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ON QUASICONFORMAL MAPS

WITH IDENTITY BOUNDARY VALUES

V. MANOJLOVIĆ AND M. VUORINEN

Abstract. Quasiconformal homeomorphisms of the unit ball Bn of Rn, n ≥ 3,
onto itself with identity boundary values are studied. A spatial analogue of
Teichmüller’s theorem is proved.

1. Introduction

For a domain G ⊂ R
n, n � 2, let

Id(∂G) = {f : Rn → Rn homeomorphism : f(x) = x, ∀x ∈ Rn \G}.

Here Rn stands for the Möbius space R
n ∪ {∞} . We shall always assume that

card{Rn \G} ≥ 3. If K � 1, then the class of K-quasiconformal maps in Id(∂G) is
denoted by IdK(∂G). Throughout this paper we adopt the standard notation and
terminology from Väisälä’s book [V]. In particular, K-quasiconformal maps are
defined in terms of the maximal dilatation as in [V, p. 42] if not otherwise stated.
The maximal dilatation of a homeomorphism f : G → G′ where G,G′ ⊂ R

n are
domains, is denoted by K(f) .

The subject of this research is to study the following well-known problem.

1.1. Problem. (1) Given a, b ∈ G and f ∈ Id(∂G) with f(a) = b, find a lower
bound for K(f).

(2) Given a, b ∈ G, construct f ∈ Id(∂G) with f(a) = b and give an upper
bound for K(f).

O. Teichmüller studied this problem in the case when G is a plane domain with
card(R2\G) = 3 and solved it by proving the following theorem with a sharp bound
for K(f).

1.2. Theorem. Let G = R
2 \ {0, 1}, a, b ∈ G. Then there exists f ∈ IdK(∂G) with

f(a) = b iff

log(K(f)) � sG(a, b),

where sG(a, b) is the hyperbolic metric of G.
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Motivated by a question of F.W. Gehring, J. Krzyż [K, Theorem 1] proved the
following theorem. See also Teichmüller [T] and Krushkal [Kr, p. 59]. Write
Bn(r) = {x ∈ R

n : |x| < r} and Bn = Bn(1).

1.3. Theorem (Krzyż [K, Theorem 1]). For f ∈ IdK(∂B2) the sharp bounds are

(1.4) |f(0)| � μ−1

(
log

√
K + 1√
K − 1

)
≡ c1,

where μ is the function defined in (2.4) and

(1.5) tanh
ρB2(f(z), z)

2
� c1

for every z ∈ B2, where ρB2 is the hyperbolic metric defined in Lemma 2.1.

The constant c1 in (1.4) is quite involved. It is hard to see how it behaves in
the crucial passage to limit K → 1 . Therefore we give an explicit bound for this
constant.

1.6. Lemma. The constant c1 in (1.4) satisfies for K > 1,

K − 1

K + 1
< c1 < 2

K − 1√
K + 1

.

Later studies of this topic include the paper of G. Martin [M]. He formulated
a question of the same type as Gehring did, but for general plane domains. This
question was solved in the negative, at the same time by A. Solynin and M. Vuorinen
[SV] and H. Xinzhong and N.E. Cho [XC].

Our goal here is to study the n-dimensional case.
For any proper domain G ⊂ R

n we consider the density ρ(x) = 1
d(x,∂G) , x ∈ G.

The corresponding metric, denoted by kG [GP], is called the quasihyperbolic metric
in G. Thus, for x, y ∈ G,

kG(x, y) = inf
γ

∫
γ

ρ ds,

where the infimum is taken over the family of all rectifiable curves γ in G joining
x to y.

Gehring and Palka [GP] proved the following upper bound for Problem 1.1.
Presumably this bound could be improved.

1.7. Theorem ([GP, Lemma 3.1]). In Problem 1.1 (2) we can choose K(f) �
exp(c2kG(a, b)), where c2 > 0 only depends on the dimension n.

In the case of uniform domains with connected boundary, a lower bound was
given by the second author in [VU1]; see Theorem 3.2 below. For the case of the
unit ball this problem was studied by G.D. Anderson and M.K. Vamanamurthy
[AV], who found the following counterpart for Theorem 1.3 for dimensions n ≥ 3.
Note, in particular, that here they use the linear dilatation and that an additional
symmetry hypothesis is required. They conjectured on p. 2 of [AV] that the result
also holds without this additional hypothesis.

