
MATHEMATICS OF COMPUTATION
Volume 81, Number 280, October 2012, Pages 2461–2471
S 0025-5718(2012)02581-6
Article electronically published on March 26, 2012

DISPROOF OF A CONJECTURE OF JACOBSTHAL

L. HAJDU AND N. SARADHA

Abstract. For any integer n ≥ 1, let j(n) denote the Jacobsthal function, and
ω(n) the number of distinct prime divisors of n. In 1962 Jacobsthal conjectured
that for any integer r ≥ 1, the maximal value of j(n) when n varies over N
with ω(n) = r is attained when n is the product of the first r primes. We show
that this is true for r ≤ 23 and fails at r = 24, thus disproving Jacobsthal’s
conjecture.

1. Introduction and main results

For n ≥ 1, the Jacobsthal function j(n) is defined as the smallest integer such
that any sequence of j(n) consecutive integers contains an element which is coprime
to n. This function was introduced by Jacobsthal in 1960 [6] and was studied
by many authors; see e.g. [1], [5] and the references given there. Further, this
function was used by Pomerance [9] in connection with the problem of least primes
in arithmetic progressions. He applied his result to show the finiteness of integers
k having the property that the first ϕ(k) primes coprime to k form a reduced
residue system modulo k. In [4] we made the result of Pomerance explicit under
some special cases and solved completely a problem of Recaman. In this paper,
we consider a conjecture raised by Jacobsthal in 1962 in a letter to Erdős [1]. For
any integer n ≥ 1, let pn denote the n-th prime and let ω(n) denote the number
of distinct prime divisors of n. Note that while dealing with j(n), we may always
suppose, without loss of generality, that n is square-free. Define the functions h(r)
and H(r) by

h(r) = j(p1p2 . . . pr)

and

H(r) = max
ω(n)=r

j(n).

It is clear that H(r) ≥ h(r) for all r ≥ 1. Concerning H(r) we have

c1r(log r)
2 log log log r

(log log r)2
< H(r) < c2r

c3

where c1, c2, c3 denote positive absolute constants. Here the left-hand side inequal-
ity is due to Rankin [10], while the right-hand side inequality follows easily from
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Table 1. The values of H(r) and fixed prime divisors of r-
maximal integers for 1 ≤ r ≤ 24

r H(r) Sr r H(r) Sr

1 2 ∅ 13 74 {2, . . . , 31}
2 4 {2} 14 90 {2, . . . , 23} ∪ {31}
3 6 {2} 15 100 {2, . . . , 37}
4 10 {2, 3} 16 106 {2, . . . , 29}
5 14 {2, 3, 5} 17 118 {2, . . . , 43}
6 22 {2, . . . , 7} 18 132 {2, . . . , 47}
7 26 {2, . . . , 11} 19 152 {2, . . . , 37} ∪ {43}
8 34 {2, . . . , 13} 20 174 {2, . . . , 53}
9 40 {2, . . . , 13} 21 190 {2, . . . , 47} ∪ {59, 61}
10 46 {2, . . . , 19} 22 200 {2, . . . , 43} ∪ {53, 61}
11 58 {2, . . . , 23} 23 216 {2, . . . , 61} ∪ {79, 83}
12 66 {2, . . . , 23} 24 236 {2, . . . , 61} ∪ {73, 89, 101}

Brun’s method (see [1]). By elementary tools Stevens [11] derived the completely
explicit estimate

(1.1) H(r) ≤ 2r2+2e log r.

Further, Jacobsthal himself made a study on the function H(r) in [6].
For h(r), upper and lower bounds are also known. Iwaniec [5] showed that

h(r) � r2 log r.

The best known lower bound for h(r) is due to Pintz [8], given by

h(r) ≥ (eγ + o(1))
pr log pr log log log pr

(log log pr)2
.

Here γ denotes Euler’s constant. Recently, Hagedorn [2] has computed the exact
values of h(r) for r < 50. In a letter to Erdős (see [1], p. 163, ll. 17-19) Jacobsthal
formulated the following.

