J' D J inherits all identities

(of some sort) for J then so does any image J'/I', and if /' misses J then J remains

imbedded in J'/I' and therefore in turn inherits all identities of this factor algebra.

1.1 PRINCIPLE. If J' D J inherits all identities of some sort of J, and if I' <J'
has V ("I J = 0, then J D J where J = J'/I' has exactly the same identities of the

given sort as J. In particular, î/Rad(J') fl J = 0 in this case, then J is imbedded

in J = J'/Rad(J') which is semiprimitive and has exactly the same identities of

the given sort as J.    D

Our goal is to show that J' = {Seq(J[í])}[í'J satisfies this condition for strict

identities when J is nondegenerate, and affords the desired imbedding. Note that

we cannot remove nondegeneracy here, since if z ^ 0 is trivial (Uz = 0) then

(z, z,... ) remains trivial in J' and thus 0 ^ z e J fl Rad( J').

2. Direct power shrinkage. We begin by recalling the close connection which

Zelmanov first pointed out between degeneracy and elements of bounded index. We

say z has strictly bounded index if some fixed power vanishes in all homotopes of

all scalar extensions; by (4.3) it suffices if z^n'x' = 0 for all x e J[t], This implies

z(k,x) = q for gji £ > 2nj an(j ¡f 1/2 e $ for all k > n. The fundamental connection

[3] is

(2.1) J is nondegenerate iff it contains no elements z ^ 0 of strictly

bounded index.

Just as in associative algebras, there is an easy way to get elements of bounded

index.
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2.2 LEMMA. If z2 = z3 = (zox)n =0, then gP"+i,z) _0 andif(ZoX)n =0

strictly then z has strictly bounded index.

PROOF. In the case of special algebras

z2 = (zo x)n = 0

implies

0 = z(zx + xz)n = z(xz)n = z{n+1'xl

In the case of general Jordan algebras we need (for the one and only time in the

whole paper) some specific identities which hold in all Jordan algebras:

(2.3a) UUxy = UxUyUx    (hence Uxn = C£),

(2.3b) UXOy   +  Ux2ty2    =   UxUy   +  UXtyUXty   + UyUX ,

(2.3c) {xyy} = xoy2,

(2.3d) UXt2Uz=Vx>xVz2-Vx,zs,

where Ux zy — {xyz} = Vx yz. In general, if z2 = z3 = (z o x)n = 0 then 0 =

U{zox)nZ = U?oxz (by (2.3a)) = {UZUX + UXUZ + U2tX - Uz^x*}nz (by (2.3b))

= (UzUx)nz (using z2 = 0, Uzz = z3 = 0, Uz¡xz = z2 o x = 0 (by (2.3c)), and

repeatedly using UZUZ - Uz2 = 0 by (2.3a), UZ<XUZ = VXtZVz2 - Vx,zs = 0 (by

(2.2d))), where (UzUx)nz = Uzx)nz = *(*»+M) in the homotope J^ of (0.2). If

(z o x)n vanishes strictly, then so does ^(2«+1.a:).    n

The key idea is that for a sequence to be nilpotent, all its terms must be nilpotent

and there must be a bound on the indices of nilpotence.

2.4 AmitSUR'S DIRECT-POWER TRICK. If z G J H Nil(Seq(J)) then there is

an integer n = n(z) such that (z o x)n = 0 for all x G J■

PROOF. If no n works for all x at once, there exist xnG J with (zoxn)n ^ 0, and

the element (z, z,... ) o (xi, x2,... ) = (z o xi, z o x2,... ) in Seq( J) is not nilpotent

of any finite index, so (z, z,... ) does not belong to Nil(Seq(-/)).    G

2.5 AMITSUR'S DIRECT-POWER SHRINKAGE. JnNil(Seq(J[t})) is an ideal of

J contained in Deg(J).

PROOF. I = J n Nil(Seq(J[*J)) is certainly an ideal in J, and to show it

is contained in Deg(J) it suffices to show / vanishes in J = J/Deg(J) c

Seq( J[t])/ Seq(Deg(J)[t}) S Seq(J[í]). Now 7 still lies in the nil radical Nil(Seq(7[i]))

of the factor algebra, so (as usual for radical surgery) it suffices to prove / =

7 n Nil(Seq(7[i])) = Ö for nondegenerate 7. But if 7 ^ Ö there is z ^ Ö in 7 with

z2 = z3 = 0, and by (2.4) applied to J[t] for some n (z o x)n = Ö for all x G 7[í],

therefore (z o x)n = 0 strictly as a function of x e J by 4.3, so by Lemma 2.2 z

has strictly bounded index, which by (2.1) contradicts nondegeneracy of J. Thus

7 = 0 and JcDeg(J).    D

It is not clear whether in fact the intersection is exactly Deg(J), equivalently

whether Deg(J') C Nil(Seq(J')) for all J'.
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3. The main imbedding theorem. We are now ready to combine polynomial

and sequential shrinkage to obtain the

3.1 NONDEGENERATE IMBEDDING THEOREM. If J is a nondegenerate Jordan

algebra, then J may be imbedded in a semiprimitive algebra J in such a way that

J satisfies exactly the same strict identities as J.

