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NONOSCILLATION THEOREMS FOR SECOND-ORDER LINEAR

DIFFERENCE EQUATIONS VIA

THE RICCATI-TYPE TRANSFORMATION

JITSURO SUGIE AND MASAHIKO TANAKA

(Communicated by Mourad Ismail)

Abstract. A nonoscillation problem is dealt with the second-order linear dif-
ference equation

cnxn+1 + cn−1xn−1 = bnxn,

where {bn} and {cn} are positive sequences. For all sufficiently large n ∈ N,
the ratios cn/cn−1 and cn−1/bn play an important role in the results obtained.
To be precise, our nonoscillation criteria are described in terms of the sequence

qn =
cn−1

bn

cn

bn+1

cn

cn−1
=

c2n
bnbn+1

.

These criteria are compared with those that have been reported in previous
researches by using some specific examples. Figures are attached to facilitate
understanding of the concrete examples.

1. Introduction

We consider the second-order linear difference equation

(1) cnxn+1 + cn−1xn−1 = bnxn, n = 1, 2, . . . ,

where {bn} and {cn} are sequences satisfying bn > 0 for n ∈ N and cn > 0 for
n ∈ N∪ {0}, respectively (as can be seen from the proof of our theorems below, we
have only to assume that the sequences {bn} and {cn} are positive for n sufficiently
large). Needless to say, equation (1) has the trivial solution {xn}; that is, xn = 0
for n ≥ 0. Nontrivial solutions of (1) are divided into two groups. A nontrivial
solution of (1) is said to be oscillatory if, for every N ∈ N there exists an n ≥ N
such that xnxn+1 ≤ 0. Otherwise, it is said to be nonoscillatory . Hence, if {xn} is
a nonoscillatory solution of (1), then there exists an N ∈ N such that xn > 0 for
n ≥ N or xn < 0 for n ≥ N . It is clear that if {xn} is a solution of (1), then {−xn}
is also a solution of (1). Hence, it is sufficient to consider that a nonoscillatory
solution {xn} of (1) continues being positive for all large n.

The purpose of this paper is to give sufficient conditions for all nontrivial so-
lutions of (1) to be nonoscillatory. Our conditions are expressed with the rela-
tion between the sequences {bn} and {cn}. If there is a nonpositive subsequence
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{bnk
} ⊂ {bn}, then all nontrivial solutions of (1) are oscillatory. Hence, it is natural

to assume that the sequence {bn} is positive.
For n ∈ N, let

pn = cn + cn−1 − bn and rn = cn.

Then, equation (1) becomes the self-adjoint difference equation

(2) Δ(rn−1Δxn−1) + pnxn = 0,

where Δ is the forward difference operator Δxn = xn+1 − xn. The continuous
counterpart of (2) is a second-order differential equation of the form

(3)
(
r(t)x′)′ + p(t)x = 0,

where r, p [a,∞) → R are continuous functions, r(t) > 0 for t ≥ a.
Oscillation theory for equation (3) has been studied by a number of researchers

from a long time ago (for example, see the books [2,5,22,23]). Since the 1980s, oscil-
lation and nonoscillation criteria came to be reported flourishingly for a generalized
equation

(4)
(
r(t)φ(x′)

)′
+ p(t)φ(x) = 0

of (3). Here, φ(z) is a real-valued nonlinear function defined by

φ(z) =

{
|z|p−2z if z 	= 0,

0 if z = 0

for z ∈ R with p > 1 a fixed real number. Equation (4) is often called a half-linear
differential equation of self-adjoint type. For example, we can refer the reader to
the books [2,6,8] and the references cited therein. From the end of the last century,
many authors were motivated by the results about equations (3) and (4), and they
developed oscillation theory for equation (2) and the discrete counterpart of (4).
For example, we can refer to [7, 10, 11, 19, 21, 24].