1.8. Theorem ([AV]). For f ∈ Id(∂Bn) with the linear dilatation H(f) = K (cf.
[V, p. 78]) we have

|f(0)| � c1,

where c1 is as in (1.4) provided that f satisfies a certain symmetry hypothesis.
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The goal of this paper is to prove the following theorem where no extra symmetry
hypotheses are required.

1.9. Theorem. If f ∈ IdK(∂Bn), then for all x ∈ Bn,

ρBn(f(x), x) � log
1− a

a
, a = ϕ1/K,n(1/

√
2)2,

where ρBn is the hyperbolic metric defined in Lemma 2.1 and ϕK,n is as in (2.10).

1.10. Theorem. If f ∈ IdK(∂Bn), then for all x ∈ Bn, n ≥ 2, and K ∈ [1, 17]

(1.11) |f(x)− x| ≤ 9

2
(K − 1) .

For n = 2 and K > 1 we have

(1.12) |f(x)− x| � b

2
(K − 1), b � 4.38.

The theory of K-quasiregular mappings in R
n, n ≥ 3, with maximal dilatation

K close to 1 has been extensively studied by Yu.G. Reshetnyak [R] under the
name “stability theory”. By Liouville’s theorem we expect that when n ≥ 3 is
fixed and K → 1 the K-quasiregular maps “stabilize”, become more and more
like Möbius transformations, and this is the content of the deep main results of
[R] (see p. 286). We have been unable to decide whether Theorem 1.9 follows
from Reshetnyak’s stability theory in a simple way. V. I. Semenov [S] has also
made significant contributions to this theory. For the plane case, P. P. Belinskii has
found several sharp results in [Be].

Finally, it seems to be an open problem whether a new kind of stability behavior
holds: If K > 1 is fixed, do maps in IdK(∂Bn) approach identity when n → ∞?
Our results do not answer this question. This kind of behavior is anticipated in
[AVV, Open problem 9, p. 478].

2. Preliminary results

We shall follow the terminology of [V], where, for instance, the moduli of curve
families are discussed. For the hyperbolic metric ρBn of the unit ball Bn our main
reference is [B]. In the next lemma we give the useful estimate (2.3) for it. Some
applications of (2.3) were given in [VU2, pp. 141-142]. Very recently, Earle and
Harris [EH] have given several applications and extended this inequality to other
metrics such as the Carathéodory metric.

2.1. Lemma. For x, y ∈ Bn let t =
√
(1− |x|2)(1− |y|2). Then

(2.2) tanh2
ρBn(x, y)

2
=

|x− y|2
|x− y|2 + t2

,

(2.3) |x− y| � 2 tanh
ρBn(x, y)

4
=

2|x− y|√
|x− y|2 + t2 + t

,

where equality holds for x = −y.

Proof. For (2.2) see [B, p. 40]; for (2.3) see [VU2, (2.18), 2.27]. �
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Next, we consider a decreasing homeomorphism μ : (0, 1) −→ (0,∞) defined by

(2.4) μ(r) =
π

2

K(r′)

K(r)
, K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

,

where K(r) is Legendre’s complete elliptic integral of the first kind and r′ =√
1− r2, for all r ∈ (0, 1).
The Hersch-Pfluger distortion function is an increasing homeomorphism ϕK :

(0, 1) −→ (0, 1) defined by

(2.5) ϕK(r) = μ−1(μ(r)/K)

for all r ∈ (0, 1), K > 0. By continuity we set ϕK(0) = 0, ϕK(1) = 1. From (2.4)

we see that μ(r)μ(r′) =
(
π
2

)2
and from this we are able to conclude a number of

properties of ϕK . For instance, by [AVV, Thm 10.5, p. 204],

(2.6) ϕK(r)2 + ϕ1/K(r′)2 = 1, r′ =
√

1− r2,

holds for all K > 0, r ∈ (0, 1).

2.7. Proof of Lemma 1.6. By [AVV, (5.27)] we have for y > 0,√
1− tanh2 y <

√
1− tanh8 y < μ−1(y) < 4e−y .

