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POSITIVE PERIODIC SOLUTIONS FOR A NONAUTONOMOUS

NEUTRAL DELAY PREY-PREDATOR MODEL WITH IMPULSE

AND HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE

DONGSHU WANG

(Communicated by Yingfei Yi)

Abstract. In this paper, a nonautonomous neutral delay prey-predator model
with impulse and Hassell-Varley type functional response is studied. By using
the continuation theorem of coincidence degree theory, easily verifiable criteria
are established for the existence of positive periodic solutions to the system.

1. Introduction

It is well known that a very basic and important problem in the study of a pop-
ulation model with a periodic environment is the global existence and attractivity
of a positive periodic solution. Much progress has been made in this direction (see
for example [1]–[7] and the references cited therein). But there is little literature
considering the Hassell-Varley type functional response between the predators and
prey, which was introduced by Hassell and Varley in 1969 [8]. From their observa-
tions, Hassell and Varley introduced and established a Lotka-Volterra predator-prey
model with Hassell-Varley type functional response as follows (see [8]):

x′ = rx(1− x

k
)− cxy

myγ + x
,

y′ = y(−d+
fx

myγ + x
), 0 < γ < 1,(1.1)

where γ is called the Hassell-Varley constant. In the typical predator-prey interac-
tion where predators do not form groups, one can assume that γ = 1, producing
the so-called ratio-dependent predator-prey system. For terrestrial predators that
form a fixed number of tight groups, it is often reasonable to assume γ = 1

2 . For

aquatic predators that form a fixed number of tights groups, γ = 1
3 may be more

appropriate. For more details on system (1.1), one could refer to [8]–[11] and the
references cited therein.
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Recently, Wang [11] proposed the following predator-prey system with Hassell-
Varley type functional response:

N ′
1(t) = N1(t)[a(t)− b(t)N1(t− τ (t))− c(t)N2(t)

mNγ
2 (t) +N1(t)

],

N ′
2(t) = N2(t)[−d(t) +

r(t)N1(t)

mNγ
2 (t) +N1(t)

] (0 < γ < 1).(1.2)

Under the assumption that the coefficients of system (1.2) are all continuous ω-
periodic functions, by applying Mawhin’s continuation theorem they obtained suf-
ficient conditions which guarantee the existence of positive ω-periodic solutions to
system (1.2).

Moreover, as Kuang [12] pointed out, it is interesting to investigate the existence
of periodic solutions of neutral delay interacting population models, such as the
predator-prey or competition system. In 1991, Kuang [13] studied the local stability
and oscillation of the following neutral delay Gause type predator-prey system:

x′(t) = rx(t)[1− x(t− τ ) + ρx′(t− τ )

K
]− y(t)p(x(t)),

y′(t) = y(t)[−α+ βp(x(t− σ))].(1.3)

For more details about the neutral delay system, one could refer to [12]–[17] and
the references cited therein.

In addition, in population dynamics, many evolutionary processes experience
short-time rapid changes after undergoing a relatively long smooth variation. For
example, harvesting and stocking occur at fixed moments, and some species usually
immigrate at the same time every year, etc. If we still thought of the population
dynamic systems with phenomena as continuous systems, it would be unreasonable
or incorrect. We should establish systems with impulsive effects. Recently, theories
for impulsive differential equations have been introduced into population dynamics
[4], [18], [19]. In addition, it is generally recognized that some kind of time delay is
inevitable in population interactions.

Motivated by the above works, in this paper, we consider the following nonau-
tonomous neutral delay prey-predator model with impulse and Hassell-Varley type
functional response:

N ′
1(t) = N1(t)[a(t)− b(t)N1(t− τ (t))− g(t)N ′

1(t− τ (t))

− c(t)N2(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

], t �= tk,

N ′
2(t) = N2(t)[−d(t) +

r(t)N1(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

], t �= tk, (0 < γ < 1),

ΔN1(tk) = N1(t
+
k )−N2(tk) = θ1kN1(tk), k = 1, 2, · · · ,

ΔN2(tk) = N2(t
+
k )−N2(tk) = θ2kN2(tk), k = 1, 2, · · · ,

(1.4)

where θ1kx(tk) and θ2ky(tk) represent the population x(t) and y(t) at tk regular
harvest or stocking pulse. Throughout this paper, for system (1.4), the following
conditions are assumed:
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(D1) 0 < t1 < t2 < · · · are fixed impulsive points with limk→+∞ tk = +∞, k ∈ N;
(D2) {θik} are real sequences such that θik > −1, and

∏
0<tk<t(1 + θik) are

ω-periodic functions, i = 1, 2, k ∈ N.
In recent years, the powerful and effective method of coincidence degree has been

widely applied to deal with the existence of periodic solutions of differential equa-
tions and difference equations. However, to the best of our knowledge, there is no
result on the existence of positive periodic solutions for the nonautonomous neutral
delay prey-predator system (1.4) with impulse and Hassell-Varley type functional
response in the literature. To compare with the nonneutral system, it is highly
nontrivial to attack the existence of positive periodic solutions to the neutral de-
lay system. Thus, in this paper, by utilizing the coincidence degree theorem, we
present some sufficient conditions which guarantee the existence of positive periodic
solutions to system (1.4).

