Computation of Character Decompositions of Class Functions on Compact Semisimple Lie Groups*

By R. V. Moody ** and J. Patera

Abstract. A new algorithm is described for splitting class functions of an arbitrary semisimple compact Lie group K into sums of irreducible characters. The method is based on the use of elements of finite order (EFO) in K and is applicable to a number of problems, including decompositions of tensor products and various symmetry classes of tensors, as well as branching rules in group-subgroup reductions. The main feature is the construction of a decomposition matrix D, computed once and for all for a given range of problems and for a given K, which then reduces any particular splitting to a simple matrix multiplication. Determination of D requires selection of a suitable set S of conjugacy classes of EFO representing a finite subgroup of a maximal torus T of K and the evaluation of (Weyl group) orbit sums on S. In fact, the evaluation of D can be coupled with the evaluation of the orbit sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is illustrated by some extensive examples of tensor product decompositions in E_6 . Modular arithmetic allows all computations to be performed exactly.

1. Introduction. In the study of compact Lie groups, both in theory and application, the representation theory is fundamental. Numerous computational problems arise in this connection which, in general, pose significant difficulties for all but the lowest rank groups. In this paper we are primarily concerned with a new algorithm for determining the splitting of class functions on a simple or semisimple compact Lie group K into finite sums of irreducible characters of K. The solution to this rather general problem can be applied to a number of well-known problems arising in applications of group theory.

For instance, consider the standard problem of determining the decomposition or branching of a unitary representation of a simple compact group \tilde{K} relative to a subgroup K. The given representation ρ : $\tilde{K} \to SU(V)$ determines a character $\tilde{\chi}_{V}$: $\tilde{K} \to C$ which is a class function on K. Restricting $\tilde{\chi}$ to K, we have

$$\tilde{\chi}|_{K} = \sum \chi_{i},$$

where $V = \bigoplus V_i$ is the decomposition of V into irreducible K-modules and χ_i is the character of K on V_i . The problem is to determine the right-hand side of (1.1).

Received June 17, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E46, 22-04.

^{*}Work supported in part by the Natural Science and Engineering Research Council of Canada, Ministère de l'Education du Quebec, and by the Fleischmann, Sloan and Weingart Foundations.

^{**}On leave from: Department of Mathematics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Again, consider the problem of decomposing the tensor product of two irreducible representations ρ_i : $K \to SU(V_i)$, i = 1, 2. Then

(1.2)
$$V_1 \otimes V_2 = \sum_{i=3}^r V_i,$$

where the V_i are irreducible. Correspondingly for the characters, we have

(1.3)
$$\chi_{V_1 \otimes V_2} = \chi_{V_1} \chi_{V_2} = \sum_{i=3}^r \chi_{V_i}.$$

Here the problem is to determine the decomposition on the right-hand side of (1.3).

Another example occurs in the problem of finding the irreducible constituents of some symmetry class V^{Y} of tensors determined by a representation ρ : $K \to SU(V)$ and some Young tableau Y. There is an explicit way of writing the character χ^{Y} of V^{Y} in terms of the character χ of ρ and the characters of the symmetric group [25, §12], [20]. We are left with the determination of the splitting of χ^{Y} .

The splitting of class functions is always possible by a close examination of the weights involved, and for isolated examples of low rank this is probably the most efficient approach. We note, for instance, the tables of branching rules [1] for rank ≤ 8 and dimensions less than 5000 (less than 10,000 for the exceptional groups). The approach here is directed to more extensive computations where the initial investment in time is compensated by the resulting efficiency of the splittings, and for higher-rank groups where practically no other methods exist.

The method proposed here has as its central feature the construction of a certain complex matrix D called a *decomposition matrix*. For a given set of weights which encompasses all those which may appear in the envisioned decompositions, and for a given simple or semisimple Lie group K, a matrix D may be computed once and for all. This is the most laborious part of the procedure. After that, all decompositions are determined by a single matrix multiplication.

The determination of decomposition matrices depends on the selection of suitable sets of elements of finite order (**EFO**) from K and the computation of their character values (or more precisely orbit sum values) on various irreducible representations of K. Fortunately, by a bootstrapping procedure it is possible to combine the construction of D and the evaluation of the orbit sum values, thereby greatly alleviating the amount of computing required. The introduction of real and complex arithmetic can be avoided by the use of modular arithmetic. Apart from being more elegant in lower-rank cases, modular arithmetic becomes indispensable for avoiding round-off problems in higher ranks.

Let us describe in a little more detail the ideas involved. The general problem is to determine the splitting of a set

(1.4)
$$f^{(k)} = \sum a_i^{(k)} \chi_i, \qquad k = 1, \dots, t,$$

of class functions $f^{(k)}$ on a compact Lie group K, where the χ_i are the characters of certain irreducible representations ρ_i of K. We will assume, as is usually possible in applications (in particular in the cases above), that we have some prior knowledge as to which χ_i can possibly occur, so that our task is to determine the coefficients $a_i^{(k)}$ (which may, of course, be zero). For simplicity of notation we will assume that we have only one class function f and suppress the superscripts f

Since f and the χ_i are class functions, they are completely determined by their restriction to a given maximal torus T of K. Let us assume that such a torus is fixed once and for all. Now if $x_1, \ldots, x_g \in T$ are some arbitrary elements then

$$(1.5) f(x_j) = \sum a_i \chi_i(x_j), j = 1, \dots, g,$$

determines a system of linear equations.

Assuming that the x_j are suitably independent, the a_i are determined by the solution of (1.5). Of course, we can do much better than this by choosing the right elements x_j . However, before we do this it is useful to introduce the *orbit sums* ϕ_i . These are simply sums of exponential functions on T corresponding to weight orbits of the Weyl group, and are related to characters by equations of the form

$$\chi_k = \sum_i m_k^i \phi_i,$$

where, assuming appropriate indexing, $M = (m_k^i)$ is a certain integral unipotent matrix called the *dominant weight multiplicity matrix* (see Section 3). The determination of M is in any case essential for any computing in semisimple Lie groups. Our algorithm for computing M was described in [17], [3] and extensive tables appear in [4]. Instead of decomposing f according to (1.5) it is advantageous to determine the unknown coefficients b_i in

(1.7)
$$f(x_i) = \sum b_i \phi_i(x_i), \quad j = 1, ..., g.$$

Now suppose that x_1, \ldots, x_g are elements of a finite Abelian group A contained in T. Then some Fourier analysis leads to certain orthogonality-like relations, and the inversion of (1.7) becomes trivial. This is the origin of the decomposition matrix. The solution to (1.5) is obtained by back substitution.

This then is the first ingredient in our algorithm. However, using Weyl group symmetry, a second enormous simplification occurs. Recall that if N is the normalizer of T in K then we have the Weyl group W:=N/T (:= means that the right-hand side defines the left). W is a finite group whose size grows exponentially with the rank. It is well known that the W-conjugacy classes of T are a cross section of the conjugacy classes of T. Since the functions appearing in (1.4) are dependent only on the T-conjugacy classes, it is sufficient to take our Abelian group T to be T-stable (for all T is T in T

$$(1.8) T_n := \{ x \in T \mid x^n = 1 \}.$$

Then x_1, \ldots, x_h are required to be representatives for the W-conjugacy classes of elements of T satisfying $x^n = 1$. For these EFO there is a very precise and simply computable classification (see Section 2). The table in Section 7 illustrates the relation between h = h(n) and $|T_n| = n^6$ for K of type E_6 . The use of these classes obviously makes a huge difference in the number of elements we have to handle.

Briefly, the contents of the paper are as follows. In Section 2 we describe the classification of the conjugacy classes of EFO in semisimple compact Lie groups. In Proposition 1 we determine the sizes of the conjugacy classes in T_n . Section 3 is devoted to the algorithm for splitting class functions and describing the decomposition matrix D. In Section 4 we discuss the process of bootstrapping the construction

of D and orbit sum evaluation. Section 5 introduces modular arithmetic and Section 6 collects together some additional comments and remarks. Finally, Section 7 presents some E_6 tensor product decompositions and some discussion of their computation. The present paper is an independent continuation of the general study of EFO begun in [18]; related and more particular problems may be found in [5], [19], [20], [23], [24]. Much of the program development of this project has been carried out by Wendy McKay whose tireless energy has been an enormous encouragement to us. Two extensive samples of computations carried out with this algorithm are the E_8 tables of characters and decompositions of plethysms and tensor products appearing in [13], [14].

2. Elements of finite order. In this section we establish the notation and briefly describe the classification of conjugacy classes of EFO in a simply connected semisimple compact Lie group. The classification is due to V. G. Kac [12]. (For a further description of the theory of these elements, their computation, and the determination of their values on characters and orbit sums the reader is referred to [19].) We then go on to determine the sizes of the various conjugacy classes in T_n (Proposition 1).

Suppose that K is a simply connected semisimple compact Lie group of rank l. Then $K = K_1 \times \cdots \times K_r$ where K_1, \ldots, K_r are simply connected simple compact Lie groups.

Conjugacy classes of EFO in K are determined by piecing together the corresponding classes of EFO in the various factors. If necessary then, we may assume that K is simple. For the present we do *not* make this assumption.

Let \mathfrak{f} be the Lie algebra of K and let \mathfrak{g} be the complexification of \mathfrak{f} . Fix a maximal torus T of K once and for all and let $i\mathfrak{t} \subset \mathfrak{f}$ be its Lie algebra (thus \mathfrak{t} is a certain real subspace of \mathfrak{g} which is a Euclidean space under the Killing form). We have the usual accourtements relative to \mathfrak{t} and some fixed (but otherwise arbitrary) ordering of the dual space \mathfrak{t}^* of \mathfrak{t} :

$$\Delta \subset \mathfrak{t}^* \quad \text{root system}$$

$$Q \subset \mathfrak{t}^* \quad \text{root lattice}$$

$$P \subset \mathfrak{t}^* \quad \text{weight lattice}$$

$$Q \cap C \quad \mathfrak{t} \quad \text{coroot lattice} \quad (\mathbb{Z}\text{-dual of }P)$$

$$P \cap C \quad \mathfrak{t} \quad \text{coweight lattice} \quad (\mathbb{Z}\text{-dual of }Q)$$

$$\Pi = \{\alpha_1, \dots, \alpha_l\} \subset \Delta \quad \text{base of } \Delta$$

$$\{\omega_1, \dots, \omega_l\} \subset P \quad \text{basis of fundamental weights}$$

$$\{\alpha_1^{\wedge}, \dots, \alpha_l^{\wedge}\} \subset Q^{\wedge} \quad \text{dual basis to } \{\omega_1, \dots, \omega_l\}$$

$$\Delta^+ \quad \text{positive roots}$$

$$W \quad \text{Weyl group acting on } t \text{ and } t^*.$$

Here **Z**-duals are taken relative to the natural pairing $\langle \cdot, \cdot \rangle$: $t^* \times t \to \mathbb{R}$. An alternative and important characterization of Q^{\wedge} is as the kernel of the exponential mapping:

$$(2.2) 0 \to Q \stackrel{\wedge}{\to} t \stackrel{\exp 2\pi i(\cdot)}{\to} T \to 1.$$

The set $\{\alpha_1^{\wedge}, \dots, \alpha_l^{\wedge}\}$ is a base of the system of "dual" roots which may be considered as the system of roots of another Lie group K^{\wedge} .

According to (2.2) the subgroup

$$T_n := \{ x \in T | x^n = 1 \}$$

of T is in 1-1 correspondence with $\frac{1}{n}Q^{\wedge}/Q^{\wedge}$:

$$(2.3) T_n \simeq \frac{1}{n} Q^{\wedge} / Q^{\wedge}.$$

Clearly, $|T_n| = n^l$.

As we pointed out in the introduction, these are precisely the groups in which we are interested for character decompositions. As is well known, two elements $X, Y \in t$ determine K-conjugate elements $\exp 2\pi i X$ and $\exp 2\pi i Y$ in K if and only if there exists $w \in W$ such that $wX \equiv Y \mod Q^{\wedge}$. Alternatively we need a $\tilde{w} \in \tilde{W} := Q^{\wedge} \rtimes W$ with $\tilde{w}X = Y$. In this case we write $X \sim Y$.

