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Convergence of a Higher-Order Vortex Method

for Two-Dimensional Euler Equations*

By C. Chiu and R. A. Nicolaides

Abstract. There has been considerable interest recently in the convergence properties

of point vortex methods. In this paper, we define a vortex method using vortex multi-

poles and obtain error estimates for it. In the case of a nonuniform mesh, the rate of

convergence of the dipolar algorithm is shown to be of higher order of accuracy than

obtained with the simple vortex methods.

1. Introduction. Although vortex methods have been used for many years

for approximation of the partial differential equations of incompressible inviscid

fluid dynamics, [12], [13], [15], a precise mathematical analysis was not available

until very recently. In fact, the first complete analysis of a two-dimensional vortex

method was given by Hald [10] in 1979. Since then, many papers have appeared

giving error estimates for two-dimensional and three-dimensional vortex methods,

including [1], [2], [3], [4], [5] and [18]. These analyses mostly assume a uniform

mesh for the initial vorticity discretization. As a result of the mesh uniformity,

the resulting error estimates are of unexpectedly high order of accuracy, being

limited essentially by the regularity of the initial vorticity distribution. In more

realisitic situations, it is improbable that uniform meshes can be used, e.g., if there

are irregular bodies in the flow. In this case, the accuracy of the standard vortex

methods will drop to first or second order, regardless of the initial regularity. In

order to deal with nonuniform meshes, [17] defines some new vortex schemes for

the two-dimensional incompressible Euler equations. In this paper we shall give

a complete error estimate for one of them. This method yields higher order of

accuracy even on nonuniform meshes. This is achieved by using not only the usual

6 function point vortices, but also derivatives of such distributions.

In the next section we will define the algorithm and give explicit formulas for

its implementation. Then, a rigorous error estimate will be provided following the

Sobolev space technique of [5] and [18].

2. The Construction of a Higher-Order Vortex Method.

2-D Euler Equations. Let u(x, t) = (ui(x,t),u2(x,t)), x E R2 and t E [0,oo), be

the velocity field and w = curlu = diu2 — d2ui be the vorticity. Assume that the

exterior forces acting on the fluid are potential. Then the Euler equations are:

{wt + (u ■ V)w = Dw/Dt = 0,        w(x, 0) = u>o(x), x E R2,

divu = 0,

u —> 0   as |x| —► oo.
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Here, by definition, D/Dt := dt + (u ■ V) and is the usual material derivative.

Concerning the existence and the uniqueness of solutions to the equation (2.1),

see [14], [16], [19]. Smooth solutions are known to exist for all time in the two-

dimensional case with smooth initial data. In this paper we assume that the initial

vorticity w0(x) of (2.1) is smooth so that there exists a smooth solution of (2.1) on

some space-time interval R2 x [0, T].

Let X(x,t) be the path followed by a fluid particle which is at the position x

when t = 0. Then the map x —* X(x, t) satisfies the system of ordinary differential

equations

(2.2) dJ^A=u{X[x,t),t),        X(x,0)=x.

Then, (2.1) with the initial vorticity w(x, 0) = wq(x) satisfies w(X(x,t),t) =

wo(x). In this paper we only consider those flows with smooth vorticity wo(x)

which have compact support. Under this assumption, there exists a bounded set fi

such that suppu)(-,i) C fi, Vi 6 [0,T].

Vortex Methods. Vortex methods are based upon the tracking of finite numbers

of fluid particles and evaluating velocities by discretizing certain singular integrals.

The basic idea of vortex methods is to approximate the initial vorticity by a linear

combination of Dirac delta functions. For example, approximate Wo by Wq =

¿~2j£j otjô(x — Xj) where ctj E R.

By following those particles whose positions at t = 0 are {xj}j€j, using (2.2)

with x = Xj, we get wh(x,t) = Y^jeJai^(x ~ X(xj,t)).

To compute u, one uses the fact that div u = 0 to introduce a stream function

from which the velocity may be expressed as a singular integral. The singular

kernel is then smoothed by a cutoff function, and quadrature rules are then needed

to evaluate the integral. In order to get arbitrarily high order of accuracy by the

above method, a uniform mesh has to be assumed. It can be obtained, for example,

by subdividing the plane into squares of side h and letting {xj}j<=j be the corner

points of the squares [18]. We will now introduce our algorithm and some related

theorems. This algorithm allows us to deal with nonuniform meshes and still obtain

high-order accuracy.

A Higher-Order Vortex Method. Recall that if the initial vorticity function is

smooth, then the classical solution of (2.1) is given by w(X(x,t),t) = Wo(x). Now,

let (p(-) E 3>(R2) where 3S(R2) = {>(•) 6 C°°(R2) \ (p(-) has compact support};

S'(R2) is the dual space of ^(R2) and (■, •) denotes the duality pairing. Then,

(w(-,t),(P(-))= [   w(x,t)<P(x)dx= j   wo(x)<P(X(x,t))dx=(wo(-),4>(X(-,t))),
JR2 ÍR2

because the determinant of the Jacobian matrix of x —> X is 1 since div u = 0.

Thus, we define a weak solution of the Euler equation as follows:

Definition 2.1. Assume that a unique solution of (2.2) exists. For w(-,t) E

2'(R2) and w0(-) E 3>'(R2), if

(w(-,t),4>(-)) = {wo(-U(X{;t)))    V0(.) e^(R2),

then, w(-, t) is said to be the weak vorticity of the Euler equation (2.1).
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THEOREM 2.1.   Suppose that X(x0,t) exists.

Ifwo(x) = a6(x-xo) + b6x¡(x-xo)+c6X2(x-xo), where a,b ande are constants,

then the weak vorticity as defined above is

(2.3)    w(x, t) = a6(x- X(x0, t)) + b(t)6Xi (x - X(x0, t)) + c(t)6X2 (x - X(xQ, t)),

where 6Xl and 6X2 are derivatives of the Dirac Delta function 6 and

Q-"<-<>M(x0,t) =
dXj

dxj

is the Jacobian matrix of x

Remark. Note that

X at xq-

d     .       .      d

dt ' dt \ dxj

fdXt\ _ idui\ _ I duj    dXk\

\dxj )      \dxj)      \dXk    dxj ) 'v3 /      \ dXk

using the summation convention.   So, M(xo,t) satisfies the following system of

ordinary differential equations:

{dM     _
—- = Vu ■ M,
dt

M(xo,0) = I,

where M = M(xq, t) and u = u(X(xo, t), t).

Proof. For all <p E 3{R2) we have

(wo(-), <p(X(; t))) = a<P(X(x0, t)) - bd<P(X(x0, t))/dxi - cd<P(X(x0, t))/dx2

= a<P(X(xo,t)) - b\(d(p/dXi)(dXi/dxi) + (d<P/dX2)(dX2/dxi)}

- c[(d<p/dXi)(dXi/dx2) + (d<p/dX2)(dX2/dx2)}    (at x0)

= a<j>(X(xo, t)) - 6(i) d<P(X(x0, t))/dXi - c(t) d<P(X(x0, t))/dX2

= (a6{- - X(x0, t)) + b(t)6Xl (• - X(x0, t)) + c(t)6X2(- - X(x0, t)), </.(•))

= (w(-,t),cP(-)).

Using Definition 2.1, w(-,t) is the weak vorticity. D

Now we will define our vortex method by specifying a, b and c over an initial

vortex distribution. This can be done in many ways [17]. The method used below

is based on direct numerical integration.

The Vorticity Field.

I=( i  I Xi€Q0 } J={ j  | Bjn.D.^0 }

FIGURE  1
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Take an arbitrarily spaced rectangular mesh on R2. Let supp w0 C fio which is

bounded. To each rectangle formed by adjacent coordinate lines, assign an index

j and denote it by Bj. Denote the lengths of the edges of Bj by hji and hd2. Let

{xjk}k=it4 be the four corners of Bj. To each corner of Bj n fio ^ 0, assign a

global index i, as shown in Figure 1.