The present paper is organized as follows: In the next section we introduce
some notations and lemmas. In Section 3, we derive some sufficient conditions
which ensure the existence of positive periodic solutions of system (1.4) by applying
the continuation theorem of coincidence degree theory and some other techniques.
Finally, as an application, we study some special cases of system (1.4).

2. Preliminaries

Consider the nonimpulsive neutral delay differential system

y′
1(t) = y1(t)[a(t)−B(t)y1(t− τ(t))−G(t)y′

1(t− τ(t))− C(t)y2(t)

M2(t)y
γ
2 (t) +M1(t)y1(t)

],

y′
2(t) = y2(t)[−d(t) +

R(t)y1(t)

M2(t)y
γ
2 (t) +M1(t)y1(t)

] (0 < γ < 1),

(2.1)

where

B(t) = b(t)
∏

0<tk<t−τ(t)

(1 + θ1k), G(t) = g(t)
∏

0<tk<t−τ(t)

(1 + θ1k),

C(t) = c(t)
∏

0<tk<t

(1 + θ2k),

M1(t) = m1(t)
∏

0<tk<t

(1 + θ1k), M2(t) = m2(t)
∏

0<tk<t

(1 + θ2k)
γ ,

R(t) = r(t)
∏

0<tk<t

(1 + θ1k).

The following lemma will be used in the proof of our results.

Lemma 2.1. Suppose that (D1) and (D2) hold. Then:

(1) If (y1(t), y2(t))
T is a solution of (2.1), then (N1(t), N2(t))

T is a solution of
(1.4), where Ni(t) =

∏
0<tk<t(1 + θik)yi(t), i = 1, 2.

(2) If (N1(t), N2(t))
T is a solution of (1.4), then (y1(t), y2(t))

T is a solution of
(2.1), where yi(t) =

∏
0<tk<t(1 + θik)

−1Ni(t), i = 1, 2.

Proof. First, we prove (1). It is easy to see that N1(t) =
∏

0<tk<t(1 + θ1k)y1(t)

and N2(t) =
∏

0<tk<t(1 + θ2k)y2(t)) are absolutely continuous on every interval
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(tk, tk+1] and for any t �= tk, k ∈ N,

N ′
1(t)−N1(t)[a(t)− b(t)N1(t− τ (t))− g(t)N ′

1(t− τ (t))

− c(t)N2(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

]

=
∏

0<tk<t

(1 + θ1k)y
′
1(t)−

∏
0<tk<t

(1 + θ1k)y1(t)[a(t)− b(t)

×
∏

0<tk<t−τ(t)

(1 + θ1k)y1(t− τ (t))− g(t)
∏

0<tk<t−τ(t)

(1 + θ1k)y
′
1(t− τ (t))

−
c(t)

∏
0<tk<t(1 + θ2k)y2(t)

m2(t)
∏

0<tk<t(1 + θ2k)γy
γ
2 (t) +m1(t)

∏
0<tk<t(1 + θ1k)y1(t)

]

=
∏

0<tk<t

(1 + θ1k){y′1(t)− y1(t)[a(t)−B(t)y1(t− τ (t))−G(t)y′1(t− τ (t))

− C(t)y2(t)

M2(t)y
γ
2 (t) +M1(t)y1(t)

]} = 0

and

N ′
2(t)−N2(t)[−d(t) +

r(t)N1(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

]

=
∏

0<tk<t

(1 + θ2k)y
′
2(t)−

∏
0<tk<t

(1 + θ2k)y2(t)[−d(t)

+

∏
0<tk<t(1 + θ1k)y1(t)

m2(t)
∏

0<tk<t(1 + θ2k)γy
γ
2 (t) +m1(t)

∏
0<tk<t(1 + θ1k)y1(t)

]

=
∏

0<tk<t

(1 + θ2k){y′2(t)− y2(t)[−d(t) +
R(t)y1(t)

M2(t)y
γ
2 (t) +M1(t)y1(t)

]} = 0.

On the other hand, for any t = tk, k ∈ N and i = 1, 2,

Ni(t
+
k ) = lim

t→t+k

∏
0<tj<t

(1 + θij)yi(t) =
∏

0<tj�t

(1 + θij)yi(t)

and

Ni(tk) =
∏

0<tj<tk

(1 + θij)yi(tk).

Thus

Ni(t
+
k ) = (1 + θik)Ni(tk),(2.2)

which implies that (N1(t), N2(t))
T is a solution of (1.4).