Since class functions do not distinguish conjugate elements, it is only necessary to determine

CC(i) a cross section of the equivalence relation ~

CC(ii) the size of each of these equivalence classes in t when they are reduced modulo Q^{\wedge} .

We begin in the case when K is simple. Let $-\alpha_0$ denote the highest root $\sum_{i=1}^{l} n_i \alpha_i$ of Δ relative to Π . Set $n_0 = 1$, so that

$$(2.4) \qquad \qquad \sum_{i=0}^{l} n_i \alpha_i = 0.$$

We call n_0, n_1, \ldots, n_l the numerical marks of K. The matrix

(2.5)
$$A = (A_{ij})_{0 \le i,j \le l} := (2(\alpha_i, \alpha_j)/(\alpha_j, \alpha_j)),$$

where (\cdot, \cdot) is the standard positive definite form on t^* , is the *extended* or *affine* Cartan matrix associated with K. Then CC(i) is handled using the well-known fundamental region F of the action of \tilde{W} on t:

F is the set of points $X \in t$ satisfying

F1:
$$\langle \alpha_i, X \rangle \geqslant 0$$
, $i = 1, \ldots, l$,

F2:
$$\langle -\alpha_0, X \rangle \leq 1$$
.

Then $\mathbf{t} = \tilde{W}\mathbf{F} := \{wX \mid w \in \tilde{W}, X \in \mathbf{F}\}$, and for $X, Y \in \mathbf{F}$ and $w \in \tilde{W}$, wX = Y if and only if X = Y. The conjugacy classes of EFO in T_n are specified by the points of $\frac{1}{n}Q \cap \mathbf{F}$. From the point of view of computation these are most easily determined as certain (l+1)-tuples $\mathbf{s} = [s_0, \ldots, s_l]$ of nonnegative integers (*Kac coordinates* [12], [18]) as follows. Let $X \in \frac{1}{n}Q \cap \mathbf{F}$ and let $x = \exp 2\pi iX$. Then $\mathrm{Ad}(x)$ (image of x in the adjoint group of x) has some finite order which is in fact the least positive integer x such that $x \in x$ and $x \in x$. Note that the order of x is the least positive integer x such that $x \in x$ one has $x \in x$. Note that $x \in x$ is the least positive integer x such that $x \in x$ one has $x \in x$. Note that $x \in x$ is the least positive integer x such that $x \in x$ one has $x \in x$.

K1:
$$\langle \alpha_i, X \rangle = s_i/M, i = 1, ..., l;$$

$$\mathbf{K2} \colon \sum_{i=0}^{l} n_i s_i = M;$$

and note that

K3:
$$gcd(s_0, ..., s_l) = 1$$
.

Conversely, every (l+1)-tuple of nonnegative integers $\mathbf{s} = [s_0, \dots, s_l]$ satisfying **K1-3** for some $M \mid N$ specifies a point X of \mathbf{F} and, provided that $X \in \frac{1}{n}Q^{\wedge}$, X defines a conjugacy class of T_n . The precise relation between M and N is given in

[18]. We note that s has two interpretations: first as a point of F, second as the label for the conjugacy class of elements determined by $\exp(2\pi i s)$. These are understood by the context.

The second problem, CC(ii), is answered by Proposition 1 below, for which we need more notation. We recall that W is generated by the root reflections r_1, \ldots, r_l in the simple roots $\alpha_1, \ldots, \alpha_l$. We define r_0 to be the reflection in α_0 . Given $\mathbf{s} = [s_0, \ldots, s_l]$, an (l+1)-tuple of nonnegative integers, we define W_s to be the group generated by the r_i for which $s_i = 0, i = 0, \ldots, l$.

PROPOSITION 1. Let $X \in \frac{1}{n}Q \cap \mathbb{F}$ have coordinates s. Then the number of elements of T conjugate to $\exp 2\pi i X$ is the index $[W:W_s]$ of W_s in W.

Proof. (Partially based on a proof of T. A. Springer [27].) The conjugates of $\exp 2\pi i X$ in T are given by $\exp 2\pi i w X$ as w runs through W. The number of such conjugates is the index of the subgroup

$$S := \{ w \in W \mid \exp 2\pi i w X = \exp 2\pi i X \}$$

in W. Now $w \in S$ if and only if $wX \equiv X \mod Q^{\wedge}$, which happens if and only if there is a $\tilde{w} \in \tilde{W}$ such that $\tilde{w}X = X$. The stabilizer of a point in t under \tilde{W} is generated by the reflecting hyperplanes through it [2, Chapter V, Section 3.3]. These hyperplanes are of the form

$$H_{\tilde{\alpha}} = \{ Y \in \mathfrak{t} | \langle \alpha, Y \rangle = k \}, \quad \alpha \in \Delta, k \in \mathbb{Z}.$$

Thus w is a product of some of the corresponding affine reflections, $\tilde{w} = r_{\beta_1,k_1},\ldots,r_{\beta_s,k_s}$, and w is the corresponding product $r_{\beta_1}\cdots r_{\beta_s}$ in W. Thus S is generated by the reflections r_{β} such that

$$\langle \beta, X \rangle \in \mathbb{Z}.$$

Let $\beta = \sum b_i \alpha_i$ be a root satisfying (2.6). We can assume that $\beta \in \Delta^+$. Let $s = [s_0, \ldots, s_l]$. Then

$$\langle \beta, X \rangle = (1/M) \sum_{i=1}^{l} b_i s_i \in \mathbb{Z}_{\geq 0},$$

whence

$$\sum_{i=1}^{l} b_i s_i \equiv 0 \pmod{M}.$$

Since $0 \le \sum_{i=1}^{l} b_i s_i \le \sum_{i=0}^{l} n_i s_i = M$ and $b_i \le n_i$ for each i, we have either

(i)
$$\sum_{i=1}^{l} b_i s_i = 0$$
, or

(ii)
$$\beta = -\alpha_0 = \sum_{i=1}^l n_i \alpha_i$$
 and $s_0 = 0$.

In either case,

$$\beta \in \Delta_s := \Delta \cap \left\{ \alpha = \sum_{i=0}^l c_i \alpha_i \mid c_i \in \mathbb{Z}, c_i = 0 \text{ if } s_i \neq 0 \right\}.$$

Conversely, we can see that if β is an element of Δ_s written as $\sum_{i=0}^{l} c_i \alpha_i$ with $c_i = 0$ if $s_i \neq 0$, then β satisfies (2.6). Indeed we have

$$\begin{split} \langle \beta, X \rangle &= \left\langle \sum_{i=0}^{l} c_i \alpha_i, X \right\rangle = c_0 \langle \alpha_0, X \rangle \\ &= \left\langle -c_0 \left\langle \sum_{i=1}^{l} n_i \alpha_i, X \right\rangle = -c_0 \in \mathbb{Z} & \text{if } s_0 = 0, \\ 0 & \text{if } s_0 \neq 0. \end{split}$$

Now Δ_s is a subroot system of Δ and has a base $\Pi_s := \{\alpha_i | 0 \le i \le l, s_i = 0\}$. One way to see this is to consider the affine root system $\tilde{\Delta}$ based on the affine Cartan matrix \tilde{A} (2.5) with base $\{\tilde{\alpha}_0, \tilde{\alpha}_1, \dots, \tilde{\alpha}_l\}$ corresponding to $\alpha_0, \alpha_1, \dots, \alpha_l$ [16]. Then $\tilde{\Delta}_s := \{\sum_{i=0}^l c_i \tilde{\alpha}_i | c_i = 0 \text{ if } s_i \neq 0\} \subset \sum_{i=0}^l \mathbb{Z} \tilde{\alpha}_i$ is evidently a finite subroot system of $\tilde{\Delta}$ with base $\tilde{\Pi}_s := \{\tilde{\alpha}_i | 0 \le i \le l, s_i = 0\}$. The reduction $\sum_{i=0}^l \mathbb{Z} \tilde{\alpha}_i \to Q$ with $\tilde{\alpha}_i \to \alpha_i$ has kernel $\mathbb{Z}(\sum_{i=0}^l n_i \alpha_i)$ and so is injective on Δ_s . Thus Π_s is a base and W_s is its Weyl group. Finally, then, S is generated by the r_B , $\beta \in \Delta_s$ and $S = W_s$. \square

In the case when K is only assumed to be semisimple, we have, corresponding to the decomposition $K = K_1 \times \cdots \times K_r$, decompositions

$$\Delta = \Delta_1 \cup \cdots \cup \Delta_r, \qquad \Pi = \Pi_1 \cup \cdots \cup \Pi_r,$$

$$W = W^1 \times \cdots \times W^r, \qquad \mathbf{F} = \mathbf{F}_1 \times \cdots \times \mathbf{F}_r \quad \text{etc.}$$

Each Δ_i produces its own numerical marks $n_j^{(i)}$, $j=1,\ldots,l^{(i)}$, and each conjugacy class of EFO in K is specified by an r-tuple $[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(r)}]$, where each $\mathbf{s}^{(i)}=[s_0^{(i)},\ldots,s_l^{(i)}]$ accords with **K1-3**. The common order of the elements of the conjugacy class is the least common multiple of the constituent EFO determined by the $\mathbf{s}^{(i)}$.

For a given $s = [s^{(1)}, \dots, s^{(r)}]$, $W_s = W_{s^{(1)}}^1 \times \dots \times W_{s^{(r)}}^r$, and the number of EFO in T conjugate to $\exp 2\pi i s$ is

$$[W^{1}:W_{s^{(1)}}^{1}]\times\cdots\times[W':W_{s^{(r)}}^{r}]=[W:W_{s^{(1)}}^{1}\times\cdots\times W_{s^{(r)}}^{r}]=[W:W_{s}].$$

Thus Proposition 1 holds also when K is only assumed to be semisimple.

3. Decomposing Class Functions. Let K be a semisimple simply connected compact group as before. We consider now the integral representation ring R(K) of K, that is, the Grothendieck ring formed out of the isomorphism classes of unitary representations of K, with addition and multiplication derived from the formation of direct sums and tensor products. For each unitary representation ψ on a space V we have the character $\chi_V = \chi_{\psi} \colon K \to \mathbb{C}$. If V has the weight space decomposition

$$(3.1) V = \bigoplus_{\lambda \in \Omega} V^{\lambda},$$

where $\Omega \subset t^*$ is the weight system of V relative to T, then χ_{ψ} restricted to T is given explicitly by

(3.2)
$$\chi_{\psi}|_{T} = \sum_{\lambda \in \Omega} \left(\dim_{\mathbf{C}} V^{\lambda} \right) e^{2\pi i \lambda}.$$

This acts on $x = \exp 2\pi i \mathbf{X} \in T$ by

(3.3)
$$\chi_{\psi}(x) = \sum \left(\dim_{\mathbb{C}} V^{\lambda}\right) e^{2\pi i \langle \lambda, \mathbf{X} \rangle}.$$

For each of the fundamental weights $\omega_1, \ldots, \omega_l$ of (2.1) denote by ϕ_i the unitary representation of K with highest weight ω_i and let χ_{ϕ_i} denote the corresponding character. Let X(K) be the ring generated by all the characters χ_{ψ} as ψ runs over all the unitary representations of K. The following facts are well known [1]:

RR1: the set of χ_{ψ} as ψ runs over the irreducible representations of K is a **Z**-basis of X(K);

RR2: $R(K) \simeq X(K) \text{ via } [V] \to \chi_V$;

RR3: $X(K) = \mathbb{Z}[\chi_{\phi_1}, \dots, \chi_{\phi_l}]$ and $\chi_{\phi_1}, \dots, \chi_{\phi_l}$ are algebraically independent over \mathbb{Z} .

Furthermore, define

$$\mathbb{Z}[P] = \left\{ \sum a_{\lambda} e^{2\pi i \lambda} | \lambda \in P, \ a_{\lambda} \in \mathbb{Z}, \text{ finite sums} \right\}.$$

Then $\mathbb{Z}[P]$ admits an action of W through $we^{2\pi i\lambda} := e^{2\pi iw\lambda}$, and for the subring of W-invariants, $\mathbb{Z}[P]^W$, we have [1, 6.19].

