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Jacob T. Schwartz

In the recollections of Yale included in his In-
discrete Thoughts, Gian-Carlo mentions the 1954
functional analysis seminar at which we met. This
seminar, in memory yet green, was organized by
Nelson Dunford and addressed by an outstanding
group of young researchers, including John Wer-
mer, William Bade, Robert Bartle, and Henry Hel-
son. It was a high point of early functional analy-
sis at Yale: interesting new results were presented
by their discoverers almost every week. Even
though he was then in his first graduate year, Gian-
Carlo’s talents became apparent at once, and he was
immediately recruited, along with Bartle, Bade,
and me, as a junior member of the group then
working on the “Dunford project” that subse-
quently became Linear Operators. In 1957 Dunford
decided to take a year’s sabbatical at NYU (New
York University). Support from the ONR (Office of
Naval Research) being available, Rota and I were

able to tag along for this one-year visit, which
turned into a three-year stay for Gianco and forty-
two years for me. Though only a few years older
than Gian-Carlo, I assumed for the first time the
ponderous dignity of thesis advisor. This was a pe-
riod of youthful friendship, punctuated by fre-
quent risotto Milanese garnished by Asti Spumante
at Gian-Carlo’s bottom-price, sixth-floor walkup
apartment in what was then something of a Mafia-
dominated slum just south of NYU but which has
since been gentrified.

The Dunford connection, the general prestige of
functional analysis at Yale, the ONR contract, and
the pattern of my own interests led Gian-Carlo to
an initial specialization in functional analysis. His
dissertation, “Extension theory of differential op-
erators I”, appeared in Communications in Pure and
Applied Mathematics in 1958. (Not untypically for
papers whose titles bear the fatal Roman digit “I”,
there never was a “II”.) A series of other papers on
operator theory followed: “Note on the invariant
subspaces of linear operators”, “On the spectra of
singular boundary value problems”, “On models of
linear operators”, “On the eigenvalues of positive
operators”—all in the period 1958–61. But already

Editor’s Note. Gian-Carlo Rota—combinatorialist, probabilist, phenomenologist, philosopher, editor, premier lecturer, thesis advisor
to dozens—died in his sleep about April 18, 1999. Born in Vigevano, Italy, on April 27, 1932, he came to the United States in 1950 and
obtained a Ph.D. degree in mathematics under Jacob T. Schwartz from Yale University in 1956. He was a postdoctoral research fel-
low at the Courant Institute at New York University in 1956–57 and a Benjamin Peirce Instructor at Harvard University in 1957–59.
In 1959 he took a faculty position at the Massachusetts Institute of Technology (MIT), where he remained—except for a stay in 1965–67
at the Rockefeller University—until his death.

He had a number of visiting faculty positions—among them at the University of Colorado, the University of Florida, the University
of Southern California, the University of Paris VII, the University of Buenos Aires, the University of Strasbourg, and the Scuola Nor-
male Superiore in Pisa. He was a long-time consultant for the Los Alamos National Laboratory and was a Director’s Office Fellow there
starting in 1971.

He was the founding editor of the Journal of Combinatorial Theory (1966), Advances in Mathematics (1967), and Advances in Ap-
plied Mathematics (1979), and he remained as editor of all these journals until his death. He was, in addition, editor of several book
series and served on the editorial boards of a dozen other journals at various times.

He had more than forty doctoral students (see sidebar) and was a consummate lecturer, eagerly sought as a guest lecturer around
the world. In fact, his death was discovered on a Monday when he failed to arrive for a series of three guest lectures in Philadelphia.
The AMS honored his extraordinary talents by choosing him as its Colloquium Lecturer for 1998.

He was a fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences of the USA, the
1988 winner of the AMS Steele Prize for a Seminal Contribution to Research, and an invited lecturer at the International Congress of
Mathematicians in Helsinki in 1978.

Jacob T. Schwartz is professor of computer science and
mathematics at New York University. His e-mail address
is jack@brainlink.com.
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in his two 1959–60
papers on Reynolds
operators, Gianco
had stepped onto
the bridge of ergodic
theory, often a
highly combinator-
ial corner of analy-
sis, that carried him
into purer combina-
torics. The first of
his landmark papers
in his new area, “On
the foundations of
combinatorial the-
ory I”, dates from
1964. (Here the “I”
had many following
integers.) To its own
good fortune, com-
binatorics (and later
philosophy) had
captured him com-
pletely. His distin-
guished book with
Garrett Birkhoff on

Ordinary Differential Equations was a farewell to
analysis. Unlike many, he had the courage and cu-
riosity to move on, with consequences which oth-
ers will speak of in this memorial.

Our lifelong friendship made me not only an ad-
mirer of the depth, scholarship, and sheer energy
of his mathematical work (and of his ceaseless ac-
tivities as an editorial entrepreneur on behalf of
mathematics) but one in awe of his status as the
ultimate relaxed sophisticate. Gian-Carlo could al-
ways state with easy authority not only the current
standing of all the top restaurants in Paris, Rome,
Boston, and Milan but where to get the hottest
and best chili in New Mexico and even what local
hash house had the most unexpected culinary sur-
prises. I shall miss him greatly.

Michael Waterman

“I have never known Stan Ulam to last longer
than ten minutes of anyone else’s lecture,” Gian-
Carlo Rota wrote, mimicking the famous and ir-
reverent first sentence of Chapter 1 of James Wat-

son’s The Double Helix. Nevertheless, Rota tells of
meeting Ulam in New York City in 1964 when Mark
Kac prevailed on Ulam to attend a lecture of Rota’s;
Ulam made it through twenty minutes before bolt-
ing, and one need not be an expert on extreme value
distributions to know that was a rare event. Kac
and Ulam were great mathematicians born in
Poland who each came to the U.S. at the beginning
of World War II. They both had broad European ed-
ucations and did not observe boundaries between
mathematics and other sciences, let alone between
mathematical subfields. It is natural that they each
took up with Rota with his multiple languages and
wide-ranging intellect.

Soon after New York, Rota was invited to Los
Alamos National Laboratory, known as the Lab, the
Hill, the Mesa, and most famously as Santa Fe Box
1663 during the war, when brilliant men of science,
physics especially, worked feverishly to create the
atomic bomb. By 1964 Stan Ulam was one of those
who retained a regular association with Los Alamos.
The Lab, at 7,400 feet, is on a mesa top in pon-
derosa pines just above the pinion-juniper zone.
The crisp clear air has a distinctive incense of
cedars, pine, ozone, and sun-baked tuff, and one
can see for tens of miles. In Santa Fe, thirty-five
miles distant, is Native American and Caucasian
culture, with good restaurants and art galleries.
This exotic high-altitude, sun-drenched locale cap-
tivated Rota, but surely it was Ulam who kept him
coming back. One can find each of them writing
about the other in several places, such as Ulam’s
Adventures of a Mathematician and Rota’s Indis-
crete Thoughts.