On the other hand, we can find some conditions which guarantee that all non-
trivial solutions of (1) are oscillatory (or nonoscillatory) in a series of papers of
Hooker et al. [14,15,18] (see also the books [1, Chap. 6], [9, Chap. 7], [16, Chap. 6]).
For the sake of simplicity, they denoted c2n/(bnbn+1) by qn for n ∈ N. Their typical
and fundamental results are as follows.

Theorem A. If qn ≥ 1/(4 − ε) for some ε > 0 and for all sufficiently large n,
then all nontrivial solutions of (1) are oscillatory .

Theorem B. If qn ≤ 1/4 for all sufficiently large n, then all nontrivial solutions
of (1) are nonoscillatory .

Theorem C. If qnk
≥ 1 for a sequence {nk} tending to ∞, then all nontrivial

solutions of (1) are oscillatory .

Theorems A and B have a good balance. These results are called “oscillation
theorem” and “nonoscillation theorem”, respectively. The constant 1/4 often ap-
pears as a critical value that divides oscillation and nonoscillation of solutions of
second-order linear differential equations (for example, see [12, 17, 20, 23]). Also,
several generalizations of Theorem A have been given by Hooker et al. [14, 15, 18].
Results which generalized Theorem B seem to be fewer compared with those of
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Theorem A though there are a lot of nonoscillation comparison theorems for dif-
ference equations including equation (1). We can find only a few nonoscillation
theorems for equation (1) (or (2)) in [3, 4, 13].

In this paper, we will derive the following nonoscillation theorem about equation
(1) by considering the behavior of (q2k−1, q2k) or (q2k, q2k+1) with k ∈ N.

Theorem 1. Suppose that there exists an N ∈ N such that for any k ≥ N there
is a sequence {αk} with αk > 1 and either

(5)
αk

αk − 1
q2k−1 + αk+1q2k ≤ 1

or

(6)
αk

αk − 1
q2k + αk+1q2k+1 ≤ 1.

Then all nontrivial solutions of (1) are nonoscillatory .

2. Basic knowledge for proving Theorem 1

To prove Theorem 1, we need only to use two well-known fundamental facts; that
is, Sturm’s separation theorem and the Riccati transformation method. For Sturm’s
separation theorem, see [9, pp. 321–322] for example. From Sturm’s separation
theorem it follows that if one nontrivial solution of (1) (or (2)) is nonoscillatory, then
all nontrivial solutions are nonoscillatory. Suppose that {xn} is a nonoscillatory
solution of (1). Then we can define

zn =
bn+1xn+1

cnxn

with n ≥ M for some M ∈ N ∪ {0}. The sequence {zn} satisfies the first-order
nonlinear difference equation

(7) qnzn +
1

zn−1
= 1, n = M + 1,M + 2, . . . ,

where {qn} is the sequence given in Section 1. Equation (7) is called a difference
equation of Riccati -type. From this transformation it turns out that a nonoscil-
latory solution {xn} of (1) corresponds to a positive solution {zn} of (7) and the
converse is true. Hence, by virtue of Sturm’s separation theorem, we see that all
nontrivial solutions of (1) are nonoscillatory if and only if there exists an integer
N ≥ M such that equation (7) has a solution {zn} satisfying zn > 0 for all n ≥ N .
We therefore have only to find a positive solution of (7) in order to prove Theorem 1.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose that the inequality (5) holds. Then

αk+1 ≤ 1

q2k

(
1− αk

αk − 1
q2k−1

)

for all k ≥ N . Consider a solution {zn} of (7) satisfying z2N−2 ≥ αN . Since
αN > 1, we see that

z2N−1 =
1

q2N−1

(
1− 1

z2N−2

)
≥ 1

q2N−1

(
1− 1

αN

)
=

αN − 1

αNq2N−1
> 0.
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Hence, we have

z2N =
1

q2N

(
1− 1

z2N−1

)
≥ 1

q2N

(
1− αN

αN − 1
q2N−1

)
≥ αN+1 > 1.

