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REGULARITY OF SOLUTIONS TO AN ABSTRACT

INHOMOGENEOUS

LINEAR DIFFERENTIAL EQUATION

G. F. WEBB

Abstract. Let T(t), t > 0, be a strongly continuous semigroup of linear

operators on a Banach space X with infinitesimal generator A satisfying

T(t)X c D(A) for all t > 0. Let/be a function from [0, oo) to X of strong

bounded variation. It is proved that u(t) =it[T(t)x + f^T(t - s)f(s)ds,

x e X, is strongly differentiable and satisfies du(t)/dt = Au(t) + /(f) for

all but a countable number of t > 0.

1. Introduction. Let T(t), t > 0, be a strongly continuous semigroup of

bounded linear operators on the Banach space X with infinitesimal generator

A and let/ be an A'-valued function on [0, oo). Our objective is to establish

sufficient conditions so that the function

def rt

(1.1) u(t) = T(t)x+ / T(t - s)f(s) ds,       xEX,

is a strong solution of the inhomogeneous linear differential equation

(1.2) du(t)/dt = Au(t) + f(t),       u(0) = x.

It is well known that u(t) satisfies (1.2) for t > 0 provided that x E D(A) and

/is continuously differentiable (see [4, Theorem 1.19, p. 486] or [5, Theorem

6.5, p. 135]). It is also well known that u(t) satisfies (1.2) for t > 0 provided

that x E X, T(t), t > 0, is homomorphic, and /is Holder continuous (see [4,

Theorem 1.27, p. 491] or [5, Theorem 6.7, p. 138]). The theorem which we will

prove demonstrates that u(t) satisfies (1.2) under the assumptions that T(t)X

E D (A) for t > 0 and/ is of strong bounded variation. The main idea of our

proof is to show that under our assumptions the integral in (1.1) lies in D(A)

and the image of this integral under A may be represented as a Stieltjes

integral.

Theorem. Suppose T(t)X c D(A)for all t > 0 and f is of strong bounded

variation on [0, /•]. For a given x E X let u(t) be defined on [0, r] by (1.1). Then,

u(t) satisfies the following:
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(1.3)
u(t) G D(A)for t E (0, r] and Au(t) is

continuous on (0, r\.

d+u(t)/dt = Au(t) + /(/ + )  for   all

0-4) t E (0, r) and d+u(t)/dt is continuous

from the right on (0, r);

d'u(t)/dt = Au(t) +f(t-)  for   all

0-5) t E (0, r] and d~u(t)/'dt is continuous

from the left on (0, r]\

du(t)/dt = Au(t) + f(t) for all but a

/j g\ countable number of points in [0, r] and

du(t)/dt  is  continuous  at  all  but  a

countable number of points in [0, r].

Before proving our theorem we first state some facts about Banach space-

valued functions of strong bounded variation.

2. Vector-valued functions of strong bounded variation. Suppose / is of

strong bounded variation from [0, r] to X (according to the definition of [3, p.

59]). The following properties of / may be proved analogously to the case of

real-valued functions of bounded variation (for a discussion of real-valued

functions of bounded variation the reader is referred to [9, Chapter 2] or [2,

Chapter II]):

/ has a right limit at each / G [ 0, r),

(2.1) denoted by/(i + ), and/(- +) is right

continuous on [0, r);

f has a left limit at each t E (0, r],

(2.2) denoted by f(t - ), and /(• -) is left

continuous on (0, r\,

/( • — ) is of strong bounded variation

on [0, r] (where for convenience we

define /(0 - ) = /(0)), and if we de-

0-3) fine v(t) to be the total variation of

/( • — ) between 0 and t, then v is

nondecreasing and left continuous on

(0, r\,

f is bounded on [0, r] and continuous

(2.4) at  all  but  a   countable  number  of

points in [0, r].

3. Proof of the theorem. We first prove the lemmas below, each of which is

under the hypothesis of the theorem. In what follows we will suppose that M
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is a constant such that \T(t)\ < M for 0 < / < r (see [4, p. 484]) and v is

defined as in (2.3).

Lemma 3.1. 7/0 < / < r, then

f'T(t-s)f(s)dsED(A);

(3.1)

A f'T(t - s)f(s) ds= f'dT(t - s)f(s - ).

