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Abstract. We consider the equation (*) f'(z) = F(z,f(z),f{g(z))) where F(z, u, w)

and g(z) are given analytic functions and/(z) is an unknown function. The question of

local existence of a solution of (*) about a point z0 is natural only if g(z0):=z0. We

classify fixed points z0 of g as attractive if |#'(z0)| < 1, indifferent if \g'(z0)\ = t, and

repulsive if |^'(ro)| > 1. In the attractive case (*) has a unique analytic solution satisfy-

ing an initial condition f(z0) = w0. This solution depends continuously on vv0 and on the

functions Fand g. For "most" indifferent fixed points the initial-value problem has

a unique solution. Around a repulsive fixed point a solution in general does not exist,

though in exceptional cases there may exist a singular solution which disappears if the

equation is subjected to a suitable small perturbation.

Introduction. A natural way of generalizing ordinary differential equations is

to permit the argument of the unknown function to appear, in at least one term,

as a function of the independent variable. A fairly wide class of such "functional

differential equations" can be written in the form

(*) fi?) = F(z,f(z),f(g(z)))

where F and g are given functions and / is an unknown function. The case of

systems (and also higher order equations reducible to first order systems) can be

included if we allow the functions F and /to be vector-valued.

In the real case functional differential equations have been extensively studied,

but for the complex case the literature is quite sparse. Flamant [2] studied the

linear equation f'(z) = a(z)fi(g(z)) + b(z) in the case where g(z) is a fractional linear

transformation. Izumi [3] established existence theorems for the same equation

where g(z) is an analytic function mapping the unit disc into itself. In a series of

papers Robinson ([6]-[9] and others) obtained various results on certain special

FDE. Leont'ev [5] considered differential-difference equations with constant

coefficients in the complex case. But none of these papers seem really concerned
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with a systematic general study of FDE over the complex plane. In this paper we

attempt to begin such a study.

Let F(z, u, w) and g(z) be analytic functions. Our basic question concerns the

existence and behavior of analytic solutions of (*). The natural starting point of a

theory is the question of local existence of solutions, and this is the topic of the

present paper. Note that the problem of the local existence of a solution/(z) about

a point z0 is interesting only if z„ is a fixed point of g(z). For if g(z0)^=z0, we can

specify f(z) to be an arbitrary analytic function in a small neighborhood of g(z0)

and then determine f(z) about z„ by solving an ordinary differential equation.

Fixed points of g will play a crucial role throughout our investigations.

After a brief introductory section on power series solutions, we take up system-

atically the study of local solutions about fixed points of g. We shall find that there

are three cases, which we investigate individually. We conclude with a theorem on

the local existence of a solution about a "cycle" of g.

1. Power series solutions. Let g(z) be analytic in a neighborhood of the fixed

point z0, and let F(z, u, w) be analytic in a neighborhood of (z0, w0, w0). We then seek

a solution of

(1.1) /'CO = F(z,f(z),f(g(z)))

satisfying the initial condition

(1.2) f(z0) = w0.

It is natural to try to find a power series solution. We have the expansions

(1.3) g(z)-z0 = bi(z-z0) + b2(z-z0)2+ ■■■,

(1.4) F(z,u,w)= 2 Auk(z-Zo)i(u-w0)i(w-w0)k,
t.i.k

and we seek a solution

(1.5) f(z) = a0 + ax(z - z0) + a2(z - z0)2 +■•-.

First observe that/(z0) = w0 implies a0 = w0. Next substitute the series expansions

into (1.1). We find that on the left-hand side the coefficient of (z — z0)n is (n+l)an + 1,

while the coefficient on the right-hand side involves no ak with k > n. Thus we have

recursion relations

fln + i = ®n(a0, au ..., an),

and so the an are uniquely determined. Conversely, if the an are defined recursively

by the above formula, then it is clear that the series (1.5) will formally satisfy (1.1).

We have proved

Theorem 1.1. Let g(z) and F(z, u, w) have formal power series expansions (1.3)

and (1.4). Then there is a unique formal power series (1.5), with a0 = w0, that formally

satisfies equation (1.1).
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An immediate corollary is the following uniqueness theorem:

Theorem 1.2. Let g(z) be analytic about z0 and F(z,u,w) be analytic about

(z0, w0, w0). Suppose g(z0) = z0. Then the FDE (1.1) has at most one analytic solution

about z0 that satisfies the initial condition f(z0) = w0.