Interpreting the initial vorticity wo as a distribution, we shall approximate u>o

by another distribution Wq of the form

wo(x) = J2   J2 K/fc'H1 ~ X3k) + blJkàXl (x - Xjk) + b2jköX2(x - Xjk)}
jeJk=l,A

- ^2/[ci^>(x - xi) + du6Xl(x- Xi) -\-d2i6X2(x - Xi)\.

iei

Then, based on Theorem 2.1, we expect that w(-,t) can be approximated by

wh(x) = J2 Y, [ajkè(x - X(xjk,t)) + bi]k(t)6x,(x - X(xjk,t))
jeJ k=l,4

+ b2jk(t)6X2(x - X(xjk,t))\

= 5^M(x - X(xt, t)) + du(t)6Xl (x - X(Xi, t)) + d2i(t)6X2(x - X(xi,t))),

iei

where

Concerning the choice of the coefficients {ajk, bijk, b2jk), observe that for <p(-)

2(R2),

(wo(-),<P(-)) = Y2   5Z [ajk^>(xjk) - bijk(t)(pXl(Xjk) - b2jk(t)(pX2(Xjk)\,
jeJ k=l,4

whereas

(ujo(-), </>(■)) = /    wo(x)<p(x) dx = V /    w0(x)cp(x)dx
Jb.2 TTiJBjjeJ'B>

This suggests that approximating wq by Wq corresponds to approximating the in-

tegral

/JB]
wo(x)(p(x) dx

by some numerical integration rule, where {ajk,bijk,b2]k}j€jtk=i^ define this rule.

For our algorithm, the following quadrature rule is used [17]. For a 2-dimensional

rectangle B with corners {.P¿}¿=i,4, sides hi and h2, as shown in Figure 2, and

fzcHB),

I f{x) dx « ^l{f{pl) + f(p2) + f(p3) + f(p4))

(*) + ^l-U(Pi) + U(P2) + MPz) - Sáp*)\

+ ^l-fv(Pl) - fv(P2) + fv(Ps) + fv(P4)\.
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P2

P31 lp4

FIGURE 2

For this rule, a direct calculation shows:

THEOREM 2.2.   The quadrature rule (*) is exact for all third-degree polynomi-

als. O

Denote the right-hand side of (*) by Q2(B, /), i.e., fB f(x) dx « Q2(B, /). Thus,

if {ajk,bijk,b2jk}jejt k=i,4 are chosen by the above rule, then for <p(-) eâ?(R2),

(™o(■)><£(•)} = J2 Yl [aik^(xik) - hjk<PxAxjk) - b2jk<Px2(xjk)}
jeJ k=l,4

= ^Q2(Bj,<l>).
jeJ

Then, when h —> 0, J2jejQ^(Pj'^) —> (wo(-),<P('))- More precisely, Wq converges

in 3)'(R2) to wQ as h —► 0. Correspondingly, wh —> w in 2¡'{R?), by Definition

2.1. To see what the corresponding coefficients {ci,du,d2i} are, let us consider an

example.

;Si

Xi

Bay

Figure 3

Bi

Figure 4

3i

B¡,

Suppose that the mesh is as shown in Figure 3. The points with closed circles

are the nodal points of the mesh. Then Bj is some rectangle with nodal points

as its four corners while S¿ is a rectangle which contains the nodal point Xi and

is bounded by dotted lines. Note that dotted lines equally divide sides of every

Bj. Bji,Bj2,Bj3 and Bj4, as shown in Figure 4, are four adjacent rectangles. Let

5, be the rectangle shown and |5¿| be its area. Since z¿ is a common corner of

Bji,Bj2, B}3 and Bj4, by the quadrature rule (*), we have the following:

c%d)(xi) - du<pXl (it) - d2i(pX2 (xi)

= (l/4)[A¿„Ai„ + hhihh2 + hj31hj33 + hj41hU2}wo(xi)<p(xi)

+ (l/24)[ÄjnÄÄa - h22ih]22 - h231h]32 + h2UihH2\(wo<P)xAxi)

+ (l/24)[AJn^12 + hj21h%2 - hj31h%2 - hj^hl^wo^xAxi)

= \Si\{wQ(xi)<p(xi) + Hn(wo4>)Xl (xi) + Hi2(w0<p)X2 (xi)}.
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Assume that there exists a constant C > 0 such that

maxj€j(/ij1,fej2) < c

minjej(hji,hj2) ~

and let h = maxjej(hn, ho2)\ then, Hn = 0(h) and Hl2 = 0(h) and

, Ci = \Si\{w0(xi) + HnWoXl(xi) + Hl2wox2(xi)},

du = -\Sl\HnWo(xi),       d2i = -\Si\Hi2wo(xi),    Vi 6 /.

The Velocity Field. In order to obtain the velocity field from the vorticity field,

we need the following result. Let K: R2 —► R2 be defined by

¿ir\x\¿ \ Xi

LEMMA 2.1. The convolution operator f —► K * f is a bounded linear mapping

from L°°(R2) n ^(R2) into B°(R2)2 (set of bounded and continuous 2-D vector-

valued functions). Moreover, if f E L°°(R2) flL^R2) and satisfies f(x) —> 0 as

\x\ —► oo, then the function v = K * f (2-D vector) is the unique solution of

div v = 0,

curl v = f,

v(x) —► 0 as \x\ —> oo, x e R2.

Proof. See [16]. D

It follows from Lemma 2.1 that u(-,t) = K * w(-,t) in problem (2.1). After

computing the approximate vorticity field wh, we need to find the corresponding

velocity field. It would seem natural to set uh(-,t) = K * wh(-,t), but since the

kernel K is a singular function, its convolution with delta functions is not defined

in general. To avoid this problem, the now standard remedy is to regularize K as

follows.

Let f(x): R2 -► R satisfy /R2 f(x)dx = 1 and let fE{x) = (l/e2)f(x/e). f and

fE are referred to as "cutoff" functions. If K£ = K * f£, then Lemma 2.1 implies

that K£ E B^R2)2 provided / € W1'00^2) n Whl(R2). Then, u(-,t) will be

approximated by u£ = wh * K£, so that

uke(x) =EE  laJkKe(x ~ X(xjk,t)) - bijk(t)KSXl(x - X(Xjk,t))
jeJ k=l,4

-b2]k(t)KeX2(x-X(xjk,t))}

= 53 [aKe(x - X(xi, t)) - du(t)KSXi (x - X(Xi, t))
iei

- d2i(t)KeX2(x - X(xl,t))\.

Here, KeXl = dKe/dxi, KeX2 = dKe/dx2 and {X(i¿,í)}¿e/ are exact particle

positions at t. But we can compute only approximate positions {Xh(xi,t)}ie¡

and corresponding approximate Jacobian matrices {Mh(xt,t)}ier- Therefore, only

approximate coefficients {^u(t),¿/2i(t)}l€¡ can be obtained. So, the actual velocity

field we compute is

(2.5)    ^(x,t) = J2[ciKe(x-Xh(xl,t))-</u(t)KeXi(x-Xh(xl,t))

iei

-af2l(t)KEX2(x-Xh(Xl,t))}.

Here we use 1¿ to denote the numerical velocity field.
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In summary, the 2-D algorithm is as follows:

( dXh(x,t)

dt
dMh(x,t)

Jt

= %h(Xh,t),        Xh(x,0) = x,

= V%£h(Xh,t)Mh(x,t),        Mh(x,0) = I

(see the remark after Theorem 2.1), where í¿eh is the numerical velocity field given

by (2.5), Xh(x,t) is the computed particle position at t with its initial position at

x, and Mh(x, t) = (dX^/dxj) is the Jacobian matrix of the mapping x —» Xh(x, t).

Moreover,

O -**0
and {ci,dii,d2i}iei are given by (2.4).

3. Error Estimates. In this section we will give a complete error estimate for

the algorithm constructed in the last section. The analysis given here consists of

two parts, one for estimating the consistency error and the other for stability error.

The first part is based upon Sobolev space theory. The second part depends on

analysis of the velocity kernel and the behavior of the cutoff function.

Notations and Definitions. The norms used for the analysis are discrete Lp-

norms.

Definition 3.1. For /(•) € \LP(U)}2 or [¿P(fi)]2x2, define

-ii/p

\h,p = Ei/w*2
¿6/

Let x —» X(x,t) be the trajectory mapping and x —► Xh(x,t) be the computed

trajectory mapping. For F(X(-,t),Xh(-,t),t) E [Lp(fi)]2 or [LP(fi)]2x2, define

-ii/p

ll^(<)IU,P=   ^2\F{X{xi,t),Xh{xi,t),t)\"h2       .
.iei

Let e(X(-,t),Xh(-,t),t) = X(-,t) - Xh(-,t), and E(X(-,t),Xh(-,t),t) = M(-,t) -
Mh(-,t).

