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HAUSDORFF DIMENSIONS OF ESCAPING SETS

OF TRANSCENDENTAL ENTIRE FUNCTIONS

LASSE REMPE AND GWYNETH M. STALLARD

(Communicated by Mario Bonk)

Abstract. Suppose that f and g are transcendental entire functions, each
with a bounded set of singular values, and that g◦ϕ = ψ◦f , where ϕ, ψ : C → C

are affine. We show that the escaping sets of f and g have the same Hausdorff
dimension.

Using a result of the second author, we deduce that there exists a family
of transcendental entire functions for which the escaping set has Hausdorff
dimension equal to one.

1. Introduction

Let f : C → C be a transcendental entire function. The Julia set J(f) ⊂ C

is the set of points where the family (fn) is not equicontinuous (with respect to
the spherical metric). For an introduction to the dynamics of transcendental entire
functions, see [Be1, Be2].

A number of authors have studied the Hausdorff dimension, dim J(f), of the
Julia set (see [S6] for a survey). Baker [Bak] showed that J(f) contains nontrivial
continua for every transcendental entire function f , so in particular dim J(f) ≥ 1.
Although it is known [S5] that, for each d ∈ (1, 2], there are transcendental entire
functions for which the Hausdorff dimension of the Julia set is equal to d, it is a
well-known open question whether the Julia set of a transcendental entire function
can have Hausdorff dimension equal to 1.

More is known when we restrict the class of functions under consideration. The
Eremenko-Lyubich class is defined by

B = {f : f is a transcendental entire function for which sing(f−1) is bounded},
where sing(f−1) consists of the critical and asymptotic values of f . The second
author proved in [S3] that

(1.1) dim J(f) > 1 for f ∈ B.
This proof in fact constructs a subset A of the escaping set

I(f) := {z ∈ C : fn(z) → ∞ as n → ∞}
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whose closure A has Hausdorff dimension greater than one, which yields the desired
conclusion due to the fact [EL] that

(1.2) I(f) ⊂ J(f) for f ∈ B.
It was shown more recently [RS] that the set I(f) ∩ J(f) contains nontrivial

continua for all transcendental entire functions, and hence

(1.3) dim(I(f) ∩ J(f)) ≥ 1.

In view of these results, it seems natural to ask whether the escaping set of a
transcendental entire function must have Hausdorff dimension greater than one.
We show that this is not the case:

1.1. Theorem (Escaping sets of dimension one). There exists a function f ∈ B
such that dim I(f) = 1.

Combined with previous results, this gives the following complete description of
the possible Hausdorff dimensions of escaping sets.

1.2. Corollary (Dimensions of escaping sets). If f is a transcendental entire func-
tion, then dim I(f) ∈ [1, 2]. Conversely, for every d ∈ [1, 2] there exists a func-
tion f ∈ B with dim I(f) = d. If d > 1, this function can be chosen such that
dim J(f) = d.

To prove Theorem 1.1 we consider a function that was studied in [S1]. Let L be
the boundary of the region

G = {z : Re(z) > 0,−π < Im(z) < π},
parametrized in the clockwise direction. Then

(1.4) F0 : C \G → C; z �→ 1

2πi

∫
L

exp(et)

t− z
dt

can be continued analytically to a transcendental entire function F0 : C → C. From
the properties of F0 given in [S1], it can easily be seen that F0 ∈ B.

Consider the family

Fκ(z) := F0(z) + κ, κ ∈ C.

It is shown in [S1] that

(1.5) lim
κ→−∞,

κ∈R

dim J(Fκ) = 1,

while, by (1.1), dim J(Fκ) > 1 for all κ ∈ C. This implies that dim J(Fκ) is a
nonconstant function of κ.

In contrast, we show that the Hausdorff dimension of the escaping set cannot
change in a family defined in this manner. More precisely, we say that two transcen-
dental entire functions f and g are affinely equivalent if there are affine functions
ϕ, ψ : C → C such that

(1.6) ψ ◦ f = g ◦ ϕ.
Any two functions Fκ1

and Fκ2
, κ1, κ2 ∈ C, are clearly affinely equivalent. (Another

well-known family consisting of transcendental entire functions that are affinely
equivalent to each other is the family z �→ exp(z) + κ of exponential maps. Note
that, for this family, the Julia sets and escaping sets all have Hausdorff dimension
two by a result of McMullen [McM].)
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1.3. Theorem (Escaping dimensions and affine equivalence). Suppose that f, g ∈ B
are affinely equivalent. Then dim I(f) = dim I(g).

The proof uses recent results of the first author [R] on the rigidity of the dynamics
near infinity for a function f ∈ B. Using (1.1), (1.2) and (1.5), we obtain the
following consequence of Theorem 1.3, which implies Theorem 1.1.