RR4: $X(K) \simeq \mathbb{Z}[P]^W$.

We denote by $X_{\mathbb{C}}(K)$ the complexification $\mathbb{C} \otimes_{\mathbf{Z}} X(K)$ of X(K).

Our point of view is that we are presented with an element f of $X_{\mathbb{C}}(K)$ which we know as a function (at least on sufficiently many EFO). The object is to compute the decomposition

$$f = \sum a_{\psi} \chi_{\psi}, \qquad a_{\psi} \in \mathbb{C},$$

guaranteed by **RR1**. It turns out to be better to compute in terms of the orbit sums. For each $\mu \in P$, the *orbit sum* defined by μ is

(3.4)
$$\phi_{\mu} := \sum_{\lambda \in W\mu} e^{2\pi i \lambda} \in \mathbb{Z}[P]^{W},$$

where $W\mu := \{ w\mu \mid w \in W \}$. Clearly, $\phi_{w\mu} = \phi_{\mu}$ for all $w \in W$, $\mu \in P$, so we restrict our attention to ϕ_{μ} for dominant μ . We recall that the set of *dominant* elements of P, P^{++} , is defined by

$$\mu \in P^{++} \Leftrightarrow (\mu, \alpha_i) \geqslant 0$$
 for each $i = 1, ..., l$.

Every W-orbit of weights contains exactly one dominant element.

If ψ is a representation of K on the space V with weight space decomposition (3.1) and if $\Omega^{++} := \Omega \cap P^{++}$, then

(3.5)
$$\chi_{\psi} = \sum_{\lambda \in \Omega^{++}} \left(\dim_{\mathbf{C}} V^{\lambda} \right) \phi_{\lambda}.$$

The weight multiplicities $\dim_{\mathbf{C}} V^{\lambda}$ for dominant λ are fundamental quantities in the computational theory of simple Lie groups. The reader is referred to [3], [17], [18] for more details. Extensive details of dominant weight multiplicities appear in [4].

We introduce the level vector $\mathbf{l} \in \mathbf{t}$, uniquely specified by $\langle \alpha_i, \mathbf{l} \rangle = 2$ for $i = 1, \ldots, l$ (cf. [4, Table 1]). Using \mathbf{l} , take any partial ordering \leq on P such that $\lambda < \mu$ if $\langle \lambda, \mathbf{l} \rangle < \langle \mu, \mathbf{l} \rangle$. In particular, if $\mu - \lambda = \sum c_i \alpha_i$ with $c_i \in \mathbb{N}$ then $\lambda \leq \mu$. For each $\mu \in P^{++}$ the set of $\lambda \in P^{++}$ such that $\lambda \leq \mu$ is finite. Furthermore, all the weights of the representation ψ^μ with highest weight μ satisfy $\lambda \leq \mu$. Thus, if $m_\mu^\lambda := \dim_{\mathbb{C}} V^\lambda$ in the representation afforded by $\psi^\mu(\mu \in P^{++})$ and χ_μ is the character of ψ^μ , then the system of equations

(3.6)
$$\chi_{\nu} = \sum_{\lambda \leqslant \nu} m_{\nu}^{\lambda} \phi_{\lambda}, \qquad \nu \in P^{++}, \ \nu \leqslant \mu,$$

determines ϕ_{λ} in terms of the χ_{ν} by means of the unipotent matrix (m_{ν}^{λ}) . These matrices, called *dominant weight multiplicity matrices*, are precisely the tables of [4].

A list $\{\lambda_1, \ldots, \lambda_r\}$ of dominant weights is said to be *consistent* if for each λ_i all the weights λ occurring in the decomposition (3.6) of χ_{λ_i} also appear in the list. Normally, we wish to work with consistent lists of weights.

It follows from [2, Chapter VI, Section 3.4] that the set of orbit sums ϕ_{λ} as λ runs over P^{++} is a **Z**-basis of X(K) and that $\phi_{\omega_1}, \ldots, \phi_{\omega_l}$ is a set of algebraically independent ring generators of X(K). We define

$$X^{+}(K) = \left\{ \sum c_{\lambda} \phi_{\lambda} | \lambda \in P^{++}, c_{\lambda} \in \mathbb{N} \right\}.$$

Definition. We say that a subset A of T separates two subsets S_1 , S_2 of P if for each pair $(\lambda_1, \lambda_2) \in S_1 \times S_2$ with $\lambda_1 \neq \lambda_2$ there is an $x \in A$ such that $\exp(2\pi i \lambda_1)(x) \neq \exp(2\pi i \lambda_2)(x)$. If $S_1 = S_2$ we simply say that A separates S_1 . If $f = \sum a_{\lambda} e^{2\pi i \lambda} \in X(K)$, we say that A separates f if A separates the weights which actually appear in the sum $(a_{\lambda} \neq 0)$.

Let A be a finite Abelian subgroup of T. We define

$$\langle \cdot, \cdot \rangle_{A} : \mathbb{Z}[P] \times \mathbb{Z}[P] \to \mathbb{C}$$

by

(3.7)
$$\langle f_1, f_2 \rangle_A = \sum_{x \in A} f_1(x) \overline{f_2(x)},$$

where the overbar denotes complex conjugation.

Below we assume that A is W-stable: $wAw^{-1} \subset A$ for all $w \in W$.

PROPOSITION 2. Let A be a finite W-stable (Abelian) subgroup of T of order g. Let $\lambda, \mu \in P^{++}, \lambda \neq \mu$.

(i) If A separates $W\lambda$ and $W\mu$, then

$$\langle \phi_{\lambda}, \phi_{\mu} \rangle_{A} = \delta_{\lambda \mu} \cdot g|W\lambda|$$

where $\delta_{\lambda\mu}$ is the Kronecker δ -function.

(ii) In any case $\langle \phi_{\lambda}, \phi_{\mu} \rangle_A$ is a nonnegative integral multiple of $g|W\lambda|$.

Proof. We have

$$\langle \phi_{\lambda}, \phi_{\mu} \rangle_{A} = \sum_{x \in A} \sum_{\sigma \in W\lambda} \sum_{\tau \in W\mu} e^{2\pi i (\sigma - \tau)}(x) = \sum_{(\sigma, \tau) \in W\lambda \times W\mu} \sum_{x \in A} e^{2\pi i (\sigma - \tau)}(x).$$

Suppose that A separates $W\lambda$ and $W\mu$. Then none of the nonzero differences $\sigma - \tau$ in this sum vanishes on A. Thus

(3.8)
$$\sum_{x \in A} e^{2\pi i(\sigma-\tau)}(x) = \delta_{\sigma\tau}g,$$

and (i) follows. Even without separation, the sum in (3.8) can only be 0 or g. If it is g, so that $\{\sigma\}$ and $\{\tau\}$ are not separated by A, then neither are $\{w\sigma\}$ and $\{w\tau\}$, $w \in W$, and hence we obtain a contribution of $g|W\lambda|$ to $\langle \phi_{\lambda}, \phi_{\mu} \rangle_{A}$. Thus (ii) follows. \square

In the applications described in Section 1 the class functions to be decomposed are sums of terms $e^{2\pi i\lambda}$, $\lambda \in P$, and hence lie in $X^+(K)$. Because of its importance, we prefer now to restrict ourselves to this situation and to make some comments about the general case at the end of the section.

Thus let

(3.9)
$$f = \sum_{\lambda \in \mathbb{P}^{++}} a_{\lambda} \phi_{\lambda} \in X^{+}(K).$$

The $a_{\lambda} \in \mathbb{N}$, but are otherwise unknown. Let A be a finite W-stable subgroup of T of order g. Then

$$(3.10) b_{\lambda} := (g|W\lambda|)^{-1} \langle f, \phi_{\lambda} \rangle_{A}$$

is an integer and

$$(3.11) b_{\lambda} \geqslant a_{\lambda}$$

with equality if A separates f. Since

$$(3.12) f(1) = \sum a_{\lambda} |W\lambda|,$$

it is easy to check when $\{a_{\lambda}\}$ is in fact a solution to (3.9).

To diminish the work in summing involved in (3.10) we now assume that $A = T_n = \{x \in T \mid x^n = 1\}$ and use the results of Section 2. Thus let s_1, \ldots, s_h denote the points of $\mathbf{F} \cap \frac{1}{n}Q^{\wedge}$ and let $x_j = \exp 2\pi i s_j$, $j = 1, \ldots, h$. Let

(3.13)
$$S_{i} = |W_{s_{i}}|, \quad j = 1, ..., h,$$

so that there are in T precisely $|W|/S_i$ elements conjugate to x_i .

In addition, we assume that the dominant weights appearing in (3.9) are amongst the set $\{\lambda_1, \ldots, \lambda_r\}$, where $\lambda_1 \leq \cdots \leq \lambda_r$. For each $j = 1, \ldots, r$ let L_j be the order of the stabilizer of λ_j in W. Thus $|W\lambda_j| = |W|/L_j$. Then Eq. (3.10) becomes

(3.14)
$$b_{\lambda_j} = n^{-l} L_j \sum_{i=1}^h S_i^{-1} f(x_i) \overline{\phi_j(x_i)}, \quad j = 1, \dots, r,$$

where we have written ϕ_i for ϕ_{λ_i} and the overbar denotes complex conjugation.

The equations (3.14) suggest that we define the $r \times h$ matrix $U = U^{[n]}$ by

(3.15)
$$U_{ii} = n^{-1/2} \sqrt{L_{i}/S_{i}} \phi_{i}(x_{i}).$$

If T_n separates the weights of $W\lambda_1 \cup \cdots \cup W\lambda_r$, then, replacing f of (3.9) by ϕ_k , we have from (3.14)

$$\delta_{kj} = n^{-l} L_j \sum_{i=1}^h S_i^{-1} \phi_k(x_i) \overline{\phi_j(x_i)} = \sqrt{L_j / L_k} \sum_{i=1}^h U_{ki} \overline{U}_{ji}, \qquad 1 \leq k, \ j \leq r.$$

Thus

(3.16)
$$U\overline{U}^T = \mathbf{1}_{r \times r} \quad (r \times r \text{ identity matrix}).$$

In terms of U_{\star} (3.10) reads

(3.17)
$$(b_{\lambda_1}, \dots, b_{\lambda_r})^T = n^{-l/2} \sqrt{L} \, \overline{U} \sqrt{S^{-1}} (f(x_1), \dots, f(x_h))^T,$$

where $L = \text{diag}\{L_1, \ldots, L_r\}$ and $S = \text{diag}\{S_1, \ldots, S_h\}$.

The $r \times h$ matrix

$$(3.18) \qquad \left(D_{ii}^{[n]}\right) = n^{-l/2}\sqrt{L} \,\overline{U}\sqrt{S^{-1}} = n^{-l}L\left(\overline{\phi_i(x_i)}\right)S$$

is called the *decomposition matrix at torsion n*. Of course, $D^{[n]}$ depends on the choice of weights $\{\lambda_1, \ldots, \lambda_r\}$. There are fairly natural choices for these—for example all the dominant weights up to a given level, or all the dominant weights of a given

congruence class (see Section 4) up to a given level. With this in mind, it makes sense to compute the decomposition matrices for suitable n once and for all. In Section 4 we will show how this can be done in conjunction with the computing of the orbit sum values $\phi_j(x_i)$. The question of knowing how large n needs to be to separate the required weights is not easy. In Section 6 we give a reasonable upper bound on n. In practice, we have been experimentally determining suitable n somewhat lower than this bound.

On the basis of (3.10), (3.11) and (3.12) it appears that in principle the a_{λ} might be determined by minimizing trial solutions $b_{\lambda}^{(n)}$ for various small n. Our experience is that this is not particularly effective. Once nonseparation becomes prevalent, the $b_{\lambda}^{(n)}$ become badly wrong and several poor overestimates are of little use.