Next, we prove (2). SinceNi(t) =
∏

0<tk<t yi(t), i = 1, 2, is absolutely continuous

on every interval (tk, tk+1] and in view of (2.2), it follows that for any k ∈ N,

yi(t
+
k ) =

∏
0<tj�tk

(1 + θik)
−1Ni(t

+
k ) =

∏
0<tj�tk

(1 + θik)
−1Ni(tk) = yi(tk)

and

yi(t
−
k ) =

∏
0<tj�tk−1

(1 + θij)
−1Ni(t

−
k ) = yi(tk), i = 1, 2,
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which implies that yi(t), i = 1, 2, are continuous. It is easy to prove that yi(t), i =
1, 2, are absolutely continuous. Similar to the proof of (1), we can check that
(y1(t), y2(t))

T is a solution of (2.1). The proof of Lemma 2.1 is completed. �

From Lemma 2.1, if we want to discuss the existence and global asymptotic
stability of positive periodic solutions to the system (1.4), we only need to discuss
the existence and global asymptotic of positive periodic solutions to the system
(2.1).

In order to obtain the existence of positive periodic solutions to system (2.1),
and for the reader’s convenience, in the following we summarize a few concepts and
results that will be basic for this section.

LetX,Z be real Banach spaces; let L : Dom L ⊂ X → Z be a linear mapping and
N : X → Z a continuous mapping. The mapping L is called a Fredholm mapping
of index zero if dim KerL = codim ImL < +∞ and ImL is closed in Z. If L is a
Fredholm mapping of index zero and there exist continuous projects P : X → X
and Q : Z → Z such that ImP = KerL,KerQ = ImL,X = KerL ⊕ KerP and
Z = ImL⊕ ImQ, then the restriction LP of L to DomL ∩ KerP is one-to-one and
onto ImL, so that its (algebraic) inverse Kp: ImL →DomL ∩KerP is defined. Let

Ω be an open bounded subset of X; the mapping N is called L−compact on Ω if
QN : Ω → Z and KP (I −Q)N : Ω → X are compact. Since ImQ is isomorphic to
KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.2 ([20]). Let Ω ⊂ X be an open bounded set. Let L be a Fredholm
mapping of index zero and N : X → Z be a continuous operator which is L−compact
on Ω. Assume that

(a) for each λ ∈ (0, 1), x ∈ ∂Ω∩ DomL,Lx �= λNx;
(b) for each x ∈ ∂Ω ∩KerL,QNx �= 0;
(c) deg{JQN,Ω ∩KerL, 0} �= 0.

Then the operator equation Lx = Nx has at least one solution in Ω∩DomL.

Lemma 2.3 ([18]). Suppose that g ∈ PC1
ω = {x : x ∈ C1(R,R), x(t+ ω) ≡ x(t)};

then

0 � max
s∈[0,ω]

g(s)− min
s∈[0,ω]

g(s) � 1

2

∫ ω

0

|g′(s)|ds.

For convenience, we shall introduce the notations

f =
1

ω

∫ ω

0

f(s)ds, f l = min
s∈[0,ω]

f(s), fu = max
s∈[0,ω]

f(s),

where f(t) is a ω-periodic function. The following two numbers are also needed:

H1 = ln[2a(
1− τ ′

B −Ψ′ )
u] +

2aΨu

(B −Ψ′)l
+

1

2
ω(|a|+ a),

H2 =
1

γ
ln

(R− dM l
1)e

H1

M l
2

+
1

2
ω(|d|+ d).
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3. Existence of positive periodic solutions

In this section, we investigate the existence conditions of periodic solutions for
system (2.1). First, we always make the following assumptions for the system (2.1):

(D3) a, d ∈ C(R,R), B,C,R,M1,M2 ∈ C(R, [0,+∞)) are all ω-periodic func-
tions. In addition a > 0, d > 0.

(D4) B(t) > Ψ′(t), where Ψ(t) = G(t)
1−τ ′(t) and τ ′(t) < 1, G ∈ C1(R, [0,+∞)) and

τ ∈ C2(R,R) are ω-periodic functions.
(D5) R > dMu

1 .
(D6) 1−GueH1 > 0.

(D7) a > ( C
M2

)e(1−γ)H2 .
Our main results are stated in the following theorems.

Theorem 3.1. Assume that the conditions (D3) − (D7) hold. Then (2.1) has at
least one ω-periodic solution.

Proof. Let y1(t) = eu1(t), y2(t) = eu2(t). Then system (2.1) becomes

u′
1(t) = a(t)−B(t)eu1(t−τ(t)) −G(t)eu1(t−τ(t))u′

1(t− τ (t))

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
,

u′
2(t) = −d(t) +

R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
(0 < γ < 1).

(3.1)

It is easy to see that if system (3.1) has one ω-periodic solution (u∗
1(t), u

∗
2(t))

T ,
then (y∗1(t), y

∗
2(t))

T = (eu
∗
1(t), eu

∗
2(t))T is a positive ω-periodic solution of (2.1).