Similarly, we can check that

zn ≥

⎧⎪⎨
⎪⎩

αk − 1

αkq2k−1
if n = 2k − 1,

αk+1 if n = 2k

with k ≥ N . Hence, the sequence {zn} is a positive solution of (7). We therefore
conclude that all nontrivial solutions of (1) are nonoscillatory.

Suppose that the inequality (6) holds. Consider a solution {zn} of (7) satisfying
z2N−1 ≥ αN . Then, as in the proof of the case that (5) holds, we see that zn is
positive for n ≥ 2N−1. Hence, all nontrivial solutions of (1) are nonoscillatory. �

Let αk = 2 with k ≥ N for some N ∈ N. Then we have the following corollary
of Theorem 1.

Corollary 2. Suppose that there exists an N ∈ N such that either

(8) q2k−1 + q2k ≤ 1

2
or

(9) q2k + q2k+1 ≤ 1

2

with k ≥ N. Then all nontrivial solutions of (1) are nonoscillatory .

Remark 1. If qn ≤ 1/4 for all sufficiently large n, then it is clear that the inequalities
(8) and (9) are satisfied. Hence, Corollary 2 contains Theorem B completely.

Remark 2. From the fact that the arithmetic mean of two positive numbers is not
less than their geometric mean, if the inequality (8) holds, then

(10)
√
q2k−1q2k ≤ 1

4

is satisfied for k ≥ N . However, we cannot change (8) to (10) in Corollary 2. In
fact, let bn = 1 and

cn =

{
1/4 if n = 2k − 1,

1 if n = 2k

with k ∈ N. Then we have

qn =

{
1/16 if n = 2k − 1,

1 if n = 2k.

Hence, by Theorem C, all nontrivial solutions are oscillatory.

Corollary 3. Suppose that there exists an N ∈ N such that either

(11) q2k−1 < 1 and q2k ≤ (1−√
q2k−1)(1−

√
q2k+1)

or

(12) q2k < 1 and q2k+1 ≤ (1−√
q2k)(1−

√
q2k+2)

with k ≥ N. Then all nontrivial solutions of (1) are nonoscillatory .
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Proof. Suppose that the inequality (11) holds. Let

αk =
1

1−√
q2k−1

for any k ≥ N . Then it is clear that αk > 1. Since

αk

αk − 1
=

1
√
q2k−1

and αk+1 =
1

1−√
q2k+1

,

the inequality (5) coincides with

√
q2k−1 +

q2k
1−√

q2k+1
≤ 1;

namely, the inequality (11). Hence, all nontrivial solutions of (1) are nonoscillatory
by Theorem 1.

Suppose that the inequality (12) holds. Let

αk =
1

1−√
q2k

> 1

for any k ≥ N . Then the inequality (6) coincides with the inequality (12). Hence,
all nontrivial solutions of (1) are nonoscillatory by Theorem 1. �

3. Comparison with previous studies

To illustrate our results, we give some examples in this section. But, before that,
we introduce an interesting related research which was proved by Abu-Risha [3].

Theorem D. All nontrivial solutions of (1) are nonoscillatory if and only if there
is an eventually positive sequence {ξn} such that

(13)

(
qn+1ξn+1 +

1

ξn

)(
qnξn +

1

ξn−1

)
≤ 1.

Although the inequality (13) is a necessary and sufficient condition for nonoscil-
lation of (1), it is expressed implicitly. For this reason, Abu-Risha also presented
an explicit condition concerning (qn, qn+1) as follows.

Corollary E. All nontrivial solutions of (1) are nonoscillatory if there is an N ∈ N

such that

(14)
(√

qn+1 +
√
qn
)(√

qn +
√
qn−1

)
≤ 1

holds for n ≥ N.

Remark 3. Let ξn = 1/
√
qn. Then Corollary E follows from Theorem D.

We first give an example of Corollary 2.

