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1. Introduction. A famous result in the theory of algebraic equations,

which was the culmination of researches of Sturm, Sylvester, Hermite, and

others, is the so-called Borchardt-Jacobi Theorem, hereinafter referred to as

the B. J. Theorem:f Let fix) =0 be a polynomial equation of degree » with real

coefficients, and let s„ i>0, denote the sum of the ith powers of the roots of

/(x)=0.

I. The rank of the matrix

T =

n

Sl

Sl   •   •   ■   Sn-1

s2 ■ • ■ Sn

Sn  •   -   '   S2n-2

is equal to the number of distinct roots of f(x) =0.

II. The signature of T is equal to the number of distinct real roots of f(x) = 0.

In the theory of linear associative algebras there exists a generalization

of part I of this theorem. Let 31 be a linear associative algebra of order » over a

field ® of infinite characteristic, and let ¿>i, o2, • • • , o„ be a basis for Sl. Let

Cijk, (i, j, ft = 1, •••,«), be the constants of multiplication relative to this

basis. Then brb, =22"=,1crs¿o,-, (r, 5 = 1, • • ■ , »). The first and second discrimi-

nant matrices of 21, relative to this basis, are defined to be, respectively,

TM)   =   \\hibrb.)\\   =

r2(2l) = ||*i(M,)|| =

S Crsihibi)

X) c„itj(bi)

/ i CrsiCijj

i.i-1

n

/  .  CrsiCjij

i.i-1

where ti(bi) and h(bi) are respectively the first and second traces of the ele-

ment Ô,-, that is, the traces of the first and second matrices, ||c.-,r|| and ||cr¿,||,

* Presented to the Society, November 26, 1938; received by the editors March 6, 1939.

f For a complete historical account of this theorem, see the tract Abhandlung über die Auflösimg

der numerischen Gleichungen (Ostwald's Klassiker der exakten Wissenschaften, no. 143), by C. Sturm,

edited by A. Loevvy, Leipzig, 1904.
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of the element b{. It has been shown that Pi(2i) and P2(2I) are symmetric,*

and that under a transformation of basis of 21, b[ =2~l'¡=imi>bi, (i = l, • • • ,n),

of matrix M = ||wr,||, | mr3\ ¿¿0, the discriminant matrices are transformed by

congruence,*! namely,

77 = MTiMT, Tí = MT2MT,%

so that the ranks (and signatures, if $ is an ordered field) of Pi and T2 are

invariant under transformation of basis of 21. The following theorem is well

known in the theory of linear algebras :

Theorem A.§ The nullity of Pi(21) [or P2(2i)] is equal to the order of the

radical of 21.

MacDuffee (cf. Ml) has pointed out that the discriminant matrices of

the polynomial algebra generated by an element x whose minimum equation

is the polynomial equation/(x) = 0 of degree n, relative to the basis 1, x,

x2, • • • , xn_1 become the matrix P of the B. J. Theorem. It has also been

noted that, for such an algebra, Theorem A specializes precisely to part I of

the B. J. Theorem,|| so that Theorem A is a direct extension of part I of the

B. J. Theorem from the case of a polynomial algebra to that of an arbitrary

associative algebra.

From this standpoint it is apparent that Theorem A constitutes an in-

complete generalization of the B. J. Theorem. An extension of part II of the

B. J. Theorem to an arbitrary algebra^ would be desirable. Moreover, when

the ground field $ of the algebra 21 is the real field, the rank and signature of

2i(21) [r2(21) ] constitute a complete set of invariants of Pi(21) [^(21) ] under

transformations of basis of 21. Thus, in view of Theorem A, if an interpreta-

tion of the signature (or any second invariant which is independent of the

rank) of Pi(2I) [P2(2I) ] is found, then the significance of the discriminant

matrices of an algebra over the real field will be, in a sense, fully known.

It is the purpose of this paper to complete the generalization of the B. J.

Theorem, and thus exhibit the significance of a complete set of invariants,

* C. C. MacDuffee, The discriminant matrices of a linear associative algebra, Annals of Mathe-

matics, (2), vol. 32 (1931), pp. 60-66; hereinafter referred to as Ml.

f C. C. MacDuffee, The discriminant matrix of a semisimple algebra, these Transactions, vol. 33

(1931), pp. 425-432; hereinafter referred to as M2. E. Noether, Mathematische Zeitschrift, vol. 30

(1929), p. 689.
| MT denotes the transpose of M.

§ Cf. L. E. Dickson, Algebren und ihre Zahlentheorie, Zürich, 1927, pp. 108-110.
|| R. F. Rinehart, Bulletin of the American Mathematical Society, vol. 42 (1936), pp. 570-576;

hereinafter referred to as Rl.

% Hereafter the term algebra will be understood to denote a linear associative algebra of finite

order.
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over the real field, of Px(2l) [P2(2I)]. The second invariant of Pi(2l) [P2(2I)]

which seems to be most easily interpreted is p, the number of nonnegative

terms in a diagonal canonical form of Pi(2l) [r2(2I) ].* In terms of the order n,

rank p, and signature a of Pi(2I) [P2(2i)], p = n — (p — a)/2. The method of

attack on the problem of interpretation is simple in motif but somewhat com-

plicated in the details. In §2 it is shown that if 2Í is simple, p is equal to the

number in a complete set of primitive idempotents of 2Í, plus the order of a

nilpotent subalgebra of 2Í of maximal order. In §3 the results of §2 are ex-

tended to semisimple algebras by the obvious device of applying the classical

theorem concerning the decomposition of a semisimple algebra into a direct

sum of simple algebras. In §§4 and 5 the results of §3 are generalized to an

arbitrary algebra by again making use of a well known structure theorem to

the effect that an arbitrary algebra is the sum of its radical and semisimple

algebra.f In §6 it is shown that the general theorem of §5 specializes to part II

of the B. J. Theorem, when the algebra is taken to be a polynomial algebra.

2. The inertia of the discriminant matrix of a simple algebra. % Let J) be a

division algebra over the real field 9î. Then, as is well known, 35 is equiva-

lent to one of (I) the real field 9Î; (II) the complex field S; (III) the algebra of

real quaternions O. If we choose the customary canonical bases

(I) 1:1»-1,
(II)  \,i: \i = i\=i,i2=-\,

(III) \,i,j,k:li = il=i, \j=j\=j,lk=k\=k, V = \,P=j* = k2 =

— l,ij= —ji = k,jk=—kj = i, ki= —ik=j,

respectively, in cases (I), (II), and (III), the discriminant matrix of 3) as-

sumes the respective forms

4 0 0 0

0-4 0 0

0 0-4 0

0        0        0-4

* It is shown in §4 that the signatures (and consequently the invariants ju) of 7"i(8I) and ^(SI)

are equal.

t Here difficulty is encountered because, while the interpretation is additive under the operation

of "tacking on a radical" to a semisimple algebra, it is not easy to show that n possesses the additive

property. It seems to the writer that the fundamental Theorem 4.1 should be susceptible of a simpler

proof, but such a proof was not found.