Rota soon became part of Los Alamos. He gave
lectures that were deeply informative, polished
works of art that made him known throughout
the Lab. The topics were wide-ranging: differential
equations, ergodic theory, nonstandard analysis,
probability, and of course, combinatorics. I at-
tended the series on nonstandard analysis, and it
was the equivalent of a course with an approach
that had not yet appeared in print. These notes exist
as a Los Alamos report. Over the years Rota helped
organize several conferences: History of Comput-
ing in the Twentieth Century (1979), Science and
the Information Onslaught (1981), and Frontiers of
Combinatorics (1998). He was made a consultant
of the Lab in 1966 and Director’s Office Fellow in
1971. When asked what he did, he said, “I wish I
knew. I manage to snoop around, and every once
in a while I pop into the director’s office and have
a chat with him.” (Rota loved and absorbed gossip
about mathematicians and scientists!) Director’s
Fellows could come whenever they chose and could
stay as long as they wished. For Rota this meant
at least a week in January (Rota hated Boston win-
ters even more than New Mexico winters!) and a
month in the summer. As a Fellow he quickly be-
came involved with high-level Lab politics. In the

Michael Waterman is professor of mathematics and of bi-
ological sciences at the University of Southern California.
His e-mail address is msw@hto.usc.edu. He visited the Los
Alamos National Laboratory in the summers of 1970–74
and was an employee there from 1974 to 1982.

Acknowledgment. The author is grateful to those who as-
sisted him in putting this segment together, especially Bill
Beyer, Nikki Cooper, and Jim Louck, who all provided es-
sential material.
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late 1970s he was at a dinner party in my home
when a new director was being chosen. He received
so many lengthy telephone calls that I feared he
would not get enough to eat.

Other than Ulam his closest collaboration at
Los Alamos was with Nick Metropolis, an elegant
man who had a long association with the Lab. Me-
tropolis was educated as a physicist at the Uni-
versity of Chicago, where he took many mathe-
matics courses. He had a distinguished career as
a physicist and pioneer in the development of
modern computers; he passed away on October 17,
1999. In wartime Los Alamos he and Feynman re-
paired Marchant manual calculators to the disap-
proval of Hans Bethe. In 1945, at von Neuman’s in-
vitation, Metropolis began to work with the ENIAC,
and in 1947 he started a computer research group
at Los Alamos that produced the remarkable se-
ries of MANIAC computers. At Los Alamos I used
the MANIAC II, which was a joy. The MANIAC III,
based on significance arithmetic, was built at the
University of Chicago. For the last twenty years of
his career, Metropolis worked in mathematics,
much of it with Rota. One of their major contri-
butions was in using concepts created for com-
puters such as binary representation of numbers
and “carry” operations and applying them to the
foundations of real numbers. They brought forward
a new idea, distinct from the usual Peano and
Dedekind construction. There are four papers on
those topics. They also studied the lattice of the
faces of the n-cube, and they gave an explicit de-
composition of the lattice into a minimal number
of chains of lattice faces. And they had the good
fortune to discover a fact missed by all the early
workers in symmetric functions: that every func-
tion in three variables is uniquely expressible as a
sum of a symmetric function, a skew symmetric
function, and a cycle symmetric function [14]. The
underlying idea was extended to n variables in
several papers, including an introduction of two
new classes of symmetric functions.

Innumerable people gave Rota private lectures,
which he carefully inscribed in one of his heavy
notebooks. “It’s my job,” he would say with 
pride. It was much more than a passive activity;
here is an example of one of those exchanges. 
Jim Louck, a Los Alamos physicist, listened to Rota
lecture in the late 1960s on the set Mm,n(α,β) of
m× n matrices with nonnegative integer entries
having vector row sum α = (α1, α2, . . . , αm) and
vector column sum β = (β1, β2, . . . , βn) with∑
i αi =

∑
j βj = N. During the lecture Rota re-

marked that he knew of no physical applications
of the set Mm,n(α,β). During this same period
physicists were very active in developing explicit
unitary irreducible representations of the general
unitary group for physical applications, and one
of the popular physical models for this theory was
a collection of independent harmonic oscillators

as realized through the Heisenberg algebra of cre-
ation and annihilation operators. Many physical
problems can be modeled in this way because of
the generality of the property that quantum states
can be created from the ground state by the action
of the creation operators, the ground state itself
being defined by its annihilation by the action of
the annihilation operators. The simplest of such
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The Notices is grateful to Linda Okun for
helping to assemble the above list. In addition,
Rota’s records indicate that Robert McCabe
and O. Murru were his doctoral students; the
Notices has no further information about doc-
toral degrees for these people.
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models is a system of mn identical 1-dimensional
harmonic oscillators, which may also be viewed as
n oscillators, each of which is an m-dimensional
isotropic oscillator in Euclidean m-space. If the
total energy of such a system is N energy quanta,
and the number of these quanta associated with
the motion of all n oscillators in the i-th direction
is the nonnegative integer αi , while the number of
quanta associated with the j-th component oscil-
lator of each of the m-dimensional oscillators is
the nonnegative integer βj, then α and β are re-
spectively the row and column sums of the m× n
matrix (ai,j )1≤i≤m,1≤j≤n . Here ai,j is the number of
energy quanta associated with oscillator (i, j) in the
set of mn 1-dimensional oscillators. In this way the
set Mm,n(α,β) enters almost universally into the
physical theory of quantum systems. It was this ob-
servation, which emerged after Rota’s lecture, that
led to thirty years of interactions between Louck,
L. C. Biedenharn, and Rota. Louck and Biedenharn
gave many informal presentations on the tensor
operator theory they had created. “Rota never re-
ally bought it,” Louck told me, and he and Bieden-
harn wrote no joint papers with Rota. But when
Rota’s student W. Y. C. Chen came to the Lab, Rota
said, “Go to Los Alamos and look up Jim Louck.
He’s a gold mine for mathematicians.” Chen was
delighted to find this to be true, and he and Louck
went on to mine that rich ore in an ongoing series
of papers.

Biology is another area that Rota helped along,
although he did not entirely buy into biology ei-
ther. (I refer especially to his doubts about Darwin’s
theory of evolution.) When my first paper on se-
quence matching was rejected, Rota placed it in Ad-
vances in Mathematics. It is still being quoted, and
I (along with Bill Beyer and Temple Smith) have Rota
to thank for the timely appearance of that paper.
“There are so few people working on those prob-
lems,” he said many years later. A few years ago
David Torney began to give Rota lectures about his
work that arose in classification of DNA sequences.
The results were an elegant joint paper on proba-
bility set functions and help in organizing a con-
ference.

It is of course impossible to list all of Rota’s in-
teractions. Some of the most unexpected (to me at
least) are those relating to Rota’s interest in phi-
losophy. David Sharp is a multitalented mathe-
matical scientist who shared Rota’s passion for phi-
losophy. Their dialogue “Mathematics, Philosophy,
and Artificial Intelligence” in Los Alamos Science,
No. 12, is fascinating. Rota had a tremendous im-
pact on students who took his philosophy classes.
Mark Ettinger and David McComas are two of those
MIT physics students who went to the Lab because
of Rota. McComas went on to become director of
the Center for Space Science and Exploration.

Rota served on the Advisory Board for Non-Pro-
liferation and International Security (there is a Lab

division of that name), but it is next to impossible
to learn any details. While he did write short clas-
sified reports on national security issues, they are
not available to “unclassified eyes”. At Los Alamos
this activity, just as with almost everything else
there, has gone under various names, but it is
often called “the Spook Shop”. It will be many
years before much more is known. For example, I
am curious about whether Rota’s relationship with
the Spook Shop or the National Security Agency
came first.