Example 1. Let c0 = 1 and let

cn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2
√
6 if n = 4k − 3,

2
√
2 if n = 4k − 2,

7 if n = 4k − 1,

1 if n = 4k

and bn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4 if n = 4k − 3,

16 if n = 4k − 2,

4 if n = 4k − 1,

25 if n = 4k

with k ∈ N. Then all nontrivial solutions of (1) are nonoscillatory.



2064 JITSURO SUGIE AND MASAHIKO TANAKA

Since

(15) qn =
c2n

bnbn+1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.375 if n = 4k − 3,

0.125 if n = 4k − 2,

0.49 if n = 4k − 1,

0.01 if n = 4k,

we obtain

q2k−1 + q2k = 0.5

with k ∈ N. Hence, the inequality (8) holds. Thus, by Corollary 2, all nontrivial
solutions of (1) are nonoscillatory.

Let us denote by {xn} a solution of (1) with the sequences {bn} and {cn} that
were given in Example 1 (see Figure 1). To make the motion of a solution of (1)
more visible, we connect the dots xn−1 and xn with a line segment and draw a line
graph.

xn

n
3 410 2 5 6

10

–10

20
30
40
50
60

Figure 1. This line graph displays the motion of a solution {xn}
of (1) given in Example 1. The initial condition of the solution is
(x0, x1) = (1, 5).

Figure 1 shows that xn > 0 for all n ∈ N ∪ {0}. Hence, this solution {xn}
is nonoscillatory. Recall that if equation (1) has a nontrivial solution which is
nonoscillatory, then all nontrivial solutions are nonoscillatory. To be specific, we
also simulate a solution {zn} of (7) (see Figure 2). This solution corresponds to
the solution of (1) described in Figure 1.

zn

n
0 5

10

–10 10 15

20

20

30
40

Figure 2. Riccati’s equation (7) has a positive solution {zn} when
the sequence {qn} satisfies (15). The initial condition of the solu-
tion is z0 = 20.
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Remark 4. The inequality (9) does not hold in Example 1. In fact,

q4k−2 + q4k−1 = 0.615 > 0.5

for any k ∈ N. We can apply Corollary 2 to equation (1) when the pair (q2k−1, q2k)
(or (q2k, q2k+1)) is in the triangular region

R
def
=

{
(x, y) ∈ R

2 : x > 0, y > 0 and x+ y ≤ 1/2
}

even if the pair (q2k, q2k+1) (or (q2k−1, q2k)) is outside the region R for k ∈ N

sufficiently large.

As can be seen from (15), the sequence {qn} is periodic with period 4. Let

P1 = (q4k−3, q4k−2) = (0.375, 0.125), P2 = (q4k−2, q4k−1) = (0.125, 0.49),

P3 = (q4k−1, q4k) = (0.49, 0.01), P4 = (q4k, q4k+1) = (0.01, 0.375).

By plotting these points in the first quadrant of the plane R
2, the following figure

is obtained:

x

y

P2

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

P1

P4

P3

Figure 3. The points P1 and P3 are on the straight line x+ y =
1/2. The point P2 is outside the region R. The point P4 is within
the region R.

From (15) it follows that

√
qn+1 +

√
qn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2/4 +

√
6/4 if n = 4k − 3,

0.7 +
√
2/4 if n = 4k − 2,

0.1 + 0.7 if n = 4k − 1,√
6/4 + 0.1 if n = 4k

with k ∈ N. Hence, we have

(√
qn+1 +

√
qn
)(√

qn +
√
qn−1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1.017654429348457 · · · if n = 4k − 2,

0.8428427124746188 · · · if n = 4k − 1,

0.5698979485566356 · · · if n = 4k,

0.6880989335750164 · · · if n = 4k + 1
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with k ∈ N. There is no N ∈ N where the inequality (14) is satisfied for all n ≥ N .
Hence, Corollary E is not applicable to Example 1.

Remark 5. To apply Corollary E, both pairs (q2k−1, q2k) and (q2k, q2k+1) have to
be in the region

S
def
=

{
(x, y) ∈ R

2 : x > 0, y > 0 and
√
x+

√
y ≤ 1

}
⊃ R

(see Figure 3 again).