With

y = log

√
K + 1√
K − 1

= 2artanh(1/
√
K)

this inequality yields
√
K − 1

K + 1
< c1 = μ−1(y) < 4

√
K − 1√
K + 1

< 2
K − 1√
K + 1

. �

2.8. The Grötzsch and Teichmüller rings. The Grötzsch and Teichmüller ring
domains RG(s), s > 1, and RT (t), t > 0, are doubly connected domains with com-

plementary components (B
n
, [se1,∞)) and ([−e1, 0], [te1,∞)), respectively. Their

capacities capRG(s) and capRT (t) are often used below. The Grötzsch capacity
γn(s) = capRG(s) is a decreasing homeomorphism γn : (1,∞) −→ (0,∞); see
[VU2, p. 66] and [AVV, Section 8]. The Teichmüller capacity τn(t) = capRT (t),
is a decreasing homeomorphism τn : (0,∞) → (0,∞) connected with γn by the
identity

(2.9) τn(t) = 21−nγn(
√
1 + t), t > 0.

Given E,F,G ⊂ R
n we use the notation Δ(E,F ;G) for the family of all curves

that join the sets E and F in G and M(Δ(E,F ;G)) for its modulus; see [V,
Chapter I]. Then τn(t) = M(Δ(E,F ;Rn)) where E and F are the complementary
components of the Teichmüller ring and a similar relation also holds for γn(s).

We use the standard notation

(2.10) ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

.

Then ϕK,n : (0, 1) −→ (0, 1) is an increasing homeomorphism; see [VU2, (7.44)].
Because γ2(1/r) = 2π/μ(r) by [VU2, (5.56)] and [LV], it follows that ϕK,2(r) is the
same as the function ϕK(r) in (2.5).
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2.11. The key constant. The special functions introduced above will have a
crucial role in what follows. For the sake of easy reference we give here some well-
known identities between them that can be found in [AVV]. First, the function

(2.12) ηK,n(t) = τ−1
n (τn(t)/K) =

1− ϕ1/K,n(1/
√
1 + t)2

ϕ1/K,n(1/
√
1 + t)2

, K > 0 ,

defines an increasing homeomorphism ηK,n : (0,∞) → (0,∞) (cf. [AVV, p. 193]).

The constant (1 − a)/a, a = ϕ1/K,n(1/
√
2)2, in Theorem 1.9 can be expressed as

follows for K > 1:

(2.13) (1− a)/a = ηK,n(1) = τ−1
n (τn(1)/K) .

Furthermore, by (2.6),

(2.14) ηK,2(t) =
s2

1− s2
, s = ϕK,2(

√
t/(1 + t))

and

(2.15) ηK,2(1) ∈ (eπ(K−1), eb(K−1))

where b = (4/π)K(1/
√
2)2 = 4.376879.... Note that the constant λ(K) in [AVV,

10.33] is the same as ηK,2(1) . In passing we remark that P. P. Belinskii in [Be,
Lemma 12, p. 80] gave the inequality

ηK,2(1) ≡ λ(K) < 1 + 12(K − 1)

for K close to 1 , however, with an incorrect proof as pointed out in [AQVu, (3.10)].
Because this inequality is one of the key technical estimates of [Be], it is fortu-
nate that this error was detected and a correct proof was later found (see [AQVu,
Corollary 3.7]).

For the proof of Lemma 2.24, we record a lower bound for ϕ1/K,n(r) . The con-

stant λn ∈ [4, 2en−1) is the so-called Grötzsch ring constant; see [AVV].

2.16. Lemma ([VU2, 7.47, 7.50]). For n ≥ 2,K ≥ 1, and 0 ≤ r ≤ 1,

(2.17) ϕ1/K,n(r) ≥ λ1−β
n rβ , β = K1/(n−1),

(2.18) λ1−β
n ≥ 21−βK−β ≥ 21−KK−K .

In the next lemma we consider two strictly increasing continuous functions p, q :
[1,∞) → (0,∞) such that p(1) < q(1) and that the opposite inequality p(x1) >
q(x1) holds for some x1 > 1 . In the first part of the lemma we find, for the given
functions, a concrete value ε > 0 such that p(x) < q(x) for all x ∈ [1, 1+ ε) . In the
second part of the lemma we apply an iterative method with 1+ε as a starting value
to find the largest number a ∈ [1 + ε, x1) such that p(x) < q(x) for all x ∈ [1, a)
and show that a > 17 .