% MacDuffee (M2) has shown that the first and second discriminant matrices of a semisimple

algebra over a field of infinite characteristic are equal relative to any given basis. Consequently, for

semisimple algebras, the phrase the discriminant matrix is unambiguous. (The terminology infinite

characteristic is used in lieu of the customary term characteristic 0. As has been noted by A. A. Albert

(Modern Higher Algebra, University of Chicago Press, 1937), the former nomenclature seems to be

more harmonious with the general definition of the characteristic in other cases.)

(I): (II): (III):
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In each case the index of inertia p of the discriminant matrix is unity, and no

clue as to the interpretation of p. is apparent from these instances. Let us

investigate the most general type of simple algebra over dt.

Let © be a simple algebra over 9Î. By Wedderburn's well known theorem,

<3 is equivalent* to a total matric algebra 30Î over a division algebra 2). As

remarked above © must be equivalent to one of 9Î, g, or G. To interpret

the index of inertia of P(@), the following theorem (which was discovered

inductively) is of primary importance :

Theorem 2.1. Let <&be a simple algebra over dt of order on2, where 8 = 1, 2,

or 4 according as 5D is 9î, Ë, or Q. The order of a nilpotent subalgebra of © of

maximal order is o«(« —1)/2.

We note first that if » = 1, © is a division algebra and hence possesses no

nilpotent elements, so that the order of a nilpotent subalgebra of maximal

order is zero. Thus Theorem 2.1 is verified when w = 1.

Now let »> 1, and let epq, ip, q = 1,2, • ■ ■ , »), be the customary basis for

the total matric algebra 92? ; that is, a basis having the multiplication table

epqeim = Sqiepm, p, q, l, m = 1, • • • , »,

where o9¡ is Kronecker's delta. Let 8 denote the linear form module over £),

a basis for which is epq, (p = l, • • • , n — l; q = p + l, •••,»). Then 8 is com-

posed of all matrices of the form

0      ¿i2   an • • • din

0     0     d23 ■ ■ ■ din

0      0      0    ■ ■ ■ dn-m

0      0      0    • • • 0

where the dpq are in 2). It is clear that the product of any two elements of 8

is again in 8 so that 8 is an algebra. Furthermore, it is apparent that 8 is

nilpotent, since the «th power of any matrix of the above form is zero.f

Hence ? is a nilpotent subalgebra of 90?. Its order is «(» —1)/2. Hence © has a

nilpotent subalgebra of order ôw(» —1)/2. A basis for this subalgebra is

dh.epq, h = l, • • ■ , 5; p = \, • • ■ , » — 1; q = p + l, ••■,«, where the dh are

basis elements of SD.

We wish to show that 5»(« —1)/2 is the maximal order that a nilpotent

* Two algebras 21 and S3 will be said to be equivalent, if a simple ring isomorphism exists between

the elements of SI and those of S3.

t To prove these statements one needs only the assumption of the associativity of the elements

of the matrices of 2.
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subalgebra of © may have. For this purpose we need a lemma which we now

interrupt the proof of Theorem 2.1 to establish.

Lemma I. If a set of « matrices of order » of the type

Mh = ~%2 dkiehi, ft=l,
i=i

where the dhi are elements of a division algebra 3), is such that every linear com-

bination of them, with coefficients in the ground field $ of 3), is nilpotent, then

one of the Mh is zero.

The proof will be made by mathematical induction on ». If » = 1,

Mi = (du), where du is in 2). The hypothesis that Mx is nilpotent implies that

du = 0. Thus Lemma 1 holds for w = l.

Now assume the lemma to be true for order » — 1, and consider the case

of order ». Then

Mi =

du ¿12

0    0

¿in

0
M2 =

0    0    •

U21 <*22   '

0

¿2n

0      0      •   ■   •  0     || ||0      0

Consider the matrices of the form

Mi = c2Mi + c3M3 + ■ ■ ■ + cnMn =

,Mn   =

0 0    •

c2d2x    Cid2i •

Cnd„l      C„dni  •

0    0

0    0

¿nl d;ni * ' •

■     0

•   C2¿2n

where the ch are arbitrary elements of Í?. By the hypothesis of the lemma,

every such matrix must be nilpotent. This evidently implies that the sub-

matrix of order « — 1, which is composed of the last w — 1 rows and columns

of Mi, is nilpotent. Since the ch are arbitrary, the assumption of the truth of

the lemma for matrices of order » — 1 implies that one of the rows of this sub-

matrix consists of zeros. Hence one of the matrices Mh, say Mh„ is of the form

Mhl =

0      0

¿M 0

0

0

0     0- • ■ 0

If ¿»,1 = 0, the lemma is proved for the case « = ». If ¿^í^O, consider the
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matrix M2=CiMi+c3M3+ ■ ■ ■ +cnMn, where the ch are arbitrary numbers

of $. As before, the hypothesis that M2 is nilpotent implies that the sub-

matrix of M2 of order n — 1, which is composed of rows and columns

1, 3, 4, • • • , n of M2, is nilpotent. Again, from the assumption of the in-

duction and from the nature of the ch, one of the Mh, say Mh2, is of the form

Mhi =

0    0

0    d.M

0    0

0

0

Furthermore, since dh^O, it follows that Ih^hi. As before, if dh„2 = 0, the

lemma is proved for n = n. If dh^O, we proceed as in the previous instances,

forming the matrix M3, and find that one of the Mh say Mhv with h3¿¿hi, hi,

consists of zero elements with the possible exception of the element in the

h3,3 position. In the continuation of this process we must finally arrive at

an Mi,s which is zero. For, if this were not the case, the matrix M = MX+M2

+ ■ • +Mn would have exactly n nonzero elements, no two of which would

lie in a common row or column. As in the theory of matrices with commuta-

tive elements, such a matrix cannot be nilpotent. Indeed, it is easily seen that

any power of M will again be a matrix with at most one nonzero element in

each row and column. Each such element is a product of nonzero elements

of 35, and since 35 is a division algebra, no such product is zero. Thus M is

not nilpotent; but this contradicts the hypothesis of the lemma. Therefore

some Mh is zero, and the lemma is proved.