The development through (3.10)–(3.18) is unchanged if f in (3.9) is replaced by an element of $X_{\mathbb{C}}(K)$, except that b_{λ} in (3.10) is no longer necessarily an integer and (3.12) is no longer a decisive test for a correct solution. As long as one knows that $\phi_{\lambda_1}, \ldots, \phi_{\lambda_r}$ are the only orbit sums in the decomposition of f and (3.16) holds, this is not essential.

4. Bootstrapping. Up to this point we have been concentrating on a technique for decomposing class sums, given prior knowledge of the orbit sum values on suitable sets of EFO. In [18] we devoted much attention to the problem of computing character values, and although the method advocated there is indeed practical for ranks say ≤ 10 , it still can become fairly laborious when large numbers of EFO are involved. In the process of decomposing class functions it becomes possible to use decompositions available at any moment to compute unknown orbit sum values which in turn allow further decompositions. This leads to a bootstrap approach to computing both decomposition matrices and orbit sum values in which the orbit sums need only be evaluated by summing at the so-called *elementary* dominant weights [19]. The elementary dominant weights are the fundamental weights corresponding to the *ends* of the Coxeter-Dynkin diagram (see below). The orbit sum values for other dominant weights are computed by using various tensor and alternating products as we now explain.

Let us assume that $\{\lambda_1, \ldots, \lambda_r\} \in P^{++}$ is ordered and complete with respect to level in the sense that

(4.1)
(i)
$$i < j \Rightarrow \langle \lambda_i, \mathbf{l} \rangle \leqslant \langle \lambda_j, \mathbf{l} \rangle$$
(ii) if $\mu \in P^{++}$ and $\langle \mu, \mathbf{l} \rangle < \langle \lambda_j, \mathbf{l} \rangle$
for some j then $\mu \in \{\lambda_1, \dots, \lambda_r\}$.

In particular, such a set is consistent. We also assume that we have a set $x_j = \exp 2\pi i \mathbf{s}_j$, j = 1, ..., h, of EFO which represent the conjugacy classes of a finite W-stable Abelian group A which separates $\{\lambda_1, ..., \lambda_r\}$. For simplicity we will actually assume that $A = T_n$ as defined in Section 3.

Our object is to compute both the orbit sum values $\phi_{\lambda_i}(x_j)$ and the decomposition matrix $D^{[n]}$ (3.18). This is accomplished by an inductive process on the level. If the values $\phi_{\lambda_i}(x_j)$, $j=1,\ldots,h$, are known for $\lambda_1,\ldots,\lambda_{p-1}$ and if we can write

(4.2)
$$\lambda_p = \lambda_r + \lambda_s, \qquad \lambda_r, \lambda_s \neq 0$$

(where necessarily r, s < p), then the class sum $\phi_{\lambda_r} \cdot \phi_{\lambda_s}$ decomposes as

$$\phi_{\lambda_r} \cdot \phi_{\lambda_s} = \phi_{\lambda_p} + \sum_{k=1}^{p-1} a_k \phi_{\lambda_k},$$

where the quantities $a_k \in \mathbb{N}$. By assumption, the values $\phi_{\lambda_k}(x_j)$, k < p, are known and hence so are the first p-1 rows of the decomposition matrix $D^{[n]}$. That is sufficient to determine a_1, \ldots, a_{p-1} by direct matrix multiplication using (3.17), whence we have $\phi_{\lambda_n}(x_j)$ from (4.3).

If no decomposition (4.2) is available it is because $\lambda_p = \omega$, where ω is one of the fundamental weights (2.1). Provided that ω does not belong to one of the *ends* of the Coxeter-Dynkin diagram—that is, a node attached to only one other node—we can use the method of alternating tensors to compute the orbit sum values. There is always an A-type string of nodes from some end to the node belonging to ω —say

$$(4.4) \widetilde{t_1} \quad \widetilde{t_2} \cdots \widetilde{t_{p-1}} \quad \widetilde{t_p}$$

where $\omega = \omega_{t_p}$. Let V be the irreducible representation with highest weight ω_{t_1} . We will denote characters by the symbol χ subscripted by either the name of the representation space or the highest weight (for an irreducible representation), whichever is convenient. Then we have

(4.5)
$$\chi_{(\Lambda^{p_{V}})} = \phi_{\omega} + \sum_{\lambda < \omega} a_{\lambda} \phi_{\lambda}$$

This is well known [10], although it is usually expressed with characters rather than orbit sums on the right-hand side of the equation.

Now the values of $\chi_{(\Lambda^{p_V})}$ on EFO are computable directly as long as the so-called *power maps* are available. These are the mappings which describe for each EFO the conjugacy classes to which each of its powers belong. Precisely, they are the mappings

$$(4.6) p_j: \{1, \ldots, m_j\} \to \{1, \ldots, h\}, j = 1, \ldots, h,$$

which provide for each of the EFO x_j (with order m_j) the unique element $x_{p_j(k)}$ which is conjugate to x_j^k , $k = 1, ..., m_j$. This type of information is not hard to obtain by methods described already in [18, Section 5].

Assuming that the power maps are in place, we have the formula [25, §12], [20]

(4.7)
$$\chi_{(\Lambda^p V)}(x) = \frac{1}{p!} \sum_{[d]=[d_1,\ldots,d_p]} h^{[d]} \sigma([d]) (\chi_V(x^1))^{d_1} \cdots (\chi_V(x^p))^{d_p},$$

where $[d] = [d_1, \dots, d_p]$ runs over all partitions

$$1^{d_1}2^{d_2}\cdots p^{d_p} \text{ of } \{1,\ldots,p\};$$

$$h^{[d]} = \frac{p!}{1^{d_1}d_1!\cdots p^{d_p}d_p!}$$

is the size of the conjugacy class of the symmetric group S_n with cycle type [d]; and

 $\sigma: S_p \to \{\pm 1\}$ is the alternating character,

$$\sigma([d]) = (-1)^{d_2 + d_4 + \cdots}.$$

Again the a_{λ} in (4.5) are obtained from the part of $D^{[n]}$ already available, and the values $\phi_{\omega}(x_i)$ are obtained from (4.7) and (4.5).

In this way, the pth row of $D^{[n]}$ is constructed, thus completing the induction step. Needless to say, the decompositions (4.3) and (4.5) may be used for the computing of arbitrary character values. The idea of using various classes of tensors to compute character values is not new. Indeed, it is the approach of J. Conway and L. Queen in [5]. However, their computations are very much special to E_8 and there are no bootstrapping ideas to determine their tensor decompositions.

The additional complexity involved in (4.7) has to be weighted against the direct computation of the corresponding orbit sum. For higher-rank algebras there is no question that (4.7) is more efficient, as a simple example shows. In D_8 , the fundamental representation corresponding to the trivalent node involves computing $2^78!/2^26! = 1792$ cosets before any summing is begun, whereas (4.7) can be utilized with a fork node and p = 2 to give

(4.8)
$$\chi_{\Lambda^2 V}(x) = \frac{1}{2} \{ \chi_V(x)^2 - \chi_V(x^2) \}.$$

5. Modular Arithmetic. If one examines the entire collection of algorithms involved in computing weights, weight space multiplicities, and so on [3], [4], [17], [18] one sees that it is only in the evaluation of the orbit sums and character sums that real arithmetic enters. Its presence brings more than just loss of aesthetic appeal: round-off errors become a very acute problem in the high-rank/high-dimension cases, even when only integer answers are sought. Thus, in E_8 we found in using the 63 conjugacy classes of elements of order 8 that the round-off errors on a Cyber 835 forced us to stop long before separation became a problem. Such problems are completely eliminated by using mappings of cyclotomic integers into suitable prime fields.

Let p be a prime and let n be a positive integer dividing p-1. Let O_n be the ring of the nth cyclotomic field L_n . Then in the prime field $F_p = \mathbb{Z}/p\mathbb{Z}$ there is a primitive nth root ξ of 1. Since the minimum polynomial of ξ over F_p is the nth cyclotomic polynomial $\Phi_n(x)$ (reduced modulo p), there is a ring homomorphism

(5.1)
$$\phi \colon O_n = \mathbb{Z}[e^{2\pi i/n}] \to F_p$$

such that $\phi|_{\mathbb{Z}}$ is reduction mod p and $\phi(e^{2\pi i/n}) = \xi$. We define the "conjugate map" $\overline{\phi}$: $O_n \to F_p$ through $\overline{\phi}(e^{2\pi i/n}) = \xi^{-1}$. Thus, $\phi(\overline{z}) = \overline{\phi}(z)$ for all $z \in O_n$. Most importantly, the kernel of ϕ in \mathbb{Z} is $p\mathbb{Z}$.

Now in the orbit sum and bootstrapping methods of Sections 3 and 4, we may perform all the calculations in F_p rather than in C, provided that we choose a prime p such that the torsion n and the Weyl group order |W| satisfy

(5.2)
$$n \mid p-1, \gcd(|W|, p) = 1.$$

The resulting modular decomposition matrix

$$\phi\left(D_{ji}^{[n]}\right) = \phi\left(n^{-1}L_{j}\overline{\phi_{j}(x_{i})}S_{i}\right)$$

can be used to determine modular decompositions

$$(\phi b_1, \dots, \phi b_{\lambda_n})^T = (\phi D^{[n]}) (\phi f(x_1), \dots, \phi f(x_h))^T$$

of *integral* class sums. The decomposition $(b_1, \ldots, b_{\lambda_r})^T$ then can be recovered provided that we begin with a suitably large prime p, or we use several primes and the Chinese remainder theorem.

The idea of number theoretical transforms is not new. J. D. Dixon advocated the modular calculation of characters of finite groups in [6], and their use in convolution algorithms is well established [21]. The situation here does however seem particularly suitable for their application, since the intermediate complex quantities are very large whereas the final answers are both integral and relatively small.

As an example we have used the bootstrapping in the modular setting to compute the decompositions (4.3) and (4.5) for the first 38 (by level) weights of E_8 . For this we used the elements of order n=8 and the prime $2^{28}-119$.

One should note that the orbit decomposition (4.3) and (4.5) tend to involve much larger integers than their corresponding reformulations in terms of characters. Thus it is preferable to perform the conversion back to \mathbb{Z} only after such a reformulation (using the triangular system of equations (3.6)).

6. Additional Remarks. (i) We begin with an estimate on the size of n required for T_n to separate the weights of $\Lambda = W\lambda_1 \cup \cdots \cup W\lambda_r$, where $\lambda_1, \ldots, \lambda_r$ are some given dominant weights. By definition we require that for each pair λ , $\mu \in \Lambda$, $\lambda \neq \mu$, there is a point X of $(\frac{1}{n})Q^{\wedge}$ such that $\langle \lambda - \mu, X \rangle \notin \mathbb{Z}$. Since the \mathbb{Z} -dual of Q^{\wedge} is P, this is equivalent to requiring that $\lambda - \mu \notin nP$. We assume that K is simple.

Let $\omega_1, \ldots, \omega_l$ be the fundamental basis of P and let $\alpha_1^{\wedge}, \ldots, \alpha_l^{\wedge}$ be the basis \mathbb{Z} -dual to it in t (see Section 2). Let $\lambda_j = \sum_{i=1}^l c_{ij} \omega_i$, $j = 1, \ldots, r$, and define

(6.1)
$$C = \max \left\{ c_{ij} | 1 \leqslant i \leqslant l, 1 \leqslant j \leqslant r \right\},$$

$$M = \max \left\{ \sum_{i=1}^{l} n_i^{\wedge} c_{ij} | 1 \leqslant j \leqslant r \right\},$$

where $n_1^{\wedge}, \ldots, n_l^{\wedge}$ are the numerical marks of the "dual" group K^{\wedge} of K (see Section 2).

PROPOSITION 3 (K simple). If n > C + M then T_n separates Λ .