2.19. Lemma. (1) For all m,n � 1 there is M > 1 such that the inequality

(2.20) log(2mx−m+1xnx − 1) � (2m log 2 + 2n)(x− 1)

holds for x ∈ [1,M ] with equality only for x = 1. Moreover, with t = (m log 2 −
n)/(2n) , M can be chosen as

M =

√√√√ (m− 1) log 2 + log
(
1 + (n+m log 2)2

n

)
n

+ t2 − t.
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(2) Let p(x) = log(2mx−m+1xnx − 1), q(x) = (2m log 2 + 2n)(x− 1) and let us
use the above notation. Let a0 = M and an+1 = p−1(q(an)) for n � 1.
Then the sequence an is increasing and bounded. If a = limn→∞ an, then
the inequality (2.20) holds for x ∈ [1, a] with equality iff x ∈ {1, a}. For
m = 3 and n = 2 we have a > 17.

Proof. Let

u(x) = (mx−m+1) log 2+nx log x, v(x) = log(eu(x)−1) = log(2mx−m+1xnx−1).

Then we have

v′′(x) = (log(eu(x) − 1))′′ =

(
u′(x) eu(x)

eu(x) − 1

)′

=
(u′′(x)eu(x) + (u′(x))2eu(x))(eu(x) − 1)− (u′(x) eu(x))2

(eu(x) − 1)2

=
eu(x)

(eu(x) − 1)2
· ((u′′(x) + (u′(x))2)(eu(x) − 1)− (u′(x))2eu(x))

=
eu(x)

(eu(x) − 1)2
· (u′′(x)(eu(x) − 1)− (u′(x))2).

Thus,

v′′(x) � 0 ⇔ u′′(x)(eu(x) − 1) � (u′(x))2.

Since

eu(x) = 2mx−m+1xnx, u′(x) = n+m log 2 + n log x, u′′(x) =
n

x
,

we have

v′′(x) � 0 ⇔ n

x
(2mx−m+1xnx − 1) � (n+m log 2 + n log x)2.

Therefore we see that for x � 1 the condition v′′(x) � 0 is equivalent to

2mx−m+1xnx − 1 � x

n
(n+m log 2 + n log x)2.

Let f(x) = 2mx−m+1xnx − 1 and g(x) = x
n (n+m log 2 + n log x)2. Both functions

f and g are increasing on [1,+∞) and f(1) < g(1) because

f(1) = 1 � n =
1

n
· n2 <

1

n
(n+m log 2)2 = g(1).

By the continuity of f we can conclude that there is M > 1 such that f(M) � g(1).
For such M , we have

f(x) � f(M) � g(1) � g(x), x ∈ [1,M ].

This implies that v is concave on [1,M ] and therefore

v(x) � v(1) + v′(1)(x− 1), x ∈ [1,M ],

i.e.,
log(2mx−m+1xnx − 1) � (2m log 2 + 2n)(x− 1), x ∈ [1,M ].

The inequality f(x) � g(1) is equivalent to

(2.21) (mx−m+ 1) log 2 + nx log x � log

(
1 +

(n+m log 2)2

n

)
.



ON QUASICONFORMAL MAPS WITH IDENTITY BOUNDARY VALUES 2473

Because

(2.22) (mx−m+ 1) log 2 + nx log x � (mx−m+ 1) log 2 + nx(x− 1),

the inequality (2.21) is a consequence of the inequality

(2.23) (mx−m+ 1) log 2 + nx(x− 1) � log

(
1 +

(n+m log 2)2

n

)
.

In (2.22) the equality sign holds only for x = 1. Because

1 +
(n+m log 2)2

n
> 1 +

n2

n
= 1 + n � 2,

the inequality (2.23) is a strict inequality for x = 1. By this reasoning, the greater
root of the quadratic equation

(mx−m+ 1) log 2 + nx(x− 1) = log

(
1 +

(n+m log 2)2

n

)

is greater than 1. If we denote this root with M , the inequality (2.21) holds for
x ∈ [1,M ] with equality only for x = 1. The first part of the lemma is proved.