For the error estimate, we define wh(x) and u>h(x) as

wh(x) = Y J2 [ajkS(x-X(xjk,t)) + bijk(t)6Xl(x-X(x]k,t))
3eJ k=l,4

+ hjk(t)6X2(x - X(x]k,t))]

= £M(:r - X(xi,t)) + du(t)SXl (x - X(xt,t)) + d2l(t)6X2(x - X(xu t))},

iei

">h(*) = Y E W3kë(x-Xh(x]k,t))+/ijk(t)6Xl(x-Xh(x]k,t))
jEJ k=l,4

+ f2jk(t)6X2(x-Xh(xjk,t))}

= £h<5(x - Xh(xu t)) + ¿u(t)6Xi (x - Xh(xu t))

iei

+ ¿2i(t)6X2(x-Xh(xi,t))}.
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Then Table 1 contains all quantities we will use for the error estimate.

_TABLE 1_
Trajectory     Vorticity        Velocity

Exact

Solution
x—> X(x, t)      w(x,t)       u = (K*w)

Computed

Solution
x^Xh(x,t)    wh(x,t)     %f£h = K£*wh

Intermediate .

Quantity » f1-''

Ur  = Kr * W

u* = Ke* wh

For any j E I, by using the system of ordinary differential equations for the

particle trajectories, we have

dX(Xj,t)       dX   (Xj,t)_      ! .     ,       a/h(Yh(„    +\  t\
-jt-jt-= u[X(Xj,t),t) - ¿£e (X (Xj,t),t)

= \u(X(x3,t),t) - uh£(X(x„t),t)} + [uh£(X(xj,t),t) - %h(Xh(Xj,t),t)},

where the first bracketed expression is called the consistency error, and the second

the stability error.

The Consistency Error. Let

I(-,t) = u(-, t) - u£(-,t) = K * w - K£ * w

and

II(-,t) = u£(-, t) - uh£(-, t) = K£*w-K£* wh.

Then, the consistency error is I + II. For I, we have the following result.

THEOREM 3.1.   Assume that there exists an integer k > 1 such that

0) fR2f(x)dx = l,
(ii) jR2 xaf(x) dx = 0, Va E N2, 1 < |a| < k - 1,

(iü) jR2|x|'c|/(x)|dx<oo.

Then there exists a constant C = C(p,T,wo) > 0 such that ||I(.,í)|U°°(r2) < Cek

and ||I(i)||fc,p <Cek for allpE [l,oo],t E [0,T],

Proof. See [18, Chapter II, Lemma 4.1]. D

In order to analyze II(-, t), we need to discuss a few auxiliary results. First of all,

consider some properties of the regularized kernel K£. These properties are also

very useful for the stability error estimate. We begin by recalling a classical result.

LEMMA 3.1 (Calderon-Zygmund). The convolution operator f —► (dK/dxi)*f

is a bounded linear mapping from LP(R2) into [LP(R2)]2, for i = 1,2 and I < p <

oo. D

LEMMA 3.2. Let p E (l,oo) and f E W/~1'P(R2) for some integer / > 1.

Then there exists some constant C such that

Q
l|5aJR:£||Lp(R2) < ___

for a E N2 with \a\ = / and (1/p) + (l/q) = 1.

Proof See [18, Chapter II, Lemma 3.2(h)]. D
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LEMMA 3.3. Let / be a nonnegative integer. The following properties hold for

allaE N2 with \a\ = /:

(a) /// E W/'1(R2)nW/<0O(R2), we have \daK£(x)\ < Ci/e/+1 for allxE R2.

(b) If f E W/<1(R2)nW/'°°(R2) satisfies in addition |x|/+2|aa/(x)| < C2,

then

\daK£(x)\<-^    forall\x\>e.
\x\

Proof. See [18, Chapter II, Lemma 3.3]. D

LEMMA 3.4. Let S be a compact set in R2. For any multi-index ß, assume

that there exists a constant Ci > 0 such that |x|l/3l+2|a/?/(x)| < GV Then there is

a constant C = C(S) such that for all e < ^,

■ C(S), \ß\ = 0,

\\dßKe\\LHS) < |  C(S)|loge|, |/?| = 1,

, C{S)e1-\f>\, \ß\ > 1.

Proof. Let B£ = {x E Rn | |x| < e}. Then,

\\dßK£\\Ll{s) = / \d*Ke{x)\dx = [       \dßK£(x)\dx + [      \d?K£(x)\dx
JS JSriB€ JS\Be

< C2e2/e^+l + [      --§— dx    (Lemma 3.3)
Js\b, FrM

<C2el-W+f

>S\BS

rdiam(S)    p

|r|l"l

' [diam(S)-¿], |/?| = 0,

= C2e1-l/3l+C74|  [log(diam(S))-loge], \ß\ = 1,

b (1 - |/3|)[diam(5)1-l'3l - e1-^], \ß\ > 1. D

As we defined in the last section, the initial coefficients of 6 functions in the

approximated vorticity field are chosen according to a quadrature rule. Now we

want to find a bound for the error which results from the numerical integration.

We first state a classical result due to Bramble and Hubert [9, Theorem 4.1.3]. Let

A; be a nonnegative integer, denote by Pk the space of all polynomials of degree < k

in the n variables xi,..., x„.

LEMMA 3.5 (Bramble-Hilbert). Let fi be an open bounded subset o/R" with a

Lipschitz continuous boundary and let L: cp —► L(<p) be a bounded linear functional

on Wk'p(U), k > I, p E [l,oo], with norm \\L\\, which satisfies L(<p) = 0 for all

<p E P/c-i-  Then there exists a constant C > 0 such that

\L{<l>)\<C\\L\\\<l>\k,p,n    VcPEWk'p(Q),

where

(\ i/p / ^ Vp

y;/V<¿ipdx    , M*,p,n= \Y1 Í \da<i>\dx
|a|<>                      ; \\«\=kJ"

and \\L\\ = supwlkpn=1 \L((p)\.
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As a consequence of Lemma 3.5, we obtain

LEMMA 3.6. Let j E J and B3 be a 2-D box as defined above. Assume that the

center of Bj isœ = (<ei,<z2) E R2■ If g(-) E W4'l(Bj), then there exists a constant

C > 0 independent of Bj such that

(3.1) /    g(x)dx-Q2(Bj,g)
Jb,

<Ch4\g\4,liBr

Proof. Let 3§ = [—1, +1]2 and Bx(38) be the set of functions whose derivatives

through order one are bounded and continuous on 3§'. Then, for p(-) E Bx(¿¡8),

define %(?) = f^ß(x)dx - Q2(a8,¿). By Theorem 2.2, ¿?(^) = 0 for all ? E

Pz(3§).
It is very easy to check that p —> %?(p) is a bounded linear functional on B1 (3§).

By Sobolev's embedding theorem, W4>1(&) C Bx(âS). So, ? -♦ %(#) is also a

bounded linear functional on W4'l(¿$) which vanishes on P$(3§). Thus, by the

Bramble-Hilbert lemma, there is a constant Ci > 0 such that

(3-2) \g(ß)\<Ci\j?UA„®.

For a function g(-) defined on Bj, change variables by letting

x<=*< + (fti-</2)6,        -1<6<1, ¿ = 1,2,

and define ?(Ç) = g(x) = g (an + (hji/2)ii,^2 + (hj2/2)Ç2).  Then (3.1) follows

from (3.2). D

Now consider the second part of the consistency error. Recall that

II(-,t) = u£(-,t) - uj(-,i) = K£ * w - K£ * wh,

l\(X, t) = (K£ * w)(X, t)-J2 Q2IB3,K£(X - X(-, t))wo(-)}-
jeJ

THEOREM 3.2.   Assume that f E ^^(R2) rW4'°°(R2).

(a) // there exists a constant Ci > 0 such that

|x||a|+2|aa/(x)| < Ci    for all \a\ < 4 and x E R2,

then there is a constant C = C(Q,Wo,p,T) > 0 such that

||II(-,0IU~(n)<6^,

h4
||II(i)IU,p < C—    for ail t E [0,T] and 1 < p < 00.