Proof. Take n > C + M. Let $\lambda, \mu \in \Lambda$, $\lambda \neq \mu$. We show that $\lambda - \mu \notin nP$. By the W-invariance of P and nP we may assume that μ is dominant—say $\mu = \lambda_k$. Let $\lambda = w\lambda_j$. The coefficient of ω_i in $w\lambda_j$ is

$$\langle w\lambda_i, \alpha_i^{\wedge} \rangle = \langle \lambda_i, w^{-1}\alpha_i^{\wedge} \rangle.$$

Now $w^{-1}\alpha_i^{\wedge}$ is a coroot (that is a root of the root system $\Delta^{\wedge} := W\{\alpha_1^{\wedge}, \dots, \alpha_l^{\wedge}\}$ of K^{\wedge}). Thus $w^{-1}\alpha_i^{\wedge} = \sum_{k=1}^l d_k \alpha_k^{\wedge}$ with $|d_k| \leq n_k^{\wedge}$, $j=1,\dots,l$, and $|\langle \lambda_j, w^{-1}\alpha_i^{\wedge} \rangle| \leq \sum n_k^{\wedge} c_{kj} \leq M$. Thus the coefficient of ω_i in $w\lambda_j - \lambda_k = \lambda - \mu$ is bounded in absolute value by M + C. This proves the result. \square

Formulas for the number h(n) of conjugacy classes of EFO in T_n are known. The semisimple case follows directly from the simple case, and for K simple, generating functions for h(n) appear in [18]. Explicit formulas are given by Djoković in [7]. When n and |W| are relatively prime (or even under slightly more relaxed conditions [8]), Djoković has given the elegant formula

$$h(n) = \prod_{i=1}^{l} \left(\frac{m_i + n}{m_i + 1} \right),$$

where m_1, \ldots, m_l are the exponents of K.

(ii) The congruence classes of weights are the Q-cosets of P. Any Weyl group orbit and any weight system of an irreducible representation of K lies entirely in such one congruence class. Thus we may speak of the congruence class of an orbit sum or an irreducible character. The center Z of K may be identified with the character group X(P/Q) of P/Q by

$$(6.3) \theta \in X(P/Q) \leftrightarrow z^{\theta} \in Z$$

with z^{θ} acting on weight spaces of weight $\lambda \in P$ by

$$z^{\theta}|_{V^{\lambda}} = \theta(\lambda + Q).$$

Let $\mathbf{z}^{\theta} = [z_0^{\theta}, \dots, z_l^{\theta}]$ be the corresponding point in \mathbf{F} (actually the \mathbf{z}^{θ} are the vertices of \mathbf{F} [18]) so that

$$(6.4) z^{\theta}|_{V^{\lambda}} = e^{2\pi i \langle \lambda, \mathbf{z}^{\theta} \rangle}.$$

Now if $\lambda, \mu \in P$, then

(6.5)
$$\sum_{\theta \in X(P/O)} e^{2\pi i \langle \lambda - \mu, \mathbf{z}^{\theta} \rangle} = |Z| \delta_{\bar{\lambda}, \bar{\mu}},$$

where $\bar{\lambda} = \lambda + Q$, $\bar{\mu} = \mu + Q$. Thus we see that

(6.6)
$$\langle \phi_{\lambda}, \phi_{\mu} \rangle_{Z} = |Z||W\lambda||W\mu|\delta_{\bar{\lambda}, -\bar{\mu}},$$

so that Z, and hence any group $A \subset T^n$ which contains Z, can separate the congrunce classes.

Let $\{\bar{\gamma}_1, \dots, \bar{\gamma}_{|Z|}\}$ be the elements of P/Q and let $\gamma_1, \dots, \gamma_{|Z|}$ be some arbitrary representatives of the $\bar{\gamma}_i$ in P. Then for any class function $f = \sum a_{\lambda}e^{2\pi i\lambda}$ on T we have the decomposition

$$f = \sum_{k=1}^{|Z|} f_k$$
, where $f_k = \sum_{\lambda \in \bar{\gamma}_k} a_{\lambda} e^{2\pi i \lambda}$,

and from (6.5) we have

(6.7)
$$f_k(x) = \frac{1}{|Z|} \sum_{\theta \in X(P/Q)} e^{-2\pi i \langle \gamma_k, \mathbf{z}^{\theta} \rangle} f(z^{\theta} x).$$

In many problems, for instance those involving tensor products, it is possible to keep the congruence classes separate and there is no need to involve the center. However, in problems like group-subgroup reductions, mixing of classes is unavoidable and (6.7) provides a useful way to separate them.

(iii) As we have suggested above, the use of orbit sums has several advantages over the direct use of characters. We briefly consider here the situation with characters. Consider first the problem of numerical integration of a class function f on G. Assuming Haar integrals \int_G and \int_T on G and T, both normalized so that $\int_G 1 = 1 = \int_T 1$, then there is a well-known formula of H. Weyl,

$$\int_C f = |W|^{-1} \int_T f \, d\bar{d},$$

where $d = \prod_{\alpha \in \Delta^+} (e^{\pi i \alpha} - e^{-\pi i \alpha})$ is the discriminant function on T [1, Chapter 6]. If $f = \sum_{\lambda \in P} a_{\lambda} e^{2\pi i \lambda}$, $a_{\lambda} \in \mathbb{C}$, then

$$\int_T f = \int_{\mathsf{t}/Q^{\wedge}} \sum_{\lambda} a_{\lambda} e^{2\pi i \langle \lambda, X \rangle} = a_0.$$

On the other hand,

$$\sum_{X \in \frac{1}{n} Q^{\wedge}/Q^{\wedge}} e^{2\pi i \langle \lambda, X \rangle} = \begin{cases} n^{l} & \text{if } \langle \lambda, Q^{\wedge} \rangle \subset n\mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus,

(6.8)
$$\int_{G} f = |W|^{-1} \int_{T} f d\bar{d} = |W|^{-1} n^{-l} \sum_{X \in \frac{1}{n} Q^{\hat{}}/Q^{\hat{}}} (f d\bar{d})(x),$$

where $x = \exp 2\pi i X$, provided that the weights appearing in $f d\bar{d}$ are separated from $\{0\}$. In view of the orthogonality relations for characters [1, Chapter 3], we have for irreducible characters χ and χ' of K

(6.9)
$$|W|^{-1}n^{-l}\sum_{x\in\frac{1}{n}Q^{\wedge}/Q^{\wedge}}\left(\chi d\left(\overline{\chi'd}\right)\right)(x)=\delta_{\chi\chi'}$$

provided that T_n separates the weights appearing in the function $\chi \chi' d\bar{d}$. This certainly allows numerical decompositions of character sums in principle. However, separating the weights of $d\bar{d}$ is an additional expense and, unlike the case of the orbit sums, we do not have well-defined useful information (like (3.11)) in the failure of separation.

- (iv) We have always assumed that an advance knowledge of the weights which may occur in the character decomposition of a given $f \in X(K)$ is at our disposal. A few examples of this might be helpful. Consider the problem of decomposing the tensor product (1.2) or, what amounts to the same thing, decomposing the product (1.3) of $\chi_{V_1}\chi_{V_2} \in X^+(K)$. If the highest weight of V_i is λ_i , $i=1,2,\ldots,r$, then $\lambda_i \leq \lambda_1 + \lambda_2$, $i=3,\ldots,r$. In fact, it can be shown that $\lambda_3,\ldots,\lambda_r$ lie in the set Ω of dominant weights of the irreducible module of highest weight $\lambda_1 + \lambda_2$ (Ω is complete). Although it is irrelevant to the orbit sum method, it is interesting to note that there is a "least" λ_i , say λ_3 , with $\lambda_3 \leq \lambda_i$ for $i=3,\ldots,r$. This λ_3 is the dominant weight in the W-orbit of $\lambda_1 \lambda_2$ [24].
- (v) Consider the problem of subgroup reduction. Here we have $K \subset \tilde{K}$ and the task is to perform the character decomposition or *branching* of a function $f \in X^+(\tilde{K})$ when it is restricted to K. If T and \tilde{T} are maximal tori of K and \tilde{K} , respectively, then we may always assume that $T \subset \tilde{T}$. Then, under restriction $\tilde{\lambda} \mapsto \lambda$, weight systems of \tilde{K} -modules project onto weight systems of K-modules. It is always possible to choose total orderings \leq and $\tilde{\leq}$ on the weight lattices P and \tilde{P} (relative to T and \tilde{T}) such that for all $\tilde{\lambda}$, $\tilde{\mu} \in \tilde{P}$, $\lambda < \mu$ implies $\tilde{\lambda} \stackrel{<}{\sim} \tilde{\mu}$ [9, Chapter 1]. Use these to order the corresponding root systems Δ and $\tilde{\Delta}$, and let Π and $\tilde{\Pi}$ be the corresponding bases. Then for

$$\tilde{\alpha} \in \tilde{\Delta}^+, \qquad 0 \stackrel{\sim}{\prec} \tilde{\alpha} \Rightarrow 0 \prec \alpha.$$

If $\tilde{\mu}$ is a dominant weight in \tilde{P} then the \tilde{W} -orbit $\tilde{W}\tilde{\mu}$ lies in $\{\tilde{\mu} - \sum c_{\tilde{\alpha}}\tilde{\alpha} | \tilde{\alpha} \in \tilde{\Pi}, c_{\tilde{\alpha}} \in \mathbb{N}\}$, and hence for all $\tilde{\lambda} \in \tilde{W}\tilde{\mu}$, $\lambda \leq \mu$. Thus we have strict control over the weights appearing in the reduction of orbit sums.

7. E_6 Example. The Tables 1 and 2 below contain the dominant weight matrices (m_{ν}^{λ}) for the E_6 -congruence classes 0 and 1. The matrix for class 2 can be obtained directly from that of class 1 by permuting the labels according to the E_6 diagram symmetry. These tables are examples of the form of the main set of tables of [4]. In addition to the dominant weight multiplicities, Tables 1 and 2 provide the following auxiliary information about the representations.

S.P.: Scalar product (λ, λ) of the dominant weight λ , so normalized that $(\alpha, \alpha) = 2 \det(\text{Cartan matrix})$ for short roots α .

O.S.: Orbit size, the number of weights on the Weyl group orbit of λ .

LEVEL: The number of levels of the weight system $\Omega(\lambda)$.

DIM'N: The dimension of the representations with the highest weight λ .

WEIGHT: The weight λ given by its coordinates in terms of the fundamental weights, arranged into a Dynkin diagram.

NUMBER: Numbering of dominant weights of the class (this has no canonical meaning).

The Tables 3-6 below are examples of E_6 tensor product decompositions which were obtained by the method outlined in Section 3. We took advantage of the congruence classes and computed one decomposition matrix D for each class. For E_6 we have the following values for h(n) = number of conjugacy classes of EFO in T_n :

n	2	3	4	5	6	7	8	9	10	11	12
h(n)	3	8	14	26	49	77	124	197	287	418	603

For the purposes of the example we chose the 77 conjugacy classes of EFO in T_7 and constructed the corresponding decomposition matrices, referring to the ordered list of E_6 dominant weights (cf. Tables 1 and 2). The elements of T_7 separate all the weights in at least the first 30 weights of each congruence class. For instance, for class 0 the matrix UU^T (3.16) is $I_{52\times52}+E_{15,34}+E_{34,15}+E_{32,32}+E_{37,37}+E_{38,38}+E_{42,42}+E_{43,43}+E_{51,51}$, where $I_{52\times52}$ is the 52 × 52 identity matrix and E_{ij} is the (i, j) matrix unit with 1 in the (i, j)th position and 0's elsewhere. Thus one sees for example that the orbits of weight #15 and #34 are 'aliased' by T_7 . It is worthwhile noting however that the elements of order 7 do better than one might anticipate from Proposition 3. There, for class 0 and the first 30 representations, C and M of Section 6(i) are 5 and 6, respectively, with corresponding value of 12 for n in Proposition 3.

After removing the obvious symmetries, there are four types of tensor products that one needs to consider:

```
class 0 \otimes class 0 \rightarrow class 0 (Table 3)
class 0 \otimes class 1 \rightarrow class 1 (Table 4)
class 1 \otimes class 1 \rightarrow class 2 (Table 5)
class 1 \otimes class 2 \rightarrow class 0 (Table 6)
```

The resulting tables were obtained by using the decomposition matrices on all the mutual products of the first 10 nontrivial representations of each class and retaining those which passed the (definitive) test (3.12). We have denoted the irreducible representations by number-letter pairs where the number refers to the numbering of the highest weight (cf. Tables 1 and 2) and the letter to the class by the convention $A \leftrightarrow \text{class } 0$, $B \leftrightarrow \text{class } 1$, $C \leftrightarrow \text{class } 2$. Thus a tensor product of representations 2B and 3C is denoted by (2B, 3C).