Let me return to Rota’s vital connection with
Ulam. The fascinating essay “The Lost Café”, the
final version of which appeared as Chapter VI of
Indiscrete Thoughts, is a sketch of Ulam’s life, with
details of his health, work habits, mathematical
abilities, and state of mind; and some of it was far
from complimentary. “The Lost Café” was contro-
versial at the Lab, with the Ulam family, and else-
where. “It’s a scandal,” Rota told me with evident
satisfaction. The editor Palombi writes, “…one
does not say this kind of thing about great men.”
I can almost hear Rota use those exact words! I be-
lieve “The Lost Café” is filled with respect and
love, but it is radical. Among other things Rota
writes that Ulam was lazy. I like a remark Carson
Mark made at a reception at Los Alamos, “Ulam was
thinking all the time,” and I doubt that Rota would
have disagreed. I believe Ulam’s widow remains bit-
ter about the article and has not forgiven Rota, not
even after his death. And at Los Alamos and else-
where there are resentments, grudges, and judg-
ments; although Rota would say, “We should tell
it like it is,” I have not space to list them here.

In winter, snowstorms come to northern New
Mexico, and the following day dawns clear with
deep-blue sky and subzero temperatures. Every
snow crystal reflects light, and the vast landscape
is dazzling. Rota planned a Los Alamos article en-
titled “The Desert Is Covered with Snow.” It too
would have dazzled and, just as likely, shocked and
upset some. We can never know all that we have
lost, what Gian-Carlo Rota would have revealed to
us about mathematics and about ourselves.

Edwin F. Beschler

Gian-Carlo’s involvement with publishing was
complex and intense. His motivations, as I per-
ceived them, were multiple and intertwined: math-
ematical, scientific, intellectual, sociological, po-
litical. He was at various times author, editor,
consultant, or advisor to many publishers, some
of the best known to this audience being

Edwin F. Beschler is retired and works part-time as an af-
filiate member of Moseley Associates, Inc., a firm that of-
fers management consulting to the publishing industry.
His e-mail address is edwinb@att.net.
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gested it but guided and advised me through the
intricate process of identifying, convincing, and
bringing together the team of Irving Segal, Ralph
Phillips, and Paul Malliavin. The continued suc-
cess of these journals and the numerous others in
which he played an advisory role is ample testi-
mony to his vision.

In those days Academic Press had a faltering
publication called Advances in Mathematics, which
was to have been a yearly volume of expository pa-
pers in mathematics modeled on a successful for-
mula of such publications in the physical and bi-
ological sciences. The model was not working, due
mainly to the long-standing difficulty of writing ex-
pository articles in mathematics. I asked Gian-
Carlo’s help, and he offered to take responsibility
for it, contingent on our transforming it into a
journal and giving him complete editorial license
to publish papers on any topic and of any length
he chose, assisted by an editorial board and any
necessary refereeing but dependent almost 100
percent on his personal judgment. The publication
as it now exists is a successful journal with one of
the highest prestige factors in the mathematics lit-
erature—and a wicked reputation for pithy book
reviews—backed up by the later Advances in Ap-
plied Mathematics. It was Gian-Carlo’s particular ge-
nius that he could transform an intractable set of
dynamics sheerly by force of his ability to recog-
nize superior work and his willingness to “break
the rules” in the interests of publishing it expedi-
tiously, thus furthering mathematics. He was a
communicator of the highest degree, and he be-
lieved in the power of the written word and the ne-
cessity—even to proliferation—of publishing
thoughts, ideas, and information.

In reflecting on my relationship and friendship
with Gian-Carlo—not always easy in the 1960s,
but rich and comfortable in the 1990s—I belatedly
recognized a previously unarticulated erroneous
assumption I once lived with about the nature of
his inner forces. His role as “kingmaker” in con-
structing editorial boards seemed to me Machi-
avellian, his concept of priority in the publishing
queue often looked to me quixotic, his directions
and demands sometimes came across tinged with
a dictatorial flavor. And this I imagined grew from
an ego that needed constant nourishment and that
was a leading motivation for his intense and per-
sonal involvement in so many editorial and pub-
lishing initiatives. In the leisure of retirement, from
the perspective of reexamined years, I have come
to realize fully how wrong I had been to attribute
so much to that undeniably present component of
Gian-Carlo’s persona. I now appreciate more richly
how much he was motivated by a desire for some-
thing he simply believed was crucial for mathe-
matics—expansion of the literature in the hands
of competent and dedicated people. I profoundly
wish that I could have the opportunity to tell him

Academic Press, Addison-Wesley, Birkhäuser,
Harper and Row, and Springer-Verlag. Some of the
individuals who benefited from Gian-Carlo’s in-
sights and initiative, who epitomize the close ties
between him and the publishing industry, and who
are well known to many mathematicians attended
the memorial meeting at MIT on April 30, 1999, and
allowed me to speak on their behalf: Klaus Peters,
who supported Gian-Carlo as founding editor of
the archival series Contemporary Mathematicians,
the collected works of leading mathematicians of
our times; Ann Kostant, who carries on the ad-
ministration of that series and was my coeditor in
publication of Gian-Carlo’s award-winning book
Indiscrete Thoughts; Peter Renz, a mathematician
and publisher who produced a revision of the in-
fluential book Discrete Thoughts (coauthored by
Mark Kac, Gian-Carlo Rota, and Jacob Schwartz) and
who worked with him in various capacities both
editorial and mathematical.

We few are only a small percentage of the pub-
lishing professionals who were proud to be part
of Gian-Carlo’s editorial network, a group that in-
cluded people in the American Mathematical So-
ciety and such institutional publishers as MIT Press
and Cambridge University Press, with, in particu-
lar, the highly acclaimed Encyclopedia of Mathe-
matics that Gian-Carlo edited over many years. I
know they all join me in honoring him as a bril-
liant writer, sagacious editor, incisive critic, and—
in addition to all this—a colleague and friend.

My relationship with Gian-Carlo began in the
1960s, when I was learning my trade as mathe-
matics editor at Academic Press, and extended to
Birkhäuser in the late 1980s. Gian-Carlo was one
of a very small number of close advisors during
those years of unprecedented growth in scientific
publications, in particular in mathematical books
and journals, and even more particularly in the es-
tablishment of “specialized mathematical jour-
nals”, a term we can use with some amusement in
the 1990s when considering their titles: the Jour-
nal of Algebra, the Journal of Differential Equations,
the Journal of Number Theory, and so on.

Our first enterprise together, which should not
be surprising, was the Journal of Combinatorial
Theory, a publication whose time had come but
whose birth pangs reflected the divided nature of
the field itself. The editorial structure of JCT was
a delicate coalition, given the chaos and lack of di-
rection of the discipline. An even more delicate task
arose in the eventual division into Parts A and B,
a bit of intellectual surgery that saved the journal
from imminent collapse and that was an un-
apologetically political move, made possible by
Gian-Carlo’s commanding position in the field,
sense of ongoing mathematical history, and stead-
fast belief in combinatorics.