(b) // we only assume that |x|2|/(x)| < Ci, then there is a constant Cs =

Cs(Q,u>o,p,T) >0 such that

\\ll(;t)\\L°o{n)<Cs-^,

h4
||n(r)||ft,p < Cs-^    for all te [0,T] and 1 < p < 00,

where s > 0 is an arbitrary number.
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Proof (a) By the definition, we have |II(x, i)| = \K£ *w(x,t) - K£ *wh(x,t)\. So

|II(X,1)| =

jeJ

si/»/-«x - X(y, t))w0(y) dy - Q2[B3,K£(x - X(-, i) WO]

Ke(x - X(y, t))w0(y)dy - Q2[B3,Ke(x - X(;t))w0(-)}

< C2h4 E \Ke{x - X(-, t))wo(-)U,i,Bj    (by Lemma 3.6)
jeJ

< C2h4     E      f \d«K£(x-X(y,t))dßWo(y)\dy.
\a\ + \ß\=4

Using the smoothness of u, we have \dyXi(y, t)\ <C3 for i = 1,2, y e fi, 0 < |o| <

4. Now using the chain rule,

\ll(x,t)\<C4h4     Yl     [ \daxK£(x-X(y,t))d0ywo(y)\dy

<C5h4 J2   i \daxK£(x-X(y,t))\dy
|a|<4    "

= C5h4 53   / \dxK£(x-X)\dX
|a|<4"

= C5/i4 E ||aa#e(x--)||Li(n)    (detJ = l).
|a|<4

If x € fi and X e fi, since fi is bounded there exists a compact set CcR2.

such that i-Ieî. By Lemma 3.4, there is a constant Ce = Co(<¿) such that

\\daK£(x - .)||z,i(n) < \\daK£(-)\\LiW < C6/e3 for all x e fi and |o| < 4, and so,

|II(x,i)| = \u£(x,t) - uh£(x,t)\ < C7 —,    Vx G fi.

This implies that

h4
|«e(-,í)-«?(-.í)llL»(n) <C7^-.

For 1 < p < oo, it follows that

|H(Olkp = \52h2\ue{X{xiyt),t) - uh£(X(Xl,t),t)\p
i/p

¿e/

<K(-,i)-«f(-,*)IU-(n)J53Äa}

< C8(measure fi)1/p/i4/e3 = Cgh4/e3.

(b) As in (a), we have

|II(x,i)l<C4/i4     53      f \dxKe(x-X(y,t))dßywo(y)\dy.
|a| + |/9|<4-
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This time, Lemma 3.4 is not directly available to estimate \\daK£(x - •)llx.1{n)5 for

all |a| < 4. For |q| = 0 and \ß\ < 4, by Lemma 3.4 as above,

\\daxK£(x - X(-,t))d0ywo(-)\\Li{Q) <Cio\\K£(x-X(;t))\\LHÜ) <Cn(€).

For \a\ > 1 and \ß\ < 3, using Holder's inequality, we obtain

\\dxK£(x-X(;t))dßWo(-)\\LHn)

<\\dxK£(x-X(;t))\\Lpl{Q)\\dßWo(-)\\Lql{Q)

(1/p' + l/q' = 1 and 1< p' < oo)

<Ci2\\dxK£(x-X(-,t))\\Lpl(Q)<Ci2\\dxK£(-)\\Lpl{R2).

Using Lemma 3.2,

11^« K mi ^ ^12 ,     Cl2
\\aX^e\-)\\Lv'(Yi?) ^ £|a|-l+2/«'   S p+W

Hence, |II(x,i)| = \ue(x,t)-u\(x,t)\ < Ci3h4/e3+s for all x E fi, where s = 2/q' >

0. Then (b) follows. D

The Stability Error. By definition, this is

uh£(X,t) - %£h(Xh,t) = \uh£(X,t) - %h(X,t)} + W£h(X,t) - Weh(Xh,t)),

where X = X(x, t) and Xh = Xh(x, t) for x E fi. We call the expression in the first

bracket Part I, the other Part II.

Part I. By Table 1,

uh£ (X,t)- %£h (X,t) = K£* wh (X,t)-K£* wh (X, t)

= 53 [aKe(X - X(Xi,t)) - du(t)Kexi (X - X(Xi,t))
iei

-d2l(t)K£X2(X-X(Xl,t)))

- 5] [ciK£(X - Xh(xi, t)) - </u(t)K£Xl (X - Xh(xt, t))

iei

-¿2l(t)K£X2(X-Xh(xi,t))\

= J 53 Cl[K£(X - X(xi,t)) - K£(X - Xh(xi,t))} |

+ I - 53du(t)[Kexi (X - X(Xi,t)) - Kex, (X - Xh(xu t))] 1

+ l-J2d2l(t)[K£X2(X - X(xut)) - K£X2(X - Xh{Xi,t))]\

+ | -53if£Xl(X -Xh{xi,t))[du{t) -¿u(t)] |

+ 1 -^2K£X2(X-Xh(xut))[d2t(t) -¿2i(t)] j

= Vn(X,t) + Vi2(X,t) + Vi3(X,t) +V2i(X,t) + V22(X,t).
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Here, for i = 1,2, j — 1,2 (or 1,2, and 3), we use Vij(X,t) to denote the terms in

each pair of braces in the above equation, respectively. Since

K£Xl = d(K * f£)/dxi = K * (df£/dxi)

and

dfe/dxi = JL[f(x/e)/e2} = fXl(x/e)/e3,

where fXl = df(x)/dxi,

(3.3) K£Xl=(K*fXl£)/e.

Similarly,

(3.4) K£X2 = (K * fX2£)/e.

Concerning terms Vij(X, t), j = 1,2 and 3, we have

Un (X, t) = 53 Ci[Ke(X - X(Xi,t)) - K£(X - Xh(xut))}    (by (2.4))
iei

= 53 \Si\(wo(xt) + Hnw0xi(xí) + Hi2wox2(xi))
iei

■ \K£(X - X(Xi,t)) - K£(X - Xh(xt,t))\,

Vi2(X, t) = -53 du(t)[KEXi (X - X(Xi,t)) - K£Xl (X - Xh(xt, t))\
iei

= ^2\Sl\{Mu(xi,t)Hli/e + Mi2(xi,t)Hi2/e}wo(xi)
iei

■ [K * fXie(X - X(xut)) - K * fXl£(X - Xh(xi,t))\.

Similarly,

ViZ(X, t) = -53 d2l(t)[K£X2(X - X(xui)) - K£X2(X - Xh(x%, t))}

iei

= J2\Si\{M2i(xl,t)Hii/e + M22(xl,t)Hi2/£}w0(xl)
iei

■ [K * fX2£(X - X(Xi,t)) - K * fX2£(X - Xh(xi,t))].

Define

(3.5) Vi(X, t) = 53 |St|Q,{^ * 9e(X - X(Xi, t))-K* g£(X - Xh(xu t))),
iei

where {a¿}tG/ is a family of real numbers, g(-) is a cutoff function which can be

/(•) or the partial derivatives of /(•), and g£(x) = g(x/e)/e2.

LEMMA 3.7.   Assume the conditions:

(1) g(-) E Wl'°°(R2) and there are two constants Ci > 0 and 7 > 2 such that

\dag(x)\ < Ci(l + |x|)-^    Vx 6 R2, \a\ = 0,1.

(2) There is a constant C2 > 0 such that h/e < C2.

(3) There is a constant C3 > 0, C3 = C3(wq,T), such that |a¿| < C3 for all

i El.
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Then, for p E (l,oo), there exists a constant C = C(p,T,w0) such that

(3.6)        ||U1(.,í)||Lp(R2)+^|Vi(-,í)li,p,R^<^(l + l|eWIU,oc/ff)2/9||e(í)|U,p,

where l/p + l/q = 1 and the discrete norms are defined in Definition 3.1.

Proof.   [18, Chapter II, Lemma 5.2 and Lemma 5.3:  Substitute C3 in (3) for

||Wo||l°o(r2)].

Remark. Although Lemma 5.2 and Lemma 5.3 in [18] are proved for uniform

meshes, the generalization to the nonuniform case is straightforward. Several sim-

ilar direct extensions are used below without comment. D

In order to find a bound for the discrete norm of Vi, we need the following

standard result in finite element theory.