Next, we give an example of Corollary 3.

Example 2. Let c0 = 4 and let

cn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
5
√
5 if n = 4k − 3,

2 if n = 4k − 2,√
2 if n = 4k − 1,

4 if n = 4k

and bn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
20 if n = 4k − 3,

25 if n = 4k − 2,

1 if n = 4k − 1,

5 if n = 4k

with k ∈ N. Then all nontrivial solutions of (1) are nonoscillatory.

It is easy to check that

(16) qn =
c2n

bnbn+1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.25 if n = 4k − 3,

0.16 if n = 4k − 2,

0.4 if n = 4k − 1,

0.16 if n = 4k.

Hence, we obtain q2k−1 < 1 and

q2k = 0.16 < (1−
√
0.25)(1−

√
0.4) = (1−√

q2k−1)(1−
√
q2k+1)

for all k ∈ N, and therefore, the inequality (11) holds. Thus, by Corollary 3, all
nontrivial solutions of (1) are nonoscillatory.

We give two simulations to illustrate Example 2. One is the line graph of a
solution {xn} of (1) with the sequences {bn} and {cn} that were given in Example
2 (see Figure 4). The other is the line graph of a solution {zn} of (7) (see Figure
5). This solution corresponds to the solution of (1) described in Figure 4.

xn

n
3 410 2 5 6

10

–10

20
30
40
50
60

Figure 4. This line graph displays the motion of a solution xn

of (1) given in Example 2. The initial condition of the solution is
(x0, x1) = (1, 3).
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zn

n
0

5

5

10

10

15

15 20

Figure 5. Riccati’s equation (7) has a positive solution {zn} when
the sequence {qn} satisfies (16). The initial condition of the solu-
tion is z0 = 15.

Remark 6. The inequality (12) does not hold in Example 2, because

q4k−1 = 0.4 > 0.36 = (1−
√
0.16)2 = (1−√

q4k−2)(1−
√
q4k)

with k∈N. We can apply Corollary 3 to equation (1) when the triple (q2k−1, q2k,
q2k+1) (or (q2k, q2k+1, q2k+2)) is in the domain

V
def
=

{
(x, y, z) ∈ R

3 : 0 < x < 1, y > 0, z > 0 and y ≤ (1−
√
x)(1−

√
z)
}

even if the triple (q2k, q2k+1, q2k+2) (or (q2k−1, q2k, q2k+1)) is outside the region V
for k ∈ N sufficiently large (see Figure 6).

As can be seen from (16), the sequence {qn} is periodic with period 4. Let

(17)

P1 = (q4k−3, q4k−2, q4k−1) = (0.25, 0.16, 0.4),

P2 = (q4k−2, q4k−1, q4k) = (0.16, 0.4, 0.16),

P3 = (q4k−1, q4k, q4k+1) = (0.4, 0.16, 0.25),

P4 = (q4k, q4k+1, q4k+2) = (0.16, 0.25, 0.16).

By plotting these points in the first octant of three-dimensional space R
3, the

following figure is obtained:
Remark 7. We cannot apply Corollary 2 to Example 2, because both inequalities
(8) and (9) are not satisfied. In fact, from (16) it follows that

q4k−1 + q4k = 0.4 + 0.16 > 0.5

and
q4k−2 + q4k−1 = 0.16 + 0.4 > 0.5

for all k ∈ N.

From (16) it follows that

√
qn+1 +

√
qn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.4 + 0.5 if n = 4k − 3,√
10/5 + 0.4 if n = 4k − 2,

0.4 +
√
10/5 if n = 4k − 1,

0.5 + 0.4 if n = 4k

with k ∈ N. Hence, we have

(√
qn+1 +

√
qn
)(√

qn +
√
qn−1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.9292099788303083 · · · if n = 4k − 2,

1.065964425626941 · · · if n = 4k − 1,

0.9292099788303083 · · · if n = 4k,

0.81 if n = 4k + 1
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Figure 6. The points P1, P3 and P4 are in the domain V . How-
ever, the point P2 is outside the domain V .

with k ∈ N. There is no N ∈ N where the inequality (14) is satisfied for all n ≥ N .
Hence, Corollary E is not available for Example 2.