Gian-Carlo was also the creative force behind the
Journal of Functional Analysis. He not only sug-
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istence somewhat like Minerva: a grown-up virgin,
mailed in the shining armor of algebra, she sprang
forth from Cayley’s jovian head.” A similar state-
ment could be made about the work of Gian-Carlo
Rota on the foundations of combinatorics. Though
led into combinatorics by his work on functional
analysis (as briefly explained by Jacob Schwartz in
his segment above), Rota’s work on combinatorics
was from the beginning a completely fresh com-
bination of innovation and synthesis. His first
paper in this area had the audacious title “On the
foundations of combinatorial theory, I. Theory of
Möbius functions”. The title was by no means pre-
tense; it was the first in a series of seminal Foun-
dations papers that lifted the subject of combina-
torics from disrepute to eminent respectability.

Foundations I established partially ordered sets
(posets) as a fundamental concept in combina-
torics. Its tremendous influence remains unabated
to this day. The primary object of study of Foun-
dations I is the Möbius function of a poset (with
suitable finiteness properties). It is the function
µ : I(P ) → Z , where

I(P ) = {(x, y) ∈ P × P : x ≤ y},
defined recursively by

µ(x, x) = 1, for all x ∈ P∑
t :x≤t≤y

µ(x, t) = 0, if x < y in P.

Rota was the first to realize that the Möbius
function was a fundamental invariant of posets and
not just an enumerative tool. Of special concern
is the Möbius inversion formula for posets, a vast
generalization of the classical Inclusion-Exclusion
Formula and the classical Möbius inversion formula
of number theory. It asserts that if f and g are func-
tions from P to some abelian group related by

f (y) =
∑
x≤y

g(x)

(where it is assumed that this sum has finitely
many terms for all y ∈ P), then

g(y) =
∑
x≤y

f (x)µ(x, y).

As Rota points out, the first coherent version of
the Möbius inversion formula for posets is due to
Louis Weisner and later, independently, to Philip
Hall. Rota remarks that “strangely enough, however,
these authors did not pursue the combinatorial im-
plications of their work; nor was an attempt made
to systematically investigate the properties of
Möbius functions.” It took an exceptional imagi-
nation to carry out exactly such a unification and
systemization, as well as great courage to proceed
in such an unfashionable direction.

Foundations I planted many seeds that have
produced bounteous fruit. If ci(x, y) is the number

The Foundations Papers
These are the ten papers published by Rota, all with the
title “On the foundations of combinatorial theory”. All but
the first have coauthors. Below are the coauthors, subti-
tle, and year for each of the ten.
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of this insight into my youthful misjudgment, to
revisit the days of our stimulating, and sometimes
stormy, dialogues, and to acknowledge to him my
mature understanding of the complementary roles
we played, as well as to tell him how much he was
appreciated and how much he will be missed.

Mathematicians and philosophers share with
poets a critical dependence on the written word.
Structure of language, style of discourse, nuance
of expression are the tools with which their ideas
are made manifest, given form, and communi-
cated. Gian-Carlo Rota was a mathematician and
a philosopher, and the richness of his writing in
these fields was known to both communities. I
like also to think of him as a poet—not in a for-
mal sense, since to the best of my knowledge he
never wrote a poem—but in the larger sense of a
person who expresses himself with imaginative
power and beauty of thought, even when many of
these thoughts were sardonic reflections on peo-
ple, ideas, institutions, and the general condition
of humanity. His sense of humor was biting and
deep—and full of truth. And his modes of ex-
pression poetic in a fundamental sense of the
word.

Richard P. Stanley

Hermann Weyl has described Cayley’s devel-
opment of invariant theory as “[coming] into ex-
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shows how a coherent theory of generating func-
tions can be based on the incidence algebra of a
poset. Why, for instance, does one encounter in
enumerative combinatorics generating functions
of the type

∑
n≥0

f (n)xn,
∑
n≥0

f (n)
xn

n!
, and

∑
n≥0

f (n)
xn

2
(
n
2

)
n!
,

but never

∑
n≥0

f (n)
xn

n2 + 1
or

∑
n≥0

f (n)
xn

(n + 1)n
?

Foundations VI is the only paper I ever wrote jointly
with Gian-Carlo (and also Peter Doubilet), a price-
less experience that I regret can never be repeated.
Foundations VII (written jointly with Peter Doubilet)
was devoted to enumerative aspects of symmet-
ric functions and anticipated the prodigious role
that symmetric functions would later play in com-
binatorics. (See, for instance, Chapter 7 of [20].)
Rota returned to symmetric functions in Founda-
tions X, the last of the Foundations papers.

Foundations IV and V, written jointly with Jay
Goldman and George Andrews respectively, fore-
saw what is now a thriving cottage industry within
mathematics and mathematical physics—the the-
ory of q-analogues (or, in more stylish terminol-
ogy, “quantum” mathematics). In general, if Aq is
the q-analogue of some object A , then in some
sense it should be true that A = A1 or
A = limq→1Aq . The theory of q-analogues began in
the work of Euler and Gauss with the lowly facto-
rials and binomial coefficients and now extends to
such objects as the Gamma function, the Lagrange
inversion formula, and a host of algebraic struc-
tures typified by semisimple Lie algebras (via the
theory of quantum groups).

The remaining Foundations paper to be dis-
cussed is IX (with P. Doubilet and J. Stein), entitled
“Combinatorial methods in invariant theory”. It
was the first of over twenty papers by Rota and his
collaborators as part of a monumental effort to
bring the moribund subject of classical invariant
theory into mainstream mathematics. Further dis-
cussion of this aspect of Rota’s work appears in
the segment by David Buchsbaum and Brian Tay-
lor.

All but the first Foundations paper were jointly
written. In fact, twelve different persons served as
collaborators for these nine papers. For Rota math-
ematics was a social endeavor, and he generously
shared both his time and his creativity with any-
one who partook in his enthusiasm for beautiful
mathematics. Combinatorics, and indeed all of
mathematics, has become a poorer subject with the
passing of such a singular leader.

of chains x < x1 < · · · < xi+1 < y in P between x
and y , then a formula of Philip Hall asserts that

µ(x, y) =
∑
i≥−1

(−1)ici(x, y).

This formula shows that µ(x, y) is the (reduced)
Euler characteristic of a certain abstract simplicial
complex, the complex of chains between x and y .
Moreover, if the closed interval [x, y] is a lattice (a
poset for which any pair of elements have a least
upper bound and greatest lower bound) and A is
the set of atoms (minimal elements of the open in-
terval (x, y) ) of [x, y] , then the subsets of A whose
least upper bound is not y form another simpli-
cial complex ∆(A). A formula of Louis Weisner can
be interpreted as saying that µ(x, y) is the reduced
Euler characteristic of ∆(A). The realization of Rota
that the Möbius function of a lattice could be in-
terpreted as an Euler characteristic in two differ-
ent ways immediately raises a host of topological
questions and gave rise to the subject of topolog-
ical combinatorics, which has now achieved a high
level of sophistication. See, for example, the recent
survey [2].