To establish the existence of an analytic solution to the FDE (1.1) it would

suffice to prove the convergence of the formal power series solution. Izumi [3]

derived an existence theorem for the linear equation f'(z) = a(z)f(g(z)) + b(z), where

g(z) maps the unit disc into itself, by estimating the coefficients. But in general

proving convergence is quite complicated, and we will establish our basic local

existence theorem by another method. However, power series are a very useful tool

for investigating particular FDE.

For example, consider the equation

(1.6) fi'(z)=fi(z2).

The function g(z) = z2 has fixed points 0 and 1. We find about 0 and 1 respectively

the two formal power series solutions

(1.7) /(z) = 1+z+^+£l+_^_+...

and

(1.8) f(z) = \+b1(z-\) + b2(z-\)2+---

where the bf are determined recursively by

b^=nh[2nbAn~ll)2n-lb»->+---\-

It is easy to see that the power series (1.7) has radius of convergence 1, so (1.7) is

an analytic solution of (1.6) about z=0. On the other hand the coefficients bn in

(1.8) satisfy the inequality bn^2nin~1)l2/n\ as can be verified by induction, so the

series (1.8) has radius of convergence 0. Thus there exists no nontrivial analytic

solution of (1.6) about z=l.

This example shows that the existence of an analytic solution about a fixed point

depends on the nature of the fixed point. The following classification of fixed points

plays a crucial role in our subsequent investigations.

Definition. The fixed point z0 of the analytic function g(z) is attractive if

|g'(zo)l < 1, repulsive if |g'(zo)| > 1, and indifferent if |g'(zo)| = 1-

2. Attractive fixed point. We shall study first the case of an attractive point,

where the situation is as nice as could be desired. The initial-value problem possesses

a unique analytic solution which depends continuously on the initial-value and on

the functions F and g. The local existence theorem is proved by a straightforward

adaptation of the proof for ordinary differential equations that uses the contraction
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mapping theorem applied to an equivalent integral equation. What permits the proof

to go through is the fact that g maps small discs about the fixed point into them-

selves. We consider the vector equation

(2.1) f'(z) = F(z,f(z),f(g(z)))

where F(z, u, w) is an analytic mapping of an open set in CxCnxCn into C.

We seek a solution/(z) that maps a subset of C into C\

Theorem 2.1. Let g(z) be a function analytic in a neighborhood of an attractive

fixed point z0. Let the function F(z, u, w) be defined and analytic on an open region

D<^CxCnxCn with range of F contained in Cn. Let w0 be any vector in Cn such

that (z0, w0, wQ) e D. Then there is a unique analytic function f(z) mapping a neighbor-

hood of zQ into Cn which satisfies (2.1) and the initial condition f(z0) = w0.

Proof. Choose a, ¿>>0 so that D0={(z, u, w) : \z—z0\ ̂ a, \u — w0\ ¿b, \w—w0\

iè}cfl and g is analytic on the ball Ba(z0)—{z : \z — z0\<a). Choose 8^0 so

small that g(Br(z0))c Pr(z0) for 0 < r ^ Sj. (This is possible because z0 is an attractive

fixed point of g.) Let L be a Lipschitz constant for P on D0, i.e.

\F(z,u,w)—F(z,u*,w*)\ g Lmax(\u—u*\, \w—w*\).

Let M be the supremum of |P| over D0. Finally, choose 8 so that

(2.2) 0 < 8 < min (8U a, b/M, \/L)

and let E=Bó(z0).

Consider the space S of functions analytic on E, continuous on E, with range in

Cn. Define a norm on 5 by \\f\\=supzeB \f(z)\. Let S0={fe S : \\f-w0\\ üb}, and

define an operator U on S0 by

(2.3) Uf(z) = w0 + | " F& /(£), f(g(0)) di
Jzo

where the integration path is the ray from z0 to z.

Since P is analytic on D0 and g(E)<^E, it is clear that Uf(z) is well defined if

feS0. Also fe S0 implies UfeS0, because \Uf(z)-w0\ ^ MS^b for z e P.

Finally, it is easy to see that \Uf(z)-Uf*(z)\^oL\\f-f*\\, 8L<1, so that

U: S0 -> S0 is a contraction operator. S0 is a complete metric space, so we

conclude that U has a unique fixed point, which is a solution of (2.1) satisfying

f(z0) = w0.