Therefore, to complete the proof, we only need to prove that (3.1) has at least one
ω-periodic solution.

Take

X = {u = (u1(t), u2(t))
T ∈ C1(R,R2) : ui(t+ ω) = ui(t), t ∈ R, i = 1, 2}

and

Z = {u = (u1(t), u2(t))
T ∈ C(R,R2) : ui(t+ ω) = ui(t), t ∈ R, i = 1, 2}

and define

|u|∞ = max
t∈[0,ω]

{|u1(t)|+ |u2(t)|}, ||u|| = |u|∞ + |u′|∞.

Then X and Z are Banach spaces when they are endowed with the norms || · || and
| · |∞, respectively. Let L : X → Z and N : X → Z be

Lu = L(u1(t), u2(t))
T = (u′

1(t), u
′
2(t))

T

and
Nu = N(u1(t), u2(t))

T = (Γ1,u(t),Γ2,u(t))
T ,

where

Γ1,u(t) = a(t)−B(t)eu1(t−τ(t)) −G(t)eu1(t−τ(t))u′
1(t− τ (t))

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
,

Γ2,u(t) = −d(t) +
R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
.
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With these notations, system (3.1) can be written in the form

Lu = Nu, u ∈ X.

Evidently

KerL = {u : u = (u1(t), u2(t))
T ≡ h ∈ R

2, t ∈ [0, ω]},

ImL = {(u1(t), u2(t))
T ∈ Z :

∫ ω

0

ui(s)ds = 0, i = 1, 2},

and dimKerL = 2 = codimImL. Hence, ImL is closed in Z, and L is a Fredholm
mapping of index zero. Define

Pu = P (u1(t), u2(t))
T =

1

ω

∫ ω

0

u(t)dt = (
1

ω

∫ ω

0

u1(t)dt,
1

ω

∫ ω

0

u2(t)dt)
T

(∀u = (u1(t), u2(t))
T ∈ X),

Qu = Q(u1(t), u2(t))
T =

1

ω

∫ ω

0

u(t)dt = (
1

ω

∫ ω

0

u1(t)dt,
1

ω

∫ ω

0

u2(t)dt)
T

(∀u = (u1(t), u2(t))
T ∈ Z).

It is easy to verify that P and Q are two continuous projections such that ImP =
KerL, ImL = KerQ = Im(I −Q). It follows that L|DomL∩KerP : DomL ∩KerP →
Im L is invertible, and the generalized inverse KP : ImL → DomL ∩KerP can be
written as

KP (u) =

∫ t

0

u(s)ds− 1

ω

∫ ω

0

∫ t

0

u(s)dsdt.

Then QN : X → Z and Kp(I −Q)N : X → X read

QNu =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

ω

∫ ω

0
[a(t)−B(t)eu1(t−τ(t)) −Ψ′(t)eu1(t−τ(t))

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
]dt

1

ω

∫ ω

0
[−d(t) +

R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
]dt

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Kp(I −Q)Nu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

0
[a(s)−B(s)eu1(s−τ(s)) −Ψ′(s)eu1(s−τ(s))

− C(s)eu2(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]ds

−Ψ(t)eu1(t−τ(t)) +Ψ(0)eu1(−τ(0))

∫ t

0
[−d(s) +

R(s)eu1(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω

∫ ω

0

∫ t

0
[a(s)−B(s)eu1(s−τ(s)) −Ψ′(s)eu1(s−τ(s))

− C(s)eu2(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]dsdt

− 1

ω

∫ ω

0
[Ψ(t)eu1(t−τ(t)) −Ψ(0)eu1(−τ(0))]dt

1

ω

∫ ω

0

∫ t

0
[−d(s) +

R(s)eu1(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]dsdt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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−

⎡
⎢⎢⎢⎢⎢⎢⎣

(
t

ω
− 1

2
)
∫ ω

0
[a(s)−B(s)eu1(s−τ(s)) −Ψ′(s)eu1(s−τ(s))

− C(s)eu2(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]ds

(
t

ω
− 1

2
)
∫ ω

0
[−d(s) +

R(s)eu1(s)

M2(s)eγu2(s) +M1(s)eu1(s)
]ds

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Obviously, QN and KP (I − Q)N are continuous by the Lebesgue theorem. By
using the Arzela-Ascoli theorem, it is not difficult to prove that QN(Ω) and
KP (I − Q)N(Ω) are compact for any open bounded set Ω ⊂ X. Therefore, N
is L−compact on Ω for any open bounded set Ω ⊂ X.

Now we reach the position where we search for an appropriate open bounded sub-
set Ω for the application of the continuation theorem (Lemma 2.2). Corresponding
to the operator equation Lu = λNu, λ ∈ (0, 1), we have

u′
1(t) = λ[a(t)−B(t)eu1(t−τ(t)) −G(t)eu1(t−τ(t))u′

1(t− τ (t))

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
],

u′
2(t) = λ[−d(t) +

R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
] (0 < γ < 1).