PROOF. We have J = Jo C Ji C J2 C J3 = J' for J-. = J[t], J2 = Seq(Ji) =

Seq(J[i]), and J3 = J2[t'\ = {Seq(«/[í])}[í']. Here each Jl+Ï inherits nondegeneracy

and all strict identities from J¿ (a sequence is trivial iff all its terms are, a polynomial

is trivial only if its top degree term is). By our general Principle 1.1 we need only

show that

(*) J n Rad(J') = 0

to get the desired imbedding J c J — J'/Rad(J'). But by Polynomial Shrinkage

0.6 JnRad(J') = JC] J2nRad(J2[£']) C JnNil(J2), and by Direct-Power Shrinkage

2.5 J D Nil( J2) = J n Nil(Seq( J[t})) C Deg( J) = 0 by nondegeneracy, establishing

(*)•    a
Zelmanov's Prime Dichotomy Theorem is proven under the explicit hypothesis

that the prime algebra is imbeddable in a semiprimitive algebra, so from 3.1 without

further ado or polynomial identities we have

3.2 PRIME DICHOTOMY THEOREM. Any nondegenerate prime Jordan algebra

is either a homomorphic image of a special algebra, or is an albert algebra.    D

In a forthcoming paper [4] it will be important that the semiprimitive imbeddings

can be chosen to preserve polynomial identities.

4. Appendix on polynomial mappings. To avoid multi-indices and simplify

notation, we pass from several variables to a single vector variable, i.e. from maps

jn _— » J to the general case of abstract polynomial mappings X-► Y

of O-modules in the sense of Robi [9] (cf. [8, pp. 202-207]). We say such a map /

vanishes strictly on X,

(4.1) / = 0    on X

if / vanishes on all scalar extensions Xq. Strictness is equivalent to / vanishing

on the particular "universal" extension X[ti,t2,...] for an infinite set of indeter-

minates, and also equivalent to the intrinsic condition that all linearizations of /

vanish on X. Here the linearizations fei,...,er(xi, ■ ■ ■ ,xr) of / are defined as the

coefficients of powers of i's in the expansion

(4.2) f(tixi + --- + trxr)=       J2      tl1 ■■■te/fei...er(xi,...,xr)
eiH-Yer<d

for d the degree of /, x% in X.   (This is the place where multi-indices would be

awkward, if we had to linearize each variable Xi in f(xi,..., x„).)

It is often useful to get by with a single t.

4.3 ONE-i-IS-ENOUGH LEMMA. If f : X —* Y is a polynomial mapping whose

extension to X[t] —* Y[t] vanishes, then f vanishes strictly on X.
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PROOF. The hypothesis that / vanishes on X[t] means for all Xi,... ,xr in X

and any choice of integral powers oi,..., ar the value

f(flXi +... + t«rXr) =J2tatei+"'+are'f*f'r(*U- --,Xr)

is zero in Y[t], i.e., the coefficient of tk vanishes in Y for each k. To conclude

strictness fei...6r(xi,... ,xr) =0 for each r-tuple e = (ei,... ,er) in Nr (J2ei ^ d)

and each r-tuple (xi,... ,xr) in Xr, we need only show that we can choose a =

(ai,... ,ar) so that the a • e are all distinct, i.e. a • (e — e') ^ 0 for e ^ e'. But

there are at most dr such n-tuples e, hence at most k = dr(dr — 1) such e — e', and

given any finite number vi,..., Vfc of nonzero vectors in Qr we can find a e NT

with a • Vi jí 0 for all i = 1,2,... ,k. One way is to note /¿(a) = a • v¿ is a nonzero

linear function from Qr to Q if v¿ ^ 0, so the pointwise product / = fi ■ ■ ■ fh

and the function g(a) = /(sq(a)) (where sq(a) = (a2,... ,a2) is the componentwise

square) are not identically zero as functions Qr —> Q since the field Q is infinite,

and if g does not vanish at b then by homogeneity we can clear denominators to get

o(b) t¿ 0 for b e Zr, so /(a) ^ 0 for a = sq(b) 6 Nr, therefore no /¿(a) vanishes,

and a • v» ^ 0 for all i.

Alternately, we can "explicitly" exhibit & e Nr with a • vt ^ 0 for any given

finite set v i,..., Vfc of nonzero vectors in Zr. Indeed, let pi,..., pr be distinct prime

integers such that p3 does not divide any nonzero jth entry (if v¿ = (bu,... ,ft¿r)

then p3 does not divide any of bi3-,..., bk3 which are nonzero; if all jth. entries bi3

are zero we agree p3 = 1), and set a = (ai,... ,ar) for a¿ = Yli^Pi- Since the

vector v¿ is nonzero, at least one of its entries bi3 is nonzero, hence by construction

p3 does not divide bi3 or a3 yet divides all other a;, so p3 does not divide a • v¿ =

oiftii + ••• + a3bl3 + ■ ■ ■ + arbir and therefore this latter cannot be zero.    D
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