There are other E_6 tensor product decomposition tables in the literature [11], [26], [28], calculated by entirely different methods. We have made no attempt to compare these methods with the one here.

•
ă
τ
ä
ž
5
200
₹
ž
-

S.P.	0.S.	LEVEL	N. H.Id	WE 1GHT	NUMBER	•	-	64	r	-	'n	•	7	∞	•	9	=	ដ	13	Ξ	53
8		6	2332		5	200	909	282	978	2003	m 9	£ 04	-6	-6	1 899	100	276	\$76	607	304	180
8		6	548 180 2	m000m	S	656 0	871 9		067 9	646 5	9	4 049	240 0	240 0	374 9		80	128 5	116 6	¥ 92	32
8	20	ĸ		00m	¢	80		3 1	~6	-0	2 6	0	5	7.		2 209	236 128	9	=		÷
:	-		2337		:	8%	2.68	304	- S	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	188	320	480	644	352	23	5 176	182 182	2 112	
8		~ &	337	700	₽ .	80%	2 gg 2	304	352 950 950	870 120 120	2	105	480	320	44	352	176	236		112	\$
2	•	23	217 788		7	3 ¹⁶	925	5 832	323	870	1 896	188	576	576	038	554	368	286	278	152	55
*	-	23	3893	00000	\$	~ క	5	318	772	439	468	63	200	2	249	134	29	8	99	=	٥
8	-	23	368	00000	₹	~8	232	318	808 772 772	439	\$3	89	110	98	249	13	8	53	99	ŧ	•
*	-	3	162 159	0000m	7	3 3	326	392	808	Š	439	201	ዩ	216	290	Ξ	8	88	ĸ	%	3
8	•	33	162 159	70000 7	7	818	326	392	808	420	20	439	216	8	260	Ξ	88	88	75	%	2
8	216	2	359 376	000m0 0	7	227	235	544 544 728	418	230	234	240	2	8	129	69	¥	E	ž	8	8
\$		2	309	mooo	7	320 320	799	- 2	882	8	240	7.	5€	9	274	₹	8	108	69	\$	2
8	~3	2	269 989	00-om	2	₹9	~ 2	-3	88	8	174	240	2	240	274	155	80	88	69	\$	2
8		2	338	000m 0 0m000	ê	22	-g	82	418	230		234	8	3	129	%	Ħ	45	ž	8	5
2	~0	2	N 4 8	~~000	25	200 052	₹8	432 728	382 /	86	g,	740	240	160	18	224	23	120	123	8	\$
2		2	255 250 240 240 240 240 240 240 240 240 240 24	000	33	28,	220 220 235 610 610	432.4	382 3	780 7	740 785 240	785	160	240 1	418	224 2	120	2	123 1	8	\$
2		8	#25# #25#	00	**	2%	25.4	432.4	358 3	78.	7.80	761 7	160	240 2	392	202	116	2	8	祭	2
2		2	322 7	00	ĸ	2%2	5 256 2	432	1 358 3	7.86.7	761 7	720 7	240 1	160 2	392 3	202 2	84 1	911	8	9	2
8		&	557	00000	 3	810 2	446 2	248 4	145 3	7 96	7 92	7. 97	16 2	19	45 3	24.2	2	91	2	٠	=
20		8		N000N	33	νδ. 99	mæ	9:⊶	-8				991			75	2	%	69	ş	15
2		82	t	. —	32 3	3 679	9 254	1 4 836	559 018	4 559	50	0 550	91 09	60 160	8 284	18	33.	33	48	2	2
2	40	83	2 1 2 1 2 2 1 3 2 1 9 5 1 9 5 1 9 5	00-00 7	31 3	320 249	3 0 819	6 00 1	8	0 324	230	2 50		83	2 158		45	89	55 4	-	10
2 2			2 977 7 977 5 975	0-007		32	3 0 0 0 3	1 1 6 676	9	0 470	8	0 455	85 160		2 242	9 119				- 2	9
7 2	-	8 8	1 977 0 975	00000	30	2 320	5 020	679	9	5 470	0 455	8	£	45 160	9 242	113	89	3 45	8	~	S
:	_	8	331 T	•	8 29	440	365	2 750	408	7 225	1 210	4 210			5 109	2	23	8 23	22	12	•
39	-	= =	1 453 0 814		, 28	414	2724	1 472	711	55 399	394	55 394	8	10 80	196	8	8	8	5 45	-	
2	• • •	=	801	*****	5 27	0 640	370	0 210	2 112		8		\$		8	=	_	=	1 0	_	_
2		8	8371	-0004	26	640	5 370	623 210	112	55	28	8	2	\$	8	=======================================	=			_	_
3		2	2 972	70000	ĸ	085 124 124	165	3 62	320	155	151	174	28	2	%	E .	7	=	12	_	_
3		۶	972	-000-	24	2	165	623	320	155	7.	151	2	28	%	Ħ	=	2	23		
3	-	2	175	~	23	```₩	188	322	278	145	130	138	8	8	62	2			Ξ.		•,
3	•	2	§ §	00000	22	-5	%	412	202	82	8	8	8	8	€	2			_		•
8		2	88	-0000	71	-₽	780	412	8	ĸ	8	8	8	8	€	8	•	_	_	-	•
2	•	ĸ	333	-0-0-	8	376	238	622	303	Ξ	5	\$	ĸ	ĸ	29	ĸ	2	2	•	•	٠
3	•	7	432	0000m	2	2	220	112	25	8	8	3	•	91	2	•	•	•	-	•	•
3	-	7	44 432	M0000	=	\$	220	112	25	8	Ħ	8	2	•	2	4	•	-	-	•	•
#	-	\$	22	000	2	8	£	211	æ	\$	ŧ.	*	2	•	2	•	•	~	7	•	•
#	_	69	22	00	2	8	£	211	ß	\$	*	₹.	•	2	2	•	m	•	7	•	•
2		6	48	00000 m	n	8	8	ĸ	17	=	•	•	•	•	m	-	•	•	-	•	-
#		ŝ	23.83	00000	Ξ	33	165	%	R	53	Ξ	Ξ	•	-	€0	-	-	-	•	-	
2	-	3	58	-00	=	8	220	%	7	8	51	53	•	•	•	7	•	•	-		
2	•	3	ቘጜ	0~000	22	360	170	%	E	2	51	2	•	•	-	-	٠	-			
2	_	Ş	8 %	0-000	=	360	170	%	Ħ	2	2	53	•		-	-	-				
**	28	3	88	0-0-0	2	374	10 106 169	22	8	•	2	2	•	٠	~	-					
ន		S	¥.		•	24 261	8	\$	Ξ	60	-	-	•	•	-						
**		4	 8	0000m	•			-	-	•	•	-	•	-							
*	23	\$	833	moooo	^	24	2	-	-	•	-	-	-								
7.		7	78 650 925 430 824 824 003 003 749	000	•	3	24	∞	7	•	٠	-									
₹	72 432 432	45 47	824		2	3	73	∞	7	•	-										
₹	22		7 gg	00000	-	25	=	m	-	-											
=	720	7	925	00-00	-	Ş	5	-	-												
6 12	230	Ħ	929	-000-	~	8		-													
•	2	2	2	00000	-	•	-														
•	-	-	-	00000	•	-															

ALGERRA E6, REPRESENTATIONS OF CLASS 1

TABLE 2

S.P.	0.S.	LEVEL	M. H.	WE I GHT	MUMRER	•	-	۲4	٣	•	'n	•	~	80	۰	2	=	12	13	Ξ	ž.
8	8 Q		552	007	25	343	16 839	5 £	254	94	1909	1 923	180	~ <u>8</u>	-2	–%	218	645	32	416	999
106	432 6	6	675 694 444	00000	ጽ	932 2	33 8	891 3	12 2	5 1 114 102 1	\$ 968	657 6	1 96	368 1	230	219 185	214 2	85 6	-	7.7	126 6
2	228	66	855	0-0	\$	25	==	8 009	8 1 695 812	2.4 1	078 S	465 6	1 396	715 3	950 2	970 2	921 2	520	8	202	211
170	799	6	25 S	-0000	.	56	260 4	₽ Q	380	68	780 780	328 9	820 6	738 7	410 4	600	8	5 2		168	237 5
80	-88	6	501 4 925 4	000-0	4	445	660 2	- 8	80 7	613 440 928 268	508 2	556 3	295 8	306 7	200	92	118 128 449 167 448	02		37 1	100 2
7	₹2		536 9	00-00	9	11 456	9.0	4.8	- ×	62	12.5	104 5	2 098	52 3	426 2	85 110 420 170	-			168	237 1
115	2	26	675 672 572 5	N0004	‡	636 4	- 5	- 5	≥ 2	÷	=	359 40	250 84	26	110 4	¥ 2	₹	55 170	9	78	7 79
106	2 1 4 140 140 170 120 120 120	ξ.	25.5	0-004	=	C4 K3	v3	~ 8	5		920 306 344 312	324 3	240 23	171 199 762	85 1	22	₩ 80	8	-	92	7
7 1	ق وم	2	268 28 28	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ţ	52	4.0 %	90	60	25	8		550 24	507 17	270 8		=		28		
8	320	r.	378		7	~	νõ	 	4 7	8	~∞	1 6 921	8	570 50	5	~	22	8		72 112	167 143
88	- P	2.		00000		7 5 9 7 2 090 090 264 760 525	સ્	, 0 =	9 7	420 006 848 622 569	8 008	5 056	5 570	2 57	5 324	205 170 304 266	246 160 309 288	85 100 130 151	29	38	81 16
	080		2 SS3 50 900 900	00000	7	00	- 6	2 %	2 77	-8	1 588	787 555	5 295	9 312	5 155	5 17	9 19	5 10	~		
8	320	3 93	758	-000	9	8	23.	~₹		3.42	5 751	8,	5 495	404	0 205	2	75			104	7 115
88	79 100 100 100 100 100 100 100 100 100 10	3 93	3.45 80.75 8	-000-	33	- 6		∵ ₹	. 2	22	7.	2 67	355	381	5 130	2	2 19	130 130	20	88	3 97
8	-3	- 93	282	-0000	8	8	=	33	~ Q	- 12	8	645 762 674	380	423	232	2	22	=	20	8	2 113
8	160 320 160	7	243	~	33	576 340 000 180	3			-3	ŝ	3	330	337	134	2	~	69	Ī	23	- 92
22	3	71	582	0-070	*	3	25	- E	- E	æ	\$	99	256	245	120	2	22	2	•	32	2
8		2	7.28	0000	ĸ	28,	423	28	28	-₹	82	88	310 386	423	210	155 215 124 179 220 210	200	₹	12	\$	5
%	2 6 160 480	8	2 2 2 3	0	≅	°ğ	613	~\$	921	500 111 414 858 161 352 223	240 578 820 464 604 788 715	263 593 768	35	304	151	55	76 154 206 132 170 212 191	8	٠	33	7
82	~9	8	559	00000 00000	E	2,6	-2	98	8	Š	₹	263	ĸ	116 126	8	9		8	•	\$	32
%	282	8	288°	~~000	æ	480 769 306	395	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	580 780 884 021 550 530 074 405 150 450 770 214 770 935 9% 106 580	407	416 248	506	8	116	ያ	8	\$	45	2	•	22
2	8	8	₹ 88		Ħ	640 960 248	1 2 1 1 3 4 2 3 4 3 4 3 5 4 1 1 1 6 62 270 904 516 920 395 601 615 425 676 663 110 675 230 025 500 680 555 644 956	-8	- 8g	840	₹	432	224	8	8	8	5	38	•	7.	\$
%	432	83	312		ន	9%	516	484 256	485 281	Ξ	z	8	8	8	8	22	2	•	•	-	•
2	1 080 432	2	253	00000	8	₹	8	48	竞	222	131	126	2	65	క్ట	R	58	53	•	•	13
3	78	8	- 52	-0-00	8	``````	231	40 635	35 670	ž	10 168	168	2	8	\$	55	32	53	٠	•	13
8	2	8	828	0000n	2	830 105				8		2	2	-	-	-	•	•	-	-	-
%	080 160 270	8	820 838	00000 00000 00000	*	8	55	240	ž	128	%	2	8	33	53	Ξ	Ξ	Ξ	-	•	10
2	79	2	253 ¹	7-007	ĸ	89	8	8	465	236	112	112	8	ጽ	8	8	7	2	•	80	80
2	8	۶	579	m00-0	₹	480 820	45	233	240	118	%	2	8	Ħ	2	5	2	. 53	8	•	•
%	432	ĸ	339	000-m	ĸ	₽	268	9	€	%	32	25	8	Ξ	•	-	=	•	•	00	m
8	320 432	2	787	00000 000000 000000	æ	-8	836	416 160 225	425	204	2	2	28	Ŧ	53	8	2	2	•	•	•
3	432	2	459	80881	7	2	386		8	85	೫	\$	%	•	2	2	•	-	•	~	•
2	432	12	3,5	-0000	8	₹	34	<u>8</u>	ĸ	8	8	₹	ĸ	35	S		9	•	•	m	m
8	160 432	ĸ	494 412 208 776	7000	2	704 856 646 731	446 344	240 184 216	216 175	8	\$	\$	8	2	•	•	9	٠	-	•	m
8	8	ĸ	393	000-0	e e	Š	33	23	174	83	33	=	53	91	2	•	•	•	•	•	m
23	~8	Ľ	28	000	=	8	33	180 170	180 174	2	Ħ	3	22	=	80	ĸ	•	•	•	-	7
22	7 270 320 160 1	7	424	7000-	2	2	360	99	5	*	\$	33	2	Ξ	20	-	-	4	•	-	-
\$	∓ 8	69	314	0-00-	2	8	344	9	155	8	₹	8	2	2	-	-	m	•	-	-	-
22	230	\$	25	-000m	Ξ	₹	۶	\$	జ	=	-	8	5		•	•	-	-	•	-	
3	23	8	₹ 20 20 20 20 20 20 20 20 20 20 20 20 20	+0000	=	\$	8	2	2	-	-	-	-	-	•	-	•	-	-		
\$	432	63	24	~-000	22	Ξ	3	%	ಜ	=	•	~	•	~	•	-	•	-			
\$	799	63	330		=	Ř	Ξ	3	8	₹.	•	•	-	~	•	•	-				
\$	•	79	398	00000	2	2	\$	8	≏	^	m	2	•	-	•	-					
2	33	19	332	-0000	•	75	79	ನ	%	•	~	-	•	-	-						
ž	29	\$	25.		∞	8	ĸ	ĸ	8	2	-	~	•	-							
ž	132	S	305	00000	^	ĸ	E	91	2	-	•	-	-								
88	270 080 432 160 432 21	23	58 3	000-0	•	8	ಜ	2	2	•	•	-									
25	8	\$	722	~000-	2	\$	Ξ	•	10	-	-										
22	-88 2	÷	351 728 371 722	0-00-	-	=	13	€.	-												
2	32 0	3	. 28 3	-0000	-	2	-	•	-												
2	27 432	Ħ	51.7	00000	~	-	-	-													
2	9	E	22	000-0	-	2	-														