We return now to Theorem 2.1. We shall make the proof that hn(n — \)/2

is the maximum possible order for a nilpotent subalgebra of <2>, by mathe-

matical induction on n. If n = l, © has no nilpotent subalgebra, and the

formula hn(n—1)/2 holds.

Assume the formula holds for a total matric algebra of order n— 1 over 35

and consider the case n = n. Suppose that © contains a nilpotent subalgebra

8' of order t>5n(n —1)/2. We shall show that this assumption leads to a

contradiction. Let h, l2, • ■ ■ , lt be a basis for ?'. Since dhepq, (h= 1, •• ■ , S;

p, q = l, • ■ ■ , n), constitute a basis for ©, each lQ is expressible as

(2.1) lg    —      /   j   C ghpq&h&ji

h,p,(j

= 1,2,

where the cghpq are in 9î. Now t>bn(n— l)/2^5(w— 1). It is therefore possi-

ble to eliminate from the right-hand side of (2.1) all terms involving epr, p^r,

for a fixed index r, by forming a proper linear combination, with real coefïl-
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cients, of the /„, (g = l, • • • , t). Such an element of 8' is of the form

(2.2)

an ai2

an a22

ari a,2

a„i a„2

■ 0

• 0

0

ai„

a2„

where the apq are in 3). This matrix is clearly not nilpotent, unless arr = 0;

therefore, when the epr, P^r, for a fixed index r, are eliminated from (2.1),

err is eliminated also.

Since the lg are linearly independent over $R, and since t>5n(n —1)/2, it

follows from the theory of linear dependence that the number of linearly inde-

pendent elements of 8', of the form (2.2), for a fixed r, is greater than

\hn(n - 1) - bin - 1) = |8(» - 1)(« - 2).

Consider the set of all elements of 8' of the form (2.2) for a fixed r. Every

integral rational function of these elements with real coefficients is nilpotent.

However, in any such rational integral function, the elements (of the resulting

matrix) in the positions h,m, h^r and m^r, are determined completely by

the elements of the matrices (2.2) in rows other than the rth and columns

other than the rth. In other words the elements of the matrices (2.2) in the

rth row or rth column have no effect on- rows or columns other than the rth

row or column. Therefore the submatrices obtained from (2.2) by deleting

row r and column r constitute a nilpotent subalgebra of a total matric algebra

of order (« — 1) over 3). By the assumption of the induction that the theorem

holds for total matric algebras of order (« —1), there can be at most

5(n—1)(» — 2)/2 linearly independent such submatrices of the set (2.2). Since

the number of linearly independent matrices of the form (2.2) is greater than

h(n —1)(« — 2)/2, we can, by taking a linear combination of the matrices.

(2.2), produce a nonzero matrix of the form

(2.3)

0

brl

0

0       0 0

brr—1  0 ¿rr+l

0       0       0

0   ■ ■ ■ 0       0       0

This matrix belongs of course to 8'.
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In the above argument r was fixed but arbitrary. Hence a nonzero matrix

of 8' of the form (2.3) can be constructed for every r from 1 to n. Further,

any linear combination of such matrices, with real coefficients, is again in £',

and is therefore nilpotent. But this contradicts Lemma 1. Hence the assump-

tion that ©, of order on2, contains a nilpotent subalgebra of order greater

than ôn(n —1)/2, together with the assumption of the truth of the theorem

for smaKer values of n, leads to a contradiction. This completes the induction

proof of Theorem 2.1.

We remark in passing that the nilpotent subalgebra of © of order

èn(n—1)/2 is by no means unique. There are many such subalgebras. If a

similarity transformation is performed on the elements of one such algebra,

one obtains another such algebra, which is equivalent to the first. Whether

or not any two nilpotent subalgebras of © of maximal order are equivalent

is a question that the writer has not yet investigated.

We are now in a position to prove

Theorem 2.2. Let p be the index of inertia of the discriminant matrix of a

simple algebra © over the real field. Let e be the number in a complete set of

primitive idempotents of ©, and let x be the order of a nilpotent subalgebra of ©

of maximal order. Then ¿i = e+x-

As previously noted, © is either (I) 9?, (II) 6, (III) Q, or (IV) a total

matric algebra of order greater than one over one of 9î, S, or O. In cases (I),

(II), and (III) © is a division algebra, and hence has no nilpotent elements.

Furthermore, it possesses no idempotents other than the principal unit*

Hence x = 0 and e = 1. We have seen that if © is a division algebra, p = 1.

Hence Theorem 2.2 holds in cases (I), (II), and (III).

At this point let us recall the following known results:

(a) The discriminant matrix of the direct product of two semisimple alge-

bras 21 and 23 is (for proper choice and ordering of the basis elements) a direct

product of the discriminant matrices of 21 and 33 (cf. M2).

(b) The signature of a direct product of two symmetric matrices is equal

to the product of the signatures of those matrices.!

(c) The signature of the discriminant matrix of a total matric algebra of

order n2 over the real field is n (cf. M2).

From properties (a), (b), and (c), it follows that, in case (IV), the signa-

ture, <r(P(©)), of P(©) is n, 0, or —2«, according as 35 is 9î, S, or Q. For any

symmetric matrix, p = (p+a)/2, where p is the rank of the matrix. Since ©

is simple, P(©) is nonsingular, and hence p(T(^>)) = 5n2. Hence according as

* Cf. L. E. Dickson, op. cit., p. 112.

t Cf. C. C. MacDuffee, The Theory of Matrices, Springer, Berlin, 1933, p. 83.
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3) is $ft, E, or O, we have, respectively,

(1) M(P(©)) = (»2+»)/2,

(2) M(P(©)) = (2»2)/2=»2,

(3) M(r(©)) = (4«2-2«)/2 = 2»2-«.

Now the number in a complete set of primitive idempotents of a total

matric algebra over a division algebra is easily seen to be the same as the

number of such idempotents of a total matric algebra over a field, namely ».

By Theorem 2.1 the order x of a nilpotent subalgebra of © of maximal order

is 5»(w —1)/2, where 5 = 1, 2, or 4, respectively, in cases (1), (2), and (3).

Hence in the three cases we have

(1) x + « = »(«-l)/2+» = «(« + l)/2=/i(P(©)),
(2) x + e = «(«-l)+w = »2=M(P(©)),

(3) x + e = 2»(»-l)+» = 2»2-»=Ai(r(©)),

which completes the proof.