Proof. Let 0 < t < r. We observe that f'0T(t — s)f(s) ds, the Riemann

integral, exists since the integrand is bounded and continuous almost every-

where by virtue of (2.1) and the continuity properties of T(t\ t > 0. The

function T from [0, t] to B(X, X) (where B (X, X) denotes the Banach space

of bounded linear operators on X) is bounded on [0, /]. Further, since

T(t)X E D(A) for t > 0, T is continuous from (0, t] to B(X, X) (see [3,

Theorem 10.3.5, p. 310]). By (2.3) the set of discontinuities of T(t — s),

considered as a function of s in [0, t] to B (X, X), has v measure 0. That is,

i —> T(t - s) is discontinuous only at t and, by (2.3), lims_>t-v(s) = v(t).

Thus, the Riemann-Stieltjes integral f'0dT(t - s)f(s - ) exists in the sense

that for each e > 0 there exists S > 0 such that if {j,}"=0 is a chain from 0 to

t such that sup, = 1       „|s, - s,_,| < 8, and s¡_x < s'¡ < í„ then

(3.2) ¿ (T(t - s,) - T(t - Si_x))f(s¡ - ) -fdT(t - s)f(s - )
= i ■'o

<  E

(see [2, Theorem 13.16, p. 65 and Theorem 11.7, p. 53]).

For each positive integer n let s" = it/n, where / = 0, 1, . . . , n. Define gn:

[0, t] -» X by gn(s) = T(t - s)f(si" - ), where s/L, < s < s,n, i = I, . . . , n,

and gn(0) = r(i)/(0). By (2.4), {gn) is bounded on [0, /] and {gn} converges

to T(t - s)f(s) almost everywhere on [0, t]. By the Lebesgue theorem,

^ i — 1     si- I "

(see [3, Theorem 3.7.9, p. 83]). From [4, p. 486], }'0gn(s)ds E D(A) and

(3-4) AÍ'gn(s)ds= 2 (T(t - s,") - T(t - s»_x))f(s? - ).
Jo i=x

Then, by (3.2), (3.3), (3.4), and the closedness of A we obtain (3.1).

Lemma 3.2. Aj'0T(t - s)f(s)ds is continuous from the right in t on [0, r).

Proof. Let 0 < t < r. First, we show that

,      s rt + h

(3.5) lim
h

im A ['H T(t + h - s)f(s)ds= 0.

We observe that an argument similar to that of Lemma 3.1 shows that
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f + hT(t + h : - s)f(s)dsE D(A)
't

and

t + h

AJ''   T(t + h- s)f(s)ds= f     dT(t + h - s)f(s - ).

Take h > 0 and sufficiently small. If e > 0 there is a chain 0,}"^0 from l to

; + h such that

• t + h
f      (T(h)- T(t + h-s))df(s-)\\
Jt II

2 (T(h) -T(t + h- Si_x))(f(Si - ) - /0,._, - ))

(3.6)
1=1

+ e

<2M2||/0,-)-/U-1-)||+e
< = 2

< 2M(v(t + h) - v(sx)) + e.

Then, (3.6) yields

f+h(T(h) -T(t + h- s))df(s - )

< 2m[v(i + h) - liini'O)).
(3.7)

An integration by parts (see [2, Theorem 11.7, p. 53]) together with (3.7) yields

A f' + HT(t + h - s)f(s)ds =   f'+hdT(t + h - s)f(s - )

- rHT(t + h-s)df(s-)+ f((t + h)-)- T(h)f(t - )\\

(3.8)      =   r\T(h)- Tit + h-s))dfis-)
Jt

+ f((t + h)-)-T(h)f((t + h)-)

< 2M[v(t + h) -ton v(s\) +||(7 - T(h))f((t + h)- )\\.

In order to establish (3.5) we need only show that

(3.9) fon ||(/ - T(h))f((t + h) - )|| = 0.

But Í3.91 holds bv virtue of the fact that the range of f(- -) on [0, rl lies in a

compact set of X and limA_0+(7 - T(h))z = 0 uniformly for z in a compact

set. The right continuity of AJ'0T(t - s)f(s)ds in t now follows from (3.5)

and the fact that
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A f'+ T(t + h- s)f(s)ds- A ['t(í - s)f(s)ds
Jo Jo

= (T(h) - I)A frO - s)f(s)ds+ A f'+hT(t + h - s)f(s)ds.