Conjecture 1.1. H(r) = h(r) for all r ≥ 1.

He showed that the conjecture is true for r ≤ 10. In this paper, we show:

Theorem 1.2. We have

H(r) = h(r) for r ≤ 23

and the equal values are given in Table 1. Further,

236 = H(24) > h(24) = 234.

Thus the conjecture of Jacobsthal is true up to r ≤ 23, but fails at r = 24. Thus
by Theorem 1.2 and the exact values of h(r) given in [2], we get the exact values of
H(r) for r ≤ 23. The function j(n) seems to behave rather irregularly. It is hard to
predict the larger of the two values j(p1 . . . pr) and j(p1 . . . pr−1pr+1) when pr and
pr+1 are “close”. So we feel that Jacobsthal’s conjecture should fail infinitely often.
In the next result, we show some divisibility property of integers n with ω(n) = r
for which j(n) is maximal, i.e., j(n) = H(r) holds. We shall refer to such integers
n as r-maximal integers.
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Theorem 1.3. Let r ≤ 24 and Sr be the set appearing in the r-th row of Table 1.
If n is an r-maximal integer, then

(1.2)
∏

p∈Sr

p divides n.

On the other hand, if p is a prime and p /∈ Sr, then there exists an r-maximal
integer n such that p does not divide n.

Based upon Theorem 1.3, we propose the following problem, which is a weaker
version of Jacobsthal’s conjecture.

Problem. Fix r ≥ 1. Is it true that for all sufficiently large R, there is an R-
maximal integer divisible by

∏r
i=1 pi?

Had the original Conjecture 1.1 of Jacobsthal been valid, it would have implied
an affirmative answer to this problem with R = r.

Our proofs of Theorems 1.2 and 1.3 are mainly based on the methods of Hagedorn
used in [2] to compute h(r) for r < 50. For any fixed r, computation of h(r) requires
the evaluation of the Jacobsthal function j(n) at only one integer n = p1 . . . pr. Now
H(r) is the maximum taken over an infinite set of values. Thus an important step
is to convert the calculation of H(r) into a finite problem as done in section 2.3.
For a theoretical explicit upper bound for H(r), we refer to (1.1). This bound is
rather huge even for small values of r. For instance, for r = 10, (1.1) gives

H(10) ≤ 2× 1014.6

while from Table 1, we now know H(10) = 46. Thus the calculation of the exact
values of H(r) requires the introduction of new ideas and the modifications of the
algorithms used in [2]. At this point we also mention our paper on a problem of
Pillai [3] where similar algorithms were developed.

2. Algorithms and auxiliary results

In this section we explain the methods, algorithms and other ingredients which
were used in the proofs of our theorems.

2.1. Sieves and coverings. Let 2 = p1 < p2 < . . . be the sequence of all primes.
Let S = {q1, . . . , qt} be a given finite set of primes. Then the set

T = {(q1, c1), . . . , (qt, ct)}
with some integers ci ∈ {1, 2, . . . , qi} (i = 1, 2, . . . , t) is called an S-sieve. Let A be
a finite set of positive integers. We say that T covers A or T is an S-covering of A
if for every a ∈ A we can find a pair (q, c) ∈ T such that a ≡ c (mod q). We also
say that a is covered by q or q covers a. In particular, when A = {1, 2, . . . , k} we
observe that ci is the least positive integer covered by qi for 1 ≤ i ≤ t. We call ci
the position of qi. Fix i ∈ {1, 2, . . . , t}. We say that qi exclusively covers a ∈ A if

a ≡ ci (mod qi) and a 	≡ cj (mod qj) for 1 ≤ j ≤ t, j 	= i.

