
transactions of the
american mathematical society
Volume 344, Number 2, August 1994

COMPLETELY CONTINUOUS COMPOSITION OPERATORS

JOSEPH A. CIMA AND ALEC MATHESON

Abstract. A composition operator Tbf = f o b is completely continuous on

H1 if and only if \b\ < 1 a.e. If the adjoint operator Tg is completely

continuous on VMOA , then 7¿ is completely continuous on Hl . Examples

are given to show that the converse fails in general. Two results are given

concerning the relationship between the complete continuity of an operator and

of its adjoint in the presence of certain separability conditions on the underlying

Banach space.

1. INTRODUCTION

There are sharp function theoretic criteria for determining when a holomor-

phic composition operator Tb acting on the Hardy space Hp is compact [Shi],

[Sh2]. It is also known that if such an operator is compact on one such space

then it is compact on all the spaces [ST]. Recently J. H. Shapiro and C. Sundberg

[SS] proved that if such a composition operator Tb is compact on the Hardy

space Hx of the unit disk D then the operator Tb is compact when considered

as an operator on L1 of the unit circle dB. Using this fact, Sarason in [Sa2]

proved that if a composition operator Tb is weakly compact on Hl then it is

in fact a compact operator on this space. An operator F on a Banach space

X is called completely continuous if it maps weakly convergent sequences to

strongly convergent sequences. It is known that every compact operator is com-

pletely continuous [B, p. 143]. In some Banach spaces, including the reflexive

spaces, every completely continuous operator is compact. A Banach space X is
said to have the Dunford-Pettis property if every weakly compact operator on

X is completely continuous. Because of this completely continuous operators

are sometimes called Dunford-Pettis operators [Ro2], [Bl], [B2]. In this paper

we show that although the classes of completely continuous and compact com-

position operators agree on Hp for p > 1 they are not the same on Hx. It

follows from Sarason's result that every weakly compact composition operator

on //' is completely continuous, although it is known that Hx does not have

the Dunford-Pettis property [Di, p. 45].
It will be useful for us to consider the adjoint of Tb and this leads us to a
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characterization of the weakly convergent sequences in VMOA . The impor-

tance of the role of the adjoint is made clear by the following two results of

Sarason [Sal]. He proved that such a Tb is compact on L1 of the circle if and

only if the adjoint Tb* maps L°° into the continuous functions on the circle

and that if the adjoint maps L°° into QC (the bounded VMO functions) then

it maps L°° into the continuous functions. One of the tools used in studying

these problems is the close connection between compactness of T and com-

pactness of the adjoint (or similar properties relating the weak compactness of

T to certain range restrictions of T** acting on the second adjoint). There is
a paucity of such results for completely continuous operators. We prove one

useful result connecting the behavior of completely continuous operators and

their adjoints for separable Banach spaces.
We recommend the books of Conway [Con] and Diestel [Di] for good refer-

ences to this material.

2. Definitions

Let b be a holomorphic function mapping the unit disk into itself. Unless

otherwise noted we will assume without loss of generality that b(0) = 0. The

holomorphic composition operator Tb(f)(z) = f(b(z)) will be denoted by T.

It is a well-known consequence of Littlewood's subordination principle that T

is a bounded linear operator of norm one on the Hardy space Hl. The space

Hx is the dual of the space of holomorphic functions with vanishing mean

oscillation written as VMOA and the dual of Hx is the space BMOA of

holomorphic functions with bounded mean oscillation. We note that Hx is

separable (and that BMOA is not). We will denote the dual pairing between

f £ Hx and y/ £ BMOA by (/, y/) and note only that if y/ is bounded, then
this can be computed as a boundary integral

(f,w) = ̂ ff(ew)wW)de.

We will denote by \\4>\\, the norm on BMOA determined by its role as the

dual space of Hx. We note that this is not the usual norm on BMOA , and, in

particular, if <j> £ BMOA n L°° , then \\<j>\\, < ||<£||oo , because Hx is isometric

to a subspace of L1. Even though the adjoint T* acts on BMOA it can

also be considered as an operator on VMOA and it is shown in [Sal] that

T* restricted to VMOA has range in VMOA, and hence T on Hx is the

adjoint of this restriction. Finally, we will denote by C the space of functions

continuous on the unit circle dB.
We recall the following facts concerning general Banach spaces. If X is a

Banach space and its topological dual X* is separable then the weak * topology

on the second dual X** restricted to any closed ball is metric and hence one

can deal with sequences when discussing convergence in this topology. Also if

X' is the canonical injection of X into X** then X' with the weak * topology

agrees with X with its weak topology. This implies (for X* separable) that
every bounded sequence in X has a weak Cauchy subsequence.

3. Complete continuity on Hx

We begin with a characterization of complete continuity for holomorphic

composition operators on Hx.
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Proposition 1. The composition operator T is completely continuous on Hx if

and only if \b(elt)\ < 1 a.e. on the unit circle.