LEMMA 3.8.   For allp>2 and all functions g E W1,P(R2),

(3-7)        \\g(t)\\h,p = \h2J2\g(X(xl,t)\p\      < C{|M|LP(R2) + %|liP,R2}.
I     iez" J

Proof. See [18, Chapter II, Lemma 5.4]. D

COROLLARY 3.1. Assume conditions (1), (2) and (3) in Lemma 3.7; then, for

2 < p < oo, there exists a constant C = C(p,T, Wq) such that

||Ui(í)IU,p<C(l + ||e(í)lk,oc/^)2/9||e(í)IU,P-

Proof. The proof follows directly from Lemma 3.7 and Lemma 3.8. D

THEOREM 3.3.   Assume the conditions:

(1) /(') e VU2,00(R2) and there are two constants Ci > 0 and 7 > 2 such that

|aa/(x)|<Ci(l + |x|)-^    VxSR2, \a\ = 0,1,2.

(2) There is a constant C2> 0 such that h/e < C2.

Then, for 2 < p < 00, there exists a constant C = C(p,T,Wo) such that

HUnWIkp + ||Ui2(i)IU,P + HVisWIkp < C(l + ||e(í)IU,oc/e)2/9||e(í)IU,p,

where l/p+ l/q = 1.

Proof. Since the solution of the Euler equation is assumed to be smooth for

t E [0, T],M(x, t),Wo(x) and Vu>o(x) are uniformly bounded for all x E fi. So,

{w0(xi) + Hnw0xi(xi) + Hi2woX2(xi)}ieI,

{[Mii(xi,t)Hn/s + Mi2(xi,t)Hl2/e]wo(xl)}i€i   and

{\M2i(xl,t)Hzi/e + M22(xl,t)Hi2le]wo(xi))i&I

are all uniformly bounded by some constant which is independent of h and e. Thus,

Theorem 3.3 follows from Lemma 3.7, Lemma 3.8 and Corollary 3.1. D

For estimating V2i and V22, the following lemmas are needed.
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LEMMA 3.9.  Assume the following conditions:

(1) g(-) E W/'1(R2) fi ^'^(R2) and there is a constant Ci > 0 such that for

\ß\ = /, \x\/+2\dßg(x)\ < Ci for all xER2.

(2) There is a constant C2 such that h/e < C2.

Then, for any compact set 5? E R2, there exists a constant C = C(S?) such that

53 \dßK * g£(x - X(Xi,t) + Vl)\h2 < B(ß,e)
•e/,|vd<l|e(*)l|h.oo

for allxeS", te [0, Te] and\ß\ = /, where T£ = max{í e [0,T] | ||e(í)||ft)00 < Me;

M is an arbitrary constant} and

' C, \ß\ = 0,

B(ß,e) = l C|loge|,     \ß\ = l,

, Ce1-^,    \0\ > 1.

Proof. For any i E /, as in the proof of Lemma 5.2 in [18], the area of 5¿(í) is of

order h2. Let a = max^i maxyes, \X(y,t) - Xh(xi,t)\; then

(3.8) IKOIkoo^a^Ca/H-HeiOlkoo.

For a fixed x e 5?, let Ji = {i e I\\x - X(xi,t)\ < e + a). If i e Ji, then

\x-X(xi,t)\ < s+a < e-rC3/i+||e(i)|U,oo. So, X(Xi,t) e 5(x,e+C3/i+||e(i)|U,oo).

This implies that Card Jx < C4(s/h + 1 + ||e(i)||/i,oo/ft)2- So,

53 \dßK * g£(x - X(Xi,t) + yi)\h2 < CardJih2\\dßK * fc||L~(Ra)

<eJi,l»d<ll«(*)ll*.«>

< C4^/^^\m\\^/h)2h2 < Cs(1 + ||e(i)|koo/£)2. ei-/

< CqS1^    for all t E [0,T£] (Lemma 3.3(a)).

Let J2 = I\Ji. If i E J2, then |x — X(xi,t)\ > e + a. So, |x - X(xi,t) + y¿| >

e + a — ||e(i)||/ii0O > e, because of (3.8). Using Lemma 3.3(b), we obtain

\S>K,gc{x-XM+v,)\<_ ]x_x{x% + ^, < üx.x^_a)W

so that,

53 \dßK*g£(x-X(xut) + yi)\h2 < C7 53 Ux_x(ft]l_aV+i-

When h -» 0,

lim y- _t?_ <   f dy
™°il {|x-X(xt,i)|-a}/+1 ~ J\x-y\>e+a{\x-y\-a}/+1'

lEJ2 yen

Since x E <5", u € fi, where S? is compact and fi is bounded, there exists a constant

R > 0 such that \x — y\ < R, and therefore,

r-27T[ dy f™ f rdrdO

J\x-y\>_e+a {\x - y\ - a}/+1   ~ J0      Je+a<r<R (r - a)/+1

(r + a) dr dô

yen
r2n    rR-ar¿TT     ¡-1

Jo      Je r/+l



522 C. CHIU AND R. A. NICOLAIDES

Since a < Czh + \\e(t)\\h¡00 < C3h + Me < C8e < C8r for ail t E [0,T£], it follows

that

r2n    cR-a/•¿■k    pi

Jo     Je

(r + a) dr d6

r/+i
< (1 + C8)2ttLe<r<R-af

dr

( (l + C8)2Tr(R-a-e),

(l + C8)2ir(\og(R-a)-\oge)

(1 + C8)2tt
/-l r/-l (R-a)

|/9| = 0,

101 = L

,    \ß\>l.   □

Define

(3.9) v2(x, t) = 53 i^Ma^tf * ff£(x - xh(xut))},
¿e/

where {a¿},er and ^() are the same as in (3.5). Then we have

LEMMA 3.10.   Assume the conditions (1) and (2) in Lemma 3.9.   Then there

exists a constant C = C(fi,p) such that

\\V2(t)\\h,p < B(ß,e) | 53 \ai\ph2 1 Vp e (1,oo) and t E [0,T£],

where T£ and B(ß,e) are the same as in Lemma 3.9.

Proof. For j El and i E I,

X(x3,t) - Xh(xi,t) = [X(Xj,t) - X(xi,t)] + [X(xi,t) - Xh(xt,t)].

Let yi = X(xi,t) - Xh(ii,t); then |j/j| < ||e(i)||/,j00. So, Lemma 3.9 implies that

foriG[0,T£],

Y,\dßK*g£(X(xj,t)-Xh(xl,t))\h2<Bi(ß,e).

iei

Let f(x) = g(-x). Since K(y) = -K(-y),

K*g£(x)= I    K(y)g£(x-y)dy=        K(y)ß£(-x -y)dy = K * ß£(-x).
Jr2 Jr*

So we have

Also,

K*g£(X(xJ,t)-Xh(xl,t)) = K*y£(Xh(xl,t)-X(x],t)).

Xh(xut) - X{xj,t) = [X(xt,t) - X(x3,t)] + [Xh(Xl,t) - X(xi,t)],

and letting y¿ = Xh(xi,t) - X(x%,t), we have |y¿| < ||e(í)||h)00. Substitute ß for g

in Lemma 3.9; then, for t E [0,T£], we have

Yd\dßK*g£(X(x3,t)-Xh(xl,t))\h2

iei

= 53 \dßK * ß£(Xh(Xl, t) - X(x„ t))\h2 < B2(ß, e),
jei
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\V2(X(x3,t),t)\ = 53 \Si\ai{dßK * ge{X{xj,t) - Xh(Xl,t))}
iei

< C3 53 \at\\dßK * ge{X{Xj, t) - Xh{xi,t))\i,p+1/qh2/t,+2/q

iei

<C3r£\dßK*g£(X(x],t)-Xh(xl,t))\h2\

■ \ 53 \ai\p\dßK * g£(X(xj,t) - Xh(xt,t))\h2 t (Holder Inequality)
.iei

<C3(Bi(ß,e))^" \^2\at\p\dßK * g£(X(x3,t) - Xh(xt,t))\h2

l/p

.%ei

From this, we obtain

\V2(X(x3,t),t)\p

< (C3)p(Bi(ß,e))p^ I 53 \at\p\dßK * g£(X(x}, t) - Xh(xut))\h2
[iei

and

\\V2(t)\\lp = Y,\V2(X(x],t),t)\ph2
iei

<(C3)p(Bi(ß,e))»^\j2
jei Lie/

53 \at\p\dßK * ge{X{xj,t) - Xh(xut))\h"

= (C3)p(ß1(/?,e))p/^53
¿6/

Y,\dßK*ge(X(x„t)-Xh(xl,t))\h2
jei

\oci\vh2

= (C3Y(Bi(ß,e))pl«B2(ß,e)\Y,\*i\vh2

Thus,

.te/

i/p

||U2(í)IU,p < C3(Bi(ß,e))^(B2(ß,e))^p I 53 \at\ph2 for all t E [0,T£]. D

THEOREM 3.4.   Assume the following conditions:

(1) /(•)  E W1-1(R2) nWl<°°(R2).    There is a constant Ci   >  0 such that

|x|2|aa/(x)| < d for ail x E R2, |a| = 1.