(3.2)

Assume that x = x(t) ∈ X is a solution of system (3.2) for a certain λ ∈ (0, 1).
By integrating system (3.2) over the interval [0, ω], we can derive

∫ ω

0

[a(t)−B(t)eu1(t−τ(t)) −G(t)eu1(t−τ(t))u′
1(t− τ (t))(3.3)

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
]dt = 0,

∫ ω

0

[−d(t) +
R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
]dt = 0.(3.4)

Note that

∫ ω

0

G(t)eu1(t−τ(t))u′
1(t− τ (t))dt =

∫ ω

0

G(t)

1− τ ′(t)
(eu1(t−τ(t)))′dt

= [Ψ(t)eu1(t−τ(t))]ω0 −
∫ ω

0

Ψ′(t)eu1(t−τ(t))dt

= −
∫ ω

0

Ψ′(t)eu1(t−τ(t))dt,

which, together with (3.3), yields

(3.5)

∫ ω

0

[(B(t)−Ψ′(t))eu1(t−τ(t)) +
C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
]dt = ωa.
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From (3.2)–(3.4), it follows that

∫ ω

0

| d
dt

[u1(t) + λΨ(t)eu1(t−τ(t))]|dt

(3.6)

= λ

∫ ω

0

|a(t)−(B(t)−Ψ′(t))eu1(t−τ(t)) − C(t)eu2(t)

M2(t)eγu2(t)+M1(t)eu1(t)
|dt

� ω(|a|+ a),

∫ ω

0

|u′
2(t)|dt = λ

∫ ω

0

| − d(t) +
R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
|dt

(3.7)

� ω(|d|+ d).

Let t = v(s) be the inverse function of s = t − τ (t). It is easy to see that
B(v(s)),Ψ′(v(s)) and τ ′(v(s)) are all ω-periodic functions. Further, it follows from
(3.5) that

ωa �
∫ ω

0

(B(t)−Ψ′(t))eu1(t−τ(t))dt =

∫ ω−τ(ω)

−τ(0)

(B(v(s))−Ψ′(v(s)))eu1(s)

1− τ ′(v(s))
ds

=

∫ ω

0

(B(v(s))−Ψ′(v(s)))eu1(s)

1− τ ′(v(s))
ds =

∫ ω

0

(B(v(t))−Ψ′(v(t)))eu1(t)

1− τ ′(v(t))
dt,

which, together with (3.5), gives

2ωa �
∫ ω

0

[
(B(v(t))−Ψ′(v(t)))eu1(t)

1− τ ′(v(t))
+ (B(t)−Ψ′(t))eu1(t−τ(t))]dt.

According to the mean value theorem of differential calculus, there exists ζ ∈ [0, ω]
such that

(B(v(ζ))−Ψ′(v(ζ)))eu1(ζ)

1− τ ′(v(ζ))
+ (B(ζ)−Ψ′(ζ))eu1(ζ−τ(ζ)) � 2a,

which implies

u1(ζ) � ln[2a(
1− τ ′

B −Ψ′ )
u],(3.8)

eu1(ζ−τ(ζ)) � 2a

(B −Ψ′)l
.(3.9)

It follows from (3.6), (3.8), (3.9) and Lemma 2.3 that, for any t ∈ [0, ω],

u1(t) + λΨ(t)eu1(t−τ(t)) � u1(ζ) + λΨ(ζ)eu1(ζ−τ(ζ))

+
1

2

∫ ω

0

| d
dt

[u1(t) + λΨ(t)eu1(t−τ(t))]|dt

� ln[2a(
1− τ ′

B −Ψ′ )
u] +

2aΨu

(B −Ψ′)l
+

1

2
ω(|a|+ a) = H1.

Since λΨ(t)eu1(t−τ(t)) � 0, one can get

(3.10) u1(t) � H1, t ∈ [0, ω].
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Noting that u = (u1(t), u2(t))
T ∈ X, then there exist ξi, ηi ∈ [0, ω] such that

(3.11) ui(ξi) = max
t∈[0,ω]

ui(t) and ui(ηi) = min
t∈[0,ω]

ui(t), i = 1, 2.

Since the function
eu1

M2(t)eγu2 +M1(t)eu1
is increasing on u1, by (3.10), (3.11)

and (3.4), we obtain

ωReH1

M l
2e

γu2(η2) +M l
1e

H1
�

∫ ω

0

R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
dt = ωd,

i.e.

u2(η2) �
1

γ
ln

(R− dM l
1)e

H1

M l
2

,

which, together with (3.7) and Lemma 2.3, implies

u2(t) � u2(η2) +
1

2

∫ ω

0

|u′
2(t)|dt

� 1

γ
ln

(R− dM l
1)e

H1

M l
2

+
1

2
ω(|d|+ d) = H2.