It is clear that in the notion of coverings as above, the set S plays the primary role.
Hence we say that A can be covered by S if there exist c1, . . . , ct as above such
that the corresponding T covers A. Note that if A can be covered by some set S,
then the same is true for any set S′ with S ⊆ S′. This leads us to define a minimal
cover of A as a set T such that T covers A and no proper subset of T covers A. In



2464 L. HAJDU AND N. SARADHA

all the discussions below, by a cover we shall always mean a minimal cover without
any mention. Further, we say that T is an r-exclusive covering of the set A if every
prime > pr+1 in S covers exclusively at least two elements of A. We also observe
that if S covers A, then S also covers A+1 = {a+1 : a ∈ A}. If S consists of only
odd primes, then S covers A if and only if S covers 2A = {2a : a ∈ A}. The next
statement highlights the importance of coverings.

Lemma 2.1. Let n be an integer with n > 1, and write S for the set of prime
divisors of n. Let k be the largest positive integer such that the set A = {1, 2, . . . , k}
can be covered by S. Then j(n) = k + 1.

Proof. The statement immediately follows from the results of Hagedorn [2]. See, in
particular, the proof of Proposition 2.8 of [2]. One may also consult Lemma 5.4 of
[3], which is of similar nature. However, for the convenience of the reader we give
a proof of the statement.

Write S = {q1, . . . , qr} for the set of prime divisors of n, and let k be as in the
statement. First we show that j(n) ≥ k + 1. Let T = {(q1, c1), . . . , (qr, cr)} be an
S-covering of A. Let N be an integer such that

N ≡ −ci (mod qi) for 1 ≤ i ≤ r.

By the Chinese Remainder Theorem such an N exists. Since T is a covering of
A, for every 1 ≤ j ≤ k there exists a ch(j) with 1 ≤ h(j) ≤ r such that j ≡
ch(j) (mod qh(j)). Then N + j ≡ 0 (mod qh(j)) implying that gcd(n,N + j) > 1.
Hence j(n) ≥ k + 1. Now suppose that j(n) > k + 1. Then there exists a positive
integer N such that gcd(n,N + i) > 1 for i = 1, 2, . . . , k + 1. For each qj ∈ S
(j = 1, 2, . . . , r) let cj be the smallest positive integer such that qj divides N + cj .
Then one can readily check that T = {(q1, c1), . . . , (qr, cr)} is an S-covering for
{1, 2, . . . , k + 1} which violates the maximality of k. Hence the lemma follows. �

As a consequence of Lemma 2.1 we get the following property of the Jacobsthal
function. Note that in a special case the statement is proved in [2], and the proof
for general n is the same. However, for the convenience of the reader we give the
main steps of the proof.

Lemma 2.2. Let m be an odd positive integer. Then we have j(2m) = 2j(m).

Proof. Let S = {q1, . . . , qt} be the set of prime divisors of m. By the defini-
tion of j(m), we find that S covers {1, 2, . . . , j(m) − 1}. Hence S also covers
{2, 4, . . . , 2(j(m)− 1)}. By covering the integers {1, 3, . . . , 2j(m)− 1} by the prime
2, we find that the set S′ = {2, q1, . . . , qt} covers {1, 2, . . . , 2j(m) − 1}. Hence
j(2m) ≥ 2j(m).

Suppose S′ covers {1, 2, . . . , j(2m) − 1}. By the maximality of j(2m) and the
properties of coverings mentioned in the beginning of this section, we may assume
that the position of the prime 2 is 1 and j(2m) is even. Then {2, 4, . . . , j(2m)−2} are
covered by S. Hence {1, 2, . . . , j(2m)−2

2 } is covered by S. Thus j(m) ≥ j(2m)−2
2 +1 =

j(2m). Now the lemma follows. �

2.2. Getting rid of the prime 2. As in [2], it turns out that in fact it is sufficient
to work only with odd numbers. Write p∗i for the i-th odd prime. Obviously, we
have p∗i = pi+1. For any r ≥ 1 define the functions h∗(r) and H∗(r) by

h∗(r) = j(p∗1p
∗
2 . . . p

∗
r)
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and

H∗(r) = max
ω(n)=r

2�n

j(n).