Remark 8. To apply Corollary E, both triples (q2k−1, q2k, q2k+1) and (q2k, q2k+1,
q2k+2) have to be in the domain

W
def
=

{
(x, y, z) ∈ R

3 : x > 0, y > 0, z > 0 and (
√
x+

√
y)(

√
y +

√
z) ≤ 1

}
⊃ V

(see Figure 7).

4. Further nonoscillation criteria

In Section 3, we have focused on the behavior of the pair (q2k−1, q2k) (or
(q2k, q2k+1)) and the triple (q2k, q2k+1, q2k+2) (or (q2k−1, q2k, q2k+1)) with k ∈ N. In
this section let us examine the influence which a set of many more elements gives
to nonoscillation of (1). The following result is a generalization of Theorem 1.

Theorem 4. Suppose that there exists an N ∈ N such that for any k ≥ N there
are two sequences {αk} and {βk} with αk > 1 and βk > 1. If

(18)
αk

αk − 1
q4k−3 + βkq4k−2 ≤ 1

and

(19)
βk

βk − 1
q4k−1 + αk+1q4k ≤ 1,

then all nontrivial solutions of (1) are nonoscillatory .

Proof. From (18) and (19) it follows that

βk ≤ 1

q4k−2

(
1− αk

αk − 1
q4k−3

)
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Figure 7. Let P1, P2, P3 and P4 be the points given in (17). The
points P1, P3 and P4 are in the domain W . However, the point P2

is outside the domain W .

and

αk+1 ≤ 1

q4k

(
1− βk

βk − 1
q4k−1

)
for all k ≥ N . Consider a solution {zn} of (7) satisfying z4N−4 ≥ αN > 1. Then
we can check that

z4N−3 =
1

q4N−3

(
1− 1

z4N−4

)
≥ 1

q4N−3

(
1− 1

αN

)
=

αN − 1

αNq4N−3
> 0,

z4N−2 =
1

q4N−2

(
1− 1

z4N−3

)
≥ 1

q4N−2

(
1− αN

αN − 1
q4N−3

)
≥ βN > 1,

z4N−1 =
1

q4N−1

(
1− 1

z4N−2

)
≥ 1

q4N−1

(
1− 1

βN

)
=

βN − 1

βNq4N−1
> 0,

z4N =
1

q4N

(
1− 1

z4N−1

)
≥ 1

q4N

(
1− βN

βN − 1
q4N−1

)
≥ αN+1 > 1.

We inductively obtain

zn ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk − 1

αkq4k−3
if n = 4k − 3,

βk if n = 4k − 2,

βk − 1

βkq4k−1
if n = 4k − 1,

αk+1 if n = 4k

with k ≥ N . Hence, the sequence {zn} is a positive solution of (7). We therefore
conclude that all nontrivial solutions of (1) are nonoscillatory. �
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In the same way, we have the following result (we omit the proof).

Theorem 5. Suppose that there exists an N ∈ N such that for any k ≥ N there
are two sequences {αk} and {βk} with αk > 1 and βk > 1. If

(20)
αk

αk − 1
q4k−2 + βkq4k−1 ≤ 1

and

(21)
βk

βk − 1
q4k + αk+1q4k+1 ≤ 1,

then all nontrivial solutions of (1) are nonoscillatory .

Remark 9. If the inequalities (18) and (19) are satisfied for k ∈ N sufficiently large,
then the inequality (5) also holds. In fact, let

γk =

{
α� if k = 2	− 1,

β� if k = 2	

with k ∈ N. Then, by (18) and (19), we obtain

γk
γk − 1

q2k−1 + γk+1q2k ≤ 1;

namely, the inequality (5). Similarly, if the inequalities (20) and (21) are satisfied
for k ∈ N sufficiently large, then the inequality (6) also holds. Hence, Theorems 4
and 5 also extend Theorem 1.