The discussion in Foundations I concerning geo-
metric lattices played a significant role in the re-
vitalization of matroid theory, with many further
contributions appearing in Foundations II and its
subsequent elaboration [7], both written jointly
with Rota’s student Henry Crapo. The concept of
matroid, originally due to Hassler Whitney, is an
abstraction of linear algebra: one specifies that
certain subsets of a set S are “independent” (an ab-
straction of linear independence). The only con-
dition on the independent sets is that for any sub-
set T of S all maximal independent subsets of T
have the same cardinality. Again, Rota was exactly
on target in realizing intuitively the immense con-
tributions that matroid theory could make to com-
binatorics and other branches of mathematics. For
instance, deep connections between matroid the-
ory, topology, and algebraic geometry pervade the
two books [3, 15].

Foundations III–VIII are concerned primarily
with enumerative combinatorics and played an
important role in the subsequent development of
this area. Foundations III (with R. Mullin) and VIII
(with D. Kahaner and A. Odlyzko) are concerned
with “finite operator calculus”, an exceptionally el-
egant recasting and generalization, based on lin-
ear algebra, of the nineteenth-century subject of
“umbral calculus”. In particular, the formal simi-
larities between the differentiation and difference
operators d/dx and ∆ are demystified and vastly
extended. As with the other Foundations papers,
the finite operator papers have stimulated much
further research.

Foundations VI, entitled “The idea of generating
function”, is a direct sequel to Foundations I and
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fields of arbitrary characteristic. For the special lin-
ear group, J.-I. Igusa proved the appropriate the-
orems in 1954. Then, in the early 1970s, Rota and
various collaborators came up with an extraordi-
narily simple and powerful way to achieve the
same results [8, 10]. Their method introduced sev-
eral fundamental tools for working with polyno-
mials in the entries of a matrix.

First, they found a symbolism for products of
minors, which they called bitableaux. In their no-
tation the determinant of the minor indexed by
rows i1, . . . , ik and columns j1, . . . , jk of a matrix
X is written as a biproduct, (i1 . . . ik | j1 . . . jk) , 
multiplied by a sign factor of (−1)

(
k
2

)
. They 

described a product of minors by stacking biprod-
ucts vertically. The product (3 1 | 3 4) · (2 | 1) is

written as the bitableau 
(

3 1
2

∣∣∣∣ 3 4
1

)
. This is, up

to sign, the product 

∣∣∣∣∣X3,3 X3,4
X1,3 X1,4

∣∣∣∣∣ ·X2,1 of 

determinants. The sign appearing in front of each
minor is part of a system of sign rules that Rota
and his collaborators established to simplify cal-
culations with biproducts. For ease of definition,
however, we have stripped the remaining rules
from the bitableaux appearing in this presentation.

Second, using this symbolism, they introduced
the idea of standard bitableaux, namely, those
bitableaux (D | E) whose component Young dia-
grams, D and E, strictly increase across rows and
weakly increase down columns. They then proved
that, assuming the entries of X to be algebraically
independent, these bitableaux form a basis of the
polynomial algebra over the integers generated by
the entries of X.

In the above example the bitableau was built 
out of nonstandard Young diagrams, but(

3 1
2

∣∣∣∣ 3 4
1

)
= −

(
1 3
2

∣∣∣∣ 3 4
1

)
since we are effec-

tively just switching two rows in a determinant.
Nevertheless, the right-hand Young diagram re-
mains nonstandard. Applying the identity(

1 3
2

∣∣∣∣ 3 4
1

)
= −

(
1 3
2

∣∣∣∣ 1 4
3

)
+
(

1 3
2

∣∣∣∣ 1 3
4

)
+ (1 2 3 | 1 3 4)

expresses the original bitableau as a linear com-
bination of standard ones.

The expression of a polynomial as an integer lin-
ear combination of standard bitableaux was given
by repeated application of identities similar to
those in the preceding example, and this algo-
rithm was referred to as straightening. In the in-
troduction to [8] Rota said that the straightening
algorithm was the result of a train of thought “de-
veloped most notably by Alfred Young, and the
Scottish invariant theorists.”
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David A. Buchsbaum

Although I met Gian-Carlo Rota in the late 1950s,
it was not until the summer of 1990, when we met
by chance in Rome, that we decided to get together
fairly regularly once we were back in the Boston
area, for it was in Rome that we discovered that in
our own very different ways we were interested in
and working on very closely related problems. Per-
haps this should not have been too surprising,
given that in the late 1970s his paper with Doubilet
and Stein [10] had given tremendous impetus to
the work that Akin, Weyman, and I were engaged
in. And Gian-Carlo had always had a soft spot for
homological algebra (hence, in part, the name of
his long-running seminar, “Syzygy Street”). In ad-
dition to these affinities, we both shared a love for
what we liked to call multilinear algebra, although
many might say that considering Hopf algebras, su-
peralgebras, homotopy, and cohomology theory as
“multilinear algebra” is stretching the meaning of
the term a bit.

Working together fairly regularly from the fall
of 1990 until Rota’s death last April, we got to know
each other pretty well. It was during this period that
I experienced firsthand his gentleness, kindness,
intellect, and passion for mathematics of all kinds.
I also learned to appreciate his work on the straight-
ening formula and invariant theory. It was in con-
nection with the straightening formula that our tra-
jectories first significantly intersected.

David A. Buchsbaum and Brian D. Taylor

This segment of the article contains a descrip-
tion of some of Gian-Carlo Rota’s work on the
straightening formula and invariant theory.

The Straightening Formula and the First
and Second Fundamental Theorems
In The Classical Groups Hermann Weyl considered
vector invariants of the special linear, orthogonal,
and symplectic groups. He described explicitly the
generators of the various rings of invariants along
with the relations between them. These descrip-
tions constitute the first and second fundamental
theorems of invariant theory. Since Weyl consid-
ered only fields of characteristic 0, it was natural
to ask how much of this work remains valid for
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In [10] the authors use straightening
to provide the first characteristic-free
proof of the first fundamental theorem
for an m× d matrix under the action of
invertible d × d matrices. They prove
that the (quasi) invariant polynomials
in the matrix entries consist of all ho-
mogeneous linear combinations of de-
terminants of d × dmatrix minors. In the
language of bitableaux, this is all linear
combinations of bitableaux

(1)


i1,1 . . . i1,1
i1,2 . . . i1,2

. . .
i1,k . . . i1,k

∣∣∣∣∣∣∣∣∣
1 . . . d
1 . . . d
. . .

1 . . . d


of some fixed number of rows k . Rota’s
interest in this problem stemmed from
the view of these invariants as describ-
ing the incidence relations of a set of m
vectors in d-space, that is, the incidence
relations of a “representable matroid”.
With other collaborators in [8] Rota gen-
eralized the preceding result to describe the inci-
dence relations between m vectors in d-dimen-
sional space V , no longer in terms of a fixed basis
for V , but in terms of m “covectors” in V∗. The re-
sulting version of the first fundamental theorem
describes invariants as linear combinations of
bitableaux, each with the same number of rows and
with each row of length d.

In the preceding situations, the second funda-
mental theorem is given constructively by the
straightening law. The relations between invariants
are generated by the straightening relations and
by the vanishing of biproducts longer than d.

The straightening formula is one of the most sig-
nificant contributions of multilinear algebra to
combinatorial and constructive methods. We sam-
ple below a few of the many analogues to and ap-
plications of the straightening formula.

In the middle to late 1970s straightening laws
for the algebra of Gramians and Pfaffians (the case
of invariants for the orthogonal and symplectic
groups respectively) were given by De Concini and
Procesi, and applications to the geometry of Pfaf-
fian varieties were developed by Abeasis and Del
Fra.