(3.12)

In addition, in view of (3.2), (3.10) and (3.12), for any t ∈ [0, ω], we have

|u′
1(t)| = λ|a(t)−B(t)eu1(t−τ(t)) −G(t)eu1(t−τ(t))u′

1(t− τ (t))

− C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
|

� au +BueH1 +GueH1 |u′
1|u + (

C

M2
)ue(1−γ)H2 ,

which implies

(3.13) |u′
1|u � 1

1−GueH1
[au +BueH1 + (

C

M2
)ue(1−γ)H2 ] � H3.

In addition, from (3.5), (3.11) and (3.12), we get

ω(B −Ψ′)eu1(ξ1) � ωa−
∫ ω

0

C(t)eu2(t)

M2(t)eγu2(t) +M1(t)eu1(t)
dt

� ωa− ω(
C

M2
)e(1−γ)H2 ,

that is

u1(ξ1) � ln[a− (
C

M2
)e(1−γ)H2 ]− ln(B −Ψ′),

which, together with (3.13) and Lemma 2.3, implies

u1(t) � u1(ξ1)−
1

2

∫ ω

0

|u′
1(t)|dt

� ln[a− (
C

M2
)e(1−γ)H2 ]− ln(B −Ψ′)− 1

2
ωH3 � H4.

(3.14)
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Since the function
eu1

meγu2 + eu1
is increasing on u1, by (3.14), (3.7) and (3.4), we

obtain

ωReH4

Mu
2 e

γu2(ξ2) +Mu
1 e

H4
�

∫ ω

0

R(t)eu1(t)

M2(t)eγu2(t) +M1(t)eu1(t)
dt = ωd,

i.e.

(3.15) u2(ξ2) �
1

γ
ln

(R− dMu
1 )e

H4

Mu
2

,

which, together with (3.6) and Lemma 2.3, implies

u2(t) � u2(ξ2)−
1

2

∫ ω

0

|u′
2(t)|dt

� 1

γ
ln

(R− dMu
1 )e

H4

Mu
2

− 1

2
ω(|d|+ d) � H5.

(3.16)

In addition, in view of (3.2), for any t ∈ [0, ω], we have

(3.17) |u′
2|u � du + (

R

M1
)u � H6.

It follows from (3.10), (3.12)–(3.14), (3.16)–(3.17) that we have

(3.18) ||u|| � |H1|+ |H2|+ |H3|+ |H4|+ |H5|+ |H6| � H0.

Obviously, the H0’s are independent of λ.
Consider the following algebraic equations:

a− (B −Ψ′)eu1 − 1

ω

∫ ω

0

C(t)eu2

M2(t)eγu2 +M1(t)eu1
dt = 0,

1

ω

∫ ω

0

R(t)eu1

M2(t)eγu2 +M1(t)eu1
dt = d.

(3.19)

If system (3.19) has a solution or a number of solutions u∗ = (u∗
1, u

∗
2)

T , then a
similar argument to (3.10), (3.12) and (3.14), (3.16) shows that

u∗
1 � ln

a

B −Ψ′ � H1,

u∗
2 � 1

γ
ln

(R− dM l
1)e

H1

M l
2

� H2,

u∗
1 � ln[a− (

C

M2
)e(1−γ)H2 ]− ln(B −Ψ′) � H4,

u∗
2 � 1

γ
ln

(R− dMu
1 )e

H4

Mu
2

� H5.

Hence

(3.20) ||u∗|| = ||(u∗
1, u

∗
2)

T || = max{|u∗
1|, |u∗

2|} < H0.

Set Ω = {u = (u1, u2)
T ∈ X : ||u|| < H0}. Then, Lu �= λNu for u ∈ ∂Ω and

λ ∈ (0, 1); that is, Ω verifies requirement (a) of Lemma 2.2.
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For u ∈ ∂Ω∩KerL = ∂Ω∩R
2 with ||u|| = H0, if system (3.19) has a solution or

a number of solutions, from (3.20) we obtain

QNu =

⎡
⎢⎢⎣

a− (B −Ψ′)eu1 − 1

ω

∫ ω

0

C(t)eu2

M2(t)eγu2 +M1(t)eu1
dt

1

ω

∫ ω

0

R(t)eu1

M2(t)eγu2 +M1(t)eu1
dt− d

⎤
⎥⎥⎦ �= 0.

For u ∈ ∂Ω ∩KerL = ∂Ω ∩ R
2 with ||u|| = H0, if system (3.19) does not contain a

solution, then naturally

QNu =

⎡
⎢⎢⎣

a− (B −Ψ′)eu1 − 1

ω

∫ ω

0

C(t)eu2

M2(t)eγu2 +M1(t)eu1
dt

1

ω

∫ ω

0

R(t)eu1

M2(t)eγu2 +M1(t)eu1
dt− d

⎤
⎥⎥⎦ �= 0.