It may occur to the reader at this point that Theorem 2.2 can be proved

for the more general case where the ground field is any ordered field, for in-

stance the rational field. However, the number of primitive idempotents of an

algebra is not invariant under change of ground field, so that Theorem 2.2

is not valid, in general, for an arbitrary ordered field, and in particular, is not

valid, in general, for the rational field.

Theorem 2.2 can be put into the alternative form:

Theorem 2.3. Let © be a simple algebra over dt, and let So be a subalgebra

of © of minimum order which contains a complete set of primitive idempotents

of ©, a«d which has, as its radical, a nilpotent subalgebra of © of maximum

order. Then the order of 33 is equal to p(T(®)).

To prove this theorem it is sufficient to exhibit a S& whose order is

p.(T (<&)), since no algebra of the type of 58 of the theorem can have an order

smaller than p.(T(<5)). Such an algebra is that of all matrices of the form

an   ai2   ai3 • • • ai„

0 #22     Ö23  '   "   '   #2n

0      0      a33 ■ ■ ■ a3n    ,

0      0      •     • • • a„„

where the arr are arbitrary real numbers, and the ara, r<s, are arbitrary ele-

ments of 3).

3. Extension to semisimple algebras. The method of extension of the re-

sults of §2 to a semisimple algebra is fairly apparent. Let 21 be a semisimple
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algebra over 3Î. By the well known decomposition theorem, 21 is equivalent

to a direct sum of simple algebras ©i, ©2, ■ • • , ©ß. It is clear that a nilpotent

subalgebra of 21 of maximal order will be a direct sum of such nilpotent sub-

algebras of the ©A. Further, a complete set of primitive idempotents of 21 will

be composed of the complete sets of primitive idempotents of the @A.

On the other hand, for a proper choice of basis of 21, P(2i) is a direct sum

of the discriminant matrices of the <Bh (cf. M2). Moreover, the rank of a di-

rect sum of matrices is equal to the sum of the ranks of the component mat-

rices, and the same is true of the signature when the matrices are symmetric.

Hence the index of inertia of P(2t) is equal to the sum of the indices of

inertia of the P(©a) . This proves

Theorem 3.1. Let 21 be a semisimple algebra over 9Î, and let e be the number

in a complete set of primitive idempotents of 21, and x the order of a nilpotent

subalgebra of 21 of maximal order. Then /x(7\2l)) =x + «.

It is clear that Theorem 2.3 becomes

Theorem 3.2. Let 2Í be a semisimple algebra over 9Î, and let Sß be a sub-

algebra of 21 of minimum order, which contains a complete set of primitive idem-

potents of 2Í, and which has, as its radical, a nilpotent subalgebra of 21 of maxi-

mum order. Then the order of 23 ii equal to p.(P(2l)).

Let 21 be an algebra of order n over a subfield $ of the real field dt. If

the signature of Pi(2I) is equal to n, Pi(2l) is nonsingular, and therefore 21 is

semisimple. Then Pi(2l) = P2(2t) = P(2i). Let 21' denote the algebra 21 taken

over the real field. Then 21' is equivalent to a direct sum of simple algebras

each of which has a discriminant matrix whose signature is equal to its order.

From §2 the only simple algebra whose order is equal to the signature of its

discriminant matrix is the real field itself. Hence 21' is equivalent to a direct

sum of algebras of order one, each of which is equivalent to 3Î. Consequently

21', and therefore 21, is commutative. From the theory of polynomial algebras,

every semisimple algebra over a field M of infinite characteristic is equivalent

to the polynomial algebra generated by a polynomial with coefficients in $

and without repeated factors* This proves

Theorem 3.3. Let 2Í be an algebra of order n over a subfield $ of dt. If the

signature of Pi(2I) [P2(2t)] is n, then 21 is equivalent to a polynomial algebra

generated by a polynomial of degree n with coefficients in $ and without repeated

factors, and 21 is therefore commutative.

4. The fundamental theorem for the extension to an arbitrary algebra.

Let .21 be an arbitrary non-nilpotent associative algebra over 9?. Then 21 is

* Cf. R. F. Rinehart, Commutative algebras which are polynomial algebras, Duke Mathematical

Journal, vol. 4 (1938), p. 725; hereinafter referred to as R2.
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the sum of its radical £, and a semisimple algebra Sl, which is equivalent to

the difference algebra Sl/<3-t If a basis for 31 is chosen to consist of a basis

for Sl* together with a basis for 3, the first and second discriminant matrices

of Sl take the form

where Ai and ^42 are nonsingular square matrices, whose order is the order

of Sl*. The matrix Ai [A2] is ||/i(aras)|| [||fe(ör««)||], where the ah are basis

elements of 31*, and where k(arai) [ti(arai)} is the trace of the first [second]

matrix of the element aras in the representation of 31 by its first [second]

matrices (cf. M2 and R1).J

In working with an algebra 6 and a subalgebra 58 of 6, the notation

Pi(58) [P2(58)], relative to a given basis of 58, is ambiguous. For Pi(58) [P2(58)]

may be formed from the traces of the matrices of the elements of 58 in the

representation of 58 by its first [second] matrices, or from the traces of the

matrices of the elements of 58 in the representation of 6 by its first [second]

matrices. To avoid this ambiguity we introduce the notation g Pi (58) [(^(58) ],

to indicate that Pi (58) ^(58) ] is formed from the traces of the matrices in the

representation of (£ by first [second] matrices. For ¡gPi(58) [©P2(5B)] we shall

write simply Pi(58) [P2(58)], when no confusion is likely to result.

In terms of this notation it is readily seen that the matrices Ai and ^42

of the first paragraph are, respectively, aPi(Sl*) and aP2(Sl*), relative to the

basis chosen for 31. The ranks of aPi(Sl*), %T2(%*), and P(3l*) are equal, for,

since 31* is semisimple, P(3l*) is nonsingular. As a first step in the extension

of Theorem 3.1 to an arbitrary algebra we shall prove that the signatures of

»Pi(3l*), aP2(Sl*), and P(Sl*) are likewise equal. For this purpose we need sev-

eral lemmas, which we shall establish presently.