Proof. Assume first that T is completely continuous on Hx . It is a consequence

of the Riemann-Lebesgue Lemma that the sequence (zn) is weakly null in Hx .

Hence ||è"||i tends to 0, which is impossible if b has modulus one on a set of

positive measure.

Conversely, suppose that \b\ < 1 a.e. Let (f„) be a weakly null sequence in

Hx. Then (f„) tends to zero pointwise in the unit disk and so (/„ o b) tends

to zero pointwise a.e. on the circle. Since (/„ o b) is also weakly null, it follows

from a theorem of Dunford and Pettis [DP, p. 295] that \\fn ob\\x tends to zero.

Hence T is completely continuous.

Remark 1. Note that b(z) = z (^) induces a completely continuous operator

on Hx but the operator is not compact.

It is easy to see that if T is completely continuous on Hx then the adjoint

T* considered as a map on VMOA maps VMOA into itself and we are

interested in whether or not the complete continuity of T implies that of T*

on VMOA. It is important to understand the weakly convergent sequences in

VMOA so we first characterize the weakly convergent sequences in VMOA.

We need a simple consequence of the normality of the unit ball in BMOA.

Lemma 1. Let (y/„) be a bounded sequence in BMOA which converges weak*

to y/. Then (y/n) converges to y/ uniformly on compact subsets of the unit disk.

Proof. It suffices to assume that y/ = 0 and that ||^K||* < 1 for all n. Let

gz(C) = -rz^, so that y/(z) = (y/, gz). Clearly \\gz\\x < -^, so that for

each compact K c D there is a constant CK such that \y/(z)\ < Cjf||^||* for
all y/ £ BMOA . Now for compact K c D, let ô = dis\(K, dB). Then the
sequence (y/n) is uniformly bounded for |z| < 1 — ¿ and converges pointwise

to 0 on K. Hence (y/n) converges uniformly to 0 on K by Montel's Theorem.

Theorem 1. The sequence (y/„) in VMOA is weakly null if and only if it is

bounded and converges to zero uniformly on compact subsets of the unit disk.

Proof. It is clear that (y/„) is weakly null if and only if it is bounded and

converges weak * to zero as a sequence in BMOA . Let Bx denote the unit ball

of BMOA endowed with the relative weak * topology and let B2 be the ball
endowed with the topology of uniform convergence on compact sets. Since Hx

is separable, Bx is metrizable. It is clear that B2 is metrizable. It then follows
from Lemma 1 that the identity map from Bx to B2 is continuous. Since Bx

is compact, this map is a homeomorphism.

As an example we mention that (zn) converges weakly to zero in VMOA .

Lemma 2. Let E = {eil \ \b(eil)\ = 1}. Then

l\m (T*bn, zn) = \E\.
n—>oo

Proof. It is enough to note that

(T*bn , z") = (b" ,bn) = ±- i \b(ei6)\2n dd,
2n J_n

and apply the bounded convergence theorem.
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We now prove the one positive implication between T on Hx and T* on

VMOA.

Theorem 2. With E as above, if T*: VMOA —► VMOA is completely continu-
ous, then \E\ = 0 and hence T is completely continuous on Hx.

Proof. Let a„b denote the «th Cesàro mean of b, so that anb £ C and

IMHoo < Halloo < 1- Thus \\anb\U_ < 1. If br(ew) = b(reie), then it
is easy to see that a„b(re'e) = a„br(e'e), so that for fixed r, \a„b(re'e)\ <

supe \b(re'e)\. Hence if (n¡f) is any increasing sequence of integers, it fol-

lows that (o~nkb)k converges uniformly to zero on compact subsets of the unit

disk, and hence weakly in VMOA . Since T* is completely continuous, it fol-

lows that ||T*(a„kb)k\\, -> 0. If eie is a point at which \b(eie)\ < 1, then

\a„kb(eie)kb(eie)k\ < \b(ew)\k - 0, so

1
lim

k—>oo M I onkb(ela)kb(ew)kdd = 0.

dB\E

Now assume the \E\ > 0. Then there is a subsequence (a„kb) which con-
verges to b a.e. By Egoroffs Theorem, there exists Ex c E with \EX\ >

(1 - j) \E\ such that a„kb —> b uniformly on Ex . Hence there exists kx such

that \a„kb - b\ < 1 on E\ if k > kx . Again, by Egoroffs Theorem, there exists

E2, Ex C E2 c E, with \E2\ > (1 - 5) \E\ such that a„kb -> b uniformly on

E2. Hence there exists k2 > kx such that \a„kb - b\ < ^ on E2 if k > k2.