Then we clearly have H∗(r) ≥ h∗(r) for all r ≥ 1. Further, Hagedorn proved that
h(r) = 2h∗(r − 1) holds for all r ≥ 2 (see Proposition 2.8 of [2]; note that in the
notation of [2] we have w(r) = h∗(r) − 1). The next lemma provides a similar
property for H(r) and H∗(r). We shall call any odd integer n for which ω(n) = r
and j(n) = H∗(r) as (r, ∗)-maximal.

Lemma 2.3. For any r ≥ 2 we have

H(r) = max(H∗(r), 2H∗(r − 1)).

Proof. The proof is similar to that of the above mentioned statement concerning
h(r) and h∗(r) from [2]. However, for the convenience of the reader we provide a
complete argument.

Observe that

(2.1) H(r) = max(H∗(r), H ′(r))

where
H ′(r) = max

ω(n)=r

2|n

j(n).

Let N be an even square-free integer with ω(N) = r such that j(N) = H ′(r). Then
by Lemma 2.2 we get that j(N) = 2j(N/2), which gives

2H∗(r − 1) ≥ j(N) = H ′(r).

On the other hand, let m be an ((r − 1), ∗)-maximal integer. Then using again
Lemma 2.2, we get j(2m) = 2H∗(r − 1). This yields

H ′(r) ≥ 2H∗(r − 1).

Thus we obtain H ′(r) = 2H∗(r − 1), and the lemma follows by (2.1). �

It is important to note that for all the r values occurring in the present paper we
have H ′(r) ≥ H∗(r), that is, H(r) = 2H∗(r− 1). It is very likely that this equality
is valid for all r > 1.

2.3. Making the problem finite. As noted in the Introduction, it is important
to make the calculation of H(r) a finite problem for a given r. Obviously, we have
H(1) = H∗(1) = 2. Further, (1.1) provides a completely explicit upper bound for
H(r). However, to calculate the exact values of H(r) we need another tool. In fact,
by Lemma 2.3 it is sufficient to deal with H∗(r) instead of H(r). The next lemma
provides important information about “large” prime factors of n in calculating j(n).

Lemma 2.4. Let n > 1 be a square-free odd integer with ω(n) = r and write S for
the set of prime divisors of n. Further, put A = {1, 2, . . . , j(n)− 1}. Then we have
the following properties.

i) If q is a prime divisor of n with q > H∗(r − 1), then in any S-covering of A,
q covers exactly one element.

ii) Let q be a prime divisor of n with q > p∗r. Suppose that there exists an S-
covering of A in which q covers only one element exclusively. Then there exists an
odd prime p ≤ p∗r such that j(pn/q) ≥ j(n).
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Proof. i) Suppose to the contrary that there is an S-covering T of A in which q
covers at least two elements. Let (q, c) ∈ T be the corresponding pair. Then the
set {c+1, . . . , c+ q− 1} is covered by T \ {(q, c)}. However, this is clearly possible
only if q − 1 < H∗(r − 1). Thus we get a contradiction, and the statement follows.

ii) Let T be an S-covering of A in which q covers only one element exclusively;
write a for this element. Note that such an element exists, since otherwise q could
be used to cover j(n), giving a contradiction. Take an odd prime p such that p � n
and p ≤ p∗r . Since ω(n) = r and q > p∗r , such a prime exists. Let c be the smallest
positive integer ≡ a (mod p) and replace the pair corresponding to q in T by (p, c).
Then we get a covering of A, which by Lemma 2.1 shows that j(pn/q) ≥ j(n), and
the statement follows. �

As a simple consequence of the previous lemma, the next statement inductively
shows that from r ≥ 2 on, it is sufficient to consider only finitely many integers to
obtain the value of H∗(r). We need the following notation: for an integer m ≥ 2
let P (m) denote the largest prime divisor of m.

Lemma 2.5. Let r ≥ 2, and set M = max(H∗(r − 1), p∗r). Then we have

H∗(r) = max
ω(n)=r

2�n, P (n)≤M

j(n).