1.4. Corollary (Escaping dimension of Fκ). Let F0 be the function defined above,
and let g ∈ B be affinely equivalent to F0. Then dim I(g) = 1 < dim J(g).

Remarks.

(a) As far as we know, this provides the first example of an analytic family
of entire functions for which the dimension of the escaping set is always
strictly smaller than that of the Julia set.

(b) We note that if f has finite order, then I(f) has Hausdorff dimension two
[Bar, Sch], while for functions of “small” infinite order, a lower bound on
the Hausdorff dimension of I(f) is proved in [BKS]. It follows from these
results that

lim sup
r→∞

log log logmax|z|=r |f(z)|
log log r

= ∞

for any function with dim I(f) = 1. Note that for the maps Fκ we have

log log log max
|z|=r

|Fκ(z)| ≈ log r.

(c) For transcendental meromorphic functions, the Julia set may have any
Hausdorff dimension d ∈ (0, 2] [S4]. On the other hand, (1.1) was gen-
eralized to functions having a logarithmic singularity over ∞ in [BRS], and
extended in [BKZ] to show that in fact the hyperbolic dimension of such
a function is strictly larger than one. As far as we know, it is an open
question whether the escaping set of a transcendental meromorphic func-
tion can have Hausdorff dimension zero; this cannot occur for the Julia set
[S2]. Kotus and Urbański [KU] have shown that there exist meromorphic
functions with dim J(f) > dim I(f); compare also [BK, Theorem 1.2].

(d) It is possible to prove Theorem 1.1 directly, using arguments similar to those
in [S1].

To conclude our paper, we consider the notion of the eventual dimension of a
transcendental entire function f , defined by

edim(f) := inf
R>0

dim JR(f),

where, for each R > 0,

(1.7) JR(f) := {z ∈ J(f) : |fn(z)| ≥ R for all n ≥ 1}.

Remark. This eventual dimension is also implicitly used by Bergweiler and Kotus
[BK] to obtain an upper bound for the Hausdorff dimension of the escaping set of
certain meromorphic functions.

We show that for functions in the Eremenko-Lyubich class, the eventual dimen-
sion is an upper bound for dim I(f) and is also preserved under affine equivalence.
This enables us to prove the following result.
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1.5. Theorem (Eventual dimensions of entire functions). For each d ∈ [1, 2], there
exists a function f ∈ B such that edim(g) = dim I(g) = d for all functions g affinely
equivalent to f .

Open questions. As far as we are aware, for all examples where dim I(f) and
edim(f) are known, these numbers coincide. (This is also the case for the mero-
morphic functions considered in [BK, Theorem 1.2].)

1.6. Question. Does there exist a function f ∈ B such that edim(f) 
= dim I(f)?

Following [EL], two entire functions f and g are called quasiconformally equiv-
alent if there are quasiconformal functions ψ, ϕ : C → C such that (1.6) holds.
Quasiconformal equivalence classes can be considered as natural parameter spaces.
It was shown in [R] that, for f ∈ B, the dynamical behaviour near infinity is the
same for any function quasiconformally equivalent to f .

1.7. Question. Suppose that f, g ∈ B are quasiconformally but not affinely equiv-
alent. Do I(f) and I(g) have the same Hausdorff dimension?

Remark. It follows from [R] that the answer is “yes” if dim I(f) = 2.

Structure of the article. In Section 2, we use the results of [R] to deduce a fact
that will play an important role in our proof of Theorem 1.3, which is itself proved
in Section 3. We give the proof of Corollary 1.2 in Section 4 and treat eventual
dimension and the proof of Theorem 1.5 in Section 5.

2. Conjugacies on JR(f)

We will require the fact (Corollary 2.2 below) that if two functions f, g ∈ B
are affinely equivalent, then, for sufficiently large R, they are also quasiconformally
conjugate on the set JR(f), and the dilatation of the conjugacy tends to one as
R → ∞. This follows from the ideas of [R] but is not explicitly stated there. We
shall provide a proof for completeness, using the following result, which is a special
case of [R, Proposition 3.6].

2.1. Proposition (Existence of conjugacies). Let f ∈ B. Let ϕλ : C → C, λ ∈ C,
be a family of nonconstant affine maps that depend analytically on λ. Also suppose
that ϕ0 = id. We define fλ := f ◦ ϕλ.

Let N be a compact subset of C with 0 ∈ N . Then there exists a constant R > 0
such that, for every λ ∈ N , there is an injective function ϑ = ϑλ : JR(f) → J(fλ)
with the following properties:

(a) ϑ0 = id,
(b) ϑλ ◦ f = fλ ◦ ϑλ and
(c) for fixed z ∈ JR(f), the function λ �→ ϑλ(z) is analytic in λ (on the interior

of N).