(2) There is a constant C2 such that h < C2e2.

Then there exists a constant C = C(fi,p, wo) such that

||U2i(í)|U,P + ||U22(í)|kP < Ce\\E{t)\\h,p   Vi 6 [0,T£],

Proof By definition,

V2i(X,t) = -^K£Xl(X-Xh(Xi,t))[dU(t)-r/il(t)]

iei

= -(1/e) 53 K * fXl£(X - Xh(xt,t))[du(t) - AM-
iei
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By Lemma 3.10 with ß = 0 and g = fx¡£, there is a constant C3 = C3(fi,p) such

that

\\V2i(t)\\h,p < (Cs/e) j531(^(0 -</u(t)]/\SA\ph2\     .

According to the construction of the method in Section 2,

[dii(t)-¿u(t)]/\Si\

= [Mn{xi,t)du + Mi2(xi,t)d2i - M?i(xi,t)du - M^2(xi,t)d2i]/\Si\

= [Mn(x¿,í) - M£i(xi,t)](-HiiWo(xi))

+ [M12{xi,t) - M£2(xi,t)](-Hi2WQ(xi)),

so that

\du{t)-é/u(t)\/\Si\ < 2/i||u>o|U-(R2)|M(xí,í) - Mh(xi,t)\.

Hence, ||U21(i)|U,P < (C4Ä/e)||£(f)lkP < (C4C2e)||£(0lkp (condition (2)), and

in a similar way, ||U22(i)lkP < (C5C2e)\\E(t)\\hiP. n

Part II. Consider the difference

%h(X, t) - í¿£h(Xh, t) = K£ * a>h(X, t) - K£ * u>h(Xh, t)

= 53 [ciKe(X - Xh(xi,t)) - ¿u(t)K£Xl (X - Xh(Xl, t))

iei

-¿2i(t)KeX2(X-Xh(xi,t))]

- 53 [*Ke{Xh - Xh(xut)) - ¿ii(t)K£Xi(Xh -Xh(xi,t))

iei

-r/2l(t)K£X2(Xh-Xh(Xl,t))]

= J 53 Cl[K£(X - Xh(Xi,t)) - K£(Xh - Xh(xi, t))] 1

+ I - X>m(*)[*«i (X - Xh(xi, t)) - K£Xl (Xh - Xh(x%, t))]\

+ l-^2i(t)[K£X2(X - Xh(xl:t)) - K£X2(Xh - Xh{Xi,t)))\ »

where we call the expression in the first pair of braces Wu (X, Xh, t) and the other

two W2i(X,Xh,t) and W22(X,Xh,t). Now we define

(3.10) W(X,Xh,t) = 53 \Si\oi[K * g£(X - Xh(xz,t)) - K * g£(Xh - Xh(xut))],
te/

where {at}ier, g and ge are as before. For {a,}¿er, we have the following lemma,

where the region fi and Sf are as shown in Figure 5. J/ is a compact set which

contains fi and is bounded by mesh lines, and x¿,Xfc are adjacent mesh points in

sé.

LEMMA 3.12.   Consider the family of numbers {ai | i E I, ai = 0 if x¿ ^ fi}.

Assume the conditions:

(1)   There exists a constant Ci such that maxjej(hji, hj2)/mmjeJ(hji,hj2) <

Ci and h < 1.
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Figure 5

(2) There exists a constant C2 which is independent of h such that \oti\ < C2

for all i E I .

(3) For any adjacent x¿ and xk with i,k E I, |a¿ — ak\ = ßik\xi — xk\, there

exists a constant C3 which is independent of h such that \ß%k\ < C3.

o o o

Then there exists a function wq(-) E B(sé) H W0l'p(sf) (sé is the interior of sé),

1 < p < oo, such that ¿¿>o(xi) = ai for all i e I, and \\wo(-)\\      «  is independent of
l,p,Stf

h.

Proof. For any j e J, take a local Cartesian coordinate system with the origin

at Xji (see Figure 6). Let Pj(Çi, Ç2) = Aj + BjÇi + CjC2 + DjÇiÇ2, which satisfies

PJ-(0,0) = oil)        P,(h3i,0) = aj2,

Pj(hji,hj2) = aj3,        Pj(0, hj2) = a]4.

Then,

Pi(Çi,te) = <Xji + {(aj2 - aji)/hji}ci + {(aj4 - aji)/hj2}c2

+ {[(aj3 - aj2) + (otji - aj4)]/hjihj2}ciç2.

Figure 6

For the global coordinate system on Bj, (xi,x2) = (xju + Ci, Xji2 + ç2), where

(xjn,Xji2) is the coordinate for the point Xji, 0 < ck < h]k, k = 1,2. On Bj,

define /ij(xi,x2) = /ij(xjh + Çi,xjl2 + ç2) = Pj(ci,ç2). Let ^o(-) be a function

defined on sé in the following way:

^oWIb_, = /ij(xi,x2) = Pj(Çi,Ç2)    for all j e J.
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By finite element theory, u>o(-) E B(sé) and u>o(x)\d^ = 0, ¿¿>o is differentiable

a.e., dai£>o(x)\ßj = da/ij for |q| = 1. So,

l%i,a)l
< löjil + I(ttj2 - aji)| + |(afj4 - Qtji)| + |(a,-3 - a]2)\ + \(otji - orj4)|

< \ctji I + \ßhh \hji + \ßuh |Äja + Iftwi |fcA + fe Ifyi < C2 + 4C3   Vj € J,

from which

(3.11) lko||/,°°(.s/) < C2 + 4C3.

Meanwhile,

d/ijldxi = (d/ij¡dci)(dcildxi) + (d/ij¡dc2)(dc2¡dxi)

= {(aj2 - atji)/hji} + {[(a]3 - aj2) + (ceji - aj4)]/hjihj2}ç2,

and so, \d/*j/dXl\ < \ßhjl\ + \ßj3]2\Ci + \ßjlU\d  < C3(l + 2d).   Similarly,

\d/ij/dx2\ <C3(l + 2Ci), and

(3.12) ||aQ^o||L-(^)<C3(l + 2C1),        |o| = l.

(3.11) and (3.12) imply that &Q E W01'°°(sé). Since sé is bounded, ^0 € W^°°(sé)

implies that ¿¿>o E WQ1'v(sé) for 1 < p < oo and ||^0||      ° depends on Ci,C2,C3

and Sé. D

LEMMA 3.12.   Assume the conditions:

(1) g(-) EW2'1(R2) r\W2^(R2) and satisfies

\dag(x)\ < Ci(l+ |x|)-4    for all xER2 and \a\ = 2.

(2) h/e<C2.

(3) {ai}iei satisfies (1), (2) and (3) in Lemma 3.11.

Then there exists a constant C which is independent of h and s such that

53o:l|5t|^^(x-X'1(xt,i))
iei k

<C(l + ||e(t)||h>00/e)2

VxeR2, Í6 [0,T], fc = l,2.