Now we prove the second part of the inequality. Both of the functions p(x) and
q(x) are continuous and increasing. Consequently, r(x) = p−1(x) is continuous and
increasing. Because

p(a1) = q(a0) > p(a0),

using monotonicity of p(x), we can conclude that a1 > a0. Now, by induction and
monotonicity of r, we can conclude that the sequence an is increasing. Now for
x ∈ [an, an+1) we have

p(x) < p(an+1) = q(an) � q(x).

Therefore the inequality p(x) < q(x) holds for x ∈
⋃∞

n=0[an, an+1) = [a0, a) and,
using what was already proved, we see that the inequality p(x) < q(x) holds for the
whole interval 1 < x < a. For x � 1 we see that mx−m+ 1 > 1 and xnx � 1 and,
consequently,

p(x) = log(2mx−m+1xnx − 1) > log(2xnx − 1) � nx log x.

Because p(x) > nx log x � (n log x)(x − 1) the inequality p(c) > q(c) holds for c

such that n log c � 2m log 2 + 2n. It is easy to check that it is true for c = 2
2m
n e2.

It implies that a is finite (for example a < 2
2m
n e2) and an is bounded. The relation

p(an+1) = q(an) and the continuity of both functions show that lim p(an+1) =
p(a) = q(a) = lim q(an) . The lower bound for a follows because a36 > 17 . �

2.24. Lemma. If a = ϕ1/K,n(1/
√
2)2 is as in Theorem 1.9, then for M > 1 and

β ∈ [1,M ],

(2.25) log

(
1− a

a

)
≤ log(λ2(β−1)

n 2β − 1) ≤ V (n)(β − 1)

with V (n) = (2 log(2λ2
n))(2λ

2
n)

M−1 and for K ∈ [1, 17],

(2.26) log

(
1− a

a

)
� (K − 1)(4 + 6 log 2) < 9(K − 1),
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with equality only for K = 1. For n = 2 and K > 1,

(2.27) log

(
1− a

a

)
= log

(
ϕK,2(1/

√
2)2

ϕ1/K,2(1/
√
2)2

)
� b(K − 1),

where b = (4/π)K(1/
√
2)2 ≤ 4.38 .

Proof. For β ∈ [1,M ] we have by (2.17),

log

(
1− a

a

)
≤ log(λ2(β−1)

n 2β − 1) .

Furthermore, we have

log(λ
2(β−1)
n 2β − 1)

β − 1
� 2

(2λ2
n)

β−1 − 1

β − 1
� (2 log(2λ2

n))(2λ
2
n)

M−1.

The second inequality follows from the inequality log(t) � t− 1 and the third one
from Lagrange’s theorem and the monotonicity of the function (2 log(2λ2

n))(2λ
2
n)

x−1.
This proves (2.25).

From (2.18) it follows that the constant a satisfies the inequality

a ≥ 22(1−K)K−2K(1/
√
2)2K

and also

1/a ≤ 23K−2K2K , K > 1.

By Lemma 2.19 we have

log(23K−2K2K − 1) � (4 + 6 log 2)(K − 1)

for K ∈ [1, 17] with equality only for K = 1. Now, from

1− a

a
< 23K−2K2K − 1, K > 1 ,

we conclude that

log

(
1− a

a

)
� (4 + 6 log 2)(K − 1) < 9(K − 1) .

For the case n = 2 we can apply the identity (2.14) and the inequality in (2.15).
�

3. Proof of Theorem 1.9

Lemma 3.1 and Theorem 3.2 deal with the first part of Problem 1.1.

3.1. Lemma ([VU1]). Let f ∈ IdK(∂G), a, b ∈ G, f(a) = b and let the boundary
∂G be connected. If x ∈ ∂G is such that d(a) = d(a, ∂G) = |a− x| � |b− x|, then

K(f) � dn

(
log

|b− x|
|a− x|

)n

, dn =
cn

ωn−1

(n− 1)n−1

nn
.

The following result was proved in [VU1], however, under the condition that the
points are far away from each other. The general case follows from the original
result by reducing the constant. In [VU1], an example was given to the effect that
Theorem 3.2 cannot be improved to the claim that a, b ∈ G, kG(a, b) > 0 implies
K(f) > 1.
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3.2. Theorem ([VU1]). Let f ∈ IdK(∂G), a, b ∈ G with f(a) = b. If G is a
uniform domain with connected boundary ∂G , then

K(f) � dn kG(a, b)
n

where dn depends only on n and G.