Let © be a simple algebra over 3Î. © is a total matric algebra 5D? over a

division algebra 3), which is equivalent to 3?, S, or O. Let the canonical basis

(4.1) dhepq, ft = 1,   ■ ■ ■ ,ô;p,q = I, ■ ■ ■ ,n,

where the dh are a canonical basis for 3), and the epq a canonical basis for 9J?,

be chosen for ©. For this choice of basis all the constants of multiplication

are rational. Let ©' denote the algebra with the basis (4.1) over the rational

field. We shall prove

Lemma 2. A basis for ©', ¿>i, o2, • ■ • , ba, a = bn2, can be so chosen that the

minimum equation of each element bh is irreducible in the rational field.

t Cf. L. E. Dickson, ibid., p. 136.
} Cf. also L. E. Bush, Bulletin of the American Mathematical Society, vol. 38 (1932), pp. 49-51.

Pi(3l) =
Ai    0

0      0
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If ©' is a division algebra, that is, if n = 1, then the canonical basis noted

at the beginning of §2 is a basis of the kind described in the lemma. For, every

basis element satisfies one or the other of the equations, X— 1 =0, X2+l =0,

each of which is irreducible in the rational field %.

Suppose now that n> 1, and suppose that in attempting to choose a basis

of the required sort, we have chosen linearly independent elements

bi, b2, ■ ■ ■ , bp each of which satisfies an equation irreducible in %. Sup-

pose that p<a and that it is impossible to choose another element of ©'

which satisfies an equation irreducible in % and which is linearly independ-

ent of bi, b2, • ■ ■ , bp. Let bp+i, ■ ■ ■ , ba be chosen in any way to fill out a basis

for ©'. Then the assumption just made implies that every rational linear

combination

(4.2) ¿_i C>J>n,
h-1

where at least one of the ch, h>p, is different from zero, satisfies a minimum

equation which is reducible in 3?.

Consider the element bp+i of ©'. It is a matrix of order n with elements in

35 not all of which are zero. Let the r,s position be a position in which a non-

zero element of the matrix bp+i appears. This element is of the form

Oo+aii+a2j+a3k, where not all the rational numbers aa are zero.f Since

bi, ■ ■ ■ , ba constitute a basis for ©', we can, by forming linear combinations

(4.2) with Cp+i^O, produce matrices which have some certain one of the ele-

ments 1, i,j, or k in the r,s position, J and which have any arbitrarily chosen

rational linear combinations of a\, ■ ■ ■ , d¡ in the remaining positions. Now

our assumption implies that every matrix of ©' which has some certain one of

the elements 1, i, j, k in the r,s position satisfies a minimum equation which

is reducible in %. We shall show that this leads to a contradiction.

Consider the so-called companion matrix B, of order », of the equation

X«-2=0,
0    1    0    0 • ■ ■ 0

B =

0    0    10-

0    0   0    1-

0

0   0    0    0 ■ • • 1

2    0    0    0 • ■ ■ 0

t It is to be understood that if 35 is 9Î, ai = a^ = az — 0, and if 35 is (5, O2=a,=0.

Î For example, if a27¿0, it is possible to form such matrices with/ in the r,s position.
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Xn —2 = 0 is the minimum equation of B. Furthermore, if B' =PBP~1 is a

matrix similar to B, where P is nonsingular with elements in the complex

field, then Xn —2=0 is also the minimum equation of B'. Now it is fairly

evident that a matrix P can be selected so that PBP'1 will have a prescribed

one of the numbers 1, i,j, ft in the r,s position. Let u (I, i,j, or k) be the ele-

ment in the r,s position of the matrices constructed in the preceding para-

graph. One may verify that, in the several possible cases, the matrices P,

listed below, will transform B into the matrix PBP~X, whose element in the

r,s position is u.

(1) If r^s —land Sy^l,P = I+Ui, where I is the identity matrix, and Ui

is a matrix with u in the r,(s — 1) position and zeros elsewhere.

(2) If r = s — 1, and st*!, P is a matrix with u in the r,r position, l's else-

where on the main diagonal, and zeros in the remaining positions.

(3) If i = l andrere, P = I+U3, where Z73 is a matrix with m/2 in the r,«

position and zeros elsewhere.

(4) If s = l and r = », P is a matrix with u/2 in the »,» position, l's else-

where on the main diagonal, and zeros in the remaining positions.

Now in each of the above cases, P has elements which belong to a field

which is isomorphic with the complex field, because w2= 1 or —1. Hence, in

each of the above cases, the matrix PBP'1 satisfies the irreducible (in g)

equation Xn —2 =0, and has the number u in the r,s position. This contradicts

the previous conclusion that a matrix with u in the r,s position should have

a minimum equation reducible in g. Consequently, the initial assumption

p <a is untenable, and Lemma 2 is proved.

Let it be remarked that if the basis (4.1) is chosen for @, then the basis

bi, ■ ■ ■ , ba of Lemma 2 can be obtained from (4.1) by a rational transforma-

tion of basis.

We return now to the consideration of the arbitrary non-nilpotent alge-

bra 31. Since 31* is semisimple it is equivalent to a direct sum of simple

algebras ©i, ©2, ■ • • , ©?, so that

31 = 31* + 3 = ©i + ©2 + • ■ ■ + ©j + 3.

Each ©a has a principal unit ek, and ekei = 54¡eA, where 5A¡ is Kronecker's delta.

3 can be separated into a sum of ß+l linear systems

(4.3) ei3, ei3, ■ ■ ■ , eß3, 3',

where 3' consists of all the elements of 3,Ior which az = 0 for every element a

of Sl*.f The linear systems (4.3) are supplementary in their sum, that is,

the intersection of any two of them is zero. For, ehzi = eiZi, h^l, implies that

f L. E. Dickson, op. cit., pp. 128-130.
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eh(e¡>zi) =ehzi = 0; and ehzi = z', where z' is in S', implies that eh(ekzí) = eAZi = 0.

Consequently, a set of bases for the linear systems (4.3) constitutes a basis

forá.

Now any system eh£ is closed under multiplication on the left by elements

of 21*, in particular, by elements of the simple algebra ©A, with which it is

associated. For, if a* is any element of 21*, then a*(ehS) =th(a*£) Ç.ekS- H s*

is in ©a, and h^l, then sh(eiS) =0.

We wish to show that if a rational basis of the type of Lemma 2 is chosen

for 21*, a basis for 3 may be so chosen that the constants of multiplication

for the product of a basis element of 21* by a basis element of £, in that order,

will be rational numbers. To that end we prove

Lemma 3. Let © be any one of the simple components of 21*, and let e be

the principal unit of ©. Let the canonical basis (4.1) be chosen for ©. Then for

this basis of ©, a basis for e£ can be so chosen that the constants of multiplication

for the product of any basis element of © by any basis element of e£, in that

order, will be rational.