Proof. [18, Chapter II, Lemma 5.6: Substitute u>o in Lemma 3.11 for tuo]. D

LEMMA 3.13. Assume the conditions (I), (2) and (3) in Lemma 3.12. Then

there exists a constant C which is independent of h and e such that for all t E [0, T]

andpE [0,oo], ||W(t)lkP < C||e(í)||h,p(l + ||e(f)lkoo/e)2, where W(X,Xh,t) is

defined by (3.10) and ||rV(£)||/,)P is given by Definition 3.1.
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Proof By (3.10) we have

\W(X(xJ,t),Xh(xJ,t),t\

53 \Si\ctilK * ge(X(xj,t) - Xh(xut)) - K * ge(Xh(xj,t) - Xh(x„t))]
iei

53|S¿|aJ/  DK * g£[X(xj,t) - Xh(xut) + e(Xh(x„t) - X(x3,t))]de)
te/ Uo ]

< fJo

(Xh(x],t)-X(x],t))

de53 \Si\otiDK * g£[X(x3,t) - Xh(xut) + 9(Xh(x3,t) - X(Xj,t))]
iei

■\Xh(x3,t)-X(x3,t)\

< C3(l + \\e(t)\\Koo¡e)2\Xh(x3,t) - X(xj,t)\    (Lemma 3.12),

and hence, \\W(t)]\h,p < C||e(i)|U,P(l + \\e(t)\\h,oole)2. D

THEOREM 3.5.  Assume the conditions:

(1) /(•) E ry2-1(R2) fW2'°°(R2) and satisfies

\daf(x)\ < Ci(l + |x|)-4    for all xER2 and \a\ = 2.

(2) h/e<C2.

Then there exists a constant C = C(wo,p,T) such that

\\Wu(t)\\h,p < C{\ + ||e(í)|U,00/£)2||e(í)|U,p    for all t E [0,T], p E [1,oo].

Proof. By definition,

Wn(X,Xh,t) = 53ct[/i * f£(X - Xh(Xi,t)) -K*f£(Xh-Xh(xl,t))],
iei

where c, = \Sí\(w0(x1)+HíiWoXi(xí)+Hí2w0x2(xí)). Let a¿ = wo(xí)+Hhw0xi(xí)

+Hí2w0x2(xí); then |cv¿| < C3||iyo||ivi,o°(R2) for all i E I. For two adjacent x¿ and

Xfc with i,k E I we have

|q¿ -ak\ = \w0(xt) - w0(xk) + Htiiwox^Xi) - w0xi(xk))

+ Hi2(woX2(xi) -w0x2(xk)) +w0xi(xk)(Hn - Hki)

+ wox2(xk)(Hi2 - Hk2)\

= \Dw0(xik) ■ (xí - xk) + HlXDw0xi (yik) ■ (x¿ - x*:)

+ Hi2Dw0x2(zlk) ■ (xz - xfe) + w0xi(xk)(Hn - Hki)

+ woX2(xk)(Hi2 - Hk2)\

< C4||tüo||w2,~(R2)|x¿ - Xfe|,

where Xik, yik and Zik are intermediate points between x¿ and xk. Thus, by Lemma

3.13,

l|Wn(0lkp < C5||e(í)|U,p(l + ||e(í)IU,oc/£)2    Vi E [0,T], p E [0,oo]. D

For the estimation of W2i(X,Xh,t) and W22(X,Xh,t), we have the following

result.
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THEOREM 3.6.   Assume the following conditions:

(1) /(•) E W2^(R2) n rU2'°°(R2) and satisfies

\x\4\daf(x)\ < Ci    for ail x 6 R2 and \a\ = 2.

(2) h < C2e2.

Let T¡ = {tE [0,T] | ||e(t)||fci00 < Mre, \\E(t)\\Koo < M2), where Mx and M2 are

two arbitrary constants.  Then there exists a constant C = C(wo,T,p) such that

HWaiWIkp + l|W22(t)lkp < C||e(0IU,P    for all t E [0,T*£] and p E (l,oo).

Proof. By definition,

W2i(X,Xh,t) = -Y,¿n(tWexAX-Xh(xl,t))-K£Xl(Xh-Xh(xl,t))]

iei

= -J£^-[K*fXl£(X-Xh(xl,t))-K*fXl£(Xh-Xh(xl,t))]

iei

= 53 ^^ \f DK*fXl£(X- Xh(xi,t) + 0(X-Xh)) d9
te/     £     Uo

(Xh-X),

and

W2i(X(xJ,t),Xh(xJ,t),t)

■ Ai(t) If1= Y^Am\[ DK*fxierx(X],t)-xh(Xl,t) + 6(x(X],t)-xh(X],t)))de
Uo J

■(Xh(x3,t)-X(x3,t)).

iei

So,

\W2i(X(x3,t),Xh(x3,t),t)\

<\Xh(x3,t)-X(x3,t)\

x J2 MlM max  \DK*fXie(X(xj,t)-Xh(xi,t) + 6(X(xj,t)-Xh(xi,t)))\
iei

= \Xh(x3,t)-X(x3,t)\

Wu(t)\

iei

max  \DK * fXle(X(xj,t) + 9(X(xj,t) -Xh(x3,t))

- X(xi,t) + yi)\,

where y% = X(xt,t) - Xh(xt,t) and |t/,| < ||e(t)||hi00. By the definition of ¿/u(t),

¿u(t)/e = -\M^{xi,t)Hii +M?2(xl,t)Ht2]wo(xl)\Sl\/e.

Since for t E [0,T*], ||£(i)lkoo < M2, and ||M(.,i)||L=o(R2) is bounded for t E

[0,T£*], we have |Mh(x¿,f)| < C6 for all i E I and t E [0,T*]. Therefore,

IMftte.OJ/ii +M?2(Xl,t)Ht2\/e < C7e   Vi e / and t E [0,T*\,

because h < C2e2, Hn = 0(h) and Hi2 = 0(h). Hence,

kit(í)/£l < C7£||u>o||z,°°(R2)l¿>i|    for all i E I.
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Using Lemma 3.9 and Lemma 3.10 with \ß\ = 1,

\W2i(X(x3,t),Xh(x3,t),t)\

<\Xh(x3,t)-X(x3,t)\

xJ2^plm^i\DK*fXl£(X(x3,t) + 9(X(x3,t)-Xh(x3,t))
te/ -

-X(xi,t) + yi)\

<\Xh(x3,t) - X(x3,t)\C7e\\w0\\Loo{R2)C8\\oge\ <C9\Xh(x3,t) - X(x3,t)\.

This implies that ||W2i(í)lkp < C9||e(í)|kp for all t E [0,T*], p E (1, oo). Similarly,

\\W22(t)\\h,p < C10||e(i)IU,p'for all t E [0,T£*], p E (l,oo). D

The Error Bounds.   Now we will give the error estimate for the 2-D vortex

method constructed previously.

THEOREM 3.7 [Summary].  Assume the following conditions:

(1) (i), (ii) and (iii) of Theorem 3.1.

(2) /(•) 6 rV4,1(R2) n W4'°°(R2) and there exist constants CUC2 and 7 > 2

such that

\daf(x)\<Ci(l + \x\)-i,       xeR2,|a| = 0,l;

\daf(x)\ < C2(l + |x|)-4,       x E R2, \a\ = 2.

(3) There exists a constant C3 > 0 such that h < C3e2.

Then, for 2 < p < 00, there exists a constant C = C(p, T, s, wo) such that

d   , ,

dt^ <c(ek + ^rs+ \\e(t)\\Kp + e||£(0lkp)    Vi € [0,27],
\h

where s > 0 is an arbitrary number.

Proof. This result is the content of Theorems 3.1-3.6. D

Since the error bound for d{e(X, Xh,t)}/dt involves the term e||i?(i)||^iP, we now

need to analyze d{eE(X,Xh,t)}/dt:

jfE(X, Xh,t) = jte{M(x, t) - Mh(x, t)).