Formanek and Procesi applied the techniques in-
troduced in Doubilet-Rota-Stein [10] for their proof
that the general linear group is geometrically re-
ductive. This is a special case of a conjecture of
Mumford solved independently and contempora-
neously by Haboush in 1975.

Pommerening in the early to mid-1980s de-
scribed a class of subgroups of the general linear
group whose algebra of invariants is spanned by
standard bitableaux. This allowed him to show
that these algebras are finitely generated  and thus

to prove that various rings of invariants are gen-
erated by a finite number of elements. He thus pro-
vided a positive answer for Hilbert’s Fourteenth
Problem for various nonreductive subgroups of the
general linear group.

In addition to the applications of straightening
to invariant theory, the representation theory of
the general linear group can be studied entirely in
terms of modules spanned by bitableaux. In this
formulation the straightening law has been used
by Brini and Barnabei, Brini and Teolis, Boffi,
Clausen, and others to provide characteristic-free
versions of such standard tools in representation
theory as the Littlewood-Richardson formula and
the branching rule. The application of the straight-
ening law over arbitrary ground rings played a
crucial part in the program—begun in the early
1980s by Akin, Buchsbaum, and Weyman—of un-
derstanding the representation theory of the gen-
eral linear group as it relates to resolutions of de-
terminantal ideals outside of characteristic 0. It is
in this context that the work in [4, 5] developed.
Applications of these techniques to finding inter-
twining numbers can be found in works of Buchs-
baum with Akin and with Flores.

The standard basis theorem for bitableaux was
reformulated in the late 1980s and early 1990s by
Brini and Teolis, who applied their generalization
to the study of Z-forms for the universal enveloping
algebra of the general linear group.

A long-standing desire of Rota’s, to obtain a
description of the Robinson-Schensted-Knuth (RSK)
bijection between monomials and pairs of Young
diagrams in terms of straightening, was achieved
by Leclerc and Thibon. They formulated the prob-
lem in a quantized algebra of functions on

Attending a meeting in honor of A. Garsia, Taormina, Sicily, July 1994.
Left to right: C. Procesi, I. Macdonald, X. Viennot, R. Stanley, G. Andrews,
G.-C. Rota, C. Greene, A. Björner, A. Garsia.
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invariant theorists of the nineteenth century: the
symbolic method. In [16] he interpreted their use
of this device in the following way:

The hidden purpose of the symbolic
method in invariant theory was not sim-
ply that of finding easy expressions for
invariants. A deeper faith was guiding
this method. It was the expectation that
the expression of invariants by the
symbolic method would eventually
guide us to single out the “relevant” or
“important” invariants among an infi-
nite variety.

Whether or not this was indeed the deeper pur-
pose for developing the symbolic method, the fact
is that it soon becomes clear to anyone working
with invariants that their polynomial expressions
are extremely complicated. To deal with this prob-
lem, the symbolic method was devised and used
to both describe invariants explicitly as well as to
handle important theoretical problems, such as fi-
nite generation. But over the past hundred years,
standards of rigor and exposition have changed,
and new ideas were called for. In [13], “On the in-
variant theory of binary forms”, the authors re-
construct and remodel, in elementary terms,
P. Gordan’s work on this topic. In their develop-
ment  two ideas are central: first, the symbols are
elements of a commutative algebra where gener-
alizations of bitableaux and straightening are valid;
second, a linear transformation, called the “umbral
operator” (after Sylvester), from this algebra to
the usual polynomial algebra, translates facts about
the symbols into explicit formulae for invariants.
The umbral operator is the natural generalization
to invariant theory of methods Rota first applied
in [17] to make rigorous the “representative nota-
tion” developed by Blissard and popularized by Bell
and Riordan for calculating with sequences of
numbers.

Consider the simplest nontrivial example. Take
a quadratic polynomial in two variables (a quadratic
binary form), b(x1, x2) = a2x2

1 + a1x1x2 + a0x2
2 . We

want to consider properties of this polynomial
that do not depend on the choice of coordinates,
and in particular we want to describe such prop-
erties by the vanishing of polynomials in the co-
efficients of b. Suppose we impose a linear change
of coordinates and write b(x1 + cx2, x2) . This is
equivalent to replacing the coefficients a0 , a1 , and
a2 with a1c + a0 + a2c2, a1 + 2a2c , and a2 respec-
tively. In present-day notation, if g acts by change
of variables on a quadratic, b(x1, x2), we define the
action of g on a polynomial p in the coefficients
of b(x1, x2) to be p evaluated on the coefficients
of g−1(x1, x2) . So when p is invariant (up to scalar
multiples) under this action, the quadratic forms
on which p vanishes must share some properties

matrices to which Huang and Zhang had already
extended the straightening law. Applying the the-
ory of crystal bases, they derived a description of
the RSK bijection from the q = 0 term in the ex-
pansion of a monomial under straightening.

Because of the variety of situations in which the
straightening formula presents itself and turns
out to be extremely useful, the notion of an “algebra
with straightening law” (ASL) was developed. This
was a concept due essentially, and initially, to
De Concini (in collaboration with Eisenbud and
Procesi) and, independently, to K. Baclawski. It has
proved to be a powerful tool in establishing the
Cohen-Macaulay property for many classes of al-
gebras of general interest.

Two key properties of straightening that are
generalized in the formal notion of an ASL are:

• Straightening is always applied to a pair of ad-
jacent rows.

• The top (or longer) row weakly increases in
length after straightening.

For determinantal ideals, this implies that a
polynomial is in the ideal generated by all k× kmi-
nors of X if and only if the bitableaux in their ex-
pansion all have top row of length at least k . Not
surprisingly then, the straightening law is a key tool
in the study of determinantal ideals; indeed, this
is precisely what was studied in [8], albeit in slightly
different language. Bruns and Vetter’s Determi-
nantal Rings is an excellent source for this field.

Invariant Theory and the Symbolic Method

Binary Forms and Symmetric Tensors
One of the popular approaches to invariant theory
today links invariants to algebraic transformation
groups and then uses the machinery of modern al-
gebraic geometry and algebraic group theory. In
this regard, too much cannot be said concerning
the influence of W. V. D. Hodge. But Gian-Carlo’s
approach was inspired by his study of the works
of algebraists of the last century and the first part
of this one (e.g., P. Gordan, A. Capelli, and A.
Young). In [16] he says:

[T]he program of invariant theory, from
Boole to our day, is precisely the trans-
lation of geometric facts into invariant
algebraic equations expressed in terms
of tensors. This program of translation
of geometry into algebra was to be car-
ried out in two steps. The first step
consisted of decomposing a tensor al-
gebra into irreducible components
under changes of coordinates. The sec-
ond step consisted in devising an effi-
cient notation for the expression of in-
variants for each irreducible
component.

In his work on the second step, Rota was led to
the study of a technique developed by the
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(3)

U

(
α β
α β

∣∣∣∣∣1 2
1 2

)
= U(−α1β2 +α2β1)2

= U
(
α2

1β
2
2 +α2

2β
2
1−2α1α2β1β2

)
.