If there is an element Zi(1) of 3, for which enZi(1) 3¿0, choose enZi(1) as one

of the basis elements of e£. If there is an element zi(2) of S such that enZi(1)

and enZi(2) are left linearly independent over 35, choose eW2* as a second

basis element. Continue in this manner, choosing as many further elements

enZi<3), • ■ • , enZi("'' as possible which are such that

(4.4) enzi   ,  enZi   , • • • ,  ensi

are left linearly independent over 35. Then any other element of e£ of the

form enz is left linearly dependent over 35 on (4.4). When the set (4.4) is

thus maximal, or if no element enZj^O exists, select an element Z2(1) of ,3 which

is such that ei2Z2(1> is left linearly independent over 35 of the elements of (4.4),

if such an element z2(1) exists. Take eW1' as a basis element of e$. If there

is an element z2(2) of S which is such that ei2Z2<2) is left linearly independent

over 35 of ei2Z2(1) and the elements of (4.4), choose ei2Z2(2) as one of the basis

elements of e£. When, in the continuation of this process, the set

(1) (2) (->)
(4.5) 6i2Z2   ,  ei2z2   , ■ ■ • ,  ei2Z2

is as large as possible, or if no such element ei2Z2(1) exists, we choose as further

basis elements a maximal set

(1) (2) (»»)
C1333      ;     ''I3S3      ,    •   •    •     ,     P13Z3 ,

which, if such elements exist, together with the elements of (4.4) and (4.5)
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are left linearly independent over 3). Continuing in this manner, we finally

obtain a set of elements

(4.6) eihlzht ' , / = 1, • • • , f ; w¡ = 1, • • • , K,,t

where fti, h2, ■ ■ ■ , h¡ is some subset of 1, 2, ■ ■ • , n.% The elements of (4.6)

are left linearly independent over 3), and moreover, there is no element of e3

of the form euz which is left linearly independent of the elements of (4.6).

Now the elements of the set

(4.7) ephlzh"¡' , p = I, 2, ■ ■ ■ , n; I = I, ■ ■ ■ , Ç; mi = I, ■ ■ ■ , vi,

are left linearly independent over 3). For a relation

E, (m¡) _ n
aphimieph¿Zhi       —  o,

p—1, ■ ■ ■ ,n,

1=1. •••,!•,

»»i=l, ■ ■ -,'i

where the numbers dphimi are in 3), implies, on multiplying on the left by e.,,

(4.8) J2      dqh,mieihlzhl     = 0
í=i. ■■•,!■.

mi—1, ■••,»!

for every q. But since the elements eihiZh/m)l were chosen to be left linearly

independent over 3), (4.8) implies that dqh¡m¡ = 0 for every a, hh and m¡. Thus

the elements of (4.7) are left linearly independent over 3?.

Furthermore, the elements of (4.7) constitute a (left) basis for e3 over 3),

which may be seen as follows. In the first place, every element of e3 is the

product of e = en+e22+ • • ■ +enn by an element of 3, in that order. The exist-

ence of an element

ez = euz + e22z + • • ■ + e„nz

of e\3 which is left linearly independent over 35 of the elements (4.7) implies

that at least one of the elements errz is left linearly independent of (4.7). This

implies that eirz is also left linearly independent over 3) of (4.7); for, if drz

is a left linear combination of the elements of (4.7), then so is e„z, as may be

seen by multiplying ei,z on the left by eri- But if evz is left linearly independent

of (4.7), it is left linearly independent of (4.6). This contradicts the hypothesis

that (4.6) is a maximal set.

Consequently, the elements

t It is assumed that e>$7¿0; if e& = 0, Lemma 3 is trivially true.

Í If, for instance, there is no element e¡?z left linearly independent of (4.4) over 2), then 2 will

not occur among the hi, ■ ■ ■ , h(.
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(4.9) d<,ephlzh™1 ,

Ç = 1, • • • , S; p = 1, ■ • • , n; l = 1, ■ • ■ , f ; mi = 1, • • • , v„

constitute a basis for e£ over 9î. For this basis of e£ it is clear that the con-

stants of multiplication for the product of a canonical basis element of © by a

basis element of e£, in that order, are rational. In fact these constants of

multiplication are O's, l's, and — l's.

We remark that if © is subjected to a rational transformation of basis,

from the basis (4.1) to a new basis, and the above basis for e£ is left un-

changed, then the constants of multiplication for the product of a basis ele-

ment of © by another basis element of ©, or by a basis element of e£, in

that order, remain rational. This is true, in particular, for the basis of

Lemma 2.

We are now in a position to prove the fundamental theorem on which the

extension of the results of §§2 and 3 depends.

Theorem 4.1. Let 21 = 21*+,3 be an algebra over dt, with the radical 3, and

semisimple component 21*. The signatures of Pi(2I), P2(2l), and a.P(2l*) are

equal.

Since 21* = ©i+©2+ • • • +©?, and 21 = 2i*+,3, we may choose a basis for

21 by choosing bases for ©i, ©2, • ■ ■ , ©^ and £. Let eu e2, ■ ■ ■ , eß be the re-

spective principal units of ©i, ©2, • • ■ , ©p. As previously noted, a basis

for 3 maY De chosen to consist of the bases for such of the systems

ei£, e2£, ■ ■ ■ , eß£, £' as are not zero. Let

(1) UK       (2) (2) _     (0) (0)
Si    ,   ■ • •   ,  Sai ,  Si    ,   ' ,  sa2 , • • •   ,  Si    ,  ' • '   ,  Saß ;

(1) U) (2) (2)_ W) </3)_
zl     ,   ■   '   "   ,   zXi   j   zl     ;   "      "   i    ZX2  j '  '   '   j   Zi     ,   •      -,   Zx^  ;   Zi,  ■  •  •   , Zy,

be a basis for 2t, where 5i(Ä), • • • , sahih) is a basis for ©,,, Ziw, • • ■ , z\¿h) is a

basis for eh£, and Zi, • • • , zy is a basis for £', and where it is to be understood

that Zi(,,), • ■ ■ , z\hlh) are absent if eh£=0, and similarly for the zv, if £' = 0.