Continuous dependence. The solution/(z) of (2.1) depends on the initial value w0

and on the functions g and P. We shall see that this dependence is continuous. The

proof will actually establish a little more—if w0, g, and P are all perturbed by a

sufficiently small amount, the corresponding equation will still have a solution in

the neighborhood |z-z0| < 8/2 (where S is the same number defined in (2.2)), even
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though z0 may not be a fixed point of the perturbed function g. Our proof depends

on the following simple lemma about contraction operators in metric spaces.

Lemma 2.2. Let (X, d) be a complete metric space. Let U0 be an arbitrary operator

on X. Let Ux be a contraction operator with contraction constant X < 1. Suppose U0

has a fixed point x0. Let x, be the fixed point of Uy (which we know must exist and be

unique). Then d(x0, Xx)^d(U0x0, U1x0)/(l—X).

Corollary. If U± -> U0 strongly in such a way that X^k<l, then Xy -> x0.

Proof of lemma. Since Ux is a contraction operator, its fixed point is given by

jCi=lim„^c0 t/"x0. Hence

d(x0, Xx) = lim d(x0, Ulx0)
71-+00

¿ lim sup [d(x0, U1xQ) + d(Uxx0, U2x0)+ ■ ■ ■ + d(Uï~1x0, £/?*„)]
71-»00

^ lim sup [(1 + A+ • • • +A"-1) d(x0, i/iXo)]
n-»oo

Í d(x0, UlXo)/(l-X) = d(U0Xo, UlXo)/(l-X).

We now introduce topologies (via norms) in order to make sense out of the

statement that the function F* and g* are "close" to the functions Fand g. Let D0

and E be the sets defined in the proof of Theorem 2.1. Then for F analytic on DQ

define ||F|| =supDo \F\, and for g analytic on E define ||g|| =supaeB \g(z)\.

Theorem 2.3. If (w*, g*, F*) is sufficiently close to (w0, g, F), then the corre-

sponding equation

(2.1*) f*'(z) = F*(z,f*(z),f*(g*(z)))

with initial condition f*(z0) = w* has a unique solution f*(z) =f(z ; w*, g*, F*) defined

for \z — z0[ < S/2 (where S is the number defined in (2.2)). Also, there exist positive

constants A, B, C such that

(2.4)    \f(z;w0,g, F)-f(z;wt,g*, F*)\ Ú A\w-w%\ +B\\g-g*\\ +C\\F-F*\\

for \z — z0\ <8/2.

Proof. Let 8* = 8/2. Define the sets £*, S*, S* in the same way we defined the

sets E, S, S0 in the proof of Theorem 2.1, only in terms of 8* in place of S. Require

g* to be so close to g that g*(E*)<=E*, and require F* to be so close to F that

|| F* || £ (3/2)||F || = (3/2)M. Finally, require | h>* - w01 < b/4. Then U* = U(wt, g*, F*)

defined by

(2.3*) U*fi(z) = w* + Ç F*(t,f(Q,f(g(l))) dí

maps S* into itself.
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Indeed, U* is defined on S* because g* maps P* into itself. And fe S* implies

U*feS* because

\U*f(z)-w0\ ú \U*f(z)-wî\ + \wt-w0\

^83        0       b   3        b     ,
= 2 2M+4 = 2M2M+4 = b

if |z-z0|<8/2.

Next, by requiring F* to be sufficiently close to P, we can make the Lipschitz

constant L* ̂  2L. Then

\U*fi(z)-U*f2(z)\ g (S/2).2P||A-/2| - 8L||A-/2||,

so U* is a contraction operator with contraction constant 8L< 1. It follows that

for (w*,g*,F*) sufficiently close to (w0,g,F), (2.1*) has a unique solution/*.

We now apply the lemma to conclude that

lf-f*l^Y^8L\\uf-u*f\\

+ If" F(Ua)J(g(0))di-\Z F*tt,M),ñg*tt)))dÍ

Adding and subtracting J*o P(£,/(0>/(#*(£))) d£, we find that the second term in

the brace is majorized by

(2.5) |z-z0|-L     sup     |/(g(0)-/(g*(0)| + |z-z0|-||P-P*|.
It - ï0l < <J/2

Now

I ro(0

\f(g(0)-f(g*(0)\ = f\t)dt

Í K\g(0-g*(0\ Ú K\\g-g*\\,

where P=sup|t_2o|<ö/2 |/'(0| <0°. Combining these inequalities we have

WI í Y^L l^-w*l + i387 »^-^H+T^Z l'-^l.

establishing (2.4) and completing the proof of the theorem.