Applying the rules defining U above gives us

(4) a2,0a0,2 + a0,2a2,0 − 2a1,1a1,1,

which, on comparison with (2), we find to be twice
the discriminant. So the invariant in (3) and (4) van-
ishes on the coefficients of b(x, y) in (2) precisely
when b(x, y) is a perfect square.

The above constructions are independent of
characteristic and generalize to polynomials in
more than two variables. In characteristic 0 one ob-
tains all invariants in this fashion. In the preced-
ing example this lets us verify that the discrimi-
nant is the only invariant of quadratic polynomials
in two variables. More precisely, the (graded) ring
of (quasi) invariants in the coefficients under
change of variables is generated by the discrimi-
nant. The application of the umbral operator and
another variant of the straightening law in [13]
provides an explicit construction for a finite set of
such generators in the case of binary forms.

One could reasonably ask what happens if we
compute U(α β | 1 2)2 when U(α1x1 +α2x2)2 =
b(x1, x2) and U(β1x1 + β2x2)2 = c(x1, x2) for some
quadratic binary forms b, c . By the same reason-
ing as above, this is a joint invariant of b and c,
and it turns out to be the simplest example of the
“a polar covariant”. This covariant was applied by
Sylvester to finding canonical forms of homoge-
neous polynomials. This technique is itself covered
and refined in [13]; extensions to forms in more
than two variables are given in [11] (although in-
variant theory is not explicitly used here). Appli-
cations to finding the ranks of symmetric and
skew-symmetric tensors can be found in recent
work of R. Ehrenborg.

Gian-Carlo and the Letterplace (Super)algebra
As Gian-Carlo loved to relate, the idea of the “let-
terplace (super)algebra” was suggested to him in
a conversation with R. Feynman. The idea is very
simple: in order to handle complicated multilinear
algebra, a multiplicative algebra is defined by dou-
ble variables (letters and places), subjected to cer-
tain suitable commutation properties.

This simple trick makes it possible to treat
many seemingly disparate situations in a unified
way. As an example, relying on the straightening
law and interpreting the results about the letter-
place superalgebra on appropriate homogeneous
subspaces, one obtains as special cases the prin-
cipal results:

• of ordinary representation theory of the sym-
metric group;

that are invariant under linear change of coordi-
nates.

The symbolic method (or umbral operator) is in-
troduced to make the above situation more
amenable to direct manipulation and computa-
tion. Consider the polynomial ring in variables
x1, x2 with coefficients in k[α1, α2, β1, β2]. Rota de-
fined an umbral operator, U, to be a k[x1, x2] -lin-
ear map on this ring such that

U
(
(α1x1 +α2x2)2

)
= b(x1, x2)

= U
(
(β1x1 + β2x2)2

)
and U(MN) = U(M)U(N) whenever M,N are mono-
mials in x1, x2, α1, α2, β1, β2 and the pair M and
N share none of the variables α1, α2, β1, β2. If we
write ai,j for U (αi1α

j
2), we can compute

b(x1, x2) = U(α1x1 +α2x2)2

= a2,0x2
1 + 2a1,1x1x2 + a0,2x2

2(2)

to see precisely how Rota encoded the ill-defined
notion of a nineteenth-century “lowering operator”
into U; the new coefficients are related to the old
by 
(

2
i

)
ai,j = ai. Further employing this notation,

one calculates

U
(
(α1(x1 + cx2) +α2x2)2

)
= U

(
(α1x1 + (α2 + cα1)x2)2

)
,

so that the change of variables x1 7→ x1 + cx2 be-
comes a change of variables in the umbrae,
α2 7→ α2 + cα1.

Following through with this reasoning, Rota
showed that if a polynomial p(α1, α2) is invariant
under linear changes of variable in the αi ’s, then
U
(
p(α1, α2)

)
is invariant under the action that

change of variables induces on the coefficients of
a quadratic binary form. Indeed, this result holds
for polynomials p(α1, α2, β1, β2) invariant under
application of the same change of variables to the
pair α1, α2 and the pair β1, β2. Think of the poly-
nomials p as being on variables arrayed in a ma-
trix whose rows are indexed {α,β} and whose
columns are indexed by {1,2} . We are now look-
ing for polynomials in the matrix entries invariant
under linear action from the right.

But these are precisely the invariants written
down in [10] and discussed in connection with (1)
above! So, for instance, U(α β | 1 2) is an invariant.
Of course, U(α β | 1 2) = U(β α | 1 2) since α,β
behave identically under U ,  and, further,
U(α β | 1 2) = U(−(α β | 1 2)) . Thus, by linearity of
U this invariant is 0. The next simplest invariant
we can construct is
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where ai,j = bi,j is the coefficient of the basis ele-
ment i · j in ω. In characteristic 0 one can write
any invariant or even any joint covariant of sym-
metric and skew-symmetric tensors in this fash-
ion. For example, an element ω of the exterior al-
gebra on n generators can be written as a product
of linear terms precisely when the letters a and b
both represent ω and when the covariant repre-
sented by

U

(
a(k)b(2)c(n−k−2)

b(k−2)d(n−k+2)

∣∣∣∣∣ 1 2 . . . n
1 2 . . . n

)

vanishes irrespective of the tensors that c and d
represent.

For further exposition and more complicated ex-
amples of these techniques, the reader can consult
[6, 12, 19] and the work of Howe and Huang in the
mid-1990s describing the invariants of an arrange-
ment of four subspaces.

One of the keys to understanding invariants
produced by the supersymmetric symbolic method
is the Grassmann-Cayley algebra. This was devel-
oped by Rota and his colleagues in various works,
notably [10, 1], as a system of computation with
subspaces of a vector space. The application to in-
variants of arbitrary skew-symmetric tensors can
be found in [12]. Indeed, Grosshans pointed out to
the authors that Rota’s interest in skew-symmet-
ric tensors arose from his interest and research into
the Cayley-Grassmann algebra. He offered the fol-
lowing quote from the work of Csurka and Faugeras
in computer vision:

The Grassmann-Cayley algebra intro-
duced in the 1970’s by Rota and his
collaborators [[1], as well as [12]] is a
modern version of the Grassmann al-
gebra. During the last few years it has
regained interest because of its wide ap-
plicability to “effective projective geom-
etry”…and computer vision. The reason
is that it can be seen as an algebra of
geometric incidence relations…

The interested reader is well advised to consult the
third chapter of Sturmfels’s Algorithms in Invari-
ant Theory for a cogent account of the theory and
computational applications of the Grassmann-Cay-
ley algebra, but we include the following brief
paragraph to illustrate the point.

Consider a triple (ω1,ω2,ω3) of degree 2 ele-
ments of the exterior algebra generated by three
variables, and let a, b, c be letters associated with
these tensors. The previous discussion implies
that

U

(
a(2)b
bc(2)

∣∣∣∣∣ 1 2 3
1 2 3

)

is an invariant of these three tensors. Since any ho-
mogeneous tensor in an exterior algebra generated

• of the representation theory of GL(n) and Sn
on the space of homogeneous tensors of order
n;

• of the theory of Berele-Regev on the actions of
the general linear Lie superalgebra pl(r , s) on
a space of Z2-graded tensors on the algebra of
polynomial functions on the space, which is a
direct sum of a space with itself.