Thus, condition (b) in Lemma 2.2 is satisfied.
To complete the proof, we will prove that condition (c) of Lemma 2.2 is satisfied.

We define the mapping φ : DomL× [0, 1] → X by

φ(u1, u2, μ) =

⎡
⎢⎣

a− (B −Ψ′)eu1 − ( C
M2

)e(1−γ)H2

ReH4

Mu
2 e

γu2 +Mu
1 e

H4
− d

⎤
⎥⎦

+ μ

⎡
⎢⎢⎣

( C
M2

)e(1−γ)H2 − 1

ω

∫ ω

0

C(t)eu2

M2(t)eγu2 +M1(t)eu1
dt

1

ω

∫ ω

0

R(t)eu1

M2(t)eγu2 +M1(t)eu1
dt− ReH4

Mu
2 e

γu2 +Mu
1 e

H4

⎤
⎥⎥⎦ ,

where μ ∈ [0, 1] is a parameter. We will show that if u = (u1, u2)
T ∈ ∂Ω ∩ KerL,

u = (u1, u2)
T is a constant vector in R

2 with max{|u1|, |u2|} = H0, then φ(u1, u2, μ)
�= 0. Otherwise, suppose that u = (u1, u2)

T ∈ R
2 with max{|u1|, |u2|} = H0

satisfying φ(u1, u2, μ) = 0; that is,

a− (B −Ψ′)eu1 − (
C

M2
)e(1−γ)H2 + μ[(

C

M2
)e(1−γ)H2

− 1

ω

∫ ω

0

C(t)eu2

M2(t)eγu2 +M1(t)eu1
dt] = 0,

ReH4

Mu
2 e

γu2+Mu
1 e

H4
− d+ μ[

1

ω

∫ ω

0

R(t)eu1

M2(t)eγu2+M1(t)eu1
dt− ReH4

Mu
2 e

γu2+Mu
1 e

H4
] = 0.

Similarly to the arguments of (3.19), (3.20) shows that

||u|| = max{|u1|, |u2|} � H0,

which is a contradiction.
Thus, by the property of topological degree and taking J , we obtain the identity

mapping

deg{JQN,Ω ∩KerL, (0, 0)T } = deg{φ(u1, u2, 1),Ω ∩KerL, (0, 0)T }
= deg{φ(u1, u2, 0),Ω ∩KerL, (0, 0)T} �= 0.
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Now we have proved that Ω verifies all the requirements in Lemma 2.2. Hence,
Lu = Nu has at least one solution, u∗(t) = (u∗

1(t), u
∗
2(t))

T , in DomL ∩ Ω. That
is to say, system (2.1) has at least one positive ω-periodic solution. Accordingly,
system (1.4) has at least one ω-periodic solution with strictly positive components.
The proof of Theorem 3.1 is finished. �

Remark 1. After the above discussion, one can easily find that Theorem 3.1 is true
for the following general delayed system:

y′1(t) = y1(t)[a(t)−B(t)y1(t− τ (t))−G(t)y′1(t− τ (t))

− C(t)y2(t− σ(t))

M2(t)y
γ
2 (t− σ(t)) +M1(t)y1(t− σ(t))

],

y′2(t) = y2(t)[−d(t) +
R(t)y1(t− σ(t))

M2(t)y
γ
2 (t− σ(t)) +M1(t)y1(t− σ(t))

] (0 < γ < 1),

(3.21)

where

B(t) = b(t)
∏

0<tk<t−τ(t)

(1 + θ1k), G(t) = g(t)
∏

0<tk<t−τ(t)

(1 + θ1k),

C(t) = c(t)
∏

0<tk<t

(1 + θ2k),

M1(t) = m1(t)
∏

0<tk<t−σ(t)

(1 + θ1k), M2(t) = m2(t)
∏

0<tk<t−σ(t)

(1 + θ2k)
γ ,

R(t) = r(t)
∏

0<tk<t

(1 + θ1k).

In addition, one can easily find that time delays τ (t) and σ(t) do not necessarily
remain nonnegative. Moreover, Theorem 3.1 will remain valid for systems (2.1) and
(3.21) if the delayed terms are replaced by a term with discrete time delays, state-
dependent delays, or deviating argument. Time delays of any type or deviating
arguments have no effect on the existence of positive periodic solutions.

Remark 2. From the proof of Theorem 3.1, we see that Theorem 3.1 is also valid
if g(t) ≡ 0. Consequently, we can obtain the following corollary.