· · <u>o</u> • • m · · · · · · 0 4 5 4 4 5 4 4 · 4 · · · · · · · · · 202801449....... * * . **+ 2 · 2 ·** -- - --. - -. -

TABLE 3

E6: TENSOR PRODUCT DECOMPOSITIONS INTO IRRETUCIBLE CHARACTERS CLASS 0 X CLASS 0 = CLASS 0

94 104 114 124 134 144 154 164 174 184 194 204 214 224 234 244 255 264 274 284 294 304 314 324 334 8 74 Â Š ₽ Æ 24 ¥ \$ 14. 74) 2A. 2A) 24. 34) 2A. 7A) 2A. 4A) 2A. 6A) 2A. 8A) 2A. 9A) (IA. 1A) (1A. 2A) (1A. 3A) (1A. 4A) 1A. 6A) 1A. 9A) (1A.10A) ŝ (1A. 5A) (1A, 8A) 24.

(3A. 3A)

TABLE 4

98 108 118 128 138 148 158 168 178 188 198 208 218 228 238 248 258 268 278 288 298 308 318 328 348 358 368 378 388 398 408 418 428 438 448 458 CLASS 0 X CLASS 1 = CLASS 1 E6: TENSOR PRODUCT DECOMPOSITIONS INTO IRREDUCIBLE CHARACTERS 8 82 89 8 # 8 **78** # 8 (3A. 1B) 1A. 7B) (2A, 0B) 3A, 0B) 8 (1A, 3B) # (1A. 58) (1A. 6B) (2A. 1B) (2A. 2B) (2A. 4B) **38 \$** 34. 5B 8 8 (1A.10B) (2A, 3B) 8 **8**9 (2A. 7B) (2A. 8B) (2A.10B) 38 . E ¥. (2A. Ä. 24. * 34. **.** ⊛

															-	TAB	TABLE 4 (continued)	4 (c	ont	inue	(p															
(4A. 0B)	•		-	•	•	-		-	•	•	•		•	•	•			•	•	•			•		•	•	•	•	•		•		•	•		•
(4A. 1B)	•		-	-	•	-	_	-	_	•	•			•	•			•	•	•		•	•		•	•		•			•		•	•		•
(4A, 2B)	•		_		•		-	•		•	•	-	-	•	•	•		-	•	•		•	•		•	•	•	•	•	•	•		•	•		•
(5A. 0B)	•		-	-		•		_	-	•		•	•	•	•	-			•	•	•		•	•		•	•	•		•	•	•	•	•		•
(5A. 1B)	-			2	7	-		2 1		-	-	-	-	-	•	•		•		•		•	•	•	•	•	•	•			٠			•		•
(5A. 2B)	-		•		-	-		_	-	-	•		•	_	•	•	•	•	•	٠			•		•	•	•	•	•		٠		•	•		•
(54, 38)	•		-	w	m	2	-	-	1 2	7	m	-	.,	2	-	•			7	•	-	•	•	_		•	_	•	-		•	•	•	•		•
(5A. 4B)	-	2	_	4	m	4	7	in.	3 2	4	2	-	-	4	7	-	_	•	m	•		2 1	•	5	•	-	-	-	-		•		•	•		•
(6A, 0B)	•		_	-	•	-			•		•		•	•	•	•			•	•	•	•	•	•	•	٠		•	•		•			•	•	•
(6A. 1B)	•	-	_	1 2	-	7	2	_	•	7	•	-			-	•	_		•	•		•	•		•	•	•	•	•		•	•		•		٠
(6A. 2B)	•	-	-	-	-	-		_	•	7	•	•	_	•	-	•	-		•	-		•	•		•	•	•	٠	•		•		•	•		•
(6A. 3B)	-	2	7	2	-	m	m	2	_	3	•	•		3 1			-	-	-	•	•		•		•	-		•	•		•		•	٠		•
(6A. 4B)		2		4	m	*	m	-	- 1	•			7	4 2	3	-	m	2 1	2	-	•		•	-		2	•		•	-	•	•		•		•
(6A. 5B)	-	7	_	ь.	2	~	2	m	2 1	2	-	•	-		-	-	-	-	7	•	-	2 1	•	-	•	7	•	-			•	•		•	-	•
(7A. 0B)	•			•	-	•			•	•	-			•	-	•	•		•	•	•		•	-	•	•		•	•	•	•	•		•		-
(7A. 1B)	•	•			-	•	•	_	•	-	-	•		-	•	٠		•	٠	•		•	•	•		•		•	•		•	•		•	•	•
(7A. 2B)	-		•	-	-	•	•	•		•	•	•		-	•	-	•	•	•	•		-	•		•	•		•	•		•			•	•	•
(8A. 0B)	•	•	_	•	٠	•	-		•	•	•	-	_	•	•	•			•	•	•		•		•	•	•	•			•	•		•		•
(84, 18)	•	•	•	-	-	•				-	•	•	_	•	•	•	-	•	٠				•		•	•	•	•	•		•	•		•		•
(8A. 2B)	•	•	•	•	-	•		•	•	-	•	•	_	•	٠	•			•	-	•			•		٠	•	•	•		•	•		•		•
(8A. 3B)	-	-	-	-	•	-	7	•	•	-	•	•	_		•	•		-	•	-			•	•		•	•	•	•		•	•		•		•
(8A. 4B)	•	-		1 1		-		_	•	7	•	•		-	-	-	2	_	•	-	•		•			-	•	•			•	•		٠		•
(84.5B)	-		_	1 1	-	-	-	•		-	•	-	_		•	-		-	•	•			•				•	•	•		•	•	•	•	-	-
(9A. 0B)	•	•			-	-	-	_			•	•	•	-	•	•	•	•	•	•		•	•			•		•	•		•	•		•		•
(9A. 1B)	•	-	_	2		m	7	m	2 1	m	-	•	-	3 2		-	-			•	•		٠		•	-	•	•	•		٠	•		•		•
(9A. 2B)	•	-		1 2	-	7	2	7	-	2	-	•		2 1		-	-	-	-	•		<u>.</u>	•					•	•		•	•		٠	-	•
(10A. 0B)	•	•		-	•	-	•		-		-	•	•			•	-	•	-	•	•		•	-	•	•	•	•			•	•		•	-	•
(104. 18)	٠	-		1 2	-	7	-	m	_	170	-	•	•	3 1	2	-	-	_		•			•	-	_	-	•		•	_	•	•		•		•
(10A. 2B)	•		•	-	-	7		2	-	7	•	•	•	2 1	2	•		_	-	•			-	-	•			-	•		•	•	-	•	-	•