Analytic dependence. Suppose that the function P also depends on a complex

parameter A, and that this dependence is analytic for A e Q. Then the solution

m of

(2.6) f'(z) = F(z,f(z),f(g(z)); A),      f(z0) = w

is analytic in A for A e Í2. Also the solution, considered as a function of the initial

value w, is an analytic function of w. To prove these facts we need another lemma

about contraction operators.
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Lemma 2.4. Let X be a Banach space. Let {t/J be a family of contraction operators

on X, defined for the complex parameter X in a neighborhood of X0. Suppose that the

operator-valued mapping X —> Ux is analytic in X and that the contraction constants

aA are all S « < 1 for X in a neighborhood of X0. Then the fixed point fK depends

analytically on X.

Proof. Let h be an arbitrary element in X. Then the fixed point fi is given by

(2.7) A = h+ f (Ur'-Ufih = h+f hn(X).
n = 0 rt = 0

Now for A close to A0, hn(X) is analytic, and the contraction constant aA of Ux is

áa<l, so |AB(A)|| ^ \\Ul(UÁh-h)\\ S«*|Uhh-h\\. It follows by the Weierstrass M

test that the series (2.7) is uniformly convergent, and so fi is an analytic function

of A.

Theorem 2.5. Suppose that the junction F(z, u, w; X) depends analytically on A

for X e Q. Then the solution fi(z) of (2.6) depends analytically on Xe SI for \z — z0\

< 8/2. Also for \z—z0\ < 8/2 the solutions f(z, w, X) is analytic in w.

Proof. Consider the operator UK defined on S* by

(2.8) UJ(z) = w+ |" Ftt,f(0,f(g(0); A) dt,

where F(z, u, w; X0)=F(z, u, w). Then if A is sufficiently close to A0, FA is sufficiently

close to F that the Lipschitz constant LA^2L. It follows as in the proof of Theorem

2.3 that the contraction constant aK^8L< 1. Finally, UA is analytic in A, for by

(2.8) it is evident that Uxf is analytic in A for every/e S*■ Now we merely have to

apply the lemma. A very similar argument proves that/is analytic in w.

3. Indifferent fixed point. In this section we generalize Theorem 2.1 by weaken-

ing the hypothesis concerning the fixed point of g. The only place in the proof of

Theorem 2.1 where we required the fixed point to be attractive was at the very

beginning, where we inferred the existence of a S^O such that g(2?r(z0))<= Br(z0)

for 0^r< 8j. Now by a result of Siegel, for all attractive fixed points and "most"

indifferent fixed points, g is conformally equivalent to a function which does map

small discs about z0 into themselves, and the local existence proof will go through.

Definition. A fixed point z0 of the analytic function g is said to be stable if it

lies in the interior of a proper simply connected open set U that is mapped into

itself by g.

Let z0 be a stable fixed point. Let </> be a conformai map of U onto the unit disc

A which takes z0 to the origin. Let G=<tj °g ° <rS_1 be the map of A into itself

induced by g. Now G(0) = 0, and by Schwarz' lemma either \G(w)\ < |w| for w e A

or else G(w) = aw, \a\ = 1. In the first case 0 is an attractive fixed point of G, and in

the second case 0 is an indifferent fixed point. In either case G maps all small discs

about the origin into themselves.
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Theorem 3.1. The hypotheses of Theorem 2.1 may be relaxed to permit the fixed

point of g to be merely stable, and the conclusion will remain valid.

For we may transform the FDE into an equivalent equation on the unit disc,

and here small discs about the fixed point are mapped into themselves by g. Hence

the proof of Theorem 2.1 will go through. We then transform back to get a solution

of the original equation.

What happens in the neighborhood of a nonstable indifferent fixed point? An

analytic solution may well fail to exist, as the following example shows. Let

g(z) = z + z2 and consider the FDE

(3.1) f'(z)=f(z + z2).

Then z=0 is a nonstable indifferent fixed point, and any formal power series

solution about 0 is, up to a constant multiple,

(3.2) f(z) =  2 un*"
n = 0

where a0=l and

an = -|an_1 + ri   W„-2+r 2  ja»-3+---

1           «-2           („_3)(„_4)
= «a-1+— a-* +-2«-a-3+'-'

(«-3)(»-4) ,     „
>--fn- Cn'3       (/2>3)-

Therefore an/an _3->oo as «->oo and so ~2.a3nz3n has radius of convergence 0.