The superalgebra version of Rota’s work began
with Doubilet and Rota’s extension of the straight-
ening law to exterior algebras of letterplaces [9].
The extension to more general superalgebras was
performed by Grosshans, Rota, and Stein in their
monograph [12], where the letterplace superalge-
bra plays a central role in the invariant theory of
mixed skew-symmetric and symmetric tensors.
The Symbolic Method for Skew-Symmetric
Tensors
With classical constructive techniques it is in prin-
ciple possible to find invariants for any represen-
tation of GLn(C). However, Gian-Carlo felt that
this technique did not provide an effective ex-
pression of invariants. The classical symbolic
method extends to the representation of GLn(C)
on symmetric tensors without much difficulty [12].
Consequently, Grosshans, Rota, and Stein turned
their attention to the representation of GLn(C) on
skew-symmetric tensors. Here the appropriate de-
finitions of the symbols and umbral operator were
less evident, but they found that the general steps
in formulating the symbolic method for binary
forms remain valid for skew-symmetric tensors.
They encoded the symbols as elements in a (non-
commutative) letterplace superalgebra with
bitableaux and straightening and then found the
appropriate umbral operator. The result was a
truly effective method for expressing the invariants
of skew-symmetric tensors [12].

For example, let ω be a skew-symmetric tensor
of degree 2 in the exterior algebra on four gener-
ators. It is easy to verify that ω can be written as
a product of two degree 1 elements if and only if
ω2 = 0. Rota and his collaborators observed that
if one starts by the suggestive notation of a(2)b(2)

for the product, where a and b are “letters” asso-
ciated with the tensor ω, then one can apply an um-
bral operator to the superalgebra bitableau
(a(2)b(2) | 1 2 3 4) and recover the Grassmann con-
dition. More explicitly, we expand (a(2)b(2) | 1 2 3 4)
inside the exterior algebra generated by the let-
terplaces to get

(a(2) | 1 2)(b(2) | 3 4) + (a(2) | 1 4)(b(2) | 2 3)

− (a(2) | 1 3)(b(2) | 2 4).

Then we apply the umbral operator, U, to “lower
indices” and get

a12b34 + a14b23 − a13b24,
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polarizations of virtual monomials, as can the
Schur and Weyl modules. More generally, the sym-
metrized determinantal Young bitableaux, fairly
complex combinatorial objects that are basic in rep-
resentation theory, can also be treated as the image
under polarizations of virtual bracket monomials.

The same method can be applied to the umbral
map for skew-symmetric tensors and to various
symmetrization operators of some importance:
Capelli operators, generators of the Schur alge-
bra, Young symmetrizers. All of these operators
can be represented, by means of the virtual su-
peralgebra method originated by the ideas of Rota,
as monomials in the polarizations, thereby sim-
plifying enormously the combinatorial study of
their actions.

We close with a combined application of su-
persymmetry and Capelli operators. Consider the

superalgebra bitableau 
(
a b
a b

∣∣∣∣ 1 2
1 2

)
, which is

an element of an exterior letterplace algebra. The
superalgebra version of the standard basis theo-
rem says that this must be a constant multiple of

the bitableau 
(
a a
b b

∣∣∣∣ 1 2
1 2

)
. Polarizing the positive

letters a and b to negative letters x1, x2 and y1, y2
in the first, unstraightened, expression yields

(
x2 y1

x1 y2

∣∣∣∣∣1 2
1 2

)
−
(
x2 y2

x1 y1

∣∣∣∣∣1 2
1 2

)

−
(
x1 y1

x2 y2

∣∣∣∣∣1 2
1 2

)
+

(
x1 y2

x2 y1

∣∣∣∣∣1 2
1 2

)
.

Applying the same polarizations to the second ex-
pression above (the straightened bitableau) yields
the identity

by three variables can be written as a product of
degree 1 tensors, this invariant can equally well be
considered an invariant of three lines in projective
space. The Grassmann-Cayley algebra directly
rewrites the above invariant as ω1 ∧ω2 ∧ω3,
where, subject to technical conditions on nonde-
generacy, ∧ can be read as intersection. Thus this
invariant vanishes precisely when the three lines
meet in a common point.
Capelli Operators and Superalgebras
Another substantial reformulation done by Rota in-
volved the work of A. Capelli. The action of the gen-
eral linear Lie (super) algebra on the letterplace al-
gebra by Capelli operators was introduced as a
combinatorial tool in [10], was developed in [8], and
has been the point of departure for the reformu-
lation of Capelli’s method of auxiliary variables by
Brini and Teolis. In intuitive terms, the idea of
Capelli consisted of adding to a polynomial alge-
bra “supplementary variables” by application of cer-
tain derivations, called polarizations, and then re-
moving these variables by further polarization.
This procedure allowed for the simplification of the
combinatorial complexity of many proofs in the
theory of invariants and in representation theory,
e.g., the famous “Capelli Identities” found in Weyl’s
book. This was due to the metafact that a polar-
ization operator constructed as above via the aux-
iliary variables is shown to have the same action
on the original algebra as some operator con-
structed via polarizations that does not contain the
auxiliary variables. This operator then naturally be-
longs to the action of the universal enveloping al-
gebra of the general linear Lie algebra and with care
can be constructed to belong to the algebra gen-
erated by the action of the general linear group (or
of some subgroup). A typical example is the de-
scription by Weyl of the classical Capelli operator
as a true determinantal operator in the “pseudo 
polarizations” (Weyl’s terminology).

In the final analysis, Capelli’s method suggests
the idea of treating, via polarizations with respect
to auxiliary variables, questions of symmetry in a
kind of virtual mode. Since Capelli did not have the
notion of superalgebra at hand, his method proved
effective for treating the problems of symmetry but
was less effective for those involving skew-sym-
metry, which is equally important in studying the
representations of the classical groups.

The strength of Rota’s idea of passing to the su-
peralgebra shows up clearly in this setting. Here
the auxiliary variables have a Z2-grading, possibly
different from the original variables. We can now
consider the action, as a Lie superalgebra, of
(super)polarizations on both the new and the aux-
iliary variables. This permits the Capelli method
to work in the same way for symmetry and skew-
symmetry.

For example, both the permanent and determi-
nant of a generic matrix can be regarded as

Rota with Rotafest organizers, April 1996. Back, left to right:
R. Ehrenborg, D. Loeb, A. diBucchianico, N. White. Front: Rota,
R. Stanley.
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2

(
x2 y1

x1 y2

∣∣∣∣∣ 1 2
1 2

)
− 2

(
x2 y2

x1 y1

∣∣∣∣∣ 1 2
1 2

)

= c ·
(
x1 x2

y1 y2

∣∣∣∣∣ 1 2
1 2

)
,

for some constant c. Now consider a 2× 2 array
of vectors in Q2, each of whose rows lists a basis
for Q2. From the preceding identity, together with
the fact that c turns out to be nonzero, it is easy
to see that the entries in each row can be per-
muted so that each column also indexes a basis.
This kind of technique may also be applied for
larger arrays; the only substantial difficulty is that
c becomes extremely difficult to compute. This
computation led to Rota’s famous Basis Conjecture:

Take any n2 vectors in Qn and arrange
them in an n× n array. If each column
forms a basis, then the entries can be
permuted inside the columns so that
each row also forms a basis.
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