3.3. Proof of Theorem 1.9. Fix x ∈ Bn and let Tx denote a Möbius transformation
of Rn with Tx(B

n) = Bn and Tx(x) = 0. Define g : R
n −→ R

n by setting
g(z) = Tx◦f ◦T−1

x (z) for z ∈ Bn and g(z) = z for z ∈ R
n\Bn. Then g ∈ IdK(∂Bn)

with g(0) = Tx(f(x)). By the invariance of ρBn under the group GM(Bn) of Möbius
selfautomorphisms of Bn we see that for x ∈ Bn,

(3.4) ρBn(f(x), x) = ρBn(Tx(f(x)), Tx(x)) = ρBn(g(0), 0).

Choose z ∈ ∂Bn such that g(0) ∈ [0, z] = {tz : 0 � t � 1}. Let E′ = {−sz :
s � 1}, Γ′ = Δ([g(0), z], E′;Rn) and Γ = Δ(g−1[g(0), z], g−1E′;Rn). Observe that
E′ = g−1E′ because g ∈ IdK(∂Bn) .

The spherical symmetrization with center at 0 yields, by [AVV, Thm 8.44],

M(Γ) � τn(1) (= 21−nγn(
√
2))

because g(x) = x for x ∈ R
n \Bn. Next, we see by the choice of Γ′ that

M(Γ′) = τn

(
1 + |g(0)|
1− |g(0)|

)
.

By K-quasiconformality we have M(Γ) � KM(Γ′) implying

(3.5) exp(ρBn(0, g(0))) =
1 + |g(0)|
1− |g(0)| � τ−1

n (τn(1)/K) =
1− a

a
.

The last equality follows from (2.13). Finally, (3.4) and (3.5) complete the proof.
�

3.6. Proof of Theorem 1.10. We have

|f(x)− x| � 2 tanh

(
ρBn(f(x), x)

4

)
� 2 tanh

(
log

(
1−a
a

)
4

)

� 2 tanh

(
(K − 1)(4 + 6 log 2)

4

)

� (K − 1)(2 + 3 log 2) � 9

2
(K − 1).

The first inequality follows from (2.3), the second one from Theorem 1.9, the third
one from Lemma 2.24 and the fourth one from the inequality tanh(t) � t for t � 0.

For n = 2 we use the same first two steps and the planar case of Lemma 2.24 to
derive the inequality

|f(x)− x| � b

2
(K − 1). �

A lower bound corresponding to the upper bound in (1.11) is given in the next
lemma.
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3.7. Lemma. For f ∈ Id(∂G) let

δ(f) ≡ sup{|f(z)− z| : z ∈ G} .

Then for f ∈ IdK(∂Bn),K > 1, α = K1/(1−n),

(3.8) δ(f) ≥ (1− α)αα/(1−α) >
1

e
(1− α).

Proof. The radial stretching f : Bn → Bn, n ≥ 2, defined by f(z) = |z|α−1 z, z ∈
Bn, (0 < α < 1), is K-quasiconformal with α = K1/(1−n) [V, p. 49] and f ∈
IdK(∂Bn) . Now we have

|f(z)− z| = ||z|α−1z − z| = |rα − r|, |z| = r.

Furthermore, we see that

δ(f) = sup
0<r<1

(rα − r),

where the supremum is attained for r = rα =
(
1
α

) 1
α−1 , so

δ(f) = (1− α)αα/(1−α) .

A crude, but simple, estimate is

δ(f) ≥ (1/e)α − (1/e) =
1

e

(
1

eα−1
− 1

)
=

1

e

(
e1−α − 1

)
� 1

e
(1− α) .