Hence also 2 anzn has radius of convergence 0, and no nontrivial analytic solution

of (3.1) exists.

We close this section by mentioning some criteria for an indifferent fixed point

to be stable. We have shown that a function about a stable indifferent fixed point

is conformally equivalent to a rotation, and the converse is obvious. Let z0 be an

indifferent fixed point of the function g(z). Set a=g'(z0), so |a| = l. If an=l the

fixed point is stable iff gn(z)=z. (See Cremer [1]; here the iterates gk of g are

defined by gi(z)=g(z) and gfc+i(z)=g(gk(z)).) If a is not a root of unity, stability

depends on quite delicate arithmetic properties of a, involving how "nearly" a is a

root of unity.

In particular there are the following two results. Siegel [10] showed that

log [ <x" — 11 = 0(log «) implies stability. This condition holds for almost all points

a. on the unit circle, and thus "most" indifferent fixed points are stable. On the

other hand, if a satisfies liminf,,-,*, |a"-l|1,n = 0, then there exists an analytic

function g with g(z0) = z0, g'(z0) = a, such that z0 is not a stable fixed point

(Cremer [1]).
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4. Repulsive fixed point. Perhaps the most interesting aspect of the local

theory is the question of the existence of solutions of (2.1) in a neighborhood of a

repulsive fixed point of g(z). At first glance we might hope for a nice symmetrical

result when a solution exists: around an attractive fixed point, always; in-

different fixed point, sometimes; repulsive fixed point, never. This conjecture is,

however, quickly refuted by a simple example. The FDE

(4.1) f'(z)=f(2z-z2)

has a solution f(z) = 1/(1— z) which is analytic around the repulsive fixed point

z = 0 of the function g(z) = 2z — z2.

There is one notable difference between the above solution to (4.1) and a solution

to (2.1) around an attractive fixed point. The solution to (2.1) depends continuously

on the functions F and g; if we perturb either slightly the resulting equation will

still have a solution, which is close to the solution of the original equation. But

for (4.1) neither fact is true. We can perturb either F or g by an arbitrarily small

amount in such a way that the solution disappears altogether. Indeed, we shall see

that the equations

(4.2) f'(z) = (\+e)f(2z-z2)

and

(4.3) /'(z)=/(2z-(l+e)z2)

do not have analytic solutions about 0 if e is any sufficiently small nonzero number.

We consider the linear equation

(4.4) /'(*) - a(z)f(g(z))

where a(z) is analytic about the repulsive fixed point z0 and a(z0) ̂  0. We will show

that if (4.4) has an analytic solution about z0, then the perturbed equation

(4.5) f'(z) = (l+e)a(z)f(g(z))

does not, for e a small nonzero number. We prove this by introducing the eigen-

value problem

(4.6) f'(z) = Xa(z)f(g(z))

where we are to find A#0 such that (4.6) has a nontrivial solution analytic about z0.

We show that the nonzero eigenvalues are all isolated. Once we know this we can

apply perturbation theory to get out a number of other results.

An eigenvalue X = X(g) depends continuously on the function g. In fact, if g=gs

depends analytically on some complex parameter s, then A will be an analytic

function of s. Thus if 1 is an eigenvalue of (4.6) for s=s0, then 1 will not be an

eigenvalue for 0< |s—i0| <«> unless X(s) is constant. Thus if A(í) is not a constant

we can say that perturbing g in (4.4) does indeed make the solution disappear. For

example, the eigenvalue X(s) in f'(z) = X(s)f(2z—sz2) is not constant; it is X(s)=s,
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with eigenfunction/(z) = l/(l— sz). This shows that 1 is not an eigenvalue for s

close to but unequal to 1 ; hence (4.3) has no solution for s a small nonzero number.

Now the fact that the eigenvalues of (4.6) are isolated establishes at once that

suitably perturbing the coefficient a(z) annihilates a solution. If we could show that

for some analytic perturbations of g the eigenvalue does not remain constant, then

it would follow that suitably perturbing g annihilates a solution. This may well be

true, but we have not been able to prove it. However, what really seems significant

is not the negative assertion that any solution of (4.4) is "singular" in the sense

that perturbing the equation destroys the solution, but rather the positive assertion

that, at least for some functions g, equation (4.6) does have a nonzero eigenvalue.