Consider any one of the simple algebras ©Ä. By Lemma 2 the basis ele-

ments Si<-h), ■ ■ ■ , sa¿h) can be taken to be such that each smih) satisfies an equa-

tion which is irreducible in the rational field g. Now sm{h)z = 0 for every ele-

ment z which is in ei£+ ■ ■ ■ +eh-i£+eh+i£+ ■ ■ ■ +eß£+£'. By Lemma 3,

if eh£y^0, the basis zi(A), ■ • • , z\¿h) can be so chosen that the constants of

multiplication for a product smih)ziih'> are rational.

Consider now the first matrix %R(sQUl)) of any one of the basis elements of

@Ä, where %R(s¿h)) denotes the first matrix of s¿h) in the first matric repre-

sentation of 21:
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(*)N

(4.10) nR(sq') =

0

0

0

©42t(s8  )

0

0

0

0

,3*C)

where the 0's stand for blocks of zeros, ç,hR(sqih)) (occurring in the ftth block

down and the ftth block over) is the first matrix of s¿h) in the first matric

representation of ©a, and where eh3R(sqih)) is a matrix of order XA, whose ele-

ments are the constants of multiplication of products of sq(h) by basis elements

of eh3- Since ©a has a principal unit, the matrices ©4P(s3(A)), (a = 1, 2, • • ■ ,ah),

are linearly independent.! Hence the matrices %R(sq(h)) are linearly independ-

ent, and therefore there is a simple ring isomorphism between the %R(squ'))

and the sa(W.t

The matrix aP(et) is the matrix (4.10), where ®hR(s¿h)) and eksR(sq(h)) are

identity matrices of orders ah and \h, respectively, since eh is a left-hand prin-

cipal unit for ©a and eh3- Now each s^h), (q = I, ■ ■ ■ ,ah), satisfies an equation

fq(x) = x" + Cn-i.qx"-1 + • • ■ + cux + c0q = 0,

irreducible in g, when c0q is replaced by c0qeh. Therefore, aPW0) also satisfies

fq(x) =0, if c0q is replaced by c0q-nR(eh). Hence, ®hR(sq(h)) and eh3R(sq'-h)) also

satisfy fq(x) =0, when c0q is replaced respectively by Iah and I\h, the identity

matrices of orders ah and XA. Since the elements of each of ^hR(sqih)) and

eh3R(sqih)) are rational, and since fq(x) is irreducible in %,fq(x) is the minimum

function of each of <shR(sq(h)) and eh3R(sq-h)), because the minimum function

of a matrix divides any polynomial which vanishes for that matrix. The char-

acteristic function of ®hR(sq(h)) is therefore a power [/,(x)]* of its minimum

function fq(x), and hence the trace of ®hR(sq(h)) is equal to pcn-i,q. Likewise

the characteristic function of ehsR(sq<-h)) is a power [/„(x)]* of/9(x), and the

trace of eh3R(sq(h)) is pcn-i,q- Now the first trace of sqw relative to Sl, %h(sqw),

is the trace of %R(s¿h)), which is equal to the sum of the traces of ^,hR(sqih))

and ehsR(sq(h)). Hence

f Cf. L. E. Dickson, op. cit., p. 34.
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%ti(sq   ) = t(nR(sq   )) = (<*> + ^)c„_li9

(4.11) = (l + -W_,„ = (l + ~\ ■t(^R(siqh))).

We have arrived at (4.11) on the assumption that ehS^0. However, if

eh£ = 0, then ehgR(s¿h)) does not appear in the matrix (4.10). Further, XA = 0.

From this it is apparent that (4.11) also holds if eh£=0.

Now t(K.R(s¿h)))=u>ti(s¿h)), the first trace of s4<» relative to 21*. It is

known that ti(a) =k(a), for every element a of a semisimple algebra (cf. Rl).

Hence we may write (4.11) as

(4.12) itx(si ) = eh[n.t(sq )].

where dh = 1 +XA/a:A > 0. Note that dh is the same for every element s¿h> of ©A.

Since every element of <Bh is a linear combination of •Si('l), s2CO

with coefficients in 9Î, and since the trace of a linear combination of elements

is equal to the same linear combination of the traces of those elements, it

follows from (4.12) that

(4.13) ar1(©») = fl*[©»r(©*)]-

Since ©a was chosen arbitrarily, (4.13) holds for every h. Of course dh may

change with h. Hence we may write

(4.14)    Tim) =

?i-®T(@i) 0

o        02-3.r(©2)

o

0

The signature, o-(Pi(2l)), of Pi(2I) is the sum of the signatures of the mat-

rices öä[@aP(©ä)]. Since dh>0, the signature of Ö*[@ÄP(@A)] is the same as the

signature of @4T(©A). But, since 21* is the direct sum of the ©A, the sum of

the signatures of the @jP(©ä) is exactly the signature of a»P(2I*). This proves

Theorem 4.1 for the signatures of Pi(20 and a.P(2I*) for a particular basis of

21.
Under a transformation of basis of 21 of matrix C, Pi (21) is transformed

into CPi(2i)Cr, and o-(Pi(2I)) is invariant. Now the semisimple algebra 21*

of 21 is not unique, but any two such components are equivalent. Since the

discriminant matrices depend only on the constants of multiplication, the
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fact that 31* and Sl*' are equivalent is sufficient to insure the equality of their

discriminant matrices for isomorphic bases. Since, further, a transformation

of basis of 31* does not change the signature of a*P(2l*), it follows that if

a(Pi(3l)) =a(P(3l*)) for one choice of basis of 31, the like is true for all bases.

Now it should be evident that if we should make a right-hand decomposi-

tion of Z into the ß + l linear systems

â«i»3«»> • • • tSe», 3",

the analogue of Lemma 3 can be stated and proved in a "right-hand" way.

Then the above proof can be carried out in a precisely analogous manner for

the equality of the signatures of P2(3l) and a«P(2l*), by use of the second

matrices %S(s¿h)) of the elements of ©A. The constants 6 i will of course not

be necessarily the same as the corresponding Bh. This completes the proof of

Theorem 4.1.

We pause briefly to note two corollaries to the proof of Theorem 4.1,

which have no direct bearing on the problem of this paper, but which are of

interest in their own right. It has been shown that the first and second dis-

criminant matrices of an algebra, relative to a given basis, are not, in general,

equal (cf. Rl). However, from Theorem A of §1 they have the same rank,

and by Theorem 4.1 they have the same signature. Moreover,

Corollary 4.11. Let ty be a primary algebra over 3Î, with the radical 3-

Then Pi($) is equal to a scalar times TiC$).