Remark. The conclusion of the theorem says that the injections ϑλ form a holomor-
phic motion of JR(f) on the interior of N in the sense of Mañé, Sad and Sullivan.
(Compare [H, Section 5.2].)

We now prove the main result of this section.
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2.2. Corollary (Conjugacy near infinity). Suppose that f, g ∈ B are affinely equiva-
lent, and let K > 1. Then there exist R > 0 and a K-quasiconformal map ϑ : C → C

such that

ϑ(f(z)) = g(ϑ(z))

for all z ∈ JR(f).

Proof. By conjugating g with a Möbius transformation, we may assume for sim-
plicity that g = f ◦M , where M(z) = eAz +B for suitable A,B ∈ C. Define affine
functions ϕλ(z) := eλAz + λB and consider the family

fλ(z) := f(eλAz + λB).

Then f0 = f and f1 = g.
We can apply Proposition 2.1 to D := (K + 1)/(K − 1) and N := {λ : |λ| ≤ D}

and obtain a number R > 0 and maps ϑλ : JR(f) → J(fλ) satisfying (a) to (c) as
above.

It is well-known that a holomorphic motion such as ϑλ is quasiconformal as a
function of z, and there is a bound on the dilatation of ϑλ in terms of the parameter
λ. More precisely: if λ ∈ int(N), then ϑλ extends to a Kλ-quasiconformal map
ϑλ : C → C by [BR, Theorem 1], where

Kλ ≤ D + |λ|
D − |λ| .

In particular, by the definition of D, the map ϑ1 extends to a K-quasiconformal
map ϑ1 : C → C, as desired. �

3. Proof of Theorem 1.3

Let f be a transcendental entire function. For R ≥ 0, we defined the set JR(f)
in the introduction; let us also set

IR(f) := {z ∈ I(f) : |fn(z)| ≥ R for all n ≥ 1}.

3.1. Lemma (Dimension and eventual dimension of escaping sets coincide). Let
f be a transcendental entire function and R > 0. Then dim I(f) = dim IR(f) and
dim(I(f) ∩ J(f)) = dim(IR(f) ∩ J(f)).

Proof. Every point in I(f) eventually maps to a point in IR(f), so we have

I(f) =
⋃
j≥0

f−j(IR(f)),

and analogously for I(f) ∩ J(f). The conclusion follows from the preservation of
Hausdorff dimension under holomorphic functions and the countable stability of
Hausdorff dimension. �

Proof of Theorem 1.3. Suppose that f, g ∈ B are affinely equivalent. We want
to show that dim I(f) = dim I(g). By symmetry, it is sufficient to show that
dim I(g) ≥ dim I(f). We shall use the following result, due to Gehring and Väisälä
[GV, Theorem 8]: if ϑ is a K-quasiconformal map and A ⊂ C, then

(3.1) dim(ϑ(A)) ≥ dimϑ(A)/K.

(The optimal bounds on the distortion of Hausdorff dimension under quasiconformal
mappings in dimension 2 are given by Astala’s distortion theorem [A].)
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So, let K > 1. It follows from Corollary 2.2 that there exist R > 0 and a
K-quasiconformal map ϑ : C → C such that ϑ(f(z)) = g(ϑ(z)) for all z ∈ JR(f).

For z ∈ IR(f) ⊂ JR(f), we have

gn(ϑ(z)) = ϑ(fn(z)) → ∞,

and hence, by (3.1) and Lemma 3.1,

dim I(g) ≥ dimϑ(IR(f)) ≥ dim(IR(f))/K.

Since K was chosen arbitrarily close to 1, this completes the proof. �

4. Proof of Corollary 1.2

The first statement in Corollary 1.2 follows from (1.3). Recall that the second
claim is that, for each d ∈ [1, 2], there exists a function f ∈ B for which the
Hausdorff dimension of the escaping set is equal to d, and that furthermore if
d > 1, the function can be chosen such that dim J(f) = d.

In the case d = 1, this follows from Corollary 1.4, while for d = 2 we can use
f(z) = exp(z) and use McMullen’s result [McM] that dim I(f) = 2. (In fact, by
[Bar, Sch], any entire function f ∈ B of finite order has the desired properties for
d = 2.)

The remaining cases are covered by the following statement, which is a conse-
quence of the results of [S5] and [BKS].

4.1. Proposition (Escaping sets of dimension between one and two). For each
d ∈ (1, 2), there exists a family of functions fd,K , K ∈ R, in the class B such that

dim J(fd,K) = dim I(fd,K) = d.