It is somewhat remarkable that a functional differential equation such as (4.6) does

determine an eigenvalue problem with discrete spectrum, without any boundary

condition being imposed.

After this general discussion we now state the main theorem of this section.

Theorem 4.1. Let z0 be a repulsive fixed point of the analytic function g(z). Let

a(z) be analytic in a neighborhood ofz0, and suppose a(z0) # 0. Then the set of complex

numbers Xfior which (4.6) has a nontrivial solution is a set having no accumulation

point, except possibly A = 0. The eigenspaces corresponding to these X are all one

dimensional.

Proof. Since |g'(z0)| > 1, in a neighborhood of z0 the function g(z) has an inverse

h(z), which has z0 as an attractive fixed point. Let p(z) = a(z)f(g(z)). Then (4.6) is

equivalent to

(4.7) (£oh}(z) = Xp(z).

Pick numbers R>r>0 so small that h(z) and a(z) are analytic on BR(z0),

Cl (h(BR(z0)))^Br(z0) and a(z)^0 on Cl (BT(z0)). Let X be the Banach space of

functions analytic on Br(z0), continuous on Cl (Br(z0)), with sup norm. Define an

operator T=T2T1: X-> X by

(4.8) p^E^(Poh)'.
Tx   a T2   \a     )

We show that the operator T is compact. This will prove the theorem, since a

compact operator has discrete spectrum, and the eigenvalues of T are precisely

those A for which (4.6) has a nontrivial solution. The operator Tx is continuous,

so it will suffice to prove that T2 is compact.

Let {qn} be a bounded family of functions in X, i.e. \\qn\\ ¿M. Then {T2qn} is a

compact family. Indeed it is uniformly bounded :

Un   .hVMl  -   I   *     f gnWO) jy MR

= (R-r)2
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for all z in Cl (Br(z0)). And also equicontinuous:

(qn(hg)))(2t + z2-Zi)(Zi - z2)
\(qn°h)'(Zi)-(qnoh)'(z2)\ =

2»ijjti-* "* "a-zirâ-zS21~

^ MR(2R + 2r)
-      (R-ry      |Zl_Za|

for all Zi, z2 e Cl (Pr(z0)). Hence by the Arzela-Ascoli Theorem the family {T2qn}

is compact.

Finally note that the eigenspaces are one dimensional. For the solution of (4.6)

for a given A is unique up to a constant multiple (if it exists), by Theorem 1.2.

Now that we have shown that the eigenvalues of (4.6) are actually the eigen-

values of a certain compact operator, all the facts we mentioned above about

continuous and analytic dependence of a given eigenvector follow immediately

from the theory of perturbation of a linear operator. (See [4, Chapters IV and VII].)

Indeed, if g varies continuously or analytically, it is easy to see that T— and hence

the eigenvalues of T—varies continuously or analytically. In particular we have

the following result. Suppose (4.6) has a nontrivial solution for some A/0. Then

if we perturb g slightly the eigenvalue X(g) will move only slightly, and so the per-

turbed equation will still have a nonzero eigenvalue.

5. Attractive cycles. There is a situation besides that of a fixed point for which

there is a meaningful local existence problem for functional differential equations.

That is the case of a cycle, i.e. a set of points z„, zx,..., zn_! such that zi=g(zi.1)

and zn=z0. If we specify/(z) arbitrarily in a neighborhood of z0, then/(z) is deter-

mined by the FDE successively over neighborhoods of g(z0), g2(z0),... and finally

over a neighborhood of gn(z0) = z0. The new definition of/(z) around z0 must agree

with the old, and so there is a relation that must be satisfied.

Let g be analytic at the point z0 and at its image points zn. If « is the smallest

integer such that zn = z0 we say that z0 is periodic of order «. The points

(z0, Zi,...,zn_i) are then said to form a cycle of order n. The number s=g'n(z0)

=g'(zo)g'(zi) ■ ■ -g'(zn_i) is the multiplier of the cycle. The cycle is attractive if |i | < 1,

repulsive if \s \ > I, and indifferent if |j | = 1. If A=A0 is a domain containing z0 we

define Ai=g(A0),..., Ai=g(Ai^1)=gi(Ao). A neighborhood of the cycle

(z0, Zj,..., zn_i) is an open set (in general disconnected) containing each of the

points Zj.