Since $ is primary, it is equivalent to the sum of its radical 3 an<3 a simple

algebra ©. For the particular basis B used in the proof of Theorem 4.1, we

have from (4.14)

(4.15) Pi(?) = e-[6r(©) + o],

where 6 is a nonzero scalar matrix and O is a zero matrix of order p, the order

of 3- Likewise, for another similarly chosen basis B' for *$, we would have

(4.16) Ti(%) = 0'-[sP(©)+0],

where 6' is a nonzero scalar matrix. Now the bases B and B' for which (4.14)

and (4.15) hold, differ only in the choice of basis for the radical 3- It is there-

fore possible to make a transformation of basis of $ from B to B', by a trans-

formation whose matrix 0 is of the form

(4.17) Q = Ia + M,

where Ia is the identity matrix of order a, a being the order of ©. Hence,

relative to the basis B', Tx(^) becomes
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(4.18)      T{ (Ç) = QTi(^)QT = QB[eT(®) + 0]QT = 0- [CT(©) + O].

Henee, relative to the basis B', Tí ($) = (0/0') 7Y ($). Since Ti(Ç) and P2(<ß)

are transformed cogrediently under transformations of basis of ^ß, it follows

that Ti(Ç) = (B/e')T2(%) for every basis of Ç.

Corollary 4.12. Pe/ 21 = 21*+£ be an algebra over dt, with radical £ and

semisimple component 21*. It is possible to choose a basis/or 21 such that Pi (21),

P2(2Í), and a«P(2l*) simultaneously assume a diagonal form.

A basis for a semisimple algebra for which the discriminant matrix as-

sumes a diagonal form has been called by MacDuffee (M2).a normal basis.

Let 21 = ©i+©2+ ■ • • +©(¡+,3, where the ©A are simple algebras. Let a basis

for 21 be chosen to consist of normal bases for the ©* and any basis for £.

From the proof of Theorem 4.1, or from Coronary 4.11 we have

nTi(<Sh) = eh[ehT(®k)],        ar2(©„) = 0¿ kn©*)], h - 1, - • • , ß,

so that for the present basis choice, aPi(©*) and aP2(©>¡) are diagonal mat-

rices because @JP(©A) is such. But Pi(2i) is a direct sum of the aPi(©*) and a

zero matrix of order equal to the order of £. Hence Pi(2I) is a diagonal matrix.

Similarly, P2(2l), relative to this basis, is a diagonal matrix.

5. Extension to an arbitrary algebra. With the aid of Theorem 4.1 the

extension of Theorems 3.1 and 3.2 is readily made. Let 21 = 2l*+3 be an arbi-

trary algebra over the real field. First, let 21 be non-nilpotent, that is, assume

21*5=0. A nilpotent subalgebra 8 of 21 of maximal order will clearly be the sum

of the radical £ and a nilpotent subalgebra 8* of 21* of maximal order. A com-

plete set of primitive idempotents of 21* also constitutes a complete set of 21.

Let p denote the number of nonnegative terms in a diagonal form of Pi(2l)

[or P2(2I)]. That is, p = n+(<r — o)/2, where n is the order, a the signature, p

the rank of Pi(2l) [or P2(2l)]. Also p=p*+u, where p* is the index of inertia

of aPi(2l*) [or aP2(2I*)], and where « is the common nullity of Pi(2I) and

P2(2l). From Theorem 4.1 it follows that the indices of inertia of aPi(2I*),

aP2(2I*), and a.P(2l*) are equal. From this and from Theorem 3.1 p* = e+x*,

where e is the number in a complete set of primitive idempotents of 21* [or 21],

and x* is the order of 8*. Therefore, p = e+x where x is the order of 8.

If 21 is nilpotent, then e=0, Pi(2I) = P2(2I) =0, p = n, and the relation

M = «+X is trivially true.

This completes the proof of the general

Theorem 5.1. Let 21 be an arbitrary algebra of order n over 9î. Let p

(p = n+((x — p)/2, where p and a are, respectively, the rank and signature of

Pi(2I) [P2(2l) ]), be the number of nonnegative terms in the diagonal of a diagonal
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/or»w of Pi(Sl) [P2(Sl) ]. Then p. is equal to the order of a nilpotent subalgebra of Sl

of maximal order, plus the number in a complete set of primitive idempotents of Sl.

Also, from Theorem 3.2 follows

Theorem 5.2. Let 31 a«d p have the same significance as in Theorem 5.1.

Then p. is equal to the order of a subalgebra of 31 oj minimum order which contains

a complete set of primitive idempotents of 31, arad which has, as its radical, a

nilpotent subalgebra of Sl of maximal order.

It may be remarked that a nilpotent subalgebra of Sl of maximal order is

also obviously maximal in the sense of the calculus of complexes.

6. Specialization to the Borchardt-Jacobi Theorem. To demonstate how

Theorem 5.1 (or 5.2) is a generalization of part II of the B. J. Theorem, let

us specialize 31 to a polynomial algebra. Let ^»(x) = 0 be a polynomial equation

of degree n with real coefficients and with leading coefficient unity. Let Ï be

the polynomial algebra over 9î generated by p(x). Over 9Î, p(x) can be de-

composed into powers of distinct irreducible factors thus :

Pix) = LT (* - •*)**(** + bjX + c,)ki, i = 1, ■ ■ ■ , r;j = 1, • • ■ , s,

where the a,, ô,-, and c,- are in 9Î. It is known that ï is equivalent to a direct

sum of the r+s polynomial algebras generated by the (x — ai)hi and the

(x2+bjX+Cj)k> (cf. R2). Since ï is commutative and has a principal unit, the

number of primitive idempotents of X is equal to the number of primary

component algebras in the direct sum decomposition of jE.j Hence t = r+s.

Again, because H is commutative, the nilpotent subalgebra of x* of maximal

order coincides with the radical of ï, both consisting of all the nilpotent ele-

ments of H. Now the order of the radical of ï is

X = ¿ (hi - 1) + 2¿ (ft, - 1) - » - (r + 2s).
t—i j-i

Hence the rank p of the discriminant matrix of ï is r+2s.

By Theorem 5.1 the signature of P(X) must be equal to 2(p — n) + p

= 2(x + t-n)+p. But 2(x+€-»)+p = 2[r+5+w-(r + 2j)-«]+r+25 = r.

Hence the signature of P(3E) is equal to r, the number of distinct real roots

of ^»(x) =0. This result is part II of the B. J. Theorem.

t See, for instance, G. Scorza, Sulle algebre riducibili, Rendiconti del Seminario Matemático délie

Università di Roma, (4), vol. 1 (1937), pp. 188-189.
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