Corollary 3.1. Assume that conditions (D3), (D5), (D7) hold. Then the follow-
ing delayed prey-predator model with impulse and Hassell-Varley type functional
response

N ′
1(t) = N1(t)[a(t)− b(t)N1(t− τ (t))− c(t)N2(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

], t �= tk,

N ′
2(t) = N2(t)[−d(t) +

r(t)N1(t)

m2(t)N
γ
2 (t) +m1(t)N1(t)

], t �= tk (0 < γ < 1),

ΔN1(tk) = N1(t
+
k )−N2(tk) = θ1kN1(tk), k = 1, 2, · · · ,

ΔN2(tk) = N2(t
+
k )−N2(tk) = θ2kN2(tk), k = 1, 2, · · · ,

(3.22)

has at least one ω-periodic solution with strictly positive components.
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If the impulse terms θik (k = 1, 2, · · · ) vanish and m2(t) ≡ m,m1(t) ≡ 1, then
system (3.22) reduces to system (1.2), which was studied by Wang in [11]. Thus,
from Corollary 3.1, for system (1.2), we have the following result.

Corollary 3.2. Assume that the following conditions hold:
(D∗

3) a, d ∈ C(R,R), b, c, r ∈ C(R, [0,+∞)) are all ω-periodic functions. In
addition a > 0, d > 0 and m is a positive constant;

(D∗
5) r > d;

(D∗
7) a >

c

m
e(1−γ)H∗

2 , where H∗
2 =

1

γ
ln

(r − d)eH
∗
1

m
+

1

2
ω(|d| + d), H∗

1 =

ln[2a( 1−τ ′

B )u] +
1

2
ω(|a|+ a).

Then system (1.2) has at least one ω-periodic solution with strictly positive compo-
nents.

In [11], Wang obtained the following result.

Theorem A (Theorem 3.1 of [11]). Assume the following three assumptions hold:
(C1) τ ′(t) < 1 for t ∈ R.
(C2) r > d, ma > c.

(C3) The algebraic equation set (∗) � {a − bu − cv
mvγ+u = 0,−d + ru

mvγ+u = 0}
has a finite number of real-valued positive solutions.

Then system (1.2) has at least one positive periodic solution.

Remark 3. Compared to the corresponding result (Theorem 3.1 of [11]), it is easy
to see that (D∗

5) is just the first inequality of (C2) and that (D∗
7) is different from

the second inequality of (C2). It is worthwhile to point out that from Corollary 3.2
of this paper, we can easily see that condition (C3) in paper [11] is superfluous and
could be removed.

Next consider the following neutral state-dependent delayed prey-predator model
with impulse and Hassell-Varley type functional response:

N ′
1(t) = N1(t)[a(t)− b(t)N1(t− τ (t, N1(t), N2(t)))− g(t)N ′

1(t− τ (t, N1(t), N2(t)))

− c(t)N2(t− σ(t, N1(t), N2(t)))

m2(t)N
γ
2 (t− σ(t, N1(t), N2(t))) +m1(t)N1(t− σ(t, N1(t), N2(t)))

], t �= tk,

N ′
2(t) = N2(t)[−d(t)

+
r(t)N1(t− σ(t, N1(t), N2(t)))

m2(t)N
γ
2 (t− σ(t, N1(t), N2(t))) +m1(t)N1(t− σ(t, N1(t), N2(t)))

],

t �= tk,

ΔN1(tk) = N1(t
+
k )−N2(tk) = θ1kN1(tk), k = 1, 2, · · · ,

ΔN2(tk) = N2(t
+
k )−N2(tk) = θ2kN2(tk), k = 1, 2, · · · (0 < γ < 1),

(3.23)

where τ (t, N1, N2) and σ(t, N1, N2) are continuous functions and ω-periodic func-
tions with respect to t.

Theorem 3.2. Assume that conditions (D1)− (D7) hold. Then system (3.23) has
at least one ω-periodic solution with strictly positive components.
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4. Discussion

In this paper, we studied the combined effects of periodicity of ecological and
environmental parameters of a neutral delay prey-predator model with impulse
and Hassell-Varley type functional response. By using the continuation theorem of
coincidence degree theory, easily verifiable criteria are established for the existence
of positive periodic solutions to the system. By Theorem 3.1 and Lemma 2.1, we
can see that system (1.4) (or system (2.1)) will have at least one ω-periodic solution
with strictly positive components if b (the density-dependent coefficient of the prey
species) is sufficiently large and the neutral coefficient g is sufficiently small; r (the
convert rate of the predator species) multiplies

∏
0<tk<t(1+θ1k) (the impulse of the

prey species) is sufficiently large; the predator natural mortality rate d is sufficiently
small; a (the intrinsic growth rate of prey species) is sufficiently large; and c (the
capturing rate of the predator species) multiplies

∏
0<tk<t(1 + θ2k) (the impulse of

the predator species) is sufficiently small.
It is worthwhile to point out that τ (the time delay due to gestation) plays an

important role in determining the existence of positive periodic solutions of system
(1.4) (or system (2.1)).

From the results of this paper, one can find that the neutral term effects are
quite significant.
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