Theorem 5.1. Let (z0, z1;..., zn_i) be an attractive cycle of order n of the

analytic function g. Suppose that F(z, w) is analytic near

{(Z0, C0), (Zj, Ci), ..., (Zn_!, Cn-i)},

where ct (i=0,1,...,»—1) are complex numbers. Then there exists a neighborhood

EQ ofz0 such that for z e E* = EQ u- • -u P„_i the equation

(5.1) f'(z) = F(z,f(g(z)))
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has a unique solution satisfying

(5.2) fi(Zi) = ct       (i = 0,1,...,n-l).

Proof. We require the following notation. Let D be a domain (open connected

set) containing the point z0. For z e D define

S(z, z0) = inf {|ff[ : a is an arc connecting z0 to z}

where \a\ is the length of the arc a, and set 2(Z), z0) = sup¿eD E(z, z0).

Lemma 5.2. Let g be analytic on D. Suppose that 2(Z), z0) < oo and

*=sup2eD \g'(z)\ <oo. Ifa?» S(g(2)),s(z0))£tf2(A z0).

Proof. Let w=^(z). Then

g(a) =  f      \dw\ =  f  \g'(z)\ \dz\ á *|a|.
Js(it) Ja

Therefore £(g(z), g(zo))= |g(CT)l =-^kl for all arcs a connecting z0 to z. Hence

Z(s(z), g(z0)) í KHz, z0) g KZ(D, z0)   for all z e D,

and so

^s(/)U(z0))^/a:(Azo).

Proof of theorem. Choose numbers a>0 and b>0 so that F(z, w) is analytic

for (z, h>) e (J, Cl (5a(Z()) x Cl (Bb(ct)). Let M be the supremum of \F(z, w)\ taken

over this set. Let L be a Lipschitz constant for F valid over this set. Choose a

neighborhood D of z0 so small that Di^Ba(z,) (i=0, 1,.. .,«-1) and A„c=A for

all discs A about z0, Ac£). (The second condition can be imposed because the

cycle is attractive. Recall that D¡=g¡(D).) Set D* = D u Dx u- • u Dn_u

K=supzeD> |g'(z)l- Now pick r>0 so small that

(i) E0=Br(z0)^D,

(ii) r<b/Kn~1M,

(iii) r<l/LK(n~1)l2.

Let X be the space of functions/that are analytic on E0, continuous on E0, and

satisfy \fi(z) — c0\ ¿b for z e /To. Give X the sup norm. Define an operator U of X

into itself as follows.

For/analytic on E0 define /„_i on £„_! by

/B_1(z) = cB_1+f     F(U(g(0))di

and inductively define/ on £¡ by

/(z) = c(+rFa,/ + 1(g(0))^.
Jz,

Doing this successively we finally get /0(z) defined on E0. To make sure that this
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definition makes sense we must verify that the functions/ stay in the proper range

|/(z)-c¡| ^b. Indeed, given that |/(z)-c0| úb we have

\fn-i(z)-Cn_i\s\r F(t,f(g(o))di

S 2(P„-i, zn_i)M <, ^"-^(Po, z0)M   by the lemma.

Now E0 is the disc Br(z0), so S(P0, z0) = r. Hence \fn-i(z)-cn-i\ ^Kn~1rM^b by

(ii). We find by induction [/¡(z)-cf| ^K'rM^b (i=0, 1,..., n-1).

Thus all the functions/ are well defined. In particular/,, which is analytic on P0,

is defined. The mapping/^-/, determines a mapping U of the space A'into itself.

We now show that £/is a contraction operator. For \z—z0\<r,

|/n_1(z)-/n*_1(z)| ú^(En_i,zn_i)L\\f-f*\\ £ K«-hL\\f-f*\;

l/n-2(z)-/n*-2(z)|   Ú S(Pn_2,Zn-2)P||/n_!-/»*-i\\

<: K^^LK'-hLWf-PW = ^n"2Ä:',-1(/-P)2|/-/*||.

Continuing, we find by induction that

|/0(z)-/o*(z)| Ú K«-™(rLY\\f-f*\\ = c||/-/*||

where c < 1 by (iii).

Thus U is a contraction mapping of the complete metric space X into itself. It

follows that U has a unique fixed point, which is the solution of our equation.
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