According to the systems of ordinary differential equations for M and Mh,

£j.{M(x,t) - Mh(x,t)} = e{Vu(X,t)M(x,t) - V%h(Xh,t)Mh(x,t)}

= e{(Vu(X, t) - V%h(Xh,t))M(x, t) + VW£h(Xh,t)(M(x, t) - Mh(x, t))}

= e {(Vu(X, t) - V^£h(Xh, t))M(x, t)

+ (V%eh(Xh,t) - Vu(X,t))(M(x,t) - Mh(x,t))

+Vu(X, t)(M(x, t) - Mh(x,t))}.
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Since we assume that the true solution is smooth,

(3.13)   J53|Vu(X(xí,í),í)(M(xí,í)-M'l(xí,í))|p/l2|      <Cip?(t)|U,pi

\ £ \(^Kh(Xh{xi,t), t) - Vu(X(xz, t), t))(M(xut) - Mh(xu t))\ph2

Kiel

(3.14) 1/p

< II^WIU.oc I £\V#eh(Xh{xi,t),t) - Vu(X(Xi,t),t)\ph2

and

i/p

53 \(V^(Xh(xut),t) - Vu(X(Xl,t),t))M(xt,t)\ph2

i/p

(3.15)
te/

< \\M(;í)||loc(R2)    53 \V%£h(Xh(xt,t), t) - Vu(X(xut),t)\ph2

i/p

iei

So, for í € [0,77], Eqs. (3.13), (3.14) and (3.15) imply that

d sE{t)
h,pdt

i/pn

<c2 \e\\E(t)\\htP + el^2\Vu(x(xt,t),t)-v^eh(xh(xl,t),t)\ph2
Viel

By norm equivalence,

i/p

J2 |Vu(X(x¿, t), t) - V%h(Xh(xt, t), t)\ph?
,iei

<C3
£
iei

dii f)9/h
{X(xt,t),t)-^(Xh(xt,t),t)

axi oxi

+ E
Lie/

^X(xl,t),t)-°-^-(Xh(xl,t),t)

i/p

p   V'p

\^(X,t)-     Y^(Xh,t)^=eU*wXk(X,t)-^(X\t)}     (fc = lor2)
dxk dxk

= ei[K*wXk(X,t)-Ke*wXk(X,t)] +

= e{h+l2}.

ßf/h
K£*wXk(X,t)--^-(Xh,t)

dxk

Ii can be bounded by using the method of Theorem 3.1, substituting wXl(-,t) or

wX2 (-, t) for w(-, t) in Theorem 3.1. Considering the second term I2, for k = 1,2 we
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have

l2 = e[K£*wXk(X,t)
df/eh

dxk

= e\(dKe/dxk)*w(X,t)

(Xh,t)

£
iei

ci^(Xh-Xh(xi,t))-i/u(t)-£^r(Xh-Xh(xi,t))

-Ai(t) d2K£  lvh     vhl

dxkdx2
(Xn-Xn(x t,0)] I

= (K*fXk£)*w(X,t)

-Y^iK*fXk£(Xh-Xh(Xl,t))

iei

-Ai(t)(K*fXke)Xl(Xh-Xh(xi,t))

-</2l(t)(K*fXk£)X2(Xh-Xh(xt,t))],

where fXk£(x) = fXk(x/e)/e2. By substituting fXk£(-) for f£(-) in Theorem 3.7, we

obtain the following result.

THEOREM 3.8 [Corollary of Theorem 3.7].  Assume the conditions:

(1) (i), (ii) and (iii) of Theorem 3.1.

(2) /(•) E W5'1(R2)nW5'°°(R2). There exist constants Ci,C2 and 7 > 2 such

that

\daf(x)\ <Ci(l + \x\)-\       x E R2, \a\ = 0,1;

|aa/(x)| < C2(l + |x|)-4,       x E R2, \a\ = 2,3.

(3) There exists a constant C3 > 0 such that h < C3e2.

Then, for 2 < p < 00, there exists a constant C = C(p,T,s,wo) such that

dt
e(t) + e

h,p >> h,p

<C[ek +(£k + j^ + IWOIkp + e||^(0IU,p)    Vi E [0,3;],

where s > 0 is an arbitrary number.    □

For the main estimate, the Gronwall inequality is needed.

LEMMA 3.15 [Gronwall inequality]. Let G: R —» R be a smooth function. Let

|| - || be a norm on R" and let e be a continuously differentiate n-vector function

on [0,T*] such that e(0) = 0 and \\de(t)/dt\\ < G(\\e(t)\\). Let y be the real-valued

function defined bydy(t)/dt = G(y(t)) andy(0) = 0.  Then for tE [0,T*], \\e(t)\\ <

y(t)-

Proof. See [11, Section 1.6]. D

THEOREM 3.9 [The main estimate].   Assume the following conditions:

(1) Conditions (1) and (2) of Theorem 3.8 with k > 2.
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(2) There exist three constants C3 > 0, a and ß such that

a>ß>2    and   C3lea <h< C3eß.

Then we have the following results:

(a) For 2 < p < oo, there exists a constant Cs = Cs(p,u>o,T) such that

(3.16) \e(t)\\h,p + e\\E(t)\\h,p<Ca[ek +
r3+S

(3.17)     ||u(i) - %h(t)\\htP + e||Vu(t) - V^(i)|U,p < CA ek +
r3+s

(b) There exists a constant Cs = Cs(p,wo,T) such that

(3.18) ||e(Olkoo + e\\E(t)\\h,oo < § [ek + ^)

(3.19)

u(t) - %h(t)h,oo + e\\Vu(t) - V%h(t)\\h,

C, '        h4'
< (ek + Çj     Vi€[0,n

where s > 0 is an arbitrary number.

Proof. By Theorem 3.8, for p € (0, oo) there exists a constant Cis = Cis(p, wo, T)

such that for all t E [0,3;],

d
(3.20) dt

e(t) + e
h,p

Ie«) < Cis   ek +

h.p

h4

r3+S + \\e{t)]\htP + e\\E{t)\\h,p),

where s > 0 is an arbitrary number.   For (3.16), let e(X,Xh,t) = (e(X,Xh,t),

E(X,Xh,t)) and define ||*(l)|| = ||e(i)lkP + e\\E{t)\\h<p. Then>

\\d*{t)/dt\\ < Cls (ek + ^ + \Ht)\\)     Vi 6 [0,r;].

Define G : R —► R by setting

h4
G(a) = Cis   ek + -^-- +a)= Cu(a + e,

3+s

Then, ||d«?(í)M|| < G(||*(i)||) by (3.20). Solve the initial value problem

dy(t)/dt = G(y(t)) = Cis(y(t) + e,),        y(0) = 0

to get

2/(i) = (exp(Cisi)-l)£i-

By Lemma 3.15,

lk(í)ll<2/(í)<(exp(Cl8T)-l)U* +
h4

r3 + S
for allie [0,3;].

So,

\e(t)\\n,p + e\\E(t)\\ h,P < C3 (ek + ^\     Vi e [0, T,*], 2 < p < oo.

The above result implies (3.16) for t E [0,3;], and (3.17) follows from (3.16) and

(3.20). For (3.18) and (3.19), consider any p E (2, oo) and note that

||e(i)lkp + e||£(0lkP > h2'p(\\e(t)\\Koo + «Oik»)-
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Then,

|e(i)||fc,oo + ell^Wlkoo < h-2'*(\\e{t)\\h,p + e||£(i)lkp)

<        1       g  (sk + ^-
(3.21) - C^e^/P   a\        e3+i

*=wc<(£'+?) = £(£'+£) "«**■
By the same procedure we can show that

rv /        h4\
\\u(t) - Kh(t)\\h,oo + e\\Vu(t) - V%h(t)\\h^ < ^r [ek + -^J    Vi G [0,Te*],

so that (3.18) and (3.19) are satisfied for all t E [0,T*].

The remaining problem is to prove that T* = T. Recall that

T* = max{t E [0,T] \ \\e(t)\\h<oc < Mxs and ||e(t)lkoo < M2).

Since u, %£, Vu and V%£ are continuous and bounded uniformly for (x, i) 6 fi x

[0,T] and e(X,Xh,0) = 0, if T¡ < T, then ||c(T*)|U,oo = MYe or \\E{T')\\hi00 =

M2. But, by (3.21),

||e(f)|koo + 4E(t)\\h,oo < c-il£2a/pC° (£" + ¿fï)     with k * 2-

Choose p so large that k - (2a/p) > 1. Then,

||c(0IU,oo + £||^(0IU,oo < max(MuM2)ek-^^

for suitable e and h, for all t E [0,T*]. This is a contradiction, and it follows that

T* = T. D

Remark. The result of Theorem 3.9 may be compared with the analogous

result, using simple 6 functions. For the latter case, the error bound would be

Cs(ek + h2/es+1). Hence, substantial improvements can be obtained by suitable

choices for e. Some numerical results for this algorithm are given in [8].

4. Conclusion. A higher-order vortex algorithm is defined for two-dimensional

incompressible inviscid flows. This algorithm uses gradients of Ô functions (vor-

tex dipoles) in addition to the usual 6 functions (point vortices) with appropri-

ate smoothing. Error estimates are proved, demonstrating the higher orders of

convergence on arbitrary (graded) meshes for assignment of the initial vorticity

distribution.
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