Further, we can restrict the values of n on the right-hand side to numbers for which
any covering of {1, 2, . . . , j(n)− 1} by the prime divisors of n is r-exclusive.

Proof. Let r ≥ 2, and let n be a square-free (r, ∗)-maximal integer. Suppose that
n is such that P (n) is minimal with these properties, and write q for the largest
prime divisor of n. Let q > M . Then by part i) of Lemma 2.4 we get that q covers
only one element of A = {1, 2, . . . , j(n)− 1} in any covering by the set S of prime
divisors of n. Then part ii) of Lemma 2.4 gives that with some odd prime p � n and
p ≤ p∗r, we have j(pn/q) ≥ j(n). However, this contradicts the minimality of P (n).

Suppose now that we have an S-covering of A which is not r-exclusive. By part ii)
of Lemma 2.4 on replacing a prime divisor > p∗r of n which covers only one element
exclusively with a prime ≤ p∗r , and repeating the process if necessary, ultimately
we get an r-exclusive covering of A by the prime divisors of an appropriate n. Thus
the statement follows. �

We note that this lemma proves to be very useful later on. Indeed, for a fixed r,
to compute H∗(r) we need only to check all the possible r-tuples consisting of odd
primes ≤ M with M given in Lemma 2.5.

2.4. The principal algorithm.

Aim. We develop an algorithm to prove Theorems 1.2 and 1.3. In view of Lemma
2.3, it is sufficient to calculate the exact value of H∗(r) for r ≤ 23, and to get an
upper bound for H∗(24) which is less than 2H∗(23). To obtain the exact values
of H∗(r) we shall use Lemma 2.5. This involves calculating j(n) with n odd and
P (n) ≤ M . For this we need to cover a set A = {1, 2, . . . , k} with a set S =
{q1, . . . , qr} of r odd primes for suitably chosen k.
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Simplifications and modifications. Our algorithm is based on a modified ver-
sion of an algorithm of Hagedorn [2]. The modifications are necessary due to the
important difference that we need to consider several r-tuples of odd primes to find
the value of H∗(r), in contrast with the calculation of h∗(r), where only the primes
p∗1, . . . , p

∗
r are needed. This causes a “combinatorial explosion” in the number of

cases to be considered for a fixed r. Fortunately, since the conjecture fails already
for a relatively small value of r, this does not yield a serious problem. However, to
speed up the calculations, we apply the following considerations.

(a) If H∗(r) > h∗(r) for some r, then for any (r, ∗)-maximal integer n, we
necessarily have P (n) > p∗r . Thus by part ii) of Lemma 2.4, when we consider
coverings with the set of prime divisors of an odd number n, we can assume that
every prime q | n with q > p∗r exclusively covers at least two elements, i.e., we need
to consider only r-exclusive coverings.

(b) We use the following ideas of Hagedorn.
(b.1) If we find that a subset S′ of S with |S′| = r′ covers a subset A′ of A with

|A \A′| ≤ r− r′, then the S′-covering of A′ can be extended to an S-covering of A.
Indeed, we use each of the remaining r− r′ primes in S for each of the elements of
A \A′ in a one-to-one manner to get an S-covering of A.

(b.2) Let A′ be the largest subset of A which is covered by some set T ′ belonging
to a subset S′ of S. Let ml be the maximal number of elements of A\A′ which can
be covered by a prime ql in S \ S′. It is easy to see that if

∑
ql∈S\S′ ml < |A \A′|,

then T ′ cannot be extended to an S-covering of A.

Main steps of the algorithm. (i) We consider all possible positions in A =
{1, 2, . . . , k} of the primes in S exceeding p∗r so that each such prime exclusively
covers at least two elements of A.

(ii) We fix all possible positions of the other primes in S successively so that we
get r-exclusive coverings.

(iii) When we find a covering satisfying (i) and (ii), we check that S does not
cover A ∪ {k + 1}.