By induction there is a sequence of subsets Ex c E2 c • • • c E such that

\Ep\ > (1 - f+t)I^I ^or eac^ ^ ' an(* sucn tnat °nkb ~* ^ uniformly on E¡

and a sequence of integers kx < k2 <

k > k„ . Hence

such that \an¡b b\<
p '

on Ep if

(onkb)pbp\ = \bp-(ankpbf

= \b-(an.b)\

p-\

7=0

"ko

\p-\-j

1 1
p=-p

on £■„. Thus

¿JS ft)'*" < -l£0l <

Since \E \EP\ < -^ and |(<7njk b)b\ < 1, it follows that

J_
2t7/>

b)pbp <
3

Thus
1 r

hm — /    (<7„tb)pbp = \E\,

but

|J_
277\\onkb)pbp

J—lt
((a„kb)p, Tzp)\ = \(T*(onkb)p,zp)\ < \\T*(ankb)p
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and \\T*(a„k b)p\\, —> 0, contradicting the assumption that |.E| > 0.

We next construct examples to show that the converse of Theorem 2 is not

valid and it is necessary to work out the action of T* on functions in VMOA .

Lemma 3. For \z\ < 1, and b:A —*■ A, a holomorphic mapping with b(0) = 0,
we have

r2n       f{ei8}i   rn
de.

zb(eie)

Proof. Let gz(w) = -^ , so that f(z) = (/, gz). Then formally,

T*f(z) = (T*f, gz) = (f, gz ob) = ¿ f f(eie)--1—de,
2n J_n i _ zb(e'e)

and this is easily justified for |z| < 1.

For 1 < A < oo let SA(z) - A-ia-\)z • Then SA is a linear fractional trans-

formation taking 0 to 0 and mapping the unit disk B onto the disk B(a, 1 - a)

of center a and radius 1 - a, where a = j^ . A short computation shows

that S a o Sb = SAb • In particular, if Tg is completely continuous and B > A,

then T£b is also completely continuous, since Sb — SA ° SB-a and complete

continuity is an ideal property. Conversely, if 7^* is not completely continuous,

then T$   is not completely continuous for 1 < B < A.

Lemma 4. If f(z) = zh(z), then

Proof. This follows from Lemma 3 and the Residue Theorem. Indeed,

-^\—de
_l_ r*

~2¿J-nl

= -L[
2m Ju

' Aeie-(A-\)

C-^ /(C)
iCHC-«í=i±i   r dC

A

= 1>
{^-)

Lemma 5. The operator Tg   is not completely continuous.

Proof. If f(z) = zh(z), it follows from Lemma 4 that

o/w-HH1)
The powers z" form a weakly null sequence of norm one functions in VMOA ,

so it will suffice to estimate the norms of the functions T$ zn = j¿(l + z)"~x.

Let Km(e") denote Fejér's kernel,

k=m
~iktW)-±(>-Ä) <?'
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Then Km(eu) > 0 and ¿ J*nKm(e") dt = 1, so \\Km\\x = 1. Next, let

Vm(e'') = 2K2m+x(eit)-Km(eit). Then ||Km||i < 3 , Vm has nonnegative Fourier

coefficients, which are equal to 1 for -m < k < m, and has degree 2m + 1
as a trigonometric polynomial. Finally, let Wm(e") = e'{-lm+x'>tVm(elt). Then

Wm £ Hx, ||W»!Hi = \\Vm\\ < 3, and Wm has nonnegative Taylor coefficients

which are equal to one form + l<rc<3w+l. Suppose n is even and

m — n/2. Then 3m + 1 > n , and it follows that

<^-»>4£(V)^£(V)4
k=m  v y Jt=0 X 7

Thus

\ < (T*S2z\ Wm) < 11^11,117^2*11. < 31173,*!..

Hence ||7jZ"||. > j¿ for even n , and so T£2 is not completely continuous.

4. Failure of complete continuity

We have noted that Lx has the Dunford-Pettis property and we recall two

results of J. Bourgain [Bl] to the effect that a bounded linear operator R on

L1 into a Banach space Y has the Dunford-Pettis property if and only if Rip

is a compact operator ( ip is the canonical injection of LP into Lx ) for some
1 < p < oo (or if and only if Ri^ is compact). He also proves that if a

bounded linear operator on Lx fails the Dunford-Pettis property then there is

a measurable subset Q of [0, 1] and a weakly null sequence (gn) in Lx and

e > 0 satisfying |Q| > 0, ||g„||i = 1 with

\imsup\\R(fgn)\\>e\\f\\x
n—>oo

if / is in Lx (Q) and / > 0. We have an analogue of this.

Theorem 3. Let X be a separable Banach space and T: X —» X a bounded linear

operator which is not completely continuous but whose adjoint T* is completely

continuous. Then there is a sequence (<f>„) of unit vectors in X* and ô > 0 such

that (</J„) converges to zero weak*, (<f>„) has no weak Cauchy subsequences, and

IIT^n|| > Ô for each n . Moreover, T*<f>„ also converges to zero weak*.