�

3.9. Theorem. Let f : Rn −→ Rn be a K-quasiconformal homeomorphism with
f(∞) = ∞ and Bn(m) ⊂ f(Bn) ⊂ Bn(M), where 0 < m ≤ 1 ≤ M . Then

η1/K,n

(
1 + |x|
1− |x|

)
� M + |f(x)|

m− |f(x)|
and

m+ |f(x)|
M − |f(x)| � ηK,n

(
1 + |x|
1− |x|

)
for all x ∈ Bn where ηK,n(t) = τ−1

n (τn(t)/K).
In particular, if m = 1 = M , then we have

η1/K,n

(
1 + |x|
1− |x|

)
� 1 + |f(x)|

1− |f(x)| � ηK,n

(
1 + |x|
1− |x|

)
.

Proof. The proof is similar to the proof of Theorem 1.9. Fix x ∈ Bn and choose
z′ ∈ ∂f(Bn) such that f(x) ∈ [0, z′] and [f(x), z′) ⊂ f(Bn) and fix z′′ ∈ ∂f(Bn)
such that z′, 0, z′′ are on the same line, 0 ∈ [z′, z′′], and {−sz′′ : s � 1} ⊂
R

n \ f(Bn) . Let Γ′ = Δ([f(x), z′], E′;Rn), E′ = {−sz′′ : s � 1} and Γ =
Δ(f−1[f(x), z′], f−1E′;Rn). Then

M(Γ′) ≤ τn

(
m+ |f(x)|
M − |f(x)|

)

while applying a spherical symmetrization with center at the origin gives

M(Γ) � τn

(
1 + |x|
1− |x|

)
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because f−1E′ connects ∂Bn and ∞. Then the inequality M(Γ) � KM(Γ′) yields

τn

(
1 + |x|
1− |x|

)
≤ Kτn

(
m+ |f(x)|
M − |f(x)|

)
,

τ−1
n (

1

K
τn

(
1 + |x|
1− |x|

)
) ≥ m+ |f(x)|

M − |f(x)| ,(3.10)

m+ |f(x)|
M − |f(x)| � ηK,n

(
1 + |x|
1− |x|

)
.

The lower bound follows if we apply a similar argument to f−1 and the lower bound

M(Γ′) ≥ τn

(
M + |f(x)|
m− |f(x)|

)
.

�

3.11. Remark. Putting x = 0,m = 1 = M in (3) we obtain by (2.13) for a K-
quasiconformal homeomorphism f : Rn −→ Rn with f(∞) = ∞ and f(Bn) = Bn

that

|f(0)| ≤ 1− 2a , a = ϕ1/K,n(1/
√
2)2 .

Furthermore, if we use the lower bound (2.18) from Lemma 2.16 we obtain

|f(0)| ≤ 1− 21−β41−KK−2K .

In the special case when n = 2 we have

|f(0)| ≤ 1− 23(1−K)K−2K ≤ (2 + 3 log 2)(K − 1) .

Note that this last inequality does not suppose that f ∈ IdK(∂Bn) , only the
hypotheses of Theorem 3.9 are needed.

3.12. Corollary. Let n = 2 in addition to the hypotheses of Theorem 3.9. Then

(3.13) ηK,2(t) =
u2

1− u2
=

u2

v2
,

where u = ϕK,2

(√
t

1+t

)
, v = ϕ1/K,2

(
1√
1+t

)
and

(3.14) |f(x)| � 2ϕK,2

(√
1 + |x|

2

)2

− 1

for all x ∈ B2.

Proof. The identity (3.13) holds by (2.14). Next Theorem 3.9 together with (3.13)
yield

1 + |f(x)|
1− |f(x)| �

w2

1− w2

where w = ϕK,2

(√
1+|x|

2

)
. Solving this for |f(x)| yields (3.14). �
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3.15. Remark. By the K-quasiconformal Schwarz lemma, if f : B2 −→ B2 is K-
quasiconformal with f(0) = 0, then |f(z)| � ϕK,2(|z|), for all z ∈ B2, where the
sharp bound is attained for a map with f(B2) = B2 ([LV]). Note that in Corollary
3.12 the condition f(0) = 0 is not required. We conclude that

(3.16) ϕK,2(r) � 2ϕK,2(

√
1 + r

2
)2 − 1.

Writing A(r, s) =
√

r+s
2 (3.16) says that if t = 1, r ∈ (0, 1), then

A(ϕK,2(t), ϕK,2(r)) � ϕK,2(A(t, r)).

It seems natural to expect that this inequality holds for all t, r ∈ (0, 1) .
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