E6: TENSOR PRODUCT DECOMPOSITIONS INTO IRREDUCIBLE CHARACTERS

TABLE 5 CLASS 1 x CLASS 1 = CLASS 2

	96	2	33	36 46	ĸ	7 39	28 22		1100	C 12C	130	96 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 250 250 250 250 250 250 360 310 320 340 350 360 370 380 360 410 420 430 440 450	160 17	381	190 20	210	22	230 24	C 25C	292	70 280	290	300 31	C 32C	330 3	35.	360	370 38	360	36C 37C 38C 39C 40C 41C 42C 43C 44C 45G	C 42C	430	£ 45	
	(08.08) 1	-		•	٠		•	•		•	•			•	•		٠			•	•	•	•		•		•			-		•		_
	(08.18) 1				•			•	•	•	•	•	•	•	•		•			•		•			•		•				•	•	-	
	(OR. 2B) 1	-						•	•		•	•	•	•	•		٠			•		٠			•		•				•	•	-	_
	(0B. 3B) .	-	-		٠	-		•	•	•	•		•		•		•			•		٠					•					•		_
	(08. 48) .			-		_	-	•		•	•				•		•					٠					•			•		•		_
	(08.58)	•		-		•		•									•		•	٠		•					•					-	-	
	(08. 68)	٠		-	٠	_	-	-	-		•	-			•		٠					٠			٠		•	-				•		
	(87.80)	٠	-		-		-	-					-				•			•		•	•				•			•		٠		_
	(08.88)	-		-	•	_	-	٠				-	•	•	-		•			٠		•	•				•					•		
	(08, 98) .	٠		•	٠	-		-	•			-		-			•					•	-			. •	•					•		_
1 1	(08.108)	•			•	_		•		•			•				•		•	•		•	•				•					•		
2 2 3 3 4 4 5 1	(1B. 1B) 1	-		2 1		-	-	-	-								•					٠			•		•				•	•		
2 2 3 4 4 5 5 6 7 6 7	(1B, 2R) .	-			-		-	٠					•	•			•		•	٠		•		•			•					-		_
2 2 3 4 4 5 5 4 7 5 6 7	(18, 38) 1	7	-	2 2	-	2	-	-				-	•		-		•					-	-				•					•		
2 2 3 4 4 4 4	(1B. 4B) 1		-	2 3	2	2	1 2		-	2 1			-				-					٠					•		:			•		_
2 2 3 4 4 5 5 6 7 6 7	(18.58)	-	-	1 2	-	_	2 1	•	•				-		-		٠		-	•		•			•		•	-		•		٠		- 2
2 2 3 4 4 5 5 6 7 6 7	(18, 68)	-		2 2	-	2	1 3		-			, 2	-	1 1			-		•			-					•					•		
2 2 3 4 4 5 5 6 7 6 7	(18, 78)	•		-	2	_		-	_	1 2	-	-	7		•		-			•	-	•		-			•	•		•		•		_
2 3 4	(18.88)	-		1 2	-	m	2 2		-			1 3	-	2 1		-	-		-	•		•	-			_	•					•		_
1 1	(18.10B) .	-		-	•	-	-	•	•			-			-		-			•		•					-					-	-	_
1	(28, 28)	•	-	-				•	-	-	-		•	•			•		•	•		•	-				•				•	•		
1	(28.38) 1	-	-	2 1	-		-	-		•	•		-		•		•			•		•	-		•		•					•		
1	(28.48) .	-	-	1 2		_	1 2	•	-				-	•			-			٠		٠		•	•		•					•		
2 2 3 4 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(28.58) 1		-	1 1		_		-					_		•		٠		-	-	•	-					•	•			•	٠		
2 2 2 4 4 5 1 1 2 2 4 4 5 4 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	(28.68)	•		1 1	-	7	. 3		-			-	-	•			-		•	•		•		-	•		•		:			•		
1 2 2 2 4 1 3 3 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1	(28.88)	-		1 2	٠	2 1	1 2	-	•	٠		. 2	_	1	-		-					•				-	•	•				•		_
1 2 2 2 4 1 3 3 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1	(28.108)	-		-	•	_		•	-		•	-					-					•			•		•			•		•		
1 2 1 4 4 3 4 2 4 2 1 4 4 1 3 2 2 3 3 2 4 2 1 4 4 1 3 2 2 3 3 2 4 2 1 1 1 1 1 2 2 2 3 2 2 3 3 2 4 2 1 1 1 2 2 1 3 4 2 2 1 3 3 4 2 4 2 1 2 2 1 2 2 2 3 3 3 4 3 4 4 5 3 3 3 4 5 4 5 3 3 3 4 5 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	(38, 38) 1	7	2	2	-	m	3 2	-	-		-	1 2	•		-	-	•			٠		٠		•			•					•		_
1 3 2 4 6 4 6 3 3 3 6 1 2 1 2 1 3 4 6 3 3 3 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	(38.48) 1	2	_	•	m	7	2	7	-				~	2		_	-		-		•	٠		1 .			٠					•		_
1 3 2 4 6 4 5 4 6 3 3 6	(38.58)	-	_	1 3	2	2	3 2	٠	-	-		2 2	-		2	1 1	-	-	-			٠			-		•					•		
121342434215	(48,48) 1	m	۲,	•	•	2	•	۳	m	2	-	9	4	3 1	7		•	•	1 2	-		-		2 1	٠	_	-					•		
* * * * * * * * * * * * * * * * * * * *	(48.58) 1	7	_	4 2	2	-	*	2	-	2		2 4	m	2 1	۳	1 1	2	-	1 3	-		•		2 .	-	_						-		_
	(5B. 5R) 1	-		2 2	2	2	2 2	-	-	- 2	-	3 2	.,	2 1	2	2 1	7	2	1 2		-	•			2					-		~	_	

`	ے	
	Ţ	
	2	
_	◂	

CLASS 1 X CLASS 2 = CLASS 0

E6: TENSOR PRODUCT DECOMPOSITIONS INTO IRREDUCIBLE CHARACTERS

S		•	•	•	•	-	•	•	•	•	•	•	•	•	-		•	•	•	•	•	•	•
ivi ≪a	١.																						
32																					_	_	
31									-		-	_		_	_					-		•	
30	-	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•
29A	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠
28A		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	-	٠	•	٠	•	•
27A	٠ ا	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	٠
26A	٠ ا	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•
25A	٠.	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	-	•	•	•	•	•	•
44		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	-	•	•	•	•
₹.		•	•	•	-	•	•	•	•	-	-	•	•	•	•	٠	•	-	-	•	•	•	-
2A .	٠	•	•	٠	-	•	•	•	•	٠	•	•	•	٠	•	-	•		•	•	•	•	•
1A 2		•	•	•	•	-	•	•	•	-	-	-	•	•	•	-	•	•	•	-	-	•	•
OA 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A 31A 32A 33A		•	•	•		٠	•	٠	-		٠	•	•	•	•		-			٠		٠	•
9A 2	-		٠			٠	•	•				٠				٠	-				•		
₩ 1	-	•	•			•		-				•		•		•		•				•	•
7A 1		•				-									•	-	-	2	2	-			•
5A 1		-				-		-				-	-			-	-		-	-	-		-
15						•				-	-	•		-	-	٠		_		-		•	
₹						_	-									_							
∑ S							_											2					
₹ 7					_			-										_	2				
A 12																	۲3						
==									_				_			2	_	2					
9	١.			_	_	_		_			_			_	C.	~	٠.	~	~			_	
6	١.	_	_		_	_						_					_						
œ «			-				_	_	_						,	_			_		_		_
4			٠		-	_		•	_		_	_	_		C-I	٠.	ر. -	_	_		_		2
9		_		_	_	•	_	_	_				_		_		_	٠.	C.1		_		_
ž.		_		_	_		_		_				_		_	_	_	_	_		-	_	_
4				_	_		-				•	_	-	_			_			-			
ž		_	_			_	-	-			-	_		_	.,	٠,٠				_	- -	_	_
75			_		~	_	•	•	•	•	•			_	1.4				-	_	_	_	_
¥	_	-	٠	-	٠	•	•	•	•	•	٠	-		-	-	-	•	-	•	•	-	-	•
8	-	٠	٠	•	•	•	٠	•	٠	•	•	•	-	•	•	٠	•	•	٠	•	•	-	•
	ŝ	<u>;</u>	3C)	33	40	2 C)	90	70)	36	()6	100)	9	10)	2C)	30)	40	SC)	(29	()2	<u>3</u>	10	3C)	30
	(OB, OC)	(08, 1C)	OB. 2C)	08. 3C)	08. 4C)	0B. 5C)	(08, 6C)	(OB. 7C)	(0B, 8C)	(OB. 9C)	(OB.10C)	(1B. 0C)	(1B, 1C)	(18, 2C)	(18, 3C)	18, 4C)	(18, 5C)	(1B. 6C)	(18. 7C)	(28, 0C)	(2B, 1C)	(28. 20)	(28, 3C)
	i ~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	$\overline{}$	_	~	~

(28) (

Finally, let us recall that the unique feature of the decomposition matrix approach is in its applicability to any class function (providing that the weight systems of the irreducible components are separated by the T_n in question). The present example is a result of our attempt to determine by direct computation how far the separation extends using T_7 . The decompositions were computed in a couple of minutes on a CDC Cyber 835.

Acknowledgments. The authors are grateful for the hospitality of the Aspen Center for Physics, Centre de recherches mathématiques (R.M.), and California Institute of Technology (J.P.) where this work was done.

Department of Mathematics Concordia University Montreal, Quebec, Canada

Centre de Recherches, Mathématiques Université de Montréal Montreal, Quebec, Canada

- 1. J. F. ADAMS, Lectures on Lie groups, Benjamin, New York, 1969.
- 2. N. BOURBAKI, Groupes et Algèbres de Lie (Eléments de Mathématiques), Chapitres IV, V, VI, Hermann, Paris, 1968.
 - 3. M. R. Bremner, "Fast computation of weight multiplicities," J. Symb. Comput. (To appear.)
- 4. M. R. Bremner, R. V. Moody & J. Patera, Tables of Dominant Weight Multiplicities of Simple Lie Algebras of Rank ≤ 12, Pure and Appl. Math., vol. 90, Marcel Dekker, New York, 1985.
- 5. J. CONWAY & L. QUEEN, Computing the Character Table of a Lie Group, Proc. Conf. on Finite Groups, Montreal, 1982.
- 6. J. D. DIXON, "High speed computation of group characters," *Numer. Math.*, v. 10, 1967, pp. 446-450.
- 7. D. Ž. DJOKOVIĆ, "On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups," *Proc. Amer. Math. Soc.*, v. 80, 1980, pp. 181–184.
- 8. D. Ž. DJOKOVIĆ, "On conjugacy classes of elements of finite order in complex semisimple Lie groups," J. Pure Appl. Algebra, v. 35, 1985, pp. 1-13.
- 9. E. B. DYNKIN, "Semisimple subalgebras of semisimple Lie algebras," Amer. Math. Soc. Transl. (2), 1957, pp. 111-244.
- 10. E. B. DYNKIN, "Maximal subgroups of the classical groups," Suppl. 23, Amer. Math. Soc. Transl. (2), v. 6, 1957, pp. 245–378.
- 11. M. J. ENGLEFIELD, Tabulation of Kronecker products of representations of F4, E6, and E7, Preprint, Univ. of Southampton, Math. N57, 1981.
- 12. V. G. KAC, "Automorphisms of finite order of semisimple Lie algebras," J. Funct. Anal. Appl., v. 3, 1969, p. 252.
- 13. W. G. McKay, R. V. Moody & J. Patera, "Table of E8 characters and decompositions of plethysms," *Lie Algebras and Related Topics*, CMS Conference Proceedings, vol. 5, 1986, pp. 227-263.
- 14. W. G. McKay, R. V. Moody & J. Patera, "Decompositions of E_8 tensor products of representations," Algebras Groups Geom. (To appear.)
- 15. W. G. McKay & J. Patera, Tables of Dimensions, Indices and Branching Rules for Representations of Simple Lie Algebras, Marcel Dekker, New York, 1981.
 - 16. R. V. Moody, "Root systems of hyperbolic type," Adv. in Math., v. 33, 1979, pp. 144-160.
- 17. R. V. MOODY & J. PATERA, "Fast recursion formula for weight multiplicities," Bull. Amer. Math. Soc. (N.S.), v. 7, 1982, pp. 237-242.
- 18. R. V. MOODY & J. PATERA, "Characters of elements of finite order in simple Lie groups," SIAM J. Algebraic Discrete Methods, v. 5, no. 2, 1984.
- 19. R. V. Moody, J. Patera & R. T. Sharp, "Character generators for elements of finite order in simple Lie groups A_1 , A_2 , A_3 , B_2 , and G_2 ," J. Math. Phys., v. 24, 1983, pp. 23–87.
- 20. R. V. MOODY, J. PATERA & R. T. SHARP, "Elements of finite order and symmetry classes of tensors of simple Lie groups." (In preparation.)
- 21. H. J. NUSSBAUMER, Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, New York, 1981.

- 22. K. R. PARTHASARATHY, R. RANGA RAO & V. S. VARADARAJAN, "Representations of complex semisimple Lie groups and Lie algebras," *Ann. of Math.* (2), v. 85, 1967, pp. 383–429.
- 23. A. J. PIANZOLA, "Elements of finite order and cyclotomic fields," *Lie Algebras and Related Topics*, CMS Conference Proceedings, vol. 5, 1986, pp. 351–355.
- 24. A. J. PIANZOLA, "On the arithmetic of the representation ring and elements of finite order in Lie groups," J. Algebra. (To appear.)
- 25. I. SCHUR, Über die Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901. Collected Works, Vol. I, Springer-Verlag, New York, 1973.
 - 26. R. Slansky, "Group theory for unified model building," Phys. Rep., v. 79, 1981, pp. 1-128.
- 27. T. A. SPRINGER, "Regular elements of finite reflection groups," *Invent. Math.*, v. 25, 1974, pp. 159-198.
- 28. B. G. WYBOURNE & M. J. BOWICK, "Basic properties of the exceptional Lie groups," Austral. J. Phys., v. 30, 1977, pp. 259–286.