Let p be a real number that is larger than 1 and let p∗ be the conjugate number
of p; namely,

1

p
+

1

p∗
= 1.

Then p∗ is also greater than 1. We choose constants α > 1 and β > 1 as the two
sequences {αk} and {βk} in Theorems 4 and 5, respectively. Then the inequalities
(18)–(21) become

(22) α∗q4k−3 + βq4k−2 ≤ 1,

(23) β∗q4k−1 + αq4k ≤ 1,

(24) α∗q4k−2 + βq4k−1 ≤ 1,

(25) β∗q4k + αq4k+1 ≤ 1,

respectively. Hence, we have the following corollaries of Theorems 4 and 5.

Corollary 6. Suppose that there exists an N ∈ N such that both (22) and (23)
hold for k ≥ N. Then all nontrivial solutions of (1) are nonoscillatory .

Corollary 7. Suppose that there exists an N ∈ N such that both (24) and (25)
hold for k ≥ N. Then all nontrivial solutions of (1) are nonoscillatory .
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Here we give an example of Corollary 6.

Example 3. Let c0 =
√
6 and let

cn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3 if n = 4k − 3,√
3 if n = 4k − 2,

2 if n = 4k − 1,√
6 if n = 4k

and bn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
9 if n = 4k − 3,

3 if n = 4k − 2,

9 if n = 4k − 1,

2 if n = 4k

with k ∈ N. Then all nontrivial solutions of (1) are nonoscillatory.

In Example 3, the sequence {qn} satisfies

(26) qn =
c2n

bnbn+1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/3 if n = 4k − 3,

1/9 if n = 4k − 2,

2/9 if n = 4k − 1,

1/3 if n = 4k.

Let α = 2 and β = 3. Then we obtain

α∗q4k−3 + βq4k−2 = 2× 1

3
+ 3× 1

9
= 1

and

β∗q4k−1 + αq4k =
3

2
× 2

9
+ 2× 1

3
= 1;

namely, the inequalities (22) and (23) are satisfied for all k ∈ N. Hence, by Corol-
lary 6, all nontrivial solutions of (1) are nonoscillatory.

From (26) it follows that

√
qn+1 +

√
qn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1 +

√
3)/3 if n = 4k − 3,

(
√
2 + 1)/3 if n = 4k − 2,

(
√
3 +

√
2)/3 if n = 4k − 1,

2
√
3/3 if n = 4k

with k ∈ N. Hence, we have

(√
qn+1 +

√
qn
)(√

qn +
√
qn−1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.7328615680805721 · · · if n = 4k − 2,

0.8439726791916834 · · · if n = 4k − 1,

1.210997720618484 · · · if n = 4k,

1.051566846126417 · · · if n = 4k + 1

with k ∈ N. There is no N ∈ N where the inequality (14) is satisfied for all n ≥ N .
Corollary E is inapplicable to Example 3.

Remark 10. We cannot apply Corollary 2 to Example 3, because both inequalities
(8) and (9) are not satisfied. In fact, from (26) we see that

q4k−1 + q4k = 2/9 + 1/3 > 1/2

and

q4k + q4k+1 = 1/3 + 1/3 > 1/2

for all k ∈ N.
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Remark 11. For any k ∈ N,

q4k = 1/3 > 0.2234107369952512 · · ·
= (3−

√
2)(3−

√
3)/9 = (1−√

q4k−1)(1−
√
q4k+1)

and

q4k+1 = 1/3 > 0.2817664872069162 · · ·
= 2(3−

√
3)/9 = (1−√

q4k)(1−
√
q4k+2).

Hence, both inequalities (11) and (12) are not satisfied, and therefore, Corollary 3
cannot be applied to Example 3.
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