Lemma 3.3. AJ'0T(t - s)f(s)ds is continuous from the left in t on (0, r].

Proof. Let 0 < t < r. Observe that for c > 0 and sufficiently small,

A ['  T(t - s)f(s)ds =   f  dT(t - s)f(s - )
Jt-c Jt-c

(3.10) =   - ¡¡/(I - s)df(s -)+f(t-)- T(c)f((t - c) - )

< M(v(t) - v(t - c)) + M\\f(t - ) - f((t -c)- )||

+ \\(I-T(c))f(t-)l
If h > 0 and c > 0 are both sufficiently small, then (3.10) applied twice below

yields

A Çt(1 - s)f(s)ds - A ('   HT(t - h - s)f(s)ds

AT(c)(f     ~\T(h) - I)T(t -h-c- s)f(s)ds

+ ['       T(t- c- s)f(s)ds)
Jt-h-c I

+ AÍ'   T(t - s)f(s)ds - A f    '   T(t - h - s)f(s)ds
Jt-c Jt-h-c

(3.11)
<|,4F(c)|

•t-h-c

f        C(T(h)-I)T(t - h-c - s)f(s)ds
Jo

+ Mh sup
lh-h-c t-c] I

+ M(v(t) - v(t - c)) + M\\f(t - )-/((, - c) - )||

+ ||(7 - T(c))f(t - )\\+M{y(t -h)-v(t-h- c))

+ M\\f((t-h)-)-f((t-h-c)-)\\

+ W-Tic))f((t-h)-)\\.

For a given e > 0 first choose c > 0 and then choose 8 > 0 such that if

0 < h < S, then (3.11) is   < e (use the fact that v and /(•-) are left

continuous at t and limA_>0+(F(/i) — I)z = 0 uniformly for z in a compact

set). The left continuity of Aj'0T(t - s)f(s)ds then follows immediately.

To complete the proof of the theorem we see that (1.3) follows from



276 G. F. WEBB

Lemmas 3.1, 3.2, and 3.3. To prove (1.4) let 0 < t < r and observe that for

h > 0 and sufficiently small we have

(u(t + h) - u(t))/h = (T(t + h)x - T(t)x)/h

+ \ f + hT(t + h- s)f(s)ds

T(h)-I   ,t
h-I T(t ~ S)f(s)dS-+

By (2.1)

1    r' + h

Ahí,      *"(' + *-*)/(*)*-/(< + )
and (1.4) then follows from Lemmas 3.1 and 3.2. To prove (1.5) let 0 < / < r

and observe that for h > 0 and sufficiently small we have

(u(t -h)- u(t))/(-h) = (T(t - h)x - T(t)x)/ (-h)

+ \f   T(t-s)f(s)ds
"  Jt-h

T(h) - I   ,,-h
+ --h-J       T(t-h- s)f(s)ds.

By (2.2)

Denote

lim3?+l/'   T(t-h-s)f(s)ds=f(t-).
0+   It  J,-h

def   pt-h
T(t - h- s)f(s)ds.

aet    r

:(h)  = /

Ä ~nr- '<*> = Ä \ Sjww- Az^

By Lemma 3.1, z(h) E D(A) and by Lemma 3.3,

T(h)-J  „,     ,s_   1  cK

h->0+

which yields (1.5). Finally, (1.6) follows immediately from (1.4), (1.5), and

(2.4).
We conclude with the observation that our theorem may be applied to

nonlinear evolution equations of the form du(t)/dt = Au(t) + B(u(t)). If

- B is an accretive continuous everywhere defined nonlinear operator on X,

then there exists a solution u(t) to the Volterra integral equation

ií(/) = 7(()x+fr(í-s)i(a(s))ii!,        xEX

(see [10, Theorem I]). If we assume that x E D(A), then it can be shown that

u(t) is Lipschitz continuous. If we also assume that B is Lipschitz continuous

and T(t)X c D (A) for all t > 0, then our theorem implies u(t) satisfies

du(t)/dt = Au(t) + B(u(t)) for all / > 0. If it is not true that T(t)X c

D(A), then this conclusion may not hold (see [10, Example 4.1]). A similar
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observation is made in [7] for the case that T(t), t > 0, is a holomorphic

semigroup.
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