Proof. Because T is not completely continuous, there is a weakly null se-

quence (f„) in X and an e > 0 such that ||77¡,|| > e for each n. For

each n , the Hahn-Banach Theorem produces cf> £ X* such that ||0„|| = 1, and

\4>nTfn\ > e • Since X is separable, the unit ball of X* is metrizable in the
weak* topology, so (<f>„) has a weak* convergent subsequence. Thus, passing

to a subsequence if necessary, we may assume that tf>„ ̂  <f>. Since (f„) is

weakly null, there is a positive integer 7Y such that \T*4>fn\ = \<f)Tf„\ < | if

n> N. Then

\<Un-<t>)Tfn\<\\T\\-\\(j>n-<l>\\

for n > TV. In particular, ^ < ||0„ - 0|| < 2. Let y/n = ^5^ for n>N.

Then \\y/n\\ = 1, y/n ̂ 0, and

for n > N. Let ô = f . Then
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à < \WnTfn\ = \T*yynfn\ < \\T*y/n\\

for n > N. In order to complete the proof, assume that (y/n) has a weak

Cauchy subsequence. Passing to a subsequence if necessary, we may assume

that (y/„) is itself weak Cauchy. Let «■ = 1. Since (fn) is weakly null, there

exists n2 > «i such that \T*y/nif„z\ < |. Then

s

2 < \T*(Vn2 - ¥n,)fn2\ < \\T*(y/ni ~ W,,)||,

because \T*yinJni\ = \y/mTf„2\ > ô. Choose «3 > "2 so that |r*^„2/„3| < § .
Then again

2 < |y*(^3 - ^/»sl ^ llr(^3 - «"«J

so that § <We can continue inductively to produce nx < n2 < «3 < •

\\T*(Vnk+i - W)ll for all k . But ^+1 - y/„k is weakly null, so this contradicts
the assumption that T* is completely continuous. Finally, the last observation

is obvious.

Remark 2. Since (y/n) has no weak Cauchy subsequence, it follows from (the

complex version of) Rosenthal's lx Theorem [Rol], [Dor] that some subse-

quence of (y/„) is equivalent to the usual unit vector basis of lx. Passing to

this subsequence and reindexing, there is an e > 0 such that for any n and

scalars ax, ... , a„ we have

£
/=i

a,\< ¿Z^w
1=1

<ï>«i

;=i

Of course, the last inequality is free. Hence if \b(e'')\ < 1 a.e. and T*: VMOA

-> VMOA is not completely continuous, there is a sequence (f„) of functions

in Hx and positive numbers e > 0, ô > 0 suchthat ||/„||i = 1 and ||/«°¿>||i >

ô for all n , and such that for any n and scalars ax, ... , a„ we have

n

¡=i

!>/<

(=1

Finally, as we noted, we have been unable to locate general results on the
connection between complete continuity of an operator and complete continuity

of its adjoint. The following result provides one such connection (and it also

yields a proof of one of our earlier theorems).

Proposition 2. Let X be a Banach space with separable dual X* and let T: X —*

X be a completely continuous operator. Then T*:X* —> X* is also completely

continuous.

Proof. Assume that T: X -> X is completely continuous, but T* is not. Then

there is a weakly null sequence (</)„) in X* and a ô > 0 such that ||r*r/>„|| > ô

for all n. For each n, choose f„£X with ||/„|| = 1 such that \T*(f)nfn\ >
ô. Let q: X —► X** be the canonical imbedding. Since X* is separable, the

unit ball of X** is metrizable in the weak * topology and hence the bounded

sequence (qfn) has a weak* convergent subsequence. Reindexing if necessary

we may assume that (qfn) converges weak* to F £ X**. Let «1 = 1. Since

T*(j>„ is weakly null, there exists n2 > n\ suchthat |r*f7j>„2/„,| < §. Inductively,
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suppose «i < «2 < ■ ■ • < nk have been chosen. Choose nk+l > nk so that

\T*<p„k+J„k\ < f . Let /„„ = 0, and for k > 1 let gk = /„, - f„k. Then (gk) is
weakly null and

s

\T*<t>nkgk\ = \T*4>nkfnk - T*<j>„kfnk_^\ > -r.

But

\T*Kgk\ = \KTgk\<Unk\\\\Tgkl
and lir^ll -+ 0 since T is completely continuous. This is the desired contra-
diction.

Remark 3. The separability of X* is crucial. Indeed, the identity operator on

lx is completely continuous. This is just a restatement of the fact that lx has

the Schur property [Di, p. 85]. The adjoint operator is the identity operator on

/oo , which is not completely continuous. Similarly, the identity operator on en

is not completely continuous, but its adjoint, the identity operator on lx, is.
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