(iv) We list all possible coverings of A with S satisfying the properties (i)-(iii).

Conclusion

If the list in (iv) is empty, we conclude that no such covering exists. This implies
that j(n) ≤ k. Otherwise, the list gives all possible r-exclusive coverings of A.
Further, if in (iii) we get that these coverings do not cover A ∪ {k + 1}, then
j(n) = k + 1. Collecting the appropriate lists we can construct the set Sr of those
primes which must divide any n which is r-maximal. (This is explained in the proof
of Theorem 1.3.) Table 1 is prepared from these lists.

Implementation of the principal algorithm.

Initialization. Fix k and r to be positive integers. Let L = ∅;A = {1, 2, . . . , k}
and

S = {q1 < · · · < qu < qu+1 < · · · < qr}
where the qi’s are odd primes and qu+1 > p∗r ≥ qu.

(PA.1)
(a) Take a tuple (cu+1, . . . , cr) with 1 ≤ cj ≤ qj (j = u+ 1, . . . , r). Let

Xj = {x ∈ A | x is exclusively covered by qj}.
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(b) If |Xj | ≥ 2 for all j with u+ 1 ≤ j ≤ r, then put

T = {(qu+1, cu+1), . . . , (qr, cr)},
T ′ = ∅ and r′ = 1, and go to (PA.2).

(c) If (b) fails, execute (a) and (b) with another tuple (cu+1, . . . , cr). If all the
possible tuples are checked already, then stop.

(PA.2)
(a) If r′ = 0, then go to (PA.1).
(b) Take a new cr′ with 1 ≤ cr′ ≤ qr′ and

|{x ∈ Xj | x 	≡ cr′ (mod qr′)}| ≥ 2

for all j ∈ {u + 1, . . . , r}. Replace the pair in T ′ corresponding to qr′ by (qr′ , cr′),
and go to (PA.3).

(c) If no such cr′ exists or all of them have been considered already, then remove
the pair corresponding to qr′ from T ′, put r′ = r′ − 1 and go to (a).

(PA.3)
(a) Let A′ be the maximal subset of A which is covered by T ∪ T ′.
(b) If |A \ A′| ≤ u − r′, then list into L all the appropriate S-coverings of A

containing T ∪ T ′ as a subset, and return to step (PA.2).
(c) For l = r′ + 1, . . . , u put ml = maxcl∈Ml

|{x ∈ A \ A′ : x ≡ cl (mod ql)}|
where Ml is the set of integers c with 1 ≤ c ≤ ql and

|{x ∈ Xj | x 	≡ c (mod ql)}| ≥ 2

for all j = u + 1, . . . , r. If |A \ A′| > mr′+1 + · · · + mu or r′ = u, then return to
step (PA.2).

(d) In all the other cases put r′ = r′ + 1 and return to step (PA.2).

Output. After some time the algorithm terminates at part (c) of (PA.1). Its
output is the set L of the appropriate r-exclusive coverings of A.

3. Proofs

We start with the proof of our first theorem.

Proof of Theorem 1.2. It is easy to see that H(1) = H∗(1) = 2. So we assume that
r ≥ 2. By Lemma 2.3 we have

(3.1) H(r) = max(H∗(r), 2H∗(r − 1)) for any r ≥ 2.

Thus in order to compute the values of H(r), we need only to compute H∗(r) and
use the relation (3.1). So we restrict to computing H∗(r) for r ≥ 2. Note that
h∗(1) = 2 and as mentioned already, by Proposition 2.8 of [2], we have

h∗(r) = h(r + 1)/2 for r ≥ 2.

Further, if H∗(r− 1) < p∗r+1 holds, then we have M < p∗r+1 in Lemma 2.5, i.e., the
calculation of H∗(r) is restricted to odd values n with ω(n) = r and P (n) ≤ p∗r .
This gives n = p∗1 . . . p

∗
r . That is, we have H∗(r) = h∗(r) in this case. Combining

these equalities we obtain that

(3.2) H∗(r) = h(r + 1)/2

whenever

(3.3) H∗(r − 1) < p∗r+1.