Proof. Set p = (2− d)/(d− 1) and define the family by

fd,K(z) := fp(z)−K for K ∈ R,

where

fp(z) :=
1

2πi

∫
Lp

exp(e(log t)1+p)

t− z
dt,

with Lp being the boundary of the region

Gp = {z = x+ iy : |y| ≤ πx/[(1 + p)(log(x))p], x ≥ 3},
described in the clockwise direction, for z ∈ C\Gp. As with the function F0 defined

in the introduction, fp can be defined by analytic continuation for z ∈ Gp.
It was shown in [S5] that fd,K ∈ B and that

dim J(fd,K) = 1 +
1

1 + p
= d

for sufficiently large K. By (1.2), we have (again, for large K),

(4.1) dim I(fd,K) ≤ dim J(fd,K) = d.

On the other hand, the following result was proved in [BKS]. Suppose that
f ∈ B, q ≥ 1, and that, for each ε > 0, there exists rε > 0 such that

(4.2) |f(z)| ≤ exp
(
exp

(
(log |z|)q+ε

))
for |z| ≥ rε.

Then dim I(f) ≥ 1 + 1
q .
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The functions fd,K satisfy the above assumptions for q = 1+ p = 1/(d− 1), and
hence

dim I(fd,K) ≥ 1 +
1

q
= d

for all K. Together with (4.1), this implies that, for large K,

dim I(fd,K) = dim J(fd,K) = d,

as claimed. �

5. Eventual dimension

Recall that the eventual dimension of an entire function f was defined in the
introduction as

edim(f) = inf
R>0

dim JR(f).

We begin with the following two results.

5.1. Lemma. Let f be a transcendental entire function. Then

dim(I(f) ∩ J(f)) ≤ edim(f) ≤ dim J(f).

Proof. The second inequality holds by definition. On the other hand, by Lemma 3.1,
we have

dim(I(f) ∩ J(f)) = dim(IR(f) ∩ J(f)) = dim(JR(f) ∩ I(f))

for all R ≥ 0. Hence dim(I(f)∩J(f)) ≤ dim JR(f) for all R ≥ 0, and thus we have
dim(I(f) ∩ J(f)) ≤ edim(f), as claimed. �

5.2. Theorem. If f, g ∈ B are affinely equivalent, then edim(f) = edim(g).

Proof. The proof is very similar to the proof of Theorem 1.3. Again, we need only
show that edim(g) ≥ edim(f).

Let K > 1. It follows from Corollary 2.2 that there exist R > 0 and a K-quasi-
conformal map ϑ : C → C such that

(5.1) ϑ(f(z)) = g(ϑ(z))

for all z ∈ JR(f).
Now let S > 0 and choose R′ ≥ R sufficiently large that |ϑ(z)| ≥ S whenever

|z| ≥ R′. Then it follows from (5.1) that ϑ(JR′(f)) ⊂ JS(g). Therefore, by (3.1)
and Lemma 3.1,

dim JS(g) ≥ dimϑ(JR′(f)) ≥ dim JR′(f)/K ≥ edim(f)/K.

Since K can be chosen arbitrarily close to 1, we see that dim JS(g) ≥ edim(f).
Finally, since S was arbitrary, it follows that edim(g) ≥ edim(f), as required. �

We end this section by proving Theorem 1.5.

Proof of Theorem 1.5. Let d ∈ [1, 2]. By Theorems 1.3 and 5.2, we only need to
show that there is a function f ∈ B with dim I(f) = edim(f) = d. If d > 1, then
this follows from Corollary 1.2 together with (1.2) and Lemma 5.1.
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For d = 1, we again consider the functions Fκ, κ ∈ C, defined in the Introduction.
It follows from (1.3), (1.5), Lemma 5.1 and Theorem 5.2 that

edim(Fκ) = 1 for all κ ∈ C.

Also, by Corollary 1.4,

dim I(Fκ) = 1 for all κ ∈ C.

This completes the proof. �

References

A. Kari Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1,
37–60. MR1294669 (95m:30028b)

Bak. I. Noel Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn.
Ser. A I Math. 1 (1975), no. 2, 277–283. MR0402044 (53:5867)
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BKS. Walter Bergweiler, Bogus�lawa Karpińska and Gwyneth M. Stallard, The growth rate of an

entire function and the Hausdorff dimension of its Julia set, J. London Math. Soc. 80
(2009), 680–698.

BK. Walter Bergweiler and Janina Kotus, On the Hausdorff dimension of the escaping set of
certain meromorphic functions, preprint, 2009, arXiv:0901.3014.

BRS. Walter Bergweiler, Philip J. Rippon and Gwyneth M. Stallard, Dynamics of meromorphic
functions with direct or logarithmic singularities, Proc. London Math. Soc. 97 (2008),
no. 2, 368–400. MR2439666

BR. Lipman Bers and Halsey L. Royden, Holomorphic families of injections, Acta Math. 157
(1986), no. 3-4, 259–286. MR857675 (88i:30034)
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