DISPROOF OF A CONJECTURE OF JACOBSTHAL 2469

From the values of h(r) given in Table 1 of [2], we check that (3.3) holds and then
find the value in (3.2) for 2 ≤ r ≤ 18. For example, when r = 18, then

H∗(r − 1) = H∗(17) = 66 < 71 = p∗19 = p∗r+1

and hence

H∗(18) = h(19)/2 = 76.

Next we take r = 19. Then Lemma 2.5 gives

H∗(19) = max
ω(n)=r

2�n, P (n)≤73

j(n).

That is, the set of prime divisors of n can be any 19 element subset U of the set
S = {3, 5, . . . , 73} of the first 20 odd primes. We take k = h∗(19) − 1 = 86, i.e.,
A = {1, 2, . . . , 86}. Note that by the definition of h∗(r), A can be covered by the
first 19 odd primes. Further, by part ii) of Lemma 2.4 it is sufficient to check the
possible r-exclusive coverings of A. For each U as above, we find all such possible
coverings of A, by our Principal Algorithm. Then we check that these coverings do
not cover the set {1, 2, . . . , 86, 87}. This shows that H∗(19) = h∗(19) = 87.

Now, let r = 20, 21, 22. We use a similar method as above. In these cases
the set S equals {3, 5, . . . , 83}, {3, 5, . . . , 89} and {3, 5, . . . , 97}, respectively. Thus
|S| = r + 2. We take A = {1, 2, . . . , 94}, {1, 2, . . . , 99}, {1, 2, . . . , 107}, respectively.
Then we consider all subsets U ⊂ S with |U | = r and all possible r-exclusive
coverings T of the corresponding set A. By the same method as above, in each
case we get that H∗(r) = h∗(r). Note that as we need to choose subsets having r
elements from a set having r+2 elements and then check all the possible coverings
for each subset, the amount of computation increases considerably.

Now, let r = 23. Then S = {3, 5, . . . , 103} with |S| = 26. Now we take A =
{1, 2, . . . , 117}. Here we need to consider subsets U ⊂ S with |U | = 23 and the
possible sievings. We find the following covering of A:

{(3, 2), (5, 4), (7, 3), (11, 4), (13, 7), (17, 8), (19, 2), (23, 13),
(29, 3), (31, 26), (37, 30), (41, 22), (43, 12), (47, 6), (53, 43), (59, 16),

(61, 51), (67, 60), (73, 18), (79, 27), (83, 58), (89, 28), (101, 1)}.

Note that here we use the first 23 odd primes, but with 71 replaced by 101. We
find all the r-exclusive coverings of A and check that they cannot be extended to
{1, 2, . . . , 118}. Hence we get H∗(23) = 118.

Last, let r = 24. From H∗(23) = 118 and Lemma 2.5 we get

H∗(24) = max
ω(n)=r

2�n, P (n)≤113

j(n).

Since 113 = p∗29, we obviously get H∗(24) ≤ h∗(29). As h∗(29) = h(29)/2 = 165 by
Table 1 of [2], this yields H∗(24) ≤ 165.

Having the exact values of H∗(r) for r ≤ 23 and the inequality H∗(24) ≤ 165,
by (3.1) we get the values of H(r) for r ≤ 24 appearing in Table 1. Hence the
statement follows. �

Now we give the proof of our second result.
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Proof of Theorem 1.3. We need to show that the sets Sr given in Table 1 have
property (1.2), and further that they are maximal with this property. For r = 1
and for any odd n with ω(n) = 1, H(r) = j(n) = 2. This yields that S1 = ∅. For
r ≥ 2 we explain how the set Sr is obtained with an example.

Let r = 13. Then by (3.2) and Table 1 of [2] we have H∗(12) = 37 and H∗(13) =
45. Hence by (3.1), H(13) = 2H∗(12), and the 13-maximal integers are even. We
take k = h∗(12)−1 = H∗(12)−1 = 36, and again, we would like to find all coverings
of the set A = {1, 2, . . . , 36} with any twelve odd primes. As (3.3) holds in this
case, by part i) of Lemma 2.4 it is sufficient to consider the set of the first twelve
odd primes S = {3, 5, . . . , 41}. Using our Principal Algorithm we get that there are
only two coverings of A by S, given by

{(3, 2), (5, 1), (7, 1), (11, 2), (13, 12), (17, 10),
(19, 9), (23, 7), (29, 4), (31, 3), (37, 18), (41, 19)}

and

{(3, 2), (5, 1), (7, 1), (11, 2), (13, 12), (17, 10),
(19, 9), (23, 7), (29, 4), (31, 3), (37, 19), (41, 18)}.

As one can easily check, the primes 3, 5, . . . , 31 exclusively cover at least two ele-
ments in both cases (e.g. 31 exclusively covers 3 and 34), while the primes 37 and
41 cover only one element each. Hence the primes 37 and 41 could be replaced by
any other primes > 41. That is, if n is (r, ∗)-maximal with r = 12, then all the
primes in the set defined by

S∗
12 := {3, 5, . . . , 31}

divide n, but n has no more fixed prime factors. Then following the argument of
Lemmas 2.2 and 2.3, one can easily check that S13 = S∗

12 ∪ {2}, just as indicated
in Table 1.

The method is similar for the other values of r. When r ≥ 19 we need to check
several coverings corresponding to many subsets U ⊂ S with |U | = r and |S| > r.
In particular, given an r-exclusive covering T of A corresponding to some U ⊂ S,
we have to take into consideration all possible coverings derived from T where some
primes in U are replaced by elements of S which are > p∗r . We explain this step
by an example again. Let r = 20 and take k = 94, A = {1, 2, . . . , 94}. Now
S = {3, 5, . . . , 83} is the set of the first 22 odd primes and we take U to be a subset
of S having |U | = 20. Then, using our Principal Algorithm we obtain all coverings
T of A using such sets U . One of these coverings is given by

T = {(3, 1), (5, 2), (7, 2), (11, 4), (13, 11), (17, 3), (19, 18), (23, 14),
(29, 10), (31, 4), (37, 8), (41, 33), (43, 41), (47, 6), (53, 16),

(59, 21), (61, 29), (67, 36), (71, 38), (73, 5)}.
Now we need to find all coverings of A which can be derived from T . By part i) of
Lemma 2.4 we know that every prime > H∗(19) = 87 can cover only one element in
each covering of A. Thus we have two spare primes 79 and 83 from S. We may use
them to replace at most two pairs in T as follows. Take the pair (53, 16). Then 53
covers 16 and 69. Note that 16 is also covered by 7 while 69 is covered exclusively
by 53. Similarly, the primes 67 and 71 cover exclusively the numbers 36 and 38,
respectively. Hence we can derive new coverings from T by replacing at most any
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two pairs in T corresponding to the primes 53, 67, 71 by 79 and 83 and there are
no other possible covers. For example, we get the covering

(3, 1), (5, 2), (7, 2), (11, 4), (13, 11), (17, 3), (19, 18), (23, 14),

(29, 10), (31, 4), (37, 8), (41, 33), (43, 41), (47, 6), (59, 21),

(61, 29), (71, 38), (73, 5), (79, 69), (83, 36).

This shows that 53, 67, 71 /∈ S∗
20. Checking all the other coverings of A with the

appropriate sets U and combining the information obtained, we get that S∗
20 =

{3, . . . , 47} ∪ {59, 61} and

S21 = {2, 3, . . . , 47} ∪ {59, 61}
just as indicated in Table 1.

Executing these steps, for each value of r we could find the set S∗
r of fixed prime

factors of integers n which are (r, ∗)-maximal. Then similarly as above, we get
Sr+1 = S∗

r ∪ {2} in each case, just as given in Table 1. �
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